xref: /linux/drivers/base/memory.c (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory subsystem support
4  *
5  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6  *            Dave Hansen <haveblue@us.ibm.com>
7  *
8  * This file provides the necessary infrastructure to represent
9  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10  * All arch-independent code that assumes MEMORY_HOTPLUG requires
11  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25 
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static const char *const online_type_to_str[] = {
32 	[MMOP_OFFLINE] = "offline",
33 	[MMOP_ONLINE] = "online",
34 	[MMOP_ONLINE_KERNEL] = "online_kernel",
35 	[MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37 
38 int mhp_online_type_from_str(const char *str)
39 {
40 	int i;
41 
42 	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 		if (sysfs_streq(str, online_type_to_str[i]))
44 			return i;
45 	}
46 	return -EINVAL;
47 }
48 
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50 
51 static int sections_per_block;
52 
53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 	return section_nr / sections_per_block;
56 }
57 
58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 	return memory_block_id(pfn_to_section_nr(pfn));
61 }
62 
63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 	return pfn_to_block_id(PFN_DOWN(phys));
66 }
67 
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70 
71 static struct bus_type memory_subsys = {
72 	.name = MEMORY_CLASS_NAME,
73 	.dev_name = MEMORY_CLASS_NAME,
74 	.online = memory_subsys_online,
75 	.offline = memory_subsys_offline,
76 };
77 
78 /*
79  * Memory blocks are cached in a local radix tree to avoid
80  * a costly linear search for the corresponding device on
81  * the subsystem bus.
82  */
83 static DEFINE_XARRAY(memory_blocks);
84 
85 /*
86  * Memory groups, indexed by memory group id (mgid).
87  */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90 
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92 
93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 	return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98 
99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 	blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104 
105 static void memory_block_release(struct device *dev)
106 {
107 	struct memory_block *mem = to_memory_block(dev);
108 
109 	kfree(mem);
110 }
111 
112 unsigned long __weak memory_block_size_bytes(void)
113 {
114 	return MIN_MEMORY_BLOCK_SIZE;
115 }
116 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
117 
118 /* Show the memory block ID, relative to the memory block size */
119 static ssize_t phys_index_show(struct device *dev,
120 			       struct device_attribute *attr, char *buf)
121 {
122 	struct memory_block *mem = to_memory_block(dev);
123 
124 	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
125 }
126 
127 /*
128  * Legacy interface that we cannot remove. Always indicate "removable"
129  * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
130  */
131 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
132 			      char *buf)
133 {
134 	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
135 }
136 
137 /*
138  * online, offline, going offline, etc.
139  */
140 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
141 			  char *buf)
142 {
143 	struct memory_block *mem = to_memory_block(dev);
144 	const char *output;
145 
146 	/*
147 	 * We can probably put these states in a nice little array
148 	 * so that they're not open-coded
149 	 */
150 	switch (mem->state) {
151 	case MEM_ONLINE:
152 		output = "online";
153 		break;
154 	case MEM_OFFLINE:
155 		output = "offline";
156 		break;
157 	case MEM_GOING_OFFLINE:
158 		output = "going-offline";
159 		break;
160 	default:
161 		WARN_ON(1);
162 		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
163 	}
164 
165 	return sysfs_emit(buf, "%s\n", output);
166 }
167 
168 int memory_notify(unsigned long val, void *v)
169 {
170 	return blocking_notifier_call_chain(&memory_chain, val, v);
171 }
172 
173 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
174 static unsigned long memblk_nr_poison(struct memory_block *mem);
175 #else
176 static inline unsigned long memblk_nr_poison(struct memory_block *mem)
177 {
178 	return 0;
179 }
180 #endif
181 
182 static int memory_block_online(struct memory_block *mem)
183 {
184 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
185 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
186 	unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
187 	struct zone *zone;
188 	int ret;
189 
190 	if (memblk_nr_poison(mem))
191 		return -EHWPOISON;
192 
193 	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
194 				  start_pfn, nr_pages);
195 
196 	/*
197 	 * Although vmemmap pages have a different lifecycle than the pages
198 	 * they describe (they remain until the memory is unplugged), doing
199 	 * their initialization and accounting at memory onlining/offlining
200 	 * stage helps to keep accounting easier to follow - e.g vmemmaps
201 	 * belong to the same zone as the memory they backed.
202 	 */
203 	if (nr_vmemmap_pages) {
204 		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
205 		if (ret)
206 			return ret;
207 	}
208 
209 	ret = online_pages(start_pfn + nr_vmemmap_pages,
210 			   nr_pages - nr_vmemmap_pages, zone, mem->group);
211 	if (ret) {
212 		if (nr_vmemmap_pages)
213 			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
214 		return ret;
215 	}
216 
217 	/*
218 	 * Account once onlining succeeded. If the zone was unpopulated, it is
219 	 * now already properly populated.
220 	 */
221 	if (nr_vmemmap_pages)
222 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
223 					  nr_vmemmap_pages);
224 
225 	mem->zone = zone;
226 	return ret;
227 }
228 
229 static int memory_block_offline(struct memory_block *mem)
230 {
231 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
232 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
233 	unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
234 	int ret;
235 
236 	if (!mem->zone)
237 		return -EINVAL;
238 
239 	/*
240 	 * Unaccount before offlining, such that unpopulated zone and kthreads
241 	 * can properly be torn down in offline_pages().
242 	 */
243 	if (nr_vmemmap_pages)
244 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
245 					  -nr_vmemmap_pages);
246 
247 	ret = offline_pages(start_pfn + nr_vmemmap_pages,
248 			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
249 	if (ret) {
250 		/* offline_pages() failed. Account back. */
251 		if (nr_vmemmap_pages)
252 			adjust_present_page_count(pfn_to_page(start_pfn),
253 						  mem->group, nr_vmemmap_pages);
254 		return ret;
255 	}
256 
257 	if (nr_vmemmap_pages)
258 		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
259 
260 	mem->zone = NULL;
261 	return ret;
262 }
263 
264 /*
265  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
266  * OK to have direct references to sparsemem variables in here.
267  */
268 static int
269 memory_block_action(struct memory_block *mem, unsigned long action)
270 {
271 	int ret;
272 
273 	switch (action) {
274 	case MEM_ONLINE:
275 		ret = memory_block_online(mem);
276 		break;
277 	case MEM_OFFLINE:
278 		ret = memory_block_offline(mem);
279 		break;
280 	default:
281 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
282 		     "%ld\n", __func__, mem->start_section_nr, action, action);
283 		ret = -EINVAL;
284 	}
285 
286 	return ret;
287 }
288 
289 static int memory_block_change_state(struct memory_block *mem,
290 		unsigned long to_state, unsigned long from_state_req)
291 {
292 	int ret = 0;
293 
294 	if (mem->state != from_state_req)
295 		return -EINVAL;
296 
297 	if (to_state == MEM_OFFLINE)
298 		mem->state = MEM_GOING_OFFLINE;
299 
300 	ret = memory_block_action(mem, to_state);
301 	mem->state = ret ? from_state_req : to_state;
302 
303 	return ret;
304 }
305 
306 /* The device lock serializes operations on memory_subsys_[online|offline] */
307 static int memory_subsys_online(struct device *dev)
308 {
309 	struct memory_block *mem = to_memory_block(dev);
310 	int ret;
311 
312 	if (mem->state == MEM_ONLINE)
313 		return 0;
314 
315 	/*
316 	 * When called via device_online() without configuring the online_type,
317 	 * we want to default to MMOP_ONLINE.
318 	 */
319 	if (mem->online_type == MMOP_OFFLINE)
320 		mem->online_type = MMOP_ONLINE;
321 
322 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
323 	mem->online_type = MMOP_OFFLINE;
324 
325 	return ret;
326 }
327 
328 static int memory_subsys_offline(struct device *dev)
329 {
330 	struct memory_block *mem = to_memory_block(dev);
331 
332 	if (mem->state == MEM_OFFLINE)
333 		return 0;
334 
335 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
336 }
337 
338 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
339 			   const char *buf, size_t count)
340 {
341 	const int online_type = mhp_online_type_from_str(buf);
342 	struct memory_block *mem = to_memory_block(dev);
343 	int ret;
344 
345 	if (online_type < 0)
346 		return -EINVAL;
347 
348 	ret = lock_device_hotplug_sysfs();
349 	if (ret)
350 		return ret;
351 
352 	switch (online_type) {
353 	case MMOP_ONLINE_KERNEL:
354 	case MMOP_ONLINE_MOVABLE:
355 	case MMOP_ONLINE:
356 		/* mem->online_type is protected by device_hotplug_lock */
357 		mem->online_type = online_type;
358 		ret = device_online(&mem->dev);
359 		break;
360 	case MMOP_OFFLINE:
361 		ret = device_offline(&mem->dev);
362 		break;
363 	default:
364 		ret = -EINVAL; /* should never happen */
365 	}
366 
367 	unlock_device_hotplug();
368 
369 	if (ret < 0)
370 		return ret;
371 	if (ret)
372 		return -EINVAL;
373 
374 	return count;
375 }
376 
377 /*
378  * Legacy interface that we cannot remove: s390x exposes the storage increment
379  * covered by a memory block, allowing for identifying which memory blocks
380  * comprise a storage increment. Since a memory block spans complete
381  * storage increments nowadays, this interface is basically unused. Other
382  * archs never exposed != 0.
383  */
384 static ssize_t phys_device_show(struct device *dev,
385 				struct device_attribute *attr, char *buf)
386 {
387 	struct memory_block *mem = to_memory_block(dev);
388 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
389 
390 	return sysfs_emit(buf, "%d\n",
391 			  arch_get_memory_phys_device(start_pfn));
392 }
393 
394 #ifdef CONFIG_MEMORY_HOTREMOVE
395 static int print_allowed_zone(char *buf, int len, int nid,
396 			      struct memory_group *group,
397 			      unsigned long start_pfn, unsigned long nr_pages,
398 			      int online_type, struct zone *default_zone)
399 {
400 	struct zone *zone;
401 
402 	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
403 	if (zone == default_zone)
404 		return 0;
405 
406 	return sysfs_emit_at(buf, len, " %s", zone->name);
407 }
408 
409 static ssize_t valid_zones_show(struct device *dev,
410 				struct device_attribute *attr, char *buf)
411 {
412 	struct memory_block *mem = to_memory_block(dev);
413 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
414 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
415 	struct memory_group *group = mem->group;
416 	struct zone *default_zone;
417 	int nid = mem->nid;
418 	int len = 0;
419 
420 	/*
421 	 * Check the existing zone. Make sure that we do that only on the
422 	 * online nodes otherwise the page_zone is not reliable
423 	 */
424 	if (mem->state == MEM_ONLINE) {
425 		/*
426 		 * If !mem->zone, the memory block spans multiple zones and
427 		 * cannot get offlined.
428 		 */
429 		default_zone = mem->zone;
430 		if (!default_zone)
431 			return sysfs_emit(buf, "%s\n", "none");
432 		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
433 		goto out;
434 	}
435 
436 	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
437 					  start_pfn, nr_pages);
438 
439 	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
440 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
441 				  MMOP_ONLINE_KERNEL, default_zone);
442 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
443 				  MMOP_ONLINE_MOVABLE, default_zone);
444 out:
445 	len += sysfs_emit_at(buf, len, "\n");
446 	return len;
447 }
448 static DEVICE_ATTR_RO(valid_zones);
449 #endif
450 
451 static DEVICE_ATTR_RO(phys_index);
452 static DEVICE_ATTR_RW(state);
453 static DEVICE_ATTR_RO(phys_device);
454 static DEVICE_ATTR_RO(removable);
455 
456 /*
457  * Show the memory block size (shared by all memory blocks).
458  */
459 static ssize_t block_size_bytes_show(struct device *dev,
460 				     struct device_attribute *attr, char *buf)
461 {
462 	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
463 }
464 
465 static DEVICE_ATTR_RO(block_size_bytes);
466 
467 /*
468  * Memory auto online policy.
469  */
470 
471 static ssize_t auto_online_blocks_show(struct device *dev,
472 				       struct device_attribute *attr, char *buf)
473 {
474 	return sysfs_emit(buf, "%s\n",
475 			  online_type_to_str[mhp_default_online_type]);
476 }
477 
478 static ssize_t auto_online_blocks_store(struct device *dev,
479 					struct device_attribute *attr,
480 					const char *buf, size_t count)
481 {
482 	const int online_type = mhp_online_type_from_str(buf);
483 
484 	if (online_type < 0)
485 		return -EINVAL;
486 
487 	mhp_default_online_type = online_type;
488 	return count;
489 }
490 
491 static DEVICE_ATTR_RW(auto_online_blocks);
492 
493 /*
494  * Some architectures will have custom drivers to do this, and
495  * will not need to do it from userspace.  The fake hot-add code
496  * as well as ppc64 will do all of their discovery in userspace
497  * and will require this interface.
498  */
499 #ifdef CONFIG_ARCH_MEMORY_PROBE
500 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
501 			   const char *buf, size_t count)
502 {
503 	u64 phys_addr;
504 	int nid, ret;
505 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
506 
507 	ret = kstrtoull(buf, 0, &phys_addr);
508 	if (ret)
509 		return ret;
510 
511 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
512 		return -EINVAL;
513 
514 	ret = lock_device_hotplug_sysfs();
515 	if (ret)
516 		return ret;
517 
518 	nid = memory_add_physaddr_to_nid(phys_addr);
519 	ret = __add_memory(nid, phys_addr,
520 			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
521 			   MHP_NONE);
522 
523 	if (ret)
524 		goto out;
525 
526 	ret = count;
527 out:
528 	unlock_device_hotplug();
529 	return ret;
530 }
531 
532 static DEVICE_ATTR_WO(probe);
533 #endif
534 
535 #ifdef CONFIG_MEMORY_FAILURE
536 /*
537  * Support for offlining pages of memory
538  */
539 
540 /* Soft offline a page */
541 static ssize_t soft_offline_page_store(struct device *dev,
542 				       struct device_attribute *attr,
543 				       const char *buf, size_t count)
544 {
545 	int ret;
546 	u64 pfn;
547 	if (!capable(CAP_SYS_ADMIN))
548 		return -EPERM;
549 	if (kstrtoull(buf, 0, &pfn) < 0)
550 		return -EINVAL;
551 	pfn >>= PAGE_SHIFT;
552 	ret = soft_offline_page(pfn, 0);
553 	return ret == 0 ? count : ret;
554 }
555 
556 /* Forcibly offline a page, including killing processes. */
557 static ssize_t hard_offline_page_store(struct device *dev,
558 				       struct device_attribute *attr,
559 				       const char *buf, size_t count)
560 {
561 	int ret;
562 	u64 pfn;
563 	if (!capable(CAP_SYS_ADMIN))
564 		return -EPERM;
565 	if (kstrtoull(buf, 0, &pfn) < 0)
566 		return -EINVAL;
567 	pfn >>= PAGE_SHIFT;
568 	ret = memory_failure(pfn, MF_SW_SIMULATED);
569 	if (ret == -EOPNOTSUPP)
570 		ret = 0;
571 	return ret ? ret : count;
572 }
573 
574 static DEVICE_ATTR_WO(soft_offline_page);
575 static DEVICE_ATTR_WO(hard_offline_page);
576 #endif
577 
578 /* See phys_device_show(). */
579 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
580 {
581 	return 0;
582 }
583 
584 /*
585  * A reference for the returned memory block device is acquired.
586  *
587  * Called under device_hotplug_lock.
588  */
589 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
590 {
591 	struct memory_block *mem;
592 
593 	mem = xa_load(&memory_blocks, block_id);
594 	if (mem)
595 		get_device(&mem->dev);
596 	return mem;
597 }
598 
599 /*
600  * Called under device_hotplug_lock.
601  */
602 struct memory_block *find_memory_block(unsigned long section_nr)
603 {
604 	unsigned long block_id = memory_block_id(section_nr);
605 
606 	return find_memory_block_by_id(block_id);
607 }
608 
609 static struct attribute *memory_memblk_attrs[] = {
610 	&dev_attr_phys_index.attr,
611 	&dev_attr_state.attr,
612 	&dev_attr_phys_device.attr,
613 	&dev_attr_removable.attr,
614 #ifdef CONFIG_MEMORY_HOTREMOVE
615 	&dev_attr_valid_zones.attr,
616 #endif
617 	NULL
618 };
619 
620 static const struct attribute_group memory_memblk_attr_group = {
621 	.attrs = memory_memblk_attrs,
622 };
623 
624 static const struct attribute_group *memory_memblk_attr_groups[] = {
625 	&memory_memblk_attr_group,
626 	NULL,
627 };
628 
629 static int __add_memory_block(struct memory_block *memory)
630 {
631 	int ret;
632 
633 	memory->dev.bus = &memory_subsys;
634 	memory->dev.id = memory->start_section_nr / sections_per_block;
635 	memory->dev.release = memory_block_release;
636 	memory->dev.groups = memory_memblk_attr_groups;
637 	memory->dev.offline = memory->state == MEM_OFFLINE;
638 
639 	ret = device_register(&memory->dev);
640 	if (ret) {
641 		put_device(&memory->dev);
642 		return ret;
643 	}
644 	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
645 			      GFP_KERNEL));
646 	if (ret)
647 		device_unregister(&memory->dev);
648 
649 	return ret;
650 }
651 
652 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
653 						     int nid)
654 {
655 	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
656 	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
657 	struct zone *zone, *matching_zone = NULL;
658 	pg_data_t *pgdat = NODE_DATA(nid);
659 	int i;
660 
661 	/*
662 	 * This logic only works for early memory, when the applicable zones
663 	 * already span the memory block. We don't expect overlapping zones on
664 	 * a single node for early memory. So if we're told that some PFNs
665 	 * of a node fall into this memory block, we can assume that all node
666 	 * zones that intersect with the memory block are actually applicable.
667 	 * No need to look at the memmap.
668 	 */
669 	for (i = 0; i < MAX_NR_ZONES; i++) {
670 		zone = pgdat->node_zones + i;
671 		if (!populated_zone(zone))
672 			continue;
673 		if (!zone_intersects(zone, start_pfn, nr_pages))
674 			continue;
675 		if (!matching_zone) {
676 			matching_zone = zone;
677 			continue;
678 		}
679 		/* Spans multiple zones ... */
680 		matching_zone = NULL;
681 		break;
682 	}
683 	return matching_zone;
684 }
685 
686 #ifdef CONFIG_NUMA
687 /**
688  * memory_block_add_nid() - Indicate that system RAM falling into this memory
689  *			    block device (partially) belongs to the given node.
690  * @mem: The memory block device.
691  * @nid: The node id.
692  * @context: The memory initialization context.
693  *
694  * Indicate that system RAM falling into this memory block (partially) belongs
695  * to the given node. If the context indicates ("early") that we are adding the
696  * node during node device subsystem initialization, this will also properly
697  * set/adjust mem->zone based on the zone ranges of the given node.
698  */
699 void memory_block_add_nid(struct memory_block *mem, int nid,
700 			  enum meminit_context context)
701 {
702 	if (context == MEMINIT_EARLY && mem->nid != nid) {
703 		/*
704 		 * For early memory we have to determine the zone when setting
705 		 * the node id and handle multiple nodes spanning a single
706 		 * memory block by indicate via zone == NULL that we're not
707 		 * dealing with a single zone. So if we're setting the node id
708 		 * the first time, determine if there is a single zone. If we're
709 		 * setting the node id a second time to a different node,
710 		 * invalidate the single detected zone.
711 		 */
712 		if (mem->nid == NUMA_NO_NODE)
713 			mem->zone = early_node_zone_for_memory_block(mem, nid);
714 		else
715 			mem->zone = NULL;
716 	}
717 
718 	/*
719 	 * If this memory block spans multiple nodes, we only indicate
720 	 * the last processed node. If we span multiple nodes (not applicable
721 	 * to hotplugged memory), zone == NULL will prohibit memory offlining
722 	 * and consequently unplug.
723 	 */
724 	mem->nid = nid;
725 }
726 #endif
727 
728 static int add_memory_block(unsigned long block_id, unsigned long state,
729 			    unsigned long nr_vmemmap_pages,
730 			    struct memory_group *group)
731 {
732 	struct memory_block *mem;
733 	int ret = 0;
734 
735 	mem = find_memory_block_by_id(block_id);
736 	if (mem) {
737 		put_device(&mem->dev);
738 		return -EEXIST;
739 	}
740 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
741 	if (!mem)
742 		return -ENOMEM;
743 
744 	mem->start_section_nr = block_id * sections_per_block;
745 	mem->state = state;
746 	mem->nid = NUMA_NO_NODE;
747 	mem->nr_vmemmap_pages = nr_vmemmap_pages;
748 	INIT_LIST_HEAD(&mem->group_next);
749 
750 #ifndef CONFIG_NUMA
751 	if (state == MEM_ONLINE)
752 		/*
753 		 * MEM_ONLINE at this point implies early memory. With NUMA,
754 		 * we'll determine the zone when setting the node id via
755 		 * memory_block_add_nid(). Memory hotplug updated the zone
756 		 * manually when memory onlining/offlining succeeds.
757 		 */
758 		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
759 #endif /* CONFIG_NUMA */
760 
761 	ret = __add_memory_block(mem);
762 	if (ret)
763 		return ret;
764 
765 	if (group) {
766 		mem->group = group;
767 		list_add(&mem->group_next, &group->memory_blocks);
768 	}
769 
770 	return 0;
771 }
772 
773 static int __init add_boot_memory_block(unsigned long base_section_nr)
774 {
775 	int section_count = 0;
776 	unsigned long nr;
777 
778 	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
779 	     nr++)
780 		if (present_section_nr(nr))
781 			section_count++;
782 
783 	if (section_count == 0)
784 		return 0;
785 	return add_memory_block(memory_block_id(base_section_nr),
786 				MEM_ONLINE, 0,  NULL);
787 }
788 
789 static int add_hotplug_memory_block(unsigned long block_id,
790 				    unsigned long nr_vmemmap_pages,
791 				    struct memory_group *group)
792 {
793 	return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group);
794 }
795 
796 static void remove_memory_block(struct memory_block *memory)
797 {
798 	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
799 		return;
800 
801 	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
802 
803 	if (memory->group) {
804 		list_del(&memory->group_next);
805 		memory->group = NULL;
806 	}
807 
808 	/* drop the ref. we got via find_memory_block() */
809 	put_device(&memory->dev);
810 	device_unregister(&memory->dev);
811 }
812 
813 /*
814  * Create memory block devices for the given memory area. Start and size
815  * have to be aligned to memory block granularity. Memory block devices
816  * will be initialized as offline.
817  *
818  * Called under device_hotplug_lock.
819  */
820 int create_memory_block_devices(unsigned long start, unsigned long size,
821 				unsigned long vmemmap_pages,
822 				struct memory_group *group)
823 {
824 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
825 	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
826 	struct memory_block *mem;
827 	unsigned long block_id;
828 	int ret = 0;
829 
830 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
831 			 !IS_ALIGNED(size, memory_block_size_bytes())))
832 		return -EINVAL;
833 
834 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
835 		ret = add_hotplug_memory_block(block_id, vmemmap_pages, group);
836 		if (ret)
837 			break;
838 	}
839 	if (ret) {
840 		end_block_id = block_id;
841 		for (block_id = start_block_id; block_id != end_block_id;
842 		     block_id++) {
843 			mem = find_memory_block_by_id(block_id);
844 			if (WARN_ON_ONCE(!mem))
845 				continue;
846 			remove_memory_block(mem);
847 		}
848 	}
849 	return ret;
850 }
851 
852 /*
853  * Remove memory block devices for the given memory area. Start and size
854  * have to be aligned to memory block granularity. Memory block devices
855  * have to be offline.
856  *
857  * Called under device_hotplug_lock.
858  */
859 void remove_memory_block_devices(unsigned long start, unsigned long size)
860 {
861 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
862 	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
863 	struct memory_block *mem;
864 	unsigned long block_id;
865 
866 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
867 			 !IS_ALIGNED(size, memory_block_size_bytes())))
868 		return;
869 
870 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
871 		mem = find_memory_block_by_id(block_id);
872 		if (WARN_ON_ONCE(!mem))
873 			continue;
874 		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
875 		unregister_memory_block_under_nodes(mem);
876 		remove_memory_block(mem);
877 	}
878 }
879 
880 static struct attribute *memory_root_attrs[] = {
881 #ifdef CONFIG_ARCH_MEMORY_PROBE
882 	&dev_attr_probe.attr,
883 #endif
884 
885 #ifdef CONFIG_MEMORY_FAILURE
886 	&dev_attr_soft_offline_page.attr,
887 	&dev_attr_hard_offline_page.attr,
888 #endif
889 
890 	&dev_attr_block_size_bytes.attr,
891 	&dev_attr_auto_online_blocks.attr,
892 	NULL
893 };
894 
895 static const struct attribute_group memory_root_attr_group = {
896 	.attrs = memory_root_attrs,
897 };
898 
899 static const struct attribute_group *memory_root_attr_groups[] = {
900 	&memory_root_attr_group,
901 	NULL,
902 };
903 
904 /*
905  * Initialize the sysfs support for memory devices. At the time this function
906  * is called, we cannot have concurrent creation/deletion of memory block
907  * devices, the device_hotplug_lock is not needed.
908  */
909 void __init memory_dev_init(void)
910 {
911 	int ret;
912 	unsigned long block_sz, nr;
913 
914 	/* Validate the configured memory block size */
915 	block_sz = memory_block_size_bytes();
916 	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
917 		panic("Memory block size not suitable: 0x%lx\n", block_sz);
918 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
919 
920 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
921 	if (ret)
922 		panic("%s() failed to register subsystem: %d\n", __func__, ret);
923 
924 	/*
925 	 * Create entries for memory sections that were found
926 	 * during boot and have been initialized
927 	 */
928 	for (nr = 0; nr <= __highest_present_section_nr;
929 	     nr += sections_per_block) {
930 		ret = add_boot_memory_block(nr);
931 		if (ret)
932 			panic("%s() failed to add memory block: %d\n", __func__,
933 			      ret);
934 	}
935 }
936 
937 /**
938  * walk_memory_blocks - walk through all present memory blocks overlapped
939  *			by the range [start, start + size)
940  *
941  * @start: start address of the memory range
942  * @size: size of the memory range
943  * @arg: argument passed to func
944  * @func: callback for each memory section walked
945  *
946  * This function walks through all present memory blocks overlapped by the
947  * range [start, start + size), calling func on each memory block.
948  *
949  * In case func() returns an error, walking is aborted and the error is
950  * returned.
951  *
952  * Called under device_hotplug_lock.
953  */
954 int walk_memory_blocks(unsigned long start, unsigned long size,
955 		       void *arg, walk_memory_blocks_func_t func)
956 {
957 	const unsigned long start_block_id = phys_to_block_id(start);
958 	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
959 	struct memory_block *mem;
960 	unsigned long block_id;
961 	int ret = 0;
962 
963 	if (!size)
964 		return 0;
965 
966 	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
967 		mem = find_memory_block_by_id(block_id);
968 		if (!mem)
969 			continue;
970 
971 		ret = func(mem, arg);
972 		put_device(&mem->dev);
973 		if (ret)
974 			break;
975 	}
976 	return ret;
977 }
978 
979 struct for_each_memory_block_cb_data {
980 	walk_memory_blocks_func_t func;
981 	void *arg;
982 };
983 
984 static int for_each_memory_block_cb(struct device *dev, void *data)
985 {
986 	struct memory_block *mem = to_memory_block(dev);
987 	struct for_each_memory_block_cb_data *cb_data = data;
988 
989 	return cb_data->func(mem, cb_data->arg);
990 }
991 
992 /**
993  * for_each_memory_block - walk through all present memory blocks
994  *
995  * @arg: argument passed to func
996  * @func: callback for each memory block walked
997  *
998  * This function walks through all present memory blocks, calling func on
999  * each memory block.
1000  *
1001  * In case func() returns an error, walking is aborted and the error is
1002  * returned.
1003  */
1004 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1005 {
1006 	struct for_each_memory_block_cb_data cb_data = {
1007 		.func = func,
1008 		.arg = arg,
1009 	};
1010 
1011 	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1012 				for_each_memory_block_cb);
1013 }
1014 
1015 /*
1016  * This is an internal helper to unify allocation and initialization of
1017  * memory groups. Note that the passed memory group will be copied to a
1018  * dynamically allocated memory group. After this call, the passed
1019  * memory group should no longer be used.
1020  */
1021 static int memory_group_register(struct memory_group group)
1022 {
1023 	struct memory_group *new_group;
1024 	uint32_t mgid;
1025 	int ret;
1026 
1027 	if (!node_possible(group.nid))
1028 		return -EINVAL;
1029 
1030 	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1031 	if (!new_group)
1032 		return -ENOMEM;
1033 	*new_group = group;
1034 	INIT_LIST_HEAD(&new_group->memory_blocks);
1035 
1036 	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1037 		       GFP_KERNEL);
1038 	if (ret) {
1039 		kfree(new_group);
1040 		return ret;
1041 	} else if (group.is_dynamic) {
1042 		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1043 	}
1044 	return mgid;
1045 }
1046 
1047 /**
1048  * memory_group_register_static() - Register a static memory group.
1049  * @nid: The node id.
1050  * @max_pages: The maximum number of pages we'll have in this static memory
1051  *	       group.
1052  *
1053  * Register a new static memory group and return the memory group id.
1054  * All memory in the group belongs to a single unit, such as a DIMM. All
1055  * memory belonging to a static memory group is added in one go to be removed
1056  * in one go -- it's static.
1057  *
1058  * Returns an error if out of memory, if the node id is invalid, if no new
1059  * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1060  * returns the new memory group id.
1061  */
1062 int memory_group_register_static(int nid, unsigned long max_pages)
1063 {
1064 	struct memory_group group = {
1065 		.nid = nid,
1066 		.s = {
1067 			.max_pages = max_pages,
1068 		},
1069 	};
1070 
1071 	if (!max_pages)
1072 		return -EINVAL;
1073 	return memory_group_register(group);
1074 }
1075 EXPORT_SYMBOL_GPL(memory_group_register_static);
1076 
1077 /**
1078  * memory_group_register_dynamic() - Register a dynamic memory group.
1079  * @nid: The node id.
1080  * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1081  *		memory group.
1082  *
1083  * Register a new dynamic memory group and return the memory group id.
1084  * Memory within a dynamic memory group is added/removed dynamically
1085  * in unit_pages.
1086  *
1087  * Returns an error if out of memory, if the node id is invalid, if no new
1088  * memory groups can be registered, or if unit_pages is invalid (0, not a
1089  * power of two, smaller than a single memory block). Otherwise, returns the
1090  * new memory group id.
1091  */
1092 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1093 {
1094 	struct memory_group group = {
1095 		.nid = nid,
1096 		.is_dynamic = true,
1097 		.d = {
1098 			.unit_pages = unit_pages,
1099 		},
1100 	};
1101 
1102 	if (!unit_pages || !is_power_of_2(unit_pages) ||
1103 	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1104 		return -EINVAL;
1105 	return memory_group_register(group);
1106 }
1107 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1108 
1109 /**
1110  * memory_group_unregister() - Unregister a memory group.
1111  * @mgid: the memory group id
1112  *
1113  * Unregister a memory group. If any memory block still belongs to this
1114  * memory group, unregistering will fail.
1115  *
1116  * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1117  * memory blocks still belong to this memory group and returns 0 if
1118  * unregistering succeeded.
1119  */
1120 int memory_group_unregister(int mgid)
1121 {
1122 	struct memory_group *group;
1123 
1124 	if (mgid < 0)
1125 		return -EINVAL;
1126 
1127 	group = xa_load(&memory_groups, mgid);
1128 	if (!group)
1129 		return -EINVAL;
1130 	if (!list_empty(&group->memory_blocks))
1131 		return -EBUSY;
1132 	xa_erase(&memory_groups, mgid);
1133 	kfree(group);
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(memory_group_unregister);
1137 
1138 /*
1139  * This is an internal helper only to be used in core memory hotplug code to
1140  * lookup a memory group. We don't care about locking, as we don't expect a
1141  * memory group to get unregistered while adding memory to it -- because
1142  * the group and the memory is managed by the same driver.
1143  */
1144 struct memory_group *memory_group_find_by_id(int mgid)
1145 {
1146 	return xa_load(&memory_groups, mgid);
1147 }
1148 
1149 /*
1150  * This is an internal helper only to be used in core memory hotplug code to
1151  * walk all dynamic memory groups excluding a given memory group, either
1152  * belonging to a specific node, or belonging to any node.
1153  */
1154 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1155 			       struct memory_group *excluded, void *arg)
1156 {
1157 	struct memory_group *group;
1158 	unsigned long index;
1159 	int ret = 0;
1160 
1161 	xa_for_each_marked(&memory_groups, index, group,
1162 			   MEMORY_GROUP_MARK_DYNAMIC) {
1163 		if (group == excluded)
1164 			continue;
1165 #ifdef CONFIG_NUMA
1166 		if (nid != NUMA_NO_NODE && group->nid != nid)
1167 			continue;
1168 #endif /* CONFIG_NUMA */
1169 		ret = func(group, arg);
1170 		if (ret)
1171 			break;
1172 	}
1173 	return ret;
1174 }
1175 
1176 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1177 void memblk_nr_poison_inc(unsigned long pfn)
1178 {
1179 	const unsigned long block_id = pfn_to_block_id(pfn);
1180 	struct memory_block *mem = find_memory_block_by_id(block_id);
1181 
1182 	if (mem)
1183 		atomic_long_inc(&mem->nr_hwpoison);
1184 }
1185 
1186 void memblk_nr_poison_sub(unsigned long pfn, long i)
1187 {
1188 	const unsigned long block_id = pfn_to_block_id(pfn);
1189 	struct memory_block *mem = find_memory_block_by_id(block_id);
1190 
1191 	if (mem)
1192 		atomic_long_sub(i, &mem->nr_hwpoison);
1193 }
1194 
1195 static unsigned long memblk_nr_poison(struct memory_block *mem)
1196 {
1197 	return atomic_long_read(&mem->nr_hwpoison);
1198 }
1199 #endif
1200