1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory subsystem support 4 * 5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 6 * Dave Hansen <haveblue@us.ibm.com> 7 * 8 * This file provides the necessary infrastructure to represent 9 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/topology.h> 17 #include <linux/capability.h> 18 #include <linux/device.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/mm.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 #include <linux/xarray.h> 25 #include <linux/export.h> 26 27 #include <linux/atomic.h> 28 #include <linux/uaccess.h> 29 30 #define MEMORY_CLASS_NAME "memory" 31 32 static const char *const online_type_to_str[] = { 33 [MMOP_OFFLINE] = "offline", 34 [MMOP_ONLINE] = "online", 35 [MMOP_ONLINE_KERNEL] = "online_kernel", 36 [MMOP_ONLINE_MOVABLE] = "online_movable", 37 }; 38 39 int mhp_online_type_from_str(const char *str) 40 { 41 int i; 42 43 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) { 44 if (sysfs_streq(str, online_type_to_str[i])) 45 return i; 46 } 47 return -EINVAL; 48 } 49 50 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 51 52 int sections_per_block; 53 EXPORT_SYMBOL(sections_per_block); 54 55 static int memory_subsys_online(struct device *dev); 56 static int memory_subsys_offline(struct device *dev); 57 58 static const struct bus_type memory_subsys = { 59 .name = MEMORY_CLASS_NAME, 60 .dev_name = MEMORY_CLASS_NAME, 61 .online = memory_subsys_online, 62 .offline = memory_subsys_offline, 63 }; 64 65 /* 66 * Memory blocks are cached in a local radix tree to avoid 67 * a costly linear search for the corresponding device on 68 * the subsystem bus. 69 */ 70 static DEFINE_XARRAY(memory_blocks); 71 72 /* 73 * Memory groups, indexed by memory group id (mgid). 74 */ 75 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC); 76 #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1 77 78 static BLOCKING_NOTIFIER_HEAD(memory_chain); 79 80 int register_memory_notifier(struct notifier_block *nb) 81 { 82 return blocking_notifier_chain_register(&memory_chain, nb); 83 } 84 EXPORT_SYMBOL(register_memory_notifier); 85 86 void unregister_memory_notifier(struct notifier_block *nb) 87 { 88 blocking_notifier_chain_unregister(&memory_chain, nb); 89 } 90 EXPORT_SYMBOL(unregister_memory_notifier); 91 92 static void memory_block_release(struct device *dev) 93 { 94 struct memory_block *mem = to_memory_block(dev); 95 /* Verify that the altmap is freed */ 96 WARN_ON(mem->altmap); 97 kfree(mem); 98 } 99 100 101 /* Max block size to be set by memory_block_advise_max_size */ 102 static unsigned long memory_block_advised_size; 103 static bool memory_block_advised_size_queried; 104 105 /** 106 * memory_block_advise_max_size() - advise memory hotplug on the max suggested 107 * block size, usually for alignment. 108 * @size: suggestion for maximum block size. must be aligned on power of 2. 109 * 110 * Early boot software (pre-allocator init) may advise archs on the max block 111 * size. This value can only decrease after initialization, as the intent is 112 * to identify the largest supported alignment for all sources. 113 * 114 * Use of this value is arch-defined, as is min/max block size. 115 * 116 * Return: 0 on success 117 * -EINVAL if size is 0 or not pow2 aligned 118 * -EBUSY if value has already been probed 119 */ 120 int __init memory_block_advise_max_size(unsigned long size) 121 { 122 if (!size || !is_power_of_2(size)) 123 return -EINVAL; 124 125 if (memory_block_advised_size_queried) 126 return -EBUSY; 127 128 if (memory_block_advised_size) 129 memory_block_advised_size = min(memory_block_advised_size, size); 130 else 131 memory_block_advised_size = size; 132 133 return 0; 134 } 135 136 /** 137 * memory_block_advised_max_size() - query advised max hotplug block size. 138 * 139 * After the first call, the value can never change. Callers looking for the 140 * actual block size should use memory_block_size_bytes. This interface is 141 * intended for use by arch-init when initializing the hotplug block size. 142 * 143 * Return: advised size in bytes, or 0 if never set. 144 */ 145 unsigned long memory_block_advised_max_size(void) 146 { 147 memory_block_advised_size_queried = true; 148 return memory_block_advised_size; 149 } 150 151 unsigned long __weak memory_block_size_bytes(void) 152 { 153 return MIN_MEMORY_BLOCK_SIZE; 154 } 155 EXPORT_SYMBOL_GPL(memory_block_size_bytes); 156 157 /* Show the memory block ID, relative to the memory block size */ 158 static ssize_t phys_index_show(struct device *dev, 159 struct device_attribute *attr, char *buf) 160 { 161 struct memory_block *mem = to_memory_block(dev); 162 163 return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr)); 164 } 165 166 /* 167 * Legacy interface that we cannot remove. Always indicate "removable" 168 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic. 169 */ 170 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 171 char *buf) 172 { 173 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)); 174 } 175 176 /* 177 * online, offline, going offline, etc. 178 */ 179 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 180 char *buf) 181 { 182 struct memory_block *mem = to_memory_block(dev); 183 const char *output; 184 185 /* 186 * We can probably put these states in a nice little array 187 * so that they're not open-coded 188 */ 189 switch (mem->state) { 190 case MEM_ONLINE: 191 output = "online"; 192 break; 193 case MEM_OFFLINE: 194 output = "offline"; 195 break; 196 case MEM_GOING_OFFLINE: 197 output = "going-offline"; 198 break; 199 default: 200 WARN_ON(1); 201 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state); 202 } 203 204 return sysfs_emit(buf, "%s\n", output); 205 } 206 207 int memory_notify(unsigned long val, void *v) 208 { 209 return blocking_notifier_call_chain(&memory_chain, val, v); 210 } 211 212 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 213 static unsigned long memblk_nr_poison(struct memory_block *mem); 214 #else 215 static inline unsigned long memblk_nr_poison(struct memory_block *mem) 216 { 217 return 0; 218 } 219 #endif 220 221 /* 222 * Must acquire mem_hotplug_lock in write mode. 223 */ 224 static int memory_block_online(struct memory_block *mem) 225 { 226 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 227 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 228 unsigned long nr_vmemmap_pages = 0; 229 struct zone *zone; 230 int ret; 231 232 if (memblk_nr_poison(mem)) 233 return -EHWPOISON; 234 235 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group, 236 start_pfn, nr_pages); 237 238 /* 239 * Although vmemmap pages have a different lifecycle than the pages 240 * they describe (they remain until the memory is unplugged), doing 241 * their initialization and accounting at memory onlining/offlining 242 * stage helps to keep accounting easier to follow - e.g vmemmaps 243 * belong to the same zone as the memory they backed. 244 */ 245 if (mem->altmap) 246 nr_vmemmap_pages = mem->altmap->free; 247 248 mem_hotplug_begin(); 249 if (nr_vmemmap_pages) { 250 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone); 251 if (ret) 252 goto out; 253 } 254 255 ret = online_pages(start_pfn + nr_vmemmap_pages, 256 nr_pages - nr_vmemmap_pages, zone, mem->group); 257 if (ret) { 258 if (nr_vmemmap_pages) 259 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 260 goto out; 261 } 262 263 /* 264 * Account once onlining succeeded. If the zone was unpopulated, it is 265 * now already properly populated. 266 */ 267 if (nr_vmemmap_pages) 268 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 269 nr_vmemmap_pages); 270 271 mem->zone = zone; 272 out: 273 mem_hotplug_done(); 274 return ret; 275 } 276 277 /* 278 * Must acquire mem_hotplug_lock in write mode. 279 */ 280 static int memory_block_offline(struct memory_block *mem) 281 { 282 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 283 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 284 unsigned long nr_vmemmap_pages = 0; 285 int ret; 286 287 if (!mem->zone) 288 return -EINVAL; 289 290 /* 291 * Unaccount before offlining, such that unpopulated zone and kthreads 292 * can properly be torn down in offline_pages(). 293 */ 294 if (mem->altmap) 295 nr_vmemmap_pages = mem->altmap->free; 296 297 mem_hotplug_begin(); 298 if (nr_vmemmap_pages) 299 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 300 -nr_vmemmap_pages); 301 302 ret = offline_pages(start_pfn + nr_vmemmap_pages, 303 nr_pages - nr_vmemmap_pages, mem->zone, mem->group); 304 if (ret) { 305 /* offline_pages() failed. Account back. */ 306 if (nr_vmemmap_pages) 307 adjust_present_page_count(pfn_to_page(start_pfn), 308 mem->group, nr_vmemmap_pages); 309 goto out; 310 } 311 312 if (nr_vmemmap_pages) 313 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 314 315 mem->zone = NULL; 316 out: 317 mem_hotplug_done(); 318 return ret; 319 } 320 321 /* 322 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 323 * OK to have direct references to sparsemem variables in here. 324 */ 325 static int 326 memory_block_action(struct memory_block *mem, unsigned long action) 327 { 328 int ret; 329 330 switch (action) { 331 case MEM_ONLINE: 332 ret = memory_block_online(mem); 333 break; 334 case MEM_OFFLINE: 335 ret = memory_block_offline(mem); 336 break; 337 default: 338 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 339 "%ld\n", __func__, mem->start_section_nr, action, action); 340 ret = -EINVAL; 341 } 342 343 return ret; 344 } 345 346 static int memory_block_change_state(struct memory_block *mem, 347 unsigned long to_state, unsigned long from_state_req) 348 { 349 int ret = 0; 350 351 if (mem->state != from_state_req) 352 return -EINVAL; 353 354 if (to_state == MEM_OFFLINE) 355 mem->state = MEM_GOING_OFFLINE; 356 357 ret = memory_block_action(mem, to_state); 358 mem->state = ret ? from_state_req : to_state; 359 360 return ret; 361 } 362 363 /* The device lock serializes operations on memory_subsys_[online|offline] */ 364 static int memory_subsys_online(struct device *dev) 365 { 366 struct memory_block *mem = to_memory_block(dev); 367 int ret; 368 369 if (mem->state == MEM_ONLINE) 370 return 0; 371 372 /* 373 * When called via device_online() without configuring the online_type, 374 * we want to default to MMOP_ONLINE. 375 */ 376 if (mem->online_type == MMOP_OFFLINE) 377 mem->online_type = MMOP_ONLINE; 378 379 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 380 mem->online_type = MMOP_OFFLINE; 381 382 return ret; 383 } 384 385 static int memory_subsys_offline(struct device *dev) 386 { 387 struct memory_block *mem = to_memory_block(dev); 388 389 if (mem->state == MEM_OFFLINE) 390 return 0; 391 392 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 393 } 394 395 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 396 const char *buf, size_t count) 397 { 398 const int online_type = mhp_online_type_from_str(buf); 399 struct memory_block *mem = to_memory_block(dev); 400 int ret; 401 402 if (online_type < 0) 403 return -EINVAL; 404 405 ret = lock_device_hotplug_sysfs(); 406 if (ret) 407 return ret; 408 409 switch (online_type) { 410 case MMOP_ONLINE_KERNEL: 411 case MMOP_ONLINE_MOVABLE: 412 case MMOP_ONLINE: 413 /* mem->online_type is protected by device_hotplug_lock */ 414 mem->online_type = online_type; 415 ret = device_online(&mem->dev); 416 break; 417 case MMOP_OFFLINE: 418 ret = device_offline(&mem->dev); 419 break; 420 default: 421 ret = -EINVAL; /* should never happen */ 422 } 423 424 unlock_device_hotplug(); 425 426 if (ret < 0) 427 return ret; 428 if (ret) 429 return -EINVAL; 430 431 return count; 432 } 433 434 /* 435 * Legacy interface that we cannot remove: s390x exposes the storage increment 436 * covered by a memory block, allowing for identifying which memory blocks 437 * comprise a storage increment. Since a memory block spans complete 438 * storage increments nowadays, this interface is basically unused. Other 439 * archs never exposed != 0. 440 */ 441 static ssize_t phys_device_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct memory_block *mem = to_memory_block(dev); 445 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 446 447 return sysfs_emit(buf, "%d\n", 448 arch_get_memory_phys_device(start_pfn)); 449 } 450 451 #ifdef CONFIG_MEMORY_HOTREMOVE 452 static int print_allowed_zone(char *buf, int len, int nid, 453 struct memory_group *group, 454 unsigned long start_pfn, unsigned long nr_pages, 455 int online_type, struct zone *default_zone) 456 { 457 struct zone *zone; 458 459 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages); 460 if (zone == default_zone) 461 return 0; 462 463 return sysfs_emit_at(buf, len, " %s", zone->name); 464 } 465 466 static ssize_t valid_zones_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct memory_block *mem = to_memory_block(dev); 470 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 471 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 472 struct memory_group *group = mem->group; 473 struct zone *default_zone; 474 int nid = mem->nid; 475 int len; 476 477 /* 478 * Check the existing zone. Make sure that we do that only on the 479 * online nodes otherwise the page_zone is not reliable 480 */ 481 if (mem->state == MEM_ONLINE) { 482 /* 483 * If !mem->zone, the memory block spans multiple zones and 484 * cannot get offlined. 485 */ 486 return sysfs_emit(buf, "%s\n", 487 mem->zone ? mem->zone->name : "none"); 488 } 489 490 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group, 491 start_pfn, nr_pages); 492 493 len = sysfs_emit(buf, "%s", default_zone->name); 494 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 495 MMOP_ONLINE_KERNEL, default_zone); 496 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 497 MMOP_ONLINE_MOVABLE, default_zone); 498 len += sysfs_emit_at(buf, len, "\n"); 499 return len; 500 } 501 static DEVICE_ATTR_RO(valid_zones); 502 #endif 503 504 static DEVICE_ATTR_RO(phys_index); 505 static DEVICE_ATTR_RW(state); 506 static DEVICE_ATTR_RO(phys_device); 507 static DEVICE_ATTR_RO(removable); 508 509 /* 510 * Show the memory block size (shared by all memory blocks). 511 */ 512 static ssize_t block_size_bytes_show(struct device *dev, 513 struct device_attribute *attr, char *buf) 514 { 515 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes()); 516 } 517 518 static DEVICE_ATTR_RO(block_size_bytes); 519 520 /* 521 * Memory auto online policy. 522 */ 523 524 static ssize_t auto_online_blocks_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 return sysfs_emit(buf, "%s\n", 528 online_type_to_str[mhp_get_default_online_type()]); 529 } 530 531 static ssize_t auto_online_blocks_store(struct device *dev, 532 struct device_attribute *attr, 533 const char *buf, size_t count) 534 { 535 const int online_type = mhp_online_type_from_str(buf); 536 537 if (online_type < 0) 538 return -EINVAL; 539 540 mhp_set_default_online_type(online_type); 541 return count; 542 } 543 544 static DEVICE_ATTR_RW(auto_online_blocks); 545 546 #ifdef CONFIG_CRASH_HOTPLUG 547 #include <linux/kexec.h> 548 static ssize_t crash_hotplug_show(struct device *dev, 549 struct device_attribute *attr, char *buf) 550 { 551 return sysfs_emit(buf, "%d\n", crash_check_hotplug_support()); 552 } 553 static DEVICE_ATTR_RO(crash_hotplug); 554 #endif 555 556 /* 557 * Some architectures will have custom drivers to do this, and 558 * will not need to do it from userspace. The fake hot-add code 559 * as well as ppc64 will do all of their discovery in userspace 560 * and will require this interface. 561 */ 562 #ifdef CONFIG_ARCH_MEMORY_PROBE 563 static ssize_t probe_store(struct device *dev, struct device_attribute *attr, 564 const char *buf, size_t count) 565 { 566 u64 phys_addr; 567 int nid, ret; 568 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 569 570 ret = kstrtoull(buf, 0, &phys_addr); 571 if (ret) 572 return ret; 573 574 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 575 return -EINVAL; 576 577 ret = lock_device_hotplug_sysfs(); 578 if (ret) 579 return ret; 580 581 nid = memory_add_physaddr_to_nid(phys_addr); 582 ret = __add_memory(nid, phys_addr, 583 MIN_MEMORY_BLOCK_SIZE * sections_per_block, 584 MHP_NONE); 585 586 if (ret) 587 goto out; 588 589 ret = count; 590 out: 591 unlock_device_hotplug(); 592 return ret; 593 } 594 595 static DEVICE_ATTR_WO(probe); 596 #endif 597 598 #ifdef CONFIG_MEMORY_FAILURE 599 /* 600 * Support for offlining pages of memory 601 */ 602 603 /* Soft offline a page */ 604 static ssize_t soft_offline_page_store(struct device *dev, 605 struct device_attribute *attr, 606 const char *buf, size_t count) 607 { 608 int ret; 609 u64 pfn; 610 if (!capable(CAP_SYS_ADMIN)) 611 return -EPERM; 612 if (kstrtoull(buf, 0, &pfn) < 0) 613 return -EINVAL; 614 pfn >>= PAGE_SHIFT; 615 ret = soft_offline_page(pfn, 0); 616 return ret == 0 ? count : ret; 617 } 618 619 /* Forcibly offline a page, including killing processes. */ 620 static ssize_t hard_offline_page_store(struct device *dev, 621 struct device_attribute *attr, 622 const char *buf, size_t count) 623 { 624 int ret; 625 u64 pfn; 626 if (!capable(CAP_SYS_ADMIN)) 627 return -EPERM; 628 if (kstrtoull(buf, 0, &pfn) < 0) 629 return -EINVAL; 630 pfn >>= PAGE_SHIFT; 631 ret = memory_failure(pfn, MF_SW_SIMULATED); 632 if (ret == -EOPNOTSUPP) 633 ret = 0; 634 return ret ? ret : count; 635 } 636 637 static DEVICE_ATTR_WO(soft_offline_page); 638 static DEVICE_ATTR_WO(hard_offline_page); 639 #endif 640 641 /* See phys_device_show(). */ 642 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 643 { 644 return 0; 645 } 646 647 /* 648 * A reference for the returned memory block device is acquired. 649 * 650 * Called under device_hotplug_lock. 651 */ 652 struct memory_block *find_memory_block_by_id(unsigned long block_id) 653 { 654 struct memory_block *mem; 655 656 mem = xa_load(&memory_blocks, block_id); 657 if (mem) 658 get_device(&mem->dev); 659 return mem; 660 } 661 662 /* 663 * Called under device_hotplug_lock. 664 */ 665 struct memory_block *find_memory_block(unsigned long section_nr) 666 { 667 unsigned long block_id = memory_block_id(section_nr); 668 669 return find_memory_block_by_id(block_id); 670 } 671 672 static struct attribute *memory_memblk_attrs[] = { 673 &dev_attr_phys_index.attr, 674 &dev_attr_state.attr, 675 &dev_attr_phys_device.attr, 676 &dev_attr_removable.attr, 677 #ifdef CONFIG_MEMORY_HOTREMOVE 678 &dev_attr_valid_zones.attr, 679 #endif 680 NULL 681 }; 682 683 static const struct attribute_group memory_memblk_attr_group = { 684 .attrs = memory_memblk_attrs, 685 }; 686 687 static const struct attribute_group *memory_memblk_attr_groups[] = { 688 &memory_memblk_attr_group, 689 NULL, 690 }; 691 692 static int __add_memory_block(struct memory_block *memory) 693 { 694 int ret; 695 696 memory->dev.bus = &memory_subsys; 697 memory->dev.id = memory->start_section_nr / sections_per_block; 698 memory->dev.release = memory_block_release; 699 memory->dev.groups = memory_memblk_attr_groups; 700 memory->dev.offline = memory->state == MEM_OFFLINE; 701 702 ret = device_register(&memory->dev); 703 if (ret) { 704 put_device(&memory->dev); 705 return ret; 706 } 707 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory, 708 GFP_KERNEL)); 709 if (ret) 710 device_unregister(&memory->dev); 711 712 return ret; 713 } 714 715 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem, 716 int nid) 717 { 718 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 719 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 720 struct zone *zone, *matching_zone = NULL; 721 pg_data_t *pgdat = NODE_DATA(nid); 722 int i; 723 724 /* 725 * This logic only works for early memory, when the applicable zones 726 * already span the memory block. We don't expect overlapping zones on 727 * a single node for early memory. So if we're told that some PFNs 728 * of a node fall into this memory block, we can assume that all node 729 * zones that intersect with the memory block are actually applicable. 730 * No need to look at the memmap. 731 */ 732 for (i = 0; i < MAX_NR_ZONES; i++) { 733 zone = pgdat->node_zones + i; 734 if (!populated_zone(zone)) 735 continue; 736 if (!zone_intersects(zone, start_pfn, nr_pages)) 737 continue; 738 if (!matching_zone) { 739 matching_zone = zone; 740 continue; 741 } 742 /* Spans multiple zones ... */ 743 matching_zone = NULL; 744 break; 745 } 746 return matching_zone; 747 } 748 749 #ifdef CONFIG_NUMA 750 /** 751 * memory_block_add_nid_early() - Indicate that early system RAM falling into 752 * this memory block device (partially) belongs 753 * to the given node. 754 * @mem: The memory block device. 755 * @nid: The node id. 756 * 757 * Indicate that early system RAM falling into this memory block (partially) 758 * belongs to the given node. This will also properly set/adjust mem->zone based 759 * on the zone ranges of the given node. 760 * 761 * Memory hotplug handles this on memory block creation, where we can only have 762 * a single nid span a memory block. 763 */ 764 void memory_block_add_nid_early(struct memory_block *mem, int nid) 765 { 766 if (mem->nid != nid) { 767 /* 768 * For early memory we have to determine the zone when setting 769 * the node id and handle multiple nodes spanning a single 770 * memory block by indicate via zone == NULL that we're not 771 * dealing with a single zone. So if we're setting the node id 772 * the first time, determine if there is a single zone. If we're 773 * setting the node id a second time to a different node, 774 * invalidate the single detected zone. 775 */ 776 if (mem->nid == NUMA_NO_NODE) 777 mem->zone = early_node_zone_for_memory_block(mem, nid); 778 else 779 mem->zone = NULL; 780 /* 781 * If this memory block spans multiple nodes, we only indicate 782 * the last processed node. If we span multiple nodes (not applicable 783 * to hotplugged memory), zone == NULL will prohibit memory offlining 784 * and consequently unplug. 785 */ 786 mem->nid = nid; 787 } 788 } 789 #endif 790 791 static int add_memory_block(unsigned long block_id, int nid, unsigned long state, 792 struct vmem_altmap *altmap, 793 struct memory_group *group) 794 { 795 struct memory_block *mem; 796 int ret = 0; 797 798 mem = find_memory_block_by_id(block_id); 799 if (mem) { 800 put_device(&mem->dev); 801 return -EEXIST; 802 } 803 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 804 if (!mem) 805 return -ENOMEM; 806 807 mem->start_section_nr = block_id * sections_per_block; 808 mem->state = state; 809 mem->nid = nid; 810 mem->altmap = altmap; 811 INIT_LIST_HEAD(&mem->group_next); 812 813 #ifndef CONFIG_NUMA 814 if (state == MEM_ONLINE) 815 /* 816 * MEM_ONLINE at this point implies early memory. With NUMA, 817 * we'll determine the zone when setting the node id via 818 * memory_block_add_nid(). Memory hotplug updated the zone 819 * manually when memory onlining/offlining succeeds. 820 */ 821 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE); 822 #endif /* CONFIG_NUMA */ 823 824 ret = __add_memory_block(mem); 825 if (ret) 826 return ret; 827 828 if (group) { 829 mem->group = group; 830 list_add(&mem->group_next, &group->memory_blocks); 831 } 832 833 return 0; 834 } 835 836 static void remove_memory_block(struct memory_block *memory) 837 { 838 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys)) 839 return; 840 841 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL); 842 843 if (memory->group) { 844 list_del(&memory->group_next); 845 memory->group = NULL; 846 } 847 848 /* drop the ref. we got via find_memory_block() */ 849 put_device(&memory->dev); 850 device_unregister(&memory->dev); 851 } 852 853 /* 854 * Create memory block devices for the given memory area. Start and size 855 * have to be aligned to memory block granularity. Memory block devices 856 * will be initialized as offline. 857 * 858 * Called under device_hotplug_lock. 859 */ 860 int create_memory_block_devices(unsigned long start, unsigned long size, 861 int nid, struct vmem_altmap *altmap, 862 struct memory_group *group) 863 { 864 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 865 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 866 struct memory_block *mem; 867 unsigned long block_id; 868 int ret = 0; 869 870 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 871 !IS_ALIGNED(size, memory_block_size_bytes()))) 872 return -EINVAL; 873 874 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 875 ret = add_memory_block(block_id, nid, MEM_OFFLINE, altmap, group); 876 if (ret) 877 break; 878 } 879 if (ret) { 880 end_block_id = block_id; 881 for (block_id = start_block_id; block_id != end_block_id; 882 block_id++) { 883 mem = find_memory_block_by_id(block_id); 884 if (WARN_ON_ONCE(!mem)) 885 continue; 886 remove_memory_block(mem); 887 } 888 } 889 return ret; 890 } 891 892 /* 893 * Remove memory block devices for the given memory area. Start and size 894 * have to be aligned to memory block granularity. Memory block devices 895 * have to be offline. 896 * 897 * Called under device_hotplug_lock. 898 */ 899 void remove_memory_block_devices(unsigned long start, unsigned long size) 900 { 901 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 902 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 903 struct memory_block *mem; 904 unsigned long block_id; 905 906 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 907 !IS_ALIGNED(size, memory_block_size_bytes()))) 908 return; 909 910 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 911 mem = find_memory_block_by_id(block_id); 912 if (WARN_ON_ONCE(!mem)) 913 continue; 914 num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem)); 915 unregister_memory_block_under_nodes(mem); 916 remove_memory_block(mem); 917 } 918 } 919 920 static struct attribute *memory_root_attrs[] = { 921 #ifdef CONFIG_ARCH_MEMORY_PROBE 922 &dev_attr_probe.attr, 923 #endif 924 925 #ifdef CONFIG_MEMORY_FAILURE 926 &dev_attr_soft_offline_page.attr, 927 &dev_attr_hard_offline_page.attr, 928 #endif 929 930 &dev_attr_block_size_bytes.attr, 931 &dev_attr_auto_online_blocks.attr, 932 #ifdef CONFIG_CRASH_HOTPLUG 933 &dev_attr_crash_hotplug.attr, 934 #endif 935 NULL 936 }; 937 938 static const struct attribute_group memory_root_attr_group = { 939 .attrs = memory_root_attrs, 940 }; 941 942 static const struct attribute_group *memory_root_attr_groups[] = { 943 &memory_root_attr_group, 944 NULL, 945 }; 946 947 /* 948 * Initialize the sysfs support for memory devices. At the time this function 949 * is called, we cannot have concurrent creation/deletion of memory block 950 * devices, the device_hotplug_lock is not needed. 951 */ 952 void __init memory_dev_init(void) 953 { 954 int ret; 955 unsigned long block_sz, block_id, nr; 956 957 /* Validate the configured memory block size */ 958 block_sz = memory_block_size_bytes(); 959 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE) 960 panic("Memory block size not suitable: 0x%lx\n", block_sz); 961 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 962 963 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 964 if (ret) 965 panic("%s() failed to register subsystem: %d\n", __func__, ret); 966 967 /* 968 * Create entries for memory sections that were found during boot 969 * and have been initialized. Use @block_id to track the last 970 * handled block and initialize it to an invalid value (ULONG_MAX) 971 * to bypass the block ID matching check for the first present 972 * block so that it can be covered. 973 */ 974 block_id = ULONG_MAX; 975 for_each_present_section_nr(0, nr) { 976 if (block_id != ULONG_MAX && memory_block_id(nr) == block_id) 977 continue; 978 979 block_id = memory_block_id(nr); 980 ret = add_memory_block(block_id, NUMA_NO_NODE, MEM_ONLINE, NULL, NULL); 981 if (ret) { 982 panic("%s() failed to add memory block: %d\n", 983 __func__, ret); 984 } 985 } 986 } 987 988 /** 989 * walk_memory_blocks - walk through all present memory blocks overlapped 990 * by the range [start, start + size) 991 * 992 * @start: start address of the memory range 993 * @size: size of the memory range 994 * @arg: argument passed to func 995 * @func: callback for each memory section walked 996 * 997 * This function walks through all present memory blocks overlapped by the 998 * range [start, start + size), calling func on each memory block. 999 * 1000 * In case func() returns an error, walking is aborted and the error is 1001 * returned. 1002 * 1003 * Called under device_hotplug_lock. 1004 */ 1005 int walk_memory_blocks(unsigned long start, unsigned long size, 1006 void *arg, walk_memory_blocks_func_t func) 1007 { 1008 const unsigned long start_block_id = phys_to_block_id(start); 1009 const unsigned long end_block_id = phys_to_block_id(start + size - 1); 1010 struct memory_block *mem; 1011 unsigned long block_id; 1012 int ret = 0; 1013 1014 if (!size) 1015 return 0; 1016 1017 for (block_id = start_block_id; block_id <= end_block_id; block_id++) { 1018 mem = find_memory_block_by_id(block_id); 1019 if (!mem) 1020 continue; 1021 1022 ret = func(mem, arg); 1023 put_device(&mem->dev); 1024 if (ret) 1025 break; 1026 } 1027 return ret; 1028 } 1029 1030 struct for_each_memory_block_cb_data { 1031 walk_memory_blocks_func_t func; 1032 void *arg; 1033 }; 1034 1035 static int for_each_memory_block_cb(struct device *dev, void *data) 1036 { 1037 struct memory_block *mem = to_memory_block(dev); 1038 struct for_each_memory_block_cb_data *cb_data = data; 1039 1040 return cb_data->func(mem, cb_data->arg); 1041 } 1042 1043 /** 1044 * for_each_memory_block - walk through all present memory blocks 1045 * 1046 * @arg: argument passed to func 1047 * @func: callback for each memory block walked 1048 * 1049 * This function walks through all present memory blocks, calling func on 1050 * each memory block. 1051 * 1052 * In case func() returns an error, walking is aborted and the error is 1053 * returned. 1054 */ 1055 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func) 1056 { 1057 struct for_each_memory_block_cb_data cb_data = { 1058 .func = func, 1059 .arg = arg, 1060 }; 1061 1062 return bus_for_each_dev(&memory_subsys, NULL, &cb_data, 1063 for_each_memory_block_cb); 1064 } 1065 1066 /* 1067 * This is an internal helper to unify allocation and initialization of 1068 * memory groups. Note that the passed memory group will be copied to a 1069 * dynamically allocated memory group. After this call, the passed 1070 * memory group should no longer be used. 1071 */ 1072 static int memory_group_register(struct memory_group group) 1073 { 1074 struct memory_group *new_group; 1075 uint32_t mgid; 1076 int ret; 1077 1078 if (!node_possible(group.nid)) 1079 return -EINVAL; 1080 1081 new_group = kzalloc(sizeof(group), GFP_KERNEL); 1082 if (!new_group) 1083 return -ENOMEM; 1084 *new_group = group; 1085 INIT_LIST_HEAD(&new_group->memory_blocks); 1086 1087 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b, 1088 GFP_KERNEL); 1089 if (ret) { 1090 kfree(new_group); 1091 return ret; 1092 } else if (group.is_dynamic) { 1093 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC); 1094 } 1095 return mgid; 1096 } 1097 1098 /** 1099 * memory_group_register_static() - Register a static memory group. 1100 * @nid: The node id. 1101 * @max_pages: The maximum number of pages we'll have in this static memory 1102 * group. 1103 * 1104 * Register a new static memory group and return the memory group id. 1105 * All memory in the group belongs to a single unit, such as a DIMM. All 1106 * memory belonging to a static memory group is added in one go to be removed 1107 * in one go -- it's static. 1108 * 1109 * Returns an error if out of memory, if the node id is invalid, if no new 1110 * memory groups can be registered, or if max_pages is invalid (0). Otherwise, 1111 * returns the new memory group id. 1112 */ 1113 int memory_group_register_static(int nid, unsigned long max_pages) 1114 { 1115 struct memory_group group = { 1116 .nid = nid, 1117 .s = { 1118 .max_pages = max_pages, 1119 }, 1120 }; 1121 1122 if (!max_pages) 1123 return -EINVAL; 1124 return memory_group_register(group); 1125 } 1126 EXPORT_SYMBOL_GPL(memory_group_register_static); 1127 1128 /** 1129 * memory_group_register_dynamic() - Register a dynamic memory group. 1130 * @nid: The node id. 1131 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic 1132 * memory group. 1133 * 1134 * Register a new dynamic memory group and return the memory group id. 1135 * Memory within a dynamic memory group is added/removed dynamically 1136 * in unit_pages. 1137 * 1138 * Returns an error if out of memory, if the node id is invalid, if no new 1139 * memory groups can be registered, or if unit_pages is invalid (0, not a 1140 * power of two, smaller than a single memory block). Otherwise, returns the 1141 * new memory group id. 1142 */ 1143 int memory_group_register_dynamic(int nid, unsigned long unit_pages) 1144 { 1145 struct memory_group group = { 1146 .nid = nid, 1147 .is_dynamic = true, 1148 .d = { 1149 .unit_pages = unit_pages, 1150 }, 1151 }; 1152 1153 if (!unit_pages || !is_power_of_2(unit_pages) || 1154 unit_pages < PHYS_PFN(memory_block_size_bytes())) 1155 return -EINVAL; 1156 return memory_group_register(group); 1157 } 1158 EXPORT_SYMBOL_GPL(memory_group_register_dynamic); 1159 1160 /** 1161 * memory_group_unregister() - Unregister a memory group. 1162 * @mgid: the memory group id 1163 * 1164 * Unregister a memory group. If any memory block still belongs to this 1165 * memory group, unregistering will fail. 1166 * 1167 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some 1168 * memory blocks still belong to this memory group and returns 0 if 1169 * unregistering succeeded. 1170 */ 1171 int memory_group_unregister(int mgid) 1172 { 1173 struct memory_group *group; 1174 1175 if (mgid < 0) 1176 return -EINVAL; 1177 1178 group = xa_load(&memory_groups, mgid); 1179 if (!group) 1180 return -EINVAL; 1181 if (!list_empty(&group->memory_blocks)) 1182 return -EBUSY; 1183 xa_erase(&memory_groups, mgid); 1184 kfree(group); 1185 return 0; 1186 } 1187 EXPORT_SYMBOL_GPL(memory_group_unregister); 1188 1189 /* 1190 * This is an internal helper only to be used in core memory hotplug code to 1191 * lookup a memory group. We don't care about locking, as we don't expect a 1192 * memory group to get unregistered while adding memory to it -- because 1193 * the group and the memory is managed by the same driver. 1194 */ 1195 struct memory_group *memory_group_find_by_id(int mgid) 1196 { 1197 return xa_load(&memory_groups, mgid); 1198 } 1199 1200 /* 1201 * This is an internal helper only to be used in core memory hotplug code to 1202 * walk all dynamic memory groups excluding a given memory group, either 1203 * belonging to a specific node, or belonging to any node. 1204 */ 1205 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func, 1206 struct memory_group *excluded, void *arg) 1207 { 1208 struct memory_group *group; 1209 unsigned long index; 1210 int ret = 0; 1211 1212 xa_for_each_marked(&memory_groups, index, group, 1213 MEMORY_GROUP_MARK_DYNAMIC) { 1214 if (group == excluded) 1215 continue; 1216 #ifdef CONFIG_NUMA 1217 if (nid != NUMA_NO_NODE && group->nid != nid) 1218 continue; 1219 #endif /* CONFIG_NUMA */ 1220 ret = func(group, arg); 1221 if (ret) 1222 break; 1223 } 1224 return ret; 1225 } 1226 1227 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 1228 void memblk_nr_poison_inc(unsigned long pfn) 1229 { 1230 const unsigned long block_id = pfn_to_block_id(pfn); 1231 struct memory_block *mem = find_memory_block_by_id(block_id); 1232 1233 if (mem) 1234 atomic_long_inc(&mem->nr_hwpoison); 1235 } 1236 1237 void memblk_nr_poison_sub(unsigned long pfn, long i) 1238 { 1239 const unsigned long block_id = pfn_to_block_id(pfn); 1240 struct memory_block *mem = find_memory_block_by_id(block_id); 1241 1242 if (mem) 1243 atomic_long_sub(i, &mem->nr_hwpoison); 1244 } 1245 1246 static unsigned long memblk_nr_poison(struct memory_block *mem) 1247 { 1248 return atomic_long_read(&mem->nr_hwpoison); 1249 } 1250 #endif 1251