xref: /linux/drivers/base/firmware_loader/main.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40 
41 #include <generated/utsrelease.h>
42 
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46 
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50 
51 struct firmware_cache {
52 	/* firmware_buf instance will be added into the below list */
53 	spinlock_t lock;
54 	struct list_head head;
55 	int state;
56 
57 #ifdef CONFIG_FW_CACHE
58 	/*
59 	 * Names of firmware images which have been cached successfully
60 	 * will be added into the below list so that device uncache
61 	 * helper can trace which firmware images have been cached
62 	 * before.
63 	 */
64 	spinlock_t name_lock;
65 	struct list_head fw_names;
66 
67 	struct delayed_work work;
68 
69 	struct notifier_block   pm_notify;
70 #endif
71 };
72 
73 struct fw_cache_entry {
74 	struct list_head list;
75 	const char *name;
76 };
77 
78 struct fw_name_devm {
79 	unsigned long magic;
80 	const char *name;
81 };
82 
83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85 	return container_of(ref, struct fw_priv, ref);
86 }
87 
88 #define	FW_LOADER_NO_CACHE	0
89 #define	FW_LOADER_START_CACHE	1
90 
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92  * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94 
95 struct firmware_cache fw_cache;
96 bool fw_load_abort_all;
97 
98 void fw_state_init(struct fw_priv *fw_priv)
99 {
100 	struct fw_state *fw_st = &fw_priv->fw_st;
101 
102 	init_completion(&fw_st->completion);
103 	fw_st->status = FW_STATUS_UNKNOWN;
104 }
105 
106 static inline int fw_state_wait(struct fw_priv *fw_priv)
107 {
108 	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109 }
110 
111 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112 
113 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114 					  struct firmware_cache *fwc,
115 					  void *dbuf,
116 					  size_t size,
117 					  size_t offset,
118 					  u32 opt_flags)
119 {
120 	struct fw_priv *fw_priv;
121 
122 	/* For a partial read, the buffer must be preallocated. */
123 	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124 		return NULL;
125 
126 	/* Only partial reads are allowed to use an offset. */
127 	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128 		return NULL;
129 
130 	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131 	if (!fw_priv)
132 		return NULL;
133 
134 	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135 	if (!fw_priv->fw_name) {
136 		kfree(fw_priv);
137 		return NULL;
138 	}
139 
140 	kref_init(&fw_priv->ref);
141 	fw_priv->fwc = fwc;
142 	fw_priv->data = dbuf;
143 	fw_priv->allocated_size = size;
144 	fw_priv->offset = offset;
145 	fw_priv->opt_flags = opt_flags;
146 	fw_state_init(fw_priv);
147 #ifdef CONFIG_FW_LOADER_USER_HELPER
148 	INIT_LIST_HEAD(&fw_priv->pending_list);
149 #endif
150 
151 	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152 
153 	return fw_priv;
154 }
155 
156 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157 {
158 	struct fw_priv *tmp;
159 	struct firmware_cache *fwc = &fw_cache;
160 
161 	list_for_each_entry(tmp, &fwc->head, list)
162 		if (!strcmp(tmp->fw_name, fw_name))
163 			return tmp;
164 	return NULL;
165 }
166 
167 /* Returns 1 for batching firmware requests with the same name */
168 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169 			 struct fw_priv **fw_priv, void *dbuf, size_t size,
170 			 size_t offset, u32 opt_flags)
171 {
172 	struct fw_priv *tmp;
173 
174 	spin_lock(&fwc->lock);
175 	/*
176 	 * Do not merge requests that are marked to be non-cached or
177 	 * are performing partial reads.
178 	 */
179 	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180 		tmp = __lookup_fw_priv(fw_name);
181 		if (tmp) {
182 			kref_get(&tmp->ref);
183 			spin_unlock(&fwc->lock);
184 			*fw_priv = tmp;
185 			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186 			return 1;
187 		}
188 	}
189 
190 	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191 	if (tmp) {
192 		INIT_LIST_HEAD(&tmp->list);
193 		if (!(opt_flags & FW_OPT_NOCACHE))
194 			list_add(&tmp->list, &fwc->head);
195 	}
196 	spin_unlock(&fwc->lock);
197 
198 	*fw_priv = tmp;
199 
200 	return tmp ? 0 : -ENOMEM;
201 }
202 
203 static void __free_fw_priv(struct kref *ref)
204 	__releases(&fwc->lock)
205 {
206 	struct fw_priv *fw_priv = to_fw_priv(ref);
207 	struct firmware_cache *fwc = fw_priv->fwc;
208 
209 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211 		 (unsigned int)fw_priv->size);
212 
213 	list_del(&fw_priv->list);
214 	spin_unlock(&fwc->lock);
215 
216 	if (fw_is_paged_buf(fw_priv))
217 		fw_free_paged_buf(fw_priv);
218 	else if (!fw_priv->allocated_size)
219 		vfree(fw_priv->data);
220 
221 	kfree_const(fw_priv->fw_name);
222 	kfree(fw_priv);
223 }
224 
225 void free_fw_priv(struct fw_priv *fw_priv)
226 {
227 	struct firmware_cache *fwc = fw_priv->fwc;
228 	spin_lock(&fwc->lock);
229 	if (!kref_put(&fw_priv->ref, __free_fw_priv))
230 		spin_unlock(&fwc->lock);
231 }
232 
233 #ifdef CONFIG_FW_LOADER_PAGED_BUF
234 bool fw_is_paged_buf(struct fw_priv *fw_priv)
235 {
236 	return fw_priv->is_paged_buf;
237 }
238 
239 void fw_free_paged_buf(struct fw_priv *fw_priv)
240 {
241 	int i;
242 
243 	if (!fw_priv->pages)
244 		return;
245 
246 	vunmap(fw_priv->data);
247 
248 	for (i = 0; i < fw_priv->nr_pages; i++)
249 		__free_page(fw_priv->pages[i]);
250 	kvfree(fw_priv->pages);
251 	fw_priv->pages = NULL;
252 	fw_priv->page_array_size = 0;
253 	fw_priv->nr_pages = 0;
254 	fw_priv->data = NULL;
255 	fw_priv->size = 0;
256 }
257 
258 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259 {
260 	/* If the array of pages is too small, grow it */
261 	if (fw_priv->page_array_size < pages_needed) {
262 		int new_array_size = max(pages_needed,
263 					 fw_priv->page_array_size * 2);
264 		struct page **new_pages;
265 
266 		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267 					   GFP_KERNEL);
268 		if (!new_pages)
269 			return -ENOMEM;
270 		memcpy(new_pages, fw_priv->pages,
271 		       fw_priv->page_array_size * sizeof(void *));
272 		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273 		       (new_array_size - fw_priv->page_array_size));
274 		kvfree(fw_priv->pages);
275 		fw_priv->pages = new_pages;
276 		fw_priv->page_array_size = new_array_size;
277 	}
278 
279 	while (fw_priv->nr_pages < pages_needed) {
280 		fw_priv->pages[fw_priv->nr_pages] =
281 			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282 
283 		if (!fw_priv->pages[fw_priv->nr_pages])
284 			return -ENOMEM;
285 		fw_priv->nr_pages++;
286 	}
287 
288 	return 0;
289 }
290 
291 int fw_map_paged_buf(struct fw_priv *fw_priv)
292 {
293 	/* one pages buffer should be mapped/unmapped only once */
294 	if (!fw_priv->pages)
295 		return 0;
296 
297 	vunmap(fw_priv->data);
298 	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299 			     PAGE_KERNEL_RO);
300 	if (!fw_priv->data)
301 		return -ENOMEM;
302 
303 	return 0;
304 }
305 #endif
306 
307 /*
308  * ZSTD-compressed firmware support
309  */
310 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
311 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312 			      size_t in_size, const void *in_buffer)
313 {
314 	size_t len, out_size, workspace_size;
315 	void *workspace, *out_buf;
316 	zstd_dctx *ctx;
317 	int err;
318 
319 	if (fw_priv->allocated_size) {
320 		out_size = fw_priv->allocated_size;
321 		out_buf = fw_priv->data;
322 	} else {
323 		zstd_frame_header params;
324 
325 		if (zstd_get_frame_header(&params, in_buffer, in_size) ||
326 		    params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327 			dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328 			return -EINVAL;
329 		}
330 		out_size = params.frameContentSize;
331 		out_buf = vzalloc(out_size);
332 		if (!out_buf)
333 			return -ENOMEM;
334 	}
335 
336 	workspace_size = zstd_dctx_workspace_bound();
337 	workspace = kvzalloc(workspace_size, GFP_KERNEL);
338 	if (!workspace) {
339 		err = -ENOMEM;
340 		goto error;
341 	}
342 
343 	ctx = zstd_init_dctx(workspace, workspace_size);
344 	if (!ctx) {
345 		dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346 		err = -EINVAL;
347 		goto error;
348 	}
349 
350 	len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351 	if (zstd_is_error(len)) {
352 		dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353 			zstd_get_error_code(len));
354 		err = -EINVAL;
355 		goto error;
356 	}
357 
358 	if (!fw_priv->allocated_size)
359 		fw_priv->data = out_buf;
360 	fw_priv->size = len;
361 	err = 0;
362 
363  error:
364 	kvfree(workspace);
365 	if (err && !fw_priv->allocated_size)
366 		vfree(out_buf);
367 	return err;
368 }
369 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370 
371 /*
372  * XZ-compressed firmware support
373  */
374 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375 /* show an error and return the standard error code */
376 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377 {
378 	if (xz_ret != XZ_STREAM_END) {
379 		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380 		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381 	}
382 	return 0;
383 }
384 
385 /* single-shot decompression onto the pre-allocated buffer */
386 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387 				   size_t in_size, const void *in_buffer)
388 {
389 	struct xz_dec *xz_dec;
390 	struct xz_buf xz_buf;
391 	enum xz_ret xz_ret;
392 
393 	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394 	if (!xz_dec)
395 		return -ENOMEM;
396 
397 	xz_buf.in_size = in_size;
398 	xz_buf.in = in_buffer;
399 	xz_buf.in_pos = 0;
400 	xz_buf.out_size = fw_priv->allocated_size;
401 	xz_buf.out = fw_priv->data;
402 	xz_buf.out_pos = 0;
403 
404 	xz_ret = xz_dec_run(xz_dec, &xz_buf);
405 	xz_dec_end(xz_dec);
406 
407 	fw_priv->size = xz_buf.out_pos;
408 	return fw_decompress_xz_error(dev, xz_ret);
409 }
410 
411 /* decompression on paged buffer and map it */
412 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413 				  size_t in_size, const void *in_buffer)
414 {
415 	struct xz_dec *xz_dec;
416 	struct xz_buf xz_buf;
417 	enum xz_ret xz_ret;
418 	struct page *page;
419 	int err = 0;
420 
421 	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422 	if (!xz_dec)
423 		return -ENOMEM;
424 
425 	xz_buf.in_size = in_size;
426 	xz_buf.in = in_buffer;
427 	xz_buf.in_pos = 0;
428 
429 	fw_priv->is_paged_buf = true;
430 	fw_priv->size = 0;
431 	do {
432 		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433 			err = -ENOMEM;
434 			goto out;
435 		}
436 
437 		/* decompress onto the new allocated page */
438 		page = fw_priv->pages[fw_priv->nr_pages - 1];
439 		xz_buf.out = kmap_local_page(page);
440 		xz_buf.out_pos = 0;
441 		xz_buf.out_size = PAGE_SIZE;
442 		xz_ret = xz_dec_run(xz_dec, &xz_buf);
443 		kunmap_local(xz_buf.out);
444 		fw_priv->size += xz_buf.out_pos;
445 		/* partial decompression means either end or error */
446 		if (xz_buf.out_pos != PAGE_SIZE)
447 			break;
448 	} while (xz_ret == XZ_OK);
449 
450 	err = fw_decompress_xz_error(dev, xz_ret);
451 	if (!err)
452 		err = fw_map_paged_buf(fw_priv);
453 
454  out:
455 	xz_dec_end(xz_dec);
456 	return err;
457 }
458 
459 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460 			    size_t in_size, const void *in_buffer)
461 {
462 	/* if the buffer is pre-allocated, we can perform in single-shot mode */
463 	if (fw_priv->data)
464 		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465 	else
466 		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467 }
468 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469 
470 /* direct firmware loading support */
471 static char fw_path_para[256];
472 static const char * const fw_path[] = {
473 	fw_path_para,
474 	"/lib/firmware/updates/" UTS_RELEASE,
475 	"/lib/firmware/updates",
476 	"/lib/firmware/" UTS_RELEASE,
477 	"/lib/firmware"
478 };
479 
480 /*
481  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482  * from kernel command line because firmware_class is generally built in
483  * kernel instead of module.
484  */
485 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487 
488 static int
489 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490 			   const char *suffix,
491 			   int (*decompress)(struct device *dev,
492 					     struct fw_priv *fw_priv,
493 					     size_t in_size,
494 					     const void *in_buffer))
495 {
496 	size_t size;
497 	int i, len, maxlen = 0;
498 	int rc = -ENOENT;
499 	char *path, *nt = NULL;
500 	size_t msize = INT_MAX;
501 	void *buffer = NULL;
502 
503 	/* Already populated data member means we're loading into a buffer */
504 	if (!decompress && fw_priv->data) {
505 		buffer = fw_priv->data;
506 		msize = fw_priv->allocated_size;
507 	}
508 
509 	path = __getname();
510 	if (!path)
511 		return -ENOMEM;
512 
513 	wait_for_initramfs();
514 	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515 		size_t file_size = 0;
516 		size_t *file_size_ptr = NULL;
517 
518 		/* skip the unset customized path */
519 		if (!fw_path[i][0])
520 			continue;
521 
522 		/* strip off \n from customized path */
523 		maxlen = strlen(fw_path[i]);
524 		if (i == 0) {
525 			nt = strchr(fw_path[i], '\n');
526 			if (nt)
527 				maxlen = nt - fw_path[i];
528 		}
529 
530 		len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531 			       maxlen, fw_path[i],
532 			       fw_priv->fw_name, suffix);
533 		if (len >= PATH_MAX) {
534 			rc = -ENAMETOOLONG;
535 			break;
536 		}
537 
538 		fw_priv->size = 0;
539 
540 		/*
541 		 * The total file size is only examined when doing a partial
542 		 * read; the "full read" case needs to fail if the whole
543 		 * firmware was not completely loaded.
544 		 */
545 		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546 			file_size_ptr = &file_size;
547 
548 		/* load firmware files from the mount namespace of init */
549 		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550 						       &buffer, msize,
551 						       file_size_ptr,
552 						       READING_FIRMWARE);
553 		if (rc < 0) {
554 			if (rc != -ENOENT)
555 				dev_warn(device, "loading %s failed with error %d\n",
556 					 path, rc);
557 			else
558 				dev_dbg(device, "loading %s failed for no such file or directory.\n",
559 					 path);
560 			continue;
561 		}
562 		size = rc;
563 		rc = 0;
564 
565 		dev_dbg(device, "Loading firmware from %s\n", path);
566 		if (decompress) {
567 			dev_dbg(device, "f/w decompressing %s\n",
568 				fw_priv->fw_name);
569 			rc = decompress(device, fw_priv, size, buffer);
570 			/* discard the superfluous original content */
571 			vfree(buffer);
572 			buffer = NULL;
573 			if (rc) {
574 				fw_free_paged_buf(fw_priv);
575 				continue;
576 			}
577 		} else {
578 			dev_dbg(device, "direct-loading %s\n",
579 				fw_priv->fw_name);
580 			if (!fw_priv->data)
581 				fw_priv->data = buffer;
582 			fw_priv->size = size;
583 		}
584 		fw_state_done(fw_priv);
585 		break;
586 	}
587 	__putname(path);
588 
589 	return rc;
590 }
591 
592 /* firmware holds the ownership of pages */
593 static void firmware_free_data(const struct firmware *fw)
594 {
595 	/* Loaded directly? */
596 	if (!fw->priv) {
597 		vfree(fw->data);
598 		return;
599 	}
600 	free_fw_priv(fw->priv);
601 }
602 
603 /* store the pages buffer info firmware from buf */
604 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
605 {
606 	fw->priv = fw_priv;
607 	fw->size = fw_priv->size;
608 	fw->data = fw_priv->data;
609 
610 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
611 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
612 		 (unsigned int)fw_priv->size);
613 }
614 
615 #ifdef CONFIG_FW_CACHE
616 static void fw_name_devm_release(struct device *dev, void *res)
617 {
618 	struct fw_name_devm *fwn = res;
619 
620 	if (fwn->magic == (unsigned long)&fw_cache)
621 		pr_debug("%s: fw_name-%s devm-%p released\n",
622 				__func__, fwn->name, res);
623 	kfree_const(fwn->name);
624 }
625 
626 static int fw_devm_match(struct device *dev, void *res,
627 		void *match_data)
628 {
629 	struct fw_name_devm *fwn = res;
630 
631 	return (fwn->magic == (unsigned long)&fw_cache) &&
632 		!strcmp(fwn->name, match_data);
633 }
634 
635 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
636 		const char *name)
637 {
638 	struct fw_name_devm *fwn;
639 
640 	fwn = devres_find(dev, fw_name_devm_release,
641 			  fw_devm_match, (void *)name);
642 	return fwn;
643 }
644 
645 static bool fw_cache_is_setup(struct device *dev, const char *name)
646 {
647 	struct fw_name_devm *fwn;
648 
649 	fwn = fw_find_devm_name(dev, name);
650 	if (fwn)
651 		return true;
652 
653 	return false;
654 }
655 
656 /* add firmware name into devres list */
657 static int fw_add_devm_name(struct device *dev, const char *name)
658 {
659 	struct fw_name_devm *fwn;
660 
661 	if (fw_cache_is_setup(dev, name))
662 		return 0;
663 
664 	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
665 			   GFP_KERNEL);
666 	if (!fwn)
667 		return -ENOMEM;
668 	fwn->name = kstrdup_const(name, GFP_KERNEL);
669 	if (!fwn->name) {
670 		devres_free(fwn);
671 		return -ENOMEM;
672 	}
673 
674 	fwn->magic = (unsigned long)&fw_cache;
675 	devres_add(dev, fwn);
676 
677 	return 0;
678 }
679 #else
680 static bool fw_cache_is_setup(struct device *dev, const char *name)
681 {
682 	return false;
683 }
684 
685 static int fw_add_devm_name(struct device *dev, const char *name)
686 {
687 	return 0;
688 }
689 #endif
690 
691 int assign_fw(struct firmware *fw, struct device *device)
692 {
693 	struct fw_priv *fw_priv = fw->priv;
694 	int ret;
695 
696 	mutex_lock(&fw_lock);
697 	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
698 		mutex_unlock(&fw_lock);
699 		return -ENOENT;
700 	}
701 
702 	/*
703 	 * add firmware name into devres list so that we can auto cache
704 	 * and uncache firmware for device.
705 	 *
706 	 * device may has been deleted already, but the problem
707 	 * should be fixed in devres or driver core.
708 	 */
709 	/* don't cache firmware handled without uevent */
710 	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
711 	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
712 		ret = fw_add_devm_name(device, fw_priv->fw_name);
713 		if (ret) {
714 			mutex_unlock(&fw_lock);
715 			return ret;
716 		}
717 	}
718 
719 	/*
720 	 * After caching firmware image is started, let it piggyback
721 	 * on request firmware.
722 	 */
723 	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
724 	    fw_priv->fwc->state == FW_LOADER_START_CACHE)
725 		fw_cache_piggyback_on_request(fw_priv);
726 
727 	/* pass the pages buffer to driver at the last minute */
728 	fw_set_page_data(fw_priv, fw);
729 	mutex_unlock(&fw_lock);
730 	return 0;
731 }
732 
733 /* prepare firmware and firmware_buf structs;
734  * return 0 if a firmware is already assigned, 1 if need to load one,
735  * or a negative error code
736  */
737 static int
738 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
739 			  struct device *device, void *dbuf, size_t size,
740 			  size_t offset, u32 opt_flags)
741 {
742 	struct firmware *firmware;
743 	struct fw_priv *fw_priv;
744 	int ret;
745 
746 	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
747 	if (!firmware) {
748 		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
749 			__func__);
750 		return -ENOMEM;
751 	}
752 
753 	if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
754 		dev_dbg(device, "using built-in %s\n", name);
755 		return 0; /* assigned */
756 	}
757 
758 	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
759 				   offset, opt_flags);
760 
761 	/*
762 	 * bind with 'priv' now to avoid warning in failure path
763 	 * of requesting firmware.
764 	 */
765 	firmware->priv = fw_priv;
766 
767 	if (ret > 0) {
768 		ret = fw_state_wait(fw_priv);
769 		if (!ret) {
770 			fw_set_page_data(fw_priv, firmware);
771 			return 0; /* assigned */
772 		}
773 	}
774 
775 	if (ret < 0)
776 		return ret;
777 	return 1; /* need to load */
778 }
779 
780 /*
781  * Batched requests need only one wake, we need to do this step last due to the
782  * fallback mechanism. The buf is protected with kref_get(), and it won't be
783  * released until the last user calls release_firmware().
784  *
785  * Failed batched requests are possible as well, in such cases we just share
786  * the struct fw_priv and won't release it until all requests are woken
787  * and have gone through this same path.
788  */
789 static void fw_abort_batch_reqs(struct firmware *fw)
790 {
791 	struct fw_priv *fw_priv;
792 
793 	/* Loaded directly? */
794 	if (!fw || !fw->priv)
795 		return;
796 
797 	fw_priv = fw->priv;
798 	mutex_lock(&fw_lock);
799 	if (!fw_state_is_aborted(fw_priv))
800 		fw_state_aborted(fw_priv);
801 	mutex_unlock(&fw_lock);
802 }
803 
804 #if defined(CONFIG_FW_LOADER_DEBUG)
805 #include <crypto/hash.h>
806 #include <crypto/sha2.h>
807 
808 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
809 {
810 	struct shash_desc *shash;
811 	struct crypto_shash *alg;
812 	u8 *sha256buf;
813 	char *outbuf;
814 
815 	alg = crypto_alloc_shash("sha256", 0, 0);
816 	if (IS_ERR(alg))
817 		return;
818 
819 	sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
820 	outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
821 	shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
822 	if (!sha256buf || !outbuf || !shash)
823 		goto out_free;
824 
825 	shash->tfm = alg;
826 
827 	if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
828 		goto out_shash;
829 
830 	for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
831 		sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
832 	outbuf[SHA256_BLOCK_SIZE] = 0;
833 	dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
834 
835 out_shash:
836 	crypto_free_shash(alg);
837 out_free:
838 	kfree(shash);
839 	kfree(outbuf);
840 	kfree(sha256buf);
841 }
842 #else
843 static void fw_log_firmware_info(const struct firmware *fw, const char *name,
844 				 struct device *device)
845 {}
846 #endif
847 
848 /* called from request_firmware() and request_firmware_work_func() */
849 static int
850 _request_firmware(const struct firmware **firmware_p, const char *name,
851 		  struct device *device, void *buf, size_t size,
852 		  size_t offset, u32 opt_flags)
853 {
854 	struct firmware *fw = NULL;
855 	struct cred *kern_cred = NULL;
856 	const struct cred *old_cred;
857 	bool nondirect = false;
858 	int ret;
859 
860 	if (!firmware_p)
861 		return -EINVAL;
862 
863 	if (!name || name[0] == '\0') {
864 		ret = -EINVAL;
865 		goto out;
866 	}
867 
868 	ret = _request_firmware_prepare(&fw, name, device, buf, size,
869 					offset, opt_flags);
870 	if (ret <= 0) /* error or already assigned */
871 		goto out;
872 
873 	/*
874 	 * We are about to try to access the firmware file. Because we may have been
875 	 * called by a driver when serving an unrelated request from userland, we use
876 	 * the kernel credentials to read the file.
877 	 */
878 	kern_cred = prepare_kernel_cred(&init_task);
879 	if (!kern_cred) {
880 		ret = -ENOMEM;
881 		goto out;
882 	}
883 	old_cred = override_creds(kern_cred);
884 
885 	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
886 
887 	/* Only full reads can support decompression, platform, and sysfs. */
888 	if (!(opt_flags & FW_OPT_PARTIAL))
889 		nondirect = true;
890 
891 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
892 	if (ret == -ENOENT && nondirect)
893 		ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
894 						 fw_decompress_zstd);
895 #endif
896 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
897 	if (ret == -ENOENT && nondirect)
898 		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
899 						 fw_decompress_xz);
900 #endif
901 	if (ret == -ENOENT && nondirect)
902 		ret = firmware_fallback_platform(fw->priv);
903 
904 	if (ret) {
905 		if (!(opt_flags & FW_OPT_NO_WARN))
906 			dev_warn(device,
907 				 "Direct firmware load for %s failed with error %d\n",
908 				 name, ret);
909 		if (nondirect)
910 			ret = firmware_fallback_sysfs(fw, name, device,
911 						      opt_flags, ret);
912 	} else
913 		ret = assign_fw(fw, device);
914 
915 	revert_creds(old_cred);
916 	put_cred(kern_cred);
917 
918 out:
919 	if (ret < 0) {
920 		fw_abort_batch_reqs(fw);
921 		release_firmware(fw);
922 		fw = NULL;
923 	} else {
924 		fw_log_firmware_info(fw, name, device);
925 	}
926 
927 	*firmware_p = fw;
928 	return ret;
929 }
930 
931 /**
932  * request_firmware() - send firmware request and wait for it
933  * @firmware_p: pointer to firmware image
934  * @name: name of firmware file
935  * @device: device for which firmware is being loaded
936  *
937  *      @firmware_p will be used to return a firmware image by the name
938  *      of @name for device @device.
939  *
940  *      Should be called from user context where sleeping is allowed.
941  *
942  *      @name will be used as $FIRMWARE in the uevent environment and
943  *      should be distinctive enough not to be confused with any other
944  *      firmware image for this or any other device.
945  *
946  *	Caller must hold the reference count of @device.
947  *
948  *	The function can be called safely inside device's suspend and
949  *	resume callback.
950  **/
951 int
952 request_firmware(const struct firmware **firmware_p, const char *name,
953 		 struct device *device)
954 {
955 	int ret;
956 
957 	/* Need to pin this module until return */
958 	__module_get(THIS_MODULE);
959 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
960 				FW_OPT_UEVENT);
961 	module_put(THIS_MODULE);
962 	return ret;
963 }
964 EXPORT_SYMBOL(request_firmware);
965 
966 /**
967  * firmware_request_nowarn() - request for an optional fw module
968  * @firmware: pointer to firmware image
969  * @name: name of firmware file
970  * @device: device for which firmware is being loaded
971  *
972  * This function is similar in behaviour to request_firmware(), except it
973  * doesn't produce warning messages when the file is not found. The sysfs
974  * fallback mechanism is enabled if direct filesystem lookup fails. However,
975  * failures to find the firmware file with it are still suppressed. It is
976  * therefore up to the driver to check for the return value of this call and to
977  * decide when to inform the users of errors.
978  **/
979 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
980 			    struct device *device)
981 {
982 	int ret;
983 
984 	/* Need to pin this module until return */
985 	__module_get(THIS_MODULE);
986 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
987 				FW_OPT_UEVENT | FW_OPT_NO_WARN);
988 	module_put(THIS_MODULE);
989 	return ret;
990 }
991 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
992 
993 /**
994  * request_firmware_direct() - load firmware directly without usermode helper
995  * @firmware_p: pointer to firmware image
996  * @name: name of firmware file
997  * @device: device for which firmware is being loaded
998  *
999  * This function works pretty much like request_firmware(), but this doesn't
1000  * fall back to usermode helper even if the firmware couldn't be loaded
1001  * directly from fs.  Hence it's useful for loading optional firmwares, which
1002  * aren't always present, without extra long timeouts of udev.
1003  **/
1004 int request_firmware_direct(const struct firmware **firmware_p,
1005 			    const char *name, struct device *device)
1006 {
1007 	int ret;
1008 
1009 	__module_get(THIS_MODULE);
1010 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1011 				FW_OPT_UEVENT | FW_OPT_NO_WARN |
1012 				FW_OPT_NOFALLBACK_SYSFS);
1013 	module_put(THIS_MODULE);
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(request_firmware_direct);
1017 
1018 /**
1019  * firmware_request_platform() - request firmware with platform-fw fallback
1020  * @firmware: pointer to firmware image
1021  * @name: name of firmware file
1022  * @device: device for which firmware is being loaded
1023  *
1024  * This function is similar in behaviour to request_firmware, except that if
1025  * direct filesystem lookup fails, it will fallback to looking for a copy of the
1026  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1027  **/
1028 int firmware_request_platform(const struct firmware **firmware,
1029 			      const char *name, struct device *device)
1030 {
1031 	int ret;
1032 
1033 	/* Need to pin this module until return */
1034 	__module_get(THIS_MODULE);
1035 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1036 				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1037 	module_put(THIS_MODULE);
1038 	return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(firmware_request_platform);
1041 
1042 /**
1043  * firmware_request_cache() - cache firmware for suspend so resume can use it
1044  * @name: name of firmware file
1045  * @device: device for which firmware should be cached for
1046  *
1047  * There are some devices with an optimization that enables the device to not
1048  * require loading firmware on system reboot. This optimization may still
1049  * require the firmware present on resume from suspend. This routine can be
1050  * used to ensure the firmware is present on resume from suspend in these
1051  * situations. This helper is not compatible with drivers which use
1052  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1053  **/
1054 int firmware_request_cache(struct device *device, const char *name)
1055 {
1056 	int ret;
1057 
1058 	mutex_lock(&fw_lock);
1059 	ret = fw_add_devm_name(device, name);
1060 	mutex_unlock(&fw_lock);
1061 
1062 	return ret;
1063 }
1064 EXPORT_SYMBOL_GPL(firmware_request_cache);
1065 
1066 /**
1067  * request_firmware_into_buf() - load firmware into a previously allocated buffer
1068  * @firmware_p: pointer to firmware image
1069  * @name: name of firmware file
1070  * @device: device for which firmware is being loaded and DMA region allocated
1071  * @buf: address of buffer to load firmware into
1072  * @size: size of buffer
1073  *
1074  * This function works pretty much like request_firmware(), but it doesn't
1075  * allocate a buffer to hold the firmware data. Instead, the firmware
1076  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1077  * data member is pointed at @buf.
1078  *
1079  * This function doesn't cache firmware either.
1080  */
1081 int
1082 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1083 			  struct device *device, void *buf, size_t size)
1084 {
1085 	int ret;
1086 
1087 	if (fw_cache_is_setup(device, name))
1088 		return -EOPNOTSUPP;
1089 
1090 	__module_get(THIS_MODULE);
1091 	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1092 				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1093 	module_put(THIS_MODULE);
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(request_firmware_into_buf);
1097 
1098 /**
1099  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1100  * @firmware_p: pointer to firmware image
1101  * @name: name of firmware file
1102  * @device: device for which firmware is being loaded and DMA region allocated
1103  * @buf: address of buffer to load firmware into
1104  * @size: size of buffer
1105  * @offset: offset into file to read
1106  *
1107  * This function works pretty much like request_firmware_into_buf except
1108  * it allows a partial read of the file.
1109  */
1110 int
1111 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1112 				  const char *name, struct device *device,
1113 				  void *buf, size_t size, size_t offset)
1114 {
1115 	int ret;
1116 
1117 	if (fw_cache_is_setup(device, name))
1118 		return -EOPNOTSUPP;
1119 
1120 	__module_get(THIS_MODULE);
1121 	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1122 				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1123 				FW_OPT_PARTIAL);
1124 	module_put(THIS_MODULE);
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1128 
1129 /**
1130  * release_firmware() - release the resource associated with a firmware image
1131  * @fw: firmware resource to release
1132  **/
1133 void release_firmware(const struct firmware *fw)
1134 {
1135 	if (fw) {
1136 		if (!firmware_is_builtin(fw))
1137 			firmware_free_data(fw);
1138 		kfree(fw);
1139 	}
1140 }
1141 EXPORT_SYMBOL(release_firmware);
1142 
1143 /* Async support */
1144 struct firmware_work {
1145 	struct work_struct work;
1146 	struct module *module;
1147 	const char *name;
1148 	struct device *device;
1149 	void *context;
1150 	void (*cont)(const struct firmware *fw, void *context);
1151 	u32 opt_flags;
1152 };
1153 
1154 static void request_firmware_work_func(struct work_struct *work)
1155 {
1156 	struct firmware_work *fw_work;
1157 	const struct firmware *fw;
1158 
1159 	fw_work = container_of(work, struct firmware_work, work);
1160 
1161 	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1162 			  fw_work->opt_flags);
1163 	fw_work->cont(fw, fw_work->context);
1164 	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1165 
1166 	module_put(fw_work->module);
1167 	kfree_const(fw_work->name);
1168 	kfree(fw_work);
1169 }
1170 
1171 /**
1172  * request_firmware_nowait() - asynchronous version of request_firmware
1173  * @module: module requesting the firmware
1174  * @uevent: sends uevent to copy the firmware image if this flag
1175  *	is non-zero else the firmware copy must be done manually.
1176  * @name: name of firmware file
1177  * @device: device for which firmware is being loaded
1178  * @gfp: allocation flags
1179  * @context: will be passed over to @cont, and
1180  *	@fw may be %NULL if firmware request fails.
1181  * @cont: function will be called asynchronously when the firmware
1182  *	request is over.
1183  *
1184  *	Caller must hold the reference count of @device.
1185  *
1186  *	Asynchronous variant of request_firmware() for user contexts:
1187  *		- sleep for as small periods as possible since it may
1188  *		  increase kernel boot time of built-in device drivers
1189  *		  requesting firmware in their ->probe() methods, if
1190  *		  @gfp is GFP_KERNEL.
1191  *
1192  *		- can't sleep at all if @gfp is GFP_ATOMIC.
1193  **/
1194 int
1195 request_firmware_nowait(
1196 	struct module *module, bool uevent,
1197 	const char *name, struct device *device, gfp_t gfp, void *context,
1198 	void (*cont)(const struct firmware *fw, void *context))
1199 {
1200 	struct firmware_work *fw_work;
1201 
1202 	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1203 	if (!fw_work)
1204 		return -ENOMEM;
1205 
1206 	fw_work->module = module;
1207 	fw_work->name = kstrdup_const(name, gfp);
1208 	if (!fw_work->name) {
1209 		kfree(fw_work);
1210 		return -ENOMEM;
1211 	}
1212 	fw_work->device = device;
1213 	fw_work->context = context;
1214 	fw_work->cont = cont;
1215 	fw_work->opt_flags = FW_OPT_NOWAIT |
1216 		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1217 
1218 	if (!uevent && fw_cache_is_setup(device, name)) {
1219 		kfree_const(fw_work->name);
1220 		kfree(fw_work);
1221 		return -EOPNOTSUPP;
1222 	}
1223 
1224 	if (!try_module_get(module)) {
1225 		kfree_const(fw_work->name);
1226 		kfree(fw_work);
1227 		return -EFAULT;
1228 	}
1229 
1230 	get_device(fw_work->device);
1231 	INIT_WORK(&fw_work->work, request_firmware_work_func);
1232 	schedule_work(&fw_work->work);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL(request_firmware_nowait);
1236 
1237 #ifdef CONFIG_FW_CACHE
1238 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1239 
1240 /**
1241  * cache_firmware() - cache one firmware image in kernel memory space
1242  * @fw_name: the firmware image name
1243  *
1244  * Cache firmware in kernel memory so that drivers can use it when
1245  * system isn't ready for them to request firmware image from userspace.
1246  * Once it returns successfully, driver can use request_firmware or its
1247  * nowait version to get the cached firmware without any interacting
1248  * with userspace
1249  *
1250  * Return 0 if the firmware image has been cached successfully
1251  * Return !0 otherwise
1252  *
1253  */
1254 static int cache_firmware(const char *fw_name)
1255 {
1256 	int ret;
1257 	const struct firmware *fw;
1258 
1259 	pr_debug("%s: %s\n", __func__, fw_name);
1260 
1261 	ret = request_firmware(&fw, fw_name, NULL);
1262 	if (!ret)
1263 		kfree(fw);
1264 
1265 	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1266 
1267 	return ret;
1268 }
1269 
1270 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1271 {
1272 	struct fw_priv *tmp;
1273 	struct firmware_cache *fwc = &fw_cache;
1274 
1275 	spin_lock(&fwc->lock);
1276 	tmp = __lookup_fw_priv(fw_name);
1277 	spin_unlock(&fwc->lock);
1278 
1279 	return tmp;
1280 }
1281 
1282 /**
1283  * uncache_firmware() - remove one cached firmware image
1284  * @fw_name: the firmware image name
1285  *
1286  * Uncache one firmware image which has been cached successfully
1287  * before.
1288  *
1289  * Return 0 if the firmware cache has been removed successfully
1290  * Return !0 otherwise
1291  *
1292  */
1293 static int uncache_firmware(const char *fw_name)
1294 {
1295 	struct fw_priv *fw_priv;
1296 	struct firmware fw;
1297 
1298 	pr_debug("%s: %s\n", __func__, fw_name);
1299 
1300 	if (firmware_request_builtin(&fw, fw_name))
1301 		return 0;
1302 
1303 	fw_priv = lookup_fw_priv(fw_name);
1304 	if (fw_priv) {
1305 		free_fw_priv(fw_priv);
1306 		return 0;
1307 	}
1308 
1309 	return -EINVAL;
1310 }
1311 
1312 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1313 {
1314 	struct fw_cache_entry *fce;
1315 
1316 	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1317 	if (!fce)
1318 		goto exit;
1319 
1320 	fce->name = kstrdup_const(name, GFP_ATOMIC);
1321 	if (!fce->name) {
1322 		kfree(fce);
1323 		fce = NULL;
1324 		goto exit;
1325 	}
1326 exit:
1327 	return fce;
1328 }
1329 
1330 static int __fw_entry_found(const char *name)
1331 {
1332 	struct firmware_cache *fwc = &fw_cache;
1333 	struct fw_cache_entry *fce;
1334 
1335 	list_for_each_entry(fce, &fwc->fw_names, list) {
1336 		if (!strcmp(fce->name, name))
1337 			return 1;
1338 	}
1339 	return 0;
1340 }
1341 
1342 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1343 {
1344 	const char *name = fw_priv->fw_name;
1345 	struct firmware_cache *fwc = fw_priv->fwc;
1346 	struct fw_cache_entry *fce;
1347 
1348 	spin_lock(&fwc->name_lock);
1349 	if (__fw_entry_found(name))
1350 		goto found;
1351 
1352 	fce = alloc_fw_cache_entry(name);
1353 	if (fce) {
1354 		list_add(&fce->list, &fwc->fw_names);
1355 		kref_get(&fw_priv->ref);
1356 		pr_debug("%s: fw: %s\n", __func__, name);
1357 	}
1358 found:
1359 	spin_unlock(&fwc->name_lock);
1360 }
1361 
1362 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1363 {
1364 	kfree_const(fce->name);
1365 	kfree(fce);
1366 }
1367 
1368 static void __async_dev_cache_fw_image(void *fw_entry,
1369 				       async_cookie_t cookie)
1370 {
1371 	struct fw_cache_entry *fce = fw_entry;
1372 	struct firmware_cache *fwc = &fw_cache;
1373 	int ret;
1374 
1375 	ret = cache_firmware(fce->name);
1376 	if (ret) {
1377 		spin_lock(&fwc->name_lock);
1378 		list_del(&fce->list);
1379 		spin_unlock(&fwc->name_lock);
1380 
1381 		free_fw_cache_entry(fce);
1382 	}
1383 }
1384 
1385 /* called with dev->devres_lock held */
1386 static void dev_create_fw_entry(struct device *dev, void *res,
1387 				void *data)
1388 {
1389 	struct fw_name_devm *fwn = res;
1390 	const char *fw_name = fwn->name;
1391 	struct list_head *head = data;
1392 	struct fw_cache_entry *fce;
1393 
1394 	fce = alloc_fw_cache_entry(fw_name);
1395 	if (fce)
1396 		list_add(&fce->list, head);
1397 }
1398 
1399 static int devm_name_match(struct device *dev, void *res,
1400 			   void *match_data)
1401 {
1402 	struct fw_name_devm *fwn = res;
1403 	return (fwn->magic == (unsigned long)match_data);
1404 }
1405 
1406 static void dev_cache_fw_image(struct device *dev, void *data)
1407 {
1408 	LIST_HEAD(todo);
1409 	struct fw_cache_entry *fce;
1410 	struct fw_cache_entry *fce_next;
1411 	struct firmware_cache *fwc = &fw_cache;
1412 
1413 	devres_for_each_res(dev, fw_name_devm_release,
1414 			    devm_name_match, &fw_cache,
1415 			    dev_create_fw_entry, &todo);
1416 
1417 	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1418 		list_del(&fce->list);
1419 
1420 		spin_lock(&fwc->name_lock);
1421 		/* only one cache entry for one firmware */
1422 		if (!__fw_entry_found(fce->name)) {
1423 			list_add(&fce->list, &fwc->fw_names);
1424 		} else {
1425 			free_fw_cache_entry(fce);
1426 			fce = NULL;
1427 		}
1428 		spin_unlock(&fwc->name_lock);
1429 
1430 		if (fce)
1431 			async_schedule_domain(__async_dev_cache_fw_image,
1432 					      (void *)fce,
1433 					      &fw_cache_domain);
1434 	}
1435 }
1436 
1437 static void __device_uncache_fw_images(void)
1438 {
1439 	struct firmware_cache *fwc = &fw_cache;
1440 	struct fw_cache_entry *fce;
1441 
1442 	spin_lock(&fwc->name_lock);
1443 	while (!list_empty(&fwc->fw_names)) {
1444 		fce = list_entry(fwc->fw_names.next,
1445 				struct fw_cache_entry, list);
1446 		list_del(&fce->list);
1447 		spin_unlock(&fwc->name_lock);
1448 
1449 		uncache_firmware(fce->name);
1450 		free_fw_cache_entry(fce);
1451 
1452 		spin_lock(&fwc->name_lock);
1453 	}
1454 	spin_unlock(&fwc->name_lock);
1455 }
1456 
1457 /**
1458  * device_cache_fw_images() - cache devices' firmware
1459  *
1460  * If one device called request_firmware or its nowait version
1461  * successfully before, the firmware names are recored into the
1462  * device's devres link list, so device_cache_fw_images can call
1463  * cache_firmware() to cache these firmwares for the device,
1464  * then the device driver can load its firmwares easily at
1465  * time when system is not ready to complete loading firmware.
1466  */
1467 static void device_cache_fw_images(void)
1468 {
1469 	struct firmware_cache *fwc = &fw_cache;
1470 	DEFINE_WAIT(wait);
1471 
1472 	pr_debug("%s\n", __func__);
1473 
1474 	/* cancel uncache work */
1475 	cancel_delayed_work_sync(&fwc->work);
1476 
1477 	fw_fallback_set_cache_timeout();
1478 
1479 	mutex_lock(&fw_lock);
1480 	fwc->state = FW_LOADER_START_CACHE;
1481 	dpm_for_each_dev(NULL, dev_cache_fw_image);
1482 	mutex_unlock(&fw_lock);
1483 
1484 	/* wait for completion of caching firmware for all devices */
1485 	async_synchronize_full_domain(&fw_cache_domain);
1486 
1487 	fw_fallback_set_default_timeout();
1488 }
1489 
1490 /**
1491  * device_uncache_fw_images() - uncache devices' firmware
1492  *
1493  * uncache all firmwares which have been cached successfully
1494  * by device_uncache_fw_images earlier
1495  */
1496 static void device_uncache_fw_images(void)
1497 {
1498 	pr_debug("%s\n", __func__);
1499 	__device_uncache_fw_images();
1500 }
1501 
1502 static void device_uncache_fw_images_work(struct work_struct *work)
1503 {
1504 	device_uncache_fw_images();
1505 }
1506 
1507 /**
1508  * device_uncache_fw_images_delay() - uncache devices firmwares
1509  * @delay: number of milliseconds to delay uncache device firmwares
1510  *
1511  * uncache all devices's firmwares which has been cached successfully
1512  * by device_cache_fw_images after @delay milliseconds.
1513  */
1514 static void device_uncache_fw_images_delay(unsigned long delay)
1515 {
1516 	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1517 			   msecs_to_jiffies(delay));
1518 }
1519 
1520 static int fw_pm_notify(struct notifier_block *notify_block,
1521 			unsigned long mode, void *unused)
1522 {
1523 	switch (mode) {
1524 	case PM_HIBERNATION_PREPARE:
1525 	case PM_SUSPEND_PREPARE:
1526 	case PM_RESTORE_PREPARE:
1527 		/*
1528 		 * Here, kill pending fallback requests will only kill
1529 		 * non-uevent firmware request to avoid stalling suspend.
1530 		 */
1531 		kill_pending_fw_fallback_reqs(false);
1532 		device_cache_fw_images();
1533 		break;
1534 
1535 	case PM_POST_SUSPEND:
1536 	case PM_POST_HIBERNATION:
1537 	case PM_POST_RESTORE:
1538 		/*
1539 		 * In case that system sleep failed and syscore_suspend is
1540 		 * not called.
1541 		 */
1542 		mutex_lock(&fw_lock);
1543 		fw_cache.state = FW_LOADER_NO_CACHE;
1544 		mutex_unlock(&fw_lock);
1545 
1546 		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1547 		break;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 /* stop caching firmware once syscore_suspend is reached */
1554 static int fw_suspend(void)
1555 {
1556 	fw_cache.state = FW_LOADER_NO_CACHE;
1557 	return 0;
1558 }
1559 
1560 static struct syscore_ops fw_syscore_ops = {
1561 	.suspend = fw_suspend,
1562 };
1563 
1564 static int __init register_fw_pm_ops(void)
1565 {
1566 	int ret;
1567 
1568 	spin_lock_init(&fw_cache.name_lock);
1569 	INIT_LIST_HEAD(&fw_cache.fw_names);
1570 
1571 	INIT_DELAYED_WORK(&fw_cache.work,
1572 			  device_uncache_fw_images_work);
1573 
1574 	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1575 	ret = register_pm_notifier(&fw_cache.pm_notify);
1576 	if (ret)
1577 		return ret;
1578 
1579 	register_syscore_ops(&fw_syscore_ops);
1580 
1581 	return ret;
1582 }
1583 
1584 static inline void unregister_fw_pm_ops(void)
1585 {
1586 	unregister_syscore_ops(&fw_syscore_ops);
1587 	unregister_pm_notifier(&fw_cache.pm_notify);
1588 }
1589 #else
1590 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1591 {
1592 }
1593 static inline int register_fw_pm_ops(void)
1594 {
1595 	return 0;
1596 }
1597 static inline void unregister_fw_pm_ops(void)
1598 {
1599 }
1600 #endif
1601 
1602 static void __init fw_cache_init(void)
1603 {
1604 	spin_lock_init(&fw_cache.lock);
1605 	INIT_LIST_HEAD(&fw_cache.head);
1606 	fw_cache.state = FW_LOADER_NO_CACHE;
1607 }
1608 
1609 static int fw_shutdown_notify(struct notifier_block *unused1,
1610 			      unsigned long unused2, void *unused3)
1611 {
1612 	/*
1613 	 * Kill all pending fallback requests to avoid both stalling shutdown,
1614 	 * and avoid a deadlock with the usermode_lock.
1615 	 */
1616 	kill_pending_fw_fallback_reqs(true);
1617 
1618 	return NOTIFY_DONE;
1619 }
1620 
1621 static struct notifier_block fw_shutdown_nb = {
1622 	.notifier_call = fw_shutdown_notify,
1623 };
1624 
1625 static int __init firmware_class_init(void)
1626 {
1627 	int ret;
1628 
1629 	/* No need to unfold these on exit */
1630 	fw_cache_init();
1631 
1632 	ret = register_fw_pm_ops();
1633 	if (ret)
1634 		return ret;
1635 
1636 	ret = register_reboot_notifier(&fw_shutdown_nb);
1637 	if (ret)
1638 		goto out;
1639 
1640 	return register_sysfs_loader();
1641 
1642 out:
1643 	unregister_fw_pm_ops();
1644 	return ret;
1645 }
1646 
1647 static void __exit firmware_class_exit(void)
1648 {
1649 	unregister_fw_pm_ops();
1650 	unregister_reboot_notifier(&fw_shutdown_nb);
1651 	unregister_sysfs_loader();
1652 }
1653 
1654 fs_initcall(firmware_class_init);
1655 module_exit(firmware_class_exit);
1656