1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory subsystem support 4 * 5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 6 * Dave Hansen <haveblue@us.ibm.com> 7 * 8 * This file provides the necessary infrastructure to represent 9 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/topology.h> 17 #include <linux/capability.h> 18 #include <linux/device.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/mm.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 #include <linux/xarray.h> 25 26 #include <linux/atomic.h> 27 #include <linux/uaccess.h> 28 29 #define MEMORY_CLASS_NAME "memory" 30 31 static const char *const online_type_to_str[] = { 32 [MMOP_OFFLINE] = "offline", 33 [MMOP_ONLINE] = "online", 34 [MMOP_ONLINE_KERNEL] = "online_kernel", 35 [MMOP_ONLINE_MOVABLE] = "online_movable", 36 }; 37 38 int mhp_online_type_from_str(const char *str) 39 { 40 int i; 41 42 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) { 43 if (sysfs_streq(str, online_type_to_str[i])) 44 return i; 45 } 46 return -EINVAL; 47 } 48 49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 50 51 static int sections_per_block; 52 53 static inline unsigned long memory_block_id(unsigned long section_nr) 54 { 55 return section_nr / sections_per_block; 56 } 57 58 static inline unsigned long pfn_to_block_id(unsigned long pfn) 59 { 60 return memory_block_id(pfn_to_section_nr(pfn)); 61 } 62 63 static inline unsigned long phys_to_block_id(unsigned long phys) 64 { 65 return pfn_to_block_id(PFN_DOWN(phys)); 66 } 67 68 static int memory_subsys_online(struct device *dev); 69 static int memory_subsys_offline(struct device *dev); 70 71 static struct bus_type memory_subsys = { 72 .name = MEMORY_CLASS_NAME, 73 .dev_name = MEMORY_CLASS_NAME, 74 .online = memory_subsys_online, 75 .offline = memory_subsys_offline, 76 }; 77 78 /* 79 * Memory blocks are cached in a local radix tree to avoid 80 * a costly linear search for the corresponding device on 81 * the subsystem bus. 82 */ 83 static DEFINE_XARRAY(memory_blocks); 84 85 /* 86 * Memory groups, indexed by memory group id (mgid). 87 */ 88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC); 89 #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1 90 91 static BLOCKING_NOTIFIER_HEAD(memory_chain); 92 93 int register_memory_notifier(struct notifier_block *nb) 94 { 95 return blocking_notifier_chain_register(&memory_chain, nb); 96 } 97 EXPORT_SYMBOL(register_memory_notifier); 98 99 void unregister_memory_notifier(struct notifier_block *nb) 100 { 101 blocking_notifier_chain_unregister(&memory_chain, nb); 102 } 103 EXPORT_SYMBOL(unregister_memory_notifier); 104 105 static void memory_block_release(struct device *dev) 106 { 107 struct memory_block *mem = to_memory_block(dev); 108 109 kfree(mem); 110 } 111 112 unsigned long __weak memory_block_size_bytes(void) 113 { 114 return MIN_MEMORY_BLOCK_SIZE; 115 } 116 EXPORT_SYMBOL_GPL(memory_block_size_bytes); 117 118 /* 119 * Show the first physical section index (number) of this memory block. 120 */ 121 static ssize_t phys_index_show(struct device *dev, 122 struct device_attribute *attr, char *buf) 123 { 124 struct memory_block *mem = to_memory_block(dev); 125 unsigned long phys_index; 126 127 phys_index = mem->start_section_nr / sections_per_block; 128 129 return sysfs_emit(buf, "%08lx\n", phys_index); 130 } 131 132 /* 133 * Legacy interface that we cannot remove. Always indicate "removable" 134 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic. 135 */ 136 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 137 char *buf) 138 { 139 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)); 140 } 141 142 /* 143 * online, offline, going offline, etc. 144 */ 145 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 146 char *buf) 147 { 148 struct memory_block *mem = to_memory_block(dev); 149 const char *output; 150 151 /* 152 * We can probably put these states in a nice little array 153 * so that they're not open-coded 154 */ 155 switch (mem->state) { 156 case MEM_ONLINE: 157 output = "online"; 158 break; 159 case MEM_OFFLINE: 160 output = "offline"; 161 break; 162 case MEM_GOING_OFFLINE: 163 output = "going-offline"; 164 break; 165 default: 166 WARN_ON(1); 167 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state); 168 } 169 170 return sysfs_emit(buf, "%s\n", output); 171 } 172 173 int memory_notify(unsigned long val, void *v) 174 { 175 return blocking_notifier_call_chain(&memory_chain, val, v); 176 } 177 178 static int memory_block_online(struct memory_block *mem) 179 { 180 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 181 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 182 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages; 183 struct zone *zone; 184 int ret; 185 186 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group, 187 start_pfn, nr_pages); 188 189 /* 190 * Although vmemmap pages have a different lifecycle than the pages 191 * they describe (they remain until the memory is unplugged), doing 192 * their initialization and accounting at memory onlining/offlining 193 * stage helps to keep accounting easier to follow - e.g vmemmaps 194 * belong to the same zone as the memory they backed. 195 */ 196 if (nr_vmemmap_pages) { 197 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone); 198 if (ret) 199 return ret; 200 } 201 202 ret = online_pages(start_pfn + nr_vmemmap_pages, 203 nr_pages - nr_vmemmap_pages, zone, mem->group); 204 if (ret) { 205 if (nr_vmemmap_pages) 206 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 207 return ret; 208 } 209 210 /* 211 * Account once onlining succeeded. If the zone was unpopulated, it is 212 * now already properly populated. 213 */ 214 if (nr_vmemmap_pages) 215 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 216 nr_vmemmap_pages); 217 218 mem->zone = zone; 219 return ret; 220 } 221 222 static int memory_block_offline(struct memory_block *mem) 223 { 224 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 225 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 226 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages; 227 int ret; 228 229 if (!mem->zone) 230 return -EINVAL; 231 232 /* 233 * Unaccount before offlining, such that unpopulated zone and kthreads 234 * can properly be torn down in offline_pages(). 235 */ 236 if (nr_vmemmap_pages) 237 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 238 -nr_vmemmap_pages); 239 240 ret = offline_pages(start_pfn + nr_vmemmap_pages, 241 nr_pages - nr_vmemmap_pages, mem->zone, mem->group); 242 if (ret) { 243 /* offline_pages() failed. Account back. */ 244 if (nr_vmemmap_pages) 245 adjust_present_page_count(pfn_to_page(start_pfn), 246 mem->group, nr_vmemmap_pages); 247 return ret; 248 } 249 250 if (nr_vmemmap_pages) 251 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 252 253 mem->zone = NULL; 254 return ret; 255 } 256 257 /* 258 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 259 * OK to have direct references to sparsemem variables in here. 260 */ 261 static int 262 memory_block_action(struct memory_block *mem, unsigned long action) 263 { 264 int ret; 265 266 switch (action) { 267 case MEM_ONLINE: 268 ret = memory_block_online(mem); 269 break; 270 case MEM_OFFLINE: 271 ret = memory_block_offline(mem); 272 break; 273 default: 274 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 275 "%ld\n", __func__, mem->start_section_nr, action, action); 276 ret = -EINVAL; 277 } 278 279 return ret; 280 } 281 282 static int memory_block_change_state(struct memory_block *mem, 283 unsigned long to_state, unsigned long from_state_req) 284 { 285 int ret = 0; 286 287 if (mem->state != from_state_req) 288 return -EINVAL; 289 290 if (to_state == MEM_OFFLINE) 291 mem->state = MEM_GOING_OFFLINE; 292 293 ret = memory_block_action(mem, to_state); 294 mem->state = ret ? from_state_req : to_state; 295 296 return ret; 297 } 298 299 /* The device lock serializes operations on memory_subsys_[online|offline] */ 300 static int memory_subsys_online(struct device *dev) 301 { 302 struct memory_block *mem = to_memory_block(dev); 303 int ret; 304 305 if (mem->state == MEM_ONLINE) 306 return 0; 307 308 /* 309 * When called via device_online() without configuring the online_type, 310 * we want to default to MMOP_ONLINE. 311 */ 312 if (mem->online_type == MMOP_OFFLINE) 313 mem->online_type = MMOP_ONLINE; 314 315 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 316 mem->online_type = MMOP_OFFLINE; 317 318 return ret; 319 } 320 321 static int memory_subsys_offline(struct device *dev) 322 { 323 struct memory_block *mem = to_memory_block(dev); 324 325 if (mem->state == MEM_OFFLINE) 326 return 0; 327 328 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 329 } 330 331 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 332 const char *buf, size_t count) 333 { 334 const int online_type = mhp_online_type_from_str(buf); 335 struct memory_block *mem = to_memory_block(dev); 336 int ret; 337 338 if (online_type < 0) 339 return -EINVAL; 340 341 ret = lock_device_hotplug_sysfs(); 342 if (ret) 343 return ret; 344 345 switch (online_type) { 346 case MMOP_ONLINE_KERNEL: 347 case MMOP_ONLINE_MOVABLE: 348 case MMOP_ONLINE: 349 /* mem->online_type is protected by device_hotplug_lock */ 350 mem->online_type = online_type; 351 ret = device_online(&mem->dev); 352 break; 353 case MMOP_OFFLINE: 354 ret = device_offline(&mem->dev); 355 break; 356 default: 357 ret = -EINVAL; /* should never happen */ 358 } 359 360 unlock_device_hotplug(); 361 362 if (ret < 0) 363 return ret; 364 if (ret) 365 return -EINVAL; 366 367 return count; 368 } 369 370 /* 371 * Legacy interface that we cannot remove: s390x exposes the storage increment 372 * covered by a memory block, allowing for identifying which memory blocks 373 * comprise a storage increment. Since a memory block spans complete 374 * storage increments nowadays, this interface is basically unused. Other 375 * archs never exposed != 0. 376 */ 377 static ssize_t phys_device_show(struct device *dev, 378 struct device_attribute *attr, char *buf) 379 { 380 struct memory_block *mem = to_memory_block(dev); 381 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 382 383 return sysfs_emit(buf, "%d\n", 384 arch_get_memory_phys_device(start_pfn)); 385 } 386 387 #ifdef CONFIG_MEMORY_HOTREMOVE 388 static int print_allowed_zone(char *buf, int len, int nid, 389 struct memory_group *group, 390 unsigned long start_pfn, unsigned long nr_pages, 391 int online_type, struct zone *default_zone) 392 { 393 struct zone *zone; 394 395 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages); 396 if (zone == default_zone) 397 return 0; 398 399 return sysfs_emit_at(buf, len, " %s", zone->name); 400 } 401 402 static ssize_t valid_zones_show(struct device *dev, 403 struct device_attribute *attr, char *buf) 404 { 405 struct memory_block *mem = to_memory_block(dev); 406 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 407 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 408 struct memory_group *group = mem->group; 409 struct zone *default_zone; 410 int nid = mem->nid; 411 int len = 0; 412 413 /* 414 * Check the existing zone. Make sure that we do that only on the 415 * online nodes otherwise the page_zone is not reliable 416 */ 417 if (mem->state == MEM_ONLINE) { 418 /* 419 * If !mem->zone, the memory block spans multiple zones and 420 * cannot get offlined. 421 */ 422 default_zone = mem->zone; 423 if (!default_zone) 424 return sysfs_emit(buf, "%s\n", "none"); 425 len += sysfs_emit_at(buf, len, "%s", default_zone->name); 426 goto out; 427 } 428 429 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group, 430 start_pfn, nr_pages); 431 432 len += sysfs_emit_at(buf, len, "%s", default_zone->name); 433 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 434 MMOP_ONLINE_KERNEL, default_zone); 435 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 436 MMOP_ONLINE_MOVABLE, default_zone); 437 out: 438 len += sysfs_emit_at(buf, len, "\n"); 439 return len; 440 } 441 static DEVICE_ATTR_RO(valid_zones); 442 #endif 443 444 static DEVICE_ATTR_RO(phys_index); 445 static DEVICE_ATTR_RW(state); 446 static DEVICE_ATTR_RO(phys_device); 447 static DEVICE_ATTR_RO(removable); 448 449 /* 450 * Show the memory block size (shared by all memory blocks). 451 */ 452 static ssize_t block_size_bytes_show(struct device *dev, 453 struct device_attribute *attr, char *buf) 454 { 455 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes()); 456 } 457 458 static DEVICE_ATTR_RO(block_size_bytes); 459 460 /* 461 * Memory auto online policy. 462 */ 463 464 static ssize_t auto_online_blocks_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 return sysfs_emit(buf, "%s\n", 468 online_type_to_str[mhp_default_online_type]); 469 } 470 471 static ssize_t auto_online_blocks_store(struct device *dev, 472 struct device_attribute *attr, 473 const char *buf, size_t count) 474 { 475 const int online_type = mhp_online_type_from_str(buf); 476 477 if (online_type < 0) 478 return -EINVAL; 479 480 mhp_default_online_type = online_type; 481 return count; 482 } 483 484 static DEVICE_ATTR_RW(auto_online_blocks); 485 486 /* 487 * Some architectures will have custom drivers to do this, and 488 * will not need to do it from userspace. The fake hot-add code 489 * as well as ppc64 will do all of their discovery in userspace 490 * and will require this interface. 491 */ 492 #ifdef CONFIG_ARCH_MEMORY_PROBE 493 static ssize_t probe_store(struct device *dev, struct device_attribute *attr, 494 const char *buf, size_t count) 495 { 496 u64 phys_addr; 497 int nid, ret; 498 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 499 500 ret = kstrtoull(buf, 0, &phys_addr); 501 if (ret) 502 return ret; 503 504 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 505 return -EINVAL; 506 507 ret = lock_device_hotplug_sysfs(); 508 if (ret) 509 return ret; 510 511 nid = memory_add_physaddr_to_nid(phys_addr); 512 ret = __add_memory(nid, phys_addr, 513 MIN_MEMORY_BLOCK_SIZE * sections_per_block, 514 MHP_NONE); 515 516 if (ret) 517 goto out; 518 519 ret = count; 520 out: 521 unlock_device_hotplug(); 522 return ret; 523 } 524 525 static DEVICE_ATTR_WO(probe); 526 #endif 527 528 #ifdef CONFIG_MEMORY_FAILURE 529 /* 530 * Support for offlining pages of memory 531 */ 532 533 /* Soft offline a page */ 534 static ssize_t soft_offline_page_store(struct device *dev, 535 struct device_attribute *attr, 536 const char *buf, size_t count) 537 { 538 int ret; 539 u64 pfn; 540 if (!capable(CAP_SYS_ADMIN)) 541 return -EPERM; 542 if (kstrtoull(buf, 0, &pfn) < 0) 543 return -EINVAL; 544 pfn >>= PAGE_SHIFT; 545 ret = soft_offline_page(pfn, 0); 546 return ret == 0 ? count : ret; 547 } 548 549 /* Forcibly offline a page, including killing processes. */ 550 static ssize_t hard_offline_page_store(struct device *dev, 551 struct device_attribute *attr, 552 const char *buf, size_t count) 553 { 554 int ret; 555 u64 pfn; 556 if (!capable(CAP_SYS_ADMIN)) 557 return -EPERM; 558 if (kstrtoull(buf, 0, &pfn) < 0) 559 return -EINVAL; 560 pfn >>= PAGE_SHIFT; 561 ret = memory_failure(pfn, MF_SW_SIMULATED); 562 if (ret == -EOPNOTSUPP) 563 ret = 0; 564 return ret ? ret : count; 565 } 566 567 static DEVICE_ATTR_WO(soft_offline_page); 568 static DEVICE_ATTR_WO(hard_offline_page); 569 #endif 570 571 /* See phys_device_show(). */ 572 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 573 { 574 return 0; 575 } 576 577 /* 578 * A reference for the returned memory block device is acquired. 579 * 580 * Called under device_hotplug_lock. 581 */ 582 static struct memory_block *find_memory_block_by_id(unsigned long block_id) 583 { 584 struct memory_block *mem; 585 586 mem = xa_load(&memory_blocks, block_id); 587 if (mem) 588 get_device(&mem->dev); 589 return mem; 590 } 591 592 /* 593 * Called under device_hotplug_lock. 594 */ 595 struct memory_block *find_memory_block(unsigned long section_nr) 596 { 597 unsigned long block_id = memory_block_id(section_nr); 598 599 return find_memory_block_by_id(block_id); 600 } 601 602 static struct attribute *memory_memblk_attrs[] = { 603 &dev_attr_phys_index.attr, 604 &dev_attr_state.attr, 605 &dev_attr_phys_device.attr, 606 &dev_attr_removable.attr, 607 #ifdef CONFIG_MEMORY_HOTREMOVE 608 &dev_attr_valid_zones.attr, 609 #endif 610 NULL 611 }; 612 613 static const struct attribute_group memory_memblk_attr_group = { 614 .attrs = memory_memblk_attrs, 615 }; 616 617 static const struct attribute_group *memory_memblk_attr_groups[] = { 618 &memory_memblk_attr_group, 619 NULL, 620 }; 621 622 static int __add_memory_block(struct memory_block *memory) 623 { 624 int ret; 625 626 memory->dev.bus = &memory_subsys; 627 memory->dev.id = memory->start_section_nr / sections_per_block; 628 memory->dev.release = memory_block_release; 629 memory->dev.groups = memory_memblk_attr_groups; 630 memory->dev.offline = memory->state == MEM_OFFLINE; 631 632 ret = device_register(&memory->dev); 633 if (ret) { 634 put_device(&memory->dev); 635 return ret; 636 } 637 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory, 638 GFP_KERNEL)); 639 if (ret) 640 device_unregister(&memory->dev); 641 642 return ret; 643 } 644 645 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem, 646 int nid) 647 { 648 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 649 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 650 struct zone *zone, *matching_zone = NULL; 651 pg_data_t *pgdat = NODE_DATA(nid); 652 int i; 653 654 /* 655 * This logic only works for early memory, when the applicable zones 656 * already span the memory block. We don't expect overlapping zones on 657 * a single node for early memory. So if we're told that some PFNs 658 * of a node fall into this memory block, we can assume that all node 659 * zones that intersect with the memory block are actually applicable. 660 * No need to look at the memmap. 661 */ 662 for (i = 0; i < MAX_NR_ZONES; i++) { 663 zone = pgdat->node_zones + i; 664 if (!populated_zone(zone)) 665 continue; 666 if (!zone_intersects(zone, start_pfn, nr_pages)) 667 continue; 668 if (!matching_zone) { 669 matching_zone = zone; 670 continue; 671 } 672 /* Spans multiple zones ... */ 673 matching_zone = NULL; 674 break; 675 } 676 return matching_zone; 677 } 678 679 #ifdef CONFIG_NUMA 680 /** 681 * memory_block_add_nid() - Indicate that system RAM falling into this memory 682 * block device (partially) belongs to the given node. 683 * @mem: The memory block device. 684 * @nid: The node id. 685 * @context: The memory initialization context. 686 * 687 * Indicate that system RAM falling into this memory block (partially) belongs 688 * to the given node. If the context indicates ("early") that we are adding the 689 * node during node device subsystem initialization, this will also properly 690 * set/adjust mem->zone based on the zone ranges of the given node. 691 */ 692 void memory_block_add_nid(struct memory_block *mem, int nid, 693 enum meminit_context context) 694 { 695 if (context == MEMINIT_EARLY && mem->nid != nid) { 696 /* 697 * For early memory we have to determine the zone when setting 698 * the node id and handle multiple nodes spanning a single 699 * memory block by indicate via zone == NULL that we're not 700 * dealing with a single zone. So if we're setting the node id 701 * the first time, determine if there is a single zone. If we're 702 * setting the node id a second time to a different node, 703 * invalidate the single detected zone. 704 */ 705 if (mem->nid == NUMA_NO_NODE) 706 mem->zone = early_node_zone_for_memory_block(mem, nid); 707 else 708 mem->zone = NULL; 709 } 710 711 /* 712 * If this memory block spans multiple nodes, we only indicate 713 * the last processed node. If we span multiple nodes (not applicable 714 * to hotplugged memory), zone == NULL will prohibit memory offlining 715 * and consequently unplug. 716 */ 717 mem->nid = nid; 718 } 719 #endif 720 721 static int add_memory_block(unsigned long block_id, unsigned long state, 722 unsigned long nr_vmemmap_pages, 723 struct memory_group *group) 724 { 725 struct memory_block *mem; 726 int ret = 0; 727 728 mem = find_memory_block_by_id(block_id); 729 if (mem) { 730 put_device(&mem->dev); 731 return -EEXIST; 732 } 733 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 734 if (!mem) 735 return -ENOMEM; 736 737 mem->start_section_nr = block_id * sections_per_block; 738 mem->state = state; 739 mem->nid = NUMA_NO_NODE; 740 mem->nr_vmemmap_pages = nr_vmemmap_pages; 741 INIT_LIST_HEAD(&mem->group_next); 742 743 #ifndef CONFIG_NUMA 744 if (state == MEM_ONLINE) 745 /* 746 * MEM_ONLINE at this point implies early memory. With NUMA, 747 * we'll determine the zone when setting the node id via 748 * memory_block_add_nid(). Memory hotplug updated the zone 749 * manually when memory onlining/offlining succeeds. 750 */ 751 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE); 752 #endif /* CONFIG_NUMA */ 753 754 ret = __add_memory_block(mem); 755 if (ret) 756 return ret; 757 758 if (group) { 759 mem->group = group; 760 list_add(&mem->group_next, &group->memory_blocks); 761 } 762 763 return 0; 764 } 765 766 static int __init add_boot_memory_block(unsigned long base_section_nr) 767 { 768 int section_count = 0; 769 unsigned long nr; 770 771 for (nr = base_section_nr; nr < base_section_nr + sections_per_block; 772 nr++) 773 if (present_section_nr(nr)) 774 section_count++; 775 776 if (section_count == 0) 777 return 0; 778 return add_memory_block(memory_block_id(base_section_nr), 779 MEM_ONLINE, 0, NULL); 780 } 781 782 static int add_hotplug_memory_block(unsigned long block_id, 783 unsigned long nr_vmemmap_pages, 784 struct memory_group *group) 785 { 786 return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group); 787 } 788 789 static void remove_memory_block(struct memory_block *memory) 790 { 791 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys)) 792 return; 793 794 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL); 795 796 if (memory->group) { 797 list_del(&memory->group_next); 798 memory->group = NULL; 799 } 800 801 /* drop the ref. we got via find_memory_block() */ 802 put_device(&memory->dev); 803 device_unregister(&memory->dev); 804 } 805 806 /* 807 * Create memory block devices for the given memory area. Start and size 808 * have to be aligned to memory block granularity. Memory block devices 809 * will be initialized as offline. 810 * 811 * Called under device_hotplug_lock. 812 */ 813 int create_memory_block_devices(unsigned long start, unsigned long size, 814 unsigned long vmemmap_pages, 815 struct memory_group *group) 816 { 817 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 818 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 819 struct memory_block *mem; 820 unsigned long block_id; 821 int ret = 0; 822 823 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 824 !IS_ALIGNED(size, memory_block_size_bytes()))) 825 return -EINVAL; 826 827 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 828 ret = add_hotplug_memory_block(block_id, vmemmap_pages, group); 829 if (ret) 830 break; 831 } 832 if (ret) { 833 end_block_id = block_id; 834 for (block_id = start_block_id; block_id != end_block_id; 835 block_id++) { 836 mem = find_memory_block_by_id(block_id); 837 if (WARN_ON_ONCE(!mem)) 838 continue; 839 remove_memory_block(mem); 840 } 841 } 842 return ret; 843 } 844 845 /* 846 * Remove memory block devices for the given memory area. Start and size 847 * have to be aligned to memory block granularity. Memory block devices 848 * have to be offline. 849 * 850 * Called under device_hotplug_lock. 851 */ 852 void remove_memory_block_devices(unsigned long start, unsigned long size) 853 { 854 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 855 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 856 struct memory_block *mem; 857 unsigned long block_id; 858 859 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 860 !IS_ALIGNED(size, memory_block_size_bytes()))) 861 return; 862 863 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 864 mem = find_memory_block_by_id(block_id); 865 if (WARN_ON_ONCE(!mem)) 866 continue; 867 unregister_memory_block_under_nodes(mem); 868 remove_memory_block(mem); 869 } 870 } 871 872 static struct attribute *memory_root_attrs[] = { 873 #ifdef CONFIG_ARCH_MEMORY_PROBE 874 &dev_attr_probe.attr, 875 #endif 876 877 #ifdef CONFIG_MEMORY_FAILURE 878 &dev_attr_soft_offline_page.attr, 879 &dev_attr_hard_offline_page.attr, 880 #endif 881 882 &dev_attr_block_size_bytes.attr, 883 &dev_attr_auto_online_blocks.attr, 884 NULL 885 }; 886 887 static const struct attribute_group memory_root_attr_group = { 888 .attrs = memory_root_attrs, 889 }; 890 891 static const struct attribute_group *memory_root_attr_groups[] = { 892 &memory_root_attr_group, 893 NULL, 894 }; 895 896 /* 897 * Initialize the sysfs support for memory devices. At the time this function 898 * is called, we cannot have concurrent creation/deletion of memory block 899 * devices, the device_hotplug_lock is not needed. 900 */ 901 void __init memory_dev_init(void) 902 { 903 int ret; 904 unsigned long block_sz, nr; 905 906 /* Validate the configured memory block size */ 907 block_sz = memory_block_size_bytes(); 908 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE) 909 panic("Memory block size not suitable: 0x%lx\n", block_sz); 910 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 911 912 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 913 if (ret) 914 panic("%s() failed to register subsystem: %d\n", __func__, ret); 915 916 /* 917 * Create entries for memory sections that were found 918 * during boot and have been initialized 919 */ 920 for (nr = 0; nr <= __highest_present_section_nr; 921 nr += sections_per_block) { 922 ret = add_boot_memory_block(nr); 923 if (ret) 924 panic("%s() failed to add memory block: %d\n", __func__, 925 ret); 926 } 927 } 928 929 /** 930 * walk_memory_blocks - walk through all present memory blocks overlapped 931 * by the range [start, start + size) 932 * 933 * @start: start address of the memory range 934 * @size: size of the memory range 935 * @arg: argument passed to func 936 * @func: callback for each memory section walked 937 * 938 * This function walks through all present memory blocks overlapped by the 939 * range [start, start + size), calling func on each memory block. 940 * 941 * In case func() returns an error, walking is aborted and the error is 942 * returned. 943 * 944 * Called under device_hotplug_lock. 945 */ 946 int walk_memory_blocks(unsigned long start, unsigned long size, 947 void *arg, walk_memory_blocks_func_t func) 948 { 949 const unsigned long start_block_id = phys_to_block_id(start); 950 const unsigned long end_block_id = phys_to_block_id(start + size - 1); 951 struct memory_block *mem; 952 unsigned long block_id; 953 int ret = 0; 954 955 if (!size) 956 return 0; 957 958 for (block_id = start_block_id; block_id <= end_block_id; block_id++) { 959 mem = find_memory_block_by_id(block_id); 960 if (!mem) 961 continue; 962 963 ret = func(mem, arg); 964 put_device(&mem->dev); 965 if (ret) 966 break; 967 } 968 return ret; 969 } 970 971 struct for_each_memory_block_cb_data { 972 walk_memory_blocks_func_t func; 973 void *arg; 974 }; 975 976 static int for_each_memory_block_cb(struct device *dev, void *data) 977 { 978 struct memory_block *mem = to_memory_block(dev); 979 struct for_each_memory_block_cb_data *cb_data = data; 980 981 return cb_data->func(mem, cb_data->arg); 982 } 983 984 /** 985 * for_each_memory_block - walk through all present memory blocks 986 * 987 * @arg: argument passed to func 988 * @func: callback for each memory block walked 989 * 990 * This function walks through all present memory blocks, calling func on 991 * each memory block. 992 * 993 * In case func() returns an error, walking is aborted and the error is 994 * returned. 995 */ 996 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func) 997 { 998 struct for_each_memory_block_cb_data cb_data = { 999 .func = func, 1000 .arg = arg, 1001 }; 1002 1003 return bus_for_each_dev(&memory_subsys, NULL, &cb_data, 1004 for_each_memory_block_cb); 1005 } 1006 1007 /* 1008 * This is an internal helper to unify allocation and initialization of 1009 * memory groups. Note that the passed memory group will be copied to a 1010 * dynamically allocated memory group. After this call, the passed 1011 * memory group should no longer be used. 1012 */ 1013 static int memory_group_register(struct memory_group group) 1014 { 1015 struct memory_group *new_group; 1016 uint32_t mgid; 1017 int ret; 1018 1019 if (!node_possible(group.nid)) 1020 return -EINVAL; 1021 1022 new_group = kzalloc(sizeof(group), GFP_KERNEL); 1023 if (!new_group) 1024 return -ENOMEM; 1025 *new_group = group; 1026 INIT_LIST_HEAD(&new_group->memory_blocks); 1027 1028 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b, 1029 GFP_KERNEL); 1030 if (ret) { 1031 kfree(new_group); 1032 return ret; 1033 } else if (group.is_dynamic) { 1034 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC); 1035 } 1036 return mgid; 1037 } 1038 1039 /** 1040 * memory_group_register_static() - Register a static memory group. 1041 * @nid: The node id. 1042 * @max_pages: The maximum number of pages we'll have in this static memory 1043 * group. 1044 * 1045 * Register a new static memory group and return the memory group id. 1046 * All memory in the group belongs to a single unit, such as a DIMM. All 1047 * memory belonging to a static memory group is added in one go to be removed 1048 * in one go -- it's static. 1049 * 1050 * Returns an error if out of memory, if the node id is invalid, if no new 1051 * memory groups can be registered, or if max_pages is invalid (0). Otherwise, 1052 * returns the new memory group id. 1053 */ 1054 int memory_group_register_static(int nid, unsigned long max_pages) 1055 { 1056 struct memory_group group = { 1057 .nid = nid, 1058 .s = { 1059 .max_pages = max_pages, 1060 }, 1061 }; 1062 1063 if (!max_pages) 1064 return -EINVAL; 1065 return memory_group_register(group); 1066 } 1067 EXPORT_SYMBOL_GPL(memory_group_register_static); 1068 1069 /** 1070 * memory_group_register_dynamic() - Register a dynamic memory group. 1071 * @nid: The node id. 1072 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic 1073 * memory group. 1074 * 1075 * Register a new dynamic memory group and return the memory group id. 1076 * Memory within a dynamic memory group is added/removed dynamically 1077 * in unit_pages. 1078 * 1079 * Returns an error if out of memory, if the node id is invalid, if no new 1080 * memory groups can be registered, or if unit_pages is invalid (0, not a 1081 * power of two, smaller than a single memory block). Otherwise, returns the 1082 * new memory group id. 1083 */ 1084 int memory_group_register_dynamic(int nid, unsigned long unit_pages) 1085 { 1086 struct memory_group group = { 1087 .nid = nid, 1088 .is_dynamic = true, 1089 .d = { 1090 .unit_pages = unit_pages, 1091 }, 1092 }; 1093 1094 if (!unit_pages || !is_power_of_2(unit_pages) || 1095 unit_pages < PHYS_PFN(memory_block_size_bytes())) 1096 return -EINVAL; 1097 return memory_group_register(group); 1098 } 1099 EXPORT_SYMBOL_GPL(memory_group_register_dynamic); 1100 1101 /** 1102 * memory_group_unregister() - Unregister a memory group. 1103 * @mgid: the memory group id 1104 * 1105 * Unregister a memory group. If any memory block still belongs to this 1106 * memory group, unregistering will fail. 1107 * 1108 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some 1109 * memory blocks still belong to this memory group and returns 0 if 1110 * unregistering succeeded. 1111 */ 1112 int memory_group_unregister(int mgid) 1113 { 1114 struct memory_group *group; 1115 1116 if (mgid < 0) 1117 return -EINVAL; 1118 1119 group = xa_load(&memory_groups, mgid); 1120 if (!group) 1121 return -EINVAL; 1122 if (!list_empty(&group->memory_blocks)) 1123 return -EBUSY; 1124 xa_erase(&memory_groups, mgid); 1125 kfree(group); 1126 return 0; 1127 } 1128 EXPORT_SYMBOL_GPL(memory_group_unregister); 1129 1130 /* 1131 * This is an internal helper only to be used in core memory hotplug code to 1132 * lookup a memory group. We don't care about locking, as we don't expect a 1133 * memory group to get unregistered while adding memory to it -- because 1134 * the group and the memory is managed by the same driver. 1135 */ 1136 struct memory_group *memory_group_find_by_id(int mgid) 1137 { 1138 return xa_load(&memory_groups, mgid); 1139 } 1140 1141 /* 1142 * This is an internal helper only to be used in core memory hotplug code to 1143 * walk all dynamic memory groups excluding a given memory group, either 1144 * belonging to a specific node, or belonging to any node. 1145 */ 1146 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func, 1147 struct memory_group *excluded, void *arg) 1148 { 1149 struct memory_group *group; 1150 unsigned long index; 1151 int ret = 0; 1152 1153 xa_for_each_marked(&memory_groups, index, group, 1154 MEMORY_GROUP_MARK_DYNAMIC) { 1155 if (group == excluded) 1156 continue; 1157 #ifdef CONFIG_NUMA 1158 if (nid != NUMA_NO_NODE && group->nid != nid) 1159 continue; 1160 #endif /* CONFIG_NUMA */ 1161 ret = func(group, arg); 1162 if (ret) 1163 break; 1164 } 1165 return ret; 1166 } 1167