xref: /linux/drivers/base/memory.c (revision 0c8ea05e9b3d8e5287e2a968f2a2e744dfd31b99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory subsystem support
4  *
5  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6  *            Dave Hansen <haveblue@us.ibm.com>
7  *
8  * This file provides the necessary infrastructure to represent
9  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10  * All arch-independent code that assumes MEMORY_HOTPLUG requires
11  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25 
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static const char *const online_type_to_str[] = {
32 	[MMOP_OFFLINE] = "offline",
33 	[MMOP_ONLINE] = "online",
34 	[MMOP_ONLINE_KERNEL] = "online_kernel",
35 	[MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37 
38 int mhp_online_type_from_str(const char *str)
39 {
40 	int i;
41 
42 	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 		if (sysfs_streq(str, online_type_to_str[i]))
44 			return i;
45 	}
46 	return -EINVAL;
47 }
48 
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50 
51 static int sections_per_block;
52 
53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 	return section_nr / sections_per_block;
56 }
57 
58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 	return memory_block_id(pfn_to_section_nr(pfn));
61 }
62 
63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 	return pfn_to_block_id(PFN_DOWN(phys));
66 }
67 
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70 
71 static const struct bus_type memory_subsys = {
72 	.name = MEMORY_CLASS_NAME,
73 	.dev_name = MEMORY_CLASS_NAME,
74 	.online = memory_subsys_online,
75 	.offline = memory_subsys_offline,
76 };
77 
78 /*
79  * Memory blocks are cached in a local radix tree to avoid
80  * a costly linear search for the corresponding device on
81  * the subsystem bus.
82  */
83 static DEFINE_XARRAY(memory_blocks);
84 
85 /*
86  * Memory groups, indexed by memory group id (mgid).
87  */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90 
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92 
93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 	return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98 
99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 	blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104 
105 static void memory_block_release(struct device *dev)
106 {
107 	struct memory_block *mem = to_memory_block(dev);
108 	/* Verify that the altmap is freed */
109 	WARN_ON(mem->altmap);
110 	kfree(mem);
111 }
112 
113 unsigned long __weak memory_block_size_bytes(void)
114 {
115 	return MIN_MEMORY_BLOCK_SIZE;
116 }
117 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
118 
119 /* Show the memory block ID, relative to the memory block size */
120 static ssize_t phys_index_show(struct device *dev,
121 			       struct device_attribute *attr, char *buf)
122 {
123 	struct memory_block *mem = to_memory_block(dev);
124 
125 	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
126 }
127 
128 /*
129  * Legacy interface that we cannot remove. Always indicate "removable"
130  * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
131  */
132 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
133 			      char *buf)
134 {
135 	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
136 }
137 
138 /*
139  * online, offline, going offline, etc.
140  */
141 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
142 			  char *buf)
143 {
144 	struct memory_block *mem = to_memory_block(dev);
145 	const char *output;
146 
147 	/*
148 	 * We can probably put these states in a nice little array
149 	 * so that they're not open-coded
150 	 */
151 	switch (mem->state) {
152 	case MEM_ONLINE:
153 		output = "online";
154 		break;
155 	case MEM_OFFLINE:
156 		output = "offline";
157 		break;
158 	case MEM_GOING_OFFLINE:
159 		output = "going-offline";
160 		break;
161 	default:
162 		WARN_ON(1);
163 		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
164 	}
165 
166 	return sysfs_emit(buf, "%s\n", output);
167 }
168 
169 int memory_notify(unsigned long val, void *v)
170 {
171 	return blocking_notifier_call_chain(&memory_chain, val, v);
172 }
173 
174 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
175 static unsigned long memblk_nr_poison(struct memory_block *mem);
176 #else
177 static inline unsigned long memblk_nr_poison(struct memory_block *mem)
178 {
179 	return 0;
180 }
181 #endif
182 
183 /*
184  * Must acquire mem_hotplug_lock in write mode.
185  */
186 static int memory_block_online(struct memory_block *mem)
187 {
188 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
189 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
190 	unsigned long nr_vmemmap_pages = 0;
191 	struct memory_notify arg;
192 	struct zone *zone;
193 	int ret;
194 
195 	if (memblk_nr_poison(mem))
196 		return -EHWPOISON;
197 
198 	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
199 				  start_pfn, nr_pages);
200 
201 	/*
202 	 * Although vmemmap pages have a different lifecycle than the pages
203 	 * they describe (they remain until the memory is unplugged), doing
204 	 * their initialization and accounting at memory onlining/offlining
205 	 * stage helps to keep accounting easier to follow - e.g vmemmaps
206 	 * belong to the same zone as the memory they backed.
207 	 */
208 	if (mem->altmap)
209 		nr_vmemmap_pages = mem->altmap->free;
210 
211 	arg.altmap_start_pfn = start_pfn;
212 	arg.altmap_nr_pages = nr_vmemmap_pages;
213 	arg.start_pfn = start_pfn + nr_vmemmap_pages;
214 	arg.nr_pages = nr_pages - nr_vmemmap_pages;
215 	mem_hotplug_begin();
216 	ret = memory_notify(MEM_PREPARE_ONLINE, &arg);
217 	ret = notifier_to_errno(ret);
218 	if (ret)
219 		goto out_notifier;
220 
221 	if (nr_vmemmap_pages) {
222 		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages,
223 						zone, mem->altmap->inaccessible);
224 		if (ret)
225 			goto out;
226 	}
227 
228 	ret = online_pages(start_pfn + nr_vmemmap_pages,
229 			   nr_pages - nr_vmemmap_pages, zone, mem->group);
230 	if (ret) {
231 		if (nr_vmemmap_pages)
232 			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
233 		goto out;
234 	}
235 
236 	/*
237 	 * Account once onlining succeeded. If the zone was unpopulated, it is
238 	 * now already properly populated.
239 	 */
240 	if (nr_vmemmap_pages)
241 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
242 					  nr_vmemmap_pages);
243 
244 	mem->zone = zone;
245 	mem_hotplug_done();
246 	return ret;
247 out:
248 	memory_notify(MEM_FINISH_OFFLINE, &arg);
249 out_notifier:
250 	mem_hotplug_done();
251 	return ret;
252 }
253 
254 /*
255  * Must acquire mem_hotplug_lock in write mode.
256  */
257 static int memory_block_offline(struct memory_block *mem)
258 {
259 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
260 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
261 	unsigned long nr_vmemmap_pages = 0;
262 	struct memory_notify arg;
263 	int ret;
264 
265 	if (!mem->zone)
266 		return -EINVAL;
267 
268 	/*
269 	 * Unaccount before offlining, such that unpopulated zone and kthreads
270 	 * can properly be torn down in offline_pages().
271 	 */
272 	if (mem->altmap)
273 		nr_vmemmap_pages = mem->altmap->free;
274 
275 	mem_hotplug_begin();
276 	if (nr_vmemmap_pages)
277 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
278 					  -nr_vmemmap_pages);
279 
280 	ret = offline_pages(start_pfn + nr_vmemmap_pages,
281 			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
282 	if (ret) {
283 		/* offline_pages() failed. Account back. */
284 		if (nr_vmemmap_pages)
285 			adjust_present_page_count(pfn_to_page(start_pfn),
286 						  mem->group, nr_vmemmap_pages);
287 		goto out;
288 	}
289 
290 	if (nr_vmemmap_pages)
291 		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
292 
293 	mem->zone = NULL;
294 	arg.altmap_start_pfn = start_pfn;
295 	arg.altmap_nr_pages = nr_vmemmap_pages;
296 	arg.start_pfn = start_pfn + nr_vmemmap_pages;
297 	arg.nr_pages = nr_pages - nr_vmemmap_pages;
298 	memory_notify(MEM_FINISH_OFFLINE, &arg);
299 out:
300 	mem_hotplug_done();
301 	return ret;
302 }
303 
304 /*
305  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
306  * OK to have direct references to sparsemem variables in here.
307  */
308 static int
309 memory_block_action(struct memory_block *mem, unsigned long action)
310 {
311 	int ret;
312 
313 	switch (action) {
314 	case MEM_ONLINE:
315 		ret = memory_block_online(mem);
316 		break;
317 	case MEM_OFFLINE:
318 		ret = memory_block_offline(mem);
319 		break;
320 	default:
321 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
322 		     "%ld\n", __func__, mem->start_section_nr, action, action);
323 		ret = -EINVAL;
324 	}
325 
326 	return ret;
327 }
328 
329 static int memory_block_change_state(struct memory_block *mem,
330 		unsigned long to_state, unsigned long from_state_req)
331 {
332 	int ret = 0;
333 
334 	if (mem->state != from_state_req)
335 		return -EINVAL;
336 
337 	if (to_state == MEM_OFFLINE)
338 		mem->state = MEM_GOING_OFFLINE;
339 
340 	ret = memory_block_action(mem, to_state);
341 	mem->state = ret ? from_state_req : to_state;
342 
343 	return ret;
344 }
345 
346 /* The device lock serializes operations on memory_subsys_[online|offline] */
347 static int memory_subsys_online(struct device *dev)
348 {
349 	struct memory_block *mem = to_memory_block(dev);
350 	int ret;
351 
352 	if (mem->state == MEM_ONLINE)
353 		return 0;
354 
355 	/*
356 	 * When called via device_online() without configuring the online_type,
357 	 * we want to default to MMOP_ONLINE.
358 	 */
359 	if (mem->online_type == MMOP_OFFLINE)
360 		mem->online_type = MMOP_ONLINE;
361 
362 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
363 	mem->online_type = MMOP_OFFLINE;
364 
365 	return ret;
366 }
367 
368 static int memory_subsys_offline(struct device *dev)
369 {
370 	struct memory_block *mem = to_memory_block(dev);
371 
372 	if (mem->state == MEM_OFFLINE)
373 		return 0;
374 
375 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
376 }
377 
378 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
379 			   const char *buf, size_t count)
380 {
381 	const int online_type = mhp_online_type_from_str(buf);
382 	struct memory_block *mem = to_memory_block(dev);
383 	int ret;
384 
385 	if (online_type < 0)
386 		return -EINVAL;
387 
388 	ret = lock_device_hotplug_sysfs();
389 	if (ret)
390 		return ret;
391 
392 	switch (online_type) {
393 	case MMOP_ONLINE_KERNEL:
394 	case MMOP_ONLINE_MOVABLE:
395 	case MMOP_ONLINE:
396 		/* mem->online_type is protected by device_hotplug_lock */
397 		mem->online_type = online_type;
398 		ret = device_online(&mem->dev);
399 		break;
400 	case MMOP_OFFLINE:
401 		ret = device_offline(&mem->dev);
402 		break;
403 	default:
404 		ret = -EINVAL; /* should never happen */
405 	}
406 
407 	unlock_device_hotplug();
408 
409 	if (ret < 0)
410 		return ret;
411 	if (ret)
412 		return -EINVAL;
413 
414 	return count;
415 }
416 
417 /*
418  * Legacy interface that we cannot remove: s390x exposes the storage increment
419  * covered by a memory block, allowing for identifying which memory blocks
420  * comprise a storage increment. Since a memory block spans complete
421  * storage increments nowadays, this interface is basically unused. Other
422  * archs never exposed != 0.
423  */
424 static ssize_t phys_device_show(struct device *dev,
425 				struct device_attribute *attr, char *buf)
426 {
427 	struct memory_block *mem = to_memory_block(dev);
428 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
429 
430 	return sysfs_emit(buf, "%d\n",
431 			  arch_get_memory_phys_device(start_pfn));
432 }
433 
434 #ifdef CONFIG_MEMORY_HOTREMOVE
435 static int print_allowed_zone(char *buf, int len, int nid,
436 			      struct memory_group *group,
437 			      unsigned long start_pfn, unsigned long nr_pages,
438 			      int online_type, struct zone *default_zone)
439 {
440 	struct zone *zone;
441 
442 	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
443 	if (zone == default_zone)
444 		return 0;
445 
446 	return sysfs_emit_at(buf, len, " %s", zone->name);
447 }
448 
449 static ssize_t valid_zones_show(struct device *dev,
450 				struct device_attribute *attr, char *buf)
451 {
452 	struct memory_block *mem = to_memory_block(dev);
453 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
454 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
455 	struct memory_group *group = mem->group;
456 	struct zone *default_zone;
457 	int nid = mem->nid;
458 	int len = 0;
459 
460 	/*
461 	 * Check the existing zone. Make sure that we do that only on the
462 	 * online nodes otherwise the page_zone is not reliable
463 	 */
464 	if (mem->state == MEM_ONLINE) {
465 		/*
466 		 * If !mem->zone, the memory block spans multiple zones and
467 		 * cannot get offlined.
468 		 */
469 		default_zone = mem->zone;
470 		if (!default_zone)
471 			return sysfs_emit(buf, "%s\n", "none");
472 		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
473 		goto out;
474 	}
475 
476 	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
477 					  start_pfn, nr_pages);
478 
479 	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
480 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
481 				  MMOP_ONLINE_KERNEL, default_zone);
482 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
483 				  MMOP_ONLINE_MOVABLE, default_zone);
484 out:
485 	len += sysfs_emit_at(buf, len, "\n");
486 	return len;
487 }
488 static DEVICE_ATTR_RO(valid_zones);
489 #endif
490 
491 static DEVICE_ATTR_RO(phys_index);
492 static DEVICE_ATTR_RW(state);
493 static DEVICE_ATTR_RO(phys_device);
494 static DEVICE_ATTR_RO(removable);
495 
496 /*
497  * Show the memory block size (shared by all memory blocks).
498  */
499 static ssize_t block_size_bytes_show(struct device *dev,
500 				     struct device_attribute *attr, char *buf)
501 {
502 	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
503 }
504 
505 static DEVICE_ATTR_RO(block_size_bytes);
506 
507 /*
508  * Memory auto online policy.
509  */
510 
511 static ssize_t auto_online_blocks_show(struct device *dev,
512 				       struct device_attribute *attr, char *buf)
513 {
514 	return sysfs_emit(buf, "%s\n",
515 			  online_type_to_str[mhp_default_online_type]);
516 }
517 
518 static ssize_t auto_online_blocks_store(struct device *dev,
519 					struct device_attribute *attr,
520 					const char *buf, size_t count)
521 {
522 	const int online_type = mhp_online_type_from_str(buf);
523 
524 	if (online_type < 0)
525 		return -EINVAL;
526 
527 	mhp_default_online_type = online_type;
528 	return count;
529 }
530 
531 static DEVICE_ATTR_RW(auto_online_blocks);
532 
533 #ifdef CONFIG_CRASH_HOTPLUG
534 #include <linux/kexec.h>
535 static ssize_t crash_hotplug_show(struct device *dev,
536 				       struct device_attribute *attr, char *buf)
537 {
538 	return sysfs_emit(buf, "%d\n", crash_check_hotplug_support());
539 }
540 static DEVICE_ATTR_RO(crash_hotplug);
541 #endif
542 
543 /*
544  * Some architectures will have custom drivers to do this, and
545  * will not need to do it from userspace.  The fake hot-add code
546  * as well as ppc64 will do all of their discovery in userspace
547  * and will require this interface.
548  */
549 #ifdef CONFIG_ARCH_MEMORY_PROBE
550 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
551 			   const char *buf, size_t count)
552 {
553 	u64 phys_addr;
554 	int nid, ret;
555 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
556 
557 	ret = kstrtoull(buf, 0, &phys_addr);
558 	if (ret)
559 		return ret;
560 
561 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
562 		return -EINVAL;
563 
564 	ret = lock_device_hotplug_sysfs();
565 	if (ret)
566 		return ret;
567 
568 	nid = memory_add_physaddr_to_nid(phys_addr);
569 	ret = __add_memory(nid, phys_addr,
570 			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
571 			   MHP_NONE);
572 
573 	if (ret)
574 		goto out;
575 
576 	ret = count;
577 out:
578 	unlock_device_hotplug();
579 	return ret;
580 }
581 
582 static DEVICE_ATTR_WO(probe);
583 #endif
584 
585 #ifdef CONFIG_MEMORY_FAILURE
586 /*
587  * Support for offlining pages of memory
588  */
589 
590 /* Soft offline a page */
591 static ssize_t soft_offline_page_store(struct device *dev,
592 				       struct device_attribute *attr,
593 				       const char *buf, size_t count)
594 {
595 	int ret;
596 	u64 pfn;
597 	if (!capable(CAP_SYS_ADMIN))
598 		return -EPERM;
599 	if (kstrtoull(buf, 0, &pfn) < 0)
600 		return -EINVAL;
601 	pfn >>= PAGE_SHIFT;
602 	ret = soft_offline_page(pfn, 0);
603 	return ret == 0 ? count : ret;
604 }
605 
606 /* Forcibly offline a page, including killing processes. */
607 static ssize_t hard_offline_page_store(struct device *dev,
608 				       struct device_attribute *attr,
609 				       const char *buf, size_t count)
610 {
611 	int ret;
612 	u64 pfn;
613 	if (!capable(CAP_SYS_ADMIN))
614 		return -EPERM;
615 	if (kstrtoull(buf, 0, &pfn) < 0)
616 		return -EINVAL;
617 	pfn >>= PAGE_SHIFT;
618 	ret = memory_failure(pfn, MF_SW_SIMULATED);
619 	if (ret == -EOPNOTSUPP)
620 		ret = 0;
621 	return ret ? ret : count;
622 }
623 
624 static DEVICE_ATTR_WO(soft_offline_page);
625 static DEVICE_ATTR_WO(hard_offline_page);
626 #endif
627 
628 /* See phys_device_show(). */
629 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
630 {
631 	return 0;
632 }
633 
634 /*
635  * A reference for the returned memory block device is acquired.
636  *
637  * Called under device_hotplug_lock.
638  */
639 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
640 {
641 	struct memory_block *mem;
642 
643 	mem = xa_load(&memory_blocks, block_id);
644 	if (mem)
645 		get_device(&mem->dev);
646 	return mem;
647 }
648 
649 /*
650  * Called under device_hotplug_lock.
651  */
652 struct memory_block *find_memory_block(unsigned long section_nr)
653 {
654 	unsigned long block_id = memory_block_id(section_nr);
655 
656 	return find_memory_block_by_id(block_id);
657 }
658 
659 static struct attribute *memory_memblk_attrs[] = {
660 	&dev_attr_phys_index.attr,
661 	&dev_attr_state.attr,
662 	&dev_attr_phys_device.attr,
663 	&dev_attr_removable.attr,
664 #ifdef CONFIG_MEMORY_HOTREMOVE
665 	&dev_attr_valid_zones.attr,
666 #endif
667 	NULL
668 };
669 
670 static const struct attribute_group memory_memblk_attr_group = {
671 	.attrs = memory_memblk_attrs,
672 };
673 
674 static const struct attribute_group *memory_memblk_attr_groups[] = {
675 	&memory_memblk_attr_group,
676 	NULL,
677 };
678 
679 static int __add_memory_block(struct memory_block *memory)
680 {
681 	int ret;
682 
683 	memory->dev.bus = &memory_subsys;
684 	memory->dev.id = memory->start_section_nr / sections_per_block;
685 	memory->dev.release = memory_block_release;
686 	memory->dev.groups = memory_memblk_attr_groups;
687 	memory->dev.offline = memory->state == MEM_OFFLINE;
688 
689 	ret = device_register(&memory->dev);
690 	if (ret) {
691 		put_device(&memory->dev);
692 		return ret;
693 	}
694 	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
695 			      GFP_KERNEL));
696 	if (ret)
697 		device_unregister(&memory->dev);
698 
699 	return ret;
700 }
701 
702 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
703 						     int nid)
704 {
705 	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
706 	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
707 	struct zone *zone, *matching_zone = NULL;
708 	pg_data_t *pgdat = NODE_DATA(nid);
709 	int i;
710 
711 	/*
712 	 * This logic only works for early memory, when the applicable zones
713 	 * already span the memory block. We don't expect overlapping zones on
714 	 * a single node for early memory. So if we're told that some PFNs
715 	 * of a node fall into this memory block, we can assume that all node
716 	 * zones that intersect with the memory block are actually applicable.
717 	 * No need to look at the memmap.
718 	 */
719 	for (i = 0; i < MAX_NR_ZONES; i++) {
720 		zone = pgdat->node_zones + i;
721 		if (!populated_zone(zone))
722 			continue;
723 		if (!zone_intersects(zone, start_pfn, nr_pages))
724 			continue;
725 		if (!matching_zone) {
726 			matching_zone = zone;
727 			continue;
728 		}
729 		/* Spans multiple zones ... */
730 		matching_zone = NULL;
731 		break;
732 	}
733 	return matching_zone;
734 }
735 
736 #ifdef CONFIG_NUMA
737 /**
738  * memory_block_add_nid() - Indicate that system RAM falling into this memory
739  *			    block device (partially) belongs to the given node.
740  * @mem: The memory block device.
741  * @nid: The node id.
742  * @context: The memory initialization context.
743  *
744  * Indicate that system RAM falling into this memory block (partially) belongs
745  * to the given node. If the context indicates ("early") that we are adding the
746  * node during node device subsystem initialization, this will also properly
747  * set/adjust mem->zone based on the zone ranges of the given node.
748  */
749 void memory_block_add_nid(struct memory_block *mem, int nid,
750 			  enum meminit_context context)
751 {
752 	if (context == MEMINIT_EARLY && mem->nid != nid) {
753 		/*
754 		 * For early memory we have to determine the zone when setting
755 		 * the node id and handle multiple nodes spanning a single
756 		 * memory block by indicate via zone == NULL that we're not
757 		 * dealing with a single zone. So if we're setting the node id
758 		 * the first time, determine if there is a single zone. If we're
759 		 * setting the node id a second time to a different node,
760 		 * invalidate the single detected zone.
761 		 */
762 		if (mem->nid == NUMA_NO_NODE)
763 			mem->zone = early_node_zone_for_memory_block(mem, nid);
764 		else
765 			mem->zone = NULL;
766 	}
767 
768 	/*
769 	 * If this memory block spans multiple nodes, we only indicate
770 	 * the last processed node. If we span multiple nodes (not applicable
771 	 * to hotplugged memory), zone == NULL will prohibit memory offlining
772 	 * and consequently unplug.
773 	 */
774 	mem->nid = nid;
775 }
776 #endif
777 
778 static int add_memory_block(unsigned long block_id, unsigned long state,
779 			    struct vmem_altmap *altmap,
780 			    struct memory_group *group)
781 {
782 	struct memory_block *mem;
783 	int ret = 0;
784 
785 	mem = find_memory_block_by_id(block_id);
786 	if (mem) {
787 		put_device(&mem->dev);
788 		return -EEXIST;
789 	}
790 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
791 	if (!mem)
792 		return -ENOMEM;
793 
794 	mem->start_section_nr = block_id * sections_per_block;
795 	mem->state = state;
796 	mem->nid = NUMA_NO_NODE;
797 	mem->altmap = altmap;
798 	INIT_LIST_HEAD(&mem->group_next);
799 
800 #ifndef CONFIG_NUMA
801 	if (state == MEM_ONLINE)
802 		/*
803 		 * MEM_ONLINE at this point implies early memory. With NUMA,
804 		 * we'll determine the zone when setting the node id via
805 		 * memory_block_add_nid(). Memory hotplug updated the zone
806 		 * manually when memory onlining/offlining succeeds.
807 		 */
808 		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
809 #endif /* CONFIG_NUMA */
810 
811 	ret = __add_memory_block(mem);
812 	if (ret)
813 		return ret;
814 
815 	if (group) {
816 		mem->group = group;
817 		list_add(&mem->group_next, &group->memory_blocks);
818 	}
819 
820 	return 0;
821 }
822 
823 static int __init add_boot_memory_block(unsigned long base_section_nr)
824 {
825 	int section_count = 0;
826 	unsigned long nr;
827 
828 	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
829 	     nr++)
830 		if (present_section_nr(nr))
831 			section_count++;
832 
833 	if (section_count == 0)
834 		return 0;
835 	return add_memory_block(memory_block_id(base_section_nr),
836 				MEM_ONLINE, NULL,  NULL);
837 }
838 
839 static int add_hotplug_memory_block(unsigned long block_id,
840 				    struct vmem_altmap *altmap,
841 				    struct memory_group *group)
842 {
843 	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
844 }
845 
846 static void remove_memory_block(struct memory_block *memory)
847 {
848 	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
849 		return;
850 
851 	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
852 
853 	if (memory->group) {
854 		list_del(&memory->group_next);
855 		memory->group = NULL;
856 	}
857 
858 	/* drop the ref. we got via find_memory_block() */
859 	put_device(&memory->dev);
860 	device_unregister(&memory->dev);
861 }
862 
863 /*
864  * Create memory block devices for the given memory area. Start and size
865  * have to be aligned to memory block granularity. Memory block devices
866  * will be initialized as offline.
867  *
868  * Called under device_hotplug_lock.
869  */
870 int create_memory_block_devices(unsigned long start, unsigned long size,
871 				struct vmem_altmap *altmap,
872 				struct memory_group *group)
873 {
874 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
875 	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
876 	struct memory_block *mem;
877 	unsigned long block_id;
878 	int ret = 0;
879 
880 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
881 			 !IS_ALIGNED(size, memory_block_size_bytes())))
882 		return -EINVAL;
883 
884 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
885 		ret = add_hotplug_memory_block(block_id, altmap, group);
886 		if (ret)
887 			break;
888 	}
889 	if (ret) {
890 		end_block_id = block_id;
891 		for (block_id = start_block_id; block_id != end_block_id;
892 		     block_id++) {
893 			mem = find_memory_block_by_id(block_id);
894 			if (WARN_ON_ONCE(!mem))
895 				continue;
896 			remove_memory_block(mem);
897 		}
898 	}
899 	return ret;
900 }
901 
902 /*
903  * Remove memory block devices for the given memory area. Start and size
904  * have to be aligned to memory block granularity. Memory block devices
905  * have to be offline.
906  *
907  * Called under device_hotplug_lock.
908  */
909 void remove_memory_block_devices(unsigned long start, unsigned long size)
910 {
911 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
912 	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
913 	struct memory_block *mem;
914 	unsigned long block_id;
915 
916 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
917 			 !IS_ALIGNED(size, memory_block_size_bytes())))
918 		return;
919 
920 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
921 		mem = find_memory_block_by_id(block_id);
922 		if (WARN_ON_ONCE(!mem))
923 			continue;
924 		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
925 		unregister_memory_block_under_nodes(mem);
926 		remove_memory_block(mem);
927 	}
928 }
929 
930 static struct attribute *memory_root_attrs[] = {
931 #ifdef CONFIG_ARCH_MEMORY_PROBE
932 	&dev_attr_probe.attr,
933 #endif
934 
935 #ifdef CONFIG_MEMORY_FAILURE
936 	&dev_attr_soft_offline_page.attr,
937 	&dev_attr_hard_offline_page.attr,
938 #endif
939 
940 	&dev_attr_block_size_bytes.attr,
941 	&dev_attr_auto_online_blocks.attr,
942 #ifdef CONFIG_CRASH_HOTPLUG
943 	&dev_attr_crash_hotplug.attr,
944 #endif
945 	NULL
946 };
947 
948 static const struct attribute_group memory_root_attr_group = {
949 	.attrs = memory_root_attrs,
950 };
951 
952 static const struct attribute_group *memory_root_attr_groups[] = {
953 	&memory_root_attr_group,
954 	NULL,
955 };
956 
957 /*
958  * Initialize the sysfs support for memory devices. At the time this function
959  * is called, we cannot have concurrent creation/deletion of memory block
960  * devices, the device_hotplug_lock is not needed.
961  */
962 void __init memory_dev_init(void)
963 {
964 	int ret;
965 	unsigned long block_sz, nr;
966 
967 	/* Validate the configured memory block size */
968 	block_sz = memory_block_size_bytes();
969 	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
970 		panic("Memory block size not suitable: 0x%lx\n", block_sz);
971 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
972 
973 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
974 	if (ret)
975 		panic("%s() failed to register subsystem: %d\n", __func__, ret);
976 
977 	/*
978 	 * Create entries for memory sections that were found
979 	 * during boot and have been initialized
980 	 */
981 	for (nr = 0; nr <= __highest_present_section_nr;
982 	     nr += sections_per_block) {
983 		ret = add_boot_memory_block(nr);
984 		if (ret)
985 			panic("%s() failed to add memory block: %d\n", __func__,
986 			      ret);
987 	}
988 }
989 
990 /**
991  * walk_memory_blocks - walk through all present memory blocks overlapped
992  *			by the range [start, start + size)
993  *
994  * @start: start address of the memory range
995  * @size: size of the memory range
996  * @arg: argument passed to func
997  * @func: callback for each memory section walked
998  *
999  * This function walks through all present memory blocks overlapped by the
1000  * range [start, start + size), calling func on each memory block.
1001  *
1002  * In case func() returns an error, walking is aborted and the error is
1003  * returned.
1004  *
1005  * Called under device_hotplug_lock.
1006  */
1007 int walk_memory_blocks(unsigned long start, unsigned long size,
1008 		       void *arg, walk_memory_blocks_func_t func)
1009 {
1010 	const unsigned long start_block_id = phys_to_block_id(start);
1011 	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
1012 	struct memory_block *mem;
1013 	unsigned long block_id;
1014 	int ret = 0;
1015 
1016 	if (!size)
1017 		return 0;
1018 
1019 	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
1020 		mem = find_memory_block_by_id(block_id);
1021 		if (!mem)
1022 			continue;
1023 
1024 		ret = func(mem, arg);
1025 		put_device(&mem->dev);
1026 		if (ret)
1027 			break;
1028 	}
1029 	return ret;
1030 }
1031 
1032 struct for_each_memory_block_cb_data {
1033 	walk_memory_blocks_func_t func;
1034 	void *arg;
1035 };
1036 
1037 static int for_each_memory_block_cb(struct device *dev, void *data)
1038 {
1039 	struct memory_block *mem = to_memory_block(dev);
1040 	struct for_each_memory_block_cb_data *cb_data = data;
1041 
1042 	return cb_data->func(mem, cb_data->arg);
1043 }
1044 
1045 /**
1046  * for_each_memory_block - walk through all present memory blocks
1047  *
1048  * @arg: argument passed to func
1049  * @func: callback for each memory block walked
1050  *
1051  * This function walks through all present memory blocks, calling func on
1052  * each memory block.
1053  *
1054  * In case func() returns an error, walking is aborted and the error is
1055  * returned.
1056  */
1057 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1058 {
1059 	struct for_each_memory_block_cb_data cb_data = {
1060 		.func = func,
1061 		.arg = arg,
1062 	};
1063 
1064 	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1065 				for_each_memory_block_cb);
1066 }
1067 
1068 /*
1069  * This is an internal helper to unify allocation and initialization of
1070  * memory groups. Note that the passed memory group will be copied to a
1071  * dynamically allocated memory group. After this call, the passed
1072  * memory group should no longer be used.
1073  */
1074 static int memory_group_register(struct memory_group group)
1075 {
1076 	struct memory_group *new_group;
1077 	uint32_t mgid;
1078 	int ret;
1079 
1080 	if (!node_possible(group.nid))
1081 		return -EINVAL;
1082 
1083 	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1084 	if (!new_group)
1085 		return -ENOMEM;
1086 	*new_group = group;
1087 	INIT_LIST_HEAD(&new_group->memory_blocks);
1088 
1089 	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1090 		       GFP_KERNEL);
1091 	if (ret) {
1092 		kfree(new_group);
1093 		return ret;
1094 	} else if (group.is_dynamic) {
1095 		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1096 	}
1097 	return mgid;
1098 }
1099 
1100 /**
1101  * memory_group_register_static() - Register a static memory group.
1102  * @nid: The node id.
1103  * @max_pages: The maximum number of pages we'll have in this static memory
1104  *	       group.
1105  *
1106  * Register a new static memory group and return the memory group id.
1107  * All memory in the group belongs to a single unit, such as a DIMM. All
1108  * memory belonging to a static memory group is added in one go to be removed
1109  * in one go -- it's static.
1110  *
1111  * Returns an error if out of memory, if the node id is invalid, if no new
1112  * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1113  * returns the new memory group id.
1114  */
1115 int memory_group_register_static(int nid, unsigned long max_pages)
1116 {
1117 	struct memory_group group = {
1118 		.nid = nid,
1119 		.s = {
1120 			.max_pages = max_pages,
1121 		},
1122 	};
1123 
1124 	if (!max_pages)
1125 		return -EINVAL;
1126 	return memory_group_register(group);
1127 }
1128 EXPORT_SYMBOL_GPL(memory_group_register_static);
1129 
1130 /**
1131  * memory_group_register_dynamic() - Register a dynamic memory group.
1132  * @nid: The node id.
1133  * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1134  *		memory group.
1135  *
1136  * Register a new dynamic memory group and return the memory group id.
1137  * Memory within a dynamic memory group is added/removed dynamically
1138  * in unit_pages.
1139  *
1140  * Returns an error if out of memory, if the node id is invalid, if no new
1141  * memory groups can be registered, or if unit_pages is invalid (0, not a
1142  * power of two, smaller than a single memory block). Otherwise, returns the
1143  * new memory group id.
1144  */
1145 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1146 {
1147 	struct memory_group group = {
1148 		.nid = nid,
1149 		.is_dynamic = true,
1150 		.d = {
1151 			.unit_pages = unit_pages,
1152 		},
1153 	};
1154 
1155 	if (!unit_pages || !is_power_of_2(unit_pages) ||
1156 	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1157 		return -EINVAL;
1158 	return memory_group_register(group);
1159 }
1160 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1161 
1162 /**
1163  * memory_group_unregister() - Unregister a memory group.
1164  * @mgid: the memory group id
1165  *
1166  * Unregister a memory group. If any memory block still belongs to this
1167  * memory group, unregistering will fail.
1168  *
1169  * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1170  * memory blocks still belong to this memory group and returns 0 if
1171  * unregistering succeeded.
1172  */
1173 int memory_group_unregister(int mgid)
1174 {
1175 	struct memory_group *group;
1176 
1177 	if (mgid < 0)
1178 		return -EINVAL;
1179 
1180 	group = xa_load(&memory_groups, mgid);
1181 	if (!group)
1182 		return -EINVAL;
1183 	if (!list_empty(&group->memory_blocks))
1184 		return -EBUSY;
1185 	xa_erase(&memory_groups, mgid);
1186 	kfree(group);
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(memory_group_unregister);
1190 
1191 /*
1192  * This is an internal helper only to be used in core memory hotplug code to
1193  * lookup a memory group. We don't care about locking, as we don't expect a
1194  * memory group to get unregistered while adding memory to it -- because
1195  * the group and the memory is managed by the same driver.
1196  */
1197 struct memory_group *memory_group_find_by_id(int mgid)
1198 {
1199 	return xa_load(&memory_groups, mgid);
1200 }
1201 
1202 /*
1203  * This is an internal helper only to be used in core memory hotplug code to
1204  * walk all dynamic memory groups excluding a given memory group, either
1205  * belonging to a specific node, or belonging to any node.
1206  */
1207 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1208 			       struct memory_group *excluded, void *arg)
1209 {
1210 	struct memory_group *group;
1211 	unsigned long index;
1212 	int ret = 0;
1213 
1214 	xa_for_each_marked(&memory_groups, index, group,
1215 			   MEMORY_GROUP_MARK_DYNAMIC) {
1216 		if (group == excluded)
1217 			continue;
1218 #ifdef CONFIG_NUMA
1219 		if (nid != NUMA_NO_NODE && group->nid != nid)
1220 			continue;
1221 #endif /* CONFIG_NUMA */
1222 		ret = func(group, arg);
1223 		if (ret)
1224 			break;
1225 	}
1226 	return ret;
1227 }
1228 
1229 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1230 void memblk_nr_poison_inc(unsigned long pfn)
1231 {
1232 	const unsigned long block_id = pfn_to_block_id(pfn);
1233 	struct memory_block *mem = find_memory_block_by_id(block_id);
1234 
1235 	if (mem)
1236 		atomic_long_inc(&mem->nr_hwpoison);
1237 }
1238 
1239 void memblk_nr_poison_sub(unsigned long pfn, long i)
1240 {
1241 	const unsigned long block_id = pfn_to_block_id(pfn);
1242 	struct memory_block *mem = find_memory_block_by_id(block_id);
1243 
1244 	if (mem)
1245 		atomic_long_sub(i, &mem->nr_hwpoison);
1246 }
1247 
1248 static unsigned long memblk_nr_poison(struct memory_block *mem)
1249 {
1250 	return atomic_long_read(&mem->nr_hwpoison);
1251 }
1252 #endif
1253