xref: /linux/drivers/base/platform.c (revision 8cd3c556b5ce58e2a6f9a084711e6fc03f375745)
1 /*
2  * platform.c - platform 'pseudo' bus for legacy devices
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  *
7  * This file is released under the GPLv2
8  *
9  * Please see Documentation/driver-model/platform.txt for more
10  * information.
11  */
12 
13 #include <linux/string.h>
14 #include <linux/platform_device.h>
15 #include <linux/of_device.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/bootmem.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/idr.h>
24 #include <linux/acpi.h>
25 
26 #include "base.h"
27 #include "power/power.h"
28 
29 /* For automatically allocated device IDs */
30 static DEFINE_IDA(platform_devid_ida);
31 
32 #define to_platform_driver(drv)	(container_of((drv), struct platform_driver, \
33 				 driver))
34 
35 struct device platform_bus = {
36 	.init_name	= "platform",
37 };
38 EXPORT_SYMBOL_GPL(platform_bus);
39 
40 /**
41  * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
42  * @pdev: platform device
43  *
44  * This is called before platform_device_add() such that any pdev_archdata may
45  * be setup before the platform_notifier is called.  So if a user needs to
46  * manipulate any relevant information in the pdev_archdata they can do:
47  *
48  *	platform_device_alloc()
49  *	... manipulate ...
50  *	platform_device_add()
51  *
52  * And if they don't care they can just call platform_device_register() and
53  * everything will just work out.
54  */
55 void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
56 {
57 }
58 
59 /**
60  * platform_get_resource - get a resource for a device
61  * @dev: platform device
62  * @type: resource type
63  * @num: resource index
64  */
65 struct resource *platform_get_resource(struct platform_device *dev,
66 				       unsigned int type, unsigned int num)
67 {
68 	int i;
69 
70 	for (i = 0; i < dev->num_resources; i++) {
71 		struct resource *r = &dev->resource[i];
72 
73 		if (type == resource_type(r) && num-- == 0)
74 			return r;
75 	}
76 	return NULL;
77 }
78 EXPORT_SYMBOL_GPL(platform_get_resource);
79 
80 /**
81  * platform_get_irq - get an IRQ for a device
82  * @dev: platform device
83  * @num: IRQ number index
84  */
85 int platform_get_irq(struct platform_device *dev, unsigned int num)
86 {
87 #ifdef CONFIG_SPARC
88 	/* sparc does not have irqs represented as IORESOURCE_IRQ resources */
89 	if (!dev || num >= dev->archdata.num_irqs)
90 		return -ENXIO;
91 	return dev->archdata.irqs[num];
92 #else
93 	struct resource *r = platform_get_resource(dev, IORESOURCE_IRQ, num);
94 
95 	return r ? r->start : -ENXIO;
96 #endif
97 }
98 EXPORT_SYMBOL_GPL(platform_get_irq);
99 
100 /**
101  * platform_get_resource_byname - get a resource for a device by name
102  * @dev: platform device
103  * @type: resource type
104  * @name: resource name
105  */
106 struct resource *platform_get_resource_byname(struct platform_device *dev,
107 					      unsigned int type,
108 					      const char *name)
109 {
110 	int i;
111 
112 	for (i = 0; i < dev->num_resources; i++) {
113 		struct resource *r = &dev->resource[i];
114 
115 		if (unlikely(!r->name))
116 			continue;
117 
118 		if (type == resource_type(r) && !strcmp(r->name, name))
119 			return r;
120 	}
121 	return NULL;
122 }
123 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
124 
125 /**
126  * platform_get_irq_byname - get an IRQ for a device by name
127  * @dev: platform device
128  * @name: IRQ name
129  */
130 int platform_get_irq_byname(struct platform_device *dev, const char *name)
131 {
132 	struct resource *r = platform_get_resource_byname(dev, IORESOURCE_IRQ,
133 							  name);
134 
135 	return r ? r->start : -ENXIO;
136 }
137 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
138 
139 /**
140  * platform_add_devices - add a numbers of platform devices
141  * @devs: array of platform devices to add
142  * @num: number of platform devices in array
143  */
144 int platform_add_devices(struct platform_device **devs, int num)
145 {
146 	int i, ret = 0;
147 
148 	for (i = 0; i < num; i++) {
149 		ret = platform_device_register(devs[i]);
150 		if (ret) {
151 			while (--i >= 0)
152 				platform_device_unregister(devs[i]);
153 			break;
154 		}
155 	}
156 
157 	return ret;
158 }
159 EXPORT_SYMBOL_GPL(platform_add_devices);
160 
161 struct platform_object {
162 	struct platform_device pdev;
163 	char name[1];
164 };
165 
166 /**
167  * platform_device_put - destroy a platform device
168  * @pdev: platform device to free
169  *
170  * Free all memory associated with a platform device.  This function must
171  * _only_ be externally called in error cases.  All other usage is a bug.
172  */
173 void platform_device_put(struct platform_device *pdev)
174 {
175 	if (pdev)
176 		put_device(&pdev->dev);
177 }
178 EXPORT_SYMBOL_GPL(platform_device_put);
179 
180 static void platform_device_release(struct device *dev)
181 {
182 	struct platform_object *pa = container_of(dev, struct platform_object,
183 						  pdev.dev);
184 
185 	of_device_node_put(&pa->pdev.dev);
186 	kfree(pa->pdev.dev.platform_data);
187 	kfree(pa->pdev.mfd_cell);
188 	kfree(pa->pdev.resource);
189 	kfree(pa);
190 }
191 
192 /**
193  * platform_device_alloc - create a platform device
194  * @name: base name of the device we're adding
195  * @id: instance id
196  *
197  * Create a platform device object which can have other objects attached
198  * to it, and which will have attached objects freed when it is released.
199  */
200 struct platform_device *platform_device_alloc(const char *name, int id)
201 {
202 	struct platform_object *pa;
203 
204 	pa = kzalloc(sizeof(struct platform_object) + strlen(name), GFP_KERNEL);
205 	if (pa) {
206 		strcpy(pa->name, name);
207 		pa->pdev.name = pa->name;
208 		pa->pdev.id = id;
209 		device_initialize(&pa->pdev.dev);
210 		pa->pdev.dev.release = platform_device_release;
211 		arch_setup_pdev_archdata(&pa->pdev);
212 	}
213 
214 	return pa ? &pa->pdev : NULL;
215 }
216 EXPORT_SYMBOL_GPL(platform_device_alloc);
217 
218 /**
219  * platform_device_add_resources - add resources to a platform device
220  * @pdev: platform device allocated by platform_device_alloc to add resources to
221  * @res: set of resources that needs to be allocated for the device
222  * @num: number of resources
223  *
224  * Add a copy of the resources to the platform device.  The memory
225  * associated with the resources will be freed when the platform device is
226  * released.
227  */
228 int platform_device_add_resources(struct platform_device *pdev,
229 				  const struct resource *res, unsigned int num)
230 {
231 	struct resource *r = NULL;
232 
233 	if (res) {
234 		r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
235 		if (!r)
236 			return -ENOMEM;
237 	}
238 
239 	kfree(pdev->resource);
240 	pdev->resource = r;
241 	pdev->num_resources = num;
242 	return 0;
243 }
244 EXPORT_SYMBOL_GPL(platform_device_add_resources);
245 
246 /**
247  * platform_device_add_data - add platform-specific data to a platform device
248  * @pdev: platform device allocated by platform_device_alloc to add resources to
249  * @data: platform specific data for this platform device
250  * @size: size of platform specific data
251  *
252  * Add a copy of platform specific data to the platform device's
253  * platform_data pointer.  The memory associated with the platform data
254  * will be freed when the platform device is released.
255  */
256 int platform_device_add_data(struct platform_device *pdev, const void *data,
257 			     size_t size)
258 {
259 	void *d = NULL;
260 
261 	if (data) {
262 		d = kmemdup(data, size, GFP_KERNEL);
263 		if (!d)
264 			return -ENOMEM;
265 	}
266 
267 	kfree(pdev->dev.platform_data);
268 	pdev->dev.platform_data = d;
269 	return 0;
270 }
271 EXPORT_SYMBOL_GPL(platform_device_add_data);
272 
273 /**
274  * platform_device_add - add a platform device to device hierarchy
275  * @pdev: platform device we're adding
276  *
277  * This is part 2 of platform_device_register(), though may be called
278  * separately _iff_ pdev was allocated by platform_device_alloc().
279  */
280 int platform_device_add(struct platform_device *pdev)
281 {
282 	int i, ret;
283 
284 	if (!pdev)
285 		return -EINVAL;
286 
287 	if (!pdev->dev.parent)
288 		pdev->dev.parent = &platform_bus;
289 
290 	pdev->dev.bus = &platform_bus_type;
291 
292 	switch (pdev->id) {
293 	default:
294 		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
295 		break;
296 	case PLATFORM_DEVID_NONE:
297 		dev_set_name(&pdev->dev, "%s", pdev->name);
298 		break;
299 	case PLATFORM_DEVID_AUTO:
300 		/*
301 		 * Automatically allocated device ID. We mark it as such so
302 		 * that we remember it must be freed, and we append a suffix
303 		 * to avoid namespace collision with explicit IDs.
304 		 */
305 		ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
306 		if (ret < 0)
307 			goto err_out;
308 		pdev->id = ret;
309 		pdev->id_auto = true;
310 		dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
311 		break;
312 	}
313 
314 	for (i = 0; i < pdev->num_resources; i++) {
315 		struct resource *p, *r = &pdev->resource[i];
316 
317 		if (r->name == NULL)
318 			r->name = dev_name(&pdev->dev);
319 
320 		p = r->parent;
321 		if (!p) {
322 			if (resource_type(r) == IORESOURCE_MEM)
323 				p = &iomem_resource;
324 			else if (resource_type(r) == IORESOURCE_IO)
325 				p = &ioport_resource;
326 		}
327 
328 		if (p && insert_resource(p, r)) {
329 			dev_err(&pdev->dev, "failed to claim resource %d\n", i);
330 			ret = -EBUSY;
331 			goto failed;
332 		}
333 	}
334 
335 	pr_debug("Registering platform device '%s'. Parent at %s\n",
336 		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
337 
338 	ret = device_add(&pdev->dev);
339 	if (ret == 0)
340 		return ret;
341 
342  failed:
343 	if (pdev->id_auto) {
344 		ida_simple_remove(&platform_devid_ida, pdev->id);
345 		pdev->id = PLATFORM_DEVID_AUTO;
346 	}
347 
348 	while (--i >= 0) {
349 		struct resource *r = &pdev->resource[i];
350 		unsigned long type = resource_type(r);
351 
352 		if (type == IORESOURCE_MEM || type == IORESOURCE_IO)
353 			release_resource(r);
354 	}
355 
356  err_out:
357 	return ret;
358 }
359 EXPORT_SYMBOL_GPL(platform_device_add);
360 
361 /**
362  * platform_device_del - remove a platform-level device
363  * @pdev: platform device we're removing
364  *
365  * Note that this function will also release all memory- and port-based
366  * resources owned by the device (@dev->resource).  This function must
367  * _only_ be externally called in error cases.  All other usage is a bug.
368  */
369 void platform_device_del(struct platform_device *pdev)
370 {
371 	int i;
372 
373 	if (pdev) {
374 		device_del(&pdev->dev);
375 
376 		if (pdev->id_auto) {
377 			ida_simple_remove(&platform_devid_ida, pdev->id);
378 			pdev->id = PLATFORM_DEVID_AUTO;
379 		}
380 
381 		for (i = 0; i < pdev->num_resources; i++) {
382 			struct resource *r = &pdev->resource[i];
383 			unsigned long type = resource_type(r);
384 
385 			if (type == IORESOURCE_MEM || type == IORESOURCE_IO)
386 				release_resource(r);
387 		}
388 	}
389 }
390 EXPORT_SYMBOL_GPL(platform_device_del);
391 
392 /**
393  * platform_device_register - add a platform-level device
394  * @pdev: platform device we're adding
395  */
396 int platform_device_register(struct platform_device *pdev)
397 {
398 	device_initialize(&pdev->dev);
399 	arch_setup_pdev_archdata(pdev);
400 	return platform_device_add(pdev);
401 }
402 EXPORT_SYMBOL_GPL(platform_device_register);
403 
404 /**
405  * platform_device_unregister - unregister a platform-level device
406  * @pdev: platform device we're unregistering
407  *
408  * Unregistration is done in 2 steps. First we release all resources
409  * and remove it from the subsystem, then we drop reference count by
410  * calling platform_device_put().
411  */
412 void platform_device_unregister(struct platform_device *pdev)
413 {
414 	platform_device_del(pdev);
415 	platform_device_put(pdev);
416 }
417 EXPORT_SYMBOL_GPL(platform_device_unregister);
418 
419 /**
420  * platform_device_register_full - add a platform-level device with
421  * resources and platform-specific data
422  *
423  * @pdevinfo: data used to create device
424  *
425  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
426  */
427 struct platform_device *platform_device_register_full(
428 		const struct platform_device_info *pdevinfo)
429 {
430 	int ret = -ENOMEM;
431 	struct platform_device *pdev;
432 
433 	pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
434 	if (!pdev)
435 		goto err_alloc;
436 
437 	pdev->dev.parent = pdevinfo->parent;
438 	ACPI_HANDLE_SET(&pdev->dev, pdevinfo->acpi_node.handle);
439 
440 	if (pdevinfo->dma_mask) {
441 		/*
442 		 * This memory isn't freed when the device is put,
443 		 * I don't have a nice idea for that though.  Conceptually
444 		 * dma_mask in struct device should not be a pointer.
445 		 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
446 		 */
447 		pdev->dev.dma_mask =
448 			kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
449 		if (!pdev->dev.dma_mask)
450 			goto err;
451 
452 		*pdev->dev.dma_mask = pdevinfo->dma_mask;
453 		pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
454 	}
455 
456 	ret = platform_device_add_resources(pdev,
457 			pdevinfo->res, pdevinfo->num_res);
458 	if (ret)
459 		goto err;
460 
461 	ret = platform_device_add_data(pdev,
462 			pdevinfo->data, pdevinfo->size_data);
463 	if (ret)
464 		goto err;
465 
466 	ret = platform_device_add(pdev);
467 	if (ret) {
468 err:
469 		ACPI_HANDLE_SET(&pdev->dev, NULL);
470 		kfree(pdev->dev.dma_mask);
471 
472 err_alloc:
473 		platform_device_put(pdev);
474 		return ERR_PTR(ret);
475 	}
476 
477 	return pdev;
478 }
479 EXPORT_SYMBOL_GPL(platform_device_register_full);
480 
481 static int platform_drv_probe(struct device *_dev)
482 {
483 	struct platform_driver *drv = to_platform_driver(_dev->driver);
484 	struct platform_device *dev = to_platform_device(_dev);
485 	int ret;
486 
487 	if (ACPI_HANDLE(_dev))
488 		acpi_dev_pm_attach(_dev, true);
489 
490 	ret = drv->probe(dev);
491 	if (ret && ACPI_HANDLE(_dev))
492 		acpi_dev_pm_detach(_dev, true);
493 
494 	return ret;
495 }
496 
497 static int platform_drv_probe_fail(struct device *_dev)
498 {
499 	return -ENXIO;
500 }
501 
502 static int platform_drv_remove(struct device *_dev)
503 {
504 	struct platform_driver *drv = to_platform_driver(_dev->driver);
505 	struct platform_device *dev = to_platform_device(_dev);
506 	int ret;
507 
508 	ret = drv->remove(dev);
509 	if (ACPI_HANDLE(_dev))
510 		acpi_dev_pm_detach(_dev, true);
511 
512 	return ret;
513 }
514 
515 static void platform_drv_shutdown(struct device *_dev)
516 {
517 	struct platform_driver *drv = to_platform_driver(_dev->driver);
518 	struct platform_device *dev = to_platform_device(_dev);
519 
520 	drv->shutdown(dev);
521 	if (ACPI_HANDLE(_dev))
522 		acpi_dev_pm_detach(_dev, true);
523 }
524 
525 /**
526  * __platform_driver_register - register a driver for platform-level devices
527  * @drv: platform driver structure
528  */
529 int __platform_driver_register(struct platform_driver *drv,
530 				struct module *owner)
531 {
532 	drv->driver.owner = owner;
533 	drv->driver.bus = &platform_bus_type;
534 	if (drv->probe)
535 		drv->driver.probe = platform_drv_probe;
536 	if (drv->remove)
537 		drv->driver.remove = platform_drv_remove;
538 	if (drv->shutdown)
539 		drv->driver.shutdown = platform_drv_shutdown;
540 
541 	return driver_register(&drv->driver);
542 }
543 EXPORT_SYMBOL_GPL(__platform_driver_register);
544 
545 /**
546  * platform_driver_unregister - unregister a driver for platform-level devices
547  * @drv: platform driver structure
548  */
549 void platform_driver_unregister(struct platform_driver *drv)
550 {
551 	driver_unregister(&drv->driver);
552 }
553 EXPORT_SYMBOL_GPL(platform_driver_unregister);
554 
555 /**
556  * platform_driver_probe - register driver for non-hotpluggable device
557  * @drv: platform driver structure
558  * @probe: the driver probe routine, probably from an __init section,
559  *         must not return -EPROBE_DEFER.
560  *
561  * Use this instead of platform_driver_register() when you know the device
562  * is not hotpluggable and has already been registered, and you want to
563  * remove its run-once probe() infrastructure from memory after the driver
564  * has bound to the device.
565  *
566  * One typical use for this would be with drivers for controllers integrated
567  * into system-on-chip processors, where the controller devices have been
568  * configured as part of board setup.
569  *
570  * This is incompatible with deferred probing so probe() must not
571  * return -EPROBE_DEFER.
572  *
573  * Returns zero if the driver registered and bound to a device, else returns
574  * a negative error code and with the driver not registered.
575  */
576 int __init_or_module platform_driver_probe(struct platform_driver *drv,
577 		int (*probe)(struct platform_device *))
578 {
579 	int retval, code;
580 
581 	/* make sure driver won't have bind/unbind attributes */
582 	drv->driver.suppress_bind_attrs = true;
583 
584 	/* temporary section violation during probe() */
585 	drv->probe = probe;
586 	retval = code = platform_driver_register(drv);
587 
588 	/*
589 	 * Fixup that section violation, being paranoid about code scanning
590 	 * the list of drivers in order to probe new devices.  Check to see
591 	 * if the probe was successful, and make sure any forced probes of
592 	 * new devices fail.
593 	 */
594 	spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
595 	drv->probe = NULL;
596 	if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
597 		retval = -ENODEV;
598 	drv->driver.probe = platform_drv_probe_fail;
599 	spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
600 
601 	if (code != retval)
602 		platform_driver_unregister(drv);
603 	return retval;
604 }
605 EXPORT_SYMBOL_GPL(platform_driver_probe);
606 
607 /**
608  * platform_create_bundle - register driver and create corresponding device
609  * @driver: platform driver structure
610  * @probe: the driver probe routine, probably from an __init section
611  * @res: set of resources that needs to be allocated for the device
612  * @n_res: number of resources
613  * @data: platform specific data for this platform device
614  * @size: size of platform specific data
615  *
616  * Use this in legacy-style modules that probe hardware directly and
617  * register a single platform device and corresponding platform driver.
618  *
619  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
620  */
621 struct platform_device * __init_or_module platform_create_bundle(
622 			struct platform_driver *driver,
623 			int (*probe)(struct platform_device *),
624 			struct resource *res, unsigned int n_res,
625 			const void *data, size_t size)
626 {
627 	struct platform_device *pdev;
628 	int error;
629 
630 	pdev = platform_device_alloc(driver->driver.name, -1);
631 	if (!pdev) {
632 		error = -ENOMEM;
633 		goto err_out;
634 	}
635 
636 	error = platform_device_add_resources(pdev, res, n_res);
637 	if (error)
638 		goto err_pdev_put;
639 
640 	error = platform_device_add_data(pdev, data, size);
641 	if (error)
642 		goto err_pdev_put;
643 
644 	error = platform_device_add(pdev);
645 	if (error)
646 		goto err_pdev_put;
647 
648 	error = platform_driver_probe(driver, probe);
649 	if (error)
650 		goto err_pdev_del;
651 
652 	return pdev;
653 
654 err_pdev_del:
655 	platform_device_del(pdev);
656 err_pdev_put:
657 	platform_device_put(pdev);
658 err_out:
659 	return ERR_PTR(error);
660 }
661 EXPORT_SYMBOL_GPL(platform_create_bundle);
662 
663 /* modalias support enables more hands-off userspace setup:
664  * (a) environment variable lets new-style hotplug events work once system is
665  *     fully running:  "modprobe $MODALIAS"
666  * (b) sysfs attribute lets new-style coldplug recover from hotplug events
667  *     mishandled before system is fully running:  "modprobe $(cat modalias)"
668  */
669 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
670 			     char *buf)
671 {
672 	struct platform_device	*pdev = to_platform_device(dev);
673 	int len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
674 
675 	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
676 }
677 
678 static struct device_attribute platform_dev_attrs[] = {
679 	__ATTR_RO(modalias),
680 	__ATTR_NULL,
681 };
682 
683 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
684 {
685 	struct platform_device	*pdev = to_platform_device(dev);
686 	int rc;
687 
688 	/* Some devices have extra OF data and an OF-style MODALIAS */
689 	rc = of_device_uevent_modalias(dev, env);
690 	if (rc != -ENODEV)
691 		return rc;
692 
693 	add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
694 			pdev->name);
695 	return 0;
696 }
697 
698 static const struct platform_device_id *platform_match_id(
699 			const struct platform_device_id *id,
700 			struct platform_device *pdev)
701 {
702 	while (id->name[0]) {
703 		if (strcmp(pdev->name, id->name) == 0) {
704 			pdev->id_entry = id;
705 			return id;
706 		}
707 		id++;
708 	}
709 	return NULL;
710 }
711 
712 /**
713  * platform_match - bind platform device to platform driver.
714  * @dev: device.
715  * @drv: driver.
716  *
717  * Platform device IDs are assumed to be encoded like this:
718  * "<name><instance>", where <name> is a short description of the type of
719  * device, like "pci" or "floppy", and <instance> is the enumerated
720  * instance of the device, like '0' or '42'.  Driver IDs are simply
721  * "<name>".  So, extract the <name> from the platform_device structure,
722  * and compare it against the name of the driver. Return whether they match
723  * or not.
724  */
725 static int platform_match(struct device *dev, struct device_driver *drv)
726 {
727 	struct platform_device *pdev = to_platform_device(dev);
728 	struct platform_driver *pdrv = to_platform_driver(drv);
729 
730 	/* Attempt an OF style match first */
731 	if (of_driver_match_device(dev, drv))
732 		return 1;
733 
734 	/* Then try ACPI style match */
735 	if (acpi_driver_match_device(dev, drv))
736 		return 1;
737 
738 	/* Then try to match against the id table */
739 	if (pdrv->id_table)
740 		return platform_match_id(pdrv->id_table, pdev) != NULL;
741 
742 	/* fall-back to driver name match */
743 	return (strcmp(pdev->name, drv->name) == 0);
744 }
745 
746 #ifdef CONFIG_PM_SLEEP
747 
748 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
749 {
750 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
751 	struct platform_device *pdev = to_platform_device(dev);
752 	int ret = 0;
753 
754 	if (dev->driver && pdrv->suspend)
755 		ret = pdrv->suspend(pdev, mesg);
756 
757 	return ret;
758 }
759 
760 static int platform_legacy_resume(struct device *dev)
761 {
762 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
763 	struct platform_device *pdev = to_platform_device(dev);
764 	int ret = 0;
765 
766 	if (dev->driver && pdrv->resume)
767 		ret = pdrv->resume(pdev);
768 
769 	return ret;
770 }
771 
772 #endif /* CONFIG_PM_SLEEP */
773 
774 #ifdef CONFIG_SUSPEND
775 
776 int platform_pm_suspend(struct device *dev)
777 {
778 	struct device_driver *drv = dev->driver;
779 	int ret = 0;
780 
781 	if (!drv)
782 		return 0;
783 
784 	if (drv->pm) {
785 		if (drv->pm->suspend)
786 			ret = drv->pm->suspend(dev);
787 	} else {
788 		ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
789 	}
790 
791 	return ret;
792 }
793 
794 int platform_pm_resume(struct device *dev)
795 {
796 	struct device_driver *drv = dev->driver;
797 	int ret = 0;
798 
799 	if (!drv)
800 		return 0;
801 
802 	if (drv->pm) {
803 		if (drv->pm->resume)
804 			ret = drv->pm->resume(dev);
805 	} else {
806 		ret = platform_legacy_resume(dev);
807 	}
808 
809 	return ret;
810 }
811 
812 #endif /* CONFIG_SUSPEND */
813 
814 #ifdef CONFIG_HIBERNATE_CALLBACKS
815 
816 int platform_pm_freeze(struct device *dev)
817 {
818 	struct device_driver *drv = dev->driver;
819 	int ret = 0;
820 
821 	if (!drv)
822 		return 0;
823 
824 	if (drv->pm) {
825 		if (drv->pm->freeze)
826 			ret = drv->pm->freeze(dev);
827 	} else {
828 		ret = platform_legacy_suspend(dev, PMSG_FREEZE);
829 	}
830 
831 	return ret;
832 }
833 
834 int platform_pm_thaw(struct device *dev)
835 {
836 	struct device_driver *drv = dev->driver;
837 	int ret = 0;
838 
839 	if (!drv)
840 		return 0;
841 
842 	if (drv->pm) {
843 		if (drv->pm->thaw)
844 			ret = drv->pm->thaw(dev);
845 	} else {
846 		ret = platform_legacy_resume(dev);
847 	}
848 
849 	return ret;
850 }
851 
852 int platform_pm_poweroff(struct device *dev)
853 {
854 	struct device_driver *drv = dev->driver;
855 	int ret = 0;
856 
857 	if (!drv)
858 		return 0;
859 
860 	if (drv->pm) {
861 		if (drv->pm->poweroff)
862 			ret = drv->pm->poweroff(dev);
863 	} else {
864 		ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
865 	}
866 
867 	return ret;
868 }
869 
870 int platform_pm_restore(struct device *dev)
871 {
872 	struct device_driver *drv = dev->driver;
873 	int ret = 0;
874 
875 	if (!drv)
876 		return 0;
877 
878 	if (drv->pm) {
879 		if (drv->pm->restore)
880 			ret = drv->pm->restore(dev);
881 	} else {
882 		ret = platform_legacy_resume(dev);
883 	}
884 
885 	return ret;
886 }
887 
888 #endif /* CONFIG_HIBERNATE_CALLBACKS */
889 
890 static const struct dev_pm_ops platform_dev_pm_ops = {
891 	.runtime_suspend = pm_generic_runtime_suspend,
892 	.runtime_resume = pm_generic_runtime_resume,
893 	USE_PLATFORM_PM_SLEEP_OPS
894 };
895 
896 struct bus_type platform_bus_type = {
897 	.name		= "platform",
898 	.dev_attrs	= platform_dev_attrs,
899 	.match		= platform_match,
900 	.uevent		= platform_uevent,
901 	.pm		= &platform_dev_pm_ops,
902 };
903 EXPORT_SYMBOL_GPL(platform_bus_type);
904 
905 int __init platform_bus_init(void)
906 {
907 	int error;
908 
909 	early_platform_cleanup();
910 
911 	error = device_register(&platform_bus);
912 	if (error)
913 		return error;
914 	error =  bus_register(&platform_bus_type);
915 	if (error)
916 		device_unregister(&platform_bus);
917 	return error;
918 }
919 
920 #ifndef ARCH_HAS_DMA_GET_REQUIRED_MASK
921 u64 dma_get_required_mask(struct device *dev)
922 {
923 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
924 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
925 	u64 mask;
926 
927 	if (!high_totalram) {
928 		/* convert to mask just covering totalram */
929 		low_totalram = (1 << (fls(low_totalram) - 1));
930 		low_totalram += low_totalram - 1;
931 		mask = low_totalram;
932 	} else {
933 		high_totalram = (1 << (fls(high_totalram) - 1));
934 		high_totalram += high_totalram - 1;
935 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
936 	}
937 	return mask;
938 }
939 EXPORT_SYMBOL_GPL(dma_get_required_mask);
940 #endif
941 
942 static __initdata LIST_HEAD(early_platform_driver_list);
943 static __initdata LIST_HEAD(early_platform_device_list);
944 
945 /**
946  * early_platform_driver_register - register early platform driver
947  * @epdrv: early_platform driver structure
948  * @buf: string passed from early_param()
949  *
950  * Helper function for early_platform_init() / early_platform_init_buffer()
951  */
952 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
953 					  char *buf)
954 {
955 	char *tmp;
956 	int n;
957 
958 	/* Simply add the driver to the end of the global list.
959 	 * Drivers will by default be put on the list in compiled-in order.
960 	 */
961 	if (!epdrv->list.next) {
962 		INIT_LIST_HEAD(&epdrv->list);
963 		list_add_tail(&epdrv->list, &early_platform_driver_list);
964 	}
965 
966 	/* If the user has specified device then make sure the driver
967 	 * gets prioritized. The driver of the last device specified on
968 	 * command line will be put first on the list.
969 	 */
970 	n = strlen(epdrv->pdrv->driver.name);
971 	if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
972 		list_move(&epdrv->list, &early_platform_driver_list);
973 
974 		/* Allow passing parameters after device name */
975 		if (buf[n] == '\0' || buf[n] == ',')
976 			epdrv->requested_id = -1;
977 		else {
978 			epdrv->requested_id = simple_strtoul(&buf[n + 1],
979 							     &tmp, 10);
980 
981 			if (buf[n] != '.' || (tmp == &buf[n + 1])) {
982 				epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
983 				n = 0;
984 			} else
985 				n += strcspn(&buf[n + 1], ",") + 1;
986 		}
987 
988 		if (buf[n] == ',')
989 			n++;
990 
991 		if (epdrv->bufsize) {
992 			memcpy(epdrv->buffer, &buf[n],
993 			       min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
994 			epdrv->buffer[epdrv->bufsize - 1] = '\0';
995 		}
996 	}
997 
998 	return 0;
999 }
1000 
1001 /**
1002  * early_platform_add_devices - adds a number of early platform devices
1003  * @devs: array of early platform devices to add
1004  * @num: number of early platform devices in array
1005  *
1006  * Used by early architecture code to register early platform devices and
1007  * their platform data.
1008  */
1009 void __init early_platform_add_devices(struct platform_device **devs, int num)
1010 {
1011 	struct device *dev;
1012 	int i;
1013 
1014 	/* simply add the devices to list */
1015 	for (i = 0; i < num; i++) {
1016 		dev = &devs[i]->dev;
1017 
1018 		if (!dev->devres_head.next) {
1019 			pm_runtime_early_init(dev);
1020 			INIT_LIST_HEAD(&dev->devres_head);
1021 			list_add_tail(&dev->devres_head,
1022 				      &early_platform_device_list);
1023 		}
1024 	}
1025 }
1026 
1027 /**
1028  * early_platform_driver_register_all - register early platform drivers
1029  * @class_str: string to identify early platform driver class
1030  *
1031  * Used by architecture code to register all early platform drivers
1032  * for a certain class. If omitted then only early platform drivers
1033  * with matching kernel command line class parameters will be registered.
1034  */
1035 void __init early_platform_driver_register_all(char *class_str)
1036 {
1037 	/* The "class_str" parameter may or may not be present on the kernel
1038 	 * command line. If it is present then there may be more than one
1039 	 * matching parameter.
1040 	 *
1041 	 * Since we register our early platform drivers using early_param()
1042 	 * we need to make sure that they also get registered in the case
1043 	 * when the parameter is missing from the kernel command line.
1044 	 *
1045 	 * We use parse_early_options() to make sure the early_param() gets
1046 	 * called at least once. The early_param() may be called more than
1047 	 * once since the name of the preferred device may be specified on
1048 	 * the kernel command line. early_platform_driver_register() handles
1049 	 * this case for us.
1050 	 */
1051 	parse_early_options(class_str);
1052 }
1053 
1054 /**
1055  * early_platform_match - find early platform device matching driver
1056  * @epdrv: early platform driver structure
1057  * @id: id to match against
1058  */
1059 static  __init struct platform_device *
1060 early_platform_match(struct early_platform_driver *epdrv, int id)
1061 {
1062 	struct platform_device *pd;
1063 
1064 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1065 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1066 			if (pd->id == id)
1067 				return pd;
1068 
1069 	return NULL;
1070 }
1071 
1072 /**
1073  * early_platform_left - check if early platform driver has matching devices
1074  * @epdrv: early platform driver structure
1075  * @id: return true if id or above exists
1076  */
1077 static  __init int early_platform_left(struct early_platform_driver *epdrv,
1078 				       int id)
1079 {
1080 	struct platform_device *pd;
1081 
1082 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1083 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1084 			if (pd->id >= id)
1085 				return 1;
1086 
1087 	return 0;
1088 }
1089 
1090 /**
1091  * early_platform_driver_probe_id - probe drivers matching class_str and id
1092  * @class_str: string to identify early platform driver class
1093  * @id: id to match against
1094  * @nr_probe: number of platform devices to successfully probe before exiting
1095  */
1096 static int __init early_platform_driver_probe_id(char *class_str,
1097 						 int id,
1098 						 int nr_probe)
1099 {
1100 	struct early_platform_driver *epdrv;
1101 	struct platform_device *match;
1102 	int match_id;
1103 	int n = 0;
1104 	int left = 0;
1105 
1106 	list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1107 		/* only use drivers matching our class_str */
1108 		if (strcmp(class_str, epdrv->class_str))
1109 			continue;
1110 
1111 		if (id == -2) {
1112 			match_id = epdrv->requested_id;
1113 			left = 1;
1114 
1115 		} else {
1116 			match_id = id;
1117 			left += early_platform_left(epdrv, id);
1118 
1119 			/* skip requested id */
1120 			switch (epdrv->requested_id) {
1121 			case EARLY_PLATFORM_ID_ERROR:
1122 			case EARLY_PLATFORM_ID_UNSET:
1123 				break;
1124 			default:
1125 				if (epdrv->requested_id == id)
1126 					match_id = EARLY_PLATFORM_ID_UNSET;
1127 			}
1128 		}
1129 
1130 		switch (match_id) {
1131 		case EARLY_PLATFORM_ID_ERROR:
1132 			pr_warn("%s: unable to parse %s parameter\n",
1133 				class_str, epdrv->pdrv->driver.name);
1134 			/* fall-through */
1135 		case EARLY_PLATFORM_ID_UNSET:
1136 			match = NULL;
1137 			break;
1138 		default:
1139 			match = early_platform_match(epdrv, match_id);
1140 		}
1141 
1142 		if (match) {
1143 			/*
1144 			 * Set up a sensible init_name to enable
1145 			 * dev_name() and others to be used before the
1146 			 * rest of the driver core is initialized.
1147 			 */
1148 			if (!match->dev.init_name && slab_is_available()) {
1149 				if (match->id != -1)
1150 					match->dev.init_name =
1151 						kasprintf(GFP_KERNEL, "%s.%d",
1152 							  match->name,
1153 							  match->id);
1154 				else
1155 					match->dev.init_name =
1156 						kasprintf(GFP_KERNEL, "%s",
1157 							  match->name);
1158 
1159 				if (!match->dev.init_name)
1160 					return -ENOMEM;
1161 			}
1162 
1163 			if (epdrv->pdrv->probe(match))
1164 				pr_warn("%s: unable to probe %s early.\n",
1165 					class_str, match->name);
1166 			else
1167 				n++;
1168 		}
1169 
1170 		if (n >= nr_probe)
1171 			break;
1172 	}
1173 
1174 	if (left)
1175 		return n;
1176 	else
1177 		return -ENODEV;
1178 }
1179 
1180 /**
1181  * early_platform_driver_probe - probe a class of registered drivers
1182  * @class_str: string to identify early platform driver class
1183  * @nr_probe: number of platform devices to successfully probe before exiting
1184  * @user_only: only probe user specified early platform devices
1185  *
1186  * Used by architecture code to probe registered early platform drivers
1187  * within a certain class. For probe to happen a registered early platform
1188  * device matching a registered early platform driver is needed.
1189  */
1190 int __init early_platform_driver_probe(char *class_str,
1191 				       int nr_probe,
1192 				       int user_only)
1193 {
1194 	int k, n, i;
1195 
1196 	n = 0;
1197 	for (i = -2; n < nr_probe; i++) {
1198 		k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1199 
1200 		if (k < 0)
1201 			break;
1202 
1203 		n += k;
1204 
1205 		if (user_only)
1206 			break;
1207 	}
1208 
1209 	return n;
1210 }
1211 
1212 /**
1213  * early_platform_cleanup - clean up early platform code
1214  */
1215 void __init early_platform_cleanup(void)
1216 {
1217 	struct platform_device *pd, *pd2;
1218 
1219 	/* clean up the devres list used to chain devices */
1220 	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1221 				 dev.devres_head) {
1222 		list_del(&pd->dev.devres_head);
1223 		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1224 	}
1225 }
1226 
1227