1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/mutex.h> 23 #include <linux/pm.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pm-trace.h> 26 #include <linux/pm_wakeirq.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/sched/debug.h> 30 #include <linux/async.h> 31 #include <linux/suspend.h> 32 #include <trace/events/power.h> 33 #include <linux/cpufreq.h> 34 #include <linux/cpuidle.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 /* 44 * The entries in the dpm_list list are in a depth first order, simply 45 * because children are guaranteed to be discovered after parents, and 46 * are inserted at the back of the list on discovery. 47 * 48 * Since device_pm_add() may be called with a device lock held, 49 * we must never try to acquire a device lock while holding 50 * dpm_list_mutex. 51 */ 52 53 LIST_HEAD(dpm_list); 54 static LIST_HEAD(dpm_prepared_list); 55 static LIST_HEAD(dpm_suspended_list); 56 static LIST_HEAD(dpm_late_early_list); 57 static LIST_HEAD(dpm_noirq_list); 58 59 struct suspend_stats suspend_stats; 60 static DEFINE_MUTEX(dpm_list_mtx); 61 static pm_message_t pm_transition; 62 63 static int async_error; 64 65 static const char *pm_verb(int event) 66 { 67 switch (event) { 68 case PM_EVENT_SUSPEND: 69 return "suspend"; 70 case PM_EVENT_RESUME: 71 return "resume"; 72 case PM_EVENT_FREEZE: 73 return "freeze"; 74 case PM_EVENT_QUIESCE: 75 return "quiesce"; 76 case PM_EVENT_HIBERNATE: 77 return "hibernate"; 78 case PM_EVENT_THAW: 79 return "thaw"; 80 case PM_EVENT_RESTORE: 81 return "restore"; 82 case PM_EVENT_RECOVER: 83 return "recover"; 84 default: 85 return "(unknown PM event)"; 86 } 87 } 88 89 /** 90 * device_pm_sleep_init - Initialize system suspend-related device fields. 91 * @dev: Device object being initialized. 92 */ 93 void device_pm_sleep_init(struct device *dev) 94 { 95 dev->power.is_prepared = false; 96 dev->power.is_suspended = false; 97 dev->power.is_noirq_suspended = false; 98 dev->power.is_late_suspended = false; 99 init_completion(&dev->power.completion); 100 complete_all(&dev->power.completion); 101 dev->power.wakeup = NULL; 102 INIT_LIST_HEAD(&dev->power.entry); 103 } 104 105 /** 106 * device_pm_lock - Lock the list of active devices used by the PM core. 107 */ 108 void device_pm_lock(void) 109 { 110 mutex_lock(&dpm_list_mtx); 111 } 112 113 /** 114 * device_pm_unlock - Unlock the list of active devices used by the PM core. 115 */ 116 void device_pm_unlock(void) 117 { 118 mutex_unlock(&dpm_list_mtx); 119 } 120 121 /** 122 * device_pm_add - Add a device to the PM core's list of active devices. 123 * @dev: Device to add to the list. 124 */ 125 void device_pm_add(struct device *dev) 126 { 127 /* Skip PM setup/initialization. */ 128 if (device_pm_not_required(dev)) 129 return; 130 131 pr_debug("Adding info for %s:%s\n", 132 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 133 device_pm_check_callbacks(dev); 134 mutex_lock(&dpm_list_mtx); 135 if (dev->parent && dev->parent->power.is_prepared) 136 dev_warn(dev, "parent %s should not be sleeping\n", 137 dev_name(dev->parent)); 138 list_add_tail(&dev->power.entry, &dpm_list); 139 dev->power.in_dpm_list = true; 140 mutex_unlock(&dpm_list_mtx); 141 } 142 143 /** 144 * device_pm_remove - Remove a device from the PM core's list of active devices. 145 * @dev: Device to be removed from the list. 146 */ 147 void device_pm_remove(struct device *dev) 148 { 149 if (device_pm_not_required(dev)) 150 return; 151 152 pr_debug("Removing info for %s:%s\n", 153 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 154 complete_all(&dev->power.completion); 155 mutex_lock(&dpm_list_mtx); 156 list_del_init(&dev->power.entry); 157 dev->power.in_dpm_list = false; 158 mutex_unlock(&dpm_list_mtx); 159 device_wakeup_disable(dev); 160 pm_runtime_remove(dev); 161 device_pm_check_callbacks(dev); 162 } 163 164 /** 165 * device_pm_move_before - Move device in the PM core's list of active devices. 166 * @deva: Device to move in dpm_list. 167 * @devb: Device @deva should come before. 168 */ 169 void device_pm_move_before(struct device *deva, struct device *devb) 170 { 171 pr_debug("Moving %s:%s before %s:%s\n", 172 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 173 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 174 /* Delete deva from dpm_list and reinsert before devb. */ 175 list_move_tail(&deva->power.entry, &devb->power.entry); 176 } 177 178 /** 179 * device_pm_move_after - Move device in the PM core's list of active devices. 180 * @deva: Device to move in dpm_list. 181 * @devb: Device @deva should come after. 182 */ 183 void device_pm_move_after(struct device *deva, struct device *devb) 184 { 185 pr_debug("Moving %s:%s after %s:%s\n", 186 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 187 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 188 /* Delete deva from dpm_list and reinsert after devb. */ 189 list_move(&deva->power.entry, &devb->power.entry); 190 } 191 192 /** 193 * device_pm_move_last - Move device to end of the PM core's list of devices. 194 * @dev: Device to move in dpm_list. 195 */ 196 void device_pm_move_last(struct device *dev) 197 { 198 pr_debug("Moving %s:%s to end of list\n", 199 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 200 list_move_tail(&dev->power.entry, &dpm_list); 201 } 202 203 static ktime_t initcall_debug_start(struct device *dev, void *cb) 204 { 205 if (!pm_print_times_enabled) 206 return 0; 207 208 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 209 task_pid_nr(current), 210 dev->parent ? dev_name(dev->parent) : "none"); 211 return ktime_get(); 212 } 213 214 static void initcall_debug_report(struct device *dev, ktime_t calltime, 215 void *cb, int error) 216 { 217 ktime_t rettime; 218 s64 nsecs; 219 220 if (!pm_print_times_enabled) 221 return; 222 223 rettime = ktime_get(); 224 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 225 226 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 227 (unsigned long long)nsecs >> 10); 228 } 229 230 /** 231 * dpm_wait - Wait for a PM operation to complete. 232 * @dev: Device to wait for. 233 * @async: If unset, wait only if the device's power.async_suspend flag is set. 234 */ 235 static void dpm_wait(struct device *dev, bool async) 236 { 237 if (!dev) 238 return; 239 240 if (async || (pm_async_enabled && dev->power.async_suspend)) 241 wait_for_completion(&dev->power.completion); 242 } 243 244 static int dpm_wait_fn(struct device *dev, void *async_ptr) 245 { 246 dpm_wait(dev, *((bool *)async_ptr)); 247 return 0; 248 } 249 250 static void dpm_wait_for_children(struct device *dev, bool async) 251 { 252 device_for_each_child(dev, &async, dpm_wait_fn); 253 } 254 255 static void dpm_wait_for_suppliers(struct device *dev, bool async) 256 { 257 struct device_link *link; 258 int idx; 259 260 idx = device_links_read_lock(); 261 262 /* 263 * If the supplier goes away right after we've checked the link to it, 264 * we'll wait for its completion to change the state, but that's fine, 265 * because the only things that will block as a result are the SRCU 266 * callbacks freeing the link objects for the links in the list we're 267 * walking. 268 */ 269 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) 270 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 271 dpm_wait(link->supplier, async); 272 273 device_links_read_unlock(idx); 274 } 275 276 static bool dpm_wait_for_superior(struct device *dev, bool async) 277 { 278 struct device *parent; 279 280 /* 281 * If the device is resumed asynchronously and the parent's callback 282 * deletes both the device and the parent itself, the parent object may 283 * be freed while this function is running, so avoid that by reference 284 * counting the parent once more unless the device has been deleted 285 * already (in which case return right away). 286 */ 287 mutex_lock(&dpm_list_mtx); 288 289 if (!device_pm_initialized(dev)) { 290 mutex_unlock(&dpm_list_mtx); 291 return false; 292 } 293 294 parent = get_device(dev->parent); 295 296 mutex_unlock(&dpm_list_mtx); 297 298 dpm_wait(parent, async); 299 put_device(parent); 300 301 dpm_wait_for_suppliers(dev, async); 302 303 /* 304 * If the parent's callback has deleted the device, attempting to resume 305 * it would be invalid, so avoid doing that then. 306 */ 307 return device_pm_initialized(dev); 308 } 309 310 static void dpm_wait_for_consumers(struct device *dev, bool async) 311 { 312 struct device_link *link; 313 int idx; 314 315 idx = device_links_read_lock(); 316 317 /* 318 * The status of a device link can only be changed from "dormant" by a 319 * probe, but that cannot happen during system suspend/resume. In 320 * theory it can change to "dormant" at that time, but then it is 321 * reasonable to wait for the target device anyway (eg. if it goes 322 * away, it's better to wait for it to go away completely and then 323 * continue instead of trying to continue in parallel with its 324 * unregistration). 325 */ 326 list_for_each_entry_rcu(link, &dev->links.consumers, s_node) 327 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 328 dpm_wait(link->consumer, async); 329 330 device_links_read_unlock(idx); 331 } 332 333 static void dpm_wait_for_subordinate(struct device *dev, bool async) 334 { 335 dpm_wait_for_children(dev, async); 336 dpm_wait_for_consumers(dev, async); 337 } 338 339 /** 340 * pm_op - Return the PM operation appropriate for given PM event. 341 * @ops: PM operations to choose from. 342 * @state: PM transition of the system being carried out. 343 */ 344 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 345 { 346 switch (state.event) { 347 #ifdef CONFIG_SUSPEND 348 case PM_EVENT_SUSPEND: 349 return ops->suspend; 350 case PM_EVENT_RESUME: 351 return ops->resume; 352 #endif /* CONFIG_SUSPEND */ 353 #ifdef CONFIG_HIBERNATE_CALLBACKS 354 case PM_EVENT_FREEZE: 355 case PM_EVENT_QUIESCE: 356 return ops->freeze; 357 case PM_EVENT_HIBERNATE: 358 return ops->poweroff; 359 case PM_EVENT_THAW: 360 case PM_EVENT_RECOVER: 361 return ops->thaw; 362 break; 363 case PM_EVENT_RESTORE: 364 return ops->restore; 365 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 366 } 367 368 return NULL; 369 } 370 371 /** 372 * pm_late_early_op - Return the PM operation appropriate for given PM event. 373 * @ops: PM operations to choose from. 374 * @state: PM transition of the system being carried out. 375 * 376 * Runtime PM is disabled for @dev while this function is being executed. 377 */ 378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 379 pm_message_t state) 380 { 381 switch (state.event) { 382 #ifdef CONFIG_SUSPEND 383 case PM_EVENT_SUSPEND: 384 return ops->suspend_late; 385 case PM_EVENT_RESUME: 386 return ops->resume_early; 387 #endif /* CONFIG_SUSPEND */ 388 #ifdef CONFIG_HIBERNATE_CALLBACKS 389 case PM_EVENT_FREEZE: 390 case PM_EVENT_QUIESCE: 391 return ops->freeze_late; 392 case PM_EVENT_HIBERNATE: 393 return ops->poweroff_late; 394 case PM_EVENT_THAW: 395 case PM_EVENT_RECOVER: 396 return ops->thaw_early; 397 case PM_EVENT_RESTORE: 398 return ops->restore_early; 399 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 400 } 401 402 return NULL; 403 } 404 405 /** 406 * pm_noirq_op - Return the PM operation appropriate for given PM event. 407 * @ops: PM operations to choose from. 408 * @state: PM transition of the system being carried out. 409 * 410 * The driver of @dev will not receive interrupts while this function is being 411 * executed. 412 */ 413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 414 { 415 switch (state.event) { 416 #ifdef CONFIG_SUSPEND 417 case PM_EVENT_SUSPEND: 418 return ops->suspend_noirq; 419 case PM_EVENT_RESUME: 420 return ops->resume_noirq; 421 #endif /* CONFIG_SUSPEND */ 422 #ifdef CONFIG_HIBERNATE_CALLBACKS 423 case PM_EVENT_FREEZE: 424 case PM_EVENT_QUIESCE: 425 return ops->freeze_noirq; 426 case PM_EVENT_HIBERNATE: 427 return ops->poweroff_noirq; 428 case PM_EVENT_THAW: 429 case PM_EVENT_RECOVER: 430 return ops->thaw_noirq; 431 case PM_EVENT_RESTORE: 432 return ops->restore_noirq; 433 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 434 } 435 436 return NULL; 437 } 438 439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 440 { 441 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 443 ", may wakeup" : ""); 444 } 445 446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 447 int error) 448 { 449 pr_err("Device %s failed to %s%s: error %d\n", 450 dev_name(dev), pm_verb(state.event), info, error); 451 } 452 453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 454 const char *info) 455 { 456 ktime_t calltime; 457 u64 usecs64; 458 int usecs; 459 460 calltime = ktime_get(); 461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 462 do_div(usecs64, NSEC_PER_USEC); 463 usecs = usecs64; 464 if (usecs == 0) 465 usecs = 1; 466 467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 468 info ?: "", info ? " " : "", pm_verb(state.event), 469 error ? "aborted" : "complete", 470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 471 } 472 473 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 474 pm_message_t state, const char *info) 475 { 476 ktime_t calltime; 477 int error; 478 479 if (!cb) 480 return 0; 481 482 calltime = initcall_debug_start(dev, cb); 483 484 pm_dev_dbg(dev, state, info); 485 trace_device_pm_callback_start(dev, info, state.event); 486 error = cb(dev); 487 trace_device_pm_callback_end(dev, error); 488 suspend_report_result(cb, error); 489 490 initcall_debug_report(dev, calltime, cb, error); 491 492 return error; 493 } 494 495 #ifdef CONFIG_DPM_WATCHDOG 496 struct dpm_watchdog { 497 struct device *dev; 498 struct task_struct *tsk; 499 struct timer_list timer; 500 }; 501 502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 503 struct dpm_watchdog wd 504 505 /** 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 507 * @t: The timer that PM watchdog depends on. 508 * 509 * Called when a driver has timed out suspending or resuming. 510 * There's not much we can do here to recover so panic() to 511 * capture a crash-dump in pstore. 512 */ 513 static void dpm_watchdog_handler(struct timer_list *t) 514 { 515 struct dpm_watchdog *wd = from_timer(wd, t, timer); 516 517 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 518 show_stack(wd->tsk, NULL); 519 panic("%s %s: unrecoverable failure\n", 520 dev_driver_string(wd->dev), dev_name(wd->dev)); 521 } 522 523 /** 524 * dpm_watchdog_set - Enable pm watchdog for given device. 525 * @wd: Watchdog. Must be allocated on the stack. 526 * @dev: Device to handle. 527 */ 528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 529 { 530 struct timer_list *timer = &wd->timer; 531 532 wd->dev = dev; 533 wd->tsk = current; 534 535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 536 /* use same timeout value for both suspend and resume */ 537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 538 add_timer(timer); 539 } 540 541 /** 542 * dpm_watchdog_clear - Disable suspend/resume watchdog. 543 * @wd: Watchdog to disable. 544 */ 545 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 546 { 547 struct timer_list *timer = &wd->timer; 548 549 del_timer_sync(timer); 550 destroy_timer_on_stack(timer); 551 } 552 #else 553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 554 #define dpm_watchdog_set(x, y) 555 #define dpm_watchdog_clear(x) 556 #endif 557 558 /*------------------------- Resume routines -------------------------*/ 559 560 /** 561 * suspend_event - Return a "suspend" message for given "resume" one. 562 * @resume_msg: PM message representing a system-wide resume transition. 563 */ 564 static pm_message_t suspend_event(pm_message_t resume_msg) 565 { 566 switch (resume_msg.event) { 567 case PM_EVENT_RESUME: 568 return PMSG_SUSPEND; 569 case PM_EVENT_THAW: 570 case PM_EVENT_RESTORE: 571 return PMSG_FREEZE; 572 case PM_EVENT_RECOVER: 573 return PMSG_HIBERNATE; 574 } 575 return PMSG_ON; 576 } 577 578 /** 579 * dev_pm_may_skip_resume - System-wide device resume optimization check. 580 * @dev: Target device. 581 * 582 * Checks whether or not the device may be left in suspend after a system-wide 583 * transition to the working state. 584 */ 585 bool dev_pm_may_skip_resume(struct device *dev) 586 { 587 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE; 588 } 589 590 static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev, 591 pm_message_t state, 592 const char **info_p) 593 { 594 pm_callback_t callback; 595 const char *info; 596 597 if (dev->pm_domain) { 598 info = "noirq power domain "; 599 callback = pm_noirq_op(&dev->pm_domain->ops, state); 600 } else if (dev->type && dev->type->pm) { 601 info = "noirq type "; 602 callback = pm_noirq_op(dev->type->pm, state); 603 } else if (dev->class && dev->class->pm) { 604 info = "noirq class "; 605 callback = pm_noirq_op(dev->class->pm, state); 606 } else if (dev->bus && dev->bus->pm) { 607 info = "noirq bus "; 608 callback = pm_noirq_op(dev->bus->pm, state); 609 } else { 610 return NULL; 611 } 612 613 if (info_p) 614 *info_p = info; 615 616 return callback; 617 } 618 619 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev, 620 pm_message_t state, 621 const char **info_p); 622 623 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev, 624 pm_message_t state, 625 const char **info_p); 626 627 /** 628 * device_resume_noirq - Execute a "noirq resume" callback for given device. 629 * @dev: Device to handle. 630 * @state: PM transition of the system being carried out. 631 * @async: If true, the device is being resumed asynchronously. 632 * 633 * The driver of @dev will not receive interrupts while this function is being 634 * executed. 635 */ 636 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 637 { 638 pm_callback_t callback; 639 const char *info; 640 bool skip_resume; 641 int error = 0; 642 643 TRACE_DEVICE(dev); 644 TRACE_RESUME(0); 645 646 if (dev->power.syscore || dev->power.direct_complete) 647 goto Out; 648 649 if (!dev->power.is_noirq_suspended) 650 goto Out; 651 652 if (!dpm_wait_for_superior(dev, async)) 653 goto Out; 654 655 skip_resume = dev_pm_may_skip_resume(dev); 656 657 callback = dpm_subsys_resume_noirq_cb(dev, state, &info); 658 if (callback) 659 goto Run; 660 661 if (skip_resume) 662 goto Skip; 663 664 if (dev_pm_smart_suspend_and_suspended(dev)) { 665 pm_message_t suspend_msg = suspend_event(state); 666 667 /* 668 * If "freeze" callbacks have been skipped during a transition 669 * related to hibernation, the subsequent "thaw" callbacks must 670 * be skipped too or bad things may happen. Otherwise, resume 671 * callbacks are going to be run for the device, so its runtime 672 * PM status must be changed to reflect the new state after the 673 * transition under way. 674 */ 675 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) && 676 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) { 677 if (state.event == PM_EVENT_THAW) { 678 skip_resume = true; 679 goto Skip; 680 } else { 681 pm_runtime_set_active(dev); 682 } 683 } 684 } 685 686 if (dev->driver && dev->driver->pm) { 687 info = "noirq driver "; 688 callback = pm_noirq_op(dev->driver->pm, state); 689 } 690 691 Run: 692 error = dpm_run_callback(callback, dev, state, info); 693 694 Skip: 695 dev->power.is_noirq_suspended = false; 696 697 if (skip_resume) { 698 /* Make the next phases of resume skip the device. */ 699 dev->power.is_late_suspended = false; 700 dev->power.is_suspended = false; 701 /* 702 * The device is going to be left in suspend, but it might not 703 * have been in runtime suspend before the system suspended, so 704 * its runtime PM status needs to be updated to avoid confusing 705 * the runtime PM framework when runtime PM is enabled for the 706 * device again. 707 */ 708 pm_runtime_set_suspended(dev); 709 } 710 711 Out: 712 complete_all(&dev->power.completion); 713 TRACE_RESUME(error); 714 return error; 715 } 716 717 static bool is_async(struct device *dev) 718 { 719 return dev->power.async_suspend && pm_async_enabled 720 && !pm_trace_is_enabled(); 721 } 722 723 static bool dpm_async_fn(struct device *dev, async_func_t func) 724 { 725 reinit_completion(&dev->power.completion); 726 727 if (is_async(dev)) { 728 get_device(dev); 729 async_schedule(func, dev); 730 return true; 731 } 732 733 return false; 734 } 735 736 static void async_resume_noirq(void *data, async_cookie_t cookie) 737 { 738 struct device *dev = (struct device *)data; 739 int error; 740 741 error = device_resume_noirq(dev, pm_transition, true); 742 if (error) 743 pm_dev_err(dev, pm_transition, " async", error); 744 745 put_device(dev); 746 } 747 748 static void dpm_noirq_resume_devices(pm_message_t state) 749 { 750 struct device *dev; 751 ktime_t starttime = ktime_get(); 752 753 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 754 mutex_lock(&dpm_list_mtx); 755 pm_transition = state; 756 757 /* 758 * Advanced the async threads upfront, 759 * in case the starting of async threads is 760 * delayed by non-async resuming devices. 761 */ 762 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 763 dpm_async_fn(dev, async_resume_noirq); 764 765 while (!list_empty(&dpm_noirq_list)) { 766 dev = to_device(dpm_noirq_list.next); 767 get_device(dev); 768 list_move_tail(&dev->power.entry, &dpm_late_early_list); 769 mutex_unlock(&dpm_list_mtx); 770 771 if (!is_async(dev)) { 772 int error; 773 774 error = device_resume_noirq(dev, state, false); 775 if (error) { 776 suspend_stats.failed_resume_noirq++; 777 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 778 dpm_save_failed_dev(dev_name(dev)); 779 pm_dev_err(dev, state, " noirq", error); 780 } 781 } 782 783 mutex_lock(&dpm_list_mtx); 784 put_device(dev); 785 } 786 mutex_unlock(&dpm_list_mtx); 787 async_synchronize_full(); 788 dpm_show_time(starttime, state, 0, "noirq"); 789 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 790 } 791 792 /** 793 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 794 * @state: PM transition of the system being carried out. 795 * 796 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 797 * allow device drivers' interrupt handlers to be called. 798 */ 799 void dpm_resume_noirq(pm_message_t state) 800 { 801 dpm_noirq_resume_devices(state); 802 803 resume_device_irqs(); 804 device_wakeup_disarm_wake_irqs(); 805 806 cpuidle_resume(); 807 } 808 809 static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev, 810 pm_message_t state, 811 const char **info_p) 812 { 813 pm_callback_t callback; 814 const char *info; 815 816 if (dev->pm_domain) { 817 info = "early power domain "; 818 callback = pm_late_early_op(&dev->pm_domain->ops, state); 819 } else if (dev->type && dev->type->pm) { 820 info = "early type "; 821 callback = pm_late_early_op(dev->type->pm, state); 822 } else if (dev->class && dev->class->pm) { 823 info = "early class "; 824 callback = pm_late_early_op(dev->class->pm, state); 825 } else if (dev->bus && dev->bus->pm) { 826 info = "early bus "; 827 callback = pm_late_early_op(dev->bus->pm, state); 828 } else { 829 return NULL; 830 } 831 832 if (info_p) 833 *info_p = info; 834 835 return callback; 836 } 837 838 /** 839 * device_resume_early - Execute an "early resume" callback for given device. 840 * @dev: Device to handle. 841 * @state: PM transition of the system being carried out. 842 * @async: If true, the device is being resumed asynchronously. 843 * 844 * Runtime PM is disabled for @dev while this function is being executed. 845 */ 846 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 847 { 848 pm_callback_t callback; 849 const char *info; 850 int error = 0; 851 852 TRACE_DEVICE(dev); 853 TRACE_RESUME(0); 854 855 if (dev->power.syscore || dev->power.direct_complete) 856 goto Out; 857 858 if (!dev->power.is_late_suspended) 859 goto Out; 860 861 if (!dpm_wait_for_superior(dev, async)) 862 goto Out; 863 864 callback = dpm_subsys_resume_early_cb(dev, state, &info); 865 866 if (!callback && dev->driver && dev->driver->pm) { 867 info = "early driver "; 868 callback = pm_late_early_op(dev->driver->pm, state); 869 } 870 871 error = dpm_run_callback(callback, dev, state, info); 872 dev->power.is_late_suspended = false; 873 874 Out: 875 TRACE_RESUME(error); 876 877 pm_runtime_enable(dev); 878 complete_all(&dev->power.completion); 879 return error; 880 } 881 882 static void async_resume_early(void *data, async_cookie_t cookie) 883 { 884 struct device *dev = (struct device *)data; 885 int error; 886 887 error = device_resume_early(dev, pm_transition, true); 888 if (error) 889 pm_dev_err(dev, pm_transition, " async", error); 890 891 put_device(dev); 892 } 893 894 /** 895 * dpm_resume_early - Execute "early resume" callbacks for all devices. 896 * @state: PM transition of the system being carried out. 897 */ 898 void dpm_resume_early(pm_message_t state) 899 { 900 struct device *dev; 901 ktime_t starttime = ktime_get(); 902 903 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 904 mutex_lock(&dpm_list_mtx); 905 pm_transition = state; 906 907 /* 908 * Advanced the async threads upfront, 909 * in case the starting of async threads is 910 * delayed by non-async resuming devices. 911 */ 912 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 913 dpm_async_fn(dev, async_resume_early); 914 915 while (!list_empty(&dpm_late_early_list)) { 916 dev = to_device(dpm_late_early_list.next); 917 get_device(dev); 918 list_move_tail(&dev->power.entry, &dpm_suspended_list); 919 mutex_unlock(&dpm_list_mtx); 920 921 if (!is_async(dev)) { 922 int error; 923 924 error = device_resume_early(dev, state, false); 925 if (error) { 926 suspend_stats.failed_resume_early++; 927 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 928 dpm_save_failed_dev(dev_name(dev)); 929 pm_dev_err(dev, state, " early", error); 930 } 931 } 932 mutex_lock(&dpm_list_mtx); 933 put_device(dev); 934 } 935 mutex_unlock(&dpm_list_mtx); 936 async_synchronize_full(); 937 dpm_show_time(starttime, state, 0, "early"); 938 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 939 } 940 941 /** 942 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 943 * @state: PM transition of the system being carried out. 944 */ 945 void dpm_resume_start(pm_message_t state) 946 { 947 dpm_resume_noirq(state); 948 dpm_resume_early(state); 949 } 950 EXPORT_SYMBOL_GPL(dpm_resume_start); 951 952 /** 953 * device_resume - Execute "resume" callbacks for given device. 954 * @dev: Device to handle. 955 * @state: PM transition of the system being carried out. 956 * @async: If true, the device is being resumed asynchronously. 957 */ 958 static int device_resume(struct device *dev, pm_message_t state, bool async) 959 { 960 pm_callback_t callback = NULL; 961 const char *info = NULL; 962 int error = 0; 963 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 964 965 TRACE_DEVICE(dev); 966 TRACE_RESUME(0); 967 968 if (dev->power.syscore) 969 goto Complete; 970 971 if (dev->power.direct_complete) { 972 /* Match the pm_runtime_disable() in __device_suspend(). */ 973 pm_runtime_enable(dev); 974 goto Complete; 975 } 976 977 if (!dpm_wait_for_superior(dev, async)) 978 goto Complete; 979 980 dpm_watchdog_set(&wd, dev); 981 device_lock(dev); 982 983 /* 984 * This is a fib. But we'll allow new children to be added below 985 * a resumed device, even if the device hasn't been completed yet. 986 */ 987 dev->power.is_prepared = false; 988 989 if (!dev->power.is_suspended) 990 goto Unlock; 991 992 if (dev->pm_domain) { 993 info = "power domain "; 994 callback = pm_op(&dev->pm_domain->ops, state); 995 goto Driver; 996 } 997 998 if (dev->type && dev->type->pm) { 999 info = "type "; 1000 callback = pm_op(dev->type->pm, state); 1001 goto Driver; 1002 } 1003 1004 if (dev->class && dev->class->pm) { 1005 info = "class "; 1006 callback = pm_op(dev->class->pm, state); 1007 goto Driver; 1008 } 1009 1010 if (dev->bus) { 1011 if (dev->bus->pm) { 1012 info = "bus "; 1013 callback = pm_op(dev->bus->pm, state); 1014 } else if (dev->bus->resume) { 1015 info = "legacy bus "; 1016 callback = dev->bus->resume; 1017 goto End; 1018 } 1019 } 1020 1021 Driver: 1022 if (!callback && dev->driver && dev->driver->pm) { 1023 info = "driver "; 1024 callback = pm_op(dev->driver->pm, state); 1025 } 1026 1027 End: 1028 error = dpm_run_callback(callback, dev, state, info); 1029 dev->power.is_suspended = false; 1030 1031 Unlock: 1032 device_unlock(dev); 1033 dpm_watchdog_clear(&wd); 1034 1035 Complete: 1036 complete_all(&dev->power.completion); 1037 1038 TRACE_RESUME(error); 1039 1040 return error; 1041 } 1042 1043 static void async_resume(void *data, async_cookie_t cookie) 1044 { 1045 struct device *dev = (struct device *)data; 1046 int error; 1047 1048 error = device_resume(dev, pm_transition, true); 1049 if (error) 1050 pm_dev_err(dev, pm_transition, " async", error); 1051 put_device(dev); 1052 } 1053 1054 /** 1055 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 1056 * @state: PM transition of the system being carried out. 1057 * 1058 * Execute the appropriate "resume" callback for all devices whose status 1059 * indicates that they are suspended. 1060 */ 1061 void dpm_resume(pm_message_t state) 1062 { 1063 struct device *dev; 1064 ktime_t starttime = ktime_get(); 1065 1066 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1067 might_sleep(); 1068 1069 mutex_lock(&dpm_list_mtx); 1070 pm_transition = state; 1071 async_error = 0; 1072 1073 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1074 dpm_async_fn(dev, async_resume); 1075 1076 while (!list_empty(&dpm_suspended_list)) { 1077 dev = to_device(dpm_suspended_list.next); 1078 get_device(dev); 1079 if (!is_async(dev)) { 1080 int error; 1081 1082 mutex_unlock(&dpm_list_mtx); 1083 1084 error = device_resume(dev, state, false); 1085 if (error) { 1086 suspend_stats.failed_resume++; 1087 dpm_save_failed_step(SUSPEND_RESUME); 1088 dpm_save_failed_dev(dev_name(dev)); 1089 pm_dev_err(dev, state, "", error); 1090 } 1091 1092 mutex_lock(&dpm_list_mtx); 1093 } 1094 if (!list_empty(&dev->power.entry)) 1095 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1096 put_device(dev); 1097 } 1098 mutex_unlock(&dpm_list_mtx); 1099 async_synchronize_full(); 1100 dpm_show_time(starttime, state, 0, NULL); 1101 1102 cpufreq_resume(); 1103 devfreq_resume(); 1104 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1105 } 1106 1107 /** 1108 * device_complete - Complete a PM transition for given device. 1109 * @dev: Device to handle. 1110 * @state: PM transition of the system being carried out. 1111 */ 1112 static void device_complete(struct device *dev, pm_message_t state) 1113 { 1114 void (*callback)(struct device *) = NULL; 1115 const char *info = NULL; 1116 1117 if (dev->power.syscore) 1118 return; 1119 1120 device_lock(dev); 1121 1122 if (dev->pm_domain) { 1123 info = "completing power domain "; 1124 callback = dev->pm_domain->ops.complete; 1125 } else if (dev->type && dev->type->pm) { 1126 info = "completing type "; 1127 callback = dev->type->pm->complete; 1128 } else if (dev->class && dev->class->pm) { 1129 info = "completing class "; 1130 callback = dev->class->pm->complete; 1131 } else if (dev->bus && dev->bus->pm) { 1132 info = "completing bus "; 1133 callback = dev->bus->pm->complete; 1134 } 1135 1136 if (!callback && dev->driver && dev->driver->pm) { 1137 info = "completing driver "; 1138 callback = dev->driver->pm->complete; 1139 } 1140 1141 if (callback) { 1142 pm_dev_dbg(dev, state, info); 1143 callback(dev); 1144 } 1145 1146 device_unlock(dev); 1147 1148 pm_runtime_put(dev); 1149 } 1150 1151 /** 1152 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1153 * @state: PM transition of the system being carried out. 1154 * 1155 * Execute the ->complete() callbacks for all devices whose PM status is not 1156 * DPM_ON (this allows new devices to be registered). 1157 */ 1158 void dpm_complete(pm_message_t state) 1159 { 1160 struct list_head list; 1161 1162 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1163 might_sleep(); 1164 1165 INIT_LIST_HEAD(&list); 1166 mutex_lock(&dpm_list_mtx); 1167 while (!list_empty(&dpm_prepared_list)) { 1168 struct device *dev = to_device(dpm_prepared_list.prev); 1169 1170 get_device(dev); 1171 dev->power.is_prepared = false; 1172 list_move(&dev->power.entry, &list); 1173 mutex_unlock(&dpm_list_mtx); 1174 1175 trace_device_pm_callback_start(dev, "", state.event); 1176 device_complete(dev, state); 1177 trace_device_pm_callback_end(dev, 0); 1178 1179 mutex_lock(&dpm_list_mtx); 1180 put_device(dev); 1181 } 1182 list_splice(&list, &dpm_list); 1183 mutex_unlock(&dpm_list_mtx); 1184 1185 /* Allow device probing and trigger re-probing of deferred devices */ 1186 device_unblock_probing(); 1187 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1188 } 1189 1190 /** 1191 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1192 * @state: PM transition of the system being carried out. 1193 * 1194 * Execute "resume" callbacks for all devices and complete the PM transition of 1195 * the system. 1196 */ 1197 void dpm_resume_end(pm_message_t state) 1198 { 1199 dpm_resume(state); 1200 dpm_complete(state); 1201 } 1202 EXPORT_SYMBOL_GPL(dpm_resume_end); 1203 1204 1205 /*------------------------- Suspend routines -------------------------*/ 1206 1207 /** 1208 * resume_event - Return a "resume" message for given "suspend" sleep state. 1209 * @sleep_state: PM message representing a sleep state. 1210 * 1211 * Return a PM message representing the resume event corresponding to given 1212 * sleep state. 1213 */ 1214 static pm_message_t resume_event(pm_message_t sleep_state) 1215 { 1216 switch (sleep_state.event) { 1217 case PM_EVENT_SUSPEND: 1218 return PMSG_RESUME; 1219 case PM_EVENT_FREEZE: 1220 case PM_EVENT_QUIESCE: 1221 return PMSG_RECOVER; 1222 case PM_EVENT_HIBERNATE: 1223 return PMSG_RESTORE; 1224 } 1225 return PMSG_ON; 1226 } 1227 1228 static void dpm_superior_set_must_resume(struct device *dev) 1229 { 1230 struct device_link *link; 1231 int idx; 1232 1233 if (dev->parent) 1234 dev->parent->power.must_resume = true; 1235 1236 idx = device_links_read_lock(); 1237 1238 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) 1239 link->supplier->power.must_resume = true; 1240 1241 device_links_read_unlock(idx); 1242 } 1243 1244 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev, 1245 pm_message_t state, 1246 const char **info_p) 1247 { 1248 pm_callback_t callback; 1249 const char *info; 1250 1251 if (dev->pm_domain) { 1252 info = "noirq power domain "; 1253 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1254 } else if (dev->type && dev->type->pm) { 1255 info = "noirq type "; 1256 callback = pm_noirq_op(dev->type->pm, state); 1257 } else if (dev->class && dev->class->pm) { 1258 info = "noirq class "; 1259 callback = pm_noirq_op(dev->class->pm, state); 1260 } else if (dev->bus && dev->bus->pm) { 1261 info = "noirq bus "; 1262 callback = pm_noirq_op(dev->bus->pm, state); 1263 } else { 1264 return NULL; 1265 } 1266 1267 if (info_p) 1268 *info_p = info; 1269 1270 return callback; 1271 } 1272 1273 static bool device_must_resume(struct device *dev, pm_message_t state, 1274 bool no_subsys_suspend_noirq) 1275 { 1276 pm_message_t resume_msg = resume_event(state); 1277 1278 /* 1279 * If all of the device driver's "noirq", "late" and "early" callbacks 1280 * are invoked directly by the core, the decision to allow the device to 1281 * stay in suspend can be based on its current runtime PM status and its 1282 * wakeup settings. 1283 */ 1284 if (no_subsys_suspend_noirq && 1285 !dpm_subsys_suspend_late_cb(dev, state, NULL) && 1286 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) && 1287 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL)) 1288 return !pm_runtime_status_suspended(dev) && 1289 (resume_msg.event != PM_EVENT_RESUME || 1290 (device_can_wakeup(dev) && !device_may_wakeup(dev))); 1291 1292 /* 1293 * The only safe strategy here is to require that if the device may not 1294 * be left in suspend, resume callbacks must be invoked for it. 1295 */ 1296 return !dev->power.may_skip_resume; 1297 } 1298 1299 /** 1300 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1301 * @dev: Device to handle. 1302 * @state: PM transition of the system being carried out. 1303 * @async: If true, the device is being suspended asynchronously. 1304 * 1305 * The driver of @dev will not receive interrupts while this function is being 1306 * executed. 1307 */ 1308 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1309 { 1310 pm_callback_t callback; 1311 const char *info; 1312 bool no_subsys_cb = false; 1313 int error = 0; 1314 1315 TRACE_DEVICE(dev); 1316 TRACE_SUSPEND(0); 1317 1318 dpm_wait_for_subordinate(dev, async); 1319 1320 if (async_error) 1321 goto Complete; 1322 1323 if (dev->power.syscore || dev->power.direct_complete) 1324 goto Complete; 1325 1326 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info); 1327 if (callback) 1328 goto Run; 1329 1330 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL); 1331 1332 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb) 1333 goto Skip; 1334 1335 if (dev->driver && dev->driver->pm) { 1336 info = "noirq driver "; 1337 callback = pm_noirq_op(dev->driver->pm, state); 1338 } 1339 1340 Run: 1341 error = dpm_run_callback(callback, dev, state, info); 1342 if (error) { 1343 async_error = error; 1344 goto Complete; 1345 } 1346 1347 Skip: 1348 dev->power.is_noirq_suspended = true; 1349 1350 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) { 1351 dev->power.must_resume = dev->power.must_resume || 1352 atomic_read(&dev->power.usage_count) > 1 || 1353 device_must_resume(dev, state, no_subsys_cb); 1354 } else { 1355 dev->power.must_resume = true; 1356 } 1357 1358 if (dev->power.must_resume) 1359 dpm_superior_set_must_resume(dev); 1360 1361 Complete: 1362 complete_all(&dev->power.completion); 1363 TRACE_SUSPEND(error); 1364 return error; 1365 } 1366 1367 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1368 { 1369 struct device *dev = (struct device *)data; 1370 int error; 1371 1372 error = __device_suspend_noirq(dev, pm_transition, true); 1373 if (error) { 1374 dpm_save_failed_dev(dev_name(dev)); 1375 pm_dev_err(dev, pm_transition, " async", error); 1376 } 1377 1378 put_device(dev); 1379 } 1380 1381 static int device_suspend_noirq(struct device *dev) 1382 { 1383 if (dpm_async_fn(dev, async_suspend_noirq)) 1384 return 0; 1385 1386 return __device_suspend_noirq(dev, pm_transition, false); 1387 } 1388 1389 static int dpm_noirq_suspend_devices(pm_message_t state) 1390 { 1391 ktime_t starttime = ktime_get(); 1392 int error = 0; 1393 1394 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1395 mutex_lock(&dpm_list_mtx); 1396 pm_transition = state; 1397 async_error = 0; 1398 1399 while (!list_empty(&dpm_late_early_list)) { 1400 struct device *dev = to_device(dpm_late_early_list.prev); 1401 1402 get_device(dev); 1403 mutex_unlock(&dpm_list_mtx); 1404 1405 error = device_suspend_noirq(dev); 1406 1407 mutex_lock(&dpm_list_mtx); 1408 if (error) { 1409 pm_dev_err(dev, state, " noirq", error); 1410 dpm_save_failed_dev(dev_name(dev)); 1411 put_device(dev); 1412 break; 1413 } 1414 if (!list_empty(&dev->power.entry)) 1415 list_move(&dev->power.entry, &dpm_noirq_list); 1416 put_device(dev); 1417 1418 if (async_error) 1419 break; 1420 } 1421 mutex_unlock(&dpm_list_mtx); 1422 async_synchronize_full(); 1423 if (!error) 1424 error = async_error; 1425 1426 if (error) { 1427 suspend_stats.failed_suspend_noirq++; 1428 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1429 } 1430 dpm_show_time(starttime, state, error, "noirq"); 1431 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1432 return error; 1433 } 1434 1435 /** 1436 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1437 * @state: PM transition of the system being carried out. 1438 * 1439 * Prevent device drivers' interrupt handlers from being called and invoke 1440 * "noirq" suspend callbacks for all non-sysdev devices. 1441 */ 1442 int dpm_suspend_noirq(pm_message_t state) 1443 { 1444 int ret; 1445 1446 cpuidle_pause(); 1447 1448 device_wakeup_arm_wake_irqs(); 1449 suspend_device_irqs(); 1450 1451 ret = dpm_noirq_suspend_devices(state); 1452 if (ret) 1453 dpm_resume_noirq(resume_event(state)); 1454 1455 return ret; 1456 } 1457 1458 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1459 { 1460 struct device *parent = dev->parent; 1461 1462 if (!parent) 1463 return; 1464 1465 spin_lock_irq(&parent->power.lock); 1466 1467 if (dev->power.wakeup_path && !parent->power.ignore_children) 1468 parent->power.wakeup_path = true; 1469 1470 spin_unlock_irq(&parent->power.lock); 1471 } 1472 1473 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev, 1474 pm_message_t state, 1475 const char **info_p) 1476 { 1477 pm_callback_t callback; 1478 const char *info; 1479 1480 if (dev->pm_domain) { 1481 info = "late power domain "; 1482 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1483 } else if (dev->type && dev->type->pm) { 1484 info = "late type "; 1485 callback = pm_late_early_op(dev->type->pm, state); 1486 } else if (dev->class && dev->class->pm) { 1487 info = "late class "; 1488 callback = pm_late_early_op(dev->class->pm, state); 1489 } else if (dev->bus && dev->bus->pm) { 1490 info = "late bus "; 1491 callback = pm_late_early_op(dev->bus->pm, state); 1492 } else { 1493 return NULL; 1494 } 1495 1496 if (info_p) 1497 *info_p = info; 1498 1499 return callback; 1500 } 1501 1502 /** 1503 * __device_suspend_late - Execute a "late suspend" callback for given device. 1504 * @dev: Device to handle. 1505 * @state: PM transition of the system being carried out. 1506 * @async: If true, the device is being suspended asynchronously. 1507 * 1508 * Runtime PM is disabled for @dev while this function is being executed. 1509 */ 1510 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1511 { 1512 pm_callback_t callback; 1513 const char *info; 1514 int error = 0; 1515 1516 TRACE_DEVICE(dev); 1517 TRACE_SUSPEND(0); 1518 1519 __pm_runtime_disable(dev, false); 1520 1521 dpm_wait_for_subordinate(dev, async); 1522 1523 if (async_error) 1524 goto Complete; 1525 1526 if (pm_wakeup_pending()) { 1527 async_error = -EBUSY; 1528 goto Complete; 1529 } 1530 1531 if (dev->power.syscore || dev->power.direct_complete) 1532 goto Complete; 1533 1534 callback = dpm_subsys_suspend_late_cb(dev, state, &info); 1535 if (callback) 1536 goto Run; 1537 1538 if (dev_pm_smart_suspend_and_suspended(dev) && 1539 !dpm_subsys_suspend_noirq_cb(dev, state, NULL)) 1540 goto Skip; 1541 1542 if (dev->driver && dev->driver->pm) { 1543 info = "late driver "; 1544 callback = pm_late_early_op(dev->driver->pm, state); 1545 } 1546 1547 Run: 1548 error = dpm_run_callback(callback, dev, state, info); 1549 if (error) { 1550 async_error = error; 1551 goto Complete; 1552 } 1553 dpm_propagate_wakeup_to_parent(dev); 1554 1555 Skip: 1556 dev->power.is_late_suspended = true; 1557 1558 Complete: 1559 TRACE_SUSPEND(error); 1560 complete_all(&dev->power.completion); 1561 return error; 1562 } 1563 1564 static void async_suspend_late(void *data, async_cookie_t cookie) 1565 { 1566 struct device *dev = (struct device *)data; 1567 int error; 1568 1569 error = __device_suspend_late(dev, pm_transition, true); 1570 if (error) { 1571 dpm_save_failed_dev(dev_name(dev)); 1572 pm_dev_err(dev, pm_transition, " async", error); 1573 } 1574 put_device(dev); 1575 } 1576 1577 static int device_suspend_late(struct device *dev) 1578 { 1579 if (dpm_async_fn(dev, async_suspend_late)) 1580 return 0; 1581 1582 return __device_suspend_late(dev, pm_transition, false); 1583 } 1584 1585 /** 1586 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1587 * @state: PM transition of the system being carried out. 1588 */ 1589 int dpm_suspend_late(pm_message_t state) 1590 { 1591 ktime_t starttime = ktime_get(); 1592 int error = 0; 1593 1594 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1595 mutex_lock(&dpm_list_mtx); 1596 pm_transition = state; 1597 async_error = 0; 1598 1599 while (!list_empty(&dpm_suspended_list)) { 1600 struct device *dev = to_device(dpm_suspended_list.prev); 1601 1602 get_device(dev); 1603 mutex_unlock(&dpm_list_mtx); 1604 1605 error = device_suspend_late(dev); 1606 1607 mutex_lock(&dpm_list_mtx); 1608 if (!list_empty(&dev->power.entry)) 1609 list_move(&dev->power.entry, &dpm_late_early_list); 1610 1611 if (error) { 1612 pm_dev_err(dev, state, " late", error); 1613 dpm_save_failed_dev(dev_name(dev)); 1614 put_device(dev); 1615 break; 1616 } 1617 put_device(dev); 1618 1619 if (async_error) 1620 break; 1621 } 1622 mutex_unlock(&dpm_list_mtx); 1623 async_synchronize_full(); 1624 if (!error) 1625 error = async_error; 1626 if (error) { 1627 suspend_stats.failed_suspend_late++; 1628 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1629 dpm_resume_early(resume_event(state)); 1630 } 1631 dpm_show_time(starttime, state, error, "late"); 1632 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1633 return error; 1634 } 1635 1636 /** 1637 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1638 * @state: PM transition of the system being carried out. 1639 */ 1640 int dpm_suspend_end(pm_message_t state) 1641 { 1642 ktime_t starttime = ktime_get(); 1643 int error; 1644 1645 error = dpm_suspend_late(state); 1646 if (error) 1647 goto out; 1648 1649 error = dpm_suspend_noirq(state); 1650 if (error) 1651 dpm_resume_early(resume_event(state)); 1652 1653 out: 1654 dpm_show_time(starttime, state, error, "end"); 1655 return error; 1656 } 1657 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1658 1659 /** 1660 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1661 * @dev: Device to suspend. 1662 * @state: PM transition of the system being carried out. 1663 * @cb: Suspend callback to execute. 1664 * @info: string description of caller. 1665 */ 1666 static int legacy_suspend(struct device *dev, pm_message_t state, 1667 int (*cb)(struct device *dev, pm_message_t state), 1668 const char *info) 1669 { 1670 int error; 1671 ktime_t calltime; 1672 1673 calltime = initcall_debug_start(dev, cb); 1674 1675 trace_device_pm_callback_start(dev, info, state.event); 1676 error = cb(dev, state); 1677 trace_device_pm_callback_end(dev, error); 1678 suspend_report_result(cb, error); 1679 1680 initcall_debug_report(dev, calltime, cb, error); 1681 1682 return error; 1683 } 1684 1685 static void dpm_clear_superiors_direct_complete(struct device *dev) 1686 { 1687 struct device_link *link; 1688 int idx; 1689 1690 if (dev->parent) { 1691 spin_lock_irq(&dev->parent->power.lock); 1692 dev->parent->power.direct_complete = false; 1693 spin_unlock_irq(&dev->parent->power.lock); 1694 } 1695 1696 idx = device_links_read_lock(); 1697 1698 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) { 1699 spin_lock_irq(&link->supplier->power.lock); 1700 link->supplier->power.direct_complete = false; 1701 spin_unlock_irq(&link->supplier->power.lock); 1702 } 1703 1704 device_links_read_unlock(idx); 1705 } 1706 1707 /** 1708 * __device_suspend - Execute "suspend" callbacks for given device. 1709 * @dev: Device to handle. 1710 * @state: PM transition of the system being carried out. 1711 * @async: If true, the device is being suspended asynchronously. 1712 */ 1713 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1714 { 1715 pm_callback_t callback = NULL; 1716 const char *info = NULL; 1717 int error = 0; 1718 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1719 1720 TRACE_DEVICE(dev); 1721 TRACE_SUSPEND(0); 1722 1723 dpm_wait_for_subordinate(dev, async); 1724 1725 if (async_error) { 1726 dev->power.direct_complete = false; 1727 goto Complete; 1728 } 1729 1730 /* 1731 * If a device configured to wake up the system from sleep states 1732 * has been suspended at run time and there's a resume request pending 1733 * for it, this is equivalent to the device signaling wakeup, so the 1734 * system suspend operation should be aborted. 1735 */ 1736 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1737 pm_wakeup_event(dev, 0); 1738 1739 if (pm_wakeup_pending()) { 1740 dev->power.direct_complete = false; 1741 async_error = -EBUSY; 1742 goto Complete; 1743 } 1744 1745 if (dev->power.syscore) 1746 goto Complete; 1747 1748 /* Avoid direct_complete to let wakeup_path propagate. */ 1749 if (device_may_wakeup(dev) || dev->power.wakeup_path) 1750 dev->power.direct_complete = false; 1751 1752 if (dev->power.direct_complete) { 1753 if (pm_runtime_status_suspended(dev)) { 1754 pm_runtime_disable(dev); 1755 if (pm_runtime_status_suspended(dev)) { 1756 pm_dev_dbg(dev, state, "direct-complete "); 1757 goto Complete; 1758 } 1759 1760 pm_runtime_enable(dev); 1761 } 1762 dev->power.direct_complete = false; 1763 } 1764 1765 dev->power.may_skip_resume = false; 1766 dev->power.must_resume = false; 1767 1768 dpm_watchdog_set(&wd, dev); 1769 device_lock(dev); 1770 1771 if (dev->pm_domain) { 1772 info = "power domain "; 1773 callback = pm_op(&dev->pm_domain->ops, state); 1774 goto Run; 1775 } 1776 1777 if (dev->type && dev->type->pm) { 1778 info = "type "; 1779 callback = pm_op(dev->type->pm, state); 1780 goto Run; 1781 } 1782 1783 if (dev->class && dev->class->pm) { 1784 info = "class "; 1785 callback = pm_op(dev->class->pm, state); 1786 goto Run; 1787 } 1788 1789 if (dev->bus) { 1790 if (dev->bus->pm) { 1791 info = "bus "; 1792 callback = pm_op(dev->bus->pm, state); 1793 } else if (dev->bus->suspend) { 1794 pm_dev_dbg(dev, state, "legacy bus "); 1795 error = legacy_suspend(dev, state, dev->bus->suspend, 1796 "legacy bus "); 1797 goto End; 1798 } 1799 } 1800 1801 Run: 1802 if (!callback && dev->driver && dev->driver->pm) { 1803 info = "driver "; 1804 callback = pm_op(dev->driver->pm, state); 1805 } 1806 1807 error = dpm_run_callback(callback, dev, state, info); 1808 1809 End: 1810 if (!error) { 1811 dev->power.is_suspended = true; 1812 if (device_may_wakeup(dev)) 1813 dev->power.wakeup_path = true; 1814 1815 dpm_propagate_wakeup_to_parent(dev); 1816 dpm_clear_superiors_direct_complete(dev); 1817 } 1818 1819 device_unlock(dev); 1820 dpm_watchdog_clear(&wd); 1821 1822 Complete: 1823 if (error) 1824 async_error = error; 1825 1826 complete_all(&dev->power.completion); 1827 TRACE_SUSPEND(error); 1828 return error; 1829 } 1830 1831 static void async_suspend(void *data, async_cookie_t cookie) 1832 { 1833 struct device *dev = (struct device *)data; 1834 int error; 1835 1836 error = __device_suspend(dev, pm_transition, true); 1837 if (error) { 1838 dpm_save_failed_dev(dev_name(dev)); 1839 pm_dev_err(dev, pm_transition, " async", error); 1840 } 1841 1842 put_device(dev); 1843 } 1844 1845 static int device_suspend(struct device *dev) 1846 { 1847 if (dpm_async_fn(dev, async_suspend)) 1848 return 0; 1849 1850 return __device_suspend(dev, pm_transition, false); 1851 } 1852 1853 /** 1854 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1855 * @state: PM transition of the system being carried out. 1856 */ 1857 int dpm_suspend(pm_message_t state) 1858 { 1859 ktime_t starttime = ktime_get(); 1860 int error = 0; 1861 1862 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1863 might_sleep(); 1864 1865 devfreq_suspend(); 1866 cpufreq_suspend(); 1867 1868 mutex_lock(&dpm_list_mtx); 1869 pm_transition = state; 1870 async_error = 0; 1871 while (!list_empty(&dpm_prepared_list)) { 1872 struct device *dev = to_device(dpm_prepared_list.prev); 1873 1874 get_device(dev); 1875 mutex_unlock(&dpm_list_mtx); 1876 1877 error = device_suspend(dev); 1878 1879 mutex_lock(&dpm_list_mtx); 1880 if (error) { 1881 pm_dev_err(dev, state, "", error); 1882 dpm_save_failed_dev(dev_name(dev)); 1883 put_device(dev); 1884 break; 1885 } 1886 if (!list_empty(&dev->power.entry)) 1887 list_move(&dev->power.entry, &dpm_suspended_list); 1888 put_device(dev); 1889 if (async_error) 1890 break; 1891 } 1892 mutex_unlock(&dpm_list_mtx); 1893 async_synchronize_full(); 1894 if (!error) 1895 error = async_error; 1896 if (error) { 1897 suspend_stats.failed_suspend++; 1898 dpm_save_failed_step(SUSPEND_SUSPEND); 1899 } 1900 dpm_show_time(starttime, state, error, NULL); 1901 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1902 return error; 1903 } 1904 1905 /** 1906 * device_prepare - Prepare a device for system power transition. 1907 * @dev: Device to handle. 1908 * @state: PM transition of the system being carried out. 1909 * 1910 * Execute the ->prepare() callback(s) for given device. No new children of the 1911 * device may be registered after this function has returned. 1912 */ 1913 static int device_prepare(struct device *dev, pm_message_t state) 1914 { 1915 int (*callback)(struct device *) = NULL; 1916 int ret = 0; 1917 1918 if (dev->power.syscore) 1919 return 0; 1920 1921 WARN_ON(!pm_runtime_enabled(dev) && 1922 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND | 1923 DPM_FLAG_LEAVE_SUSPENDED)); 1924 1925 /* 1926 * If a device's parent goes into runtime suspend at the wrong time, 1927 * it won't be possible to resume the device. To prevent this we 1928 * block runtime suspend here, during the prepare phase, and allow 1929 * it again during the complete phase. 1930 */ 1931 pm_runtime_get_noresume(dev); 1932 1933 device_lock(dev); 1934 1935 dev->power.wakeup_path = false; 1936 1937 if (dev->power.no_pm_callbacks) 1938 goto unlock; 1939 1940 if (dev->pm_domain) 1941 callback = dev->pm_domain->ops.prepare; 1942 else if (dev->type && dev->type->pm) 1943 callback = dev->type->pm->prepare; 1944 else if (dev->class && dev->class->pm) 1945 callback = dev->class->pm->prepare; 1946 else if (dev->bus && dev->bus->pm) 1947 callback = dev->bus->pm->prepare; 1948 1949 if (!callback && dev->driver && dev->driver->pm) 1950 callback = dev->driver->pm->prepare; 1951 1952 if (callback) 1953 ret = callback(dev); 1954 1955 unlock: 1956 device_unlock(dev); 1957 1958 if (ret < 0) { 1959 suspend_report_result(callback, ret); 1960 pm_runtime_put(dev); 1961 return ret; 1962 } 1963 /* 1964 * A positive return value from ->prepare() means "this device appears 1965 * to be runtime-suspended and its state is fine, so if it really is 1966 * runtime-suspended, you can leave it in that state provided that you 1967 * will do the same thing with all of its descendants". This only 1968 * applies to suspend transitions, however. 1969 */ 1970 spin_lock_irq(&dev->power.lock); 1971 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1972 ((pm_runtime_suspended(dev) && ret > 0) || 1973 dev->power.no_pm_callbacks) && 1974 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP); 1975 spin_unlock_irq(&dev->power.lock); 1976 return 0; 1977 } 1978 1979 /** 1980 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1981 * @state: PM transition of the system being carried out. 1982 * 1983 * Execute the ->prepare() callback(s) for all devices. 1984 */ 1985 int dpm_prepare(pm_message_t state) 1986 { 1987 int error = 0; 1988 1989 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1990 might_sleep(); 1991 1992 /* 1993 * Give a chance for the known devices to complete their probes, before 1994 * disable probing of devices. This sync point is important at least 1995 * at boot time + hibernation restore. 1996 */ 1997 wait_for_device_probe(); 1998 /* 1999 * It is unsafe if probing of devices will happen during suspend or 2000 * hibernation and system behavior will be unpredictable in this case. 2001 * So, let's prohibit device's probing here and defer their probes 2002 * instead. The normal behavior will be restored in dpm_complete(). 2003 */ 2004 device_block_probing(); 2005 2006 mutex_lock(&dpm_list_mtx); 2007 while (!list_empty(&dpm_list)) { 2008 struct device *dev = to_device(dpm_list.next); 2009 2010 get_device(dev); 2011 mutex_unlock(&dpm_list_mtx); 2012 2013 trace_device_pm_callback_start(dev, "", state.event); 2014 error = device_prepare(dev, state); 2015 trace_device_pm_callback_end(dev, error); 2016 2017 mutex_lock(&dpm_list_mtx); 2018 if (error) { 2019 if (error == -EAGAIN) { 2020 put_device(dev); 2021 error = 0; 2022 continue; 2023 } 2024 pr_info("Device %s not prepared for power transition: code %d\n", 2025 dev_name(dev), error); 2026 put_device(dev); 2027 break; 2028 } 2029 dev->power.is_prepared = true; 2030 if (!list_empty(&dev->power.entry)) 2031 list_move_tail(&dev->power.entry, &dpm_prepared_list); 2032 put_device(dev); 2033 } 2034 mutex_unlock(&dpm_list_mtx); 2035 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 2036 return error; 2037 } 2038 2039 /** 2040 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 2041 * @state: PM transition of the system being carried out. 2042 * 2043 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 2044 * callbacks for them. 2045 */ 2046 int dpm_suspend_start(pm_message_t state) 2047 { 2048 ktime_t starttime = ktime_get(); 2049 int error; 2050 2051 error = dpm_prepare(state); 2052 if (error) { 2053 suspend_stats.failed_prepare++; 2054 dpm_save_failed_step(SUSPEND_PREPARE); 2055 } else 2056 error = dpm_suspend(state); 2057 dpm_show_time(starttime, state, error, "start"); 2058 return error; 2059 } 2060 EXPORT_SYMBOL_GPL(dpm_suspend_start); 2061 2062 void __suspend_report_result(const char *function, void *fn, int ret) 2063 { 2064 if (ret) 2065 pr_err("%s(): %pS returns %d\n", function, fn, ret); 2066 } 2067 EXPORT_SYMBOL_GPL(__suspend_report_result); 2068 2069 /** 2070 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 2071 * @subordinate: Device that needs to wait for @dev. 2072 * @dev: Device to wait for. 2073 */ 2074 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 2075 { 2076 dpm_wait(dev, subordinate->power.async_suspend); 2077 return async_error; 2078 } 2079 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 2080 2081 /** 2082 * dpm_for_each_dev - device iterator. 2083 * @data: data for the callback. 2084 * @fn: function to be called for each device. 2085 * 2086 * Iterate over devices in dpm_list, and call @fn for each device, 2087 * passing it @data. 2088 */ 2089 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 2090 { 2091 struct device *dev; 2092 2093 if (!fn) 2094 return; 2095 2096 device_pm_lock(); 2097 list_for_each_entry(dev, &dpm_list, power.entry) 2098 fn(dev, data); 2099 device_pm_unlock(); 2100 } 2101 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 2102 2103 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 2104 { 2105 if (!ops) 2106 return true; 2107 2108 return !ops->prepare && 2109 !ops->suspend && 2110 !ops->suspend_late && 2111 !ops->suspend_noirq && 2112 !ops->resume_noirq && 2113 !ops->resume_early && 2114 !ops->resume && 2115 !ops->complete; 2116 } 2117 2118 void device_pm_check_callbacks(struct device *dev) 2119 { 2120 spin_lock_irq(&dev->power.lock); 2121 dev->power.no_pm_callbacks = 2122 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2123 !dev->bus->suspend && !dev->bus->resume)) && 2124 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2125 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2126 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2127 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2128 !dev->driver->suspend && !dev->driver->resume)); 2129 spin_unlock_irq(&dev->power.lock); 2130 } 2131 2132 bool dev_pm_smart_suspend_and_suspended(struct device *dev) 2133 { 2134 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2135 pm_runtime_status_suspended(dev); 2136 } 2137