xref: /linux/drivers/base/memory.c (revision 9307c29524502c21f0e8a6d96d850b2f5bc0bd9a)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41 	.name = MEMORY_CLASS_NAME,
42 	.dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52 
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66 
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72 
73 static void memory_block_release(struct device *dev)
74 {
75 	struct memory_block *mem = container_of(dev, struct memory_block, dev);
76 
77 	kfree(mem);
78 }
79 
80 unsigned long __weak memory_block_size_bytes(void)
81 {
82 	return MIN_MEMORY_BLOCK_SIZE;
83 }
84 
85 static unsigned long get_memory_block_size(void)
86 {
87 	unsigned long block_sz;
88 
89 	block_sz = memory_block_size_bytes();
90 
91 	/* Validate blk_sz is a power of 2 and not less than section size */
92 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
93 		WARN_ON(1);
94 		block_sz = MIN_MEMORY_BLOCK_SIZE;
95 	}
96 
97 	return block_sz;
98 }
99 
100 /*
101  * use this as the physical section index that this memsection
102  * uses.
103  */
104 
105 static ssize_t show_mem_start_phys_index(struct device *dev,
106 			struct device_attribute *attr, char *buf)
107 {
108 	struct memory_block *mem =
109 		container_of(dev, struct memory_block, dev);
110 	unsigned long phys_index;
111 
112 	phys_index = mem->start_section_nr / sections_per_block;
113 	return sprintf(buf, "%08lx\n", phys_index);
114 }
115 
116 static ssize_t show_mem_end_phys_index(struct device *dev,
117 			struct device_attribute *attr, char *buf)
118 {
119 	struct memory_block *mem =
120 		container_of(dev, struct memory_block, dev);
121 	unsigned long phys_index;
122 
123 	phys_index = mem->end_section_nr / sections_per_block;
124 	return sprintf(buf, "%08lx\n", phys_index);
125 }
126 
127 /*
128  * Show whether the section of memory is likely to be hot-removable
129  */
130 static ssize_t show_mem_removable(struct device *dev,
131 			struct device_attribute *attr, char *buf)
132 {
133 	unsigned long i, pfn;
134 	int ret = 1;
135 	struct memory_block *mem =
136 		container_of(dev, struct memory_block, dev);
137 
138 	for (i = 0; i < sections_per_block; i++) {
139 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
140 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
141 	}
142 
143 	return sprintf(buf, "%d\n", ret);
144 }
145 
146 /*
147  * online, offline, going offline, etc.
148  */
149 static ssize_t show_mem_state(struct device *dev,
150 			struct device_attribute *attr, char *buf)
151 {
152 	struct memory_block *mem =
153 		container_of(dev, struct memory_block, dev);
154 	ssize_t len = 0;
155 
156 	/*
157 	 * We can probably put these states in a nice little array
158 	 * so that they're not open-coded
159 	 */
160 	switch (mem->state) {
161 		case MEM_ONLINE:
162 			len = sprintf(buf, "online\n");
163 			break;
164 		case MEM_OFFLINE:
165 			len = sprintf(buf, "offline\n");
166 			break;
167 		case MEM_GOING_OFFLINE:
168 			len = sprintf(buf, "going-offline\n");
169 			break;
170 		default:
171 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
172 					mem->state);
173 			WARN_ON(1);
174 			break;
175 	}
176 
177 	return len;
178 }
179 
180 int memory_notify(unsigned long val, void *v)
181 {
182 	return blocking_notifier_call_chain(&memory_chain, val, v);
183 }
184 
185 int memory_isolate_notify(unsigned long val, void *v)
186 {
187 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
188 }
189 
190 /*
191  * The probe routines leave the pages reserved, just as the bootmem code does.
192  * Make sure they're still that way.
193  */
194 static bool pages_correctly_reserved(unsigned long start_pfn)
195 {
196 	int i, j;
197 	struct page *page;
198 	unsigned long pfn = start_pfn;
199 
200 	/*
201 	 * memmap between sections is not contiguous except with
202 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
203 	 * and assume memmap is contiguous within each section
204 	 */
205 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
206 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
207 			return false;
208 		page = pfn_to_page(pfn);
209 
210 		for (j = 0; j < PAGES_PER_SECTION; j++) {
211 			if (PageReserved(page + j))
212 				continue;
213 
214 			printk(KERN_WARNING "section number %ld page number %d "
215 				"not reserved, was it already online?\n",
216 				pfn_to_section_nr(pfn), j);
217 
218 			return false;
219 		}
220 	}
221 
222 	return true;
223 }
224 
225 /*
226  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
227  * OK to have direct references to sparsemem variables in here.
228  */
229 static int
230 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
231 {
232 	unsigned long start_pfn;
233 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
234 	struct page *first_page;
235 	int ret;
236 
237 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
238 	start_pfn = page_to_pfn(first_page);
239 
240 	switch (action) {
241 		case MEM_ONLINE:
242 			if (!pages_correctly_reserved(start_pfn))
243 				return -EBUSY;
244 
245 			ret = online_pages(start_pfn, nr_pages, online_type);
246 			break;
247 		case MEM_OFFLINE:
248 			ret = offline_pages(start_pfn, nr_pages);
249 			break;
250 		default:
251 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
252 			     "%ld\n", __func__, phys_index, action, action);
253 			ret = -EINVAL;
254 	}
255 
256 	return ret;
257 }
258 
259 static int __memory_block_change_state(struct memory_block *mem,
260 		unsigned long to_state, unsigned long from_state_req,
261 		int online_type)
262 {
263 	int ret = 0;
264 
265 	if (mem->state != from_state_req) {
266 		ret = -EINVAL;
267 		goto out;
268 	}
269 
270 	if (to_state == MEM_OFFLINE)
271 		mem->state = MEM_GOING_OFFLINE;
272 
273 	ret = memory_block_action(mem->start_section_nr, to_state, online_type);
274 
275 	if (ret) {
276 		mem->state = from_state_req;
277 		goto out;
278 	}
279 
280 	mem->state = to_state;
281 	switch (mem->state) {
282 	case MEM_OFFLINE:
283 		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
284 		break;
285 	case MEM_ONLINE:
286 		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
287 		break;
288 	default:
289 		break;
290 	}
291 out:
292 	return ret;
293 }
294 
295 static int memory_block_change_state(struct memory_block *mem,
296 		unsigned long to_state, unsigned long from_state_req,
297 		int online_type)
298 {
299 	int ret;
300 
301 	mutex_lock(&mem->state_mutex);
302 	ret = __memory_block_change_state(mem, to_state, from_state_req,
303 					  online_type);
304 	mutex_unlock(&mem->state_mutex);
305 
306 	return ret;
307 }
308 static ssize_t
309 store_mem_state(struct device *dev,
310 		struct device_attribute *attr, const char *buf, size_t count)
311 {
312 	struct memory_block *mem;
313 	int ret = -EINVAL;
314 
315 	mem = container_of(dev, struct memory_block, dev);
316 
317 	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
318 		ret = memory_block_change_state(mem, MEM_ONLINE,
319 						MEM_OFFLINE, ONLINE_KERNEL);
320 	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
321 		ret = memory_block_change_state(mem, MEM_ONLINE,
322 						MEM_OFFLINE, ONLINE_MOVABLE);
323 	else if (!strncmp(buf, "online", min_t(int, count, 6)))
324 		ret = memory_block_change_state(mem, MEM_ONLINE,
325 						MEM_OFFLINE, ONLINE_KEEP);
326 	else if(!strncmp(buf, "offline", min_t(int, count, 7)))
327 		ret = memory_block_change_state(mem, MEM_OFFLINE,
328 						MEM_ONLINE, -1);
329 
330 	if (ret)
331 		return ret;
332 	return count;
333 }
334 
335 /*
336  * phys_device is a bad name for this.  What I really want
337  * is a way to differentiate between memory ranges that
338  * are part of physical devices that constitute
339  * a complete removable unit or fru.
340  * i.e. do these ranges belong to the same physical device,
341  * s.t. if I offline all of these sections I can then
342  * remove the physical device?
343  */
344 static ssize_t show_phys_device(struct device *dev,
345 				struct device_attribute *attr, char *buf)
346 {
347 	struct memory_block *mem =
348 		container_of(dev, struct memory_block, dev);
349 	return sprintf(buf, "%d\n", mem->phys_device);
350 }
351 
352 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
353 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
354 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
355 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
356 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
357 
358 /*
359  * Block size attribute stuff
360  */
361 static ssize_t
362 print_block_size(struct device *dev, struct device_attribute *attr,
363 		 char *buf)
364 {
365 	return sprintf(buf, "%lx\n", get_memory_block_size());
366 }
367 
368 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
369 
370 /*
371  * Some architectures will have custom drivers to do this, and
372  * will not need to do it from userspace.  The fake hot-add code
373  * as well as ppc64 will do all of their discovery in userspace
374  * and will require this interface.
375  */
376 #ifdef CONFIG_ARCH_MEMORY_PROBE
377 static ssize_t
378 memory_probe_store(struct device *dev, struct device_attribute *attr,
379 		   const char *buf, size_t count)
380 {
381 	u64 phys_addr;
382 	int nid;
383 	int i, ret;
384 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
385 
386 	phys_addr = simple_strtoull(buf, NULL, 0);
387 
388 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
389 		return -EINVAL;
390 
391 	for (i = 0; i < sections_per_block; i++) {
392 		nid = memory_add_physaddr_to_nid(phys_addr);
393 		ret = add_memory(nid, phys_addr,
394 				 PAGES_PER_SECTION << PAGE_SHIFT);
395 		if (ret)
396 			goto out;
397 
398 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
399 	}
400 
401 	ret = count;
402 out:
403 	return ret;
404 }
405 
406 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
407 #endif
408 
409 #ifdef CONFIG_MEMORY_FAILURE
410 /*
411  * Support for offlining pages of memory
412  */
413 
414 /* Soft offline a page */
415 static ssize_t
416 store_soft_offline_page(struct device *dev,
417 			struct device_attribute *attr,
418 			const char *buf, size_t count)
419 {
420 	int ret;
421 	u64 pfn;
422 	if (!capable(CAP_SYS_ADMIN))
423 		return -EPERM;
424 	if (strict_strtoull(buf, 0, &pfn) < 0)
425 		return -EINVAL;
426 	pfn >>= PAGE_SHIFT;
427 	if (!pfn_valid(pfn))
428 		return -ENXIO;
429 	ret = soft_offline_page(pfn_to_page(pfn), 0);
430 	return ret == 0 ? count : ret;
431 }
432 
433 /* Forcibly offline a page, including killing processes. */
434 static ssize_t
435 store_hard_offline_page(struct device *dev,
436 			struct device_attribute *attr,
437 			const char *buf, size_t count)
438 {
439 	int ret;
440 	u64 pfn;
441 	if (!capable(CAP_SYS_ADMIN))
442 		return -EPERM;
443 	if (strict_strtoull(buf, 0, &pfn) < 0)
444 		return -EINVAL;
445 	pfn >>= PAGE_SHIFT;
446 	ret = memory_failure(pfn, 0, 0);
447 	return ret ? ret : count;
448 }
449 
450 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
451 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
452 #endif
453 
454 /*
455  * Note that phys_device is optional.  It is here to allow for
456  * differentiation between which *physical* devices each
457  * section belongs to...
458  */
459 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
460 {
461 	return 0;
462 }
463 
464 /*
465  * A reference for the returned object is held and the reference for the
466  * hinted object is released.
467  */
468 struct memory_block *find_memory_block_hinted(struct mem_section *section,
469 					      struct memory_block *hint)
470 {
471 	int block_id = base_memory_block_id(__section_nr(section));
472 	struct device *hintdev = hint ? &hint->dev : NULL;
473 	struct device *dev;
474 
475 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
476 	if (hint)
477 		put_device(&hint->dev);
478 	if (!dev)
479 		return NULL;
480 	return container_of(dev, struct memory_block, dev);
481 }
482 
483 /*
484  * For now, we have a linear search to go find the appropriate
485  * memory_block corresponding to a particular phys_index. If
486  * this gets to be a real problem, we can always use a radix
487  * tree or something here.
488  *
489  * This could be made generic for all device subsystems.
490  */
491 struct memory_block *find_memory_block(struct mem_section *section)
492 {
493 	return find_memory_block_hinted(section, NULL);
494 }
495 
496 static struct attribute *memory_memblk_attrs[] = {
497 	&dev_attr_phys_index.attr,
498 	&dev_attr_end_phys_index.attr,
499 	&dev_attr_state.attr,
500 	&dev_attr_phys_device.attr,
501 	&dev_attr_removable.attr,
502 	NULL
503 };
504 
505 static struct attribute_group memory_memblk_attr_group = {
506 	.attrs = memory_memblk_attrs,
507 };
508 
509 static const struct attribute_group *memory_memblk_attr_groups[] = {
510 	&memory_memblk_attr_group,
511 	NULL,
512 };
513 
514 /*
515  * register_memory - Setup a sysfs device for a memory block
516  */
517 static
518 int register_memory(struct memory_block *memory)
519 {
520 	int error;
521 
522 	memory->dev.bus = &memory_subsys;
523 	memory->dev.id = memory->start_section_nr / sections_per_block;
524 	memory->dev.release = memory_block_release;
525 	memory->dev.groups = memory_memblk_attr_groups;
526 
527 	error = device_register(&memory->dev);
528 	return error;
529 }
530 
531 static int init_memory_block(struct memory_block **memory,
532 			     struct mem_section *section, unsigned long state)
533 {
534 	struct memory_block *mem;
535 	unsigned long start_pfn;
536 	int scn_nr;
537 	int ret = 0;
538 
539 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
540 	if (!mem)
541 		return -ENOMEM;
542 
543 	scn_nr = __section_nr(section);
544 	mem->start_section_nr =
545 			base_memory_block_id(scn_nr) * sections_per_block;
546 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
547 	mem->state = state;
548 	mem->section_count++;
549 	mutex_init(&mem->state_mutex);
550 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
551 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
552 
553 	ret = register_memory(mem);
554 
555 	*memory = mem;
556 	return ret;
557 }
558 
559 static int add_memory_section(int nid, struct mem_section *section,
560 			struct memory_block **mem_p,
561 			unsigned long state, enum mem_add_context context)
562 {
563 	struct memory_block *mem = NULL;
564 	int scn_nr = __section_nr(section);
565 	int ret = 0;
566 
567 	mutex_lock(&mem_sysfs_mutex);
568 
569 	if (context == BOOT) {
570 		/* same memory block ? */
571 		if (mem_p && *mem_p)
572 			if (scn_nr >= (*mem_p)->start_section_nr &&
573 			    scn_nr <= (*mem_p)->end_section_nr) {
574 				mem = *mem_p;
575 				kobject_get(&mem->dev.kobj);
576 			}
577 	} else
578 		mem = find_memory_block(section);
579 
580 	if (mem) {
581 		mem->section_count++;
582 		kobject_put(&mem->dev.kobj);
583 	} else {
584 		ret = init_memory_block(&mem, section, state);
585 		/* store memory_block pointer for next loop */
586 		if (!ret && context == BOOT)
587 			if (mem_p)
588 				*mem_p = mem;
589 	}
590 
591 	if (!ret) {
592 		if (context == HOTPLUG &&
593 		    mem->section_count == sections_per_block)
594 			ret = register_mem_sect_under_node(mem, nid);
595 	}
596 
597 	mutex_unlock(&mem_sysfs_mutex);
598 	return ret;
599 }
600 
601 /*
602  * need an interface for the VM to add new memory regions,
603  * but without onlining it.
604  */
605 int register_new_memory(int nid, struct mem_section *section)
606 {
607 	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
608 }
609 
610 #ifdef CONFIG_MEMORY_HOTREMOVE
611 static void
612 unregister_memory(struct memory_block *memory)
613 {
614 	BUG_ON(memory->dev.bus != &memory_subsys);
615 
616 	/* drop the ref. we got in remove_memory_block() */
617 	kobject_put(&memory->dev.kobj);
618 	device_unregister(&memory->dev);
619 }
620 
621 static int remove_memory_block(unsigned long node_id,
622 			       struct mem_section *section, int phys_device)
623 {
624 	struct memory_block *mem;
625 
626 	mutex_lock(&mem_sysfs_mutex);
627 	mem = find_memory_block(section);
628 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
629 
630 	mem->section_count--;
631 	if (mem->section_count == 0)
632 		unregister_memory(mem);
633 	else
634 		kobject_put(&mem->dev.kobj);
635 
636 	mutex_unlock(&mem_sysfs_mutex);
637 	return 0;
638 }
639 
640 int unregister_memory_section(struct mem_section *section)
641 {
642 	if (!present_section(section))
643 		return -EINVAL;
644 
645 	return remove_memory_block(0, section, 0);
646 }
647 #endif /* CONFIG_MEMORY_HOTREMOVE */
648 
649 /*
650  * offline one memory block. If the memory block has been offlined, do nothing.
651  */
652 int offline_memory_block(struct memory_block *mem)
653 {
654 	int ret = 0;
655 
656 	mutex_lock(&mem->state_mutex);
657 	if (mem->state != MEM_OFFLINE)
658 		ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
659 	mutex_unlock(&mem->state_mutex);
660 
661 	return ret;
662 }
663 
664 /* return true if the memory block is offlined, otherwise, return false */
665 bool is_memblock_offlined(struct memory_block *mem)
666 {
667 	return mem->state == MEM_OFFLINE;
668 }
669 
670 static struct attribute *memory_root_attrs[] = {
671 #ifdef CONFIG_ARCH_MEMORY_PROBE
672 	&dev_attr_probe.attr,
673 #endif
674 
675 #ifdef CONFIG_MEMORY_FAILURE
676 	&dev_attr_soft_offline_page.attr,
677 	&dev_attr_hard_offline_page.attr,
678 #endif
679 
680 	&dev_attr_block_size_bytes.attr,
681 	NULL
682 };
683 
684 static struct attribute_group memory_root_attr_group = {
685 	.attrs = memory_root_attrs,
686 };
687 
688 static const struct attribute_group *memory_root_attr_groups[] = {
689 	&memory_root_attr_group,
690 	NULL,
691 };
692 
693 /*
694  * Initialize the sysfs support for memory devices...
695  */
696 int __init memory_dev_init(void)
697 {
698 	unsigned int i;
699 	int ret;
700 	int err;
701 	unsigned long block_sz;
702 	struct memory_block *mem = NULL;
703 
704 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
705 	if (ret)
706 		goto out;
707 
708 	block_sz = get_memory_block_size();
709 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
710 
711 	/*
712 	 * Create entries for memory sections that were found
713 	 * during boot and have been initialized
714 	 */
715 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
716 		if (!present_section_nr(i))
717 			continue;
718 		/* don't need to reuse memory_block if only one per block */
719 		err = add_memory_section(0, __nr_to_section(i),
720 				 (sections_per_block == 1) ? NULL : &mem,
721 					 MEM_ONLINE,
722 					 BOOT);
723 		if (!ret)
724 			ret = err;
725 	}
726 
727 out:
728 	if (ret)
729 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
730 	return ret;
731 }
732