xref: /linux/drivers/base/power/main.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will intialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/resume-trace.h>
25 #include <linux/rwsem.h>
26 
27 #include "../base.h"
28 #include "power.h"
29 
30 /*
31  * The entries in the dpm_list list are in a depth first order, simply
32  * because children are guaranteed to be discovered after parents, and
33  * are inserted at the back of the list on discovery.
34  *
35  * Since device_pm_add() may be called with a device semaphore held,
36  * we must never try to acquire a device semaphore while holding
37  * dpm_list_mutex.
38  */
39 
40 LIST_HEAD(dpm_list);
41 
42 static DEFINE_MUTEX(dpm_list_mtx);
43 
44 /*
45  * Set once the preparation of devices for a PM transition has started, reset
46  * before starting to resume devices.  Protected by dpm_list_mtx.
47  */
48 static bool transition_started;
49 
50 /**
51  *	device_pm_lock - lock the list of active devices used by the PM core
52  */
53 void device_pm_lock(void)
54 {
55 	mutex_lock(&dpm_list_mtx);
56 }
57 
58 /**
59  *	device_pm_unlock - unlock the list of active devices used by the PM core
60  */
61 void device_pm_unlock(void)
62 {
63 	mutex_unlock(&dpm_list_mtx);
64 }
65 
66 /**
67  *	device_pm_add - add a device to the list of active devices
68  *	@dev:	Device to be added to the list
69  */
70 int device_pm_add(struct device *dev)
71 {
72 	int error;
73 
74 	pr_debug("PM: Adding info for %s:%s\n",
75 		 dev->bus ? dev->bus->name : "No Bus",
76 		 kobject_name(&dev->kobj));
77 	mutex_lock(&dpm_list_mtx);
78 	if (dev->parent) {
79 		if (dev->parent->power.status >= DPM_SUSPENDING) {
80 			dev_warn(dev, "parent %s is sleeping, will not add\n",
81 				dev->parent->bus_id);
82 			WARN_ON(true);
83 		}
84 	} else if (transition_started) {
85 		/*
86 		 * We refuse to register parentless devices while a PM
87 		 * transition is in progress in order to avoid leaving them
88 		 * unhandled down the road
89 		 */
90 		WARN_ON(true);
91 	}
92 	error = dpm_sysfs_add(dev);
93 	if (!error) {
94 		dev->power.status = DPM_ON;
95 		list_add_tail(&dev->power.entry, &dpm_list);
96 	}
97 	mutex_unlock(&dpm_list_mtx);
98 	return error;
99 }
100 
101 /**
102  *	device_pm_remove - remove a device from the list of active devices
103  *	@dev:	Device to be removed from the list
104  *
105  *	This function also removes the device's PM-related sysfs attributes.
106  */
107 void device_pm_remove(struct device *dev)
108 {
109 	pr_debug("PM: Removing info for %s:%s\n",
110 		 dev->bus ? dev->bus->name : "No Bus",
111 		 kobject_name(&dev->kobj));
112 	mutex_lock(&dpm_list_mtx);
113 	dpm_sysfs_remove(dev);
114 	list_del_init(&dev->power.entry);
115 	mutex_unlock(&dpm_list_mtx);
116 }
117 
118 /**
119  *	pm_op - execute the PM operation appropiate for given PM event
120  *	@dev:	Device.
121  *	@ops:	PM operations to choose from.
122  *	@state:	PM transition of the system being carried out.
123  */
124 static int pm_op(struct device *dev, struct pm_ops *ops, pm_message_t state)
125 {
126 	int error = 0;
127 
128 	switch (state.event) {
129 #ifdef CONFIG_SUSPEND
130 	case PM_EVENT_SUSPEND:
131 		if (ops->suspend) {
132 			error = ops->suspend(dev);
133 			suspend_report_result(ops->suspend, error);
134 		}
135 		break;
136 	case PM_EVENT_RESUME:
137 		if (ops->resume) {
138 			error = ops->resume(dev);
139 			suspend_report_result(ops->resume, error);
140 		}
141 		break;
142 #endif /* CONFIG_SUSPEND */
143 #ifdef CONFIG_HIBERNATION
144 	case PM_EVENT_FREEZE:
145 	case PM_EVENT_QUIESCE:
146 		if (ops->freeze) {
147 			error = ops->freeze(dev);
148 			suspend_report_result(ops->freeze, error);
149 		}
150 		break;
151 	case PM_EVENT_HIBERNATE:
152 		if (ops->poweroff) {
153 			error = ops->poweroff(dev);
154 			suspend_report_result(ops->poweroff, error);
155 		}
156 		break;
157 	case PM_EVENT_THAW:
158 	case PM_EVENT_RECOVER:
159 		if (ops->thaw) {
160 			error = ops->thaw(dev);
161 			suspend_report_result(ops->thaw, error);
162 		}
163 		break;
164 	case PM_EVENT_RESTORE:
165 		if (ops->restore) {
166 			error = ops->restore(dev);
167 			suspend_report_result(ops->restore, error);
168 		}
169 		break;
170 #endif /* CONFIG_HIBERNATION */
171 	default:
172 		error = -EINVAL;
173 	}
174 	return error;
175 }
176 
177 /**
178  *	pm_noirq_op - execute the PM operation appropiate for given PM event
179  *	@dev:	Device.
180  *	@ops:	PM operations to choose from.
181  *	@state: PM transition of the system being carried out.
182  *
183  *	The operation is executed with interrupts disabled by the only remaining
184  *	functional CPU in the system.
185  */
186 static int pm_noirq_op(struct device *dev, struct pm_ext_ops *ops,
187 			pm_message_t state)
188 {
189 	int error = 0;
190 
191 	switch (state.event) {
192 #ifdef CONFIG_SUSPEND
193 	case PM_EVENT_SUSPEND:
194 		if (ops->suspend_noirq) {
195 			error = ops->suspend_noirq(dev);
196 			suspend_report_result(ops->suspend_noirq, error);
197 		}
198 		break;
199 	case PM_EVENT_RESUME:
200 		if (ops->resume_noirq) {
201 			error = ops->resume_noirq(dev);
202 			suspend_report_result(ops->resume_noirq, error);
203 		}
204 		break;
205 #endif /* CONFIG_SUSPEND */
206 #ifdef CONFIG_HIBERNATION
207 	case PM_EVENT_FREEZE:
208 	case PM_EVENT_QUIESCE:
209 		if (ops->freeze_noirq) {
210 			error = ops->freeze_noirq(dev);
211 			suspend_report_result(ops->freeze_noirq, error);
212 		}
213 		break;
214 	case PM_EVENT_HIBERNATE:
215 		if (ops->poweroff_noirq) {
216 			error = ops->poweroff_noirq(dev);
217 			suspend_report_result(ops->poweroff_noirq, error);
218 		}
219 		break;
220 	case PM_EVENT_THAW:
221 	case PM_EVENT_RECOVER:
222 		if (ops->thaw_noirq) {
223 			error = ops->thaw_noirq(dev);
224 			suspend_report_result(ops->thaw_noirq, error);
225 		}
226 		break;
227 	case PM_EVENT_RESTORE:
228 		if (ops->restore_noirq) {
229 			error = ops->restore_noirq(dev);
230 			suspend_report_result(ops->restore_noirq, error);
231 		}
232 		break;
233 #endif /* CONFIG_HIBERNATION */
234 	default:
235 		error = -EINVAL;
236 	}
237 	return error;
238 }
239 
240 static char *pm_verb(int event)
241 {
242 	switch (event) {
243 	case PM_EVENT_SUSPEND:
244 		return "suspend";
245 	case PM_EVENT_RESUME:
246 		return "resume";
247 	case PM_EVENT_FREEZE:
248 		return "freeze";
249 	case PM_EVENT_QUIESCE:
250 		return "quiesce";
251 	case PM_EVENT_HIBERNATE:
252 		return "hibernate";
253 	case PM_EVENT_THAW:
254 		return "thaw";
255 	case PM_EVENT_RESTORE:
256 		return "restore";
257 	case PM_EVENT_RECOVER:
258 		return "recover";
259 	default:
260 		return "(unknown PM event)";
261 	}
262 }
263 
264 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
265 {
266 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
267 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
268 		", may wakeup" : "");
269 }
270 
271 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
272 			int error)
273 {
274 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
275 		kobject_name(&dev->kobj), pm_verb(state.event), info, error);
276 }
277 
278 /*------------------------- Resume routines -------------------------*/
279 
280 /**
281  *	resume_device_noirq - Power on one device (early resume).
282  *	@dev:	Device.
283  *	@state: PM transition of the system being carried out.
284  *
285  *	Must be called with interrupts disabled.
286  */
287 static int resume_device_noirq(struct device *dev, pm_message_t state)
288 {
289 	int error = 0;
290 
291 	TRACE_DEVICE(dev);
292 	TRACE_RESUME(0);
293 
294 	if (!dev->bus)
295 		goto End;
296 
297 	if (dev->bus->pm) {
298 		pm_dev_dbg(dev, state, "EARLY ");
299 		error = pm_noirq_op(dev, dev->bus->pm, state);
300 	} else if (dev->bus->resume_early) {
301 		pm_dev_dbg(dev, state, "legacy EARLY ");
302 		error = dev->bus->resume_early(dev);
303 	}
304  End:
305 	TRACE_RESUME(error);
306 	return error;
307 }
308 
309 /**
310  *	dpm_power_up - Power on all regular (non-sysdev) devices.
311  *	@state: PM transition of the system being carried out.
312  *
313  *	Execute the appropriate "noirq resume" callback for all devices marked
314  *	as DPM_OFF_IRQ.
315  *
316  *	Must be called with interrupts disabled and only one CPU running.
317  */
318 static void dpm_power_up(pm_message_t state)
319 {
320 	struct device *dev;
321 
322 	list_for_each_entry(dev, &dpm_list, power.entry)
323 		if (dev->power.status > DPM_OFF) {
324 			int error;
325 
326 			dev->power.status = DPM_OFF;
327 			error = resume_device_noirq(dev, state);
328 			if (error)
329 				pm_dev_err(dev, state, " early", error);
330 		}
331 }
332 
333 /**
334  *	device_power_up - Turn on all devices that need special attention.
335  *	@state: PM transition of the system being carried out.
336  *
337  *	Power on system devices, then devices that required we shut them down
338  *	with interrupts disabled.
339  *
340  *	Must be called with interrupts disabled.
341  */
342 void device_power_up(pm_message_t state)
343 {
344 	sysdev_resume();
345 	dpm_power_up(state);
346 }
347 EXPORT_SYMBOL_GPL(device_power_up);
348 
349 /**
350  *	resume_device - Restore state for one device.
351  *	@dev:	Device.
352  *	@state: PM transition of the system being carried out.
353  */
354 static int resume_device(struct device *dev, pm_message_t state)
355 {
356 	int error = 0;
357 
358 	TRACE_DEVICE(dev);
359 	TRACE_RESUME(0);
360 
361 	down(&dev->sem);
362 
363 	if (dev->bus) {
364 		if (dev->bus->pm) {
365 			pm_dev_dbg(dev, state, "");
366 			error = pm_op(dev, &dev->bus->pm->base, state);
367 		} else if (dev->bus->resume) {
368 			pm_dev_dbg(dev, state, "legacy ");
369 			error = dev->bus->resume(dev);
370 		}
371 		if (error)
372 			goto End;
373 	}
374 
375 	if (dev->type) {
376 		if (dev->type->pm) {
377 			pm_dev_dbg(dev, state, "type ");
378 			error = pm_op(dev, dev->type->pm, state);
379 		} else if (dev->type->resume) {
380 			pm_dev_dbg(dev, state, "legacy type ");
381 			error = dev->type->resume(dev);
382 		}
383 		if (error)
384 			goto End;
385 	}
386 
387 	if (dev->class) {
388 		if (dev->class->pm) {
389 			pm_dev_dbg(dev, state, "class ");
390 			error = pm_op(dev, dev->class->pm, state);
391 		} else if (dev->class->resume) {
392 			pm_dev_dbg(dev, state, "legacy class ");
393 			error = dev->class->resume(dev);
394 		}
395 	}
396  End:
397 	up(&dev->sem);
398 
399 	TRACE_RESUME(error);
400 	return error;
401 }
402 
403 /**
404  *	dpm_resume - Resume every device.
405  *	@state: PM transition of the system being carried out.
406  *
407  *	Execute the appropriate "resume" callback for all devices the status of
408  *	which indicates that they are inactive.
409  */
410 static void dpm_resume(pm_message_t state)
411 {
412 	struct list_head list;
413 
414 	INIT_LIST_HEAD(&list);
415 	mutex_lock(&dpm_list_mtx);
416 	transition_started = false;
417 	while (!list_empty(&dpm_list)) {
418 		struct device *dev = to_device(dpm_list.next);
419 
420 		get_device(dev);
421 		if (dev->power.status >= DPM_OFF) {
422 			int error;
423 
424 			dev->power.status = DPM_RESUMING;
425 			mutex_unlock(&dpm_list_mtx);
426 
427 			error = resume_device(dev, state);
428 
429 			mutex_lock(&dpm_list_mtx);
430 			if (error)
431 				pm_dev_err(dev, state, "", error);
432 		} else if (dev->power.status == DPM_SUSPENDING) {
433 			/* Allow new children of the device to be registered */
434 			dev->power.status = DPM_RESUMING;
435 		}
436 		if (!list_empty(&dev->power.entry))
437 			list_move_tail(&dev->power.entry, &list);
438 		put_device(dev);
439 	}
440 	list_splice(&list, &dpm_list);
441 	mutex_unlock(&dpm_list_mtx);
442 }
443 
444 /**
445  *	complete_device - Complete a PM transition for given device
446  *	@dev:	Device.
447  *	@state: PM transition of the system being carried out.
448  */
449 static void complete_device(struct device *dev, pm_message_t state)
450 {
451 	down(&dev->sem);
452 
453 	if (dev->class && dev->class->pm && dev->class->pm->complete) {
454 		pm_dev_dbg(dev, state, "completing class ");
455 		dev->class->pm->complete(dev);
456 	}
457 
458 	if (dev->type && dev->type->pm && dev->type->pm->complete) {
459 		pm_dev_dbg(dev, state, "completing type ");
460 		dev->type->pm->complete(dev);
461 	}
462 
463 	if (dev->bus && dev->bus->pm && dev->bus->pm->base.complete) {
464 		pm_dev_dbg(dev, state, "completing ");
465 		dev->bus->pm->base.complete(dev);
466 	}
467 
468 	up(&dev->sem);
469 }
470 
471 /**
472  *	dpm_complete - Complete a PM transition for all devices.
473  *	@state: PM transition of the system being carried out.
474  *
475  *	Execute the ->complete() callbacks for all devices that are not marked
476  *	as DPM_ON.
477  */
478 static void dpm_complete(pm_message_t state)
479 {
480 	struct list_head list;
481 
482 	INIT_LIST_HEAD(&list);
483 	mutex_lock(&dpm_list_mtx);
484 	while (!list_empty(&dpm_list)) {
485 		struct device *dev = to_device(dpm_list.prev);
486 
487 		get_device(dev);
488 		if (dev->power.status > DPM_ON) {
489 			dev->power.status = DPM_ON;
490 			mutex_unlock(&dpm_list_mtx);
491 
492 			complete_device(dev, state);
493 
494 			mutex_lock(&dpm_list_mtx);
495 		}
496 		if (!list_empty(&dev->power.entry))
497 			list_move(&dev->power.entry, &list);
498 		put_device(dev);
499 	}
500 	list_splice(&list, &dpm_list);
501 	mutex_unlock(&dpm_list_mtx);
502 }
503 
504 /**
505  *	device_resume - Restore state of each device in system.
506  *	@state: PM transition of the system being carried out.
507  *
508  *	Resume all the devices, unlock them all, and allow new
509  *	devices to be registered once again.
510  */
511 void device_resume(pm_message_t state)
512 {
513 	might_sleep();
514 	dpm_resume(state);
515 	dpm_complete(state);
516 }
517 EXPORT_SYMBOL_GPL(device_resume);
518 
519 
520 /*------------------------- Suspend routines -------------------------*/
521 
522 /**
523  *	resume_event - return a PM message representing the resume event
524  *	               corresponding to given sleep state.
525  *	@sleep_state: PM message representing a sleep state.
526  */
527 static pm_message_t resume_event(pm_message_t sleep_state)
528 {
529 	switch (sleep_state.event) {
530 	case PM_EVENT_SUSPEND:
531 		return PMSG_RESUME;
532 	case PM_EVENT_FREEZE:
533 	case PM_EVENT_QUIESCE:
534 		return PMSG_RECOVER;
535 	case PM_EVENT_HIBERNATE:
536 		return PMSG_RESTORE;
537 	}
538 	return PMSG_ON;
539 }
540 
541 /**
542  *	suspend_device_noirq - Shut down one device (late suspend).
543  *	@dev:	Device.
544  *	@state: PM transition of the system being carried out.
545  *
546  *	This is called with interrupts off and only a single CPU running.
547  */
548 static int suspend_device_noirq(struct device *dev, pm_message_t state)
549 {
550 	int error = 0;
551 
552 	if (!dev->bus)
553 		return 0;
554 
555 	if (dev->bus->pm) {
556 		pm_dev_dbg(dev, state, "LATE ");
557 		error = pm_noirq_op(dev, dev->bus->pm, state);
558 	} else if (dev->bus->suspend_late) {
559 		pm_dev_dbg(dev, state, "legacy LATE ");
560 		error = dev->bus->suspend_late(dev, state);
561 		suspend_report_result(dev->bus->suspend_late, error);
562 	}
563 	return error;
564 }
565 
566 /**
567  *	device_power_down - Shut down special devices.
568  *	@state: PM transition of the system being carried out.
569  *
570  *	Power down devices that require interrupts to be disabled.
571  *	Then power down system devices.
572  *
573  *	Must be called with interrupts disabled and only one CPU running.
574  */
575 int device_power_down(pm_message_t state)
576 {
577 	struct device *dev;
578 	int error = 0;
579 
580 	list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
581 		error = suspend_device_noirq(dev, state);
582 		if (error) {
583 			pm_dev_err(dev, state, " late", error);
584 			break;
585 		}
586 		dev->power.status = DPM_OFF_IRQ;
587 	}
588 	if (!error)
589 		error = sysdev_suspend(state);
590 	if (error)
591 		dpm_power_up(resume_event(state));
592 	return error;
593 }
594 EXPORT_SYMBOL_GPL(device_power_down);
595 
596 /**
597  *	suspend_device - Save state of one device.
598  *	@dev:	Device.
599  *	@state: PM transition of the system being carried out.
600  */
601 static int suspend_device(struct device *dev, pm_message_t state)
602 {
603 	int error = 0;
604 
605 	down(&dev->sem);
606 
607 	if (dev->class) {
608 		if (dev->class->pm) {
609 			pm_dev_dbg(dev, state, "class ");
610 			error = pm_op(dev, dev->class->pm, state);
611 		} else if (dev->class->suspend) {
612 			pm_dev_dbg(dev, state, "legacy class ");
613 			error = dev->class->suspend(dev, state);
614 			suspend_report_result(dev->class->suspend, error);
615 		}
616 		if (error)
617 			goto End;
618 	}
619 
620 	if (dev->type) {
621 		if (dev->type->pm) {
622 			pm_dev_dbg(dev, state, "type ");
623 			error = pm_op(dev, dev->type->pm, state);
624 		} else if (dev->type->suspend) {
625 			pm_dev_dbg(dev, state, "legacy type ");
626 			error = dev->type->suspend(dev, state);
627 			suspend_report_result(dev->type->suspend, error);
628 		}
629 		if (error)
630 			goto End;
631 	}
632 
633 	if (dev->bus) {
634 		if (dev->bus->pm) {
635 			pm_dev_dbg(dev, state, "");
636 			error = pm_op(dev, &dev->bus->pm->base, state);
637 		} else if (dev->bus->suspend) {
638 			pm_dev_dbg(dev, state, "legacy ");
639 			error = dev->bus->suspend(dev, state);
640 			suspend_report_result(dev->bus->suspend, error);
641 		}
642 	}
643  End:
644 	up(&dev->sem);
645 
646 	return error;
647 }
648 
649 /**
650  *	dpm_suspend - Suspend every device.
651  *	@state: PM transition of the system being carried out.
652  *
653  *	Execute the appropriate "suspend" callbacks for all devices.
654  */
655 static int dpm_suspend(pm_message_t state)
656 {
657 	struct list_head list;
658 	int error = 0;
659 
660 	INIT_LIST_HEAD(&list);
661 	mutex_lock(&dpm_list_mtx);
662 	while (!list_empty(&dpm_list)) {
663 		struct device *dev = to_device(dpm_list.prev);
664 
665 		get_device(dev);
666 		mutex_unlock(&dpm_list_mtx);
667 
668 		error = suspend_device(dev, state);
669 
670 		mutex_lock(&dpm_list_mtx);
671 		if (error) {
672 			pm_dev_err(dev, state, "", error);
673 			put_device(dev);
674 			break;
675 		}
676 		dev->power.status = DPM_OFF;
677 		if (!list_empty(&dev->power.entry))
678 			list_move(&dev->power.entry, &list);
679 		put_device(dev);
680 	}
681 	list_splice(&list, dpm_list.prev);
682 	mutex_unlock(&dpm_list_mtx);
683 	return error;
684 }
685 
686 /**
687  *	prepare_device - Execute the ->prepare() callback(s) for given device.
688  *	@dev:	Device.
689  *	@state: PM transition of the system being carried out.
690  */
691 static int prepare_device(struct device *dev, pm_message_t state)
692 {
693 	int error = 0;
694 
695 	down(&dev->sem);
696 
697 	if (dev->bus && dev->bus->pm && dev->bus->pm->base.prepare) {
698 		pm_dev_dbg(dev, state, "preparing ");
699 		error = dev->bus->pm->base.prepare(dev);
700 		suspend_report_result(dev->bus->pm->base.prepare, error);
701 		if (error)
702 			goto End;
703 	}
704 
705 	if (dev->type && dev->type->pm && dev->type->pm->prepare) {
706 		pm_dev_dbg(dev, state, "preparing type ");
707 		error = dev->type->pm->prepare(dev);
708 		suspend_report_result(dev->type->pm->prepare, error);
709 		if (error)
710 			goto End;
711 	}
712 
713 	if (dev->class && dev->class->pm && dev->class->pm->prepare) {
714 		pm_dev_dbg(dev, state, "preparing class ");
715 		error = dev->class->pm->prepare(dev);
716 		suspend_report_result(dev->class->pm->prepare, error);
717 	}
718  End:
719 	up(&dev->sem);
720 
721 	return error;
722 }
723 
724 /**
725  *	dpm_prepare - Prepare all devices for a PM transition.
726  *	@state: PM transition of the system being carried out.
727  *
728  *	Execute the ->prepare() callback for all devices.
729  */
730 static int dpm_prepare(pm_message_t state)
731 {
732 	struct list_head list;
733 	int error = 0;
734 
735 	INIT_LIST_HEAD(&list);
736 	mutex_lock(&dpm_list_mtx);
737 	transition_started = true;
738 	while (!list_empty(&dpm_list)) {
739 		struct device *dev = to_device(dpm_list.next);
740 
741 		get_device(dev);
742 		dev->power.status = DPM_PREPARING;
743 		mutex_unlock(&dpm_list_mtx);
744 
745 		error = prepare_device(dev, state);
746 
747 		mutex_lock(&dpm_list_mtx);
748 		if (error) {
749 			dev->power.status = DPM_ON;
750 			if (error == -EAGAIN) {
751 				put_device(dev);
752 				continue;
753 			}
754 			printk(KERN_ERR "PM: Failed to prepare device %s "
755 				"for power transition: error %d\n",
756 				kobject_name(&dev->kobj), error);
757 			put_device(dev);
758 			break;
759 		}
760 		dev->power.status = DPM_SUSPENDING;
761 		if (!list_empty(&dev->power.entry))
762 			list_move_tail(&dev->power.entry, &list);
763 		put_device(dev);
764 	}
765 	list_splice(&list, &dpm_list);
766 	mutex_unlock(&dpm_list_mtx);
767 	return error;
768 }
769 
770 /**
771  *	device_suspend - Save state and stop all devices in system.
772  *	@state: PM transition of the system being carried out.
773  *
774  *	Prepare and suspend all devices.
775  */
776 int device_suspend(pm_message_t state)
777 {
778 	int error;
779 
780 	might_sleep();
781 	error = dpm_prepare(state);
782 	if (!error)
783 		error = dpm_suspend(state);
784 	return error;
785 }
786 EXPORT_SYMBOL_GPL(device_suspend);
787 
788 void __suspend_report_result(const char *function, void *fn, int ret)
789 {
790 	if (ret) {
791 		printk(KERN_ERR "%s(): ", function);
792 		print_fn_descriptor_symbol("%s returns ", fn);
793 		printk("%d\n", ret);
794 	}
795 }
796 EXPORT_SYMBOL_GPL(__suspend_report_result);
797