xref: /linux/drivers/base/memory.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * drivers/base/memory.c - basic Memory class support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <linux/stat.h>
25 #include <linux/slab.h>
26 
27 #include <linux/atomic.h>
28 #include <asm/uaccess.h>
29 
30 static DEFINE_MUTEX(mem_sysfs_mutex);
31 
32 #define MEMORY_CLASS_NAME	"memory"
33 
34 static int sections_per_block;
35 
36 static inline int base_memory_block_id(int section_nr)
37 {
38 	return section_nr / sections_per_block;
39 }
40 
41 static struct sysdev_class memory_sysdev_class = {
42 	.name = MEMORY_CLASS_NAME,
43 };
44 
45 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
46 {
47 	return MEMORY_CLASS_NAME;
48 }
49 
50 static int memory_uevent(struct kset *kset, struct kobject *obj,
51 			struct kobj_uevent_env *env)
52 {
53 	int retval = 0;
54 
55 	return retval;
56 }
57 
58 static const struct kset_uevent_ops memory_uevent_ops = {
59 	.name		= memory_uevent_name,
60 	.uevent		= memory_uevent,
61 };
62 
63 static BLOCKING_NOTIFIER_HEAD(memory_chain);
64 
65 int register_memory_notifier(struct notifier_block *nb)
66 {
67         return blocking_notifier_chain_register(&memory_chain, nb);
68 }
69 EXPORT_SYMBOL(register_memory_notifier);
70 
71 void unregister_memory_notifier(struct notifier_block *nb)
72 {
73         blocking_notifier_chain_unregister(&memory_chain, nb);
74 }
75 EXPORT_SYMBOL(unregister_memory_notifier);
76 
77 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
78 
79 int register_memory_isolate_notifier(struct notifier_block *nb)
80 {
81 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
82 }
83 EXPORT_SYMBOL(register_memory_isolate_notifier);
84 
85 void unregister_memory_isolate_notifier(struct notifier_block *nb)
86 {
87 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
88 }
89 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
90 
91 /*
92  * register_memory - Setup a sysfs device for a memory block
93  */
94 static
95 int register_memory(struct memory_block *memory)
96 {
97 	int error;
98 
99 	memory->sysdev.cls = &memory_sysdev_class;
100 	memory->sysdev.id = memory->start_section_nr / sections_per_block;
101 
102 	error = sysdev_register(&memory->sysdev);
103 	return error;
104 }
105 
106 static void
107 unregister_memory(struct memory_block *memory)
108 {
109 	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
110 
111 	/* drop the ref. we got in remove_memory_block() */
112 	kobject_put(&memory->sysdev.kobj);
113 	sysdev_unregister(&memory->sysdev);
114 }
115 
116 unsigned long __weak memory_block_size_bytes(void)
117 {
118 	return MIN_MEMORY_BLOCK_SIZE;
119 }
120 
121 static unsigned long get_memory_block_size(void)
122 {
123 	unsigned long block_sz;
124 
125 	block_sz = memory_block_size_bytes();
126 
127 	/* Validate blk_sz is a power of 2 and not less than section size */
128 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
129 		WARN_ON(1);
130 		block_sz = MIN_MEMORY_BLOCK_SIZE;
131 	}
132 
133 	return block_sz;
134 }
135 
136 /*
137  * use this as the physical section index that this memsection
138  * uses.
139  */
140 
141 static ssize_t show_mem_start_phys_index(struct sys_device *dev,
142 			struct sysdev_attribute *attr, char *buf)
143 {
144 	struct memory_block *mem =
145 		container_of(dev, struct memory_block, sysdev);
146 	unsigned long phys_index;
147 
148 	phys_index = mem->start_section_nr / sections_per_block;
149 	return sprintf(buf, "%08lx\n", phys_index);
150 }
151 
152 static ssize_t show_mem_end_phys_index(struct sys_device *dev,
153 			struct sysdev_attribute *attr, char *buf)
154 {
155 	struct memory_block *mem =
156 		container_of(dev, struct memory_block, sysdev);
157 	unsigned long phys_index;
158 
159 	phys_index = mem->end_section_nr / sections_per_block;
160 	return sprintf(buf, "%08lx\n", phys_index);
161 }
162 
163 /*
164  * Show whether the section of memory is likely to be hot-removable
165  */
166 static ssize_t show_mem_removable(struct sys_device *dev,
167 			struct sysdev_attribute *attr, char *buf)
168 {
169 	unsigned long i, pfn;
170 	int ret = 1;
171 	struct memory_block *mem =
172 		container_of(dev, struct memory_block, sysdev);
173 
174 	for (i = 0; i < sections_per_block; i++) {
175 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
176 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
177 	}
178 
179 	return sprintf(buf, "%d\n", ret);
180 }
181 
182 /*
183  * online, offline, going offline, etc.
184  */
185 static ssize_t show_mem_state(struct sys_device *dev,
186 			struct sysdev_attribute *attr, char *buf)
187 {
188 	struct memory_block *mem =
189 		container_of(dev, struct memory_block, sysdev);
190 	ssize_t len = 0;
191 
192 	/*
193 	 * We can probably put these states in a nice little array
194 	 * so that they're not open-coded
195 	 */
196 	switch (mem->state) {
197 		case MEM_ONLINE:
198 			len = sprintf(buf, "online\n");
199 			break;
200 		case MEM_OFFLINE:
201 			len = sprintf(buf, "offline\n");
202 			break;
203 		case MEM_GOING_OFFLINE:
204 			len = sprintf(buf, "going-offline\n");
205 			break;
206 		default:
207 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
208 					mem->state);
209 			WARN_ON(1);
210 			break;
211 	}
212 
213 	return len;
214 }
215 
216 int memory_notify(unsigned long val, void *v)
217 {
218 	return blocking_notifier_call_chain(&memory_chain, val, v);
219 }
220 
221 int memory_isolate_notify(unsigned long val, void *v)
222 {
223 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
224 }
225 
226 /*
227  * The probe routines leave the pages reserved, just as the bootmem code does.
228  * Make sure they're still that way.
229  */
230 static bool pages_correctly_reserved(unsigned long start_pfn,
231 					unsigned long nr_pages)
232 {
233 	int i, j;
234 	struct page *page;
235 	unsigned long pfn = start_pfn;
236 
237 	/*
238 	 * memmap between sections is not contiguous except with
239 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
240 	 * and assume memmap is contiguous within each section
241 	 */
242 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
243 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
244 			return false;
245 		page = pfn_to_page(pfn);
246 
247 		for (j = 0; j < PAGES_PER_SECTION; j++) {
248 			if (PageReserved(page + j))
249 				continue;
250 
251 			printk(KERN_WARNING "section number %ld page number %d "
252 				"not reserved, was it already online?\n",
253 				pfn_to_section_nr(pfn), j);
254 
255 			return false;
256 		}
257 	}
258 
259 	return true;
260 }
261 
262 /*
263  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
264  * OK to have direct references to sparsemem variables in here.
265  */
266 static int
267 memory_block_action(unsigned long phys_index, unsigned long action)
268 {
269 	unsigned long start_pfn, start_paddr;
270 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
271 	struct page *first_page;
272 	int ret;
273 
274 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
275 
276 	switch (action) {
277 		case MEM_ONLINE:
278 			start_pfn = page_to_pfn(first_page);
279 
280 			if (!pages_correctly_reserved(start_pfn, nr_pages))
281 				return -EBUSY;
282 
283 			ret = online_pages(start_pfn, nr_pages);
284 			break;
285 		case MEM_OFFLINE:
286 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
287 			ret = remove_memory(start_paddr,
288 					    nr_pages << PAGE_SHIFT);
289 			break;
290 		default:
291 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
292 			     "%ld\n", __func__, phys_index, action, action);
293 			ret = -EINVAL;
294 	}
295 
296 	return ret;
297 }
298 
299 static int memory_block_change_state(struct memory_block *mem,
300 		unsigned long to_state, unsigned long from_state_req)
301 {
302 	int ret = 0;
303 
304 	mutex_lock(&mem->state_mutex);
305 
306 	if (mem->state != from_state_req) {
307 		ret = -EINVAL;
308 		goto out;
309 	}
310 
311 	if (to_state == MEM_OFFLINE)
312 		mem->state = MEM_GOING_OFFLINE;
313 
314 	ret = memory_block_action(mem->start_section_nr, to_state);
315 
316 	if (ret)
317 		mem->state = from_state_req;
318 	else
319 		mem->state = to_state;
320 
321 out:
322 	mutex_unlock(&mem->state_mutex);
323 	return ret;
324 }
325 
326 static ssize_t
327 store_mem_state(struct sys_device *dev,
328 		struct sysdev_attribute *attr, const char *buf, size_t count)
329 {
330 	struct memory_block *mem;
331 	int ret = -EINVAL;
332 
333 	mem = container_of(dev, struct memory_block, sysdev);
334 
335 	if (!strncmp(buf, "online", min((int)count, 6)))
336 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
337 	else if(!strncmp(buf, "offline", min((int)count, 7)))
338 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
339 
340 	if (ret)
341 		return ret;
342 	return count;
343 }
344 
345 /*
346  * phys_device is a bad name for this.  What I really want
347  * is a way to differentiate between memory ranges that
348  * are part of physical devices that constitute
349  * a complete removable unit or fru.
350  * i.e. do these ranges belong to the same physical device,
351  * s.t. if I offline all of these sections I can then
352  * remove the physical device?
353  */
354 static ssize_t show_phys_device(struct sys_device *dev,
355 				struct sysdev_attribute *attr, char *buf)
356 {
357 	struct memory_block *mem =
358 		container_of(dev, struct memory_block, sysdev);
359 	return sprintf(buf, "%d\n", mem->phys_device);
360 }
361 
362 static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
363 static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
364 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
365 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
366 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
367 
368 #define mem_create_simple_file(mem, attr_name)	\
369 	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
370 #define mem_remove_simple_file(mem, attr_name)	\
371 	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
372 
373 /*
374  * Block size attribute stuff
375  */
376 static ssize_t
377 print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
378 		 char *buf)
379 {
380 	return sprintf(buf, "%lx\n", get_memory_block_size());
381 }
382 
383 static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
384 
385 static int block_size_init(void)
386 {
387 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
388 				&attr_block_size_bytes.attr);
389 }
390 
391 /*
392  * Some architectures will have custom drivers to do this, and
393  * will not need to do it from userspace.  The fake hot-add code
394  * as well as ppc64 will do all of their discovery in userspace
395  * and will require this interface.
396  */
397 #ifdef CONFIG_ARCH_MEMORY_PROBE
398 static ssize_t
399 memory_probe_store(struct class *class, struct class_attribute *attr,
400 		   const char *buf, size_t count)
401 {
402 	u64 phys_addr;
403 	int nid;
404 	int i, ret;
405 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
406 
407 	phys_addr = simple_strtoull(buf, NULL, 0);
408 
409 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
410 		return -EINVAL;
411 
412 	for (i = 0; i < sections_per_block; i++) {
413 		nid = memory_add_physaddr_to_nid(phys_addr);
414 		ret = add_memory(nid, phys_addr,
415 				 PAGES_PER_SECTION << PAGE_SHIFT);
416 		if (ret)
417 			goto out;
418 
419 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
420 	}
421 
422 	ret = count;
423 out:
424 	return ret;
425 }
426 static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
427 
428 static int memory_probe_init(void)
429 {
430 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
431 				&class_attr_probe.attr);
432 }
433 #else
434 static inline int memory_probe_init(void)
435 {
436 	return 0;
437 }
438 #endif
439 
440 #ifdef CONFIG_MEMORY_FAILURE
441 /*
442  * Support for offlining pages of memory
443  */
444 
445 /* Soft offline a page */
446 static ssize_t
447 store_soft_offline_page(struct class *class,
448 			struct class_attribute *attr,
449 			const char *buf, size_t count)
450 {
451 	int ret;
452 	u64 pfn;
453 	if (!capable(CAP_SYS_ADMIN))
454 		return -EPERM;
455 	if (strict_strtoull(buf, 0, &pfn) < 0)
456 		return -EINVAL;
457 	pfn >>= PAGE_SHIFT;
458 	if (!pfn_valid(pfn))
459 		return -ENXIO;
460 	ret = soft_offline_page(pfn_to_page(pfn), 0);
461 	return ret == 0 ? count : ret;
462 }
463 
464 /* Forcibly offline a page, including killing processes. */
465 static ssize_t
466 store_hard_offline_page(struct class *class,
467 			struct class_attribute *attr,
468 			const char *buf, size_t count)
469 {
470 	int ret;
471 	u64 pfn;
472 	if (!capable(CAP_SYS_ADMIN))
473 		return -EPERM;
474 	if (strict_strtoull(buf, 0, &pfn) < 0)
475 		return -EINVAL;
476 	pfn >>= PAGE_SHIFT;
477 	ret = __memory_failure(pfn, 0, 0);
478 	return ret ? ret : count;
479 }
480 
481 static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
482 static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
483 
484 static __init int memory_fail_init(void)
485 {
486 	int err;
487 
488 	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
489 				&class_attr_soft_offline_page.attr);
490 	if (!err)
491 		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
492 				&class_attr_hard_offline_page.attr);
493 	return err;
494 }
495 #else
496 static inline int memory_fail_init(void)
497 {
498 	return 0;
499 }
500 #endif
501 
502 /*
503  * Note that phys_device is optional.  It is here to allow for
504  * differentiation between which *physical* devices each
505  * section belongs to...
506  */
507 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
508 {
509 	return 0;
510 }
511 
512 struct memory_block *find_memory_block_hinted(struct mem_section *section,
513 					      struct memory_block *hint)
514 {
515 	struct kobject *kobj;
516 	struct sys_device *sysdev;
517 	struct memory_block *mem;
518 	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
519 	int block_id = base_memory_block_id(__section_nr(section));
520 
521 	kobj = hint ? &hint->sysdev.kobj : NULL;
522 
523 	/*
524 	 * This only works because we know that section == sysdev->id
525 	 * slightly redundant with sysdev_register()
526 	 */
527 	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
528 
529 	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
530 	if (!kobj)
531 		return NULL;
532 
533 	sysdev = container_of(kobj, struct sys_device, kobj);
534 	mem = container_of(sysdev, struct memory_block, sysdev);
535 
536 	return mem;
537 }
538 
539 /*
540  * For now, we have a linear search to go find the appropriate
541  * memory_block corresponding to a particular phys_index. If
542  * this gets to be a real problem, we can always use a radix
543  * tree or something here.
544  *
545  * This could be made generic for all sysdev classes.
546  */
547 struct memory_block *find_memory_block(struct mem_section *section)
548 {
549 	return find_memory_block_hinted(section, NULL);
550 }
551 
552 static int init_memory_block(struct memory_block **memory,
553 			     struct mem_section *section, unsigned long state)
554 {
555 	struct memory_block *mem;
556 	unsigned long start_pfn;
557 	int scn_nr;
558 	int ret = 0;
559 
560 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
561 	if (!mem)
562 		return -ENOMEM;
563 
564 	scn_nr = __section_nr(section);
565 	mem->start_section_nr =
566 			base_memory_block_id(scn_nr) * sections_per_block;
567 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
568 	mem->state = state;
569 	mem->section_count++;
570 	mutex_init(&mem->state_mutex);
571 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
572 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
573 
574 	ret = register_memory(mem);
575 	if (!ret)
576 		ret = mem_create_simple_file(mem, phys_index);
577 	if (!ret)
578 		ret = mem_create_simple_file(mem, end_phys_index);
579 	if (!ret)
580 		ret = mem_create_simple_file(mem, state);
581 	if (!ret)
582 		ret = mem_create_simple_file(mem, phys_device);
583 	if (!ret)
584 		ret = mem_create_simple_file(mem, removable);
585 
586 	*memory = mem;
587 	return ret;
588 }
589 
590 static int add_memory_section(int nid, struct mem_section *section,
591 			unsigned long state, enum mem_add_context context)
592 {
593 	struct memory_block *mem;
594 	int ret = 0;
595 
596 	mutex_lock(&mem_sysfs_mutex);
597 
598 	mem = find_memory_block(section);
599 	if (mem) {
600 		mem->section_count++;
601 		kobject_put(&mem->sysdev.kobj);
602 	} else
603 		ret = init_memory_block(&mem, section, state);
604 
605 	if (!ret) {
606 		if (context == HOTPLUG &&
607 		    mem->section_count == sections_per_block)
608 			ret = register_mem_sect_under_node(mem, nid);
609 	}
610 
611 	mutex_unlock(&mem_sysfs_mutex);
612 	return ret;
613 }
614 
615 int remove_memory_block(unsigned long node_id, struct mem_section *section,
616 		int phys_device)
617 {
618 	struct memory_block *mem;
619 
620 	mutex_lock(&mem_sysfs_mutex);
621 	mem = find_memory_block(section);
622 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
623 
624 	mem->section_count--;
625 	if (mem->section_count == 0) {
626 		mem_remove_simple_file(mem, phys_index);
627 		mem_remove_simple_file(mem, end_phys_index);
628 		mem_remove_simple_file(mem, state);
629 		mem_remove_simple_file(mem, phys_device);
630 		mem_remove_simple_file(mem, removable);
631 		unregister_memory(mem);
632 		kfree(mem);
633 	} else
634 		kobject_put(&mem->sysdev.kobj);
635 
636 	mutex_unlock(&mem_sysfs_mutex);
637 	return 0;
638 }
639 
640 /*
641  * need an interface for the VM to add new memory regions,
642  * but without onlining it.
643  */
644 int register_new_memory(int nid, struct mem_section *section)
645 {
646 	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
647 }
648 
649 int unregister_memory_section(struct mem_section *section)
650 {
651 	if (!present_section(section))
652 		return -EINVAL;
653 
654 	return remove_memory_block(0, section, 0);
655 }
656 
657 /*
658  * Initialize the sysfs support for memory devices...
659  */
660 int __init memory_dev_init(void)
661 {
662 	unsigned int i;
663 	int ret;
664 	int err;
665 	unsigned long block_sz;
666 
667 	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
668 	ret = sysdev_class_register(&memory_sysdev_class);
669 	if (ret)
670 		goto out;
671 
672 	block_sz = get_memory_block_size();
673 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
674 
675 	/*
676 	 * Create entries for memory sections that were found
677 	 * during boot and have been initialized
678 	 */
679 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
680 		if (!present_section_nr(i))
681 			continue;
682 		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
683 					 BOOT);
684 		if (!ret)
685 			ret = err;
686 	}
687 
688 	err = memory_probe_init();
689 	if (!ret)
690 		ret = err;
691 	err = memory_fail_init();
692 	if (!ret)
693 		ret = err;
694 	err = block_size_init();
695 	if (!ret)
696 		ret = err;
697 out:
698 	if (ret)
699 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
700 	return ret;
701 }
702