xref: /linux/drivers/base/power/main.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 
32 #include "../base.h"
33 #include "power.h"
34 
35 typedef int (*pm_callback_t)(struct device *);
36 
37 /*
38  * The entries in the dpm_list list are in a depth first order, simply
39  * because children are guaranteed to be discovered after parents, and
40  * are inserted at the back of the list on discovery.
41  *
42  * Since device_pm_add() may be called with a device lock held,
43  * we must never try to acquire a device lock while holding
44  * dpm_list_mutex.
45  */
46 
47 LIST_HEAD(dpm_list);
48 LIST_HEAD(dpm_prepared_list);
49 LIST_HEAD(dpm_suspended_list);
50 LIST_HEAD(dpm_late_early_list);
51 LIST_HEAD(dpm_noirq_list);
52 
53 struct suspend_stats suspend_stats;
54 static DEFINE_MUTEX(dpm_list_mtx);
55 static pm_message_t pm_transition;
56 
57 static int async_error;
58 
59 /**
60  * device_pm_init - Initialize the PM-related part of a device object.
61  * @dev: Device object being initialized.
62  */
63 void device_pm_init(struct device *dev)
64 {
65 	dev->power.is_prepared = false;
66 	dev->power.is_suspended = false;
67 	init_completion(&dev->power.completion);
68 	complete_all(&dev->power.completion);
69 	dev->power.wakeup = NULL;
70 	spin_lock_init(&dev->power.lock);
71 	pm_runtime_init(dev);
72 	INIT_LIST_HEAD(&dev->power.entry);
73 	dev->power.power_state = PMSG_INVALID;
74 }
75 
76 /**
77  * device_pm_lock - Lock the list of active devices used by the PM core.
78  */
79 void device_pm_lock(void)
80 {
81 	mutex_lock(&dpm_list_mtx);
82 }
83 
84 /**
85  * device_pm_unlock - Unlock the list of active devices used by the PM core.
86  */
87 void device_pm_unlock(void)
88 {
89 	mutex_unlock(&dpm_list_mtx);
90 }
91 
92 /**
93  * device_pm_add - Add a device to the PM core's list of active devices.
94  * @dev: Device to add to the list.
95  */
96 void device_pm_add(struct device *dev)
97 {
98 	pr_debug("PM: Adding info for %s:%s\n",
99 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
100 	mutex_lock(&dpm_list_mtx);
101 	if (dev->parent && dev->parent->power.is_prepared)
102 		dev_warn(dev, "parent %s should not be sleeping\n",
103 			dev_name(dev->parent));
104 	list_add_tail(&dev->power.entry, &dpm_list);
105 	dev_pm_qos_constraints_init(dev);
106 	mutex_unlock(&dpm_list_mtx);
107 }
108 
109 /**
110  * device_pm_remove - Remove a device from the PM core's list of active devices.
111  * @dev: Device to be removed from the list.
112  */
113 void device_pm_remove(struct device *dev)
114 {
115 	pr_debug("PM: Removing info for %s:%s\n",
116 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
117 	complete_all(&dev->power.completion);
118 	mutex_lock(&dpm_list_mtx);
119 	dev_pm_qos_constraints_destroy(dev);
120 	list_del_init(&dev->power.entry);
121 	mutex_unlock(&dpm_list_mtx);
122 	device_wakeup_disable(dev);
123 	pm_runtime_remove(dev);
124 }
125 
126 /**
127  * device_pm_move_before - Move device in the PM core's list of active devices.
128  * @deva: Device to move in dpm_list.
129  * @devb: Device @deva should come before.
130  */
131 void device_pm_move_before(struct device *deva, struct device *devb)
132 {
133 	pr_debug("PM: Moving %s:%s before %s:%s\n",
134 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
135 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
136 	/* Delete deva from dpm_list and reinsert before devb. */
137 	list_move_tail(&deva->power.entry, &devb->power.entry);
138 }
139 
140 /**
141  * device_pm_move_after - Move device in the PM core's list of active devices.
142  * @deva: Device to move in dpm_list.
143  * @devb: Device @deva should come after.
144  */
145 void device_pm_move_after(struct device *deva, struct device *devb)
146 {
147 	pr_debug("PM: Moving %s:%s after %s:%s\n",
148 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
149 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
150 	/* Delete deva from dpm_list and reinsert after devb. */
151 	list_move(&deva->power.entry, &devb->power.entry);
152 }
153 
154 /**
155  * device_pm_move_last - Move device to end of the PM core's list of devices.
156  * @dev: Device to move in dpm_list.
157  */
158 void device_pm_move_last(struct device *dev)
159 {
160 	pr_debug("PM: Moving %s:%s to end of list\n",
161 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
162 	list_move_tail(&dev->power.entry, &dpm_list);
163 }
164 
165 static ktime_t initcall_debug_start(struct device *dev)
166 {
167 	ktime_t calltime = ktime_set(0, 0);
168 
169 	if (initcall_debug) {
170 		pr_info("calling  %s+ @ %i, parent: %s\n",
171 			dev_name(dev), task_pid_nr(current),
172 			dev->parent ? dev_name(dev->parent) : "none");
173 		calltime = ktime_get();
174 	}
175 
176 	return calltime;
177 }
178 
179 static void initcall_debug_report(struct device *dev, ktime_t calltime,
180 				  int error)
181 {
182 	ktime_t delta, rettime;
183 
184 	if (initcall_debug) {
185 		rettime = ktime_get();
186 		delta = ktime_sub(rettime, calltime);
187 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
188 			error, (unsigned long long)ktime_to_ns(delta) >> 10);
189 	}
190 }
191 
192 /**
193  * dpm_wait - Wait for a PM operation to complete.
194  * @dev: Device to wait for.
195  * @async: If unset, wait only if the device's power.async_suspend flag is set.
196  */
197 static void dpm_wait(struct device *dev, bool async)
198 {
199 	if (!dev)
200 		return;
201 
202 	if (async || (pm_async_enabled && dev->power.async_suspend))
203 		wait_for_completion(&dev->power.completion);
204 }
205 
206 static int dpm_wait_fn(struct device *dev, void *async_ptr)
207 {
208 	dpm_wait(dev, *((bool *)async_ptr));
209 	return 0;
210 }
211 
212 static void dpm_wait_for_children(struct device *dev, bool async)
213 {
214        device_for_each_child(dev, &async, dpm_wait_fn);
215 }
216 
217 /**
218  * pm_op - Return the PM operation appropriate for given PM event.
219  * @ops: PM operations to choose from.
220  * @state: PM transition of the system being carried out.
221  */
222 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
223 {
224 	switch (state.event) {
225 #ifdef CONFIG_SUSPEND
226 	case PM_EVENT_SUSPEND:
227 		return ops->suspend;
228 	case PM_EVENT_RESUME:
229 		return ops->resume;
230 #endif /* CONFIG_SUSPEND */
231 #ifdef CONFIG_HIBERNATE_CALLBACKS
232 	case PM_EVENT_FREEZE:
233 	case PM_EVENT_QUIESCE:
234 		return ops->freeze;
235 	case PM_EVENT_HIBERNATE:
236 		return ops->poweroff;
237 	case PM_EVENT_THAW:
238 	case PM_EVENT_RECOVER:
239 		return ops->thaw;
240 		break;
241 	case PM_EVENT_RESTORE:
242 		return ops->restore;
243 #endif /* CONFIG_HIBERNATE_CALLBACKS */
244 	}
245 
246 	return NULL;
247 }
248 
249 /**
250  * pm_late_early_op - Return the PM operation appropriate for given PM event.
251  * @ops: PM operations to choose from.
252  * @state: PM transition of the system being carried out.
253  *
254  * Runtime PM is disabled for @dev while this function is being executed.
255  */
256 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
257 				      pm_message_t state)
258 {
259 	switch (state.event) {
260 #ifdef CONFIG_SUSPEND
261 	case PM_EVENT_SUSPEND:
262 		return ops->suspend_late;
263 	case PM_EVENT_RESUME:
264 		return ops->resume_early;
265 #endif /* CONFIG_SUSPEND */
266 #ifdef CONFIG_HIBERNATE_CALLBACKS
267 	case PM_EVENT_FREEZE:
268 	case PM_EVENT_QUIESCE:
269 		return ops->freeze_late;
270 	case PM_EVENT_HIBERNATE:
271 		return ops->poweroff_late;
272 	case PM_EVENT_THAW:
273 	case PM_EVENT_RECOVER:
274 		return ops->thaw_early;
275 	case PM_EVENT_RESTORE:
276 		return ops->restore_early;
277 #endif /* CONFIG_HIBERNATE_CALLBACKS */
278 	}
279 
280 	return NULL;
281 }
282 
283 /**
284  * pm_noirq_op - Return the PM operation appropriate for given PM event.
285  * @ops: PM operations to choose from.
286  * @state: PM transition of the system being carried out.
287  *
288  * The driver of @dev will not receive interrupts while this function is being
289  * executed.
290  */
291 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
292 {
293 	switch (state.event) {
294 #ifdef CONFIG_SUSPEND
295 	case PM_EVENT_SUSPEND:
296 		return ops->suspend_noirq;
297 	case PM_EVENT_RESUME:
298 		return ops->resume_noirq;
299 #endif /* CONFIG_SUSPEND */
300 #ifdef CONFIG_HIBERNATE_CALLBACKS
301 	case PM_EVENT_FREEZE:
302 	case PM_EVENT_QUIESCE:
303 		return ops->freeze_noirq;
304 	case PM_EVENT_HIBERNATE:
305 		return ops->poweroff_noirq;
306 	case PM_EVENT_THAW:
307 	case PM_EVENT_RECOVER:
308 		return ops->thaw_noirq;
309 	case PM_EVENT_RESTORE:
310 		return ops->restore_noirq;
311 #endif /* CONFIG_HIBERNATE_CALLBACKS */
312 	}
313 
314 	return NULL;
315 }
316 
317 static char *pm_verb(int event)
318 {
319 	switch (event) {
320 	case PM_EVENT_SUSPEND:
321 		return "suspend";
322 	case PM_EVENT_RESUME:
323 		return "resume";
324 	case PM_EVENT_FREEZE:
325 		return "freeze";
326 	case PM_EVENT_QUIESCE:
327 		return "quiesce";
328 	case PM_EVENT_HIBERNATE:
329 		return "hibernate";
330 	case PM_EVENT_THAW:
331 		return "thaw";
332 	case PM_EVENT_RESTORE:
333 		return "restore";
334 	case PM_EVENT_RECOVER:
335 		return "recover";
336 	default:
337 		return "(unknown PM event)";
338 	}
339 }
340 
341 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
342 {
343 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
344 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
345 		", may wakeup" : "");
346 }
347 
348 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
349 			int error)
350 {
351 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
352 		dev_name(dev), pm_verb(state.event), info, error);
353 }
354 
355 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
356 {
357 	ktime_t calltime;
358 	u64 usecs64;
359 	int usecs;
360 
361 	calltime = ktime_get();
362 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
363 	do_div(usecs64, NSEC_PER_USEC);
364 	usecs = usecs64;
365 	if (usecs == 0)
366 		usecs = 1;
367 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
368 		info ?: "", info ? " " : "", pm_verb(state.event),
369 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
370 }
371 
372 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
373 			    pm_message_t state, char *info)
374 {
375 	ktime_t calltime;
376 	int error;
377 
378 	if (!cb)
379 		return 0;
380 
381 	calltime = initcall_debug_start(dev);
382 
383 	pm_dev_dbg(dev, state, info);
384 	error = cb(dev);
385 	suspend_report_result(cb, error);
386 
387 	initcall_debug_report(dev, calltime, error);
388 
389 	return error;
390 }
391 
392 /*------------------------- Resume routines -------------------------*/
393 
394 /**
395  * device_resume_noirq - Execute an "early resume" callback for given device.
396  * @dev: Device to handle.
397  * @state: PM transition of the system being carried out.
398  *
399  * The driver of @dev will not receive interrupts while this function is being
400  * executed.
401  */
402 static int device_resume_noirq(struct device *dev, pm_message_t state)
403 {
404 	pm_callback_t callback = NULL;
405 	char *info = NULL;
406 	int error = 0;
407 
408 	TRACE_DEVICE(dev);
409 	TRACE_RESUME(0);
410 
411 	if (dev->pm_domain) {
412 		info = "noirq power domain ";
413 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
414 	} else if (dev->type && dev->type->pm) {
415 		info = "noirq type ";
416 		callback = pm_noirq_op(dev->type->pm, state);
417 	} else if (dev->class && dev->class->pm) {
418 		info = "noirq class ";
419 		callback = pm_noirq_op(dev->class->pm, state);
420 	} else if (dev->bus && dev->bus->pm) {
421 		info = "noirq bus ";
422 		callback = pm_noirq_op(dev->bus->pm, state);
423 	}
424 
425 	if (!callback && dev->driver && dev->driver->pm) {
426 		info = "noirq driver ";
427 		callback = pm_noirq_op(dev->driver->pm, state);
428 	}
429 
430 	error = dpm_run_callback(callback, dev, state, info);
431 
432 	TRACE_RESUME(error);
433 	return error;
434 }
435 
436 /**
437  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
438  * @state: PM transition of the system being carried out.
439  *
440  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
441  * enable device drivers to receive interrupts.
442  */
443 static void dpm_resume_noirq(pm_message_t state)
444 {
445 	ktime_t starttime = ktime_get();
446 
447 	mutex_lock(&dpm_list_mtx);
448 	while (!list_empty(&dpm_noirq_list)) {
449 		struct device *dev = to_device(dpm_noirq_list.next);
450 		int error;
451 
452 		get_device(dev);
453 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
454 		mutex_unlock(&dpm_list_mtx);
455 
456 		error = device_resume_noirq(dev, state);
457 		if (error) {
458 			suspend_stats.failed_resume_noirq++;
459 			dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
460 			dpm_save_failed_dev(dev_name(dev));
461 			pm_dev_err(dev, state, " noirq", error);
462 		}
463 
464 		mutex_lock(&dpm_list_mtx);
465 		put_device(dev);
466 	}
467 	mutex_unlock(&dpm_list_mtx);
468 	dpm_show_time(starttime, state, "noirq");
469 	resume_device_irqs();
470 }
471 
472 /**
473  * device_resume_early - Execute an "early resume" callback for given device.
474  * @dev: Device to handle.
475  * @state: PM transition of the system being carried out.
476  *
477  * Runtime PM is disabled for @dev while this function is being executed.
478  */
479 static int device_resume_early(struct device *dev, pm_message_t state)
480 {
481 	pm_callback_t callback = NULL;
482 	char *info = NULL;
483 	int error = 0;
484 
485 	TRACE_DEVICE(dev);
486 	TRACE_RESUME(0);
487 
488 	if (dev->pm_domain) {
489 		info = "early power domain ";
490 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
491 	} else if (dev->type && dev->type->pm) {
492 		info = "early type ";
493 		callback = pm_late_early_op(dev->type->pm, state);
494 	} else if (dev->class && dev->class->pm) {
495 		info = "early class ";
496 		callback = pm_late_early_op(dev->class->pm, state);
497 	} else if (dev->bus && dev->bus->pm) {
498 		info = "early bus ";
499 		callback = pm_late_early_op(dev->bus->pm, state);
500 	}
501 
502 	if (!callback && dev->driver && dev->driver->pm) {
503 		info = "early driver ";
504 		callback = pm_late_early_op(dev->driver->pm, state);
505 	}
506 
507 	error = dpm_run_callback(callback, dev, state, info);
508 
509 	TRACE_RESUME(error);
510 	return error;
511 }
512 
513 /**
514  * dpm_resume_early - Execute "early resume" callbacks for all devices.
515  * @state: PM transition of the system being carried out.
516  */
517 static void dpm_resume_early(pm_message_t state)
518 {
519 	ktime_t starttime = ktime_get();
520 
521 	mutex_lock(&dpm_list_mtx);
522 	while (!list_empty(&dpm_late_early_list)) {
523 		struct device *dev = to_device(dpm_late_early_list.next);
524 		int error;
525 
526 		get_device(dev);
527 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
528 		mutex_unlock(&dpm_list_mtx);
529 
530 		error = device_resume_early(dev, state);
531 		if (error) {
532 			suspend_stats.failed_resume_early++;
533 			dpm_save_failed_step(SUSPEND_RESUME_EARLY);
534 			dpm_save_failed_dev(dev_name(dev));
535 			pm_dev_err(dev, state, " early", error);
536 		}
537 
538 		mutex_lock(&dpm_list_mtx);
539 		put_device(dev);
540 	}
541 	mutex_unlock(&dpm_list_mtx);
542 	dpm_show_time(starttime, state, "early");
543 }
544 
545 /**
546  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
547  * @state: PM transition of the system being carried out.
548  */
549 void dpm_resume_start(pm_message_t state)
550 {
551 	dpm_resume_noirq(state);
552 	dpm_resume_early(state);
553 }
554 EXPORT_SYMBOL_GPL(dpm_resume_start);
555 
556 /**
557  * device_resume - Execute "resume" callbacks for given device.
558  * @dev: Device to handle.
559  * @state: PM transition of the system being carried out.
560  * @async: If true, the device is being resumed asynchronously.
561  */
562 static int device_resume(struct device *dev, pm_message_t state, bool async)
563 {
564 	pm_callback_t callback = NULL;
565 	char *info = NULL;
566 	int error = 0;
567 	bool put = false;
568 
569 	TRACE_DEVICE(dev);
570 	TRACE_RESUME(0);
571 
572 	dpm_wait(dev->parent, async);
573 	device_lock(dev);
574 
575 	/*
576 	 * This is a fib.  But we'll allow new children to be added below
577 	 * a resumed device, even if the device hasn't been completed yet.
578 	 */
579 	dev->power.is_prepared = false;
580 
581 	if (!dev->power.is_suspended)
582 		goto Unlock;
583 
584 	pm_runtime_enable(dev);
585 	put = true;
586 
587 	if (dev->pm_domain) {
588 		info = "power domain ";
589 		callback = pm_op(&dev->pm_domain->ops, state);
590 		goto Driver;
591 	}
592 
593 	if (dev->type && dev->type->pm) {
594 		info = "type ";
595 		callback = pm_op(dev->type->pm, state);
596 		goto Driver;
597 	}
598 
599 	if (dev->class) {
600 		if (dev->class->pm) {
601 			info = "class ";
602 			callback = pm_op(dev->class->pm, state);
603 			goto Driver;
604 		} else if (dev->class->resume) {
605 			info = "legacy class ";
606 			callback = dev->class->resume;
607 			goto End;
608 		}
609 	}
610 
611 	if (dev->bus) {
612 		if (dev->bus->pm) {
613 			info = "bus ";
614 			callback = pm_op(dev->bus->pm, state);
615 		} else if (dev->bus->resume) {
616 			info = "legacy bus ";
617 			callback = dev->bus->resume;
618 			goto End;
619 		}
620 	}
621 
622  Driver:
623 	if (!callback && dev->driver && dev->driver->pm) {
624 		info = "driver ";
625 		callback = pm_op(dev->driver->pm, state);
626 	}
627 
628  End:
629 	error = dpm_run_callback(callback, dev, state, info);
630 	dev->power.is_suspended = false;
631 
632  Unlock:
633 	device_unlock(dev);
634 	complete_all(&dev->power.completion);
635 
636 	TRACE_RESUME(error);
637 
638 	if (put)
639 		pm_runtime_put_sync(dev);
640 
641 	return error;
642 }
643 
644 static void async_resume(void *data, async_cookie_t cookie)
645 {
646 	struct device *dev = (struct device *)data;
647 	int error;
648 
649 	error = device_resume(dev, pm_transition, true);
650 	if (error)
651 		pm_dev_err(dev, pm_transition, " async", error);
652 	put_device(dev);
653 }
654 
655 static bool is_async(struct device *dev)
656 {
657 	return dev->power.async_suspend && pm_async_enabled
658 		&& !pm_trace_is_enabled();
659 }
660 
661 /**
662  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
663  * @state: PM transition of the system being carried out.
664  *
665  * Execute the appropriate "resume" callback for all devices whose status
666  * indicates that they are suspended.
667  */
668 void dpm_resume(pm_message_t state)
669 {
670 	struct device *dev;
671 	ktime_t starttime = ktime_get();
672 
673 	might_sleep();
674 
675 	mutex_lock(&dpm_list_mtx);
676 	pm_transition = state;
677 	async_error = 0;
678 
679 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
680 		INIT_COMPLETION(dev->power.completion);
681 		if (is_async(dev)) {
682 			get_device(dev);
683 			async_schedule(async_resume, dev);
684 		}
685 	}
686 
687 	while (!list_empty(&dpm_suspended_list)) {
688 		dev = to_device(dpm_suspended_list.next);
689 		get_device(dev);
690 		if (!is_async(dev)) {
691 			int error;
692 
693 			mutex_unlock(&dpm_list_mtx);
694 
695 			error = device_resume(dev, state, false);
696 			if (error) {
697 				suspend_stats.failed_resume++;
698 				dpm_save_failed_step(SUSPEND_RESUME);
699 				dpm_save_failed_dev(dev_name(dev));
700 				pm_dev_err(dev, state, "", error);
701 			}
702 
703 			mutex_lock(&dpm_list_mtx);
704 		}
705 		if (!list_empty(&dev->power.entry))
706 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
707 		put_device(dev);
708 	}
709 	mutex_unlock(&dpm_list_mtx);
710 	async_synchronize_full();
711 	dpm_show_time(starttime, state, NULL);
712 }
713 
714 /**
715  * device_complete - Complete a PM transition for given device.
716  * @dev: Device to handle.
717  * @state: PM transition of the system being carried out.
718  */
719 static void device_complete(struct device *dev, pm_message_t state)
720 {
721 	void (*callback)(struct device *) = NULL;
722 	char *info = NULL;
723 
724 	device_lock(dev);
725 
726 	if (dev->pm_domain) {
727 		info = "completing power domain ";
728 		callback = dev->pm_domain->ops.complete;
729 	} else if (dev->type && dev->type->pm) {
730 		info = "completing type ";
731 		callback = dev->type->pm->complete;
732 	} else if (dev->class && dev->class->pm) {
733 		info = "completing class ";
734 		callback = dev->class->pm->complete;
735 	} else if (dev->bus && dev->bus->pm) {
736 		info = "completing bus ";
737 		callback = dev->bus->pm->complete;
738 	}
739 
740 	if (!callback && dev->driver && dev->driver->pm) {
741 		info = "completing driver ";
742 		callback = dev->driver->pm->complete;
743 	}
744 
745 	if (callback) {
746 		pm_dev_dbg(dev, state, info);
747 		callback(dev);
748 	}
749 
750 	device_unlock(dev);
751 }
752 
753 /**
754  * dpm_complete - Complete a PM transition for all non-sysdev devices.
755  * @state: PM transition of the system being carried out.
756  *
757  * Execute the ->complete() callbacks for all devices whose PM status is not
758  * DPM_ON (this allows new devices to be registered).
759  */
760 void dpm_complete(pm_message_t state)
761 {
762 	struct list_head list;
763 
764 	might_sleep();
765 
766 	INIT_LIST_HEAD(&list);
767 	mutex_lock(&dpm_list_mtx);
768 	while (!list_empty(&dpm_prepared_list)) {
769 		struct device *dev = to_device(dpm_prepared_list.prev);
770 
771 		get_device(dev);
772 		dev->power.is_prepared = false;
773 		list_move(&dev->power.entry, &list);
774 		mutex_unlock(&dpm_list_mtx);
775 
776 		device_complete(dev, state);
777 
778 		mutex_lock(&dpm_list_mtx);
779 		put_device(dev);
780 	}
781 	list_splice(&list, &dpm_list);
782 	mutex_unlock(&dpm_list_mtx);
783 }
784 
785 /**
786  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
787  * @state: PM transition of the system being carried out.
788  *
789  * Execute "resume" callbacks for all devices and complete the PM transition of
790  * the system.
791  */
792 void dpm_resume_end(pm_message_t state)
793 {
794 	dpm_resume(state);
795 	dpm_complete(state);
796 }
797 EXPORT_SYMBOL_GPL(dpm_resume_end);
798 
799 
800 /*------------------------- Suspend routines -------------------------*/
801 
802 /**
803  * resume_event - Return a "resume" message for given "suspend" sleep state.
804  * @sleep_state: PM message representing a sleep state.
805  *
806  * Return a PM message representing the resume event corresponding to given
807  * sleep state.
808  */
809 static pm_message_t resume_event(pm_message_t sleep_state)
810 {
811 	switch (sleep_state.event) {
812 	case PM_EVENT_SUSPEND:
813 		return PMSG_RESUME;
814 	case PM_EVENT_FREEZE:
815 	case PM_EVENT_QUIESCE:
816 		return PMSG_RECOVER;
817 	case PM_EVENT_HIBERNATE:
818 		return PMSG_RESTORE;
819 	}
820 	return PMSG_ON;
821 }
822 
823 /**
824  * device_suspend_noirq - Execute a "late suspend" callback for given device.
825  * @dev: Device to handle.
826  * @state: PM transition of the system being carried out.
827  *
828  * The driver of @dev will not receive interrupts while this function is being
829  * executed.
830  */
831 static int device_suspend_noirq(struct device *dev, pm_message_t state)
832 {
833 	pm_callback_t callback = NULL;
834 	char *info = NULL;
835 
836 	if (dev->pm_domain) {
837 		info = "noirq power domain ";
838 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
839 	} else if (dev->type && dev->type->pm) {
840 		info = "noirq type ";
841 		callback = pm_noirq_op(dev->type->pm, state);
842 	} else if (dev->class && dev->class->pm) {
843 		info = "noirq class ";
844 		callback = pm_noirq_op(dev->class->pm, state);
845 	} else if (dev->bus && dev->bus->pm) {
846 		info = "noirq bus ";
847 		callback = pm_noirq_op(dev->bus->pm, state);
848 	}
849 
850 	if (!callback && dev->driver && dev->driver->pm) {
851 		info = "noirq driver ";
852 		callback = pm_noirq_op(dev->driver->pm, state);
853 	}
854 
855 	return dpm_run_callback(callback, dev, state, info);
856 }
857 
858 /**
859  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
860  * @state: PM transition of the system being carried out.
861  *
862  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
863  * handlers for all non-sysdev devices.
864  */
865 static int dpm_suspend_noirq(pm_message_t state)
866 {
867 	ktime_t starttime = ktime_get();
868 	int error = 0;
869 
870 	suspend_device_irqs();
871 	mutex_lock(&dpm_list_mtx);
872 	while (!list_empty(&dpm_late_early_list)) {
873 		struct device *dev = to_device(dpm_late_early_list.prev);
874 
875 		get_device(dev);
876 		mutex_unlock(&dpm_list_mtx);
877 
878 		error = device_suspend_noirq(dev, state);
879 
880 		mutex_lock(&dpm_list_mtx);
881 		if (error) {
882 			pm_dev_err(dev, state, " noirq", error);
883 			suspend_stats.failed_suspend_noirq++;
884 			dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
885 			dpm_save_failed_dev(dev_name(dev));
886 			put_device(dev);
887 			break;
888 		}
889 		if (!list_empty(&dev->power.entry))
890 			list_move(&dev->power.entry, &dpm_noirq_list);
891 		put_device(dev);
892 
893 		if (pm_wakeup_pending()) {
894 			error = -EBUSY;
895 			break;
896 		}
897 	}
898 	mutex_unlock(&dpm_list_mtx);
899 	if (error)
900 		dpm_resume_noirq(resume_event(state));
901 	else
902 		dpm_show_time(starttime, state, "noirq");
903 	return error;
904 }
905 
906 /**
907  * device_suspend_late - Execute a "late suspend" callback for given device.
908  * @dev: Device to handle.
909  * @state: PM transition of the system being carried out.
910  *
911  * Runtime PM is disabled for @dev while this function is being executed.
912  */
913 static int device_suspend_late(struct device *dev, pm_message_t state)
914 {
915 	pm_callback_t callback = NULL;
916 	char *info = NULL;
917 
918 	if (dev->pm_domain) {
919 		info = "late power domain ";
920 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
921 	} else if (dev->type && dev->type->pm) {
922 		info = "late type ";
923 		callback = pm_late_early_op(dev->type->pm, state);
924 	} else if (dev->class && dev->class->pm) {
925 		info = "late class ";
926 		callback = pm_late_early_op(dev->class->pm, state);
927 	} else if (dev->bus && dev->bus->pm) {
928 		info = "late bus ";
929 		callback = pm_late_early_op(dev->bus->pm, state);
930 	}
931 
932 	if (!callback && dev->driver && dev->driver->pm) {
933 		info = "late driver ";
934 		callback = pm_late_early_op(dev->driver->pm, state);
935 	}
936 
937 	return dpm_run_callback(callback, dev, state, info);
938 }
939 
940 /**
941  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
942  * @state: PM transition of the system being carried out.
943  */
944 static int dpm_suspend_late(pm_message_t state)
945 {
946 	ktime_t starttime = ktime_get();
947 	int error = 0;
948 
949 	mutex_lock(&dpm_list_mtx);
950 	while (!list_empty(&dpm_suspended_list)) {
951 		struct device *dev = to_device(dpm_suspended_list.prev);
952 
953 		get_device(dev);
954 		mutex_unlock(&dpm_list_mtx);
955 
956 		error = device_suspend_late(dev, state);
957 
958 		mutex_lock(&dpm_list_mtx);
959 		if (error) {
960 			pm_dev_err(dev, state, " late", error);
961 			suspend_stats.failed_suspend_late++;
962 			dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
963 			dpm_save_failed_dev(dev_name(dev));
964 			put_device(dev);
965 			break;
966 		}
967 		if (!list_empty(&dev->power.entry))
968 			list_move(&dev->power.entry, &dpm_late_early_list);
969 		put_device(dev);
970 
971 		if (pm_wakeup_pending()) {
972 			error = -EBUSY;
973 			break;
974 		}
975 	}
976 	mutex_unlock(&dpm_list_mtx);
977 	if (error)
978 		dpm_resume_early(resume_event(state));
979 	else
980 		dpm_show_time(starttime, state, "late");
981 
982 	return error;
983 }
984 
985 /**
986  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
987  * @state: PM transition of the system being carried out.
988  */
989 int dpm_suspend_end(pm_message_t state)
990 {
991 	int error = dpm_suspend_late(state);
992 
993 	return error ? : dpm_suspend_noirq(state);
994 }
995 EXPORT_SYMBOL_GPL(dpm_suspend_end);
996 
997 /**
998  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
999  * @dev: Device to suspend.
1000  * @state: PM transition of the system being carried out.
1001  * @cb: Suspend callback to execute.
1002  */
1003 static int legacy_suspend(struct device *dev, pm_message_t state,
1004 			  int (*cb)(struct device *dev, pm_message_t state))
1005 {
1006 	int error;
1007 	ktime_t calltime;
1008 
1009 	calltime = initcall_debug_start(dev);
1010 
1011 	error = cb(dev, state);
1012 	suspend_report_result(cb, error);
1013 
1014 	initcall_debug_report(dev, calltime, error);
1015 
1016 	return error;
1017 }
1018 
1019 /**
1020  * device_suspend - Execute "suspend" callbacks for given device.
1021  * @dev: Device to handle.
1022  * @state: PM transition of the system being carried out.
1023  * @async: If true, the device is being suspended asynchronously.
1024  */
1025 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1026 {
1027 	pm_callback_t callback = NULL;
1028 	char *info = NULL;
1029 	int error = 0;
1030 
1031 	dpm_wait_for_children(dev, async);
1032 
1033 	if (async_error)
1034 		goto Complete;
1035 
1036 	pm_runtime_get_noresume(dev);
1037 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1038 		pm_wakeup_event(dev, 0);
1039 
1040 	if (pm_wakeup_pending()) {
1041 		pm_runtime_put_sync(dev);
1042 		async_error = -EBUSY;
1043 		goto Complete;
1044 	}
1045 
1046 	device_lock(dev);
1047 
1048 	if (dev->pm_domain) {
1049 		info = "power domain ";
1050 		callback = pm_op(&dev->pm_domain->ops, state);
1051 		goto Run;
1052 	}
1053 
1054 	if (dev->type && dev->type->pm) {
1055 		info = "type ";
1056 		callback = pm_op(dev->type->pm, state);
1057 		goto Run;
1058 	}
1059 
1060 	if (dev->class) {
1061 		if (dev->class->pm) {
1062 			info = "class ";
1063 			callback = pm_op(dev->class->pm, state);
1064 			goto Run;
1065 		} else if (dev->class->suspend) {
1066 			pm_dev_dbg(dev, state, "legacy class ");
1067 			error = legacy_suspend(dev, state, dev->class->suspend);
1068 			goto End;
1069 		}
1070 	}
1071 
1072 	if (dev->bus) {
1073 		if (dev->bus->pm) {
1074 			info = "bus ";
1075 			callback = pm_op(dev->bus->pm, state);
1076 		} else if (dev->bus->suspend) {
1077 			pm_dev_dbg(dev, state, "legacy bus ");
1078 			error = legacy_suspend(dev, state, dev->bus->suspend);
1079 			goto End;
1080 		}
1081 	}
1082 
1083  Run:
1084 	if (!callback && dev->driver && dev->driver->pm) {
1085 		info = "driver ";
1086 		callback = pm_op(dev->driver->pm, state);
1087 	}
1088 
1089 	error = dpm_run_callback(callback, dev, state, info);
1090 
1091  End:
1092 	if (!error) {
1093 		dev->power.is_suspended = true;
1094 		if (dev->power.wakeup_path
1095 		    && dev->parent && !dev->parent->power.ignore_children)
1096 			dev->parent->power.wakeup_path = true;
1097 	}
1098 
1099 	device_unlock(dev);
1100 
1101  Complete:
1102 	complete_all(&dev->power.completion);
1103 
1104 	if (error) {
1105 		pm_runtime_put_sync(dev);
1106 		async_error = error;
1107 	} else if (dev->power.is_suspended) {
1108 		__pm_runtime_disable(dev, false);
1109 	}
1110 
1111 	return error;
1112 }
1113 
1114 static void async_suspend(void *data, async_cookie_t cookie)
1115 {
1116 	struct device *dev = (struct device *)data;
1117 	int error;
1118 
1119 	error = __device_suspend(dev, pm_transition, true);
1120 	if (error) {
1121 		dpm_save_failed_dev(dev_name(dev));
1122 		pm_dev_err(dev, pm_transition, " async", error);
1123 	}
1124 
1125 	put_device(dev);
1126 }
1127 
1128 static int device_suspend(struct device *dev)
1129 {
1130 	INIT_COMPLETION(dev->power.completion);
1131 
1132 	if (pm_async_enabled && dev->power.async_suspend) {
1133 		get_device(dev);
1134 		async_schedule(async_suspend, dev);
1135 		return 0;
1136 	}
1137 
1138 	return __device_suspend(dev, pm_transition, false);
1139 }
1140 
1141 /**
1142  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1143  * @state: PM transition of the system being carried out.
1144  */
1145 int dpm_suspend(pm_message_t state)
1146 {
1147 	ktime_t starttime = ktime_get();
1148 	int error = 0;
1149 
1150 	might_sleep();
1151 
1152 	mutex_lock(&dpm_list_mtx);
1153 	pm_transition = state;
1154 	async_error = 0;
1155 	while (!list_empty(&dpm_prepared_list)) {
1156 		struct device *dev = to_device(dpm_prepared_list.prev);
1157 
1158 		get_device(dev);
1159 		mutex_unlock(&dpm_list_mtx);
1160 
1161 		error = device_suspend(dev);
1162 
1163 		mutex_lock(&dpm_list_mtx);
1164 		if (error) {
1165 			pm_dev_err(dev, state, "", error);
1166 			dpm_save_failed_dev(dev_name(dev));
1167 			put_device(dev);
1168 			break;
1169 		}
1170 		if (!list_empty(&dev->power.entry))
1171 			list_move(&dev->power.entry, &dpm_suspended_list);
1172 		put_device(dev);
1173 		if (async_error)
1174 			break;
1175 	}
1176 	mutex_unlock(&dpm_list_mtx);
1177 	async_synchronize_full();
1178 	if (!error)
1179 		error = async_error;
1180 	if (error) {
1181 		suspend_stats.failed_suspend++;
1182 		dpm_save_failed_step(SUSPEND_SUSPEND);
1183 	} else
1184 		dpm_show_time(starttime, state, NULL);
1185 	return error;
1186 }
1187 
1188 /**
1189  * device_prepare - Prepare a device for system power transition.
1190  * @dev: Device to handle.
1191  * @state: PM transition of the system being carried out.
1192  *
1193  * Execute the ->prepare() callback(s) for given device.  No new children of the
1194  * device may be registered after this function has returned.
1195  */
1196 static int device_prepare(struct device *dev, pm_message_t state)
1197 {
1198 	int (*callback)(struct device *) = NULL;
1199 	char *info = NULL;
1200 	int error = 0;
1201 
1202 	device_lock(dev);
1203 
1204 	dev->power.wakeup_path = device_may_wakeup(dev);
1205 
1206 	if (dev->pm_domain) {
1207 		info = "preparing power domain ";
1208 		callback = dev->pm_domain->ops.prepare;
1209 	} else if (dev->type && dev->type->pm) {
1210 		info = "preparing type ";
1211 		callback = dev->type->pm->prepare;
1212 	} else if (dev->class && dev->class->pm) {
1213 		info = "preparing class ";
1214 		callback = dev->class->pm->prepare;
1215 	} else if (dev->bus && dev->bus->pm) {
1216 		info = "preparing bus ";
1217 		callback = dev->bus->pm->prepare;
1218 	}
1219 
1220 	if (!callback && dev->driver && dev->driver->pm) {
1221 		info = "preparing driver ";
1222 		callback = dev->driver->pm->prepare;
1223 	}
1224 
1225 	if (callback) {
1226 		error = callback(dev);
1227 		suspend_report_result(callback, error);
1228 	}
1229 
1230 	device_unlock(dev);
1231 
1232 	return error;
1233 }
1234 
1235 /**
1236  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1237  * @state: PM transition of the system being carried out.
1238  *
1239  * Execute the ->prepare() callback(s) for all devices.
1240  */
1241 int dpm_prepare(pm_message_t state)
1242 {
1243 	int error = 0;
1244 
1245 	might_sleep();
1246 
1247 	mutex_lock(&dpm_list_mtx);
1248 	while (!list_empty(&dpm_list)) {
1249 		struct device *dev = to_device(dpm_list.next);
1250 
1251 		get_device(dev);
1252 		mutex_unlock(&dpm_list_mtx);
1253 
1254 		error = device_prepare(dev, state);
1255 
1256 		mutex_lock(&dpm_list_mtx);
1257 		if (error) {
1258 			if (error == -EAGAIN) {
1259 				put_device(dev);
1260 				error = 0;
1261 				continue;
1262 			}
1263 			printk(KERN_INFO "PM: Device %s not prepared "
1264 				"for power transition: code %d\n",
1265 				dev_name(dev), error);
1266 			put_device(dev);
1267 			break;
1268 		}
1269 		dev->power.is_prepared = true;
1270 		if (!list_empty(&dev->power.entry))
1271 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1272 		put_device(dev);
1273 	}
1274 	mutex_unlock(&dpm_list_mtx);
1275 	return error;
1276 }
1277 
1278 /**
1279  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1280  * @state: PM transition of the system being carried out.
1281  *
1282  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1283  * callbacks for them.
1284  */
1285 int dpm_suspend_start(pm_message_t state)
1286 {
1287 	int error;
1288 
1289 	error = dpm_prepare(state);
1290 	if (error) {
1291 		suspend_stats.failed_prepare++;
1292 		dpm_save_failed_step(SUSPEND_PREPARE);
1293 	} else
1294 		error = dpm_suspend(state);
1295 	return error;
1296 }
1297 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1298 
1299 void __suspend_report_result(const char *function, void *fn, int ret)
1300 {
1301 	if (ret)
1302 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1303 }
1304 EXPORT_SYMBOL_GPL(__suspend_report_result);
1305 
1306 /**
1307  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1308  * @dev: Device to wait for.
1309  * @subordinate: Device that needs to wait for @dev.
1310  */
1311 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1312 {
1313 	dpm_wait(dev, subordinate->power.async_suspend);
1314 	return async_error;
1315 }
1316 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1317