1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 struct suspend_stats suspend_stats; 64 static DEFINE_MUTEX(dpm_list_mtx); 65 static pm_message_t pm_transition; 66 67 static int async_error; 68 69 static const char *pm_verb(int event) 70 { 71 switch (event) { 72 case PM_EVENT_SUSPEND: 73 return "suspend"; 74 case PM_EVENT_RESUME: 75 return "resume"; 76 case PM_EVENT_FREEZE: 77 return "freeze"; 78 case PM_EVENT_QUIESCE: 79 return "quiesce"; 80 case PM_EVENT_HIBERNATE: 81 return "hibernate"; 82 case PM_EVENT_THAW: 83 return "thaw"; 84 case PM_EVENT_RESTORE: 85 return "restore"; 86 case PM_EVENT_RECOVER: 87 return "recover"; 88 default: 89 return "(unknown PM event)"; 90 } 91 } 92 93 /** 94 * device_pm_sleep_init - Initialize system suspend-related device fields. 95 * @dev: Device object being initialized. 96 */ 97 void device_pm_sleep_init(struct device *dev) 98 { 99 dev->power.is_prepared = false; 100 dev->power.is_suspended = false; 101 dev->power.is_noirq_suspended = false; 102 dev->power.is_late_suspended = false; 103 init_completion(&dev->power.completion); 104 complete_all(&dev->power.completion); 105 dev->power.wakeup = NULL; 106 INIT_LIST_HEAD(&dev->power.entry); 107 } 108 109 /** 110 * device_pm_lock - Lock the list of active devices used by the PM core. 111 */ 112 void device_pm_lock(void) 113 { 114 mutex_lock(&dpm_list_mtx); 115 } 116 117 /** 118 * device_pm_unlock - Unlock the list of active devices used by the PM core. 119 */ 120 void device_pm_unlock(void) 121 { 122 mutex_unlock(&dpm_list_mtx); 123 } 124 125 /** 126 * device_pm_add - Add a device to the PM core's list of active devices. 127 * @dev: Device to add to the list. 128 */ 129 void device_pm_add(struct device *dev) 130 { 131 /* Skip PM setup/initialization. */ 132 if (device_pm_not_required(dev)) 133 return; 134 135 pr_debug("Adding info for %s:%s\n", 136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 137 device_pm_check_callbacks(dev); 138 mutex_lock(&dpm_list_mtx); 139 if (dev->parent && dev->parent->power.is_prepared) 140 dev_warn(dev, "parent %s should not be sleeping\n", 141 dev_name(dev->parent)); 142 list_add_tail(&dev->power.entry, &dpm_list); 143 dev->power.in_dpm_list = true; 144 mutex_unlock(&dpm_list_mtx); 145 } 146 147 /** 148 * device_pm_remove - Remove a device from the PM core's list of active devices. 149 * @dev: Device to be removed from the list. 150 */ 151 void device_pm_remove(struct device *dev) 152 { 153 if (device_pm_not_required(dev)) 154 return; 155 156 pr_debug("Removing info for %s:%s\n", 157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 158 complete_all(&dev->power.completion); 159 mutex_lock(&dpm_list_mtx); 160 list_del_init(&dev->power.entry); 161 dev->power.in_dpm_list = false; 162 mutex_unlock(&dpm_list_mtx); 163 device_wakeup_disable(dev); 164 pm_runtime_remove(dev); 165 device_pm_check_callbacks(dev); 166 } 167 168 /** 169 * device_pm_move_before - Move device in the PM core's list of active devices. 170 * @deva: Device to move in dpm_list. 171 * @devb: Device @deva should come before. 172 */ 173 void device_pm_move_before(struct device *deva, struct device *devb) 174 { 175 pr_debug("Moving %s:%s before %s:%s\n", 176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 178 /* Delete deva from dpm_list and reinsert before devb. */ 179 list_move_tail(&deva->power.entry, &devb->power.entry); 180 } 181 182 /** 183 * device_pm_move_after - Move device in the PM core's list of active devices. 184 * @deva: Device to move in dpm_list. 185 * @devb: Device @deva should come after. 186 */ 187 void device_pm_move_after(struct device *deva, struct device *devb) 188 { 189 pr_debug("Moving %s:%s after %s:%s\n", 190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 192 /* Delete deva from dpm_list and reinsert after devb. */ 193 list_move(&deva->power.entry, &devb->power.entry); 194 } 195 196 /** 197 * device_pm_move_last - Move device to end of the PM core's list of devices. 198 * @dev: Device to move in dpm_list. 199 */ 200 void device_pm_move_last(struct device *dev) 201 { 202 pr_debug("Moving %s:%s to end of list\n", 203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 204 list_move_tail(&dev->power.entry, &dpm_list); 205 } 206 207 static ktime_t initcall_debug_start(struct device *dev, void *cb) 208 { 209 if (!pm_print_times_enabled) 210 return 0; 211 212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 213 task_pid_nr(current), 214 dev->parent ? dev_name(dev->parent) : "none"); 215 return ktime_get(); 216 } 217 218 static void initcall_debug_report(struct device *dev, ktime_t calltime, 219 void *cb, int error) 220 { 221 ktime_t rettime; 222 223 if (!pm_print_times_enabled) 224 return; 225 226 rettime = ktime_get(); 227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 228 (unsigned long long)ktime_us_delta(rettime, calltime)); 229 } 230 231 /** 232 * dpm_wait - Wait for a PM operation to complete. 233 * @dev: Device to wait for. 234 * @async: If unset, wait only if the device's power.async_suspend flag is set. 235 */ 236 static void dpm_wait(struct device *dev, bool async) 237 { 238 if (!dev) 239 return; 240 241 if (async || (pm_async_enabled && dev->power.async_suspend)) 242 wait_for_completion(&dev->power.completion); 243 } 244 245 static int dpm_wait_fn(struct device *dev, void *async_ptr) 246 { 247 dpm_wait(dev, *((bool *)async_ptr)); 248 return 0; 249 } 250 251 static void dpm_wait_for_children(struct device *dev, bool async) 252 { 253 device_for_each_child(dev, &async, dpm_wait_fn); 254 } 255 256 static void dpm_wait_for_suppliers(struct device *dev, bool async) 257 { 258 struct device_link *link; 259 int idx; 260 261 idx = device_links_read_lock(); 262 263 /* 264 * If the supplier goes away right after we've checked the link to it, 265 * we'll wait for its completion to change the state, but that's fine, 266 * because the only things that will block as a result are the SRCU 267 * callbacks freeing the link objects for the links in the list we're 268 * walking. 269 */ 270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 271 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 272 dpm_wait(link->supplier, async); 273 274 device_links_read_unlock(idx); 275 } 276 277 static bool dpm_wait_for_superior(struct device *dev, bool async) 278 { 279 struct device *parent; 280 281 /* 282 * If the device is resumed asynchronously and the parent's callback 283 * deletes both the device and the parent itself, the parent object may 284 * be freed while this function is running, so avoid that by reference 285 * counting the parent once more unless the device has been deleted 286 * already (in which case return right away). 287 */ 288 mutex_lock(&dpm_list_mtx); 289 290 if (!device_pm_initialized(dev)) { 291 mutex_unlock(&dpm_list_mtx); 292 return false; 293 } 294 295 parent = get_device(dev->parent); 296 297 mutex_unlock(&dpm_list_mtx); 298 299 dpm_wait(parent, async); 300 put_device(parent); 301 302 dpm_wait_for_suppliers(dev, async); 303 304 /* 305 * If the parent's callback has deleted the device, attempting to resume 306 * it would be invalid, so avoid doing that then. 307 */ 308 return device_pm_initialized(dev); 309 } 310 311 static void dpm_wait_for_consumers(struct device *dev, bool async) 312 { 313 struct device_link *link; 314 int idx; 315 316 idx = device_links_read_lock(); 317 318 /* 319 * The status of a device link can only be changed from "dormant" by a 320 * probe, but that cannot happen during system suspend/resume. In 321 * theory it can change to "dormant" at that time, but then it is 322 * reasonable to wait for the target device anyway (eg. if it goes 323 * away, it's better to wait for it to go away completely and then 324 * continue instead of trying to continue in parallel with its 325 * unregistration). 326 */ 327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 328 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 329 dpm_wait(link->consumer, async); 330 331 device_links_read_unlock(idx); 332 } 333 334 static void dpm_wait_for_subordinate(struct device *dev, bool async) 335 { 336 dpm_wait_for_children(dev, async); 337 dpm_wait_for_consumers(dev, async); 338 } 339 340 /** 341 * pm_op - Return the PM operation appropriate for given PM event. 342 * @ops: PM operations to choose from. 343 * @state: PM transition of the system being carried out. 344 */ 345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 346 { 347 switch (state.event) { 348 #ifdef CONFIG_SUSPEND 349 case PM_EVENT_SUSPEND: 350 return ops->suspend; 351 case PM_EVENT_RESUME: 352 return ops->resume; 353 #endif /* CONFIG_SUSPEND */ 354 #ifdef CONFIG_HIBERNATE_CALLBACKS 355 case PM_EVENT_FREEZE: 356 case PM_EVENT_QUIESCE: 357 return ops->freeze; 358 case PM_EVENT_HIBERNATE: 359 return ops->poweroff; 360 case PM_EVENT_THAW: 361 case PM_EVENT_RECOVER: 362 return ops->thaw; 363 case PM_EVENT_RESTORE: 364 return ops->restore; 365 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 366 } 367 368 return NULL; 369 } 370 371 /** 372 * pm_late_early_op - Return the PM operation appropriate for given PM event. 373 * @ops: PM operations to choose from. 374 * @state: PM transition of the system being carried out. 375 * 376 * Runtime PM is disabled for @dev while this function is being executed. 377 */ 378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 379 pm_message_t state) 380 { 381 switch (state.event) { 382 #ifdef CONFIG_SUSPEND 383 case PM_EVENT_SUSPEND: 384 return ops->suspend_late; 385 case PM_EVENT_RESUME: 386 return ops->resume_early; 387 #endif /* CONFIG_SUSPEND */ 388 #ifdef CONFIG_HIBERNATE_CALLBACKS 389 case PM_EVENT_FREEZE: 390 case PM_EVENT_QUIESCE: 391 return ops->freeze_late; 392 case PM_EVENT_HIBERNATE: 393 return ops->poweroff_late; 394 case PM_EVENT_THAW: 395 case PM_EVENT_RECOVER: 396 return ops->thaw_early; 397 case PM_EVENT_RESTORE: 398 return ops->restore_early; 399 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 400 } 401 402 return NULL; 403 } 404 405 /** 406 * pm_noirq_op - Return the PM operation appropriate for given PM event. 407 * @ops: PM operations to choose from. 408 * @state: PM transition of the system being carried out. 409 * 410 * The driver of @dev will not receive interrupts while this function is being 411 * executed. 412 */ 413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 414 { 415 switch (state.event) { 416 #ifdef CONFIG_SUSPEND 417 case PM_EVENT_SUSPEND: 418 return ops->suspend_noirq; 419 case PM_EVENT_RESUME: 420 return ops->resume_noirq; 421 #endif /* CONFIG_SUSPEND */ 422 #ifdef CONFIG_HIBERNATE_CALLBACKS 423 case PM_EVENT_FREEZE: 424 case PM_EVENT_QUIESCE: 425 return ops->freeze_noirq; 426 case PM_EVENT_HIBERNATE: 427 return ops->poweroff_noirq; 428 case PM_EVENT_THAW: 429 case PM_EVENT_RECOVER: 430 return ops->thaw_noirq; 431 case PM_EVENT_RESTORE: 432 return ops->restore_noirq; 433 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 434 } 435 436 return NULL; 437 } 438 439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 440 { 441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 443 ", may wakeup" : "", dev->power.driver_flags); 444 } 445 446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 447 int error) 448 { 449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 450 error); 451 } 452 453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 454 const char *info) 455 { 456 ktime_t calltime; 457 u64 usecs64; 458 int usecs; 459 460 calltime = ktime_get(); 461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 462 do_div(usecs64, NSEC_PER_USEC); 463 usecs = usecs64; 464 if (usecs == 0) 465 usecs = 1; 466 467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 468 info ?: "", info ? " " : "", pm_verb(state.event), 469 error ? "aborted" : "complete", 470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 471 } 472 473 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 474 pm_message_t state, const char *info) 475 { 476 ktime_t calltime; 477 int error; 478 479 if (!cb) 480 return 0; 481 482 calltime = initcall_debug_start(dev, cb); 483 484 pm_dev_dbg(dev, state, info); 485 trace_device_pm_callback_start(dev, info, state.event); 486 error = cb(dev); 487 trace_device_pm_callback_end(dev, error); 488 suspend_report_result(dev, cb, error); 489 490 initcall_debug_report(dev, calltime, cb, error); 491 492 return error; 493 } 494 495 #ifdef CONFIG_DPM_WATCHDOG 496 struct dpm_watchdog { 497 struct device *dev; 498 struct task_struct *tsk; 499 struct timer_list timer; 500 }; 501 502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 503 struct dpm_watchdog wd 504 505 /** 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 507 * @t: The timer that PM watchdog depends on. 508 * 509 * Called when a driver has timed out suspending or resuming. 510 * There's not much we can do here to recover so panic() to 511 * capture a crash-dump in pstore. 512 */ 513 static void dpm_watchdog_handler(struct timer_list *t) 514 { 515 struct dpm_watchdog *wd = from_timer(wd, t, timer); 516 517 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 518 show_stack(wd->tsk, NULL, KERN_EMERG); 519 panic("%s %s: unrecoverable failure\n", 520 dev_driver_string(wd->dev), dev_name(wd->dev)); 521 } 522 523 /** 524 * dpm_watchdog_set - Enable pm watchdog for given device. 525 * @wd: Watchdog. Must be allocated on the stack. 526 * @dev: Device to handle. 527 */ 528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 529 { 530 struct timer_list *timer = &wd->timer; 531 532 wd->dev = dev; 533 wd->tsk = current; 534 535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 536 /* use same timeout value for both suspend and resume */ 537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 538 add_timer(timer); 539 } 540 541 /** 542 * dpm_watchdog_clear - Disable suspend/resume watchdog. 543 * @wd: Watchdog to disable. 544 */ 545 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 546 { 547 struct timer_list *timer = &wd->timer; 548 549 del_timer_sync(timer); 550 destroy_timer_on_stack(timer); 551 } 552 #else 553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 554 #define dpm_watchdog_set(x, y) 555 #define dpm_watchdog_clear(x) 556 #endif 557 558 /*------------------------- Resume routines -------------------------*/ 559 560 /** 561 * dev_pm_skip_resume - System-wide device resume optimization check. 562 * @dev: Target device. 563 * 564 * Return: 565 * - %false if the transition under way is RESTORE. 566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 567 * - The logical negation of %power.must_resume otherwise (that is, when the 568 * transition under way is RESUME). 569 */ 570 bool dev_pm_skip_resume(struct device *dev) 571 { 572 if (pm_transition.event == PM_EVENT_RESTORE) 573 return false; 574 575 if (pm_transition.event == PM_EVENT_THAW) 576 return dev_pm_skip_suspend(dev); 577 578 return !dev->power.must_resume; 579 } 580 581 /** 582 * device_resume_noirq - Execute a "noirq resume" callback for given device. 583 * @dev: Device to handle. 584 * @state: PM transition of the system being carried out. 585 * @async: If true, the device is being resumed asynchronously. 586 * 587 * The driver of @dev will not receive interrupts while this function is being 588 * executed. 589 */ 590 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async) 591 { 592 pm_callback_t callback = NULL; 593 const char *info = NULL; 594 bool skip_resume; 595 int error = 0; 596 597 TRACE_DEVICE(dev); 598 TRACE_RESUME(0); 599 600 if (dev->power.syscore || dev->power.direct_complete) 601 goto Out; 602 603 if (!dev->power.is_noirq_suspended) 604 goto Out; 605 606 if (!dpm_wait_for_superior(dev, async)) 607 goto Out; 608 609 skip_resume = dev_pm_skip_resume(dev); 610 /* 611 * If the driver callback is skipped below or by the middle layer 612 * callback and device_resume_early() also skips the driver callback for 613 * this device later, it needs to appear as "suspended" to PM-runtime, 614 * so change its status accordingly. 615 * 616 * Otherwise, the device is going to be resumed, so set its PM-runtime 617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 618 * to avoid confusing drivers that don't use it. 619 */ 620 if (skip_resume) 621 pm_runtime_set_suspended(dev); 622 else if (dev_pm_skip_suspend(dev)) 623 pm_runtime_set_active(dev); 624 625 if (dev->pm_domain) { 626 info = "noirq power domain "; 627 callback = pm_noirq_op(&dev->pm_domain->ops, state); 628 } else if (dev->type && dev->type->pm) { 629 info = "noirq type "; 630 callback = pm_noirq_op(dev->type->pm, state); 631 } else if (dev->class && dev->class->pm) { 632 info = "noirq class "; 633 callback = pm_noirq_op(dev->class->pm, state); 634 } else if (dev->bus && dev->bus->pm) { 635 info = "noirq bus "; 636 callback = pm_noirq_op(dev->bus->pm, state); 637 } 638 if (callback) 639 goto Run; 640 641 if (skip_resume) 642 goto Skip; 643 644 if (dev->driver && dev->driver->pm) { 645 info = "noirq driver "; 646 callback = pm_noirq_op(dev->driver->pm, state); 647 } 648 649 Run: 650 error = dpm_run_callback(callback, dev, state, info); 651 652 Skip: 653 dev->power.is_noirq_suspended = false; 654 655 Out: 656 complete_all(&dev->power.completion); 657 TRACE_RESUME(error); 658 659 if (error) { 660 suspend_stats.failed_resume_noirq++; 661 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 662 dpm_save_failed_dev(dev_name(dev)); 663 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 664 } 665 } 666 667 static bool is_async(struct device *dev) 668 { 669 return dev->power.async_suspend && pm_async_enabled 670 && !pm_trace_is_enabled(); 671 } 672 673 static bool dpm_async_fn(struct device *dev, async_func_t func) 674 { 675 reinit_completion(&dev->power.completion); 676 677 if (is_async(dev)) { 678 dev->power.async_in_progress = true; 679 680 get_device(dev); 681 682 if (async_schedule_dev_nocall(func, dev)) 683 return true; 684 685 put_device(dev); 686 } 687 /* 688 * Because async_schedule_dev_nocall() above has returned false or it 689 * has not been called at all, func() is not running and it is safe to 690 * update the async_in_progress flag without extra synchronization. 691 */ 692 dev->power.async_in_progress = false; 693 return false; 694 } 695 696 static void async_resume_noirq(void *data, async_cookie_t cookie) 697 { 698 struct device *dev = data; 699 700 device_resume_noirq(dev, pm_transition, true); 701 put_device(dev); 702 } 703 704 static void dpm_noirq_resume_devices(pm_message_t state) 705 { 706 struct device *dev; 707 ktime_t starttime = ktime_get(); 708 709 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 710 mutex_lock(&dpm_list_mtx); 711 pm_transition = state; 712 713 /* 714 * Trigger the resume of "async" devices upfront so they don't have to 715 * wait for the "non-async" ones they don't depend on. 716 */ 717 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 718 dpm_async_fn(dev, async_resume_noirq); 719 720 while (!list_empty(&dpm_noirq_list)) { 721 dev = to_device(dpm_noirq_list.next); 722 list_move_tail(&dev->power.entry, &dpm_late_early_list); 723 724 if (!dev->power.async_in_progress) { 725 get_device(dev); 726 727 mutex_unlock(&dpm_list_mtx); 728 729 device_resume_noirq(dev, state, false); 730 731 put_device(dev); 732 733 mutex_lock(&dpm_list_mtx); 734 } 735 } 736 mutex_unlock(&dpm_list_mtx); 737 async_synchronize_full(); 738 dpm_show_time(starttime, state, 0, "noirq"); 739 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 740 } 741 742 /** 743 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 744 * @state: PM transition of the system being carried out. 745 * 746 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 747 * allow device drivers' interrupt handlers to be called. 748 */ 749 void dpm_resume_noirq(pm_message_t state) 750 { 751 dpm_noirq_resume_devices(state); 752 753 resume_device_irqs(); 754 device_wakeup_disarm_wake_irqs(); 755 } 756 757 /** 758 * device_resume_early - Execute an "early resume" callback for given device. 759 * @dev: Device to handle. 760 * @state: PM transition of the system being carried out. 761 * @async: If true, the device is being resumed asynchronously. 762 * 763 * Runtime PM is disabled for @dev while this function is being executed. 764 */ 765 static void device_resume_early(struct device *dev, pm_message_t state, bool async) 766 { 767 pm_callback_t callback = NULL; 768 const char *info = NULL; 769 int error = 0; 770 771 TRACE_DEVICE(dev); 772 TRACE_RESUME(0); 773 774 if (dev->power.syscore || dev->power.direct_complete) 775 goto Out; 776 777 if (!dev->power.is_late_suspended) 778 goto Out; 779 780 if (!dpm_wait_for_superior(dev, async)) 781 goto Out; 782 783 if (dev->pm_domain) { 784 info = "early power domain "; 785 callback = pm_late_early_op(&dev->pm_domain->ops, state); 786 } else if (dev->type && dev->type->pm) { 787 info = "early type "; 788 callback = pm_late_early_op(dev->type->pm, state); 789 } else if (dev->class && dev->class->pm) { 790 info = "early class "; 791 callback = pm_late_early_op(dev->class->pm, state); 792 } else if (dev->bus && dev->bus->pm) { 793 info = "early bus "; 794 callback = pm_late_early_op(dev->bus->pm, state); 795 } 796 if (callback) 797 goto Run; 798 799 if (dev_pm_skip_resume(dev)) 800 goto Skip; 801 802 if (dev->driver && dev->driver->pm) { 803 info = "early driver "; 804 callback = pm_late_early_op(dev->driver->pm, state); 805 } 806 807 Run: 808 error = dpm_run_callback(callback, dev, state, info); 809 810 Skip: 811 dev->power.is_late_suspended = false; 812 813 Out: 814 TRACE_RESUME(error); 815 816 pm_runtime_enable(dev); 817 complete_all(&dev->power.completion); 818 819 if (error) { 820 suspend_stats.failed_resume_early++; 821 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 822 dpm_save_failed_dev(dev_name(dev)); 823 pm_dev_err(dev, state, async ? " async early" : " early", error); 824 } 825 } 826 827 static void async_resume_early(void *data, async_cookie_t cookie) 828 { 829 struct device *dev = data; 830 831 device_resume_early(dev, pm_transition, true); 832 put_device(dev); 833 } 834 835 /** 836 * dpm_resume_early - Execute "early resume" callbacks for all devices. 837 * @state: PM transition of the system being carried out. 838 */ 839 void dpm_resume_early(pm_message_t state) 840 { 841 struct device *dev; 842 ktime_t starttime = ktime_get(); 843 844 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 845 mutex_lock(&dpm_list_mtx); 846 pm_transition = state; 847 848 /* 849 * Trigger the resume of "async" devices upfront so they don't have to 850 * wait for the "non-async" ones they don't depend on. 851 */ 852 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 853 dpm_async_fn(dev, async_resume_early); 854 855 while (!list_empty(&dpm_late_early_list)) { 856 dev = to_device(dpm_late_early_list.next); 857 list_move_tail(&dev->power.entry, &dpm_suspended_list); 858 859 if (!dev->power.async_in_progress) { 860 get_device(dev); 861 862 mutex_unlock(&dpm_list_mtx); 863 864 device_resume_early(dev, state, false); 865 866 put_device(dev); 867 868 mutex_lock(&dpm_list_mtx); 869 } 870 } 871 mutex_unlock(&dpm_list_mtx); 872 async_synchronize_full(); 873 dpm_show_time(starttime, state, 0, "early"); 874 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 875 } 876 877 /** 878 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 879 * @state: PM transition of the system being carried out. 880 */ 881 void dpm_resume_start(pm_message_t state) 882 { 883 dpm_resume_noirq(state); 884 dpm_resume_early(state); 885 } 886 EXPORT_SYMBOL_GPL(dpm_resume_start); 887 888 /** 889 * device_resume - Execute "resume" callbacks for given device. 890 * @dev: Device to handle. 891 * @state: PM transition of the system being carried out. 892 * @async: If true, the device is being resumed asynchronously. 893 */ 894 static void device_resume(struct device *dev, pm_message_t state, bool async) 895 { 896 pm_callback_t callback = NULL; 897 const char *info = NULL; 898 int error = 0; 899 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 900 901 TRACE_DEVICE(dev); 902 TRACE_RESUME(0); 903 904 if (dev->power.syscore) 905 goto Complete; 906 907 if (dev->power.direct_complete) { 908 /* Match the pm_runtime_disable() in __device_suspend(). */ 909 pm_runtime_enable(dev); 910 goto Complete; 911 } 912 913 if (!dpm_wait_for_superior(dev, async)) 914 goto Complete; 915 916 dpm_watchdog_set(&wd, dev); 917 device_lock(dev); 918 919 /* 920 * This is a fib. But we'll allow new children to be added below 921 * a resumed device, even if the device hasn't been completed yet. 922 */ 923 dev->power.is_prepared = false; 924 925 if (!dev->power.is_suspended) 926 goto Unlock; 927 928 if (dev->pm_domain) { 929 info = "power domain "; 930 callback = pm_op(&dev->pm_domain->ops, state); 931 goto Driver; 932 } 933 934 if (dev->type && dev->type->pm) { 935 info = "type "; 936 callback = pm_op(dev->type->pm, state); 937 goto Driver; 938 } 939 940 if (dev->class && dev->class->pm) { 941 info = "class "; 942 callback = pm_op(dev->class->pm, state); 943 goto Driver; 944 } 945 946 if (dev->bus) { 947 if (dev->bus->pm) { 948 info = "bus "; 949 callback = pm_op(dev->bus->pm, state); 950 } else if (dev->bus->resume) { 951 info = "legacy bus "; 952 callback = dev->bus->resume; 953 goto End; 954 } 955 } 956 957 Driver: 958 if (!callback && dev->driver && dev->driver->pm) { 959 info = "driver "; 960 callback = pm_op(dev->driver->pm, state); 961 } 962 963 End: 964 error = dpm_run_callback(callback, dev, state, info); 965 dev->power.is_suspended = false; 966 967 Unlock: 968 device_unlock(dev); 969 dpm_watchdog_clear(&wd); 970 971 Complete: 972 complete_all(&dev->power.completion); 973 974 TRACE_RESUME(error); 975 976 if (error) { 977 suspend_stats.failed_resume++; 978 dpm_save_failed_step(SUSPEND_RESUME); 979 dpm_save_failed_dev(dev_name(dev)); 980 pm_dev_err(dev, state, async ? " async" : "", error); 981 } 982 } 983 984 static void async_resume(void *data, async_cookie_t cookie) 985 { 986 struct device *dev = data; 987 988 device_resume(dev, pm_transition, true); 989 put_device(dev); 990 } 991 992 /** 993 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 994 * @state: PM transition of the system being carried out. 995 * 996 * Execute the appropriate "resume" callback for all devices whose status 997 * indicates that they are suspended. 998 */ 999 void dpm_resume(pm_message_t state) 1000 { 1001 struct device *dev; 1002 ktime_t starttime = ktime_get(); 1003 1004 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1005 might_sleep(); 1006 1007 mutex_lock(&dpm_list_mtx); 1008 pm_transition = state; 1009 async_error = 0; 1010 1011 /* 1012 * Trigger the resume of "async" devices upfront so they don't have to 1013 * wait for the "non-async" ones they don't depend on. 1014 */ 1015 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1016 dpm_async_fn(dev, async_resume); 1017 1018 while (!list_empty(&dpm_suspended_list)) { 1019 dev = to_device(dpm_suspended_list.next); 1020 1021 get_device(dev); 1022 1023 if (!dev->power.async_in_progress) { 1024 mutex_unlock(&dpm_list_mtx); 1025 1026 device_resume(dev, state, false); 1027 1028 mutex_lock(&dpm_list_mtx); 1029 } 1030 1031 if (!list_empty(&dev->power.entry)) 1032 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1033 1034 mutex_unlock(&dpm_list_mtx); 1035 1036 put_device(dev); 1037 1038 mutex_lock(&dpm_list_mtx); 1039 } 1040 mutex_unlock(&dpm_list_mtx); 1041 async_synchronize_full(); 1042 dpm_show_time(starttime, state, 0, NULL); 1043 1044 cpufreq_resume(); 1045 devfreq_resume(); 1046 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1047 } 1048 1049 /** 1050 * device_complete - Complete a PM transition for given device. 1051 * @dev: Device to handle. 1052 * @state: PM transition of the system being carried out. 1053 */ 1054 static void device_complete(struct device *dev, pm_message_t state) 1055 { 1056 void (*callback)(struct device *) = NULL; 1057 const char *info = NULL; 1058 1059 if (dev->power.syscore) 1060 goto out; 1061 1062 device_lock(dev); 1063 1064 if (dev->pm_domain) { 1065 info = "completing power domain "; 1066 callback = dev->pm_domain->ops.complete; 1067 } else if (dev->type && dev->type->pm) { 1068 info = "completing type "; 1069 callback = dev->type->pm->complete; 1070 } else if (dev->class && dev->class->pm) { 1071 info = "completing class "; 1072 callback = dev->class->pm->complete; 1073 } else if (dev->bus && dev->bus->pm) { 1074 info = "completing bus "; 1075 callback = dev->bus->pm->complete; 1076 } 1077 1078 if (!callback && dev->driver && dev->driver->pm) { 1079 info = "completing driver "; 1080 callback = dev->driver->pm->complete; 1081 } 1082 1083 if (callback) { 1084 pm_dev_dbg(dev, state, info); 1085 callback(dev); 1086 } 1087 1088 device_unlock(dev); 1089 1090 out: 1091 pm_runtime_put(dev); 1092 } 1093 1094 /** 1095 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1096 * @state: PM transition of the system being carried out. 1097 * 1098 * Execute the ->complete() callbacks for all devices whose PM status is not 1099 * DPM_ON (this allows new devices to be registered). 1100 */ 1101 void dpm_complete(pm_message_t state) 1102 { 1103 struct list_head list; 1104 1105 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1106 might_sleep(); 1107 1108 INIT_LIST_HEAD(&list); 1109 mutex_lock(&dpm_list_mtx); 1110 while (!list_empty(&dpm_prepared_list)) { 1111 struct device *dev = to_device(dpm_prepared_list.prev); 1112 1113 get_device(dev); 1114 dev->power.is_prepared = false; 1115 list_move(&dev->power.entry, &list); 1116 1117 mutex_unlock(&dpm_list_mtx); 1118 1119 trace_device_pm_callback_start(dev, "", state.event); 1120 device_complete(dev, state); 1121 trace_device_pm_callback_end(dev, 0); 1122 1123 put_device(dev); 1124 1125 mutex_lock(&dpm_list_mtx); 1126 } 1127 list_splice(&list, &dpm_list); 1128 mutex_unlock(&dpm_list_mtx); 1129 1130 /* Allow device probing and trigger re-probing of deferred devices */ 1131 device_unblock_probing(); 1132 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1133 } 1134 1135 /** 1136 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1137 * @state: PM transition of the system being carried out. 1138 * 1139 * Execute "resume" callbacks for all devices and complete the PM transition of 1140 * the system. 1141 */ 1142 void dpm_resume_end(pm_message_t state) 1143 { 1144 dpm_resume(state); 1145 dpm_complete(state); 1146 } 1147 EXPORT_SYMBOL_GPL(dpm_resume_end); 1148 1149 1150 /*------------------------- Suspend routines -------------------------*/ 1151 1152 /** 1153 * resume_event - Return a "resume" message for given "suspend" sleep state. 1154 * @sleep_state: PM message representing a sleep state. 1155 * 1156 * Return a PM message representing the resume event corresponding to given 1157 * sleep state. 1158 */ 1159 static pm_message_t resume_event(pm_message_t sleep_state) 1160 { 1161 switch (sleep_state.event) { 1162 case PM_EVENT_SUSPEND: 1163 return PMSG_RESUME; 1164 case PM_EVENT_FREEZE: 1165 case PM_EVENT_QUIESCE: 1166 return PMSG_RECOVER; 1167 case PM_EVENT_HIBERNATE: 1168 return PMSG_RESTORE; 1169 } 1170 return PMSG_ON; 1171 } 1172 1173 static void dpm_superior_set_must_resume(struct device *dev) 1174 { 1175 struct device_link *link; 1176 int idx; 1177 1178 if (dev->parent) 1179 dev->parent->power.must_resume = true; 1180 1181 idx = device_links_read_lock(); 1182 1183 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1184 link->supplier->power.must_resume = true; 1185 1186 device_links_read_unlock(idx); 1187 } 1188 1189 /** 1190 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1191 * @dev: Device to handle. 1192 * @state: PM transition of the system being carried out. 1193 * @async: If true, the device is being suspended asynchronously. 1194 * 1195 * The driver of @dev will not receive interrupts while this function is being 1196 * executed. 1197 */ 1198 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1199 { 1200 pm_callback_t callback = NULL; 1201 const char *info = NULL; 1202 int error = 0; 1203 1204 TRACE_DEVICE(dev); 1205 TRACE_SUSPEND(0); 1206 1207 dpm_wait_for_subordinate(dev, async); 1208 1209 if (async_error) 1210 goto Complete; 1211 1212 if (dev->power.syscore || dev->power.direct_complete) 1213 goto Complete; 1214 1215 if (dev->pm_domain) { 1216 info = "noirq power domain "; 1217 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1218 } else if (dev->type && dev->type->pm) { 1219 info = "noirq type "; 1220 callback = pm_noirq_op(dev->type->pm, state); 1221 } else if (dev->class && dev->class->pm) { 1222 info = "noirq class "; 1223 callback = pm_noirq_op(dev->class->pm, state); 1224 } else if (dev->bus && dev->bus->pm) { 1225 info = "noirq bus "; 1226 callback = pm_noirq_op(dev->bus->pm, state); 1227 } 1228 if (callback) 1229 goto Run; 1230 1231 if (dev_pm_skip_suspend(dev)) 1232 goto Skip; 1233 1234 if (dev->driver && dev->driver->pm) { 1235 info = "noirq driver "; 1236 callback = pm_noirq_op(dev->driver->pm, state); 1237 } 1238 1239 Run: 1240 error = dpm_run_callback(callback, dev, state, info); 1241 if (error) { 1242 async_error = error; 1243 goto Complete; 1244 } 1245 1246 Skip: 1247 dev->power.is_noirq_suspended = true; 1248 1249 /* 1250 * Skipping the resume of devices that were in use right before the 1251 * system suspend (as indicated by their PM-runtime usage counters) 1252 * would be suboptimal. Also resume them if doing that is not allowed 1253 * to be skipped. 1254 */ 1255 if (atomic_read(&dev->power.usage_count) > 1 || 1256 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1257 dev->power.may_skip_resume)) 1258 dev->power.must_resume = true; 1259 1260 if (dev->power.must_resume) 1261 dpm_superior_set_must_resume(dev); 1262 1263 Complete: 1264 complete_all(&dev->power.completion); 1265 TRACE_SUSPEND(error); 1266 return error; 1267 } 1268 1269 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1270 { 1271 struct device *dev = data; 1272 int error; 1273 1274 error = __device_suspend_noirq(dev, pm_transition, true); 1275 if (error) { 1276 dpm_save_failed_dev(dev_name(dev)); 1277 pm_dev_err(dev, pm_transition, " async", error); 1278 } 1279 1280 put_device(dev); 1281 } 1282 1283 static int device_suspend_noirq(struct device *dev) 1284 { 1285 if (dpm_async_fn(dev, async_suspend_noirq)) 1286 return 0; 1287 1288 return __device_suspend_noirq(dev, pm_transition, false); 1289 } 1290 1291 static int dpm_noirq_suspend_devices(pm_message_t state) 1292 { 1293 ktime_t starttime = ktime_get(); 1294 int error = 0; 1295 1296 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1297 mutex_lock(&dpm_list_mtx); 1298 pm_transition = state; 1299 async_error = 0; 1300 1301 while (!list_empty(&dpm_late_early_list)) { 1302 struct device *dev = to_device(dpm_late_early_list.prev); 1303 1304 get_device(dev); 1305 mutex_unlock(&dpm_list_mtx); 1306 1307 error = device_suspend_noirq(dev); 1308 1309 mutex_lock(&dpm_list_mtx); 1310 1311 if (error) { 1312 pm_dev_err(dev, state, " noirq", error); 1313 dpm_save_failed_dev(dev_name(dev)); 1314 } else if (!list_empty(&dev->power.entry)) { 1315 list_move(&dev->power.entry, &dpm_noirq_list); 1316 } 1317 1318 mutex_unlock(&dpm_list_mtx); 1319 1320 put_device(dev); 1321 1322 mutex_lock(&dpm_list_mtx); 1323 1324 if (error || async_error) 1325 break; 1326 } 1327 mutex_unlock(&dpm_list_mtx); 1328 async_synchronize_full(); 1329 if (!error) 1330 error = async_error; 1331 1332 if (error) { 1333 suspend_stats.failed_suspend_noirq++; 1334 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1335 } 1336 dpm_show_time(starttime, state, error, "noirq"); 1337 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1338 return error; 1339 } 1340 1341 /** 1342 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1343 * @state: PM transition of the system being carried out. 1344 * 1345 * Prevent device drivers' interrupt handlers from being called and invoke 1346 * "noirq" suspend callbacks for all non-sysdev devices. 1347 */ 1348 int dpm_suspend_noirq(pm_message_t state) 1349 { 1350 int ret; 1351 1352 device_wakeup_arm_wake_irqs(); 1353 suspend_device_irqs(); 1354 1355 ret = dpm_noirq_suspend_devices(state); 1356 if (ret) 1357 dpm_resume_noirq(resume_event(state)); 1358 1359 return ret; 1360 } 1361 1362 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1363 { 1364 struct device *parent = dev->parent; 1365 1366 if (!parent) 1367 return; 1368 1369 spin_lock_irq(&parent->power.lock); 1370 1371 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1372 parent->power.wakeup_path = true; 1373 1374 spin_unlock_irq(&parent->power.lock); 1375 } 1376 1377 /** 1378 * __device_suspend_late - Execute a "late suspend" callback for given device. 1379 * @dev: Device to handle. 1380 * @state: PM transition of the system being carried out. 1381 * @async: If true, the device is being suspended asynchronously. 1382 * 1383 * Runtime PM is disabled for @dev while this function is being executed. 1384 */ 1385 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1386 { 1387 pm_callback_t callback = NULL; 1388 const char *info = NULL; 1389 int error = 0; 1390 1391 TRACE_DEVICE(dev); 1392 TRACE_SUSPEND(0); 1393 1394 __pm_runtime_disable(dev, false); 1395 1396 dpm_wait_for_subordinate(dev, async); 1397 1398 if (async_error) 1399 goto Complete; 1400 1401 if (pm_wakeup_pending()) { 1402 async_error = -EBUSY; 1403 goto Complete; 1404 } 1405 1406 if (dev->power.syscore || dev->power.direct_complete) 1407 goto Complete; 1408 1409 if (dev->pm_domain) { 1410 info = "late power domain "; 1411 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1412 } else if (dev->type && dev->type->pm) { 1413 info = "late type "; 1414 callback = pm_late_early_op(dev->type->pm, state); 1415 } else if (dev->class && dev->class->pm) { 1416 info = "late class "; 1417 callback = pm_late_early_op(dev->class->pm, state); 1418 } else if (dev->bus && dev->bus->pm) { 1419 info = "late bus "; 1420 callback = pm_late_early_op(dev->bus->pm, state); 1421 } 1422 if (callback) 1423 goto Run; 1424 1425 if (dev_pm_skip_suspend(dev)) 1426 goto Skip; 1427 1428 if (dev->driver && dev->driver->pm) { 1429 info = "late driver "; 1430 callback = pm_late_early_op(dev->driver->pm, state); 1431 } 1432 1433 Run: 1434 error = dpm_run_callback(callback, dev, state, info); 1435 if (error) { 1436 async_error = error; 1437 goto Complete; 1438 } 1439 dpm_propagate_wakeup_to_parent(dev); 1440 1441 Skip: 1442 dev->power.is_late_suspended = true; 1443 1444 Complete: 1445 TRACE_SUSPEND(error); 1446 complete_all(&dev->power.completion); 1447 return error; 1448 } 1449 1450 static void async_suspend_late(void *data, async_cookie_t cookie) 1451 { 1452 struct device *dev = data; 1453 int error; 1454 1455 error = __device_suspend_late(dev, pm_transition, true); 1456 if (error) { 1457 dpm_save_failed_dev(dev_name(dev)); 1458 pm_dev_err(dev, pm_transition, " async", error); 1459 } 1460 put_device(dev); 1461 } 1462 1463 static int device_suspend_late(struct device *dev) 1464 { 1465 if (dpm_async_fn(dev, async_suspend_late)) 1466 return 0; 1467 1468 return __device_suspend_late(dev, pm_transition, false); 1469 } 1470 1471 /** 1472 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1473 * @state: PM transition of the system being carried out. 1474 */ 1475 int dpm_suspend_late(pm_message_t state) 1476 { 1477 ktime_t starttime = ktime_get(); 1478 int error = 0; 1479 1480 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1481 wake_up_all_idle_cpus(); 1482 mutex_lock(&dpm_list_mtx); 1483 pm_transition = state; 1484 async_error = 0; 1485 1486 while (!list_empty(&dpm_suspended_list)) { 1487 struct device *dev = to_device(dpm_suspended_list.prev); 1488 1489 get_device(dev); 1490 1491 mutex_unlock(&dpm_list_mtx); 1492 1493 error = device_suspend_late(dev); 1494 1495 mutex_lock(&dpm_list_mtx); 1496 1497 if (!list_empty(&dev->power.entry)) 1498 list_move(&dev->power.entry, &dpm_late_early_list); 1499 1500 if (error) { 1501 pm_dev_err(dev, state, " late", error); 1502 dpm_save_failed_dev(dev_name(dev)); 1503 } 1504 1505 mutex_unlock(&dpm_list_mtx); 1506 1507 put_device(dev); 1508 1509 mutex_lock(&dpm_list_mtx); 1510 1511 if (error || async_error) 1512 break; 1513 } 1514 mutex_unlock(&dpm_list_mtx); 1515 async_synchronize_full(); 1516 if (!error) 1517 error = async_error; 1518 if (error) { 1519 suspend_stats.failed_suspend_late++; 1520 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1521 dpm_resume_early(resume_event(state)); 1522 } 1523 dpm_show_time(starttime, state, error, "late"); 1524 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1525 return error; 1526 } 1527 1528 /** 1529 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1530 * @state: PM transition of the system being carried out. 1531 */ 1532 int dpm_suspend_end(pm_message_t state) 1533 { 1534 ktime_t starttime = ktime_get(); 1535 int error; 1536 1537 error = dpm_suspend_late(state); 1538 if (error) 1539 goto out; 1540 1541 error = dpm_suspend_noirq(state); 1542 if (error) 1543 dpm_resume_early(resume_event(state)); 1544 1545 out: 1546 dpm_show_time(starttime, state, error, "end"); 1547 return error; 1548 } 1549 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1550 1551 /** 1552 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1553 * @dev: Device to suspend. 1554 * @state: PM transition of the system being carried out. 1555 * @cb: Suspend callback to execute. 1556 * @info: string description of caller. 1557 */ 1558 static int legacy_suspend(struct device *dev, pm_message_t state, 1559 int (*cb)(struct device *dev, pm_message_t state), 1560 const char *info) 1561 { 1562 int error; 1563 ktime_t calltime; 1564 1565 calltime = initcall_debug_start(dev, cb); 1566 1567 trace_device_pm_callback_start(dev, info, state.event); 1568 error = cb(dev, state); 1569 trace_device_pm_callback_end(dev, error); 1570 suspend_report_result(dev, cb, error); 1571 1572 initcall_debug_report(dev, calltime, cb, error); 1573 1574 return error; 1575 } 1576 1577 static void dpm_clear_superiors_direct_complete(struct device *dev) 1578 { 1579 struct device_link *link; 1580 int idx; 1581 1582 if (dev->parent) { 1583 spin_lock_irq(&dev->parent->power.lock); 1584 dev->parent->power.direct_complete = false; 1585 spin_unlock_irq(&dev->parent->power.lock); 1586 } 1587 1588 idx = device_links_read_lock(); 1589 1590 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1591 spin_lock_irq(&link->supplier->power.lock); 1592 link->supplier->power.direct_complete = false; 1593 spin_unlock_irq(&link->supplier->power.lock); 1594 } 1595 1596 device_links_read_unlock(idx); 1597 } 1598 1599 /** 1600 * __device_suspend - Execute "suspend" callbacks for given device. 1601 * @dev: Device to handle. 1602 * @state: PM transition of the system being carried out. 1603 * @async: If true, the device is being suspended asynchronously. 1604 */ 1605 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1606 { 1607 pm_callback_t callback = NULL; 1608 const char *info = NULL; 1609 int error = 0; 1610 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1611 1612 TRACE_DEVICE(dev); 1613 TRACE_SUSPEND(0); 1614 1615 dpm_wait_for_subordinate(dev, async); 1616 1617 if (async_error) { 1618 dev->power.direct_complete = false; 1619 goto Complete; 1620 } 1621 1622 /* 1623 * Wait for possible runtime PM transitions of the device in progress 1624 * to complete and if there's a runtime resume request pending for it, 1625 * resume it before proceeding with invoking the system-wide suspend 1626 * callbacks for it. 1627 * 1628 * If the system-wide suspend callbacks below change the configuration 1629 * of the device, they must disable runtime PM for it or otherwise 1630 * ensure that its runtime-resume callbacks will not be confused by that 1631 * change in case they are invoked going forward. 1632 */ 1633 pm_runtime_barrier(dev); 1634 1635 if (pm_wakeup_pending()) { 1636 dev->power.direct_complete = false; 1637 async_error = -EBUSY; 1638 goto Complete; 1639 } 1640 1641 if (dev->power.syscore) 1642 goto Complete; 1643 1644 /* Avoid direct_complete to let wakeup_path propagate. */ 1645 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1646 dev->power.direct_complete = false; 1647 1648 if (dev->power.direct_complete) { 1649 if (pm_runtime_status_suspended(dev)) { 1650 pm_runtime_disable(dev); 1651 if (pm_runtime_status_suspended(dev)) { 1652 pm_dev_dbg(dev, state, "direct-complete "); 1653 goto Complete; 1654 } 1655 1656 pm_runtime_enable(dev); 1657 } 1658 dev->power.direct_complete = false; 1659 } 1660 1661 dev->power.may_skip_resume = true; 1662 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1663 1664 dpm_watchdog_set(&wd, dev); 1665 device_lock(dev); 1666 1667 if (dev->pm_domain) { 1668 info = "power domain "; 1669 callback = pm_op(&dev->pm_domain->ops, state); 1670 goto Run; 1671 } 1672 1673 if (dev->type && dev->type->pm) { 1674 info = "type "; 1675 callback = pm_op(dev->type->pm, state); 1676 goto Run; 1677 } 1678 1679 if (dev->class && dev->class->pm) { 1680 info = "class "; 1681 callback = pm_op(dev->class->pm, state); 1682 goto Run; 1683 } 1684 1685 if (dev->bus) { 1686 if (dev->bus->pm) { 1687 info = "bus "; 1688 callback = pm_op(dev->bus->pm, state); 1689 } else if (dev->bus->suspend) { 1690 pm_dev_dbg(dev, state, "legacy bus "); 1691 error = legacy_suspend(dev, state, dev->bus->suspend, 1692 "legacy bus "); 1693 goto End; 1694 } 1695 } 1696 1697 Run: 1698 if (!callback && dev->driver && dev->driver->pm) { 1699 info = "driver "; 1700 callback = pm_op(dev->driver->pm, state); 1701 } 1702 1703 error = dpm_run_callback(callback, dev, state, info); 1704 1705 End: 1706 if (!error) { 1707 dev->power.is_suspended = true; 1708 if (device_may_wakeup(dev)) 1709 dev->power.wakeup_path = true; 1710 1711 dpm_propagate_wakeup_to_parent(dev); 1712 dpm_clear_superiors_direct_complete(dev); 1713 } 1714 1715 device_unlock(dev); 1716 dpm_watchdog_clear(&wd); 1717 1718 Complete: 1719 if (error) 1720 async_error = error; 1721 1722 complete_all(&dev->power.completion); 1723 TRACE_SUSPEND(error); 1724 return error; 1725 } 1726 1727 static void async_suspend(void *data, async_cookie_t cookie) 1728 { 1729 struct device *dev = data; 1730 int error; 1731 1732 error = __device_suspend(dev, pm_transition, true); 1733 if (error) { 1734 dpm_save_failed_dev(dev_name(dev)); 1735 pm_dev_err(dev, pm_transition, " async", error); 1736 } 1737 1738 put_device(dev); 1739 } 1740 1741 static int device_suspend(struct device *dev) 1742 { 1743 if (dpm_async_fn(dev, async_suspend)) 1744 return 0; 1745 1746 return __device_suspend(dev, pm_transition, false); 1747 } 1748 1749 /** 1750 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1751 * @state: PM transition of the system being carried out. 1752 */ 1753 int dpm_suspend(pm_message_t state) 1754 { 1755 ktime_t starttime = ktime_get(); 1756 int error = 0; 1757 1758 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1759 might_sleep(); 1760 1761 devfreq_suspend(); 1762 cpufreq_suspend(); 1763 1764 mutex_lock(&dpm_list_mtx); 1765 pm_transition = state; 1766 async_error = 0; 1767 while (!list_empty(&dpm_prepared_list)) { 1768 struct device *dev = to_device(dpm_prepared_list.prev); 1769 1770 get_device(dev); 1771 1772 mutex_unlock(&dpm_list_mtx); 1773 1774 error = device_suspend(dev); 1775 1776 mutex_lock(&dpm_list_mtx); 1777 1778 if (error) { 1779 pm_dev_err(dev, state, "", error); 1780 dpm_save_failed_dev(dev_name(dev)); 1781 } else if (!list_empty(&dev->power.entry)) { 1782 list_move(&dev->power.entry, &dpm_suspended_list); 1783 } 1784 1785 mutex_unlock(&dpm_list_mtx); 1786 1787 put_device(dev); 1788 1789 mutex_lock(&dpm_list_mtx); 1790 1791 if (error || async_error) 1792 break; 1793 } 1794 mutex_unlock(&dpm_list_mtx); 1795 async_synchronize_full(); 1796 if (!error) 1797 error = async_error; 1798 if (error) { 1799 suspend_stats.failed_suspend++; 1800 dpm_save_failed_step(SUSPEND_SUSPEND); 1801 } 1802 dpm_show_time(starttime, state, error, NULL); 1803 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1804 return error; 1805 } 1806 1807 /** 1808 * device_prepare - Prepare a device for system power transition. 1809 * @dev: Device to handle. 1810 * @state: PM transition of the system being carried out. 1811 * 1812 * Execute the ->prepare() callback(s) for given device. No new children of the 1813 * device may be registered after this function has returned. 1814 */ 1815 static int device_prepare(struct device *dev, pm_message_t state) 1816 { 1817 int (*callback)(struct device *) = NULL; 1818 int ret = 0; 1819 1820 /* 1821 * If a device's parent goes into runtime suspend at the wrong time, 1822 * it won't be possible to resume the device. To prevent this we 1823 * block runtime suspend here, during the prepare phase, and allow 1824 * it again during the complete phase. 1825 */ 1826 pm_runtime_get_noresume(dev); 1827 1828 if (dev->power.syscore) 1829 return 0; 1830 1831 device_lock(dev); 1832 1833 dev->power.wakeup_path = false; 1834 1835 if (dev->power.no_pm_callbacks) 1836 goto unlock; 1837 1838 if (dev->pm_domain) 1839 callback = dev->pm_domain->ops.prepare; 1840 else if (dev->type && dev->type->pm) 1841 callback = dev->type->pm->prepare; 1842 else if (dev->class && dev->class->pm) 1843 callback = dev->class->pm->prepare; 1844 else if (dev->bus && dev->bus->pm) 1845 callback = dev->bus->pm->prepare; 1846 1847 if (!callback && dev->driver && dev->driver->pm) 1848 callback = dev->driver->pm->prepare; 1849 1850 if (callback) 1851 ret = callback(dev); 1852 1853 unlock: 1854 device_unlock(dev); 1855 1856 if (ret < 0) { 1857 suspend_report_result(dev, callback, ret); 1858 pm_runtime_put(dev); 1859 return ret; 1860 } 1861 /* 1862 * A positive return value from ->prepare() means "this device appears 1863 * to be runtime-suspended and its state is fine, so if it really is 1864 * runtime-suspended, you can leave it in that state provided that you 1865 * will do the same thing with all of its descendants". This only 1866 * applies to suspend transitions, however. 1867 */ 1868 spin_lock_irq(&dev->power.lock); 1869 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1870 (ret > 0 || dev->power.no_pm_callbacks) && 1871 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1872 spin_unlock_irq(&dev->power.lock); 1873 return 0; 1874 } 1875 1876 /** 1877 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1878 * @state: PM transition of the system being carried out. 1879 * 1880 * Execute the ->prepare() callback(s) for all devices. 1881 */ 1882 int dpm_prepare(pm_message_t state) 1883 { 1884 int error = 0; 1885 1886 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1887 might_sleep(); 1888 1889 /* 1890 * Give a chance for the known devices to complete their probes, before 1891 * disable probing of devices. This sync point is important at least 1892 * at boot time + hibernation restore. 1893 */ 1894 wait_for_device_probe(); 1895 /* 1896 * It is unsafe if probing of devices will happen during suspend or 1897 * hibernation and system behavior will be unpredictable in this case. 1898 * So, let's prohibit device's probing here and defer their probes 1899 * instead. The normal behavior will be restored in dpm_complete(). 1900 */ 1901 device_block_probing(); 1902 1903 mutex_lock(&dpm_list_mtx); 1904 while (!list_empty(&dpm_list) && !error) { 1905 struct device *dev = to_device(dpm_list.next); 1906 1907 get_device(dev); 1908 1909 mutex_unlock(&dpm_list_mtx); 1910 1911 trace_device_pm_callback_start(dev, "", state.event); 1912 error = device_prepare(dev, state); 1913 trace_device_pm_callback_end(dev, error); 1914 1915 mutex_lock(&dpm_list_mtx); 1916 1917 if (!error) { 1918 dev->power.is_prepared = true; 1919 if (!list_empty(&dev->power.entry)) 1920 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1921 } else if (error == -EAGAIN) { 1922 error = 0; 1923 } else { 1924 dev_info(dev, "not prepared for power transition: code %d\n", 1925 error); 1926 } 1927 1928 mutex_unlock(&dpm_list_mtx); 1929 1930 put_device(dev); 1931 1932 mutex_lock(&dpm_list_mtx); 1933 } 1934 mutex_unlock(&dpm_list_mtx); 1935 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1936 return error; 1937 } 1938 1939 /** 1940 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1941 * @state: PM transition of the system being carried out. 1942 * 1943 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1944 * callbacks for them. 1945 */ 1946 int dpm_suspend_start(pm_message_t state) 1947 { 1948 ktime_t starttime = ktime_get(); 1949 int error; 1950 1951 error = dpm_prepare(state); 1952 if (error) { 1953 suspend_stats.failed_prepare++; 1954 dpm_save_failed_step(SUSPEND_PREPARE); 1955 } else 1956 error = dpm_suspend(state); 1957 dpm_show_time(starttime, state, error, "start"); 1958 return error; 1959 } 1960 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1961 1962 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret) 1963 { 1964 if (ret) 1965 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret); 1966 } 1967 EXPORT_SYMBOL_GPL(__suspend_report_result); 1968 1969 /** 1970 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1971 * @subordinate: Device that needs to wait for @dev. 1972 * @dev: Device to wait for. 1973 */ 1974 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1975 { 1976 dpm_wait(dev, subordinate->power.async_suspend); 1977 return async_error; 1978 } 1979 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1980 1981 /** 1982 * dpm_for_each_dev - device iterator. 1983 * @data: data for the callback. 1984 * @fn: function to be called for each device. 1985 * 1986 * Iterate over devices in dpm_list, and call @fn for each device, 1987 * passing it @data. 1988 */ 1989 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1990 { 1991 struct device *dev; 1992 1993 if (!fn) 1994 return; 1995 1996 device_pm_lock(); 1997 list_for_each_entry(dev, &dpm_list, power.entry) 1998 fn(dev, data); 1999 device_pm_unlock(); 2000 } 2001 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 2002 2003 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 2004 { 2005 if (!ops) 2006 return true; 2007 2008 return !ops->prepare && 2009 !ops->suspend && 2010 !ops->suspend_late && 2011 !ops->suspend_noirq && 2012 !ops->resume_noirq && 2013 !ops->resume_early && 2014 !ops->resume && 2015 !ops->complete; 2016 } 2017 2018 void device_pm_check_callbacks(struct device *dev) 2019 { 2020 unsigned long flags; 2021 2022 spin_lock_irqsave(&dev->power.lock, flags); 2023 dev->power.no_pm_callbacks = 2024 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2025 !dev->bus->suspend && !dev->bus->resume)) && 2026 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2027 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2028 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2029 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2030 !dev->driver->suspend && !dev->driver->resume)); 2031 spin_unlock_irqrestore(&dev->power.lock, flags); 2032 } 2033 2034 bool dev_pm_skip_suspend(struct device *dev) 2035 { 2036 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2037 pm_runtime_status_suspended(dev); 2038 } 2039