xref: /linux/drivers/base/memory.c (revision a429638cac1e5c656818a45aaff78df7b743004e)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41 	.name = MEMORY_CLASS_NAME,
42 	.dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52 
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66 
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72 
73 /*
74  * register_memory - Setup a sysfs device for a memory block
75  */
76 static
77 int register_memory(struct memory_block *memory)
78 {
79 	int error;
80 
81 	memory->dev.bus = &memory_subsys;
82 	memory->dev.id = memory->start_section_nr / sections_per_block;
83 
84 	error = device_register(&memory->dev);
85 	return error;
86 }
87 
88 static void
89 unregister_memory(struct memory_block *memory)
90 {
91 	BUG_ON(memory->dev.bus != &memory_subsys);
92 
93 	/* drop the ref. we got in remove_memory_block() */
94 	kobject_put(&memory->dev.kobj);
95 	device_unregister(&memory->dev);
96 }
97 
98 unsigned long __weak memory_block_size_bytes(void)
99 {
100 	return MIN_MEMORY_BLOCK_SIZE;
101 }
102 
103 static unsigned long get_memory_block_size(void)
104 {
105 	unsigned long block_sz;
106 
107 	block_sz = memory_block_size_bytes();
108 
109 	/* Validate blk_sz is a power of 2 and not less than section size */
110 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111 		WARN_ON(1);
112 		block_sz = MIN_MEMORY_BLOCK_SIZE;
113 	}
114 
115 	return block_sz;
116 }
117 
118 /*
119  * use this as the physical section index that this memsection
120  * uses.
121  */
122 
123 static ssize_t show_mem_start_phys_index(struct device *dev,
124 			struct device_attribute *attr, char *buf)
125 {
126 	struct memory_block *mem =
127 		container_of(dev, struct memory_block, dev);
128 	unsigned long phys_index;
129 
130 	phys_index = mem->start_section_nr / sections_per_block;
131 	return sprintf(buf, "%08lx\n", phys_index);
132 }
133 
134 static ssize_t show_mem_end_phys_index(struct device *dev,
135 			struct device_attribute *attr, char *buf)
136 {
137 	struct memory_block *mem =
138 		container_of(dev, struct memory_block, dev);
139 	unsigned long phys_index;
140 
141 	phys_index = mem->end_section_nr / sections_per_block;
142 	return sprintf(buf, "%08lx\n", phys_index);
143 }
144 
145 /*
146  * Show whether the section of memory is likely to be hot-removable
147  */
148 static ssize_t show_mem_removable(struct device *dev,
149 			struct device_attribute *attr, char *buf)
150 {
151 	unsigned long i, pfn;
152 	int ret = 1;
153 	struct memory_block *mem =
154 		container_of(dev, struct memory_block, dev);
155 
156 	for (i = 0; i < sections_per_block; i++) {
157 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159 	}
160 
161 	return sprintf(buf, "%d\n", ret);
162 }
163 
164 /*
165  * online, offline, going offline, etc.
166  */
167 static ssize_t show_mem_state(struct device *dev,
168 			struct device_attribute *attr, char *buf)
169 {
170 	struct memory_block *mem =
171 		container_of(dev, struct memory_block, dev);
172 	ssize_t len = 0;
173 
174 	/*
175 	 * We can probably put these states in a nice little array
176 	 * so that they're not open-coded
177 	 */
178 	switch (mem->state) {
179 		case MEM_ONLINE:
180 			len = sprintf(buf, "online\n");
181 			break;
182 		case MEM_OFFLINE:
183 			len = sprintf(buf, "offline\n");
184 			break;
185 		case MEM_GOING_OFFLINE:
186 			len = sprintf(buf, "going-offline\n");
187 			break;
188 		default:
189 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190 					mem->state);
191 			WARN_ON(1);
192 			break;
193 	}
194 
195 	return len;
196 }
197 
198 int memory_notify(unsigned long val, void *v)
199 {
200 	return blocking_notifier_call_chain(&memory_chain, val, v);
201 }
202 
203 int memory_isolate_notify(unsigned long val, void *v)
204 {
205 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206 }
207 
208 /*
209  * The probe routines leave the pages reserved, just as the bootmem code does.
210  * Make sure they're still that way.
211  */
212 static bool pages_correctly_reserved(unsigned long start_pfn,
213 					unsigned long nr_pages)
214 {
215 	int i, j;
216 	struct page *page;
217 	unsigned long pfn = start_pfn;
218 
219 	/*
220 	 * memmap between sections is not contiguous except with
221 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222 	 * and assume memmap is contiguous within each section
223 	 */
224 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
226 			return false;
227 		page = pfn_to_page(pfn);
228 
229 		for (j = 0; j < PAGES_PER_SECTION; j++) {
230 			if (PageReserved(page + j))
231 				continue;
232 
233 			printk(KERN_WARNING "section number %ld page number %d "
234 				"not reserved, was it already online?\n",
235 				pfn_to_section_nr(pfn), j);
236 
237 			return false;
238 		}
239 	}
240 
241 	return true;
242 }
243 
244 /*
245  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246  * OK to have direct references to sparsemem variables in here.
247  */
248 static int
249 memory_block_action(unsigned long phys_index, unsigned long action)
250 {
251 	unsigned long start_pfn, start_paddr;
252 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253 	struct page *first_page;
254 	int ret;
255 
256 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257 
258 	switch (action) {
259 		case MEM_ONLINE:
260 			start_pfn = page_to_pfn(first_page);
261 
262 			if (!pages_correctly_reserved(start_pfn, nr_pages))
263 				return -EBUSY;
264 
265 			ret = online_pages(start_pfn, nr_pages);
266 			break;
267 		case MEM_OFFLINE:
268 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269 			ret = remove_memory(start_paddr,
270 					    nr_pages << PAGE_SHIFT);
271 			break;
272 		default:
273 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
274 			     "%ld\n", __func__, phys_index, action, action);
275 			ret = -EINVAL;
276 	}
277 
278 	return ret;
279 }
280 
281 static int memory_block_change_state(struct memory_block *mem,
282 		unsigned long to_state, unsigned long from_state_req)
283 {
284 	int ret = 0;
285 
286 	mutex_lock(&mem->state_mutex);
287 
288 	if (mem->state != from_state_req) {
289 		ret = -EINVAL;
290 		goto out;
291 	}
292 
293 	if (to_state == MEM_OFFLINE)
294 		mem->state = MEM_GOING_OFFLINE;
295 
296 	ret = memory_block_action(mem->start_section_nr, to_state);
297 
298 	if (ret)
299 		mem->state = from_state_req;
300 	else
301 		mem->state = to_state;
302 
303 out:
304 	mutex_unlock(&mem->state_mutex);
305 	return ret;
306 }
307 
308 static ssize_t
309 store_mem_state(struct device *dev,
310 		struct device_attribute *attr, const char *buf, size_t count)
311 {
312 	struct memory_block *mem;
313 	int ret = -EINVAL;
314 
315 	mem = container_of(dev, struct memory_block, dev);
316 
317 	if (!strncmp(buf, "online", min((int)count, 6)))
318 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
319 	else if(!strncmp(buf, "offline", min((int)count, 7)))
320 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
321 
322 	if (ret)
323 		return ret;
324 	return count;
325 }
326 
327 /*
328  * phys_device is a bad name for this.  What I really want
329  * is a way to differentiate between memory ranges that
330  * are part of physical devices that constitute
331  * a complete removable unit or fru.
332  * i.e. do these ranges belong to the same physical device,
333  * s.t. if I offline all of these sections I can then
334  * remove the physical device?
335  */
336 static ssize_t show_phys_device(struct device *dev,
337 				struct device_attribute *attr, char *buf)
338 {
339 	struct memory_block *mem =
340 		container_of(dev, struct memory_block, dev);
341 	return sprintf(buf, "%d\n", mem->phys_device);
342 }
343 
344 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
345 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
346 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
347 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
348 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
349 
350 #define mem_create_simple_file(mem, attr_name)	\
351 	device_create_file(&mem->dev, &dev_attr_##attr_name)
352 #define mem_remove_simple_file(mem, attr_name)	\
353 	device_remove_file(&mem->dev, &dev_attr_##attr_name)
354 
355 /*
356  * Block size attribute stuff
357  */
358 static ssize_t
359 print_block_size(struct device *dev, struct device_attribute *attr,
360 		 char *buf)
361 {
362 	return sprintf(buf, "%lx\n", get_memory_block_size());
363 }
364 
365 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
366 
367 static int block_size_init(void)
368 {
369 	return device_create_file(memory_subsys.dev_root,
370 				  &dev_attr_block_size_bytes);
371 }
372 
373 /*
374  * Some architectures will have custom drivers to do this, and
375  * will not need to do it from userspace.  The fake hot-add code
376  * as well as ppc64 will do all of their discovery in userspace
377  * and will require this interface.
378  */
379 #ifdef CONFIG_ARCH_MEMORY_PROBE
380 static ssize_t
381 memory_probe_store(struct device *dev, struct device_attribute *attr,
382 		   const char *buf, size_t count)
383 {
384 	u64 phys_addr;
385 	int nid;
386 	int i, ret;
387 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
388 
389 	phys_addr = simple_strtoull(buf, NULL, 0);
390 
391 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
392 		return -EINVAL;
393 
394 	for (i = 0; i < sections_per_block; i++) {
395 		nid = memory_add_physaddr_to_nid(phys_addr);
396 		ret = add_memory(nid, phys_addr,
397 				 PAGES_PER_SECTION << PAGE_SHIFT);
398 		if (ret)
399 			goto out;
400 
401 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
402 	}
403 
404 	ret = count;
405 out:
406 	return ret;
407 }
408 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
409 
410 static int memory_probe_init(void)
411 {
412 	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
413 }
414 #else
415 static inline int memory_probe_init(void)
416 {
417 	return 0;
418 }
419 #endif
420 
421 #ifdef CONFIG_MEMORY_FAILURE
422 /*
423  * Support for offlining pages of memory
424  */
425 
426 /* Soft offline a page */
427 static ssize_t
428 store_soft_offline_page(struct device *dev,
429 			struct device_attribute *attr,
430 			const char *buf, size_t count)
431 {
432 	int ret;
433 	u64 pfn;
434 	if (!capable(CAP_SYS_ADMIN))
435 		return -EPERM;
436 	if (strict_strtoull(buf, 0, &pfn) < 0)
437 		return -EINVAL;
438 	pfn >>= PAGE_SHIFT;
439 	if (!pfn_valid(pfn))
440 		return -ENXIO;
441 	ret = soft_offline_page(pfn_to_page(pfn), 0);
442 	return ret == 0 ? count : ret;
443 }
444 
445 /* Forcibly offline a page, including killing processes. */
446 static ssize_t
447 store_hard_offline_page(struct device *dev,
448 			struct device_attribute *attr,
449 			const char *buf, size_t count)
450 {
451 	int ret;
452 	u64 pfn;
453 	if (!capable(CAP_SYS_ADMIN))
454 		return -EPERM;
455 	if (strict_strtoull(buf, 0, &pfn) < 0)
456 		return -EINVAL;
457 	pfn >>= PAGE_SHIFT;
458 	ret = __memory_failure(pfn, 0, 0);
459 	return ret ? ret : count;
460 }
461 
462 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
463 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
464 
465 static __init int memory_fail_init(void)
466 {
467 	int err;
468 
469 	err = device_create_file(memory_subsys.dev_root,
470 				&dev_attr_soft_offline_page);
471 	if (!err)
472 		err = device_create_file(memory_subsys.dev_root,
473 				&dev_attr_hard_offline_page);
474 	return err;
475 }
476 #else
477 static inline int memory_fail_init(void)
478 {
479 	return 0;
480 }
481 #endif
482 
483 /*
484  * Note that phys_device is optional.  It is here to allow for
485  * differentiation between which *physical* devices each
486  * section belongs to...
487  */
488 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
489 {
490 	return 0;
491 }
492 
493 /*
494  * A reference for the returned object is held and the reference for the
495  * hinted object is released.
496  */
497 struct memory_block *find_memory_block_hinted(struct mem_section *section,
498 					      struct memory_block *hint)
499 {
500 	int block_id = base_memory_block_id(__section_nr(section));
501 	struct device *hintdev = hint ? &hint->dev : NULL;
502 	struct device *dev;
503 
504 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
505 	if (hint)
506 		put_device(&hint->dev);
507 	if (!dev)
508 		return NULL;
509 	return container_of(dev, struct memory_block, dev);
510 }
511 
512 /*
513  * For now, we have a linear search to go find the appropriate
514  * memory_block corresponding to a particular phys_index. If
515  * this gets to be a real problem, we can always use a radix
516  * tree or something here.
517  *
518  * This could be made generic for all device subsystems.
519  */
520 struct memory_block *find_memory_block(struct mem_section *section)
521 {
522 	return find_memory_block_hinted(section, NULL);
523 }
524 
525 static int init_memory_block(struct memory_block **memory,
526 			     struct mem_section *section, unsigned long state)
527 {
528 	struct memory_block *mem;
529 	unsigned long start_pfn;
530 	int scn_nr;
531 	int ret = 0;
532 
533 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
534 	if (!mem)
535 		return -ENOMEM;
536 
537 	scn_nr = __section_nr(section);
538 	mem->start_section_nr =
539 			base_memory_block_id(scn_nr) * sections_per_block;
540 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
541 	mem->state = state;
542 	mem->section_count++;
543 	mutex_init(&mem->state_mutex);
544 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
545 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
546 
547 	ret = register_memory(mem);
548 	if (!ret)
549 		ret = mem_create_simple_file(mem, phys_index);
550 	if (!ret)
551 		ret = mem_create_simple_file(mem, end_phys_index);
552 	if (!ret)
553 		ret = mem_create_simple_file(mem, state);
554 	if (!ret)
555 		ret = mem_create_simple_file(mem, phys_device);
556 	if (!ret)
557 		ret = mem_create_simple_file(mem, removable);
558 
559 	*memory = mem;
560 	return ret;
561 }
562 
563 static int add_memory_section(int nid, struct mem_section *section,
564 			unsigned long state, enum mem_add_context context)
565 {
566 	struct memory_block *mem;
567 	int ret = 0;
568 
569 	mutex_lock(&mem_sysfs_mutex);
570 
571 	mem = find_memory_block(section);
572 	if (mem) {
573 		mem->section_count++;
574 		kobject_put(&mem->dev.kobj);
575 	} else
576 		ret = init_memory_block(&mem, section, state);
577 
578 	if (!ret) {
579 		if (context == HOTPLUG &&
580 		    mem->section_count == sections_per_block)
581 			ret = register_mem_sect_under_node(mem, nid);
582 	}
583 
584 	mutex_unlock(&mem_sysfs_mutex);
585 	return ret;
586 }
587 
588 int remove_memory_block(unsigned long node_id, struct mem_section *section,
589 		int phys_device)
590 {
591 	struct memory_block *mem;
592 
593 	mutex_lock(&mem_sysfs_mutex);
594 	mem = find_memory_block(section);
595 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
596 
597 	mem->section_count--;
598 	if (mem->section_count == 0) {
599 		mem_remove_simple_file(mem, phys_index);
600 		mem_remove_simple_file(mem, end_phys_index);
601 		mem_remove_simple_file(mem, state);
602 		mem_remove_simple_file(mem, phys_device);
603 		mem_remove_simple_file(mem, removable);
604 		unregister_memory(mem);
605 		kfree(mem);
606 	} else
607 		kobject_put(&mem->dev.kobj);
608 
609 	mutex_unlock(&mem_sysfs_mutex);
610 	return 0;
611 }
612 
613 /*
614  * need an interface for the VM to add new memory regions,
615  * but without onlining it.
616  */
617 int register_new_memory(int nid, struct mem_section *section)
618 {
619 	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
620 }
621 
622 int unregister_memory_section(struct mem_section *section)
623 {
624 	if (!present_section(section))
625 		return -EINVAL;
626 
627 	return remove_memory_block(0, section, 0);
628 }
629 
630 /*
631  * Initialize the sysfs support for memory devices...
632  */
633 int __init memory_dev_init(void)
634 {
635 	unsigned int i;
636 	int ret;
637 	int err;
638 	unsigned long block_sz;
639 
640 	ret = subsys_system_register(&memory_subsys, NULL);
641 	if (ret)
642 		goto out;
643 
644 	block_sz = get_memory_block_size();
645 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
646 
647 	/*
648 	 * Create entries for memory sections that were found
649 	 * during boot and have been initialized
650 	 */
651 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
652 		if (!present_section_nr(i))
653 			continue;
654 		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
655 					 BOOT);
656 		if (!ret)
657 			ret = err;
658 	}
659 
660 	err = memory_probe_init();
661 	if (!ret)
662 		ret = err;
663 	err = memory_fail_init();
664 	if (!ret)
665 		ret = err;
666 	err = block_size_init();
667 	if (!ret)
668 		ret = err;
669 out:
670 	if (ret)
671 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
672 	return ret;
673 }
674