xref: /linux/drivers/base/memory.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41 	.name = MEMORY_CLASS_NAME,
42 	.dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52 
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66 
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72 
73 /*
74  * register_memory - Setup a sysfs device for a memory block
75  */
76 static
77 int register_memory(struct memory_block *memory)
78 {
79 	int error;
80 
81 	memory->dev.bus = &memory_subsys;
82 	memory->dev.id = memory->start_section_nr / sections_per_block;
83 
84 	error = device_register(&memory->dev);
85 	return error;
86 }
87 
88 static void
89 unregister_memory(struct memory_block *memory)
90 {
91 	BUG_ON(memory->dev.bus != &memory_subsys);
92 
93 	/* drop the ref. we got in remove_memory_block() */
94 	kobject_put(&memory->dev.kobj);
95 	device_unregister(&memory->dev);
96 }
97 
98 unsigned long __weak memory_block_size_bytes(void)
99 {
100 	return MIN_MEMORY_BLOCK_SIZE;
101 }
102 
103 static unsigned long get_memory_block_size(void)
104 {
105 	unsigned long block_sz;
106 
107 	block_sz = memory_block_size_bytes();
108 
109 	/* Validate blk_sz is a power of 2 and not less than section size */
110 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111 		WARN_ON(1);
112 		block_sz = MIN_MEMORY_BLOCK_SIZE;
113 	}
114 
115 	return block_sz;
116 }
117 
118 /*
119  * use this as the physical section index that this memsection
120  * uses.
121  */
122 
123 static ssize_t show_mem_start_phys_index(struct device *dev,
124 			struct device_attribute *attr, char *buf)
125 {
126 	struct memory_block *mem =
127 		container_of(dev, struct memory_block, dev);
128 	unsigned long phys_index;
129 
130 	phys_index = mem->start_section_nr / sections_per_block;
131 	return sprintf(buf, "%08lx\n", phys_index);
132 }
133 
134 static ssize_t show_mem_end_phys_index(struct device *dev,
135 			struct device_attribute *attr, char *buf)
136 {
137 	struct memory_block *mem =
138 		container_of(dev, struct memory_block, dev);
139 	unsigned long phys_index;
140 
141 	phys_index = mem->end_section_nr / sections_per_block;
142 	return sprintf(buf, "%08lx\n", phys_index);
143 }
144 
145 /*
146  * Show whether the section of memory is likely to be hot-removable
147  */
148 static ssize_t show_mem_removable(struct device *dev,
149 			struct device_attribute *attr, char *buf)
150 {
151 	unsigned long i, pfn;
152 	int ret = 1;
153 	struct memory_block *mem =
154 		container_of(dev, struct memory_block, dev);
155 
156 	for (i = 0; i < sections_per_block; i++) {
157 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159 	}
160 
161 	return sprintf(buf, "%d\n", ret);
162 }
163 
164 /*
165  * online, offline, going offline, etc.
166  */
167 static ssize_t show_mem_state(struct device *dev,
168 			struct device_attribute *attr, char *buf)
169 {
170 	struct memory_block *mem =
171 		container_of(dev, struct memory_block, dev);
172 	ssize_t len = 0;
173 
174 	/*
175 	 * We can probably put these states in a nice little array
176 	 * so that they're not open-coded
177 	 */
178 	switch (mem->state) {
179 		case MEM_ONLINE:
180 			len = sprintf(buf, "online\n");
181 			break;
182 		case MEM_OFFLINE:
183 			len = sprintf(buf, "offline\n");
184 			break;
185 		case MEM_GOING_OFFLINE:
186 			len = sprintf(buf, "going-offline\n");
187 			break;
188 		default:
189 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190 					mem->state);
191 			WARN_ON(1);
192 			break;
193 	}
194 
195 	return len;
196 }
197 
198 int memory_notify(unsigned long val, void *v)
199 {
200 	return blocking_notifier_call_chain(&memory_chain, val, v);
201 }
202 
203 int memory_isolate_notify(unsigned long val, void *v)
204 {
205 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206 }
207 
208 /*
209  * The probe routines leave the pages reserved, just as the bootmem code does.
210  * Make sure they're still that way.
211  */
212 static bool pages_correctly_reserved(unsigned long start_pfn,
213 					unsigned long nr_pages)
214 {
215 	int i, j;
216 	struct page *page;
217 	unsigned long pfn = start_pfn;
218 
219 	/*
220 	 * memmap between sections is not contiguous except with
221 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222 	 * and assume memmap is contiguous within each section
223 	 */
224 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
226 			return false;
227 		page = pfn_to_page(pfn);
228 
229 		for (j = 0; j < PAGES_PER_SECTION; j++) {
230 			if (PageReserved(page + j))
231 				continue;
232 
233 			printk(KERN_WARNING "section number %ld page number %d "
234 				"not reserved, was it already online?\n",
235 				pfn_to_section_nr(pfn), j);
236 
237 			return false;
238 		}
239 	}
240 
241 	return true;
242 }
243 
244 /*
245  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246  * OK to have direct references to sparsemem variables in here.
247  */
248 static int
249 memory_block_action(unsigned long phys_index, unsigned long action)
250 {
251 	unsigned long start_pfn;
252 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253 	struct page *first_page;
254 	int ret;
255 
256 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257 	start_pfn = page_to_pfn(first_page);
258 
259 	switch (action) {
260 		case MEM_ONLINE:
261 			if (!pages_correctly_reserved(start_pfn, nr_pages))
262 				return -EBUSY;
263 
264 			ret = online_pages(start_pfn, nr_pages);
265 			break;
266 		case MEM_OFFLINE:
267 			ret = offline_pages(start_pfn, nr_pages);
268 			break;
269 		default:
270 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
271 			     "%ld\n", __func__, phys_index, action, action);
272 			ret = -EINVAL;
273 	}
274 
275 	return ret;
276 }
277 
278 static int __memory_block_change_state(struct memory_block *mem,
279 		unsigned long to_state, unsigned long from_state_req)
280 {
281 	int ret = 0;
282 
283 	if (mem->state != from_state_req) {
284 		ret = -EINVAL;
285 		goto out;
286 	}
287 
288 	if (to_state == MEM_OFFLINE)
289 		mem->state = MEM_GOING_OFFLINE;
290 
291 	ret = memory_block_action(mem->start_section_nr, to_state);
292 
293 	if (ret) {
294 		mem->state = from_state_req;
295 		goto out;
296 	}
297 
298 	mem->state = to_state;
299 	switch (mem->state) {
300 	case MEM_OFFLINE:
301 		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
302 		break;
303 	case MEM_ONLINE:
304 		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
305 		break;
306 	default:
307 		break;
308 	}
309 out:
310 	return ret;
311 }
312 
313 static int memory_block_change_state(struct memory_block *mem,
314 		unsigned long to_state, unsigned long from_state_req)
315 {
316 	int ret;
317 
318 	mutex_lock(&mem->state_mutex);
319 	ret = __memory_block_change_state(mem, to_state, from_state_req);
320 	mutex_unlock(&mem->state_mutex);
321 
322 	return ret;
323 }
324 static ssize_t
325 store_mem_state(struct device *dev,
326 		struct device_attribute *attr, const char *buf, size_t count)
327 {
328 	struct memory_block *mem;
329 	int ret = -EINVAL;
330 
331 	mem = container_of(dev, struct memory_block, dev);
332 
333 	if (!strncmp(buf, "online", min((int)count, 6)))
334 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
335 	else if(!strncmp(buf, "offline", min((int)count, 7)))
336 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
337 
338 	if (ret)
339 		return ret;
340 	return count;
341 }
342 
343 /*
344  * phys_device is a bad name for this.  What I really want
345  * is a way to differentiate between memory ranges that
346  * are part of physical devices that constitute
347  * a complete removable unit or fru.
348  * i.e. do these ranges belong to the same physical device,
349  * s.t. if I offline all of these sections I can then
350  * remove the physical device?
351  */
352 static ssize_t show_phys_device(struct device *dev,
353 				struct device_attribute *attr, char *buf)
354 {
355 	struct memory_block *mem =
356 		container_of(dev, struct memory_block, dev);
357 	return sprintf(buf, "%d\n", mem->phys_device);
358 }
359 
360 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
361 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
362 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
363 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
364 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
365 
366 #define mem_create_simple_file(mem, attr_name)	\
367 	device_create_file(&mem->dev, &dev_attr_##attr_name)
368 #define mem_remove_simple_file(mem, attr_name)	\
369 	device_remove_file(&mem->dev, &dev_attr_##attr_name)
370 
371 /*
372  * Block size attribute stuff
373  */
374 static ssize_t
375 print_block_size(struct device *dev, struct device_attribute *attr,
376 		 char *buf)
377 {
378 	return sprintf(buf, "%lx\n", get_memory_block_size());
379 }
380 
381 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
382 
383 static int block_size_init(void)
384 {
385 	return device_create_file(memory_subsys.dev_root,
386 				  &dev_attr_block_size_bytes);
387 }
388 
389 /*
390  * Some architectures will have custom drivers to do this, and
391  * will not need to do it from userspace.  The fake hot-add code
392  * as well as ppc64 will do all of their discovery in userspace
393  * and will require this interface.
394  */
395 #ifdef CONFIG_ARCH_MEMORY_PROBE
396 static ssize_t
397 memory_probe_store(struct device *dev, struct device_attribute *attr,
398 		   const char *buf, size_t count)
399 {
400 	u64 phys_addr;
401 	int nid;
402 	int i, ret;
403 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
404 
405 	phys_addr = simple_strtoull(buf, NULL, 0);
406 
407 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
408 		return -EINVAL;
409 
410 	for (i = 0; i < sections_per_block; i++) {
411 		nid = memory_add_physaddr_to_nid(phys_addr);
412 		ret = add_memory(nid, phys_addr,
413 				 PAGES_PER_SECTION << PAGE_SHIFT);
414 		if (ret)
415 			goto out;
416 
417 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
418 	}
419 
420 	ret = count;
421 out:
422 	return ret;
423 }
424 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
425 
426 static int memory_probe_init(void)
427 {
428 	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
429 }
430 #else
431 static inline int memory_probe_init(void)
432 {
433 	return 0;
434 }
435 #endif
436 
437 #ifdef CONFIG_MEMORY_FAILURE
438 /*
439  * Support for offlining pages of memory
440  */
441 
442 /* Soft offline a page */
443 static ssize_t
444 store_soft_offline_page(struct device *dev,
445 			struct device_attribute *attr,
446 			const char *buf, size_t count)
447 {
448 	int ret;
449 	u64 pfn;
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EPERM;
452 	if (strict_strtoull(buf, 0, &pfn) < 0)
453 		return -EINVAL;
454 	pfn >>= PAGE_SHIFT;
455 	if (!pfn_valid(pfn))
456 		return -ENXIO;
457 	ret = soft_offline_page(pfn_to_page(pfn), 0);
458 	return ret == 0 ? count : ret;
459 }
460 
461 /* Forcibly offline a page, including killing processes. */
462 static ssize_t
463 store_hard_offline_page(struct device *dev,
464 			struct device_attribute *attr,
465 			const char *buf, size_t count)
466 {
467 	int ret;
468 	u64 pfn;
469 	if (!capable(CAP_SYS_ADMIN))
470 		return -EPERM;
471 	if (strict_strtoull(buf, 0, &pfn) < 0)
472 		return -EINVAL;
473 	pfn >>= PAGE_SHIFT;
474 	ret = memory_failure(pfn, 0, 0);
475 	return ret ? ret : count;
476 }
477 
478 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
479 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
480 
481 static __init int memory_fail_init(void)
482 {
483 	int err;
484 
485 	err = device_create_file(memory_subsys.dev_root,
486 				&dev_attr_soft_offline_page);
487 	if (!err)
488 		err = device_create_file(memory_subsys.dev_root,
489 				&dev_attr_hard_offline_page);
490 	return err;
491 }
492 #else
493 static inline int memory_fail_init(void)
494 {
495 	return 0;
496 }
497 #endif
498 
499 /*
500  * Note that phys_device is optional.  It is here to allow for
501  * differentiation between which *physical* devices each
502  * section belongs to...
503  */
504 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
505 {
506 	return 0;
507 }
508 
509 /*
510  * A reference for the returned object is held and the reference for the
511  * hinted object is released.
512  */
513 struct memory_block *find_memory_block_hinted(struct mem_section *section,
514 					      struct memory_block *hint)
515 {
516 	int block_id = base_memory_block_id(__section_nr(section));
517 	struct device *hintdev = hint ? &hint->dev : NULL;
518 	struct device *dev;
519 
520 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
521 	if (hint)
522 		put_device(&hint->dev);
523 	if (!dev)
524 		return NULL;
525 	return container_of(dev, struct memory_block, dev);
526 }
527 
528 /*
529  * For now, we have a linear search to go find the appropriate
530  * memory_block corresponding to a particular phys_index. If
531  * this gets to be a real problem, we can always use a radix
532  * tree or something here.
533  *
534  * This could be made generic for all device subsystems.
535  */
536 struct memory_block *find_memory_block(struct mem_section *section)
537 {
538 	return find_memory_block_hinted(section, NULL);
539 }
540 
541 static int init_memory_block(struct memory_block **memory,
542 			     struct mem_section *section, unsigned long state)
543 {
544 	struct memory_block *mem;
545 	unsigned long start_pfn;
546 	int scn_nr;
547 	int ret = 0;
548 
549 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
550 	if (!mem)
551 		return -ENOMEM;
552 
553 	scn_nr = __section_nr(section);
554 	mem->start_section_nr =
555 			base_memory_block_id(scn_nr) * sections_per_block;
556 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
557 	mem->state = state;
558 	mem->section_count++;
559 	mutex_init(&mem->state_mutex);
560 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
561 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
562 
563 	ret = register_memory(mem);
564 	if (!ret)
565 		ret = mem_create_simple_file(mem, phys_index);
566 	if (!ret)
567 		ret = mem_create_simple_file(mem, end_phys_index);
568 	if (!ret)
569 		ret = mem_create_simple_file(mem, state);
570 	if (!ret)
571 		ret = mem_create_simple_file(mem, phys_device);
572 	if (!ret)
573 		ret = mem_create_simple_file(mem, removable);
574 
575 	*memory = mem;
576 	return ret;
577 }
578 
579 static int add_memory_section(int nid, struct mem_section *section,
580 			struct memory_block **mem_p,
581 			unsigned long state, enum mem_add_context context)
582 {
583 	struct memory_block *mem = NULL;
584 	int scn_nr = __section_nr(section);
585 	int ret = 0;
586 
587 	mutex_lock(&mem_sysfs_mutex);
588 
589 	if (context == BOOT) {
590 		/* same memory block ? */
591 		if (mem_p && *mem_p)
592 			if (scn_nr >= (*mem_p)->start_section_nr &&
593 			    scn_nr <= (*mem_p)->end_section_nr) {
594 				mem = *mem_p;
595 				kobject_get(&mem->dev.kobj);
596 			}
597 	} else
598 		mem = find_memory_block(section);
599 
600 	if (mem) {
601 		mem->section_count++;
602 		kobject_put(&mem->dev.kobj);
603 	} else {
604 		ret = init_memory_block(&mem, section, state);
605 		/* store memory_block pointer for next loop */
606 		if (!ret && context == BOOT)
607 			if (mem_p)
608 				*mem_p = mem;
609 	}
610 
611 	if (!ret) {
612 		if (context == HOTPLUG &&
613 		    mem->section_count == sections_per_block)
614 			ret = register_mem_sect_under_node(mem, nid);
615 	}
616 
617 	mutex_unlock(&mem_sysfs_mutex);
618 	return ret;
619 }
620 
621 int remove_memory_block(unsigned long node_id, struct mem_section *section,
622 		int phys_device)
623 {
624 	struct memory_block *mem;
625 
626 	mutex_lock(&mem_sysfs_mutex);
627 	mem = find_memory_block(section);
628 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
629 
630 	mem->section_count--;
631 	if (mem->section_count == 0) {
632 		mem_remove_simple_file(mem, phys_index);
633 		mem_remove_simple_file(mem, end_phys_index);
634 		mem_remove_simple_file(mem, state);
635 		mem_remove_simple_file(mem, phys_device);
636 		mem_remove_simple_file(mem, removable);
637 		unregister_memory(mem);
638 		kfree(mem);
639 	} else
640 		kobject_put(&mem->dev.kobj);
641 
642 	mutex_unlock(&mem_sysfs_mutex);
643 	return 0;
644 }
645 
646 /*
647  * need an interface for the VM to add new memory regions,
648  * but without onlining it.
649  */
650 int register_new_memory(int nid, struct mem_section *section)
651 {
652 	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
653 }
654 
655 int unregister_memory_section(struct mem_section *section)
656 {
657 	if (!present_section(section))
658 		return -EINVAL;
659 
660 	return remove_memory_block(0, section, 0);
661 }
662 
663 /*
664  * offline one memory block. If the memory block has been offlined, do nothing.
665  */
666 int offline_memory_block(struct memory_block *mem)
667 {
668 	int ret = 0;
669 
670 	mutex_lock(&mem->state_mutex);
671 	if (mem->state != MEM_OFFLINE)
672 		ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
673 	mutex_unlock(&mem->state_mutex);
674 
675 	return ret;
676 }
677 
678 /*
679  * Initialize the sysfs support for memory devices...
680  */
681 int __init memory_dev_init(void)
682 {
683 	unsigned int i;
684 	int ret;
685 	int err;
686 	unsigned long block_sz;
687 	struct memory_block *mem = NULL;
688 
689 	ret = subsys_system_register(&memory_subsys, NULL);
690 	if (ret)
691 		goto out;
692 
693 	block_sz = get_memory_block_size();
694 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
695 
696 	/*
697 	 * Create entries for memory sections that were found
698 	 * during boot and have been initialized
699 	 */
700 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
701 		if (!present_section_nr(i))
702 			continue;
703 		/* don't need to reuse memory_block if only one per block */
704 		err = add_memory_section(0, __nr_to_section(i),
705 				 (sections_per_block == 1) ? NULL : &mem,
706 					 MEM_ONLINE,
707 					 BOOT);
708 		if (!ret)
709 			ret = err;
710 	}
711 
712 	err = memory_probe_init();
713 	if (!ret)
714 		ret = err;
715 	err = memory_fail_init();
716 	if (!ret)
717 		ret = err;
718 	err = block_size_init();
719 	if (!ret)
720 		ret = err;
721 out:
722 	if (ret)
723 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
724 	return ret;
725 }
726