1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 static DEFINE_MUTEX(dpm_list_mtx); 64 static pm_message_t pm_transition; 65 66 static int async_error; 67 68 static const char *pm_verb(int event) 69 { 70 switch (event) { 71 case PM_EVENT_SUSPEND: 72 return "suspend"; 73 case PM_EVENT_RESUME: 74 return "resume"; 75 case PM_EVENT_FREEZE: 76 return "freeze"; 77 case PM_EVENT_QUIESCE: 78 return "quiesce"; 79 case PM_EVENT_HIBERNATE: 80 return "hibernate"; 81 case PM_EVENT_THAW: 82 return "thaw"; 83 case PM_EVENT_RESTORE: 84 return "restore"; 85 case PM_EVENT_RECOVER: 86 return "recover"; 87 default: 88 return "(unknown PM event)"; 89 } 90 } 91 92 /** 93 * device_pm_sleep_init - Initialize system suspend-related device fields. 94 * @dev: Device object being initialized. 95 */ 96 void device_pm_sleep_init(struct device *dev) 97 { 98 dev->power.is_prepared = false; 99 dev->power.is_suspended = false; 100 dev->power.is_noirq_suspended = false; 101 dev->power.is_late_suspended = false; 102 init_completion(&dev->power.completion); 103 complete_all(&dev->power.completion); 104 dev->power.wakeup = NULL; 105 INIT_LIST_HEAD(&dev->power.entry); 106 } 107 108 /** 109 * device_pm_lock - Lock the list of active devices used by the PM core. 110 */ 111 void device_pm_lock(void) 112 { 113 mutex_lock(&dpm_list_mtx); 114 } 115 116 /** 117 * device_pm_unlock - Unlock the list of active devices used by the PM core. 118 */ 119 void device_pm_unlock(void) 120 { 121 mutex_unlock(&dpm_list_mtx); 122 } 123 124 /** 125 * device_pm_add - Add a device to the PM core's list of active devices. 126 * @dev: Device to add to the list. 127 */ 128 void device_pm_add(struct device *dev) 129 { 130 /* Skip PM setup/initialization. */ 131 if (device_pm_not_required(dev)) 132 return; 133 134 pr_debug("Adding info for %s:%s\n", 135 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 136 device_pm_check_callbacks(dev); 137 mutex_lock(&dpm_list_mtx); 138 if (dev->parent && dev->parent->power.is_prepared) 139 dev_warn(dev, "parent %s should not be sleeping\n", 140 dev_name(dev->parent)); 141 list_add_tail(&dev->power.entry, &dpm_list); 142 dev->power.in_dpm_list = true; 143 mutex_unlock(&dpm_list_mtx); 144 } 145 146 /** 147 * device_pm_remove - Remove a device from the PM core's list of active devices. 148 * @dev: Device to be removed from the list. 149 */ 150 void device_pm_remove(struct device *dev) 151 { 152 if (device_pm_not_required(dev)) 153 return; 154 155 pr_debug("Removing info for %s:%s\n", 156 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 157 complete_all(&dev->power.completion); 158 mutex_lock(&dpm_list_mtx); 159 list_del_init(&dev->power.entry); 160 dev->power.in_dpm_list = false; 161 mutex_unlock(&dpm_list_mtx); 162 device_wakeup_disable(dev); 163 pm_runtime_remove(dev); 164 device_pm_check_callbacks(dev); 165 } 166 167 /** 168 * device_pm_move_before - Move device in the PM core's list of active devices. 169 * @deva: Device to move in dpm_list. 170 * @devb: Device @deva should come before. 171 */ 172 void device_pm_move_before(struct device *deva, struct device *devb) 173 { 174 pr_debug("Moving %s:%s before %s:%s\n", 175 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 176 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 177 /* Delete deva from dpm_list and reinsert before devb. */ 178 list_move_tail(&deva->power.entry, &devb->power.entry); 179 } 180 181 /** 182 * device_pm_move_after - Move device in the PM core's list of active devices. 183 * @deva: Device to move in dpm_list. 184 * @devb: Device @deva should come after. 185 */ 186 void device_pm_move_after(struct device *deva, struct device *devb) 187 { 188 pr_debug("Moving %s:%s after %s:%s\n", 189 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 190 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 191 /* Delete deva from dpm_list and reinsert after devb. */ 192 list_move(&deva->power.entry, &devb->power.entry); 193 } 194 195 /** 196 * device_pm_move_last - Move device to end of the PM core's list of devices. 197 * @dev: Device to move in dpm_list. 198 */ 199 void device_pm_move_last(struct device *dev) 200 { 201 pr_debug("Moving %s:%s to end of list\n", 202 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 203 list_move_tail(&dev->power.entry, &dpm_list); 204 } 205 206 static ktime_t initcall_debug_start(struct device *dev, void *cb) 207 { 208 if (!pm_print_times_enabled) 209 return 0; 210 211 dev_info(dev, "calling %ps @ %i, parent: %s\n", cb, 212 task_pid_nr(current), 213 dev->parent ? dev_name(dev->parent) : "none"); 214 return ktime_get(); 215 } 216 217 static void initcall_debug_report(struct device *dev, ktime_t calltime, 218 void *cb, int error) 219 { 220 ktime_t rettime; 221 222 if (!pm_print_times_enabled) 223 return; 224 225 rettime = ktime_get(); 226 dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error, 227 (unsigned long long)ktime_us_delta(rettime, calltime)); 228 } 229 230 /** 231 * dpm_wait - Wait for a PM operation to complete. 232 * @dev: Device to wait for. 233 * @async: If unset, wait only if the device's power.async_suspend flag is set. 234 */ 235 static void dpm_wait(struct device *dev, bool async) 236 { 237 if (!dev) 238 return; 239 240 if (async || (pm_async_enabled && dev->power.async_suspend)) 241 wait_for_completion(&dev->power.completion); 242 } 243 244 static int dpm_wait_fn(struct device *dev, void *async_ptr) 245 { 246 dpm_wait(dev, *((bool *)async_ptr)); 247 return 0; 248 } 249 250 static void dpm_wait_for_children(struct device *dev, bool async) 251 { 252 device_for_each_child(dev, &async, dpm_wait_fn); 253 } 254 255 static void dpm_wait_for_suppliers(struct device *dev, bool async) 256 { 257 struct device_link *link; 258 int idx; 259 260 idx = device_links_read_lock(); 261 262 /* 263 * If the supplier goes away right after we've checked the link to it, 264 * we'll wait for its completion to change the state, but that's fine, 265 * because the only things that will block as a result are the SRCU 266 * callbacks freeing the link objects for the links in the list we're 267 * walking. 268 */ 269 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 270 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 271 dpm_wait(link->supplier, async); 272 273 device_links_read_unlock(idx); 274 } 275 276 static bool dpm_wait_for_superior(struct device *dev, bool async) 277 { 278 struct device *parent; 279 280 /* 281 * If the device is resumed asynchronously and the parent's callback 282 * deletes both the device and the parent itself, the parent object may 283 * be freed while this function is running, so avoid that by reference 284 * counting the parent once more unless the device has been deleted 285 * already (in which case return right away). 286 */ 287 mutex_lock(&dpm_list_mtx); 288 289 if (!device_pm_initialized(dev)) { 290 mutex_unlock(&dpm_list_mtx); 291 return false; 292 } 293 294 parent = get_device(dev->parent); 295 296 mutex_unlock(&dpm_list_mtx); 297 298 dpm_wait(parent, async); 299 put_device(parent); 300 301 dpm_wait_for_suppliers(dev, async); 302 303 /* 304 * If the parent's callback has deleted the device, attempting to resume 305 * it would be invalid, so avoid doing that then. 306 */ 307 return device_pm_initialized(dev); 308 } 309 310 static void dpm_wait_for_consumers(struct device *dev, bool async) 311 { 312 struct device_link *link; 313 int idx; 314 315 idx = device_links_read_lock(); 316 317 /* 318 * The status of a device link can only be changed from "dormant" by a 319 * probe, but that cannot happen during system suspend/resume. In 320 * theory it can change to "dormant" at that time, but then it is 321 * reasonable to wait for the target device anyway (eg. if it goes 322 * away, it's better to wait for it to go away completely and then 323 * continue instead of trying to continue in parallel with its 324 * unregistration). 325 */ 326 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 327 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 328 dpm_wait(link->consumer, async); 329 330 device_links_read_unlock(idx); 331 } 332 333 static void dpm_wait_for_subordinate(struct device *dev, bool async) 334 { 335 dpm_wait_for_children(dev, async); 336 dpm_wait_for_consumers(dev, async); 337 } 338 339 /** 340 * pm_op - Return the PM operation appropriate for given PM event. 341 * @ops: PM operations to choose from. 342 * @state: PM transition of the system being carried out. 343 */ 344 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 345 { 346 switch (state.event) { 347 #ifdef CONFIG_SUSPEND 348 case PM_EVENT_SUSPEND: 349 return ops->suspend; 350 case PM_EVENT_RESUME: 351 return ops->resume; 352 #endif /* CONFIG_SUSPEND */ 353 #ifdef CONFIG_HIBERNATE_CALLBACKS 354 case PM_EVENT_FREEZE: 355 case PM_EVENT_QUIESCE: 356 return ops->freeze; 357 case PM_EVENT_HIBERNATE: 358 return ops->poweroff; 359 case PM_EVENT_THAW: 360 case PM_EVENT_RECOVER: 361 return ops->thaw; 362 case PM_EVENT_RESTORE: 363 return ops->restore; 364 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 365 } 366 367 return NULL; 368 } 369 370 /** 371 * pm_late_early_op - Return the PM operation appropriate for given PM event. 372 * @ops: PM operations to choose from. 373 * @state: PM transition of the system being carried out. 374 * 375 * Runtime PM is disabled for @dev while this function is being executed. 376 */ 377 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 378 pm_message_t state) 379 { 380 switch (state.event) { 381 #ifdef CONFIG_SUSPEND 382 case PM_EVENT_SUSPEND: 383 return ops->suspend_late; 384 case PM_EVENT_RESUME: 385 return ops->resume_early; 386 #endif /* CONFIG_SUSPEND */ 387 #ifdef CONFIG_HIBERNATE_CALLBACKS 388 case PM_EVENT_FREEZE: 389 case PM_EVENT_QUIESCE: 390 return ops->freeze_late; 391 case PM_EVENT_HIBERNATE: 392 return ops->poweroff_late; 393 case PM_EVENT_THAW: 394 case PM_EVENT_RECOVER: 395 return ops->thaw_early; 396 case PM_EVENT_RESTORE: 397 return ops->restore_early; 398 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 399 } 400 401 return NULL; 402 } 403 404 /** 405 * pm_noirq_op - Return the PM operation appropriate for given PM event. 406 * @ops: PM operations to choose from. 407 * @state: PM transition of the system being carried out. 408 * 409 * The driver of @dev will not receive interrupts while this function is being 410 * executed. 411 */ 412 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 413 { 414 switch (state.event) { 415 #ifdef CONFIG_SUSPEND 416 case PM_EVENT_SUSPEND: 417 return ops->suspend_noirq; 418 case PM_EVENT_RESUME: 419 return ops->resume_noirq; 420 #endif /* CONFIG_SUSPEND */ 421 #ifdef CONFIG_HIBERNATE_CALLBACKS 422 case PM_EVENT_FREEZE: 423 case PM_EVENT_QUIESCE: 424 return ops->freeze_noirq; 425 case PM_EVENT_HIBERNATE: 426 return ops->poweroff_noirq; 427 case PM_EVENT_THAW: 428 case PM_EVENT_RECOVER: 429 return ops->thaw_noirq; 430 case PM_EVENT_RESTORE: 431 return ops->restore_noirq; 432 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 433 } 434 435 return NULL; 436 } 437 438 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 439 { 440 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 441 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 442 ", may wakeup" : "", dev->power.driver_flags); 443 } 444 445 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 446 int error) 447 { 448 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 449 error); 450 } 451 452 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 453 const char *info) 454 { 455 ktime_t calltime; 456 u64 usecs64; 457 int usecs; 458 459 calltime = ktime_get(); 460 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 461 do_div(usecs64, NSEC_PER_USEC); 462 usecs = usecs64; 463 if (usecs == 0) 464 usecs = 1; 465 466 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 467 info ?: "", info ? " " : "", pm_verb(state.event), 468 error ? "aborted" : "complete", 469 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 470 } 471 472 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 473 pm_message_t state, const char *info) 474 { 475 ktime_t calltime; 476 int error; 477 478 if (!cb) 479 return 0; 480 481 calltime = initcall_debug_start(dev, cb); 482 483 pm_dev_dbg(dev, state, info); 484 trace_device_pm_callback_start(dev, info, state.event); 485 error = cb(dev); 486 trace_device_pm_callback_end(dev, error); 487 suspend_report_result(dev, cb, error); 488 489 initcall_debug_report(dev, calltime, cb, error); 490 491 return error; 492 } 493 494 #ifdef CONFIG_DPM_WATCHDOG 495 struct dpm_watchdog { 496 struct device *dev; 497 struct task_struct *tsk; 498 struct timer_list timer; 499 bool fatal; 500 }; 501 502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 503 struct dpm_watchdog wd 504 505 /** 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 507 * @t: The timer that PM watchdog depends on. 508 * 509 * Called when a driver has timed out suspending or resuming. 510 * There's not much we can do here to recover so panic() to 511 * capture a crash-dump in pstore. 512 */ 513 static void dpm_watchdog_handler(struct timer_list *t) 514 { 515 struct dpm_watchdog *wd = from_timer(wd, t, timer); 516 struct timer_list *timer = &wd->timer; 517 unsigned int time_left; 518 519 if (wd->fatal) { 520 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 521 show_stack(wd->tsk, NULL, KERN_EMERG); 522 panic("%s %s: unrecoverable failure\n", 523 dev_driver_string(wd->dev), dev_name(wd->dev)); 524 } 525 526 time_left = CONFIG_DPM_WATCHDOG_TIMEOUT - CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT; 527 dev_warn(wd->dev, "**** DPM device timeout after %u seconds; %u seconds until panic ****\n", 528 CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT, time_left); 529 show_stack(wd->tsk, NULL, KERN_WARNING); 530 531 wd->fatal = true; 532 mod_timer(timer, jiffies + HZ * time_left); 533 } 534 535 /** 536 * dpm_watchdog_set - Enable pm watchdog for given device. 537 * @wd: Watchdog. Must be allocated on the stack. 538 * @dev: Device to handle. 539 */ 540 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 541 { 542 struct timer_list *timer = &wd->timer; 543 544 wd->dev = dev; 545 wd->tsk = current; 546 wd->fatal = CONFIG_DPM_WATCHDOG_TIMEOUT == CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT; 547 548 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 549 /* use same timeout value for both suspend and resume */ 550 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT; 551 add_timer(timer); 552 } 553 554 /** 555 * dpm_watchdog_clear - Disable suspend/resume watchdog. 556 * @wd: Watchdog to disable. 557 */ 558 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 559 { 560 struct timer_list *timer = &wd->timer; 561 562 del_timer_sync(timer); 563 destroy_timer_on_stack(timer); 564 } 565 #else 566 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 567 #define dpm_watchdog_set(x, y) 568 #define dpm_watchdog_clear(x) 569 #endif 570 571 /*------------------------- Resume routines -------------------------*/ 572 573 /** 574 * dev_pm_skip_resume - System-wide device resume optimization check. 575 * @dev: Target device. 576 * 577 * Return: 578 * - %false if the transition under way is RESTORE. 579 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 580 * - The logical negation of %power.must_resume otherwise (that is, when the 581 * transition under way is RESUME). 582 */ 583 bool dev_pm_skip_resume(struct device *dev) 584 { 585 if (pm_transition.event == PM_EVENT_RESTORE) 586 return false; 587 588 if (pm_transition.event == PM_EVENT_THAW) 589 return dev_pm_skip_suspend(dev); 590 591 return !dev->power.must_resume; 592 } 593 594 static bool is_async(struct device *dev) 595 { 596 return dev->power.async_suspend && pm_async_enabled 597 && !pm_trace_is_enabled(); 598 } 599 600 static bool dpm_async_fn(struct device *dev, async_func_t func) 601 { 602 reinit_completion(&dev->power.completion); 603 604 if (is_async(dev)) { 605 dev->power.async_in_progress = true; 606 607 get_device(dev); 608 609 if (async_schedule_dev_nocall(func, dev)) 610 return true; 611 612 put_device(dev); 613 } 614 /* 615 * Because async_schedule_dev_nocall() above has returned false or it 616 * has not been called at all, func() is not running and it is safe to 617 * update the async_in_progress flag without extra synchronization. 618 */ 619 dev->power.async_in_progress = false; 620 return false; 621 } 622 623 /** 624 * device_resume_noirq - Execute a "noirq resume" callback for given device. 625 * @dev: Device to handle. 626 * @state: PM transition of the system being carried out. 627 * @async: If true, the device is being resumed asynchronously. 628 * 629 * The driver of @dev will not receive interrupts while this function is being 630 * executed. 631 */ 632 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async) 633 { 634 pm_callback_t callback = NULL; 635 const char *info = NULL; 636 bool skip_resume; 637 int error = 0; 638 639 TRACE_DEVICE(dev); 640 TRACE_RESUME(0); 641 642 if (dev->power.syscore || dev->power.direct_complete) 643 goto Out; 644 645 if (!dev->power.is_noirq_suspended) 646 goto Out; 647 648 if (!dpm_wait_for_superior(dev, async)) 649 goto Out; 650 651 skip_resume = dev_pm_skip_resume(dev); 652 /* 653 * If the driver callback is skipped below or by the middle layer 654 * callback and device_resume_early() also skips the driver callback for 655 * this device later, it needs to appear as "suspended" to PM-runtime, 656 * so change its status accordingly. 657 * 658 * Otherwise, the device is going to be resumed, so set its PM-runtime 659 * status to "active" unless its power.set_active flag is clear, in 660 * which case it is not necessary to update its PM-runtime status. 661 */ 662 if (skip_resume) { 663 pm_runtime_set_suspended(dev); 664 } else if (dev->power.set_active) { 665 pm_runtime_set_active(dev); 666 dev->power.set_active = false; 667 } 668 669 if (dev->pm_domain) { 670 info = "noirq power domain "; 671 callback = pm_noirq_op(&dev->pm_domain->ops, state); 672 } else if (dev->type && dev->type->pm) { 673 info = "noirq type "; 674 callback = pm_noirq_op(dev->type->pm, state); 675 } else if (dev->class && dev->class->pm) { 676 info = "noirq class "; 677 callback = pm_noirq_op(dev->class->pm, state); 678 } else if (dev->bus && dev->bus->pm) { 679 info = "noirq bus "; 680 callback = pm_noirq_op(dev->bus->pm, state); 681 } 682 if (callback) 683 goto Run; 684 685 if (skip_resume) 686 goto Skip; 687 688 if (dev->driver && dev->driver->pm) { 689 info = "noirq driver "; 690 callback = pm_noirq_op(dev->driver->pm, state); 691 } 692 693 Run: 694 error = dpm_run_callback(callback, dev, state, info); 695 696 Skip: 697 dev->power.is_noirq_suspended = false; 698 699 Out: 700 complete_all(&dev->power.completion); 701 TRACE_RESUME(error); 702 703 if (error) { 704 async_error = error; 705 dpm_save_failed_dev(dev_name(dev)); 706 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 707 } 708 } 709 710 static void async_resume_noirq(void *data, async_cookie_t cookie) 711 { 712 struct device *dev = data; 713 714 device_resume_noirq(dev, pm_transition, true); 715 put_device(dev); 716 } 717 718 static void dpm_noirq_resume_devices(pm_message_t state) 719 { 720 struct device *dev; 721 ktime_t starttime = ktime_get(); 722 723 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 724 725 async_error = 0; 726 pm_transition = state; 727 728 mutex_lock(&dpm_list_mtx); 729 730 /* 731 * Trigger the resume of "async" devices upfront so they don't have to 732 * wait for the "non-async" ones they don't depend on. 733 */ 734 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 735 dpm_async_fn(dev, async_resume_noirq); 736 737 while (!list_empty(&dpm_noirq_list)) { 738 dev = to_device(dpm_noirq_list.next); 739 list_move_tail(&dev->power.entry, &dpm_late_early_list); 740 741 if (!dev->power.async_in_progress) { 742 get_device(dev); 743 744 mutex_unlock(&dpm_list_mtx); 745 746 device_resume_noirq(dev, state, false); 747 748 put_device(dev); 749 750 mutex_lock(&dpm_list_mtx); 751 } 752 } 753 mutex_unlock(&dpm_list_mtx); 754 async_synchronize_full(); 755 dpm_show_time(starttime, state, 0, "noirq"); 756 if (async_error) 757 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 758 759 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 760 } 761 762 /** 763 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 764 * @state: PM transition of the system being carried out. 765 * 766 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 767 * allow device drivers' interrupt handlers to be called. 768 */ 769 void dpm_resume_noirq(pm_message_t state) 770 { 771 dpm_noirq_resume_devices(state); 772 773 resume_device_irqs(); 774 device_wakeup_disarm_wake_irqs(); 775 } 776 777 /** 778 * device_resume_early - Execute an "early resume" callback for given device. 779 * @dev: Device to handle. 780 * @state: PM transition of the system being carried out. 781 * @async: If true, the device is being resumed asynchronously. 782 * 783 * Runtime PM is disabled for @dev while this function is being executed. 784 */ 785 static void device_resume_early(struct device *dev, pm_message_t state, bool async) 786 { 787 pm_callback_t callback = NULL; 788 const char *info = NULL; 789 int error = 0; 790 791 TRACE_DEVICE(dev); 792 TRACE_RESUME(0); 793 794 if (dev->power.syscore || dev->power.direct_complete) 795 goto Out; 796 797 if (!dev->power.is_late_suspended) 798 goto Out; 799 800 if (!dpm_wait_for_superior(dev, async)) 801 goto Out; 802 803 if (dev->pm_domain) { 804 info = "early power domain "; 805 callback = pm_late_early_op(&dev->pm_domain->ops, state); 806 } else if (dev->type && dev->type->pm) { 807 info = "early type "; 808 callback = pm_late_early_op(dev->type->pm, state); 809 } else if (dev->class && dev->class->pm) { 810 info = "early class "; 811 callback = pm_late_early_op(dev->class->pm, state); 812 } else if (dev->bus && dev->bus->pm) { 813 info = "early bus "; 814 callback = pm_late_early_op(dev->bus->pm, state); 815 } 816 if (callback) 817 goto Run; 818 819 if (dev_pm_skip_resume(dev)) 820 goto Skip; 821 822 if (dev->driver && dev->driver->pm) { 823 info = "early driver "; 824 callback = pm_late_early_op(dev->driver->pm, state); 825 } 826 827 Run: 828 error = dpm_run_callback(callback, dev, state, info); 829 830 Skip: 831 dev->power.is_late_suspended = false; 832 833 Out: 834 TRACE_RESUME(error); 835 836 pm_runtime_enable(dev); 837 complete_all(&dev->power.completion); 838 839 if (error) { 840 async_error = error; 841 dpm_save_failed_dev(dev_name(dev)); 842 pm_dev_err(dev, state, async ? " async early" : " early", error); 843 } 844 } 845 846 static void async_resume_early(void *data, async_cookie_t cookie) 847 { 848 struct device *dev = data; 849 850 device_resume_early(dev, pm_transition, true); 851 put_device(dev); 852 } 853 854 /** 855 * dpm_resume_early - Execute "early resume" callbacks for all devices. 856 * @state: PM transition of the system being carried out. 857 */ 858 void dpm_resume_early(pm_message_t state) 859 { 860 struct device *dev; 861 ktime_t starttime = ktime_get(); 862 863 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 864 865 async_error = 0; 866 pm_transition = state; 867 868 mutex_lock(&dpm_list_mtx); 869 870 /* 871 * Trigger the resume of "async" devices upfront so they don't have to 872 * wait for the "non-async" ones they don't depend on. 873 */ 874 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 875 dpm_async_fn(dev, async_resume_early); 876 877 while (!list_empty(&dpm_late_early_list)) { 878 dev = to_device(dpm_late_early_list.next); 879 list_move_tail(&dev->power.entry, &dpm_suspended_list); 880 881 if (!dev->power.async_in_progress) { 882 get_device(dev); 883 884 mutex_unlock(&dpm_list_mtx); 885 886 device_resume_early(dev, state, false); 887 888 put_device(dev); 889 890 mutex_lock(&dpm_list_mtx); 891 } 892 } 893 mutex_unlock(&dpm_list_mtx); 894 async_synchronize_full(); 895 dpm_show_time(starttime, state, 0, "early"); 896 if (async_error) 897 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 898 899 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 900 } 901 902 /** 903 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 904 * @state: PM transition of the system being carried out. 905 */ 906 void dpm_resume_start(pm_message_t state) 907 { 908 dpm_resume_noirq(state); 909 dpm_resume_early(state); 910 } 911 EXPORT_SYMBOL_GPL(dpm_resume_start); 912 913 /** 914 * device_resume - Execute "resume" callbacks for given device. 915 * @dev: Device to handle. 916 * @state: PM transition of the system being carried out. 917 * @async: If true, the device is being resumed asynchronously. 918 */ 919 static void device_resume(struct device *dev, pm_message_t state, bool async) 920 { 921 pm_callback_t callback = NULL; 922 const char *info = NULL; 923 int error = 0; 924 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 925 926 TRACE_DEVICE(dev); 927 TRACE_RESUME(0); 928 929 if (dev->power.syscore) 930 goto Complete; 931 932 if (dev->power.direct_complete) { 933 /* Match the pm_runtime_disable() in device_suspend(). */ 934 pm_runtime_enable(dev); 935 goto Complete; 936 } 937 938 if (!dpm_wait_for_superior(dev, async)) 939 goto Complete; 940 941 dpm_watchdog_set(&wd, dev); 942 device_lock(dev); 943 944 /* 945 * This is a fib. But we'll allow new children to be added below 946 * a resumed device, even if the device hasn't been completed yet. 947 */ 948 dev->power.is_prepared = false; 949 950 if (!dev->power.is_suspended) 951 goto Unlock; 952 953 if (dev->pm_domain) { 954 info = "power domain "; 955 callback = pm_op(&dev->pm_domain->ops, state); 956 goto Driver; 957 } 958 959 if (dev->type && dev->type->pm) { 960 info = "type "; 961 callback = pm_op(dev->type->pm, state); 962 goto Driver; 963 } 964 965 if (dev->class && dev->class->pm) { 966 info = "class "; 967 callback = pm_op(dev->class->pm, state); 968 goto Driver; 969 } 970 971 if (dev->bus) { 972 if (dev->bus->pm) { 973 info = "bus "; 974 callback = pm_op(dev->bus->pm, state); 975 } else if (dev->bus->resume) { 976 info = "legacy bus "; 977 callback = dev->bus->resume; 978 goto End; 979 } 980 } 981 982 Driver: 983 if (!callback && dev->driver && dev->driver->pm) { 984 info = "driver "; 985 callback = pm_op(dev->driver->pm, state); 986 } 987 988 End: 989 error = dpm_run_callback(callback, dev, state, info); 990 dev->power.is_suspended = false; 991 992 Unlock: 993 device_unlock(dev); 994 dpm_watchdog_clear(&wd); 995 996 Complete: 997 complete_all(&dev->power.completion); 998 999 TRACE_RESUME(error); 1000 1001 if (error) { 1002 async_error = error; 1003 dpm_save_failed_dev(dev_name(dev)); 1004 pm_dev_err(dev, state, async ? " async" : "", error); 1005 } 1006 } 1007 1008 static void async_resume(void *data, async_cookie_t cookie) 1009 { 1010 struct device *dev = data; 1011 1012 device_resume(dev, pm_transition, true); 1013 put_device(dev); 1014 } 1015 1016 /** 1017 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 1018 * @state: PM transition of the system being carried out. 1019 * 1020 * Execute the appropriate "resume" callback for all devices whose status 1021 * indicates that they are suspended. 1022 */ 1023 void dpm_resume(pm_message_t state) 1024 { 1025 struct device *dev; 1026 ktime_t starttime = ktime_get(); 1027 1028 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1029 might_sleep(); 1030 1031 pm_transition = state; 1032 async_error = 0; 1033 1034 mutex_lock(&dpm_list_mtx); 1035 1036 /* 1037 * Trigger the resume of "async" devices upfront so they don't have to 1038 * wait for the "non-async" ones they don't depend on. 1039 */ 1040 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1041 dpm_async_fn(dev, async_resume); 1042 1043 while (!list_empty(&dpm_suspended_list)) { 1044 dev = to_device(dpm_suspended_list.next); 1045 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1046 1047 if (!dev->power.async_in_progress) { 1048 get_device(dev); 1049 1050 mutex_unlock(&dpm_list_mtx); 1051 1052 device_resume(dev, state, false); 1053 1054 put_device(dev); 1055 1056 mutex_lock(&dpm_list_mtx); 1057 } 1058 } 1059 mutex_unlock(&dpm_list_mtx); 1060 async_synchronize_full(); 1061 dpm_show_time(starttime, state, 0, NULL); 1062 if (async_error) 1063 dpm_save_failed_step(SUSPEND_RESUME); 1064 1065 cpufreq_resume(); 1066 devfreq_resume(); 1067 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1068 } 1069 1070 /** 1071 * device_complete - Complete a PM transition for given device. 1072 * @dev: Device to handle. 1073 * @state: PM transition of the system being carried out. 1074 */ 1075 static void device_complete(struct device *dev, pm_message_t state) 1076 { 1077 void (*callback)(struct device *) = NULL; 1078 const char *info = NULL; 1079 1080 if (dev->power.syscore) 1081 goto out; 1082 1083 device_lock(dev); 1084 1085 if (dev->pm_domain) { 1086 info = "completing power domain "; 1087 callback = dev->pm_domain->ops.complete; 1088 } else if (dev->type && dev->type->pm) { 1089 info = "completing type "; 1090 callback = dev->type->pm->complete; 1091 } else if (dev->class && dev->class->pm) { 1092 info = "completing class "; 1093 callback = dev->class->pm->complete; 1094 } else if (dev->bus && dev->bus->pm) { 1095 info = "completing bus "; 1096 callback = dev->bus->pm->complete; 1097 } 1098 1099 if (!callback && dev->driver && dev->driver->pm) { 1100 info = "completing driver "; 1101 callback = dev->driver->pm->complete; 1102 } 1103 1104 if (callback) { 1105 pm_dev_dbg(dev, state, info); 1106 callback(dev); 1107 } 1108 1109 device_unlock(dev); 1110 1111 out: 1112 pm_runtime_put(dev); 1113 } 1114 1115 /** 1116 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1117 * @state: PM transition of the system being carried out. 1118 * 1119 * Execute the ->complete() callbacks for all devices whose PM status is not 1120 * DPM_ON (this allows new devices to be registered). 1121 */ 1122 void dpm_complete(pm_message_t state) 1123 { 1124 struct list_head list; 1125 1126 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1127 might_sleep(); 1128 1129 INIT_LIST_HEAD(&list); 1130 mutex_lock(&dpm_list_mtx); 1131 while (!list_empty(&dpm_prepared_list)) { 1132 struct device *dev = to_device(dpm_prepared_list.prev); 1133 1134 get_device(dev); 1135 dev->power.is_prepared = false; 1136 list_move(&dev->power.entry, &list); 1137 1138 mutex_unlock(&dpm_list_mtx); 1139 1140 trace_device_pm_callback_start(dev, "", state.event); 1141 device_complete(dev, state); 1142 trace_device_pm_callback_end(dev, 0); 1143 1144 put_device(dev); 1145 1146 mutex_lock(&dpm_list_mtx); 1147 } 1148 list_splice(&list, &dpm_list); 1149 mutex_unlock(&dpm_list_mtx); 1150 1151 /* Allow device probing and trigger re-probing of deferred devices */ 1152 device_unblock_probing(); 1153 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1154 } 1155 1156 /** 1157 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1158 * @state: PM transition of the system being carried out. 1159 * 1160 * Execute "resume" callbacks for all devices and complete the PM transition of 1161 * the system. 1162 */ 1163 void dpm_resume_end(pm_message_t state) 1164 { 1165 dpm_resume(state); 1166 dpm_complete(state); 1167 } 1168 EXPORT_SYMBOL_GPL(dpm_resume_end); 1169 1170 1171 /*------------------------- Suspend routines -------------------------*/ 1172 1173 /** 1174 * resume_event - Return a "resume" message for given "suspend" sleep state. 1175 * @sleep_state: PM message representing a sleep state. 1176 * 1177 * Return a PM message representing the resume event corresponding to given 1178 * sleep state. 1179 */ 1180 static pm_message_t resume_event(pm_message_t sleep_state) 1181 { 1182 switch (sleep_state.event) { 1183 case PM_EVENT_SUSPEND: 1184 return PMSG_RESUME; 1185 case PM_EVENT_FREEZE: 1186 case PM_EVENT_QUIESCE: 1187 return PMSG_RECOVER; 1188 case PM_EVENT_HIBERNATE: 1189 return PMSG_RESTORE; 1190 } 1191 return PMSG_ON; 1192 } 1193 1194 static void dpm_superior_set_must_resume(struct device *dev, bool set_active) 1195 { 1196 struct device_link *link; 1197 int idx; 1198 1199 if (dev->parent) { 1200 dev->parent->power.must_resume = true; 1201 if (set_active) 1202 dev->parent->power.set_active = true; 1203 } 1204 1205 idx = device_links_read_lock(); 1206 1207 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1208 link->supplier->power.must_resume = true; 1209 if (set_active) 1210 link->supplier->power.set_active = true; 1211 } 1212 1213 device_links_read_unlock(idx); 1214 } 1215 1216 /** 1217 * device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1218 * @dev: Device to handle. 1219 * @state: PM transition of the system being carried out. 1220 * @async: If true, the device is being suspended asynchronously. 1221 * 1222 * The driver of @dev will not receive interrupts while this function is being 1223 * executed. 1224 */ 1225 static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1226 { 1227 pm_callback_t callback = NULL; 1228 const char *info = NULL; 1229 int error = 0; 1230 1231 TRACE_DEVICE(dev); 1232 TRACE_SUSPEND(0); 1233 1234 dpm_wait_for_subordinate(dev, async); 1235 1236 if (async_error) 1237 goto Complete; 1238 1239 if (dev->power.syscore || dev->power.direct_complete) 1240 goto Complete; 1241 1242 if (dev->pm_domain) { 1243 info = "noirq power domain "; 1244 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1245 } else if (dev->type && dev->type->pm) { 1246 info = "noirq type "; 1247 callback = pm_noirq_op(dev->type->pm, state); 1248 } else if (dev->class && dev->class->pm) { 1249 info = "noirq class "; 1250 callback = pm_noirq_op(dev->class->pm, state); 1251 } else if (dev->bus && dev->bus->pm) { 1252 info = "noirq bus "; 1253 callback = pm_noirq_op(dev->bus->pm, state); 1254 } 1255 if (callback) 1256 goto Run; 1257 1258 if (dev_pm_skip_suspend(dev)) 1259 goto Skip; 1260 1261 if (dev->driver && dev->driver->pm) { 1262 info = "noirq driver "; 1263 callback = pm_noirq_op(dev->driver->pm, state); 1264 } 1265 1266 Run: 1267 error = dpm_run_callback(callback, dev, state, info); 1268 if (error) { 1269 async_error = error; 1270 dpm_save_failed_dev(dev_name(dev)); 1271 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 1272 goto Complete; 1273 } 1274 1275 Skip: 1276 dev->power.is_noirq_suspended = true; 1277 1278 /* 1279 * Skipping the resume of devices that were in use right before the 1280 * system suspend (as indicated by their PM-runtime usage counters) 1281 * would be suboptimal. Also resume them if doing that is not allowed 1282 * to be skipped. 1283 */ 1284 if (atomic_read(&dev->power.usage_count) > 1 || 1285 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1286 dev->power.may_skip_resume)) 1287 dev->power.must_resume = true; 1288 1289 if (dev->power.must_resume) { 1290 dev->power.set_active = dev->power.set_active || 1291 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND); 1292 dpm_superior_set_must_resume(dev, dev->power.set_active); 1293 } 1294 1295 Complete: 1296 complete_all(&dev->power.completion); 1297 TRACE_SUSPEND(error); 1298 return error; 1299 } 1300 1301 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1302 { 1303 struct device *dev = data; 1304 1305 device_suspend_noirq(dev, pm_transition, true); 1306 put_device(dev); 1307 } 1308 1309 static int dpm_noirq_suspend_devices(pm_message_t state) 1310 { 1311 ktime_t starttime = ktime_get(); 1312 int error = 0; 1313 1314 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1315 1316 pm_transition = state; 1317 async_error = 0; 1318 1319 mutex_lock(&dpm_list_mtx); 1320 1321 while (!list_empty(&dpm_late_early_list)) { 1322 struct device *dev = to_device(dpm_late_early_list.prev); 1323 1324 list_move(&dev->power.entry, &dpm_noirq_list); 1325 1326 if (dpm_async_fn(dev, async_suspend_noirq)) 1327 continue; 1328 1329 get_device(dev); 1330 1331 mutex_unlock(&dpm_list_mtx); 1332 1333 error = device_suspend_noirq(dev, state, false); 1334 1335 put_device(dev); 1336 1337 mutex_lock(&dpm_list_mtx); 1338 1339 if (error || async_error) 1340 break; 1341 } 1342 1343 mutex_unlock(&dpm_list_mtx); 1344 1345 async_synchronize_full(); 1346 if (!error) 1347 error = async_error; 1348 1349 if (error) 1350 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1351 1352 dpm_show_time(starttime, state, error, "noirq"); 1353 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1354 return error; 1355 } 1356 1357 /** 1358 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1359 * @state: PM transition of the system being carried out. 1360 * 1361 * Prevent device drivers' interrupt handlers from being called and invoke 1362 * "noirq" suspend callbacks for all non-sysdev devices. 1363 */ 1364 int dpm_suspend_noirq(pm_message_t state) 1365 { 1366 int ret; 1367 1368 device_wakeup_arm_wake_irqs(); 1369 suspend_device_irqs(); 1370 1371 ret = dpm_noirq_suspend_devices(state); 1372 if (ret) 1373 dpm_resume_noirq(resume_event(state)); 1374 1375 return ret; 1376 } 1377 1378 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1379 { 1380 struct device *parent = dev->parent; 1381 1382 if (!parent) 1383 return; 1384 1385 spin_lock_irq(&parent->power.lock); 1386 1387 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1388 parent->power.wakeup_path = true; 1389 1390 spin_unlock_irq(&parent->power.lock); 1391 } 1392 1393 /** 1394 * device_suspend_late - Execute a "late suspend" callback for given device. 1395 * @dev: Device to handle. 1396 * @state: PM transition of the system being carried out. 1397 * @async: If true, the device is being suspended asynchronously. 1398 * 1399 * Runtime PM is disabled for @dev while this function is being executed. 1400 */ 1401 static int device_suspend_late(struct device *dev, pm_message_t state, bool async) 1402 { 1403 pm_callback_t callback = NULL; 1404 const char *info = NULL; 1405 int error = 0; 1406 1407 TRACE_DEVICE(dev); 1408 TRACE_SUSPEND(0); 1409 1410 __pm_runtime_disable(dev, false); 1411 1412 dpm_wait_for_subordinate(dev, async); 1413 1414 if (async_error) 1415 goto Complete; 1416 1417 if (pm_wakeup_pending()) { 1418 async_error = -EBUSY; 1419 goto Complete; 1420 } 1421 1422 if (dev->power.syscore || dev->power.direct_complete) 1423 goto Complete; 1424 1425 if (dev->pm_domain) { 1426 info = "late power domain "; 1427 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1428 } else if (dev->type && dev->type->pm) { 1429 info = "late type "; 1430 callback = pm_late_early_op(dev->type->pm, state); 1431 } else if (dev->class && dev->class->pm) { 1432 info = "late class "; 1433 callback = pm_late_early_op(dev->class->pm, state); 1434 } else if (dev->bus && dev->bus->pm) { 1435 info = "late bus "; 1436 callback = pm_late_early_op(dev->bus->pm, state); 1437 } 1438 if (callback) 1439 goto Run; 1440 1441 if (dev_pm_skip_suspend(dev)) 1442 goto Skip; 1443 1444 if (dev->driver && dev->driver->pm) { 1445 info = "late driver "; 1446 callback = pm_late_early_op(dev->driver->pm, state); 1447 } 1448 1449 Run: 1450 error = dpm_run_callback(callback, dev, state, info); 1451 if (error) { 1452 async_error = error; 1453 dpm_save_failed_dev(dev_name(dev)); 1454 pm_dev_err(dev, state, async ? " async late" : " late", error); 1455 goto Complete; 1456 } 1457 dpm_propagate_wakeup_to_parent(dev); 1458 1459 Skip: 1460 dev->power.is_late_suspended = true; 1461 1462 Complete: 1463 TRACE_SUSPEND(error); 1464 complete_all(&dev->power.completion); 1465 return error; 1466 } 1467 1468 static void async_suspend_late(void *data, async_cookie_t cookie) 1469 { 1470 struct device *dev = data; 1471 1472 device_suspend_late(dev, pm_transition, true); 1473 put_device(dev); 1474 } 1475 1476 /** 1477 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1478 * @state: PM transition of the system being carried out. 1479 */ 1480 int dpm_suspend_late(pm_message_t state) 1481 { 1482 ktime_t starttime = ktime_get(); 1483 int error = 0; 1484 1485 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1486 1487 pm_transition = state; 1488 async_error = 0; 1489 1490 wake_up_all_idle_cpus(); 1491 1492 mutex_lock(&dpm_list_mtx); 1493 1494 while (!list_empty(&dpm_suspended_list)) { 1495 struct device *dev = to_device(dpm_suspended_list.prev); 1496 1497 list_move(&dev->power.entry, &dpm_late_early_list); 1498 1499 if (dpm_async_fn(dev, async_suspend_late)) 1500 continue; 1501 1502 get_device(dev); 1503 1504 mutex_unlock(&dpm_list_mtx); 1505 1506 error = device_suspend_late(dev, state, false); 1507 1508 put_device(dev); 1509 1510 mutex_lock(&dpm_list_mtx); 1511 1512 if (error || async_error) 1513 break; 1514 } 1515 1516 mutex_unlock(&dpm_list_mtx); 1517 1518 async_synchronize_full(); 1519 if (!error) 1520 error = async_error; 1521 1522 if (error) { 1523 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1524 dpm_resume_early(resume_event(state)); 1525 } 1526 dpm_show_time(starttime, state, error, "late"); 1527 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1528 return error; 1529 } 1530 1531 /** 1532 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1533 * @state: PM transition of the system being carried out. 1534 */ 1535 int dpm_suspend_end(pm_message_t state) 1536 { 1537 ktime_t starttime = ktime_get(); 1538 int error; 1539 1540 error = dpm_suspend_late(state); 1541 if (error) 1542 goto out; 1543 1544 error = dpm_suspend_noirq(state); 1545 if (error) 1546 dpm_resume_early(resume_event(state)); 1547 1548 out: 1549 dpm_show_time(starttime, state, error, "end"); 1550 return error; 1551 } 1552 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1553 1554 /** 1555 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1556 * @dev: Device to suspend. 1557 * @state: PM transition of the system being carried out. 1558 * @cb: Suspend callback to execute. 1559 * @info: string description of caller. 1560 */ 1561 static int legacy_suspend(struct device *dev, pm_message_t state, 1562 int (*cb)(struct device *dev, pm_message_t state), 1563 const char *info) 1564 { 1565 int error; 1566 ktime_t calltime; 1567 1568 calltime = initcall_debug_start(dev, cb); 1569 1570 trace_device_pm_callback_start(dev, info, state.event); 1571 error = cb(dev, state); 1572 trace_device_pm_callback_end(dev, error); 1573 suspend_report_result(dev, cb, error); 1574 1575 initcall_debug_report(dev, calltime, cb, error); 1576 1577 return error; 1578 } 1579 1580 static void dpm_clear_superiors_direct_complete(struct device *dev) 1581 { 1582 struct device_link *link; 1583 int idx; 1584 1585 if (dev->parent) { 1586 spin_lock_irq(&dev->parent->power.lock); 1587 dev->parent->power.direct_complete = false; 1588 spin_unlock_irq(&dev->parent->power.lock); 1589 } 1590 1591 idx = device_links_read_lock(); 1592 1593 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1594 spin_lock_irq(&link->supplier->power.lock); 1595 link->supplier->power.direct_complete = false; 1596 spin_unlock_irq(&link->supplier->power.lock); 1597 } 1598 1599 device_links_read_unlock(idx); 1600 } 1601 1602 /** 1603 * device_suspend - Execute "suspend" callbacks for given device. 1604 * @dev: Device to handle. 1605 * @state: PM transition of the system being carried out. 1606 * @async: If true, the device is being suspended asynchronously. 1607 */ 1608 static int device_suspend(struct device *dev, pm_message_t state, bool async) 1609 { 1610 pm_callback_t callback = NULL; 1611 const char *info = NULL; 1612 int error = 0; 1613 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1614 1615 TRACE_DEVICE(dev); 1616 TRACE_SUSPEND(0); 1617 1618 dpm_wait_for_subordinate(dev, async); 1619 1620 if (async_error) { 1621 dev->power.direct_complete = false; 1622 goto Complete; 1623 } 1624 1625 /* 1626 * Wait for possible runtime PM transitions of the device in progress 1627 * to complete and if there's a runtime resume request pending for it, 1628 * resume it before proceeding with invoking the system-wide suspend 1629 * callbacks for it. 1630 * 1631 * If the system-wide suspend callbacks below change the configuration 1632 * of the device, they must disable runtime PM for it or otherwise 1633 * ensure that its runtime-resume callbacks will not be confused by that 1634 * change in case they are invoked going forward. 1635 */ 1636 pm_runtime_barrier(dev); 1637 1638 if (pm_wakeup_pending()) { 1639 dev->power.direct_complete = false; 1640 async_error = -EBUSY; 1641 goto Complete; 1642 } 1643 1644 if (dev->power.syscore) 1645 goto Complete; 1646 1647 /* Avoid direct_complete to let wakeup_path propagate. */ 1648 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1649 dev->power.direct_complete = false; 1650 1651 if (dev->power.direct_complete) { 1652 if (pm_runtime_status_suspended(dev)) { 1653 pm_runtime_disable(dev); 1654 if (pm_runtime_status_suspended(dev)) { 1655 pm_dev_dbg(dev, state, "direct-complete "); 1656 goto Complete; 1657 } 1658 1659 pm_runtime_enable(dev); 1660 } 1661 dev->power.direct_complete = false; 1662 } 1663 1664 dev->power.may_skip_resume = true; 1665 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1666 1667 dpm_watchdog_set(&wd, dev); 1668 device_lock(dev); 1669 1670 if (dev->pm_domain) { 1671 info = "power domain "; 1672 callback = pm_op(&dev->pm_domain->ops, state); 1673 goto Run; 1674 } 1675 1676 if (dev->type && dev->type->pm) { 1677 info = "type "; 1678 callback = pm_op(dev->type->pm, state); 1679 goto Run; 1680 } 1681 1682 if (dev->class && dev->class->pm) { 1683 info = "class "; 1684 callback = pm_op(dev->class->pm, state); 1685 goto Run; 1686 } 1687 1688 if (dev->bus) { 1689 if (dev->bus->pm) { 1690 info = "bus "; 1691 callback = pm_op(dev->bus->pm, state); 1692 } else if (dev->bus->suspend) { 1693 pm_dev_dbg(dev, state, "legacy bus "); 1694 error = legacy_suspend(dev, state, dev->bus->suspend, 1695 "legacy bus "); 1696 goto End; 1697 } 1698 } 1699 1700 Run: 1701 if (!callback && dev->driver && dev->driver->pm) { 1702 info = "driver "; 1703 callback = pm_op(dev->driver->pm, state); 1704 } 1705 1706 error = dpm_run_callback(callback, dev, state, info); 1707 1708 End: 1709 if (!error) { 1710 dev->power.is_suspended = true; 1711 if (device_may_wakeup(dev)) 1712 dev->power.wakeup_path = true; 1713 1714 dpm_propagate_wakeup_to_parent(dev); 1715 dpm_clear_superiors_direct_complete(dev); 1716 } 1717 1718 device_unlock(dev); 1719 dpm_watchdog_clear(&wd); 1720 1721 Complete: 1722 if (error) { 1723 async_error = error; 1724 dpm_save_failed_dev(dev_name(dev)); 1725 pm_dev_err(dev, state, async ? " async" : "", error); 1726 } 1727 1728 complete_all(&dev->power.completion); 1729 TRACE_SUSPEND(error); 1730 return error; 1731 } 1732 1733 static void async_suspend(void *data, async_cookie_t cookie) 1734 { 1735 struct device *dev = data; 1736 1737 device_suspend(dev, pm_transition, true); 1738 put_device(dev); 1739 } 1740 1741 /** 1742 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1743 * @state: PM transition of the system being carried out. 1744 */ 1745 int dpm_suspend(pm_message_t state) 1746 { 1747 ktime_t starttime = ktime_get(); 1748 int error = 0; 1749 1750 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1751 might_sleep(); 1752 1753 devfreq_suspend(); 1754 cpufreq_suspend(); 1755 1756 pm_transition = state; 1757 async_error = 0; 1758 1759 mutex_lock(&dpm_list_mtx); 1760 1761 while (!list_empty(&dpm_prepared_list)) { 1762 struct device *dev = to_device(dpm_prepared_list.prev); 1763 1764 list_move(&dev->power.entry, &dpm_suspended_list); 1765 1766 if (dpm_async_fn(dev, async_suspend)) 1767 continue; 1768 1769 get_device(dev); 1770 1771 mutex_unlock(&dpm_list_mtx); 1772 1773 error = device_suspend(dev, state, false); 1774 1775 put_device(dev); 1776 1777 mutex_lock(&dpm_list_mtx); 1778 1779 if (error || async_error) 1780 break; 1781 } 1782 1783 mutex_unlock(&dpm_list_mtx); 1784 1785 async_synchronize_full(); 1786 if (!error) 1787 error = async_error; 1788 1789 if (error) 1790 dpm_save_failed_step(SUSPEND_SUSPEND); 1791 1792 dpm_show_time(starttime, state, error, NULL); 1793 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1794 return error; 1795 } 1796 1797 /** 1798 * device_prepare - Prepare a device for system power transition. 1799 * @dev: Device to handle. 1800 * @state: PM transition of the system being carried out. 1801 * 1802 * Execute the ->prepare() callback(s) for given device. No new children of the 1803 * device may be registered after this function has returned. 1804 */ 1805 static int device_prepare(struct device *dev, pm_message_t state) 1806 { 1807 int (*callback)(struct device *) = NULL; 1808 int ret = 0; 1809 1810 /* 1811 * If a device's parent goes into runtime suspend at the wrong time, 1812 * it won't be possible to resume the device. To prevent this we 1813 * block runtime suspend here, during the prepare phase, and allow 1814 * it again during the complete phase. 1815 */ 1816 pm_runtime_get_noresume(dev); 1817 1818 if (dev->power.syscore) 1819 return 0; 1820 1821 device_lock(dev); 1822 1823 dev->power.wakeup_path = false; 1824 1825 if (dev->power.no_pm_callbacks) 1826 goto unlock; 1827 1828 if (dev->pm_domain) 1829 callback = dev->pm_domain->ops.prepare; 1830 else if (dev->type && dev->type->pm) 1831 callback = dev->type->pm->prepare; 1832 else if (dev->class && dev->class->pm) 1833 callback = dev->class->pm->prepare; 1834 else if (dev->bus && dev->bus->pm) 1835 callback = dev->bus->pm->prepare; 1836 1837 if (!callback && dev->driver && dev->driver->pm) 1838 callback = dev->driver->pm->prepare; 1839 1840 if (callback) 1841 ret = callback(dev); 1842 1843 unlock: 1844 device_unlock(dev); 1845 1846 if (ret < 0) { 1847 suspend_report_result(dev, callback, ret); 1848 pm_runtime_put(dev); 1849 return ret; 1850 } 1851 /* 1852 * A positive return value from ->prepare() means "this device appears 1853 * to be runtime-suspended and its state is fine, so if it really is 1854 * runtime-suspended, you can leave it in that state provided that you 1855 * will do the same thing with all of its descendants". This only 1856 * applies to suspend transitions, however. 1857 */ 1858 spin_lock_irq(&dev->power.lock); 1859 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1860 (ret > 0 || dev->power.no_pm_callbacks) && 1861 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1862 spin_unlock_irq(&dev->power.lock); 1863 return 0; 1864 } 1865 1866 /** 1867 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1868 * @state: PM transition of the system being carried out. 1869 * 1870 * Execute the ->prepare() callback(s) for all devices. 1871 */ 1872 int dpm_prepare(pm_message_t state) 1873 { 1874 int error = 0; 1875 1876 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1877 might_sleep(); 1878 1879 /* 1880 * Give a chance for the known devices to complete their probes, before 1881 * disable probing of devices. This sync point is important at least 1882 * at boot time + hibernation restore. 1883 */ 1884 wait_for_device_probe(); 1885 /* 1886 * It is unsafe if probing of devices will happen during suspend or 1887 * hibernation and system behavior will be unpredictable in this case. 1888 * So, let's prohibit device's probing here and defer their probes 1889 * instead. The normal behavior will be restored in dpm_complete(). 1890 */ 1891 device_block_probing(); 1892 1893 mutex_lock(&dpm_list_mtx); 1894 while (!list_empty(&dpm_list) && !error) { 1895 struct device *dev = to_device(dpm_list.next); 1896 1897 get_device(dev); 1898 1899 mutex_unlock(&dpm_list_mtx); 1900 1901 trace_device_pm_callback_start(dev, "", state.event); 1902 error = device_prepare(dev, state); 1903 trace_device_pm_callback_end(dev, error); 1904 1905 mutex_lock(&dpm_list_mtx); 1906 1907 if (!error) { 1908 dev->power.is_prepared = true; 1909 if (!list_empty(&dev->power.entry)) 1910 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1911 } else if (error == -EAGAIN) { 1912 error = 0; 1913 } else { 1914 dev_info(dev, "not prepared for power transition: code %d\n", 1915 error); 1916 } 1917 1918 mutex_unlock(&dpm_list_mtx); 1919 1920 put_device(dev); 1921 1922 mutex_lock(&dpm_list_mtx); 1923 } 1924 mutex_unlock(&dpm_list_mtx); 1925 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1926 return error; 1927 } 1928 1929 /** 1930 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1931 * @state: PM transition of the system being carried out. 1932 * 1933 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1934 * callbacks for them. 1935 */ 1936 int dpm_suspend_start(pm_message_t state) 1937 { 1938 ktime_t starttime = ktime_get(); 1939 int error; 1940 1941 error = dpm_prepare(state); 1942 if (error) 1943 dpm_save_failed_step(SUSPEND_PREPARE); 1944 else 1945 error = dpm_suspend(state); 1946 1947 dpm_show_time(starttime, state, error, "start"); 1948 return error; 1949 } 1950 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1951 1952 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret) 1953 { 1954 if (ret) 1955 dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret); 1956 } 1957 EXPORT_SYMBOL_GPL(__suspend_report_result); 1958 1959 /** 1960 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1961 * @subordinate: Device that needs to wait for @dev. 1962 * @dev: Device to wait for. 1963 */ 1964 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1965 { 1966 dpm_wait(dev, subordinate->power.async_suspend); 1967 return async_error; 1968 } 1969 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1970 1971 /** 1972 * dpm_for_each_dev - device iterator. 1973 * @data: data for the callback. 1974 * @fn: function to be called for each device. 1975 * 1976 * Iterate over devices in dpm_list, and call @fn for each device, 1977 * passing it @data. 1978 */ 1979 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1980 { 1981 struct device *dev; 1982 1983 if (!fn) 1984 return; 1985 1986 device_pm_lock(); 1987 list_for_each_entry(dev, &dpm_list, power.entry) 1988 fn(dev, data); 1989 device_pm_unlock(); 1990 } 1991 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1992 1993 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 1994 { 1995 if (!ops) 1996 return true; 1997 1998 return !ops->prepare && 1999 !ops->suspend && 2000 !ops->suspend_late && 2001 !ops->suspend_noirq && 2002 !ops->resume_noirq && 2003 !ops->resume_early && 2004 !ops->resume && 2005 !ops->complete; 2006 } 2007 2008 void device_pm_check_callbacks(struct device *dev) 2009 { 2010 unsigned long flags; 2011 2012 spin_lock_irqsave(&dev->power.lock, flags); 2013 dev->power.no_pm_callbacks = 2014 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2015 !dev->bus->suspend && !dev->bus->resume)) && 2016 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2017 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2018 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2019 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2020 !dev->driver->suspend && !dev->driver->resume)); 2021 spin_unlock_irqrestore(&dev->power.lock, flags); 2022 } 2023 2024 bool dev_pm_skip_suspend(struct device *dev) 2025 { 2026 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2027 pm_runtime_status_suspended(dev); 2028 } 2029