xref: /linux/drivers/base/power/main.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will intialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/resume-trace.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/async.h>
29 
30 #include "../base.h"
31 #include "power.h"
32 
33 /*
34  * The entries in the dpm_list list are in a depth first order, simply
35  * because children are guaranteed to be discovered after parents, and
36  * are inserted at the back of the list on discovery.
37  *
38  * Since device_pm_add() may be called with a device semaphore held,
39  * we must never try to acquire a device semaphore while holding
40  * dpm_list_mutex.
41  */
42 
43 LIST_HEAD(dpm_list);
44 
45 static DEFINE_MUTEX(dpm_list_mtx);
46 static pm_message_t pm_transition;
47 
48 /*
49  * Set once the preparation of devices for a PM transition has started, reset
50  * before starting to resume devices.  Protected by dpm_list_mtx.
51  */
52 static bool transition_started;
53 
54 /**
55  * device_pm_init - Initialize the PM-related part of a device object.
56  * @dev: Device object being initialized.
57  */
58 void device_pm_init(struct device *dev)
59 {
60 	dev->power.status = DPM_ON;
61 	init_completion(&dev->power.completion);
62 	pm_runtime_init(dev);
63 }
64 
65 /**
66  * device_pm_lock - Lock the list of active devices used by the PM core.
67  */
68 void device_pm_lock(void)
69 {
70 	mutex_lock(&dpm_list_mtx);
71 }
72 
73 /**
74  * device_pm_unlock - Unlock the list of active devices used by the PM core.
75  */
76 void device_pm_unlock(void)
77 {
78 	mutex_unlock(&dpm_list_mtx);
79 }
80 
81 /**
82  * device_pm_add - Add a device to the PM core's list of active devices.
83  * @dev: Device to add to the list.
84  */
85 void device_pm_add(struct device *dev)
86 {
87 	pr_debug("PM: Adding info for %s:%s\n",
88 		 dev->bus ? dev->bus->name : "No Bus",
89 		 kobject_name(&dev->kobj));
90 	mutex_lock(&dpm_list_mtx);
91 	if (dev->parent) {
92 		if (dev->parent->power.status >= DPM_SUSPENDING)
93 			dev_warn(dev, "parent %s should not be sleeping\n",
94 				 dev_name(dev->parent));
95 	} else if (transition_started) {
96 		/*
97 		 * We refuse to register parentless devices while a PM
98 		 * transition is in progress in order to avoid leaving them
99 		 * unhandled down the road
100 		 */
101 		dev_WARN(dev, "Parentless device registered during a PM transaction\n");
102 	}
103 
104 	list_add_tail(&dev->power.entry, &dpm_list);
105 	mutex_unlock(&dpm_list_mtx);
106 }
107 
108 /**
109  * device_pm_remove - Remove a device from the PM core's list of active devices.
110  * @dev: Device to be removed from the list.
111  */
112 void device_pm_remove(struct device *dev)
113 {
114 	pr_debug("PM: Removing info for %s:%s\n",
115 		 dev->bus ? dev->bus->name : "No Bus",
116 		 kobject_name(&dev->kobj));
117 	complete_all(&dev->power.completion);
118 	mutex_lock(&dpm_list_mtx);
119 	list_del_init(&dev->power.entry);
120 	mutex_unlock(&dpm_list_mtx);
121 	pm_runtime_remove(dev);
122 }
123 
124 /**
125  * device_pm_move_before - Move device in the PM core's list of active devices.
126  * @deva: Device to move in dpm_list.
127  * @devb: Device @deva should come before.
128  */
129 void device_pm_move_before(struct device *deva, struct device *devb)
130 {
131 	pr_debug("PM: Moving %s:%s before %s:%s\n",
132 		 deva->bus ? deva->bus->name : "No Bus",
133 		 kobject_name(&deva->kobj),
134 		 devb->bus ? devb->bus->name : "No Bus",
135 		 kobject_name(&devb->kobj));
136 	/* Delete deva from dpm_list and reinsert before devb. */
137 	list_move_tail(&deva->power.entry, &devb->power.entry);
138 }
139 
140 /**
141  * device_pm_move_after - Move device in the PM core's list of active devices.
142  * @deva: Device to move in dpm_list.
143  * @devb: Device @deva should come after.
144  */
145 void device_pm_move_after(struct device *deva, struct device *devb)
146 {
147 	pr_debug("PM: Moving %s:%s after %s:%s\n",
148 		 deva->bus ? deva->bus->name : "No Bus",
149 		 kobject_name(&deva->kobj),
150 		 devb->bus ? devb->bus->name : "No Bus",
151 		 kobject_name(&devb->kobj));
152 	/* Delete deva from dpm_list and reinsert after devb. */
153 	list_move(&deva->power.entry, &devb->power.entry);
154 }
155 
156 /**
157  * device_pm_move_last - Move device to end of the PM core's list of devices.
158  * @dev: Device to move in dpm_list.
159  */
160 void device_pm_move_last(struct device *dev)
161 {
162 	pr_debug("PM: Moving %s:%s to end of list\n",
163 		 dev->bus ? dev->bus->name : "No Bus",
164 		 kobject_name(&dev->kobj));
165 	list_move_tail(&dev->power.entry, &dpm_list);
166 }
167 
168 static ktime_t initcall_debug_start(struct device *dev)
169 {
170 	ktime_t calltime = ktime_set(0, 0);
171 
172 	if (initcall_debug) {
173 		pr_info("calling  %s+ @ %i\n",
174 				dev_name(dev), task_pid_nr(current));
175 		calltime = ktime_get();
176 	}
177 
178 	return calltime;
179 }
180 
181 static void initcall_debug_report(struct device *dev, ktime_t calltime,
182 				  int error)
183 {
184 	ktime_t delta, rettime;
185 
186 	if (initcall_debug) {
187 		rettime = ktime_get();
188 		delta = ktime_sub(rettime, calltime);
189 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
190 			error, (unsigned long long)ktime_to_ns(delta) >> 10);
191 	}
192 }
193 
194 /**
195  * dpm_wait - Wait for a PM operation to complete.
196  * @dev: Device to wait for.
197  * @async: If unset, wait only if the device's power.async_suspend flag is set.
198  */
199 static void dpm_wait(struct device *dev, bool async)
200 {
201 	if (!dev)
202 		return;
203 
204 	if (async || (pm_async_enabled && dev->power.async_suspend))
205 		wait_for_completion(&dev->power.completion);
206 }
207 
208 static int dpm_wait_fn(struct device *dev, void *async_ptr)
209 {
210 	dpm_wait(dev, *((bool *)async_ptr));
211 	return 0;
212 }
213 
214 static void dpm_wait_for_children(struct device *dev, bool async)
215 {
216        device_for_each_child(dev, &async, dpm_wait_fn);
217 }
218 
219 /**
220  * pm_op - Execute the PM operation appropriate for given PM event.
221  * @dev: Device to handle.
222  * @ops: PM operations to choose from.
223  * @state: PM transition of the system being carried out.
224  */
225 static int pm_op(struct device *dev,
226 		 const struct dev_pm_ops *ops,
227 		 pm_message_t state)
228 {
229 	int error = 0;
230 	ktime_t calltime;
231 
232 	calltime = initcall_debug_start(dev);
233 
234 	switch (state.event) {
235 #ifdef CONFIG_SUSPEND
236 	case PM_EVENT_SUSPEND:
237 		if (ops->suspend) {
238 			error = ops->suspend(dev);
239 			suspend_report_result(ops->suspend, error);
240 		}
241 		break;
242 	case PM_EVENT_RESUME:
243 		if (ops->resume) {
244 			error = ops->resume(dev);
245 			suspend_report_result(ops->resume, error);
246 		}
247 		break;
248 #endif /* CONFIG_SUSPEND */
249 #ifdef CONFIG_HIBERNATION
250 	case PM_EVENT_FREEZE:
251 	case PM_EVENT_QUIESCE:
252 		if (ops->freeze) {
253 			error = ops->freeze(dev);
254 			suspend_report_result(ops->freeze, error);
255 		}
256 		break;
257 	case PM_EVENT_HIBERNATE:
258 		if (ops->poweroff) {
259 			error = ops->poweroff(dev);
260 			suspend_report_result(ops->poweroff, error);
261 		}
262 		break;
263 	case PM_EVENT_THAW:
264 	case PM_EVENT_RECOVER:
265 		if (ops->thaw) {
266 			error = ops->thaw(dev);
267 			suspend_report_result(ops->thaw, error);
268 		}
269 		break;
270 	case PM_EVENT_RESTORE:
271 		if (ops->restore) {
272 			error = ops->restore(dev);
273 			suspend_report_result(ops->restore, error);
274 		}
275 		break;
276 #endif /* CONFIG_HIBERNATION */
277 	default:
278 		error = -EINVAL;
279 	}
280 
281 	initcall_debug_report(dev, calltime, error);
282 
283 	return error;
284 }
285 
286 /**
287  * pm_noirq_op - Execute the PM operation appropriate for given PM event.
288  * @dev: Device to handle.
289  * @ops: PM operations to choose from.
290  * @state: PM transition of the system being carried out.
291  *
292  * The driver of @dev will not receive interrupts while this function is being
293  * executed.
294  */
295 static int pm_noirq_op(struct device *dev,
296 			const struct dev_pm_ops *ops,
297 			pm_message_t state)
298 {
299 	int error = 0;
300 	ktime_t calltime, delta, rettime;
301 
302 	if (initcall_debug) {
303 		pr_info("calling  %s+ @ %i, parent: %s\n",
304 				dev_name(dev), task_pid_nr(current),
305 				dev->parent ? dev_name(dev->parent) : "none");
306 		calltime = ktime_get();
307 	}
308 
309 	switch (state.event) {
310 #ifdef CONFIG_SUSPEND
311 	case PM_EVENT_SUSPEND:
312 		if (ops->suspend_noirq) {
313 			error = ops->suspend_noirq(dev);
314 			suspend_report_result(ops->suspend_noirq, error);
315 		}
316 		break;
317 	case PM_EVENT_RESUME:
318 		if (ops->resume_noirq) {
319 			error = ops->resume_noirq(dev);
320 			suspend_report_result(ops->resume_noirq, error);
321 		}
322 		break;
323 #endif /* CONFIG_SUSPEND */
324 #ifdef CONFIG_HIBERNATION
325 	case PM_EVENT_FREEZE:
326 	case PM_EVENT_QUIESCE:
327 		if (ops->freeze_noirq) {
328 			error = ops->freeze_noirq(dev);
329 			suspend_report_result(ops->freeze_noirq, error);
330 		}
331 		break;
332 	case PM_EVENT_HIBERNATE:
333 		if (ops->poweroff_noirq) {
334 			error = ops->poweroff_noirq(dev);
335 			suspend_report_result(ops->poweroff_noirq, error);
336 		}
337 		break;
338 	case PM_EVENT_THAW:
339 	case PM_EVENT_RECOVER:
340 		if (ops->thaw_noirq) {
341 			error = ops->thaw_noirq(dev);
342 			suspend_report_result(ops->thaw_noirq, error);
343 		}
344 		break;
345 	case PM_EVENT_RESTORE:
346 		if (ops->restore_noirq) {
347 			error = ops->restore_noirq(dev);
348 			suspend_report_result(ops->restore_noirq, error);
349 		}
350 		break;
351 #endif /* CONFIG_HIBERNATION */
352 	default:
353 		error = -EINVAL;
354 	}
355 
356 	if (initcall_debug) {
357 		rettime = ktime_get();
358 		delta = ktime_sub(rettime, calltime);
359 		printk("initcall %s_i+ returned %d after %Ld usecs\n",
360 			dev_name(dev), error,
361 			(unsigned long long)ktime_to_ns(delta) >> 10);
362 	}
363 
364 	return error;
365 }
366 
367 static char *pm_verb(int event)
368 {
369 	switch (event) {
370 	case PM_EVENT_SUSPEND:
371 		return "suspend";
372 	case PM_EVENT_RESUME:
373 		return "resume";
374 	case PM_EVENT_FREEZE:
375 		return "freeze";
376 	case PM_EVENT_QUIESCE:
377 		return "quiesce";
378 	case PM_EVENT_HIBERNATE:
379 		return "hibernate";
380 	case PM_EVENT_THAW:
381 		return "thaw";
382 	case PM_EVENT_RESTORE:
383 		return "restore";
384 	case PM_EVENT_RECOVER:
385 		return "recover";
386 	default:
387 		return "(unknown PM event)";
388 	}
389 }
390 
391 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
392 {
393 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
394 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
395 		", may wakeup" : "");
396 }
397 
398 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
399 			int error)
400 {
401 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
402 		kobject_name(&dev->kobj), pm_verb(state.event), info, error);
403 }
404 
405 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
406 {
407 	ktime_t calltime;
408 	s64 usecs64;
409 	int usecs;
410 
411 	calltime = ktime_get();
412 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
413 	do_div(usecs64, NSEC_PER_USEC);
414 	usecs = usecs64;
415 	if (usecs == 0)
416 		usecs = 1;
417 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
418 		info ?: "", info ? " " : "", pm_verb(state.event),
419 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
420 }
421 
422 /*------------------------- Resume routines -------------------------*/
423 
424 /**
425  * device_resume_noirq - Execute an "early resume" callback for given device.
426  * @dev: Device to handle.
427  * @state: PM transition of the system being carried out.
428  *
429  * The driver of @dev will not receive interrupts while this function is being
430  * executed.
431  */
432 static int device_resume_noirq(struct device *dev, pm_message_t state)
433 {
434 	int error = 0;
435 
436 	TRACE_DEVICE(dev);
437 	TRACE_RESUME(0);
438 
439 	if (dev->bus && dev->bus->pm) {
440 		pm_dev_dbg(dev, state, "EARLY ");
441 		error = pm_noirq_op(dev, dev->bus->pm, state);
442 	}
443 
444 	TRACE_RESUME(error);
445 	return error;
446 }
447 
448 /**
449  * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices.
450  * @state: PM transition of the system being carried out.
451  *
452  * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and
453  * enable device drivers to receive interrupts.
454  */
455 void dpm_resume_noirq(pm_message_t state)
456 {
457 	struct device *dev;
458 	ktime_t starttime = ktime_get();
459 
460 	mutex_lock(&dpm_list_mtx);
461 	transition_started = false;
462 	list_for_each_entry(dev, &dpm_list, power.entry)
463 		if (dev->power.status > DPM_OFF) {
464 			int error;
465 
466 			dev->power.status = DPM_OFF;
467 			error = device_resume_noirq(dev, state);
468 			if (error)
469 				pm_dev_err(dev, state, " early", error);
470 		}
471 	mutex_unlock(&dpm_list_mtx);
472 	dpm_show_time(starttime, state, "early");
473 	resume_device_irqs();
474 }
475 EXPORT_SYMBOL_GPL(dpm_resume_noirq);
476 
477 /**
478  * legacy_resume - Execute a legacy (bus or class) resume callback for device.
479  * @dev: Device to resume.
480  * @cb: Resume callback to execute.
481  */
482 static int legacy_resume(struct device *dev, int (*cb)(struct device *dev))
483 {
484 	int error;
485 	ktime_t calltime;
486 
487 	calltime = initcall_debug_start(dev);
488 
489 	error = cb(dev);
490 	suspend_report_result(cb, error);
491 
492 	initcall_debug_report(dev, calltime, error);
493 
494 	return error;
495 }
496 
497 /**
498  * device_resume - Execute "resume" callbacks for given device.
499  * @dev: Device to handle.
500  * @state: PM transition of the system being carried out.
501  * @async: If true, the device is being resumed asynchronously.
502  */
503 static int device_resume(struct device *dev, pm_message_t state, bool async)
504 {
505 	int error = 0;
506 
507 	TRACE_DEVICE(dev);
508 	TRACE_RESUME(0);
509 
510 	dpm_wait(dev->parent, async);
511 	down(&dev->sem);
512 
513 	dev->power.status = DPM_RESUMING;
514 
515 	if (dev->bus) {
516 		if (dev->bus->pm) {
517 			pm_dev_dbg(dev, state, "");
518 			error = pm_op(dev, dev->bus->pm, state);
519 		} else if (dev->bus->resume) {
520 			pm_dev_dbg(dev, state, "legacy ");
521 			error = legacy_resume(dev, dev->bus->resume);
522 		}
523 		if (error)
524 			goto End;
525 	}
526 
527 	if (dev->type) {
528 		if (dev->type->pm) {
529 			pm_dev_dbg(dev, state, "type ");
530 			error = pm_op(dev, dev->type->pm, state);
531 		}
532 		if (error)
533 			goto End;
534 	}
535 
536 	if (dev->class) {
537 		if (dev->class->pm) {
538 			pm_dev_dbg(dev, state, "class ");
539 			error = pm_op(dev, dev->class->pm, state);
540 		} else if (dev->class->resume) {
541 			pm_dev_dbg(dev, state, "legacy class ");
542 			error = legacy_resume(dev, dev->class->resume);
543 		}
544 	}
545  End:
546 	up(&dev->sem);
547 	complete_all(&dev->power.completion);
548 
549 	TRACE_RESUME(error);
550 	return error;
551 }
552 
553 static void async_resume(void *data, async_cookie_t cookie)
554 {
555 	struct device *dev = (struct device *)data;
556 	int error;
557 
558 	error = device_resume(dev, pm_transition, true);
559 	if (error)
560 		pm_dev_err(dev, pm_transition, " async", error);
561 	put_device(dev);
562 }
563 
564 static bool is_async(struct device *dev)
565 {
566 	return dev->power.async_suspend && pm_async_enabled
567 		&& !pm_trace_is_enabled();
568 }
569 
570 /**
571  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
572  * @state: PM transition of the system being carried out.
573  *
574  * Execute the appropriate "resume" callback for all devices whose status
575  * indicates that they are suspended.
576  */
577 static void dpm_resume(pm_message_t state)
578 {
579 	struct list_head list;
580 	struct device *dev;
581 	ktime_t starttime = ktime_get();
582 
583 	INIT_LIST_HEAD(&list);
584 	mutex_lock(&dpm_list_mtx);
585 	pm_transition = state;
586 
587 	list_for_each_entry(dev, &dpm_list, power.entry) {
588 		if (dev->power.status < DPM_OFF)
589 			continue;
590 
591 		INIT_COMPLETION(dev->power.completion);
592 		if (is_async(dev)) {
593 			get_device(dev);
594 			async_schedule(async_resume, dev);
595 		}
596 	}
597 
598 	while (!list_empty(&dpm_list)) {
599 		dev = to_device(dpm_list.next);
600 		get_device(dev);
601 		if (dev->power.status >= DPM_OFF && !is_async(dev)) {
602 			int error;
603 
604 			mutex_unlock(&dpm_list_mtx);
605 
606 			error = device_resume(dev, state, false);
607 
608 			mutex_lock(&dpm_list_mtx);
609 			if (error)
610 				pm_dev_err(dev, state, "", error);
611 		} else if (dev->power.status == DPM_SUSPENDING) {
612 			/* Allow new children of the device to be registered */
613 			dev->power.status = DPM_RESUMING;
614 		}
615 		if (!list_empty(&dev->power.entry))
616 			list_move_tail(&dev->power.entry, &list);
617 		put_device(dev);
618 	}
619 	list_splice(&list, &dpm_list);
620 	mutex_unlock(&dpm_list_mtx);
621 	async_synchronize_full();
622 	dpm_show_time(starttime, state, NULL);
623 }
624 
625 /**
626  * device_complete - Complete a PM transition for given device.
627  * @dev: Device to handle.
628  * @state: PM transition of the system being carried out.
629  */
630 static void device_complete(struct device *dev, pm_message_t state)
631 {
632 	down(&dev->sem);
633 
634 	if (dev->class && dev->class->pm && dev->class->pm->complete) {
635 		pm_dev_dbg(dev, state, "completing class ");
636 		dev->class->pm->complete(dev);
637 	}
638 
639 	if (dev->type && dev->type->pm && dev->type->pm->complete) {
640 		pm_dev_dbg(dev, state, "completing type ");
641 		dev->type->pm->complete(dev);
642 	}
643 
644 	if (dev->bus && dev->bus->pm && dev->bus->pm->complete) {
645 		pm_dev_dbg(dev, state, "completing ");
646 		dev->bus->pm->complete(dev);
647 	}
648 
649 	up(&dev->sem);
650 }
651 
652 /**
653  * dpm_complete - Complete a PM transition for all non-sysdev devices.
654  * @state: PM transition of the system being carried out.
655  *
656  * Execute the ->complete() callbacks for all devices whose PM status is not
657  * DPM_ON (this allows new devices to be registered).
658  */
659 static void dpm_complete(pm_message_t state)
660 {
661 	struct list_head list;
662 
663 	INIT_LIST_HEAD(&list);
664 	mutex_lock(&dpm_list_mtx);
665 	transition_started = false;
666 	while (!list_empty(&dpm_list)) {
667 		struct device *dev = to_device(dpm_list.prev);
668 
669 		get_device(dev);
670 		if (dev->power.status > DPM_ON) {
671 			dev->power.status = DPM_ON;
672 			mutex_unlock(&dpm_list_mtx);
673 
674 			device_complete(dev, state);
675 			pm_runtime_put_sync(dev);
676 
677 			mutex_lock(&dpm_list_mtx);
678 		}
679 		if (!list_empty(&dev->power.entry))
680 			list_move(&dev->power.entry, &list);
681 		put_device(dev);
682 	}
683 	list_splice(&list, &dpm_list);
684 	mutex_unlock(&dpm_list_mtx);
685 }
686 
687 /**
688  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
689  * @state: PM transition of the system being carried out.
690  *
691  * Execute "resume" callbacks for all devices and complete the PM transition of
692  * the system.
693  */
694 void dpm_resume_end(pm_message_t state)
695 {
696 	might_sleep();
697 	dpm_resume(state);
698 	dpm_complete(state);
699 }
700 EXPORT_SYMBOL_GPL(dpm_resume_end);
701 
702 
703 /*------------------------- Suspend routines -------------------------*/
704 
705 /**
706  * resume_event - Return a "resume" message for given "suspend" sleep state.
707  * @sleep_state: PM message representing a sleep state.
708  *
709  * Return a PM message representing the resume event corresponding to given
710  * sleep state.
711  */
712 static pm_message_t resume_event(pm_message_t sleep_state)
713 {
714 	switch (sleep_state.event) {
715 	case PM_EVENT_SUSPEND:
716 		return PMSG_RESUME;
717 	case PM_EVENT_FREEZE:
718 	case PM_EVENT_QUIESCE:
719 		return PMSG_RECOVER;
720 	case PM_EVENT_HIBERNATE:
721 		return PMSG_RESTORE;
722 	}
723 	return PMSG_ON;
724 }
725 
726 /**
727  * device_suspend_noirq - Execute a "late suspend" callback for given device.
728  * @dev: Device to handle.
729  * @state: PM transition of the system being carried out.
730  *
731  * The driver of @dev will not receive interrupts while this function is being
732  * executed.
733  */
734 static int device_suspend_noirq(struct device *dev, pm_message_t state)
735 {
736 	int error = 0;
737 
738 	if (dev->bus && dev->bus->pm) {
739 		pm_dev_dbg(dev, state, "LATE ");
740 		error = pm_noirq_op(dev, dev->bus->pm, state);
741 	}
742 	return error;
743 }
744 
745 /**
746  * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices.
747  * @state: PM transition of the system being carried out.
748  *
749  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
750  * handlers for all non-sysdev devices.
751  */
752 int dpm_suspend_noirq(pm_message_t state)
753 {
754 	struct device *dev;
755 	ktime_t starttime = ktime_get();
756 	int error = 0;
757 
758 	suspend_device_irqs();
759 	mutex_lock(&dpm_list_mtx);
760 	list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
761 		error = device_suspend_noirq(dev, state);
762 		if (error) {
763 			pm_dev_err(dev, state, " late", error);
764 			break;
765 		}
766 		dev->power.status = DPM_OFF_IRQ;
767 	}
768 	mutex_unlock(&dpm_list_mtx);
769 	if (error)
770 		dpm_resume_noirq(resume_event(state));
771 	else
772 		dpm_show_time(starttime, state, "late");
773 	return error;
774 }
775 EXPORT_SYMBOL_GPL(dpm_suspend_noirq);
776 
777 /**
778  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
779  * @dev: Device to suspend.
780  * @state: PM transition of the system being carried out.
781  * @cb: Suspend callback to execute.
782  */
783 static int legacy_suspend(struct device *dev, pm_message_t state,
784 			  int (*cb)(struct device *dev, pm_message_t state))
785 {
786 	int error;
787 	ktime_t calltime;
788 
789 	calltime = initcall_debug_start(dev);
790 
791 	error = cb(dev, state);
792 	suspend_report_result(cb, error);
793 
794 	initcall_debug_report(dev, calltime, error);
795 
796 	return error;
797 }
798 
799 static int async_error;
800 
801 /**
802  * device_suspend - Execute "suspend" callbacks for given device.
803  * @dev: Device to handle.
804  * @state: PM transition of the system being carried out.
805  * @async: If true, the device is being suspended asynchronously.
806  */
807 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
808 {
809 	int error = 0;
810 
811 	dpm_wait_for_children(dev, async);
812 	down(&dev->sem);
813 
814 	if (async_error)
815 		goto End;
816 
817 	if (dev->class) {
818 		if (dev->class->pm) {
819 			pm_dev_dbg(dev, state, "class ");
820 			error = pm_op(dev, dev->class->pm, state);
821 		} else if (dev->class->suspend) {
822 			pm_dev_dbg(dev, state, "legacy class ");
823 			error = legacy_suspend(dev, state, dev->class->suspend);
824 		}
825 		if (error)
826 			goto End;
827 	}
828 
829 	if (dev->type) {
830 		if (dev->type->pm) {
831 			pm_dev_dbg(dev, state, "type ");
832 			error = pm_op(dev, dev->type->pm, state);
833 		}
834 		if (error)
835 			goto End;
836 	}
837 
838 	if (dev->bus) {
839 		if (dev->bus->pm) {
840 			pm_dev_dbg(dev, state, "");
841 			error = pm_op(dev, dev->bus->pm, state);
842 		} else if (dev->bus->suspend) {
843 			pm_dev_dbg(dev, state, "legacy ");
844 			error = legacy_suspend(dev, state, dev->bus->suspend);
845 		}
846 	}
847 
848 	if (!error)
849 		dev->power.status = DPM_OFF;
850 
851  End:
852 	up(&dev->sem);
853 	complete_all(&dev->power.completion);
854 
855 	return error;
856 }
857 
858 static void async_suspend(void *data, async_cookie_t cookie)
859 {
860 	struct device *dev = (struct device *)data;
861 	int error;
862 
863 	error = __device_suspend(dev, pm_transition, true);
864 	if (error) {
865 		pm_dev_err(dev, pm_transition, " async", error);
866 		async_error = error;
867 	}
868 
869 	put_device(dev);
870 }
871 
872 static int device_suspend(struct device *dev)
873 {
874 	INIT_COMPLETION(dev->power.completion);
875 
876 	if (pm_async_enabled && dev->power.async_suspend) {
877 		get_device(dev);
878 		async_schedule(async_suspend, dev);
879 		return 0;
880 	}
881 
882 	return __device_suspend(dev, pm_transition, false);
883 }
884 
885 /**
886  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
887  * @state: PM transition of the system being carried out.
888  */
889 static int dpm_suspend(pm_message_t state)
890 {
891 	struct list_head list;
892 	ktime_t starttime = ktime_get();
893 	int error = 0;
894 
895 	INIT_LIST_HEAD(&list);
896 	mutex_lock(&dpm_list_mtx);
897 	pm_transition = state;
898 	async_error = 0;
899 	while (!list_empty(&dpm_list)) {
900 		struct device *dev = to_device(dpm_list.prev);
901 
902 		get_device(dev);
903 		mutex_unlock(&dpm_list_mtx);
904 
905 		error = device_suspend(dev);
906 
907 		mutex_lock(&dpm_list_mtx);
908 		if (error) {
909 			pm_dev_err(dev, state, "", error);
910 			put_device(dev);
911 			break;
912 		}
913 		if (!list_empty(&dev->power.entry))
914 			list_move(&dev->power.entry, &list);
915 		put_device(dev);
916 		if (async_error)
917 			break;
918 	}
919 	list_splice(&list, dpm_list.prev);
920 	mutex_unlock(&dpm_list_mtx);
921 	async_synchronize_full();
922 	if (!error)
923 		error = async_error;
924 	if (!error)
925 		dpm_show_time(starttime, state, NULL);
926 	return error;
927 }
928 
929 /**
930  * device_prepare - Prepare a device for system power transition.
931  * @dev: Device to handle.
932  * @state: PM transition of the system being carried out.
933  *
934  * Execute the ->prepare() callback(s) for given device.  No new children of the
935  * device may be registered after this function has returned.
936  */
937 static int device_prepare(struct device *dev, pm_message_t state)
938 {
939 	int error = 0;
940 
941 	down(&dev->sem);
942 
943 	if (dev->bus && dev->bus->pm && dev->bus->pm->prepare) {
944 		pm_dev_dbg(dev, state, "preparing ");
945 		error = dev->bus->pm->prepare(dev);
946 		suspend_report_result(dev->bus->pm->prepare, error);
947 		if (error)
948 			goto End;
949 	}
950 
951 	if (dev->type && dev->type->pm && dev->type->pm->prepare) {
952 		pm_dev_dbg(dev, state, "preparing type ");
953 		error = dev->type->pm->prepare(dev);
954 		suspend_report_result(dev->type->pm->prepare, error);
955 		if (error)
956 			goto End;
957 	}
958 
959 	if (dev->class && dev->class->pm && dev->class->pm->prepare) {
960 		pm_dev_dbg(dev, state, "preparing class ");
961 		error = dev->class->pm->prepare(dev);
962 		suspend_report_result(dev->class->pm->prepare, error);
963 	}
964  End:
965 	up(&dev->sem);
966 
967 	return error;
968 }
969 
970 /**
971  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
972  * @state: PM transition of the system being carried out.
973  *
974  * Execute the ->prepare() callback(s) for all devices.
975  */
976 static int dpm_prepare(pm_message_t state)
977 {
978 	struct list_head list;
979 	int error = 0;
980 
981 	INIT_LIST_HEAD(&list);
982 	mutex_lock(&dpm_list_mtx);
983 	transition_started = true;
984 	while (!list_empty(&dpm_list)) {
985 		struct device *dev = to_device(dpm_list.next);
986 
987 		get_device(dev);
988 		dev->power.status = DPM_PREPARING;
989 		mutex_unlock(&dpm_list_mtx);
990 
991 		pm_runtime_get_noresume(dev);
992 		if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) {
993 			/* Wake-up requested during system sleep transition. */
994 			pm_runtime_put_sync(dev);
995 			error = -EBUSY;
996 		} else {
997 			error = device_prepare(dev, state);
998 		}
999 
1000 		mutex_lock(&dpm_list_mtx);
1001 		if (error) {
1002 			dev->power.status = DPM_ON;
1003 			if (error == -EAGAIN) {
1004 				put_device(dev);
1005 				error = 0;
1006 				continue;
1007 			}
1008 			printk(KERN_ERR "PM: Failed to prepare device %s "
1009 				"for power transition: error %d\n",
1010 				kobject_name(&dev->kobj), error);
1011 			put_device(dev);
1012 			break;
1013 		}
1014 		dev->power.status = DPM_SUSPENDING;
1015 		if (!list_empty(&dev->power.entry))
1016 			list_move_tail(&dev->power.entry, &list);
1017 		put_device(dev);
1018 	}
1019 	list_splice(&list, &dpm_list);
1020 	mutex_unlock(&dpm_list_mtx);
1021 	return error;
1022 }
1023 
1024 /**
1025  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1026  * @state: PM transition of the system being carried out.
1027  *
1028  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1029  * callbacks for them.
1030  */
1031 int dpm_suspend_start(pm_message_t state)
1032 {
1033 	int error;
1034 
1035 	might_sleep();
1036 	error = dpm_prepare(state);
1037 	if (!error)
1038 		error = dpm_suspend(state);
1039 	return error;
1040 }
1041 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1042 
1043 void __suspend_report_result(const char *function, void *fn, int ret)
1044 {
1045 	if (ret)
1046 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1047 }
1048 EXPORT_SYMBOL_GPL(__suspend_report_result);
1049 
1050 /**
1051  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1052  * @dev: Device to wait for.
1053  * @subordinate: Device that needs to wait for @dev.
1054  */
1055 void device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1056 {
1057 	dpm_wait(dev, subordinate->power.async_suspend);
1058 }
1059 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1060