1 /* 2 * Memory subsystem support 3 * 4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 5 * Dave Hansen <haveblue@us.ibm.com> 6 * 7 * This file provides the necessary infrastructure to represent 8 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 9 * All arch-independent code that assumes MEMORY_HOTPLUG requires 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/topology.h> 16 #include <linux/capability.h> 17 #include <linux/device.h> 18 #include <linux/memory.h> 19 #include <linux/kobject.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/mm.h> 22 #include <linux/mutex.h> 23 #include <linux/stat.h> 24 #include <linux/slab.h> 25 26 #include <linux/atomic.h> 27 #include <asm/uaccess.h> 28 29 static DEFINE_MUTEX(mem_sysfs_mutex); 30 31 #define MEMORY_CLASS_NAME "memory" 32 33 static int sections_per_block; 34 35 static inline int base_memory_block_id(int section_nr) 36 { 37 return section_nr / sections_per_block; 38 } 39 40 static struct bus_type memory_subsys = { 41 .name = MEMORY_CLASS_NAME, 42 .dev_name = MEMORY_CLASS_NAME, 43 }; 44 45 static BLOCKING_NOTIFIER_HEAD(memory_chain); 46 47 int register_memory_notifier(struct notifier_block *nb) 48 { 49 return blocking_notifier_chain_register(&memory_chain, nb); 50 } 51 EXPORT_SYMBOL(register_memory_notifier); 52 53 void unregister_memory_notifier(struct notifier_block *nb) 54 { 55 blocking_notifier_chain_unregister(&memory_chain, nb); 56 } 57 EXPORT_SYMBOL(unregister_memory_notifier); 58 59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); 60 61 int register_memory_isolate_notifier(struct notifier_block *nb) 62 { 63 return atomic_notifier_chain_register(&memory_isolate_chain, nb); 64 } 65 EXPORT_SYMBOL(register_memory_isolate_notifier); 66 67 void unregister_memory_isolate_notifier(struct notifier_block *nb) 68 { 69 atomic_notifier_chain_unregister(&memory_isolate_chain, nb); 70 } 71 EXPORT_SYMBOL(unregister_memory_isolate_notifier); 72 73 /* 74 * register_memory - Setup a sysfs device for a memory block 75 */ 76 static 77 int register_memory(struct memory_block *memory) 78 { 79 int error; 80 81 memory->dev.bus = &memory_subsys; 82 memory->dev.id = memory->start_section_nr / sections_per_block; 83 84 error = device_register(&memory->dev); 85 return error; 86 } 87 88 static void 89 unregister_memory(struct memory_block *memory) 90 { 91 BUG_ON(memory->dev.bus != &memory_subsys); 92 93 /* drop the ref. we got in remove_memory_block() */ 94 kobject_put(&memory->dev.kobj); 95 device_unregister(&memory->dev); 96 } 97 98 unsigned long __weak memory_block_size_bytes(void) 99 { 100 return MIN_MEMORY_BLOCK_SIZE; 101 } 102 103 static unsigned long get_memory_block_size(void) 104 { 105 unsigned long block_sz; 106 107 block_sz = memory_block_size_bytes(); 108 109 /* Validate blk_sz is a power of 2 and not less than section size */ 110 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { 111 WARN_ON(1); 112 block_sz = MIN_MEMORY_BLOCK_SIZE; 113 } 114 115 return block_sz; 116 } 117 118 /* 119 * use this as the physical section index that this memsection 120 * uses. 121 */ 122 123 static ssize_t show_mem_start_phys_index(struct device *dev, 124 struct device_attribute *attr, char *buf) 125 { 126 struct memory_block *mem = 127 container_of(dev, struct memory_block, dev); 128 unsigned long phys_index; 129 130 phys_index = mem->start_section_nr / sections_per_block; 131 return sprintf(buf, "%08lx\n", phys_index); 132 } 133 134 static ssize_t show_mem_end_phys_index(struct device *dev, 135 struct device_attribute *attr, char *buf) 136 { 137 struct memory_block *mem = 138 container_of(dev, struct memory_block, dev); 139 unsigned long phys_index; 140 141 phys_index = mem->end_section_nr / sections_per_block; 142 return sprintf(buf, "%08lx\n", phys_index); 143 } 144 145 /* 146 * Show whether the section of memory is likely to be hot-removable 147 */ 148 static ssize_t show_mem_removable(struct device *dev, 149 struct device_attribute *attr, char *buf) 150 { 151 unsigned long i, pfn; 152 int ret = 1; 153 struct memory_block *mem = 154 container_of(dev, struct memory_block, dev); 155 156 for (i = 0; i < sections_per_block; i++) { 157 pfn = section_nr_to_pfn(mem->start_section_nr + i); 158 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); 159 } 160 161 return sprintf(buf, "%d\n", ret); 162 } 163 164 /* 165 * online, offline, going offline, etc. 166 */ 167 static ssize_t show_mem_state(struct device *dev, 168 struct device_attribute *attr, char *buf) 169 { 170 struct memory_block *mem = 171 container_of(dev, struct memory_block, dev); 172 ssize_t len = 0; 173 174 /* 175 * We can probably put these states in a nice little array 176 * so that they're not open-coded 177 */ 178 switch (mem->state) { 179 case MEM_ONLINE: 180 len = sprintf(buf, "online\n"); 181 break; 182 case MEM_OFFLINE: 183 len = sprintf(buf, "offline\n"); 184 break; 185 case MEM_GOING_OFFLINE: 186 len = sprintf(buf, "going-offline\n"); 187 break; 188 default: 189 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", 190 mem->state); 191 WARN_ON(1); 192 break; 193 } 194 195 return len; 196 } 197 198 int memory_notify(unsigned long val, void *v) 199 { 200 return blocking_notifier_call_chain(&memory_chain, val, v); 201 } 202 203 int memory_isolate_notify(unsigned long val, void *v) 204 { 205 return atomic_notifier_call_chain(&memory_isolate_chain, val, v); 206 } 207 208 /* 209 * The probe routines leave the pages reserved, just as the bootmem code does. 210 * Make sure they're still that way. 211 */ 212 static bool pages_correctly_reserved(unsigned long start_pfn, 213 unsigned long nr_pages) 214 { 215 int i, j; 216 struct page *page; 217 unsigned long pfn = start_pfn; 218 219 /* 220 * memmap between sections is not contiguous except with 221 * SPARSEMEM_VMEMMAP. We lookup the page once per section 222 * and assume memmap is contiguous within each section 223 */ 224 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) { 225 if (WARN_ON_ONCE(!pfn_valid(pfn))) 226 return false; 227 page = pfn_to_page(pfn); 228 229 for (j = 0; j < PAGES_PER_SECTION; j++) { 230 if (PageReserved(page + j)) 231 continue; 232 233 printk(KERN_WARNING "section number %ld page number %d " 234 "not reserved, was it already online?\n", 235 pfn_to_section_nr(pfn), j); 236 237 return false; 238 } 239 } 240 241 return true; 242 } 243 244 /* 245 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 246 * OK to have direct references to sparsemem variables in here. 247 */ 248 static int 249 memory_block_action(unsigned long phys_index, unsigned long action) 250 { 251 unsigned long start_pfn, start_paddr; 252 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 253 struct page *first_page; 254 int ret; 255 256 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT); 257 258 switch (action) { 259 case MEM_ONLINE: 260 start_pfn = page_to_pfn(first_page); 261 262 if (!pages_correctly_reserved(start_pfn, nr_pages)) 263 return -EBUSY; 264 265 ret = online_pages(start_pfn, nr_pages); 266 break; 267 case MEM_OFFLINE: 268 start_paddr = page_to_pfn(first_page) << PAGE_SHIFT; 269 ret = remove_memory(start_paddr, 270 nr_pages << PAGE_SHIFT); 271 break; 272 default: 273 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 274 "%ld\n", __func__, phys_index, action, action); 275 ret = -EINVAL; 276 } 277 278 return ret; 279 } 280 281 static int memory_block_change_state(struct memory_block *mem, 282 unsigned long to_state, unsigned long from_state_req) 283 { 284 int ret = 0; 285 286 mutex_lock(&mem->state_mutex); 287 288 if (mem->state != from_state_req) { 289 ret = -EINVAL; 290 goto out; 291 } 292 293 if (to_state == MEM_OFFLINE) 294 mem->state = MEM_GOING_OFFLINE; 295 296 ret = memory_block_action(mem->start_section_nr, to_state); 297 298 if (ret) 299 mem->state = from_state_req; 300 else 301 mem->state = to_state; 302 303 out: 304 mutex_unlock(&mem->state_mutex); 305 return ret; 306 } 307 308 static ssize_t 309 store_mem_state(struct device *dev, 310 struct device_attribute *attr, const char *buf, size_t count) 311 { 312 struct memory_block *mem; 313 int ret = -EINVAL; 314 315 mem = container_of(dev, struct memory_block, dev); 316 317 if (!strncmp(buf, "online", min((int)count, 6))) 318 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 319 else if(!strncmp(buf, "offline", min((int)count, 7))) 320 ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 321 322 if (ret) 323 return ret; 324 return count; 325 } 326 327 /* 328 * phys_device is a bad name for this. What I really want 329 * is a way to differentiate between memory ranges that 330 * are part of physical devices that constitute 331 * a complete removable unit or fru. 332 * i.e. do these ranges belong to the same physical device, 333 * s.t. if I offline all of these sections I can then 334 * remove the physical device? 335 */ 336 static ssize_t show_phys_device(struct device *dev, 337 struct device_attribute *attr, char *buf) 338 { 339 struct memory_block *mem = 340 container_of(dev, struct memory_block, dev); 341 return sprintf(buf, "%d\n", mem->phys_device); 342 } 343 344 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); 345 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL); 346 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state); 347 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL); 348 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL); 349 350 #define mem_create_simple_file(mem, attr_name) \ 351 device_create_file(&mem->dev, &dev_attr_##attr_name) 352 #define mem_remove_simple_file(mem, attr_name) \ 353 device_remove_file(&mem->dev, &dev_attr_##attr_name) 354 355 /* 356 * Block size attribute stuff 357 */ 358 static ssize_t 359 print_block_size(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 return sprintf(buf, "%lx\n", get_memory_block_size()); 363 } 364 365 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL); 366 367 static int block_size_init(void) 368 { 369 return device_create_file(memory_subsys.dev_root, 370 &dev_attr_block_size_bytes); 371 } 372 373 /* 374 * Some architectures will have custom drivers to do this, and 375 * will not need to do it from userspace. The fake hot-add code 376 * as well as ppc64 will do all of their discovery in userspace 377 * and will require this interface. 378 */ 379 #ifdef CONFIG_ARCH_MEMORY_PROBE 380 static ssize_t 381 memory_probe_store(struct device *dev, struct device_attribute *attr, 382 const char *buf, size_t count) 383 { 384 u64 phys_addr; 385 int nid; 386 int i, ret; 387 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 388 389 phys_addr = simple_strtoull(buf, NULL, 0); 390 391 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 392 return -EINVAL; 393 394 for (i = 0; i < sections_per_block; i++) { 395 nid = memory_add_physaddr_to_nid(phys_addr); 396 ret = add_memory(nid, phys_addr, 397 PAGES_PER_SECTION << PAGE_SHIFT); 398 if (ret) 399 goto out; 400 401 phys_addr += MIN_MEMORY_BLOCK_SIZE; 402 } 403 404 ret = count; 405 out: 406 return ret; 407 } 408 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store); 409 410 static int memory_probe_init(void) 411 { 412 return device_create_file(memory_subsys.dev_root, &dev_attr_probe); 413 } 414 #else 415 static inline int memory_probe_init(void) 416 { 417 return 0; 418 } 419 #endif 420 421 #ifdef CONFIG_MEMORY_FAILURE 422 /* 423 * Support for offlining pages of memory 424 */ 425 426 /* Soft offline a page */ 427 static ssize_t 428 store_soft_offline_page(struct device *dev, 429 struct device_attribute *attr, 430 const char *buf, size_t count) 431 { 432 int ret; 433 u64 pfn; 434 if (!capable(CAP_SYS_ADMIN)) 435 return -EPERM; 436 if (strict_strtoull(buf, 0, &pfn) < 0) 437 return -EINVAL; 438 pfn >>= PAGE_SHIFT; 439 if (!pfn_valid(pfn)) 440 return -ENXIO; 441 ret = soft_offline_page(pfn_to_page(pfn), 0); 442 return ret == 0 ? count : ret; 443 } 444 445 /* Forcibly offline a page, including killing processes. */ 446 static ssize_t 447 store_hard_offline_page(struct device *dev, 448 struct device_attribute *attr, 449 const char *buf, size_t count) 450 { 451 int ret; 452 u64 pfn; 453 if (!capable(CAP_SYS_ADMIN)) 454 return -EPERM; 455 if (strict_strtoull(buf, 0, &pfn) < 0) 456 return -EINVAL; 457 pfn >>= PAGE_SHIFT; 458 ret = __memory_failure(pfn, 0, 0); 459 return ret ? ret : count; 460 } 461 462 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page); 463 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page); 464 465 static __init int memory_fail_init(void) 466 { 467 int err; 468 469 err = device_create_file(memory_subsys.dev_root, 470 &dev_attr_soft_offline_page); 471 if (!err) 472 err = device_create_file(memory_subsys.dev_root, 473 &dev_attr_hard_offline_page); 474 return err; 475 } 476 #else 477 static inline int memory_fail_init(void) 478 { 479 return 0; 480 } 481 #endif 482 483 /* 484 * Note that phys_device is optional. It is here to allow for 485 * differentiation between which *physical* devices each 486 * section belongs to... 487 */ 488 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 489 { 490 return 0; 491 } 492 493 /* 494 * A reference for the returned object is held and the reference for the 495 * hinted object is released. 496 */ 497 struct memory_block *find_memory_block_hinted(struct mem_section *section, 498 struct memory_block *hint) 499 { 500 int block_id = base_memory_block_id(__section_nr(section)); 501 struct device *hintdev = hint ? &hint->dev : NULL; 502 struct device *dev; 503 504 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev); 505 if (hint) 506 put_device(&hint->dev); 507 if (!dev) 508 return NULL; 509 return container_of(dev, struct memory_block, dev); 510 } 511 512 /* 513 * For now, we have a linear search to go find the appropriate 514 * memory_block corresponding to a particular phys_index. If 515 * this gets to be a real problem, we can always use a radix 516 * tree or something here. 517 * 518 * This could be made generic for all device subsystems. 519 */ 520 struct memory_block *find_memory_block(struct mem_section *section) 521 { 522 return find_memory_block_hinted(section, NULL); 523 } 524 525 static int init_memory_block(struct memory_block **memory, 526 struct mem_section *section, unsigned long state) 527 { 528 struct memory_block *mem; 529 unsigned long start_pfn; 530 int scn_nr; 531 int ret = 0; 532 533 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 534 if (!mem) 535 return -ENOMEM; 536 537 scn_nr = __section_nr(section); 538 mem->start_section_nr = 539 base_memory_block_id(scn_nr) * sections_per_block; 540 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; 541 mem->state = state; 542 mem->section_count++; 543 mutex_init(&mem->state_mutex); 544 start_pfn = section_nr_to_pfn(mem->start_section_nr); 545 mem->phys_device = arch_get_memory_phys_device(start_pfn); 546 547 ret = register_memory(mem); 548 if (!ret) 549 ret = mem_create_simple_file(mem, phys_index); 550 if (!ret) 551 ret = mem_create_simple_file(mem, end_phys_index); 552 if (!ret) 553 ret = mem_create_simple_file(mem, state); 554 if (!ret) 555 ret = mem_create_simple_file(mem, phys_device); 556 if (!ret) 557 ret = mem_create_simple_file(mem, removable); 558 559 *memory = mem; 560 return ret; 561 } 562 563 static int add_memory_section(int nid, struct mem_section *section, 564 unsigned long state, enum mem_add_context context) 565 { 566 struct memory_block *mem; 567 int ret = 0; 568 569 mutex_lock(&mem_sysfs_mutex); 570 571 mem = find_memory_block(section); 572 if (mem) { 573 mem->section_count++; 574 kobject_put(&mem->dev.kobj); 575 } else 576 ret = init_memory_block(&mem, section, state); 577 578 if (!ret) { 579 if (context == HOTPLUG && 580 mem->section_count == sections_per_block) 581 ret = register_mem_sect_under_node(mem, nid); 582 } 583 584 mutex_unlock(&mem_sysfs_mutex); 585 return ret; 586 } 587 588 int remove_memory_block(unsigned long node_id, struct mem_section *section, 589 int phys_device) 590 { 591 struct memory_block *mem; 592 593 mutex_lock(&mem_sysfs_mutex); 594 mem = find_memory_block(section); 595 unregister_mem_sect_under_nodes(mem, __section_nr(section)); 596 597 mem->section_count--; 598 if (mem->section_count == 0) { 599 mem_remove_simple_file(mem, phys_index); 600 mem_remove_simple_file(mem, end_phys_index); 601 mem_remove_simple_file(mem, state); 602 mem_remove_simple_file(mem, phys_device); 603 mem_remove_simple_file(mem, removable); 604 unregister_memory(mem); 605 kfree(mem); 606 } else 607 kobject_put(&mem->dev.kobj); 608 609 mutex_unlock(&mem_sysfs_mutex); 610 return 0; 611 } 612 613 /* 614 * need an interface for the VM to add new memory regions, 615 * but without onlining it. 616 */ 617 int register_new_memory(int nid, struct mem_section *section) 618 { 619 return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG); 620 } 621 622 int unregister_memory_section(struct mem_section *section) 623 { 624 if (!present_section(section)) 625 return -EINVAL; 626 627 return remove_memory_block(0, section, 0); 628 } 629 630 /* 631 * Initialize the sysfs support for memory devices... 632 */ 633 int __init memory_dev_init(void) 634 { 635 unsigned int i; 636 int ret; 637 int err; 638 unsigned long block_sz; 639 640 ret = subsys_system_register(&memory_subsys, NULL); 641 if (ret) 642 goto out; 643 644 block_sz = get_memory_block_size(); 645 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 646 647 /* 648 * Create entries for memory sections that were found 649 * during boot and have been initialized 650 */ 651 for (i = 0; i < NR_MEM_SECTIONS; i++) { 652 if (!present_section_nr(i)) 653 continue; 654 err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE, 655 BOOT); 656 if (!ret) 657 ret = err; 658 } 659 660 err = memory_probe_init(); 661 if (!ret) 662 ret = err; 663 err = memory_fail_init(); 664 if (!ret) 665 ret = err; 666 err = block_size_init(); 667 if (!ret) 668 ret = err; 669 out: 670 if (ret) 671 printk(KERN_ERR "%s() failed: %d\n", __func__, ret); 672 return ret; 673 } 674