1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kallsyms.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/resume-trace.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/async.h> 30 #include <linux/suspend.h> 31 #include <trace/events/power.h> 32 #include <linux/cpufreq.h> 33 #include <linux/cpuidle.h> 34 #include <linux/timer.h> 35 36 #include "../base.h" 37 #include "power.h" 38 39 typedef int (*pm_callback_t)(struct device *); 40 41 /* 42 * The entries in the dpm_list list are in a depth first order, simply 43 * because children are guaranteed to be discovered after parents, and 44 * are inserted at the back of the list on discovery. 45 * 46 * Since device_pm_add() may be called with a device lock held, 47 * we must never try to acquire a device lock while holding 48 * dpm_list_mutex. 49 */ 50 51 LIST_HEAD(dpm_list); 52 static LIST_HEAD(dpm_prepared_list); 53 static LIST_HEAD(dpm_suspended_list); 54 static LIST_HEAD(dpm_late_early_list); 55 static LIST_HEAD(dpm_noirq_list); 56 57 struct suspend_stats suspend_stats; 58 static DEFINE_MUTEX(dpm_list_mtx); 59 static pm_message_t pm_transition; 60 61 static int async_error; 62 63 static char *pm_verb(int event) 64 { 65 switch (event) { 66 case PM_EVENT_SUSPEND: 67 return "suspend"; 68 case PM_EVENT_RESUME: 69 return "resume"; 70 case PM_EVENT_FREEZE: 71 return "freeze"; 72 case PM_EVENT_QUIESCE: 73 return "quiesce"; 74 case PM_EVENT_HIBERNATE: 75 return "hibernate"; 76 case PM_EVENT_THAW: 77 return "thaw"; 78 case PM_EVENT_RESTORE: 79 return "restore"; 80 case PM_EVENT_RECOVER: 81 return "recover"; 82 default: 83 return "(unknown PM event)"; 84 } 85 } 86 87 /** 88 * device_pm_sleep_init - Initialize system suspend-related device fields. 89 * @dev: Device object being initialized. 90 */ 91 void device_pm_sleep_init(struct device *dev) 92 { 93 dev->power.is_prepared = false; 94 dev->power.is_suspended = false; 95 dev->power.is_noirq_suspended = false; 96 dev->power.is_late_suspended = false; 97 init_completion(&dev->power.completion); 98 complete_all(&dev->power.completion); 99 dev->power.wakeup = NULL; 100 INIT_LIST_HEAD(&dev->power.entry); 101 } 102 103 /** 104 * device_pm_lock - Lock the list of active devices used by the PM core. 105 */ 106 void device_pm_lock(void) 107 { 108 mutex_lock(&dpm_list_mtx); 109 } 110 111 /** 112 * device_pm_unlock - Unlock the list of active devices used by the PM core. 113 */ 114 void device_pm_unlock(void) 115 { 116 mutex_unlock(&dpm_list_mtx); 117 } 118 119 /** 120 * device_pm_add - Add a device to the PM core's list of active devices. 121 * @dev: Device to add to the list. 122 */ 123 void device_pm_add(struct device *dev) 124 { 125 pr_debug("PM: Adding info for %s:%s\n", 126 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 127 mutex_lock(&dpm_list_mtx); 128 if (dev->parent && dev->parent->power.is_prepared) 129 dev_warn(dev, "parent %s should not be sleeping\n", 130 dev_name(dev->parent)); 131 list_add_tail(&dev->power.entry, &dpm_list); 132 mutex_unlock(&dpm_list_mtx); 133 } 134 135 /** 136 * device_pm_remove - Remove a device from the PM core's list of active devices. 137 * @dev: Device to be removed from the list. 138 */ 139 void device_pm_remove(struct device *dev) 140 { 141 pr_debug("PM: Removing info for %s:%s\n", 142 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 143 complete_all(&dev->power.completion); 144 mutex_lock(&dpm_list_mtx); 145 list_del_init(&dev->power.entry); 146 mutex_unlock(&dpm_list_mtx); 147 device_wakeup_disable(dev); 148 pm_runtime_remove(dev); 149 } 150 151 /** 152 * device_pm_move_before - Move device in the PM core's list of active devices. 153 * @deva: Device to move in dpm_list. 154 * @devb: Device @deva should come before. 155 */ 156 void device_pm_move_before(struct device *deva, struct device *devb) 157 { 158 pr_debug("PM: Moving %s:%s before %s:%s\n", 159 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 160 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 161 /* Delete deva from dpm_list and reinsert before devb. */ 162 list_move_tail(&deva->power.entry, &devb->power.entry); 163 } 164 165 /** 166 * device_pm_move_after - Move device in the PM core's list of active devices. 167 * @deva: Device to move in dpm_list. 168 * @devb: Device @deva should come after. 169 */ 170 void device_pm_move_after(struct device *deva, struct device *devb) 171 { 172 pr_debug("PM: Moving %s:%s after %s:%s\n", 173 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 174 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 175 /* Delete deva from dpm_list and reinsert after devb. */ 176 list_move(&deva->power.entry, &devb->power.entry); 177 } 178 179 /** 180 * device_pm_move_last - Move device to end of the PM core's list of devices. 181 * @dev: Device to move in dpm_list. 182 */ 183 void device_pm_move_last(struct device *dev) 184 { 185 pr_debug("PM: Moving %s:%s to end of list\n", 186 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 187 list_move_tail(&dev->power.entry, &dpm_list); 188 } 189 190 static ktime_t initcall_debug_start(struct device *dev) 191 { 192 ktime_t calltime = ktime_set(0, 0); 193 194 if (pm_print_times_enabled) { 195 pr_info("calling %s+ @ %i, parent: %s\n", 196 dev_name(dev), task_pid_nr(current), 197 dev->parent ? dev_name(dev->parent) : "none"); 198 calltime = ktime_get(); 199 } 200 201 return calltime; 202 } 203 204 static void initcall_debug_report(struct device *dev, ktime_t calltime, 205 int error, pm_message_t state, char *info) 206 { 207 ktime_t rettime; 208 s64 nsecs; 209 210 rettime = ktime_get(); 211 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 212 213 if (pm_print_times_enabled) { 214 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 215 error, (unsigned long long)nsecs >> 10); 216 } 217 } 218 219 /** 220 * dpm_wait - Wait for a PM operation to complete. 221 * @dev: Device to wait for. 222 * @async: If unset, wait only if the device's power.async_suspend flag is set. 223 */ 224 static void dpm_wait(struct device *dev, bool async) 225 { 226 if (!dev) 227 return; 228 229 if (async || (pm_async_enabled && dev->power.async_suspend)) 230 wait_for_completion(&dev->power.completion); 231 } 232 233 static int dpm_wait_fn(struct device *dev, void *async_ptr) 234 { 235 dpm_wait(dev, *((bool *)async_ptr)); 236 return 0; 237 } 238 239 static void dpm_wait_for_children(struct device *dev, bool async) 240 { 241 device_for_each_child(dev, &async, dpm_wait_fn); 242 } 243 244 /** 245 * pm_op - Return the PM operation appropriate for given PM event. 246 * @ops: PM operations to choose from. 247 * @state: PM transition of the system being carried out. 248 */ 249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 250 { 251 switch (state.event) { 252 #ifdef CONFIG_SUSPEND 253 case PM_EVENT_SUSPEND: 254 return ops->suspend; 255 case PM_EVENT_RESUME: 256 return ops->resume; 257 #endif /* CONFIG_SUSPEND */ 258 #ifdef CONFIG_HIBERNATE_CALLBACKS 259 case PM_EVENT_FREEZE: 260 case PM_EVENT_QUIESCE: 261 return ops->freeze; 262 case PM_EVENT_HIBERNATE: 263 return ops->poweroff; 264 case PM_EVENT_THAW: 265 case PM_EVENT_RECOVER: 266 return ops->thaw; 267 break; 268 case PM_EVENT_RESTORE: 269 return ops->restore; 270 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 271 } 272 273 return NULL; 274 } 275 276 /** 277 * pm_late_early_op - Return the PM operation appropriate for given PM event. 278 * @ops: PM operations to choose from. 279 * @state: PM transition of the system being carried out. 280 * 281 * Runtime PM is disabled for @dev while this function is being executed. 282 */ 283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 284 pm_message_t state) 285 { 286 switch (state.event) { 287 #ifdef CONFIG_SUSPEND 288 case PM_EVENT_SUSPEND: 289 return ops->suspend_late; 290 case PM_EVENT_RESUME: 291 return ops->resume_early; 292 #endif /* CONFIG_SUSPEND */ 293 #ifdef CONFIG_HIBERNATE_CALLBACKS 294 case PM_EVENT_FREEZE: 295 case PM_EVENT_QUIESCE: 296 return ops->freeze_late; 297 case PM_EVENT_HIBERNATE: 298 return ops->poweroff_late; 299 case PM_EVENT_THAW: 300 case PM_EVENT_RECOVER: 301 return ops->thaw_early; 302 case PM_EVENT_RESTORE: 303 return ops->restore_early; 304 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 305 } 306 307 return NULL; 308 } 309 310 /** 311 * pm_noirq_op - Return the PM operation appropriate for given PM event. 312 * @ops: PM operations to choose from. 313 * @state: PM transition of the system being carried out. 314 * 315 * The driver of @dev will not receive interrupts while this function is being 316 * executed. 317 */ 318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 319 { 320 switch (state.event) { 321 #ifdef CONFIG_SUSPEND 322 case PM_EVENT_SUSPEND: 323 return ops->suspend_noirq; 324 case PM_EVENT_RESUME: 325 return ops->resume_noirq; 326 #endif /* CONFIG_SUSPEND */ 327 #ifdef CONFIG_HIBERNATE_CALLBACKS 328 case PM_EVENT_FREEZE: 329 case PM_EVENT_QUIESCE: 330 return ops->freeze_noirq; 331 case PM_EVENT_HIBERNATE: 332 return ops->poweroff_noirq; 333 case PM_EVENT_THAW: 334 case PM_EVENT_RECOVER: 335 return ops->thaw_noirq; 336 case PM_EVENT_RESTORE: 337 return ops->restore_noirq; 338 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 339 } 340 341 return NULL; 342 } 343 344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 345 { 346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 348 ", may wakeup" : ""); 349 } 350 351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 352 int error) 353 { 354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 355 dev_name(dev), pm_verb(state.event), info, error); 356 } 357 358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 359 { 360 ktime_t calltime; 361 u64 usecs64; 362 int usecs; 363 364 calltime = ktime_get(); 365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 366 do_div(usecs64, NSEC_PER_USEC); 367 usecs = usecs64; 368 if (usecs == 0) 369 usecs = 1; 370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 371 info ?: "", info ? " " : "", pm_verb(state.event), 372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 373 } 374 375 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 376 pm_message_t state, char *info) 377 { 378 ktime_t calltime; 379 int error; 380 381 if (!cb) 382 return 0; 383 384 calltime = initcall_debug_start(dev); 385 386 pm_dev_dbg(dev, state, info); 387 trace_device_pm_callback_start(dev, info, state.event); 388 error = cb(dev); 389 trace_device_pm_callback_end(dev, error); 390 suspend_report_result(cb, error); 391 392 initcall_debug_report(dev, calltime, error, state, info); 393 394 return error; 395 } 396 397 #ifdef CONFIG_DPM_WATCHDOG 398 struct dpm_watchdog { 399 struct device *dev; 400 struct task_struct *tsk; 401 struct timer_list timer; 402 }; 403 404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 405 struct dpm_watchdog wd 406 407 /** 408 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 409 * @data: Watchdog object address. 410 * 411 * Called when a driver has timed out suspending or resuming. 412 * There's not much we can do here to recover so panic() to 413 * capture a crash-dump in pstore. 414 */ 415 static void dpm_watchdog_handler(unsigned long data) 416 { 417 struct dpm_watchdog *wd = (void *)data; 418 419 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 420 show_stack(wd->tsk, NULL); 421 panic("%s %s: unrecoverable failure\n", 422 dev_driver_string(wd->dev), dev_name(wd->dev)); 423 } 424 425 /** 426 * dpm_watchdog_set - Enable pm watchdog for given device. 427 * @wd: Watchdog. Must be allocated on the stack. 428 * @dev: Device to handle. 429 */ 430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 431 { 432 struct timer_list *timer = &wd->timer; 433 434 wd->dev = dev; 435 wd->tsk = current; 436 437 init_timer_on_stack(timer); 438 /* use same timeout value for both suspend and resume */ 439 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 440 timer->function = dpm_watchdog_handler; 441 timer->data = (unsigned long)wd; 442 add_timer(timer); 443 } 444 445 /** 446 * dpm_watchdog_clear - Disable suspend/resume watchdog. 447 * @wd: Watchdog to disable. 448 */ 449 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 450 { 451 struct timer_list *timer = &wd->timer; 452 453 del_timer_sync(timer); 454 destroy_timer_on_stack(timer); 455 } 456 #else 457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 458 #define dpm_watchdog_set(x, y) 459 #define dpm_watchdog_clear(x) 460 #endif 461 462 /*------------------------- Resume routines -------------------------*/ 463 464 /** 465 * device_resume_noirq - Execute an "early resume" callback for given device. 466 * @dev: Device to handle. 467 * @state: PM transition of the system being carried out. 468 * @async: If true, the device is being resumed asynchronously. 469 * 470 * The driver of @dev will not receive interrupts while this function is being 471 * executed. 472 */ 473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 474 { 475 pm_callback_t callback = NULL; 476 char *info = NULL; 477 int error = 0; 478 479 TRACE_DEVICE(dev); 480 TRACE_RESUME(0); 481 482 if (dev->power.syscore || dev->power.direct_complete) 483 goto Out; 484 485 if (!dev->power.is_noirq_suspended) 486 goto Out; 487 488 dpm_wait(dev->parent, async); 489 490 if (dev->pm_domain) { 491 info = "noirq power domain "; 492 callback = pm_noirq_op(&dev->pm_domain->ops, state); 493 } else if (dev->type && dev->type->pm) { 494 info = "noirq type "; 495 callback = pm_noirq_op(dev->type->pm, state); 496 } else if (dev->class && dev->class->pm) { 497 info = "noirq class "; 498 callback = pm_noirq_op(dev->class->pm, state); 499 } else if (dev->bus && dev->bus->pm) { 500 info = "noirq bus "; 501 callback = pm_noirq_op(dev->bus->pm, state); 502 } 503 504 if (!callback && dev->driver && dev->driver->pm) { 505 info = "noirq driver "; 506 callback = pm_noirq_op(dev->driver->pm, state); 507 } 508 509 error = dpm_run_callback(callback, dev, state, info); 510 dev->power.is_noirq_suspended = false; 511 512 Out: 513 complete_all(&dev->power.completion); 514 TRACE_RESUME(error); 515 return error; 516 } 517 518 static bool is_async(struct device *dev) 519 { 520 return dev->power.async_suspend && pm_async_enabled 521 && !pm_trace_is_enabled(); 522 } 523 524 static void async_resume_noirq(void *data, async_cookie_t cookie) 525 { 526 struct device *dev = (struct device *)data; 527 int error; 528 529 error = device_resume_noirq(dev, pm_transition, true); 530 if (error) 531 pm_dev_err(dev, pm_transition, " async", error); 532 533 put_device(dev); 534 } 535 536 /** 537 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 538 * @state: PM transition of the system being carried out. 539 * 540 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and 541 * enable device drivers to receive interrupts. 542 */ 543 void dpm_resume_noirq(pm_message_t state) 544 { 545 struct device *dev; 546 ktime_t starttime = ktime_get(); 547 548 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 549 mutex_lock(&dpm_list_mtx); 550 pm_transition = state; 551 552 /* 553 * Advanced the async threads upfront, 554 * in case the starting of async threads is 555 * delayed by non-async resuming devices. 556 */ 557 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 558 reinit_completion(&dev->power.completion); 559 if (is_async(dev)) { 560 get_device(dev); 561 async_schedule(async_resume_noirq, dev); 562 } 563 } 564 565 while (!list_empty(&dpm_noirq_list)) { 566 dev = to_device(dpm_noirq_list.next); 567 get_device(dev); 568 list_move_tail(&dev->power.entry, &dpm_late_early_list); 569 mutex_unlock(&dpm_list_mtx); 570 571 if (!is_async(dev)) { 572 int error; 573 574 error = device_resume_noirq(dev, state, false); 575 if (error) { 576 suspend_stats.failed_resume_noirq++; 577 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 578 dpm_save_failed_dev(dev_name(dev)); 579 pm_dev_err(dev, state, " noirq", error); 580 } 581 } 582 583 mutex_lock(&dpm_list_mtx); 584 put_device(dev); 585 } 586 mutex_unlock(&dpm_list_mtx); 587 async_synchronize_full(); 588 dpm_show_time(starttime, state, "noirq"); 589 resume_device_irqs(); 590 cpuidle_resume(); 591 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 592 } 593 594 /** 595 * device_resume_early - Execute an "early resume" callback for given device. 596 * @dev: Device to handle. 597 * @state: PM transition of the system being carried out. 598 * @async: If true, the device is being resumed asynchronously. 599 * 600 * Runtime PM is disabled for @dev while this function is being executed. 601 */ 602 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 603 { 604 pm_callback_t callback = NULL; 605 char *info = NULL; 606 int error = 0; 607 608 TRACE_DEVICE(dev); 609 TRACE_RESUME(0); 610 611 if (dev->power.syscore || dev->power.direct_complete) 612 goto Out; 613 614 if (!dev->power.is_late_suspended) 615 goto Out; 616 617 dpm_wait(dev->parent, async); 618 619 if (dev->pm_domain) { 620 info = "early power domain "; 621 callback = pm_late_early_op(&dev->pm_domain->ops, state); 622 } else if (dev->type && dev->type->pm) { 623 info = "early type "; 624 callback = pm_late_early_op(dev->type->pm, state); 625 } else if (dev->class && dev->class->pm) { 626 info = "early class "; 627 callback = pm_late_early_op(dev->class->pm, state); 628 } else if (dev->bus && dev->bus->pm) { 629 info = "early bus "; 630 callback = pm_late_early_op(dev->bus->pm, state); 631 } 632 633 if (!callback && dev->driver && dev->driver->pm) { 634 info = "early driver "; 635 callback = pm_late_early_op(dev->driver->pm, state); 636 } 637 638 error = dpm_run_callback(callback, dev, state, info); 639 dev->power.is_late_suspended = false; 640 641 Out: 642 TRACE_RESUME(error); 643 644 pm_runtime_enable(dev); 645 complete_all(&dev->power.completion); 646 return error; 647 } 648 649 static void async_resume_early(void *data, async_cookie_t cookie) 650 { 651 struct device *dev = (struct device *)data; 652 int error; 653 654 error = device_resume_early(dev, pm_transition, true); 655 if (error) 656 pm_dev_err(dev, pm_transition, " async", error); 657 658 put_device(dev); 659 } 660 661 /** 662 * dpm_resume_early - Execute "early resume" callbacks for all devices. 663 * @state: PM transition of the system being carried out. 664 */ 665 void dpm_resume_early(pm_message_t state) 666 { 667 struct device *dev; 668 ktime_t starttime = ktime_get(); 669 670 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 671 mutex_lock(&dpm_list_mtx); 672 pm_transition = state; 673 674 /* 675 * Advanced the async threads upfront, 676 * in case the starting of async threads is 677 * delayed by non-async resuming devices. 678 */ 679 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 680 reinit_completion(&dev->power.completion); 681 if (is_async(dev)) { 682 get_device(dev); 683 async_schedule(async_resume_early, dev); 684 } 685 } 686 687 while (!list_empty(&dpm_late_early_list)) { 688 dev = to_device(dpm_late_early_list.next); 689 get_device(dev); 690 list_move_tail(&dev->power.entry, &dpm_suspended_list); 691 mutex_unlock(&dpm_list_mtx); 692 693 if (!is_async(dev)) { 694 int error; 695 696 error = device_resume_early(dev, state, false); 697 if (error) { 698 suspend_stats.failed_resume_early++; 699 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 700 dpm_save_failed_dev(dev_name(dev)); 701 pm_dev_err(dev, state, " early", error); 702 } 703 } 704 mutex_lock(&dpm_list_mtx); 705 put_device(dev); 706 } 707 mutex_unlock(&dpm_list_mtx); 708 async_synchronize_full(); 709 dpm_show_time(starttime, state, "early"); 710 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 711 } 712 713 /** 714 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 715 * @state: PM transition of the system being carried out. 716 */ 717 void dpm_resume_start(pm_message_t state) 718 { 719 dpm_resume_noirq(state); 720 dpm_resume_early(state); 721 } 722 EXPORT_SYMBOL_GPL(dpm_resume_start); 723 724 /** 725 * device_resume - Execute "resume" callbacks for given device. 726 * @dev: Device to handle. 727 * @state: PM transition of the system being carried out. 728 * @async: If true, the device is being resumed asynchronously. 729 */ 730 static int device_resume(struct device *dev, pm_message_t state, bool async) 731 { 732 pm_callback_t callback = NULL; 733 char *info = NULL; 734 int error = 0; 735 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 736 737 TRACE_DEVICE(dev); 738 TRACE_RESUME(0); 739 740 if (dev->power.syscore) 741 goto Complete; 742 743 if (dev->power.direct_complete) { 744 /* Match the pm_runtime_disable() in __device_suspend(). */ 745 pm_runtime_enable(dev); 746 goto Complete; 747 } 748 749 dpm_wait(dev->parent, async); 750 dpm_watchdog_set(&wd, dev); 751 device_lock(dev); 752 753 /* 754 * This is a fib. But we'll allow new children to be added below 755 * a resumed device, even if the device hasn't been completed yet. 756 */ 757 dev->power.is_prepared = false; 758 759 if (!dev->power.is_suspended) 760 goto Unlock; 761 762 if (dev->pm_domain) { 763 info = "power domain "; 764 callback = pm_op(&dev->pm_domain->ops, state); 765 goto Driver; 766 } 767 768 if (dev->type && dev->type->pm) { 769 info = "type "; 770 callback = pm_op(dev->type->pm, state); 771 goto Driver; 772 } 773 774 if (dev->class) { 775 if (dev->class->pm) { 776 info = "class "; 777 callback = pm_op(dev->class->pm, state); 778 goto Driver; 779 } else if (dev->class->resume) { 780 info = "legacy class "; 781 callback = dev->class->resume; 782 goto End; 783 } 784 } 785 786 if (dev->bus) { 787 if (dev->bus->pm) { 788 info = "bus "; 789 callback = pm_op(dev->bus->pm, state); 790 } else if (dev->bus->resume) { 791 info = "legacy bus "; 792 callback = dev->bus->resume; 793 goto End; 794 } 795 } 796 797 Driver: 798 if (!callback && dev->driver && dev->driver->pm) { 799 info = "driver "; 800 callback = pm_op(dev->driver->pm, state); 801 } 802 803 End: 804 error = dpm_run_callback(callback, dev, state, info); 805 dev->power.is_suspended = false; 806 807 Unlock: 808 device_unlock(dev); 809 dpm_watchdog_clear(&wd); 810 811 Complete: 812 complete_all(&dev->power.completion); 813 814 TRACE_RESUME(error); 815 816 return error; 817 } 818 819 static void async_resume(void *data, async_cookie_t cookie) 820 { 821 struct device *dev = (struct device *)data; 822 int error; 823 824 error = device_resume(dev, pm_transition, true); 825 if (error) 826 pm_dev_err(dev, pm_transition, " async", error); 827 put_device(dev); 828 } 829 830 /** 831 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 832 * @state: PM transition of the system being carried out. 833 * 834 * Execute the appropriate "resume" callback for all devices whose status 835 * indicates that they are suspended. 836 */ 837 void dpm_resume(pm_message_t state) 838 { 839 struct device *dev; 840 ktime_t starttime = ktime_get(); 841 842 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 843 might_sleep(); 844 845 mutex_lock(&dpm_list_mtx); 846 pm_transition = state; 847 async_error = 0; 848 849 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 850 reinit_completion(&dev->power.completion); 851 if (is_async(dev)) { 852 get_device(dev); 853 async_schedule(async_resume, dev); 854 } 855 } 856 857 while (!list_empty(&dpm_suspended_list)) { 858 dev = to_device(dpm_suspended_list.next); 859 get_device(dev); 860 if (!is_async(dev)) { 861 int error; 862 863 mutex_unlock(&dpm_list_mtx); 864 865 error = device_resume(dev, state, false); 866 if (error) { 867 suspend_stats.failed_resume++; 868 dpm_save_failed_step(SUSPEND_RESUME); 869 dpm_save_failed_dev(dev_name(dev)); 870 pm_dev_err(dev, state, "", error); 871 } 872 873 mutex_lock(&dpm_list_mtx); 874 } 875 if (!list_empty(&dev->power.entry)) 876 list_move_tail(&dev->power.entry, &dpm_prepared_list); 877 put_device(dev); 878 } 879 mutex_unlock(&dpm_list_mtx); 880 async_synchronize_full(); 881 dpm_show_time(starttime, state, NULL); 882 883 cpufreq_resume(); 884 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 885 } 886 887 /** 888 * device_complete - Complete a PM transition for given device. 889 * @dev: Device to handle. 890 * @state: PM transition of the system being carried out. 891 */ 892 static void device_complete(struct device *dev, pm_message_t state) 893 { 894 void (*callback)(struct device *) = NULL; 895 char *info = NULL; 896 897 if (dev->power.syscore) 898 return; 899 900 device_lock(dev); 901 902 if (dev->pm_domain) { 903 info = "completing power domain "; 904 callback = dev->pm_domain->ops.complete; 905 } else if (dev->type && dev->type->pm) { 906 info = "completing type "; 907 callback = dev->type->pm->complete; 908 } else if (dev->class && dev->class->pm) { 909 info = "completing class "; 910 callback = dev->class->pm->complete; 911 } else if (dev->bus && dev->bus->pm) { 912 info = "completing bus "; 913 callback = dev->bus->pm->complete; 914 } 915 916 if (!callback && dev->driver && dev->driver->pm) { 917 info = "completing driver "; 918 callback = dev->driver->pm->complete; 919 } 920 921 if (callback) { 922 pm_dev_dbg(dev, state, info); 923 trace_device_pm_callback_start(dev, info, state.event); 924 callback(dev); 925 trace_device_pm_callback_end(dev, 0); 926 } 927 928 device_unlock(dev); 929 930 pm_runtime_put(dev); 931 } 932 933 /** 934 * dpm_complete - Complete a PM transition for all non-sysdev devices. 935 * @state: PM transition of the system being carried out. 936 * 937 * Execute the ->complete() callbacks for all devices whose PM status is not 938 * DPM_ON (this allows new devices to be registered). 939 */ 940 void dpm_complete(pm_message_t state) 941 { 942 struct list_head list; 943 944 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 945 might_sleep(); 946 947 INIT_LIST_HEAD(&list); 948 mutex_lock(&dpm_list_mtx); 949 while (!list_empty(&dpm_prepared_list)) { 950 struct device *dev = to_device(dpm_prepared_list.prev); 951 952 get_device(dev); 953 dev->power.is_prepared = false; 954 list_move(&dev->power.entry, &list); 955 mutex_unlock(&dpm_list_mtx); 956 957 device_complete(dev, state); 958 959 mutex_lock(&dpm_list_mtx); 960 put_device(dev); 961 } 962 list_splice(&list, &dpm_list); 963 mutex_unlock(&dpm_list_mtx); 964 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 965 } 966 967 /** 968 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 969 * @state: PM transition of the system being carried out. 970 * 971 * Execute "resume" callbacks for all devices and complete the PM transition of 972 * the system. 973 */ 974 void dpm_resume_end(pm_message_t state) 975 { 976 dpm_resume(state); 977 dpm_complete(state); 978 } 979 EXPORT_SYMBOL_GPL(dpm_resume_end); 980 981 982 /*------------------------- Suspend routines -------------------------*/ 983 984 /** 985 * resume_event - Return a "resume" message for given "suspend" sleep state. 986 * @sleep_state: PM message representing a sleep state. 987 * 988 * Return a PM message representing the resume event corresponding to given 989 * sleep state. 990 */ 991 static pm_message_t resume_event(pm_message_t sleep_state) 992 { 993 switch (sleep_state.event) { 994 case PM_EVENT_SUSPEND: 995 return PMSG_RESUME; 996 case PM_EVENT_FREEZE: 997 case PM_EVENT_QUIESCE: 998 return PMSG_RECOVER; 999 case PM_EVENT_HIBERNATE: 1000 return PMSG_RESTORE; 1001 } 1002 return PMSG_ON; 1003 } 1004 1005 /** 1006 * device_suspend_noirq - Execute a "late suspend" callback for given device. 1007 * @dev: Device to handle. 1008 * @state: PM transition of the system being carried out. 1009 * @async: If true, the device is being suspended asynchronously. 1010 * 1011 * The driver of @dev will not receive interrupts while this function is being 1012 * executed. 1013 */ 1014 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1015 { 1016 pm_callback_t callback = NULL; 1017 char *info = NULL; 1018 int error = 0; 1019 1020 if (async_error) 1021 goto Complete; 1022 1023 if (pm_wakeup_pending()) { 1024 async_error = -EBUSY; 1025 goto Complete; 1026 } 1027 1028 if (dev->power.syscore || dev->power.direct_complete) 1029 goto Complete; 1030 1031 dpm_wait_for_children(dev, async); 1032 1033 if (dev->pm_domain) { 1034 info = "noirq power domain "; 1035 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1036 } else if (dev->type && dev->type->pm) { 1037 info = "noirq type "; 1038 callback = pm_noirq_op(dev->type->pm, state); 1039 } else if (dev->class && dev->class->pm) { 1040 info = "noirq class "; 1041 callback = pm_noirq_op(dev->class->pm, state); 1042 } else if (dev->bus && dev->bus->pm) { 1043 info = "noirq bus "; 1044 callback = pm_noirq_op(dev->bus->pm, state); 1045 } 1046 1047 if (!callback && dev->driver && dev->driver->pm) { 1048 info = "noirq driver "; 1049 callback = pm_noirq_op(dev->driver->pm, state); 1050 } 1051 1052 error = dpm_run_callback(callback, dev, state, info); 1053 if (!error) 1054 dev->power.is_noirq_suspended = true; 1055 else 1056 async_error = error; 1057 1058 Complete: 1059 complete_all(&dev->power.completion); 1060 return error; 1061 } 1062 1063 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1064 { 1065 struct device *dev = (struct device *)data; 1066 int error; 1067 1068 error = __device_suspend_noirq(dev, pm_transition, true); 1069 if (error) { 1070 dpm_save_failed_dev(dev_name(dev)); 1071 pm_dev_err(dev, pm_transition, " async", error); 1072 } 1073 1074 put_device(dev); 1075 } 1076 1077 static int device_suspend_noirq(struct device *dev) 1078 { 1079 reinit_completion(&dev->power.completion); 1080 1081 if (pm_async_enabled && dev->power.async_suspend) { 1082 get_device(dev); 1083 async_schedule(async_suspend_noirq, dev); 1084 return 0; 1085 } 1086 return __device_suspend_noirq(dev, pm_transition, false); 1087 } 1088 1089 /** 1090 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1091 * @state: PM transition of the system being carried out. 1092 * 1093 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 1094 * handlers for all non-sysdev devices. 1095 */ 1096 int dpm_suspend_noirq(pm_message_t state) 1097 { 1098 ktime_t starttime = ktime_get(); 1099 int error = 0; 1100 1101 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1102 cpuidle_pause(); 1103 suspend_device_irqs(); 1104 mutex_lock(&dpm_list_mtx); 1105 pm_transition = state; 1106 async_error = 0; 1107 1108 while (!list_empty(&dpm_late_early_list)) { 1109 struct device *dev = to_device(dpm_late_early_list.prev); 1110 1111 get_device(dev); 1112 mutex_unlock(&dpm_list_mtx); 1113 1114 error = device_suspend_noirq(dev); 1115 1116 mutex_lock(&dpm_list_mtx); 1117 if (error) { 1118 pm_dev_err(dev, state, " noirq", error); 1119 dpm_save_failed_dev(dev_name(dev)); 1120 put_device(dev); 1121 break; 1122 } 1123 if (!list_empty(&dev->power.entry)) 1124 list_move(&dev->power.entry, &dpm_noirq_list); 1125 put_device(dev); 1126 1127 if (async_error) 1128 break; 1129 } 1130 mutex_unlock(&dpm_list_mtx); 1131 async_synchronize_full(); 1132 if (!error) 1133 error = async_error; 1134 1135 if (error) { 1136 suspend_stats.failed_suspend_noirq++; 1137 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1138 dpm_resume_noirq(resume_event(state)); 1139 } else { 1140 dpm_show_time(starttime, state, "noirq"); 1141 } 1142 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1143 return error; 1144 } 1145 1146 /** 1147 * device_suspend_late - Execute a "late suspend" callback for given device. 1148 * @dev: Device to handle. 1149 * @state: PM transition of the system being carried out. 1150 * @async: If true, the device is being suspended asynchronously. 1151 * 1152 * Runtime PM is disabled for @dev while this function is being executed. 1153 */ 1154 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1155 { 1156 pm_callback_t callback = NULL; 1157 char *info = NULL; 1158 int error = 0; 1159 1160 __pm_runtime_disable(dev, false); 1161 1162 if (async_error) 1163 goto Complete; 1164 1165 if (pm_wakeup_pending()) { 1166 async_error = -EBUSY; 1167 goto Complete; 1168 } 1169 1170 if (dev->power.syscore || dev->power.direct_complete) 1171 goto Complete; 1172 1173 dpm_wait_for_children(dev, async); 1174 1175 if (dev->pm_domain) { 1176 info = "late power domain "; 1177 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1178 } else if (dev->type && dev->type->pm) { 1179 info = "late type "; 1180 callback = pm_late_early_op(dev->type->pm, state); 1181 } else if (dev->class && dev->class->pm) { 1182 info = "late class "; 1183 callback = pm_late_early_op(dev->class->pm, state); 1184 } else if (dev->bus && dev->bus->pm) { 1185 info = "late bus "; 1186 callback = pm_late_early_op(dev->bus->pm, state); 1187 } 1188 1189 if (!callback && dev->driver && dev->driver->pm) { 1190 info = "late driver "; 1191 callback = pm_late_early_op(dev->driver->pm, state); 1192 } 1193 1194 error = dpm_run_callback(callback, dev, state, info); 1195 if (!error) 1196 dev->power.is_late_suspended = true; 1197 else 1198 async_error = error; 1199 1200 Complete: 1201 complete_all(&dev->power.completion); 1202 return error; 1203 } 1204 1205 static void async_suspend_late(void *data, async_cookie_t cookie) 1206 { 1207 struct device *dev = (struct device *)data; 1208 int error; 1209 1210 error = __device_suspend_late(dev, pm_transition, true); 1211 if (error) { 1212 dpm_save_failed_dev(dev_name(dev)); 1213 pm_dev_err(dev, pm_transition, " async", error); 1214 } 1215 put_device(dev); 1216 } 1217 1218 static int device_suspend_late(struct device *dev) 1219 { 1220 reinit_completion(&dev->power.completion); 1221 1222 if (pm_async_enabled && dev->power.async_suspend) { 1223 get_device(dev); 1224 async_schedule(async_suspend_late, dev); 1225 return 0; 1226 } 1227 1228 return __device_suspend_late(dev, pm_transition, false); 1229 } 1230 1231 /** 1232 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1233 * @state: PM transition of the system being carried out. 1234 */ 1235 int dpm_suspend_late(pm_message_t state) 1236 { 1237 ktime_t starttime = ktime_get(); 1238 int error = 0; 1239 1240 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1241 mutex_lock(&dpm_list_mtx); 1242 pm_transition = state; 1243 async_error = 0; 1244 1245 while (!list_empty(&dpm_suspended_list)) { 1246 struct device *dev = to_device(dpm_suspended_list.prev); 1247 1248 get_device(dev); 1249 mutex_unlock(&dpm_list_mtx); 1250 1251 error = device_suspend_late(dev); 1252 1253 mutex_lock(&dpm_list_mtx); 1254 if (error) { 1255 pm_dev_err(dev, state, " late", error); 1256 dpm_save_failed_dev(dev_name(dev)); 1257 put_device(dev); 1258 break; 1259 } 1260 if (!list_empty(&dev->power.entry)) 1261 list_move(&dev->power.entry, &dpm_late_early_list); 1262 put_device(dev); 1263 1264 if (async_error) 1265 break; 1266 } 1267 mutex_unlock(&dpm_list_mtx); 1268 async_synchronize_full(); 1269 if (!error) 1270 error = async_error; 1271 if (error) { 1272 suspend_stats.failed_suspend_late++; 1273 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1274 dpm_resume_early(resume_event(state)); 1275 } else { 1276 dpm_show_time(starttime, state, "late"); 1277 } 1278 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1279 return error; 1280 } 1281 1282 /** 1283 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1284 * @state: PM transition of the system being carried out. 1285 */ 1286 int dpm_suspend_end(pm_message_t state) 1287 { 1288 int error = dpm_suspend_late(state); 1289 if (error) 1290 return error; 1291 1292 error = dpm_suspend_noirq(state); 1293 if (error) { 1294 dpm_resume_early(resume_event(state)); 1295 return error; 1296 } 1297 1298 return 0; 1299 } 1300 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1301 1302 /** 1303 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1304 * @dev: Device to suspend. 1305 * @state: PM transition of the system being carried out. 1306 * @cb: Suspend callback to execute. 1307 * @info: string description of caller. 1308 */ 1309 static int legacy_suspend(struct device *dev, pm_message_t state, 1310 int (*cb)(struct device *dev, pm_message_t state), 1311 char *info) 1312 { 1313 int error; 1314 ktime_t calltime; 1315 1316 calltime = initcall_debug_start(dev); 1317 1318 trace_device_pm_callback_start(dev, info, state.event); 1319 error = cb(dev, state); 1320 trace_device_pm_callback_end(dev, error); 1321 suspend_report_result(cb, error); 1322 1323 initcall_debug_report(dev, calltime, error, state, info); 1324 1325 return error; 1326 } 1327 1328 /** 1329 * device_suspend - Execute "suspend" callbacks for given device. 1330 * @dev: Device to handle. 1331 * @state: PM transition of the system being carried out. 1332 * @async: If true, the device is being suspended asynchronously. 1333 */ 1334 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1335 { 1336 pm_callback_t callback = NULL; 1337 char *info = NULL; 1338 int error = 0; 1339 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1340 1341 dpm_wait_for_children(dev, async); 1342 1343 if (async_error) 1344 goto Complete; 1345 1346 /* 1347 * If a device configured to wake up the system from sleep states 1348 * has been suspended at run time and there's a resume request pending 1349 * for it, this is equivalent to the device signaling wakeup, so the 1350 * system suspend operation should be aborted. 1351 */ 1352 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1353 pm_wakeup_event(dev, 0); 1354 1355 if (pm_wakeup_pending()) { 1356 async_error = -EBUSY; 1357 goto Complete; 1358 } 1359 1360 if (dev->power.syscore) 1361 goto Complete; 1362 1363 if (dev->power.direct_complete) { 1364 if (pm_runtime_status_suspended(dev)) { 1365 pm_runtime_disable(dev); 1366 if (pm_runtime_suspended_if_enabled(dev)) 1367 goto Complete; 1368 1369 pm_runtime_enable(dev); 1370 } 1371 dev->power.direct_complete = false; 1372 } 1373 1374 dpm_watchdog_set(&wd, dev); 1375 device_lock(dev); 1376 1377 if (dev->pm_domain) { 1378 info = "power domain "; 1379 callback = pm_op(&dev->pm_domain->ops, state); 1380 goto Run; 1381 } 1382 1383 if (dev->type && dev->type->pm) { 1384 info = "type "; 1385 callback = pm_op(dev->type->pm, state); 1386 goto Run; 1387 } 1388 1389 if (dev->class) { 1390 if (dev->class->pm) { 1391 info = "class "; 1392 callback = pm_op(dev->class->pm, state); 1393 goto Run; 1394 } else if (dev->class->suspend) { 1395 pm_dev_dbg(dev, state, "legacy class "); 1396 error = legacy_suspend(dev, state, dev->class->suspend, 1397 "legacy class "); 1398 goto End; 1399 } 1400 } 1401 1402 if (dev->bus) { 1403 if (dev->bus->pm) { 1404 info = "bus "; 1405 callback = pm_op(dev->bus->pm, state); 1406 } else if (dev->bus->suspend) { 1407 pm_dev_dbg(dev, state, "legacy bus "); 1408 error = legacy_suspend(dev, state, dev->bus->suspend, 1409 "legacy bus "); 1410 goto End; 1411 } 1412 } 1413 1414 Run: 1415 if (!callback && dev->driver && dev->driver->pm) { 1416 info = "driver "; 1417 callback = pm_op(dev->driver->pm, state); 1418 } 1419 1420 error = dpm_run_callback(callback, dev, state, info); 1421 1422 End: 1423 if (!error) { 1424 struct device *parent = dev->parent; 1425 1426 dev->power.is_suspended = true; 1427 if (parent) { 1428 spin_lock_irq(&parent->power.lock); 1429 1430 dev->parent->power.direct_complete = false; 1431 if (dev->power.wakeup_path 1432 && !dev->parent->power.ignore_children) 1433 dev->parent->power.wakeup_path = true; 1434 1435 spin_unlock_irq(&parent->power.lock); 1436 } 1437 } 1438 1439 device_unlock(dev); 1440 dpm_watchdog_clear(&wd); 1441 1442 Complete: 1443 complete_all(&dev->power.completion); 1444 if (error) 1445 async_error = error; 1446 1447 return error; 1448 } 1449 1450 static void async_suspend(void *data, async_cookie_t cookie) 1451 { 1452 struct device *dev = (struct device *)data; 1453 int error; 1454 1455 error = __device_suspend(dev, pm_transition, true); 1456 if (error) { 1457 dpm_save_failed_dev(dev_name(dev)); 1458 pm_dev_err(dev, pm_transition, " async", error); 1459 } 1460 1461 put_device(dev); 1462 } 1463 1464 static int device_suspend(struct device *dev) 1465 { 1466 reinit_completion(&dev->power.completion); 1467 1468 if (pm_async_enabled && dev->power.async_suspend) { 1469 get_device(dev); 1470 async_schedule(async_suspend, dev); 1471 return 0; 1472 } 1473 1474 return __device_suspend(dev, pm_transition, false); 1475 } 1476 1477 /** 1478 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1479 * @state: PM transition of the system being carried out. 1480 */ 1481 int dpm_suspend(pm_message_t state) 1482 { 1483 ktime_t starttime = ktime_get(); 1484 int error = 0; 1485 1486 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1487 might_sleep(); 1488 1489 cpufreq_suspend(); 1490 1491 mutex_lock(&dpm_list_mtx); 1492 pm_transition = state; 1493 async_error = 0; 1494 while (!list_empty(&dpm_prepared_list)) { 1495 struct device *dev = to_device(dpm_prepared_list.prev); 1496 1497 get_device(dev); 1498 mutex_unlock(&dpm_list_mtx); 1499 1500 error = device_suspend(dev); 1501 1502 mutex_lock(&dpm_list_mtx); 1503 if (error) { 1504 pm_dev_err(dev, state, "", error); 1505 dpm_save_failed_dev(dev_name(dev)); 1506 put_device(dev); 1507 break; 1508 } 1509 if (!list_empty(&dev->power.entry)) 1510 list_move(&dev->power.entry, &dpm_suspended_list); 1511 put_device(dev); 1512 if (async_error) 1513 break; 1514 } 1515 mutex_unlock(&dpm_list_mtx); 1516 async_synchronize_full(); 1517 if (!error) 1518 error = async_error; 1519 if (error) { 1520 suspend_stats.failed_suspend++; 1521 dpm_save_failed_step(SUSPEND_SUSPEND); 1522 } else 1523 dpm_show_time(starttime, state, NULL); 1524 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1525 return error; 1526 } 1527 1528 /** 1529 * device_prepare - Prepare a device for system power transition. 1530 * @dev: Device to handle. 1531 * @state: PM transition of the system being carried out. 1532 * 1533 * Execute the ->prepare() callback(s) for given device. No new children of the 1534 * device may be registered after this function has returned. 1535 */ 1536 static int device_prepare(struct device *dev, pm_message_t state) 1537 { 1538 int (*callback)(struct device *) = NULL; 1539 char *info = NULL; 1540 int ret = 0; 1541 1542 if (dev->power.syscore) 1543 return 0; 1544 1545 /* 1546 * If a device's parent goes into runtime suspend at the wrong time, 1547 * it won't be possible to resume the device. To prevent this we 1548 * block runtime suspend here, during the prepare phase, and allow 1549 * it again during the complete phase. 1550 */ 1551 pm_runtime_get_noresume(dev); 1552 1553 device_lock(dev); 1554 1555 dev->power.wakeup_path = device_may_wakeup(dev); 1556 1557 if (dev->pm_domain) { 1558 info = "preparing power domain "; 1559 callback = dev->pm_domain->ops.prepare; 1560 } else if (dev->type && dev->type->pm) { 1561 info = "preparing type "; 1562 callback = dev->type->pm->prepare; 1563 } else if (dev->class && dev->class->pm) { 1564 info = "preparing class "; 1565 callback = dev->class->pm->prepare; 1566 } else if (dev->bus && dev->bus->pm) { 1567 info = "preparing bus "; 1568 callback = dev->bus->pm->prepare; 1569 } 1570 1571 if (!callback && dev->driver && dev->driver->pm) { 1572 info = "preparing driver "; 1573 callback = dev->driver->pm->prepare; 1574 } 1575 1576 if (callback) { 1577 trace_device_pm_callback_start(dev, info, state.event); 1578 ret = callback(dev); 1579 trace_device_pm_callback_end(dev, ret); 1580 } 1581 1582 device_unlock(dev); 1583 1584 if (ret < 0) { 1585 suspend_report_result(callback, ret); 1586 pm_runtime_put(dev); 1587 return ret; 1588 } 1589 /* 1590 * A positive return value from ->prepare() means "this device appears 1591 * to be runtime-suspended and its state is fine, so if it really is 1592 * runtime-suspended, you can leave it in that state provided that you 1593 * will do the same thing with all of its descendants". This only 1594 * applies to suspend transitions, however. 1595 */ 1596 spin_lock_irq(&dev->power.lock); 1597 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND; 1598 spin_unlock_irq(&dev->power.lock); 1599 return 0; 1600 } 1601 1602 /** 1603 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1604 * @state: PM transition of the system being carried out. 1605 * 1606 * Execute the ->prepare() callback(s) for all devices. 1607 */ 1608 int dpm_prepare(pm_message_t state) 1609 { 1610 int error = 0; 1611 1612 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1613 might_sleep(); 1614 1615 mutex_lock(&dpm_list_mtx); 1616 while (!list_empty(&dpm_list)) { 1617 struct device *dev = to_device(dpm_list.next); 1618 1619 get_device(dev); 1620 mutex_unlock(&dpm_list_mtx); 1621 1622 error = device_prepare(dev, state); 1623 1624 mutex_lock(&dpm_list_mtx); 1625 if (error) { 1626 if (error == -EAGAIN) { 1627 put_device(dev); 1628 error = 0; 1629 continue; 1630 } 1631 printk(KERN_INFO "PM: Device %s not prepared " 1632 "for power transition: code %d\n", 1633 dev_name(dev), error); 1634 put_device(dev); 1635 break; 1636 } 1637 dev->power.is_prepared = true; 1638 if (!list_empty(&dev->power.entry)) 1639 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1640 put_device(dev); 1641 } 1642 mutex_unlock(&dpm_list_mtx); 1643 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1644 return error; 1645 } 1646 1647 /** 1648 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1649 * @state: PM transition of the system being carried out. 1650 * 1651 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1652 * callbacks for them. 1653 */ 1654 int dpm_suspend_start(pm_message_t state) 1655 { 1656 int error; 1657 1658 error = dpm_prepare(state); 1659 if (error) { 1660 suspend_stats.failed_prepare++; 1661 dpm_save_failed_step(SUSPEND_PREPARE); 1662 } else 1663 error = dpm_suspend(state); 1664 return error; 1665 } 1666 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1667 1668 void __suspend_report_result(const char *function, void *fn, int ret) 1669 { 1670 if (ret) 1671 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1672 } 1673 EXPORT_SYMBOL_GPL(__suspend_report_result); 1674 1675 /** 1676 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1677 * @dev: Device to wait for. 1678 * @subordinate: Device that needs to wait for @dev. 1679 */ 1680 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1681 { 1682 dpm_wait(dev, subordinate->power.async_suspend); 1683 return async_error; 1684 } 1685 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1686 1687 /** 1688 * dpm_for_each_dev - device iterator. 1689 * @data: data for the callback. 1690 * @fn: function to be called for each device. 1691 * 1692 * Iterate over devices in dpm_list, and call @fn for each device, 1693 * passing it @data. 1694 */ 1695 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1696 { 1697 struct device *dev; 1698 1699 if (!fn) 1700 return; 1701 1702 device_pm_lock(); 1703 list_for_each_entry(dev, &dpm_list, power.entry) 1704 fn(dev, data); 1705 device_pm_unlock(); 1706 } 1707 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1708