xref: /linux/drivers/base/power/main.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35 
36 #include "../base.h"
37 #include "power.h"
38 
39 typedef int (*pm_callback_t)(struct device *);
40 
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50 
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56 
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60 
61 static int async_error;
62 
63 static char *pm_verb(int event)
64 {
65 	switch (event) {
66 	case PM_EVENT_SUSPEND:
67 		return "suspend";
68 	case PM_EVENT_RESUME:
69 		return "resume";
70 	case PM_EVENT_FREEZE:
71 		return "freeze";
72 	case PM_EVENT_QUIESCE:
73 		return "quiesce";
74 	case PM_EVENT_HIBERNATE:
75 		return "hibernate";
76 	case PM_EVENT_THAW:
77 		return "thaw";
78 	case PM_EVENT_RESTORE:
79 		return "restore";
80 	case PM_EVENT_RECOVER:
81 		return "recover";
82 	default:
83 		return "(unknown PM event)";
84 	}
85 }
86 
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93 	dev->power.is_prepared = false;
94 	dev->power.is_suspended = false;
95 	dev->power.is_noirq_suspended = false;
96 	dev->power.is_late_suspended = false;
97 	init_completion(&dev->power.completion);
98 	complete_all(&dev->power.completion);
99 	dev->power.wakeup = NULL;
100 	INIT_LIST_HEAD(&dev->power.entry);
101 }
102 
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108 	mutex_lock(&dpm_list_mtx);
109 }
110 
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116 	mutex_unlock(&dpm_list_mtx);
117 }
118 
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125 	pr_debug("PM: Adding info for %s:%s\n",
126 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127 	mutex_lock(&dpm_list_mtx);
128 	if (dev->parent && dev->parent->power.is_prepared)
129 		dev_warn(dev, "parent %s should not be sleeping\n",
130 			dev_name(dev->parent));
131 	list_add_tail(&dev->power.entry, &dpm_list);
132 	mutex_unlock(&dpm_list_mtx);
133 }
134 
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141 	pr_debug("PM: Removing info for %s:%s\n",
142 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143 	complete_all(&dev->power.completion);
144 	mutex_lock(&dpm_list_mtx);
145 	list_del_init(&dev->power.entry);
146 	mutex_unlock(&dpm_list_mtx);
147 	device_wakeup_disable(dev);
148 	pm_runtime_remove(dev);
149 }
150 
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158 	pr_debug("PM: Moving %s:%s before %s:%s\n",
159 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 	/* Delete deva from dpm_list and reinsert before devb. */
162 	list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164 
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172 	pr_debug("PM: Moving %s:%s after %s:%s\n",
173 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 	/* Delete deva from dpm_list and reinsert after devb. */
176 	list_move(&deva->power.entry, &devb->power.entry);
177 }
178 
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185 	pr_debug("PM: Moving %s:%s to end of list\n",
186 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 	list_move_tail(&dev->power.entry, &dpm_list);
188 }
189 
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192 	ktime_t calltime = ktime_set(0, 0);
193 
194 	if (pm_print_times_enabled) {
195 		pr_info("calling  %s+ @ %i, parent: %s\n",
196 			dev_name(dev), task_pid_nr(current),
197 			dev->parent ? dev_name(dev->parent) : "none");
198 		calltime = ktime_get();
199 	}
200 
201 	return calltime;
202 }
203 
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205 				  int error, pm_message_t state, char *info)
206 {
207 	ktime_t rettime;
208 	s64 nsecs;
209 
210 	rettime = ktime_get();
211 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212 
213 	if (pm_print_times_enabled) {
214 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215 			error, (unsigned long long)nsecs >> 10);
216 	}
217 }
218 
219 /**
220  * dpm_wait - Wait for a PM operation to complete.
221  * @dev: Device to wait for.
222  * @async: If unset, wait only if the device's power.async_suspend flag is set.
223  */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226 	if (!dev)
227 		return;
228 
229 	if (async || (pm_async_enabled && dev->power.async_suspend))
230 		wait_for_completion(&dev->power.completion);
231 }
232 
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235 	dpm_wait(dev, *((bool *)async_ptr));
236 	return 0;
237 }
238 
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241        device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243 
244 /**
245  * pm_op - Return the PM operation appropriate for given PM event.
246  * @ops: PM operations to choose from.
247  * @state: PM transition of the system being carried out.
248  */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251 	switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253 	case PM_EVENT_SUSPEND:
254 		return ops->suspend;
255 	case PM_EVENT_RESUME:
256 		return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259 	case PM_EVENT_FREEZE:
260 	case PM_EVENT_QUIESCE:
261 		return ops->freeze;
262 	case PM_EVENT_HIBERNATE:
263 		return ops->poweroff;
264 	case PM_EVENT_THAW:
265 	case PM_EVENT_RECOVER:
266 		return ops->thaw;
267 		break;
268 	case PM_EVENT_RESTORE:
269 		return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271 	}
272 
273 	return NULL;
274 }
275 
276 /**
277  * pm_late_early_op - Return the PM operation appropriate for given PM event.
278  * @ops: PM operations to choose from.
279  * @state: PM transition of the system being carried out.
280  *
281  * Runtime PM is disabled for @dev while this function is being executed.
282  */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284 				      pm_message_t state)
285 {
286 	switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288 	case PM_EVENT_SUSPEND:
289 		return ops->suspend_late;
290 	case PM_EVENT_RESUME:
291 		return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294 	case PM_EVENT_FREEZE:
295 	case PM_EVENT_QUIESCE:
296 		return ops->freeze_late;
297 	case PM_EVENT_HIBERNATE:
298 		return ops->poweroff_late;
299 	case PM_EVENT_THAW:
300 	case PM_EVENT_RECOVER:
301 		return ops->thaw_early;
302 	case PM_EVENT_RESTORE:
303 		return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305 	}
306 
307 	return NULL;
308 }
309 
310 /**
311  * pm_noirq_op - Return the PM operation appropriate for given PM event.
312  * @ops: PM operations to choose from.
313  * @state: PM transition of the system being carried out.
314  *
315  * The driver of @dev will not receive interrupts while this function is being
316  * executed.
317  */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320 	switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322 	case PM_EVENT_SUSPEND:
323 		return ops->suspend_noirq;
324 	case PM_EVENT_RESUME:
325 		return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328 	case PM_EVENT_FREEZE:
329 	case PM_EVENT_QUIESCE:
330 		return ops->freeze_noirq;
331 	case PM_EVENT_HIBERNATE:
332 		return ops->poweroff_noirq;
333 	case PM_EVENT_THAW:
334 	case PM_EVENT_RECOVER:
335 		return ops->thaw_noirq;
336 	case PM_EVENT_RESTORE:
337 		return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339 	}
340 
341 	return NULL;
342 }
343 
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348 		", may wakeup" : "");
349 }
350 
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352 			int error)
353 {
354 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355 		dev_name(dev), pm_verb(state.event), info, error);
356 }
357 
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360 	ktime_t calltime;
361 	u64 usecs64;
362 	int usecs;
363 
364 	calltime = ktime_get();
365 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366 	do_div(usecs64, NSEC_PER_USEC);
367 	usecs = usecs64;
368 	if (usecs == 0)
369 		usecs = 1;
370 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371 		info ?: "", info ? " " : "", pm_verb(state.event),
372 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374 
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376 			    pm_message_t state, char *info)
377 {
378 	ktime_t calltime;
379 	int error;
380 
381 	if (!cb)
382 		return 0;
383 
384 	calltime = initcall_debug_start(dev);
385 
386 	pm_dev_dbg(dev, state, info);
387 	trace_device_pm_callback_start(dev, info, state.event);
388 	error = cb(dev);
389 	trace_device_pm_callback_end(dev, error);
390 	suspend_report_result(cb, error);
391 
392 	initcall_debug_report(dev, calltime, error, state, info);
393 
394 	return error;
395 }
396 
397 #ifdef CONFIG_DPM_WATCHDOG
398 struct dpm_watchdog {
399 	struct device		*dev;
400 	struct task_struct	*tsk;
401 	struct timer_list	timer;
402 };
403 
404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
405 	struct dpm_watchdog wd
406 
407 /**
408  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
409  * @data: Watchdog object address.
410  *
411  * Called when a driver has timed out suspending or resuming.
412  * There's not much we can do here to recover so panic() to
413  * capture a crash-dump in pstore.
414  */
415 static void dpm_watchdog_handler(unsigned long data)
416 {
417 	struct dpm_watchdog *wd = (void *)data;
418 
419 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
420 	show_stack(wd->tsk, NULL);
421 	panic("%s %s: unrecoverable failure\n",
422 		dev_driver_string(wd->dev), dev_name(wd->dev));
423 }
424 
425 /**
426  * dpm_watchdog_set - Enable pm watchdog for given device.
427  * @wd: Watchdog. Must be allocated on the stack.
428  * @dev: Device to handle.
429  */
430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
431 {
432 	struct timer_list *timer = &wd->timer;
433 
434 	wd->dev = dev;
435 	wd->tsk = current;
436 
437 	init_timer_on_stack(timer);
438 	/* use same timeout value for both suspend and resume */
439 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
440 	timer->function = dpm_watchdog_handler;
441 	timer->data = (unsigned long)wd;
442 	add_timer(timer);
443 }
444 
445 /**
446  * dpm_watchdog_clear - Disable suspend/resume watchdog.
447  * @wd: Watchdog to disable.
448  */
449 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
450 {
451 	struct timer_list *timer = &wd->timer;
452 
453 	del_timer_sync(timer);
454 	destroy_timer_on_stack(timer);
455 }
456 #else
457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
458 #define dpm_watchdog_set(x, y)
459 #define dpm_watchdog_clear(x)
460 #endif
461 
462 /*------------------------- Resume routines -------------------------*/
463 
464 /**
465  * device_resume_noirq - Execute an "early resume" callback for given device.
466  * @dev: Device to handle.
467  * @state: PM transition of the system being carried out.
468  * @async: If true, the device is being resumed asynchronously.
469  *
470  * The driver of @dev will not receive interrupts while this function is being
471  * executed.
472  */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475 	pm_callback_t callback = NULL;
476 	char *info = NULL;
477 	int error = 0;
478 
479 	TRACE_DEVICE(dev);
480 	TRACE_RESUME(0);
481 
482 	if (dev->power.syscore || dev->power.direct_complete)
483 		goto Out;
484 
485 	if (!dev->power.is_noirq_suspended)
486 		goto Out;
487 
488 	dpm_wait(dev->parent, async);
489 
490 	if (dev->pm_domain) {
491 		info = "noirq power domain ";
492 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
493 	} else if (dev->type && dev->type->pm) {
494 		info = "noirq type ";
495 		callback = pm_noirq_op(dev->type->pm, state);
496 	} else if (dev->class && dev->class->pm) {
497 		info = "noirq class ";
498 		callback = pm_noirq_op(dev->class->pm, state);
499 	} else if (dev->bus && dev->bus->pm) {
500 		info = "noirq bus ";
501 		callback = pm_noirq_op(dev->bus->pm, state);
502 	}
503 
504 	if (!callback && dev->driver && dev->driver->pm) {
505 		info = "noirq driver ";
506 		callback = pm_noirq_op(dev->driver->pm, state);
507 	}
508 
509 	error = dpm_run_callback(callback, dev, state, info);
510 	dev->power.is_noirq_suspended = false;
511 
512  Out:
513 	complete_all(&dev->power.completion);
514 	TRACE_RESUME(error);
515 	return error;
516 }
517 
518 static bool is_async(struct device *dev)
519 {
520 	return dev->power.async_suspend && pm_async_enabled
521 		&& !pm_trace_is_enabled();
522 }
523 
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526 	struct device *dev = (struct device *)data;
527 	int error;
528 
529 	error = device_resume_noirq(dev, pm_transition, true);
530 	if (error)
531 		pm_dev_err(dev, pm_transition, " async", error);
532 
533 	put_device(dev);
534 }
535 
536 /**
537  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538  * @state: PM transition of the system being carried out.
539  *
540  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541  * enable device drivers to receive interrupts.
542  */
543 void dpm_resume_noirq(pm_message_t state)
544 {
545 	struct device *dev;
546 	ktime_t starttime = ktime_get();
547 
548 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
549 	mutex_lock(&dpm_list_mtx);
550 	pm_transition = state;
551 
552 	/*
553 	 * Advanced the async threads upfront,
554 	 * in case the starting of async threads is
555 	 * delayed by non-async resuming devices.
556 	 */
557 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
558 		reinit_completion(&dev->power.completion);
559 		if (is_async(dev)) {
560 			get_device(dev);
561 			async_schedule(async_resume_noirq, dev);
562 		}
563 	}
564 
565 	while (!list_empty(&dpm_noirq_list)) {
566 		dev = to_device(dpm_noirq_list.next);
567 		get_device(dev);
568 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
569 		mutex_unlock(&dpm_list_mtx);
570 
571 		if (!is_async(dev)) {
572 			int error;
573 
574 			error = device_resume_noirq(dev, state, false);
575 			if (error) {
576 				suspend_stats.failed_resume_noirq++;
577 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
578 				dpm_save_failed_dev(dev_name(dev));
579 				pm_dev_err(dev, state, " noirq", error);
580 			}
581 		}
582 
583 		mutex_lock(&dpm_list_mtx);
584 		put_device(dev);
585 	}
586 	mutex_unlock(&dpm_list_mtx);
587 	async_synchronize_full();
588 	dpm_show_time(starttime, state, "noirq");
589 	resume_device_irqs();
590 	cpuidle_resume();
591 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
592 }
593 
594 /**
595  * device_resume_early - Execute an "early resume" callback for given device.
596  * @dev: Device to handle.
597  * @state: PM transition of the system being carried out.
598  * @async: If true, the device is being resumed asynchronously.
599  *
600  * Runtime PM is disabled for @dev while this function is being executed.
601  */
602 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
603 {
604 	pm_callback_t callback = NULL;
605 	char *info = NULL;
606 	int error = 0;
607 
608 	TRACE_DEVICE(dev);
609 	TRACE_RESUME(0);
610 
611 	if (dev->power.syscore || dev->power.direct_complete)
612 		goto Out;
613 
614 	if (!dev->power.is_late_suspended)
615 		goto Out;
616 
617 	dpm_wait(dev->parent, async);
618 
619 	if (dev->pm_domain) {
620 		info = "early power domain ";
621 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
622 	} else if (dev->type && dev->type->pm) {
623 		info = "early type ";
624 		callback = pm_late_early_op(dev->type->pm, state);
625 	} else if (dev->class && dev->class->pm) {
626 		info = "early class ";
627 		callback = pm_late_early_op(dev->class->pm, state);
628 	} else if (dev->bus && dev->bus->pm) {
629 		info = "early bus ";
630 		callback = pm_late_early_op(dev->bus->pm, state);
631 	}
632 
633 	if (!callback && dev->driver && dev->driver->pm) {
634 		info = "early driver ";
635 		callback = pm_late_early_op(dev->driver->pm, state);
636 	}
637 
638 	error = dpm_run_callback(callback, dev, state, info);
639 	dev->power.is_late_suspended = false;
640 
641  Out:
642 	TRACE_RESUME(error);
643 
644 	pm_runtime_enable(dev);
645 	complete_all(&dev->power.completion);
646 	return error;
647 }
648 
649 static void async_resume_early(void *data, async_cookie_t cookie)
650 {
651 	struct device *dev = (struct device *)data;
652 	int error;
653 
654 	error = device_resume_early(dev, pm_transition, true);
655 	if (error)
656 		pm_dev_err(dev, pm_transition, " async", error);
657 
658 	put_device(dev);
659 }
660 
661 /**
662  * dpm_resume_early - Execute "early resume" callbacks for all devices.
663  * @state: PM transition of the system being carried out.
664  */
665 void dpm_resume_early(pm_message_t state)
666 {
667 	struct device *dev;
668 	ktime_t starttime = ktime_get();
669 
670 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
671 	mutex_lock(&dpm_list_mtx);
672 	pm_transition = state;
673 
674 	/*
675 	 * Advanced the async threads upfront,
676 	 * in case the starting of async threads is
677 	 * delayed by non-async resuming devices.
678 	 */
679 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
680 		reinit_completion(&dev->power.completion);
681 		if (is_async(dev)) {
682 			get_device(dev);
683 			async_schedule(async_resume_early, dev);
684 		}
685 	}
686 
687 	while (!list_empty(&dpm_late_early_list)) {
688 		dev = to_device(dpm_late_early_list.next);
689 		get_device(dev);
690 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
691 		mutex_unlock(&dpm_list_mtx);
692 
693 		if (!is_async(dev)) {
694 			int error;
695 
696 			error = device_resume_early(dev, state, false);
697 			if (error) {
698 				suspend_stats.failed_resume_early++;
699 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
700 				dpm_save_failed_dev(dev_name(dev));
701 				pm_dev_err(dev, state, " early", error);
702 			}
703 		}
704 		mutex_lock(&dpm_list_mtx);
705 		put_device(dev);
706 	}
707 	mutex_unlock(&dpm_list_mtx);
708 	async_synchronize_full();
709 	dpm_show_time(starttime, state, "early");
710 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
711 }
712 
713 /**
714  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
715  * @state: PM transition of the system being carried out.
716  */
717 void dpm_resume_start(pm_message_t state)
718 {
719 	dpm_resume_noirq(state);
720 	dpm_resume_early(state);
721 }
722 EXPORT_SYMBOL_GPL(dpm_resume_start);
723 
724 /**
725  * device_resume - Execute "resume" callbacks for given device.
726  * @dev: Device to handle.
727  * @state: PM transition of the system being carried out.
728  * @async: If true, the device is being resumed asynchronously.
729  */
730 static int device_resume(struct device *dev, pm_message_t state, bool async)
731 {
732 	pm_callback_t callback = NULL;
733 	char *info = NULL;
734 	int error = 0;
735 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
736 
737 	TRACE_DEVICE(dev);
738 	TRACE_RESUME(0);
739 
740 	if (dev->power.syscore)
741 		goto Complete;
742 
743 	if (dev->power.direct_complete) {
744 		/* Match the pm_runtime_disable() in __device_suspend(). */
745 		pm_runtime_enable(dev);
746 		goto Complete;
747 	}
748 
749 	dpm_wait(dev->parent, async);
750 	dpm_watchdog_set(&wd, dev);
751 	device_lock(dev);
752 
753 	/*
754 	 * This is a fib.  But we'll allow new children to be added below
755 	 * a resumed device, even if the device hasn't been completed yet.
756 	 */
757 	dev->power.is_prepared = false;
758 
759 	if (!dev->power.is_suspended)
760 		goto Unlock;
761 
762 	if (dev->pm_domain) {
763 		info = "power domain ";
764 		callback = pm_op(&dev->pm_domain->ops, state);
765 		goto Driver;
766 	}
767 
768 	if (dev->type && dev->type->pm) {
769 		info = "type ";
770 		callback = pm_op(dev->type->pm, state);
771 		goto Driver;
772 	}
773 
774 	if (dev->class) {
775 		if (dev->class->pm) {
776 			info = "class ";
777 			callback = pm_op(dev->class->pm, state);
778 			goto Driver;
779 		} else if (dev->class->resume) {
780 			info = "legacy class ";
781 			callback = dev->class->resume;
782 			goto End;
783 		}
784 	}
785 
786 	if (dev->bus) {
787 		if (dev->bus->pm) {
788 			info = "bus ";
789 			callback = pm_op(dev->bus->pm, state);
790 		} else if (dev->bus->resume) {
791 			info = "legacy bus ";
792 			callback = dev->bus->resume;
793 			goto End;
794 		}
795 	}
796 
797  Driver:
798 	if (!callback && dev->driver && dev->driver->pm) {
799 		info = "driver ";
800 		callback = pm_op(dev->driver->pm, state);
801 	}
802 
803  End:
804 	error = dpm_run_callback(callback, dev, state, info);
805 	dev->power.is_suspended = false;
806 
807  Unlock:
808 	device_unlock(dev);
809 	dpm_watchdog_clear(&wd);
810 
811  Complete:
812 	complete_all(&dev->power.completion);
813 
814 	TRACE_RESUME(error);
815 
816 	return error;
817 }
818 
819 static void async_resume(void *data, async_cookie_t cookie)
820 {
821 	struct device *dev = (struct device *)data;
822 	int error;
823 
824 	error = device_resume(dev, pm_transition, true);
825 	if (error)
826 		pm_dev_err(dev, pm_transition, " async", error);
827 	put_device(dev);
828 }
829 
830 /**
831  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
832  * @state: PM transition of the system being carried out.
833  *
834  * Execute the appropriate "resume" callback for all devices whose status
835  * indicates that they are suspended.
836  */
837 void dpm_resume(pm_message_t state)
838 {
839 	struct device *dev;
840 	ktime_t starttime = ktime_get();
841 
842 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
843 	might_sleep();
844 
845 	mutex_lock(&dpm_list_mtx);
846 	pm_transition = state;
847 	async_error = 0;
848 
849 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
850 		reinit_completion(&dev->power.completion);
851 		if (is_async(dev)) {
852 			get_device(dev);
853 			async_schedule(async_resume, dev);
854 		}
855 	}
856 
857 	while (!list_empty(&dpm_suspended_list)) {
858 		dev = to_device(dpm_suspended_list.next);
859 		get_device(dev);
860 		if (!is_async(dev)) {
861 			int error;
862 
863 			mutex_unlock(&dpm_list_mtx);
864 
865 			error = device_resume(dev, state, false);
866 			if (error) {
867 				suspend_stats.failed_resume++;
868 				dpm_save_failed_step(SUSPEND_RESUME);
869 				dpm_save_failed_dev(dev_name(dev));
870 				pm_dev_err(dev, state, "", error);
871 			}
872 
873 			mutex_lock(&dpm_list_mtx);
874 		}
875 		if (!list_empty(&dev->power.entry))
876 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
877 		put_device(dev);
878 	}
879 	mutex_unlock(&dpm_list_mtx);
880 	async_synchronize_full();
881 	dpm_show_time(starttime, state, NULL);
882 
883 	cpufreq_resume();
884 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
885 }
886 
887 /**
888  * device_complete - Complete a PM transition for given device.
889  * @dev: Device to handle.
890  * @state: PM transition of the system being carried out.
891  */
892 static void device_complete(struct device *dev, pm_message_t state)
893 {
894 	void (*callback)(struct device *) = NULL;
895 	char *info = NULL;
896 
897 	if (dev->power.syscore)
898 		return;
899 
900 	device_lock(dev);
901 
902 	if (dev->pm_domain) {
903 		info = "completing power domain ";
904 		callback = dev->pm_domain->ops.complete;
905 	} else if (dev->type && dev->type->pm) {
906 		info = "completing type ";
907 		callback = dev->type->pm->complete;
908 	} else if (dev->class && dev->class->pm) {
909 		info = "completing class ";
910 		callback = dev->class->pm->complete;
911 	} else if (dev->bus && dev->bus->pm) {
912 		info = "completing bus ";
913 		callback = dev->bus->pm->complete;
914 	}
915 
916 	if (!callback && dev->driver && dev->driver->pm) {
917 		info = "completing driver ";
918 		callback = dev->driver->pm->complete;
919 	}
920 
921 	if (callback) {
922 		pm_dev_dbg(dev, state, info);
923 		trace_device_pm_callback_start(dev, info, state.event);
924 		callback(dev);
925 		trace_device_pm_callback_end(dev, 0);
926 	}
927 
928 	device_unlock(dev);
929 
930 	pm_runtime_put(dev);
931 }
932 
933 /**
934  * dpm_complete - Complete a PM transition for all non-sysdev devices.
935  * @state: PM transition of the system being carried out.
936  *
937  * Execute the ->complete() callbacks for all devices whose PM status is not
938  * DPM_ON (this allows new devices to be registered).
939  */
940 void dpm_complete(pm_message_t state)
941 {
942 	struct list_head list;
943 
944 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945 	might_sleep();
946 
947 	INIT_LIST_HEAD(&list);
948 	mutex_lock(&dpm_list_mtx);
949 	while (!list_empty(&dpm_prepared_list)) {
950 		struct device *dev = to_device(dpm_prepared_list.prev);
951 
952 		get_device(dev);
953 		dev->power.is_prepared = false;
954 		list_move(&dev->power.entry, &list);
955 		mutex_unlock(&dpm_list_mtx);
956 
957 		device_complete(dev, state);
958 
959 		mutex_lock(&dpm_list_mtx);
960 		put_device(dev);
961 	}
962 	list_splice(&list, &dpm_list);
963 	mutex_unlock(&dpm_list_mtx);
964 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
965 }
966 
967 /**
968  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
969  * @state: PM transition of the system being carried out.
970  *
971  * Execute "resume" callbacks for all devices and complete the PM transition of
972  * the system.
973  */
974 void dpm_resume_end(pm_message_t state)
975 {
976 	dpm_resume(state);
977 	dpm_complete(state);
978 }
979 EXPORT_SYMBOL_GPL(dpm_resume_end);
980 
981 
982 /*------------------------- Suspend routines -------------------------*/
983 
984 /**
985  * resume_event - Return a "resume" message for given "suspend" sleep state.
986  * @sleep_state: PM message representing a sleep state.
987  *
988  * Return a PM message representing the resume event corresponding to given
989  * sleep state.
990  */
991 static pm_message_t resume_event(pm_message_t sleep_state)
992 {
993 	switch (sleep_state.event) {
994 	case PM_EVENT_SUSPEND:
995 		return PMSG_RESUME;
996 	case PM_EVENT_FREEZE:
997 	case PM_EVENT_QUIESCE:
998 		return PMSG_RECOVER;
999 	case PM_EVENT_HIBERNATE:
1000 		return PMSG_RESTORE;
1001 	}
1002 	return PMSG_ON;
1003 }
1004 
1005 /**
1006  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1007  * @dev: Device to handle.
1008  * @state: PM transition of the system being carried out.
1009  * @async: If true, the device is being suspended asynchronously.
1010  *
1011  * The driver of @dev will not receive interrupts while this function is being
1012  * executed.
1013  */
1014 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1015 {
1016 	pm_callback_t callback = NULL;
1017 	char *info = NULL;
1018 	int error = 0;
1019 
1020 	if (async_error)
1021 		goto Complete;
1022 
1023 	if (pm_wakeup_pending()) {
1024 		async_error = -EBUSY;
1025 		goto Complete;
1026 	}
1027 
1028 	if (dev->power.syscore || dev->power.direct_complete)
1029 		goto Complete;
1030 
1031 	dpm_wait_for_children(dev, async);
1032 
1033 	if (dev->pm_domain) {
1034 		info = "noirq power domain ";
1035 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1036 	} else if (dev->type && dev->type->pm) {
1037 		info = "noirq type ";
1038 		callback = pm_noirq_op(dev->type->pm, state);
1039 	} else if (dev->class && dev->class->pm) {
1040 		info = "noirq class ";
1041 		callback = pm_noirq_op(dev->class->pm, state);
1042 	} else if (dev->bus && dev->bus->pm) {
1043 		info = "noirq bus ";
1044 		callback = pm_noirq_op(dev->bus->pm, state);
1045 	}
1046 
1047 	if (!callback && dev->driver && dev->driver->pm) {
1048 		info = "noirq driver ";
1049 		callback = pm_noirq_op(dev->driver->pm, state);
1050 	}
1051 
1052 	error = dpm_run_callback(callback, dev, state, info);
1053 	if (!error)
1054 		dev->power.is_noirq_suspended = true;
1055 	else
1056 		async_error = error;
1057 
1058 Complete:
1059 	complete_all(&dev->power.completion);
1060 	return error;
1061 }
1062 
1063 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1064 {
1065 	struct device *dev = (struct device *)data;
1066 	int error;
1067 
1068 	error = __device_suspend_noirq(dev, pm_transition, true);
1069 	if (error) {
1070 		dpm_save_failed_dev(dev_name(dev));
1071 		pm_dev_err(dev, pm_transition, " async", error);
1072 	}
1073 
1074 	put_device(dev);
1075 }
1076 
1077 static int device_suspend_noirq(struct device *dev)
1078 {
1079 	reinit_completion(&dev->power.completion);
1080 
1081 	if (pm_async_enabled && dev->power.async_suspend) {
1082 		get_device(dev);
1083 		async_schedule(async_suspend_noirq, dev);
1084 		return 0;
1085 	}
1086 	return __device_suspend_noirq(dev, pm_transition, false);
1087 }
1088 
1089 /**
1090  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1091  * @state: PM transition of the system being carried out.
1092  *
1093  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1094  * handlers for all non-sysdev devices.
1095  */
1096 int dpm_suspend_noirq(pm_message_t state)
1097 {
1098 	ktime_t starttime = ktime_get();
1099 	int error = 0;
1100 
1101 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1102 	cpuidle_pause();
1103 	suspend_device_irqs();
1104 	mutex_lock(&dpm_list_mtx);
1105 	pm_transition = state;
1106 	async_error = 0;
1107 
1108 	while (!list_empty(&dpm_late_early_list)) {
1109 		struct device *dev = to_device(dpm_late_early_list.prev);
1110 
1111 		get_device(dev);
1112 		mutex_unlock(&dpm_list_mtx);
1113 
1114 		error = device_suspend_noirq(dev);
1115 
1116 		mutex_lock(&dpm_list_mtx);
1117 		if (error) {
1118 			pm_dev_err(dev, state, " noirq", error);
1119 			dpm_save_failed_dev(dev_name(dev));
1120 			put_device(dev);
1121 			break;
1122 		}
1123 		if (!list_empty(&dev->power.entry))
1124 			list_move(&dev->power.entry, &dpm_noirq_list);
1125 		put_device(dev);
1126 
1127 		if (async_error)
1128 			break;
1129 	}
1130 	mutex_unlock(&dpm_list_mtx);
1131 	async_synchronize_full();
1132 	if (!error)
1133 		error = async_error;
1134 
1135 	if (error) {
1136 		suspend_stats.failed_suspend_noirq++;
1137 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1138 		dpm_resume_noirq(resume_event(state));
1139 	} else {
1140 		dpm_show_time(starttime, state, "noirq");
1141 	}
1142 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1143 	return error;
1144 }
1145 
1146 /**
1147  * device_suspend_late - Execute a "late suspend" callback for given device.
1148  * @dev: Device to handle.
1149  * @state: PM transition of the system being carried out.
1150  * @async: If true, the device is being suspended asynchronously.
1151  *
1152  * Runtime PM is disabled for @dev while this function is being executed.
1153  */
1154 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1155 {
1156 	pm_callback_t callback = NULL;
1157 	char *info = NULL;
1158 	int error = 0;
1159 
1160 	__pm_runtime_disable(dev, false);
1161 
1162 	if (async_error)
1163 		goto Complete;
1164 
1165 	if (pm_wakeup_pending()) {
1166 		async_error = -EBUSY;
1167 		goto Complete;
1168 	}
1169 
1170 	if (dev->power.syscore || dev->power.direct_complete)
1171 		goto Complete;
1172 
1173 	dpm_wait_for_children(dev, async);
1174 
1175 	if (dev->pm_domain) {
1176 		info = "late power domain ";
1177 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1178 	} else if (dev->type && dev->type->pm) {
1179 		info = "late type ";
1180 		callback = pm_late_early_op(dev->type->pm, state);
1181 	} else if (dev->class && dev->class->pm) {
1182 		info = "late class ";
1183 		callback = pm_late_early_op(dev->class->pm, state);
1184 	} else if (dev->bus && dev->bus->pm) {
1185 		info = "late bus ";
1186 		callback = pm_late_early_op(dev->bus->pm, state);
1187 	}
1188 
1189 	if (!callback && dev->driver && dev->driver->pm) {
1190 		info = "late driver ";
1191 		callback = pm_late_early_op(dev->driver->pm, state);
1192 	}
1193 
1194 	error = dpm_run_callback(callback, dev, state, info);
1195 	if (!error)
1196 		dev->power.is_late_suspended = true;
1197 	else
1198 		async_error = error;
1199 
1200 Complete:
1201 	complete_all(&dev->power.completion);
1202 	return error;
1203 }
1204 
1205 static void async_suspend_late(void *data, async_cookie_t cookie)
1206 {
1207 	struct device *dev = (struct device *)data;
1208 	int error;
1209 
1210 	error = __device_suspend_late(dev, pm_transition, true);
1211 	if (error) {
1212 		dpm_save_failed_dev(dev_name(dev));
1213 		pm_dev_err(dev, pm_transition, " async", error);
1214 	}
1215 	put_device(dev);
1216 }
1217 
1218 static int device_suspend_late(struct device *dev)
1219 {
1220 	reinit_completion(&dev->power.completion);
1221 
1222 	if (pm_async_enabled && dev->power.async_suspend) {
1223 		get_device(dev);
1224 		async_schedule(async_suspend_late, dev);
1225 		return 0;
1226 	}
1227 
1228 	return __device_suspend_late(dev, pm_transition, false);
1229 }
1230 
1231 /**
1232  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1233  * @state: PM transition of the system being carried out.
1234  */
1235 int dpm_suspend_late(pm_message_t state)
1236 {
1237 	ktime_t starttime = ktime_get();
1238 	int error = 0;
1239 
1240 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1241 	mutex_lock(&dpm_list_mtx);
1242 	pm_transition = state;
1243 	async_error = 0;
1244 
1245 	while (!list_empty(&dpm_suspended_list)) {
1246 		struct device *dev = to_device(dpm_suspended_list.prev);
1247 
1248 		get_device(dev);
1249 		mutex_unlock(&dpm_list_mtx);
1250 
1251 		error = device_suspend_late(dev);
1252 
1253 		mutex_lock(&dpm_list_mtx);
1254 		if (error) {
1255 			pm_dev_err(dev, state, " late", error);
1256 			dpm_save_failed_dev(dev_name(dev));
1257 			put_device(dev);
1258 			break;
1259 		}
1260 		if (!list_empty(&dev->power.entry))
1261 			list_move(&dev->power.entry, &dpm_late_early_list);
1262 		put_device(dev);
1263 
1264 		if (async_error)
1265 			break;
1266 	}
1267 	mutex_unlock(&dpm_list_mtx);
1268 	async_synchronize_full();
1269 	if (!error)
1270 		error = async_error;
1271 	if (error) {
1272 		suspend_stats.failed_suspend_late++;
1273 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1274 		dpm_resume_early(resume_event(state));
1275 	} else {
1276 		dpm_show_time(starttime, state, "late");
1277 	}
1278 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1279 	return error;
1280 }
1281 
1282 /**
1283  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1284  * @state: PM transition of the system being carried out.
1285  */
1286 int dpm_suspend_end(pm_message_t state)
1287 {
1288 	int error = dpm_suspend_late(state);
1289 	if (error)
1290 		return error;
1291 
1292 	error = dpm_suspend_noirq(state);
1293 	if (error) {
1294 		dpm_resume_early(resume_event(state));
1295 		return error;
1296 	}
1297 
1298 	return 0;
1299 }
1300 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1301 
1302 /**
1303  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1304  * @dev: Device to suspend.
1305  * @state: PM transition of the system being carried out.
1306  * @cb: Suspend callback to execute.
1307  * @info: string description of caller.
1308  */
1309 static int legacy_suspend(struct device *dev, pm_message_t state,
1310 			  int (*cb)(struct device *dev, pm_message_t state),
1311 			  char *info)
1312 {
1313 	int error;
1314 	ktime_t calltime;
1315 
1316 	calltime = initcall_debug_start(dev);
1317 
1318 	trace_device_pm_callback_start(dev, info, state.event);
1319 	error = cb(dev, state);
1320 	trace_device_pm_callback_end(dev, error);
1321 	suspend_report_result(cb, error);
1322 
1323 	initcall_debug_report(dev, calltime, error, state, info);
1324 
1325 	return error;
1326 }
1327 
1328 /**
1329  * device_suspend - Execute "suspend" callbacks for given device.
1330  * @dev: Device to handle.
1331  * @state: PM transition of the system being carried out.
1332  * @async: If true, the device is being suspended asynchronously.
1333  */
1334 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1335 {
1336 	pm_callback_t callback = NULL;
1337 	char *info = NULL;
1338 	int error = 0;
1339 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1340 
1341 	dpm_wait_for_children(dev, async);
1342 
1343 	if (async_error)
1344 		goto Complete;
1345 
1346 	/*
1347 	 * If a device configured to wake up the system from sleep states
1348 	 * has been suspended at run time and there's a resume request pending
1349 	 * for it, this is equivalent to the device signaling wakeup, so the
1350 	 * system suspend operation should be aborted.
1351 	 */
1352 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1353 		pm_wakeup_event(dev, 0);
1354 
1355 	if (pm_wakeup_pending()) {
1356 		async_error = -EBUSY;
1357 		goto Complete;
1358 	}
1359 
1360 	if (dev->power.syscore)
1361 		goto Complete;
1362 
1363 	if (dev->power.direct_complete) {
1364 		if (pm_runtime_status_suspended(dev)) {
1365 			pm_runtime_disable(dev);
1366 			if (pm_runtime_suspended_if_enabled(dev))
1367 				goto Complete;
1368 
1369 			pm_runtime_enable(dev);
1370 		}
1371 		dev->power.direct_complete = false;
1372 	}
1373 
1374 	dpm_watchdog_set(&wd, dev);
1375 	device_lock(dev);
1376 
1377 	if (dev->pm_domain) {
1378 		info = "power domain ";
1379 		callback = pm_op(&dev->pm_domain->ops, state);
1380 		goto Run;
1381 	}
1382 
1383 	if (dev->type && dev->type->pm) {
1384 		info = "type ";
1385 		callback = pm_op(dev->type->pm, state);
1386 		goto Run;
1387 	}
1388 
1389 	if (dev->class) {
1390 		if (dev->class->pm) {
1391 			info = "class ";
1392 			callback = pm_op(dev->class->pm, state);
1393 			goto Run;
1394 		} else if (dev->class->suspend) {
1395 			pm_dev_dbg(dev, state, "legacy class ");
1396 			error = legacy_suspend(dev, state, dev->class->suspend,
1397 						"legacy class ");
1398 			goto End;
1399 		}
1400 	}
1401 
1402 	if (dev->bus) {
1403 		if (dev->bus->pm) {
1404 			info = "bus ";
1405 			callback = pm_op(dev->bus->pm, state);
1406 		} else if (dev->bus->suspend) {
1407 			pm_dev_dbg(dev, state, "legacy bus ");
1408 			error = legacy_suspend(dev, state, dev->bus->suspend,
1409 						"legacy bus ");
1410 			goto End;
1411 		}
1412 	}
1413 
1414  Run:
1415 	if (!callback && dev->driver && dev->driver->pm) {
1416 		info = "driver ";
1417 		callback = pm_op(dev->driver->pm, state);
1418 	}
1419 
1420 	error = dpm_run_callback(callback, dev, state, info);
1421 
1422  End:
1423 	if (!error) {
1424 		struct device *parent = dev->parent;
1425 
1426 		dev->power.is_suspended = true;
1427 		if (parent) {
1428 			spin_lock_irq(&parent->power.lock);
1429 
1430 			dev->parent->power.direct_complete = false;
1431 			if (dev->power.wakeup_path
1432 			    && !dev->parent->power.ignore_children)
1433 				dev->parent->power.wakeup_path = true;
1434 
1435 			spin_unlock_irq(&parent->power.lock);
1436 		}
1437 	}
1438 
1439 	device_unlock(dev);
1440 	dpm_watchdog_clear(&wd);
1441 
1442  Complete:
1443 	complete_all(&dev->power.completion);
1444 	if (error)
1445 		async_error = error;
1446 
1447 	return error;
1448 }
1449 
1450 static void async_suspend(void *data, async_cookie_t cookie)
1451 {
1452 	struct device *dev = (struct device *)data;
1453 	int error;
1454 
1455 	error = __device_suspend(dev, pm_transition, true);
1456 	if (error) {
1457 		dpm_save_failed_dev(dev_name(dev));
1458 		pm_dev_err(dev, pm_transition, " async", error);
1459 	}
1460 
1461 	put_device(dev);
1462 }
1463 
1464 static int device_suspend(struct device *dev)
1465 {
1466 	reinit_completion(&dev->power.completion);
1467 
1468 	if (pm_async_enabled && dev->power.async_suspend) {
1469 		get_device(dev);
1470 		async_schedule(async_suspend, dev);
1471 		return 0;
1472 	}
1473 
1474 	return __device_suspend(dev, pm_transition, false);
1475 }
1476 
1477 /**
1478  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1479  * @state: PM transition of the system being carried out.
1480  */
1481 int dpm_suspend(pm_message_t state)
1482 {
1483 	ktime_t starttime = ktime_get();
1484 	int error = 0;
1485 
1486 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1487 	might_sleep();
1488 
1489 	cpufreq_suspend();
1490 
1491 	mutex_lock(&dpm_list_mtx);
1492 	pm_transition = state;
1493 	async_error = 0;
1494 	while (!list_empty(&dpm_prepared_list)) {
1495 		struct device *dev = to_device(dpm_prepared_list.prev);
1496 
1497 		get_device(dev);
1498 		mutex_unlock(&dpm_list_mtx);
1499 
1500 		error = device_suspend(dev);
1501 
1502 		mutex_lock(&dpm_list_mtx);
1503 		if (error) {
1504 			pm_dev_err(dev, state, "", error);
1505 			dpm_save_failed_dev(dev_name(dev));
1506 			put_device(dev);
1507 			break;
1508 		}
1509 		if (!list_empty(&dev->power.entry))
1510 			list_move(&dev->power.entry, &dpm_suspended_list);
1511 		put_device(dev);
1512 		if (async_error)
1513 			break;
1514 	}
1515 	mutex_unlock(&dpm_list_mtx);
1516 	async_synchronize_full();
1517 	if (!error)
1518 		error = async_error;
1519 	if (error) {
1520 		suspend_stats.failed_suspend++;
1521 		dpm_save_failed_step(SUSPEND_SUSPEND);
1522 	} else
1523 		dpm_show_time(starttime, state, NULL);
1524 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1525 	return error;
1526 }
1527 
1528 /**
1529  * device_prepare - Prepare a device for system power transition.
1530  * @dev: Device to handle.
1531  * @state: PM transition of the system being carried out.
1532  *
1533  * Execute the ->prepare() callback(s) for given device.  No new children of the
1534  * device may be registered after this function has returned.
1535  */
1536 static int device_prepare(struct device *dev, pm_message_t state)
1537 {
1538 	int (*callback)(struct device *) = NULL;
1539 	char *info = NULL;
1540 	int ret = 0;
1541 
1542 	if (dev->power.syscore)
1543 		return 0;
1544 
1545 	/*
1546 	 * If a device's parent goes into runtime suspend at the wrong time,
1547 	 * it won't be possible to resume the device.  To prevent this we
1548 	 * block runtime suspend here, during the prepare phase, and allow
1549 	 * it again during the complete phase.
1550 	 */
1551 	pm_runtime_get_noresume(dev);
1552 
1553 	device_lock(dev);
1554 
1555 	dev->power.wakeup_path = device_may_wakeup(dev);
1556 
1557 	if (dev->pm_domain) {
1558 		info = "preparing power domain ";
1559 		callback = dev->pm_domain->ops.prepare;
1560 	} else if (dev->type && dev->type->pm) {
1561 		info = "preparing type ";
1562 		callback = dev->type->pm->prepare;
1563 	} else if (dev->class && dev->class->pm) {
1564 		info = "preparing class ";
1565 		callback = dev->class->pm->prepare;
1566 	} else if (dev->bus && dev->bus->pm) {
1567 		info = "preparing bus ";
1568 		callback = dev->bus->pm->prepare;
1569 	}
1570 
1571 	if (!callback && dev->driver && dev->driver->pm) {
1572 		info = "preparing driver ";
1573 		callback = dev->driver->pm->prepare;
1574 	}
1575 
1576 	if (callback) {
1577 		trace_device_pm_callback_start(dev, info, state.event);
1578 		ret = callback(dev);
1579 		trace_device_pm_callback_end(dev, ret);
1580 	}
1581 
1582 	device_unlock(dev);
1583 
1584 	if (ret < 0) {
1585 		suspend_report_result(callback, ret);
1586 		pm_runtime_put(dev);
1587 		return ret;
1588 	}
1589 	/*
1590 	 * A positive return value from ->prepare() means "this device appears
1591 	 * to be runtime-suspended and its state is fine, so if it really is
1592 	 * runtime-suspended, you can leave it in that state provided that you
1593 	 * will do the same thing with all of its descendants".  This only
1594 	 * applies to suspend transitions, however.
1595 	 */
1596 	spin_lock_irq(&dev->power.lock);
1597 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1598 	spin_unlock_irq(&dev->power.lock);
1599 	return 0;
1600 }
1601 
1602 /**
1603  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1604  * @state: PM transition of the system being carried out.
1605  *
1606  * Execute the ->prepare() callback(s) for all devices.
1607  */
1608 int dpm_prepare(pm_message_t state)
1609 {
1610 	int error = 0;
1611 
1612 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1613 	might_sleep();
1614 
1615 	mutex_lock(&dpm_list_mtx);
1616 	while (!list_empty(&dpm_list)) {
1617 		struct device *dev = to_device(dpm_list.next);
1618 
1619 		get_device(dev);
1620 		mutex_unlock(&dpm_list_mtx);
1621 
1622 		error = device_prepare(dev, state);
1623 
1624 		mutex_lock(&dpm_list_mtx);
1625 		if (error) {
1626 			if (error == -EAGAIN) {
1627 				put_device(dev);
1628 				error = 0;
1629 				continue;
1630 			}
1631 			printk(KERN_INFO "PM: Device %s not prepared "
1632 				"for power transition: code %d\n",
1633 				dev_name(dev), error);
1634 			put_device(dev);
1635 			break;
1636 		}
1637 		dev->power.is_prepared = true;
1638 		if (!list_empty(&dev->power.entry))
1639 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1640 		put_device(dev);
1641 	}
1642 	mutex_unlock(&dpm_list_mtx);
1643 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1644 	return error;
1645 }
1646 
1647 /**
1648  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1649  * @state: PM transition of the system being carried out.
1650  *
1651  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1652  * callbacks for them.
1653  */
1654 int dpm_suspend_start(pm_message_t state)
1655 {
1656 	int error;
1657 
1658 	error = dpm_prepare(state);
1659 	if (error) {
1660 		suspend_stats.failed_prepare++;
1661 		dpm_save_failed_step(SUSPEND_PREPARE);
1662 	} else
1663 		error = dpm_suspend(state);
1664 	return error;
1665 }
1666 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1667 
1668 void __suspend_report_result(const char *function, void *fn, int ret)
1669 {
1670 	if (ret)
1671 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1672 }
1673 EXPORT_SYMBOL_GPL(__suspend_report_result);
1674 
1675 /**
1676  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1677  * @dev: Device to wait for.
1678  * @subordinate: Device that needs to wait for @dev.
1679  */
1680 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1681 {
1682 	dpm_wait(dev, subordinate->power.async_suspend);
1683 	return async_error;
1684 }
1685 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1686 
1687 /**
1688  * dpm_for_each_dev - device iterator.
1689  * @data: data for the callback.
1690  * @fn: function to be called for each device.
1691  *
1692  * Iterate over devices in dpm_list, and call @fn for each device,
1693  * passing it @data.
1694  */
1695 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1696 {
1697 	struct device *dev;
1698 
1699 	if (!fn)
1700 		return;
1701 
1702 	device_pm_lock();
1703 	list_for_each_entry(dev, &dpm_list, power.entry)
1704 		fn(dev, data);
1705 	device_pm_unlock();
1706 }
1707 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1708