1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/zstd.h> 39 #include <linux/xz.h> 40 41 #include <generated/utsrelease.h> 42 43 #include "../base.h" 44 #include "firmware.h" 45 #include "fallback.h" 46 47 MODULE_AUTHOR("Manuel Estrada Sainz"); 48 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 49 MODULE_LICENSE("GPL"); 50 51 struct firmware_cache { 52 /* firmware_buf instance will be added into the below list */ 53 spinlock_t lock; 54 struct list_head head; 55 int state; 56 57 #ifdef CONFIG_FW_CACHE 58 /* 59 * Names of firmware images which have been cached successfully 60 * will be added into the below list so that device uncache 61 * helper can trace which firmware images have been cached 62 * before. 63 */ 64 spinlock_t name_lock; 65 struct list_head fw_names; 66 67 struct delayed_work work; 68 69 struct notifier_block pm_notify; 70 #endif 71 }; 72 73 struct fw_cache_entry { 74 struct list_head list; 75 const char *name; 76 }; 77 78 struct fw_name_devm { 79 unsigned long magic; 80 const char *name; 81 }; 82 83 static inline struct fw_priv *to_fw_priv(struct kref *ref) 84 { 85 return container_of(ref, struct fw_priv, ref); 86 } 87 88 #define FW_LOADER_NO_CACHE 0 89 #define FW_LOADER_START_CACHE 1 90 91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 92 * guarding for corner cases a global lock should be OK */ 93 DEFINE_MUTEX(fw_lock); 94 95 struct firmware_cache fw_cache; 96 bool fw_load_abort_all; 97 98 void fw_state_init(struct fw_priv *fw_priv) 99 { 100 struct fw_state *fw_st = &fw_priv->fw_st; 101 102 init_completion(&fw_st->completion); 103 fw_st->status = FW_STATUS_UNKNOWN; 104 } 105 106 static inline int fw_state_wait(struct fw_priv *fw_priv) 107 { 108 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 109 } 110 111 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); 112 113 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 114 struct firmware_cache *fwc, 115 void *dbuf, 116 size_t size, 117 size_t offset, 118 u32 opt_flags) 119 { 120 struct fw_priv *fw_priv; 121 122 /* For a partial read, the buffer must be preallocated. */ 123 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 124 return NULL; 125 126 /* Only partial reads are allowed to use an offset. */ 127 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 128 return NULL; 129 130 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 131 if (!fw_priv) 132 return NULL; 133 134 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 135 if (!fw_priv->fw_name) { 136 kfree(fw_priv); 137 return NULL; 138 } 139 140 kref_init(&fw_priv->ref); 141 fw_priv->fwc = fwc; 142 fw_priv->data = dbuf; 143 fw_priv->allocated_size = size; 144 fw_priv->offset = offset; 145 fw_priv->opt_flags = opt_flags; 146 fw_state_init(fw_priv); 147 #ifdef CONFIG_FW_LOADER_USER_HELPER 148 INIT_LIST_HEAD(&fw_priv->pending_list); 149 #endif 150 151 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 152 153 return fw_priv; 154 } 155 156 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 157 { 158 struct fw_priv *tmp; 159 struct firmware_cache *fwc = &fw_cache; 160 161 list_for_each_entry(tmp, &fwc->head, list) 162 if (!strcmp(tmp->fw_name, fw_name)) 163 return tmp; 164 return NULL; 165 } 166 167 /* Returns 1 for batching firmware requests with the same name */ 168 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc, 169 struct fw_priv **fw_priv, void *dbuf, size_t size, 170 size_t offset, u32 opt_flags) 171 { 172 struct fw_priv *tmp; 173 174 spin_lock(&fwc->lock); 175 /* 176 * Do not merge requests that are marked to be non-cached or 177 * are performing partial reads. 178 */ 179 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 180 tmp = __lookup_fw_priv(fw_name); 181 if (tmp) { 182 kref_get(&tmp->ref); 183 spin_unlock(&fwc->lock); 184 *fw_priv = tmp; 185 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 186 return 1; 187 } 188 } 189 190 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 191 if (tmp) { 192 INIT_LIST_HEAD(&tmp->list); 193 if (!(opt_flags & FW_OPT_NOCACHE)) 194 list_add(&tmp->list, &fwc->head); 195 } 196 spin_unlock(&fwc->lock); 197 198 *fw_priv = tmp; 199 200 return tmp ? 0 : -ENOMEM; 201 } 202 203 static void __free_fw_priv(struct kref *ref) 204 __releases(&fwc->lock) 205 { 206 struct fw_priv *fw_priv = to_fw_priv(ref); 207 struct firmware_cache *fwc = fw_priv->fwc; 208 209 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 210 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 211 (unsigned int)fw_priv->size); 212 213 list_del(&fw_priv->list); 214 spin_unlock(&fwc->lock); 215 216 if (fw_is_paged_buf(fw_priv)) 217 fw_free_paged_buf(fw_priv); 218 else if (!fw_priv->allocated_size) 219 vfree(fw_priv->data); 220 221 kfree_const(fw_priv->fw_name); 222 kfree(fw_priv); 223 } 224 225 void free_fw_priv(struct fw_priv *fw_priv) 226 { 227 struct firmware_cache *fwc = fw_priv->fwc; 228 spin_lock(&fwc->lock); 229 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 230 spin_unlock(&fwc->lock); 231 } 232 233 #ifdef CONFIG_FW_LOADER_PAGED_BUF 234 bool fw_is_paged_buf(struct fw_priv *fw_priv) 235 { 236 return fw_priv->is_paged_buf; 237 } 238 239 void fw_free_paged_buf(struct fw_priv *fw_priv) 240 { 241 int i; 242 243 if (!fw_priv->pages) 244 return; 245 246 vunmap(fw_priv->data); 247 248 for (i = 0; i < fw_priv->nr_pages; i++) 249 __free_page(fw_priv->pages[i]); 250 kvfree(fw_priv->pages); 251 fw_priv->pages = NULL; 252 fw_priv->page_array_size = 0; 253 fw_priv->nr_pages = 0; 254 fw_priv->data = NULL; 255 fw_priv->size = 0; 256 } 257 258 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 259 { 260 /* If the array of pages is too small, grow it */ 261 if (fw_priv->page_array_size < pages_needed) { 262 int new_array_size = max(pages_needed, 263 fw_priv->page_array_size * 2); 264 struct page **new_pages; 265 266 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 267 GFP_KERNEL); 268 if (!new_pages) 269 return -ENOMEM; 270 memcpy(new_pages, fw_priv->pages, 271 fw_priv->page_array_size * sizeof(void *)); 272 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 273 (new_array_size - fw_priv->page_array_size)); 274 kvfree(fw_priv->pages); 275 fw_priv->pages = new_pages; 276 fw_priv->page_array_size = new_array_size; 277 } 278 279 while (fw_priv->nr_pages < pages_needed) { 280 fw_priv->pages[fw_priv->nr_pages] = 281 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 282 283 if (!fw_priv->pages[fw_priv->nr_pages]) 284 return -ENOMEM; 285 fw_priv->nr_pages++; 286 } 287 288 return 0; 289 } 290 291 int fw_map_paged_buf(struct fw_priv *fw_priv) 292 { 293 /* one pages buffer should be mapped/unmapped only once */ 294 if (!fw_priv->pages) 295 return 0; 296 297 vunmap(fw_priv->data); 298 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 299 PAGE_KERNEL_RO); 300 if (!fw_priv->data) 301 return -ENOMEM; 302 303 return 0; 304 } 305 #endif 306 307 /* 308 * ZSTD-compressed firmware support 309 */ 310 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 311 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv, 312 size_t in_size, const void *in_buffer) 313 { 314 size_t len, out_size, workspace_size; 315 void *workspace, *out_buf; 316 zstd_dctx *ctx; 317 int err; 318 319 if (fw_priv->allocated_size) { 320 out_size = fw_priv->allocated_size; 321 out_buf = fw_priv->data; 322 } else { 323 zstd_frame_header params; 324 325 if (zstd_get_frame_header(¶ms, in_buffer, in_size) || 326 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { 327 dev_dbg(dev, "%s: invalid zstd header\n", __func__); 328 return -EINVAL; 329 } 330 out_size = params.frameContentSize; 331 out_buf = vzalloc(out_size); 332 if (!out_buf) 333 return -ENOMEM; 334 } 335 336 workspace_size = zstd_dctx_workspace_bound(); 337 workspace = kvzalloc(workspace_size, GFP_KERNEL); 338 if (!workspace) { 339 err = -ENOMEM; 340 goto error; 341 } 342 343 ctx = zstd_init_dctx(workspace, workspace_size); 344 if (!ctx) { 345 dev_dbg(dev, "%s: failed to initialize context\n", __func__); 346 err = -EINVAL; 347 goto error; 348 } 349 350 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size); 351 if (zstd_is_error(len)) { 352 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__, 353 zstd_get_error_code(len)); 354 err = -EINVAL; 355 goto error; 356 } 357 358 if (!fw_priv->allocated_size) 359 fw_priv->data = out_buf; 360 fw_priv->size = len; 361 err = 0; 362 363 error: 364 kvfree(workspace); 365 if (err && !fw_priv->allocated_size) 366 vfree(out_buf); 367 return err; 368 } 369 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */ 370 371 /* 372 * XZ-compressed firmware support 373 */ 374 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 375 /* show an error and return the standard error code */ 376 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 377 { 378 if (xz_ret != XZ_STREAM_END) { 379 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 380 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 381 } 382 return 0; 383 } 384 385 /* single-shot decompression onto the pre-allocated buffer */ 386 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 387 size_t in_size, const void *in_buffer) 388 { 389 struct xz_dec *xz_dec; 390 struct xz_buf xz_buf; 391 enum xz_ret xz_ret; 392 393 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 394 if (!xz_dec) 395 return -ENOMEM; 396 397 xz_buf.in_size = in_size; 398 xz_buf.in = in_buffer; 399 xz_buf.in_pos = 0; 400 xz_buf.out_size = fw_priv->allocated_size; 401 xz_buf.out = fw_priv->data; 402 xz_buf.out_pos = 0; 403 404 xz_ret = xz_dec_run(xz_dec, &xz_buf); 405 xz_dec_end(xz_dec); 406 407 fw_priv->size = xz_buf.out_pos; 408 return fw_decompress_xz_error(dev, xz_ret); 409 } 410 411 /* decompression on paged buffer and map it */ 412 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 413 size_t in_size, const void *in_buffer) 414 { 415 struct xz_dec *xz_dec; 416 struct xz_buf xz_buf; 417 enum xz_ret xz_ret; 418 struct page *page; 419 int err = 0; 420 421 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 422 if (!xz_dec) 423 return -ENOMEM; 424 425 xz_buf.in_size = in_size; 426 xz_buf.in = in_buffer; 427 xz_buf.in_pos = 0; 428 429 fw_priv->is_paged_buf = true; 430 fw_priv->size = 0; 431 do { 432 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 433 err = -ENOMEM; 434 goto out; 435 } 436 437 /* decompress onto the new allocated page */ 438 page = fw_priv->pages[fw_priv->nr_pages - 1]; 439 xz_buf.out = kmap_local_page(page); 440 xz_buf.out_pos = 0; 441 xz_buf.out_size = PAGE_SIZE; 442 xz_ret = xz_dec_run(xz_dec, &xz_buf); 443 kunmap_local(xz_buf.out); 444 fw_priv->size += xz_buf.out_pos; 445 /* partial decompression means either end or error */ 446 if (xz_buf.out_pos != PAGE_SIZE) 447 break; 448 } while (xz_ret == XZ_OK); 449 450 err = fw_decompress_xz_error(dev, xz_ret); 451 if (!err) 452 err = fw_map_paged_buf(fw_priv); 453 454 out: 455 xz_dec_end(xz_dec); 456 return err; 457 } 458 459 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 460 size_t in_size, const void *in_buffer) 461 { 462 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 463 if (fw_priv->data) 464 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 465 else 466 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 467 } 468 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */ 469 470 /* direct firmware loading support */ 471 static char fw_path_para[256]; 472 static const char * const fw_path[] = { 473 fw_path_para, 474 "/lib/firmware/updates/" UTS_RELEASE, 475 "/lib/firmware/updates", 476 "/lib/firmware/" UTS_RELEASE, 477 "/lib/firmware" 478 }; 479 480 /* 481 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 482 * from kernel command line because firmware_class is generally built in 483 * kernel instead of module. 484 */ 485 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 486 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 487 488 static int 489 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 490 const char *suffix, 491 int (*decompress)(struct device *dev, 492 struct fw_priv *fw_priv, 493 size_t in_size, 494 const void *in_buffer)) 495 { 496 size_t size; 497 int i, len, maxlen = 0; 498 int rc = -ENOENT; 499 char *path, *nt = NULL; 500 size_t msize = INT_MAX; 501 void *buffer = NULL; 502 503 /* Already populated data member means we're loading into a buffer */ 504 if (!decompress && fw_priv->data) { 505 buffer = fw_priv->data; 506 msize = fw_priv->allocated_size; 507 } 508 509 path = __getname(); 510 if (!path) 511 return -ENOMEM; 512 513 wait_for_initramfs(); 514 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 515 size_t file_size = 0; 516 size_t *file_size_ptr = NULL; 517 518 /* skip the unset customized path */ 519 if (!fw_path[i][0]) 520 continue; 521 522 /* strip off \n from customized path */ 523 maxlen = strlen(fw_path[i]); 524 if (i == 0) { 525 nt = strchr(fw_path[i], '\n'); 526 if (nt) 527 maxlen = nt - fw_path[i]; 528 } 529 530 len = snprintf(path, PATH_MAX, "%.*s/%s%s", 531 maxlen, fw_path[i], 532 fw_priv->fw_name, suffix); 533 if (len >= PATH_MAX) { 534 rc = -ENAMETOOLONG; 535 break; 536 } 537 538 fw_priv->size = 0; 539 540 /* 541 * The total file size is only examined when doing a partial 542 * read; the "full read" case needs to fail if the whole 543 * firmware was not completely loaded. 544 */ 545 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 546 file_size_ptr = &file_size; 547 548 /* load firmware files from the mount namespace of init */ 549 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 550 &buffer, msize, 551 file_size_ptr, 552 READING_FIRMWARE); 553 if (rc < 0) { 554 if (rc != -ENOENT) 555 dev_warn(device, "loading %s failed with error %d\n", 556 path, rc); 557 else 558 dev_dbg(device, "loading %s failed for no such file or directory.\n", 559 path); 560 continue; 561 } 562 size = rc; 563 rc = 0; 564 565 dev_dbg(device, "Loading firmware from %s\n", path); 566 if (decompress) { 567 dev_dbg(device, "f/w decompressing %s\n", 568 fw_priv->fw_name); 569 rc = decompress(device, fw_priv, size, buffer); 570 /* discard the superfluous original content */ 571 vfree(buffer); 572 buffer = NULL; 573 if (rc) { 574 fw_free_paged_buf(fw_priv); 575 continue; 576 } 577 } else { 578 dev_dbg(device, "direct-loading %s\n", 579 fw_priv->fw_name); 580 if (!fw_priv->data) 581 fw_priv->data = buffer; 582 fw_priv->size = size; 583 } 584 fw_state_done(fw_priv); 585 break; 586 } 587 __putname(path); 588 589 return rc; 590 } 591 592 /* firmware holds the ownership of pages */ 593 static void firmware_free_data(const struct firmware *fw) 594 { 595 /* Loaded directly? */ 596 if (!fw->priv) { 597 vfree(fw->data); 598 return; 599 } 600 free_fw_priv(fw->priv); 601 } 602 603 /* store the pages buffer info firmware from buf */ 604 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 605 { 606 fw->priv = fw_priv; 607 fw->size = fw_priv->size; 608 fw->data = fw_priv->data; 609 610 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 611 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 612 (unsigned int)fw_priv->size); 613 } 614 615 #ifdef CONFIG_FW_CACHE 616 static void fw_name_devm_release(struct device *dev, void *res) 617 { 618 struct fw_name_devm *fwn = res; 619 620 if (fwn->magic == (unsigned long)&fw_cache) 621 pr_debug("%s: fw_name-%s devm-%p released\n", 622 __func__, fwn->name, res); 623 kfree_const(fwn->name); 624 } 625 626 static int fw_devm_match(struct device *dev, void *res, 627 void *match_data) 628 { 629 struct fw_name_devm *fwn = res; 630 631 return (fwn->magic == (unsigned long)&fw_cache) && 632 !strcmp(fwn->name, match_data); 633 } 634 635 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 636 const char *name) 637 { 638 struct fw_name_devm *fwn; 639 640 fwn = devres_find(dev, fw_name_devm_release, 641 fw_devm_match, (void *)name); 642 return fwn; 643 } 644 645 static bool fw_cache_is_setup(struct device *dev, const char *name) 646 { 647 struct fw_name_devm *fwn; 648 649 fwn = fw_find_devm_name(dev, name); 650 if (fwn) 651 return true; 652 653 return false; 654 } 655 656 /* add firmware name into devres list */ 657 static int fw_add_devm_name(struct device *dev, const char *name) 658 { 659 struct fw_name_devm *fwn; 660 661 if (fw_cache_is_setup(dev, name)) 662 return 0; 663 664 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 665 GFP_KERNEL); 666 if (!fwn) 667 return -ENOMEM; 668 fwn->name = kstrdup_const(name, GFP_KERNEL); 669 if (!fwn->name) { 670 devres_free(fwn); 671 return -ENOMEM; 672 } 673 674 fwn->magic = (unsigned long)&fw_cache; 675 devres_add(dev, fwn); 676 677 return 0; 678 } 679 #else 680 static bool fw_cache_is_setup(struct device *dev, const char *name) 681 { 682 return false; 683 } 684 685 static int fw_add_devm_name(struct device *dev, const char *name) 686 { 687 return 0; 688 } 689 #endif 690 691 int assign_fw(struct firmware *fw, struct device *device) 692 { 693 struct fw_priv *fw_priv = fw->priv; 694 int ret; 695 696 mutex_lock(&fw_lock); 697 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 698 mutex_unlock(&fw_lock); 699 return -ENOENT; 700 } 701 702 /* 703 * add firmware name into devres list so that we can auto cache 704 * and uncache firmware for device. 705 * 706 * device may has been deleted already, but the problem 707 * should be fixed in devres or driver core. 708 */ 709 /* don't cache firmware handled without uevent */ 710 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 711 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 712 ret = fw_add_devm_name(device, fw_priv->fw_name); 713 if (ret) { 714 mutex_unlock(&fw_lock); 715 return ret; 716 } 717 } 718 719 /* 720 * After caching firmware image is started, let it piggyback 721 * on request firmware. 722 */ 723 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 724 fw_priv->fwc->state == FW_LOADER_START_CACHE) 725 fw_cache_piggyback_on_request(fw_priv); 726 727 /* pass the pages buffer to driver at the last minute */ 728 fw_set_page_data(fw_priv, fw); 729 mutex_unlock(&fw_lock); 730 return 0; 731 } 732 733 /* prepare firmware and firmware_buf structs; 734 * return 0 if a firmware is already assigned, 1 if need to load one, 735 * or a negative error code 736 */ 737 static int 738 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 739 struct device *device, void *dbuf, size_t size, 740 size_t offset, u32 opt_flags) 741 { 742 struct firmware *firmware; 743 struct fw_priv *fw_priv; 744 int ret; 745 746 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 747 if (!firmware) { 748 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 749 __func__); 750 return -ENOMEM; 751 } 752 753 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { 754 dev_dbg(device, "using built-in %s\n", name); 755 return 0; /* assigned */ 756 } 757 758 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 759 offset, opt_flags); 760 761 /* 762 * bind with 'priv' now to avoid warning in failure path 763 * of requesting firmware. 764 */ 765 firmware->priv = fw_priv; 766 767 if (ret > 0) { 768 ret = fw_state_wait(fw_priv); 769 if (!ret) { 770 fw_set_page_data(fw_priv, firmware); 771 return 0; /* assigned */ 772 } 773 } 774 775 if (ret < 0) 776 return ret; 777 return 1; /* need to load */ 778 } 779 780 /* 781 * Batched requests need only one wake, we need to do this step last due to the 782 * fallback mechanism. The buf is protected with kref_get(), and it won't be 783 * released until the last user calls release_firmware(). 784 * 785 * Failed batched requests are possible as well, in such cases we just share 786 * the struct fw_priv and won't release it until all requests are woken 787 * and have gone through this same path. 788 */ 789 static void fw_abort_batch_reqs(struct firmware *fw) 790 { 791 struct fw_priv *fw_priv; 792 793 /* Loaded directly? */ 794 if (!fw || !fw->priv) 795 return; 796 797 fw_priv = fw->priv; 798 mutex_lock(&fw_lock); 799 if (!fw_state_is_aborted(fw_priv)) 800 fw_state_aborted(fw_priv); 801 mutex_unlock(&fw_lock); 802 } 803 804 #if defined(CONFIG_FW_LOADER_DEBUG) 805 #include <crypto/hash.h> 806 #include <crypto/sha2.h> 807 808 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device) 809 { 810 struct shash_desc *shash; 811 struct crypto_shash *alg; 812 u8 *sha256buf; 813 char *outbuf; 814 815 alg = crypto_alloc_shash("sha256", 0, 0); 816 if (IS_ERR(alg)) 817 return; 818 819 sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 820 outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL); 821 shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL); 822 if (!sha256buf || !outbuf || !shash) 823 goto out_free; 824 825 shash->tfm = alg; 826 827 if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0) 828 goto out_shash; 829 830 for (int i = 0; i < SHA256_DIGEST_SIZE; i++) 831 sprintf(&outbuf[i * 2], "%02x", sha256buf[i]); 832 outbuf[SHA256_BLOCK_SIZE] = 0; 833 dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf); 834 835 out_shash: 836 crypto_free_shash(alg); 837 out_free: 838 kfree(shash); 839 kfree(outbuf); 840 kfree(sha256buf); 841 } 842 #else 843 static void fw_log_firmware_info(const struct firmware *fw, const char *name, 844 struct device *device) 845 {} 846 #endif 847 848 /* called from request_firmware() and request_firmware_work_func() */ 849 static int 850 _request_firmware(const struct firmware **firmware_p, const char *name, 851 struct device *device, void *buf, size_t size, 852 size_t offset, u32 opt_flags) 853 { 854 struct firmware *fw = NULL; 855 struct cred *kern_cred = NULL; 856 const struct cred *old_cred; 857 bool nondirect = false; 858 int ret; 859 860 if (!firmware_p) 861 return -EINVAL; 862 863 if (!name || name[0] == '\0') { 864 ret = -EINVAL; 865 goto out; 866 } 867 868 ret = _request_firmware_prepare(&fw, name, device, buf, size, 869 offset, opt_flags); 870 if (ret <= 0) /* error or already assigned */ 871 goto out; 872 873 /* 874 * We are about to try to access the firmware file. Because we may have been 875 * called by a driver when serving an unrelated request from userland, we use 876 * the kernel credentials to read the file. 877 */ 878 kern_cred = prepare_kernel_cred(&init_task); 879 if (!kern_cred) { 880 ret = -ENOMEM; 881 goto out; 882 } 883 old_cred = override_creds(kern_cred); 884 885 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 886 887 /* Only full reads can support decompression, platform, and sysfs. */ 888 if (!(opt_flags & FW_OPT_PARTIAL)) 889 nondirect = true; 890 891 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 892 if (ret == -ENOENT && nondirect) 893 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst", 894 fw_decompress_zstd); 895 #endif 896 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 897 if (ret == -ENOENT && nondirect) 898 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 899 fw_decompress_xz); 900 #endif 901 if (ret == -ENOENT && nondirect) 902 ret = firmware_fallback_platform(fw->priv); 903 904 if (ret) { 905 if (!(opt_flags & FW_OPT_NO_WARN)) 906 dev_warn(device, 907 "Direct firmware load for %s failed with error %d\n", 908 name, ret); 909 if (nondirect) 910 ret = firmware_fallback_sysfs(fw, name, device, 911 opt_flags, ret); 912 } else 913 ret = assign_fw(fw, device); 914 915 revert_creds(old_cred); 916 put_cred(kern_cred); 917 918 out: 919 if (ret < 0) { 920 fw_abort_batch_reqs(fw); 921 release_firmware(fw); 922 fw = NULL; 923 } else { 924 fw_log_firmware_info(fw, name, device); 925 } 926 927 *firmware_p = fw; 928 return ret; 929 } 930 931 /** 932 * request_firmware() - send firmware request and wait for it 933 * @firmware_p: pointer to firmware image 934 * @name: name of firmware file 935 * @device: device for which firmware is being loaded 936 * 937 * @firmware_p will be used to return a firmware image by the name 938 * of @name for device @device. 939 * 940 * Should be called from user context where sleeping is allowed. 941 * 942 * @name will be used as $FIRMWARE in the uevent environment and 943 * should be distinctive enough not to be confused with any other 944 * firmware image for this or any other device. 945 * 946 * Caller must hold the reference count of @device. 947 * 948 * The function can be called safely inside device's suspend and 949 * resume callback. 950 **/ 951 int 952 request_firmware(const struct firmware **firmware_p, const char *name, 953 struct device *device) 954 { 955 int ret; 956 957 /* Need to pin this module until return */ 958 __module_get(THIS_MODULE); 959 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 960 FW_OPT_UEVENT); 961 module_put(THIS_MODULE); 962 return ret; 963 } 964 EXPORT_SYMBOL(request_firmware); 965 966 /** 967 * firmware_request_nowarn() - request for an optional fw module 968 * @firmware: pointer to firmware image 969 * @name: name of firmware file 970 * @device: device for which firmware is being loaded 971 * 972 * This function is similar in behaviour to request_firmware(), except it 973 * doesn't produce warning messages when the file is not found. The sysfs 974 * fallback mechanism is enabled if direct filesystem lookup fails. However, 975 * failures to find the firmware file with it are still suppressed. It is 976 * therefore up to the driver to check for the return value of this call and to 977 * decide when to inform the users of errors. 978 **/ 979 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 980 struct device *device) 981 { 982 int ret; 983 984 /* Need to pin this module until return */ 985 __module_get(THIS_MODULE); 986 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 987 FW_OPT_UEVENT | FW_OPT_NO_WARN); 988 module_put(THIS_MODULE); 989 return ret; 990 } 991 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 992 993 /** 994 * request_firmware_direct() - load firmware directly without usermode helper 995 * @firmware_p: pointer to firmware image 996 * @name: name of firmware file 997 * @device: device for which firmware is being loaded 998 * 999 * This function works pretty much like request_firmware(), but this doesn't 1000 * fall back to usermode helper even if the firmware couldn't be loaded 1001 * directly from fs. Hence it's useful for loading optional firmwares, which 1002 * aren't always present, without extra long timeouts of udev. 1003 **/ 1004 int request_firmware_direct(const struct firmware **firmware_p, 1005 const char *name, struct device *device) 1006 { 1007 int ret; 1008 1009 __module_get(THIS_MODULE); 1010 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 1011 FW_OPT_UEVENT | FW_OPT_NO_WARN | 1012 FW_OPT_NOFALLBACK_SYSFS); 1013 module_put(THIS_MODULE); 1014 return ret; 1015 } 1016 EXPORT_SYMBOL_GPL(request_firmware_direct); 1017 1018 /** 1019 * firmware_request_platform() - request firmware with platform-fw fallback 1020 * @firmware: pointer to firmware image 1021 * @name: name of firmware file 1022 * @device: device for which firmware is being loaded 1023 * 1024 * This function is similar in behaviour to request_firmware, except that if 1025 * direct filesystem lookup fails, it will fallback to looking for a copy of the 1026 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 1027 **/ 1028 int firmware_request_platform(const struct firmware **firmware, 1029 const char *name, struct device *device) 1030 { 1031 int ret; 1032 1033 /* Need to pin this module until return */ 1034 __module_get(THIS_MODULE); 1035 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 1036 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 1037 module_put(THIS_MODULE); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL_GPL(firmware_request_platform); 1041 1042 /** 1043 * firmware_request_cache() - cache firmware for suspend so resume can use it 1044 * @name: name of firmware file 1045 * @device: device for which firmware should be cached for 1046 * 1047 * There are some devices with an optimization that enables the device to not 1048 * require loading firmware on system reboot. This optimization may still 1049 * require the firmware present on resume from suspend. This routine can be 1050 * used to ensure the firmware is present on resume from suspend in these 1051 * situations. This helper is not compatible with drivers which use 1052 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 1053 **/ 1054 int firmware_request_cache(struct device *device, const char *name) 1055 { 1056 int ret; 1057 1058 mutex_lock(&fw_lock); 1059 ret = fw_add_devm_name(device, name); 1060 mutex_unlock(&fw_lock); 1061 1062 return ret; 1063 } 1064 EXPORT_SYMBOL_GPL(firmware_request_cache); 1065 1066 /** 1067 * request_firmware_into_buf() - load firmware into a previously allocated buffer 1068 * @firmware_p: pointer to firmware image 1069 * @name: name of firmware file 1070 * @device: device for which firmware is being loaded and DMA region allocated 1071 * @buf: address of buffer to load firmware into 1072 * @size: size of buffer 1073 * 1074 * This function works pretty much like request_firmware(), but it doesn't 1075 * allocate a buffer to hold the firmware data. Instead, the firmware 1076 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 1077 * data member is pointed at @buf. 1078 * 1079 * This function doesn't cache firmware either. 1080 */ 1081 int 1082 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 1083 struct device *device, void *buf, size_t size) 1084 { 1085 int ret; 1086 1087 if (fw_cache_is_setup(device, name)) 1088 return -EOPNOTSUPP; 1089 1090 __module_get(THIS_MODULE); 1091 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 1092 FW_OPT_UEVENT | FW_OPT_NOCACHE); 1093 module_put(THIS_MODULE); 1094 return ret; 1095 } 1096 EXPORT_SYMBOL(request_firmware_into_buf); 1097 1098 /** 1099 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 1100 * @firmware_p: pointer to firmware image 1101 * @name: name of firmware file 1102 * @device: device for which firmware is being loaded and DMA region allocated 1103 * @buf: address of buffer to load firmware into 1104 * @size: size of buffer 1105 * @offset: offset into file to read 1106 * 1107 * This function works pretty much like request_firmware_into_buf except 1108 * it allows a partial read of the file. 1109 */ 1110 int 1111 request_partial_firmware_into_buf(const struct firmware **firmware_p, 1112 const char *name, struct device *device, 1113 void *buf, size_t size, size_t offset) 1114 { 1115 int ret; 1116 1117 if (fw_cache_is_setup(device, name)) 1118 return -EOPNOTSUPP; 1119 1120 __module_get(THIS_MODULE); 1121 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 1122 FW_OPT_UEVENT | FW_OPT_NOCACHE | 1123 FW_OPT_PARTIAL); 1124 module_put(THIS_MODULE); 1125 return ret; 1126 } 1127 EXPORT_SYMBOL(request_partial_firmware_into_buf); 1128 1129 /** 1130 * release_firmware() - release the resource associated with a firmware image 1131 * @fw: firmware resource to release 1132 **/ 1133 void release_firmware(const struct firmware *fw) 1134 { 1135 if (fw) { 1136 if (!firmware_is_builtin(fw)) 1137 firmware_free_data(fw); 1138 kfree(fw); 1139 } 1140 } 1141 EXPORT_SYMBOL(release_firmware); 1142 1143 /* Async support */ 1144 struct firmware_work { 1145 struct work_struct work; 1146 struct module *module; 1147 const char *name; 1148 struct device *device; 1149 void *context; 1150 void (*cont)(const struct firmware *fw, void *context); 1151 u32 opt_flags; 1152 }; 1153 1154 static void request_firmware_work_func(struct work_struct *work) 1155 { 1156 struct firmware_work *fw_work; 1157 const struct firmware *fw; 1158 1159 fw_work = container_of(work, struct firmware_work, work); 1160 1161 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1162 fw_work->opt_flags); 1163 fw_work->cont(fw, fw_work->context); 1164 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1165 1166 module_put(fw_work->module); 1167 kfree_const(fw_work->name); 1168 kfree(fw_work); 1169 } 1170 1171 /** 1172 * request_firmware_nowait() - asynchronous version of request_firmware 1173 * @module: module requesting the firmware 1174 * @uevent: sends uevent to copy the firmware image if this flag 1175 * is non-zero else the firmware copy must be done manually. 1176 * @name: name of firmware file 1177 * @device: device for which firmware is being loaded 1178 * @gfp: allocation flags 1179 * @context: will be passed over to @cont, and 1180 * @fw may be %NULL if firmware request fails. 1181 * @cont: function will be called asynchronously when the firmware 1182 * request is over. 1183 * 1184 * Caller must hold the reference count of @device. 1185 * 1186 * Asynchronous variant of request_firmware() for user contexts: 1187 * - sleep for as small periods as possible since it may 1188 * increase kernel boot time of built-in device drivers 1189 * requesting firmware in their ->probe() methods, if 1190 * @gfp is GFP_KERNEL. 1191 * 1192 * - can't sleep at all if @gfp is GFP_ATOMIC. 1193 **/ 1194 int 1195 request_firmware_nowait( 1196 struct module *module, bool uevent, 1197 const char *name, struct device *device, gfp_t gfp, void *context, 1198 void (*cont)(const struct firmware *fw, void *context)) 1199 { 1200 struct firmware_work *fw_work; 1201 1202 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1203 if (!fw_work) 1204 return -ENOMEM; 1205 1206 fw_work->module = module; 1207 fw_work->name = kstrdup_const(name, gfp); 1208 if (!fw_work->name) { 1209 kfree(fw_work); 1210 return -ENOMEM; 1211 } 1212 fw_work->device = device; 1213 fw_work->context = context; 1214 fw_work->cont = cont; 1215 fw_work->opt_flags = FW_OPT_NOWAIT | 1216 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1217 1218 if (!uevent && fw_cache_is_setup(device, name)) { 1219 kfree_const(fw_work->name); 1220 kfree(fw_work); 1221 return -EOPNOTSUPP; 1222 } 1223 1224 if (!try_module_get(module)) { 1225 kfree_const(fw_work->name); 1226 kfree(fw_work); 1227 return -EFAULT; 1228 } 1229 1230 get_device(fw_work->device); 1231 INIT_WORK(&fw_work->work, request_firmware_work_func); 1232 schedule_work(&fw_work->work); 1233 return 0; 1234 } 1235 EXPORT_SYMBOL(request_firmware_nowait); 1236 1237 #ifdef CONFIG_FW_CACHE 1238 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1239 1240 /** 1241 * cache_firmware() - cache one firmware image in kernel memory space 1242 * @fw_name: the firmware image name 1243 * 1244 * Cache firmware in kernel memory so that drivers can use it when 1245 * system isn't ready for them to request firmware image from userspace. 1246 * Once it returns successfully, driver can use request_firmware or its 1247 * nowait version to get the cached firmware without any interacting 1248 * with userspace 1249 * 1250 * Return 0 if the firmware image has been cached successfully 1251 * Return !0 otherwise 1252 * 1253 */ 1254 static int cache_firmware(const char *fw_name) 1255 { 1256 int ret; 1257 const struct firmware *fw; 1258 1259 pr_debug("%s: %s\n", __func__, fw_name); 1260 1261 ret = request_firmware(&fw, fw_name, NULL); 1262 if (!ret) 1263 kfree(fw); 1264 1265 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1266 1267 return ret; 1268 } 1269 1270 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1271 { 1272 struct fw_priv *tmp; 1273 struct firmware_cache *fwc = &fw_cache; 1274 1275 spin_lock(&fwc->lock); 1276 tmp = __lookup_fw_priv(fw_name); 1277 spin_unlock(&fwc->lock); 1278 1279 return tmp; 1280 } 1281 1282 /** 1283 * uncache_firmware() - remove one cached firmware image 1284 * @fw_name: the firmware image name 1285 * 1286 * Uncache one firmware image which has been cached successfully 1287 * before. 1288 * 1289 * Return 0 if the firmware cache has been removed successfully 1290 * Return !0 otherwise 1291 * 1292 */ 1293 static int uncache_firmware(const char *fw_name) 1294 { 1295 struct fw_priv *fw_priv; 1296 struct firmware fw; 1297 1298 pr_debug("%s: %s\n", __func__, fw_name); 1299 1300 if (firmware_request_builtin(&fw, fw_name)) 1301 return 0; 1302 1303 fw_priv = lookup_fw_priv(fw_name); 1304 if (fw_priv) { 1305 free_fw_priv(fw_priv); 1306 return 0; 1307 } 1308 1309 return -EINVAL; 1310 } 1311 1312 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1313 { 1314 struct fw_cache_entry *fce; 1315 1316 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1317 if (!fce) 1318 goto exit; 1319 1320 fce->name = kstrdup_const(name, GFP_ATOMIC); 1321 if (!fce->name) { 1322 kfree(fce); 1323 fce = NULL; 1324 goto exit; 1325 } 1326 exit: 1327 return fce; 1328 } 1329 1330 static int __fw_entry_found(const char *name) 1331 { 1332 struct firmware_cache *fwc = &fw_cache; 1333 struct fw_cache_entry *fce; 1334 1335 list_for_each_entry(fce, &fwc->fw_names, list) { 1336 if (!strcmp(fce->name, name)) 1337 return 1; 1338 } 1339 return 0; 1340 } 1341 1342 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1343 { 1344 const char *name = fw_priv->fw_name; 1345 struct firmware_cache *fwc = fw_priv->fwc; 1346 struct fw_cache_entry *fce; 1347 1348 spin_lock(&fwc->name_lock); 1349 if (__fw_entry_found(name)) 1350 goto found; 1351 1352 fce = alloc_fw_cache_entry(name); 1353 if (fce) { 1354 list_add(&fce->list, &fwc->fw_names); 1355 kref_get(&fw_priv->ref); 1356 pr_debug("%s: fw: %s\n", __func__, name); 1357 } 1358 found: 1359 spin_unlock(&fwc->name_lock); 1360 } 1361 1362 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1363 { 1364 kfree_const(fce->name); 1365 kfree(fce); 1366 } 1367 1368 static void __async_dev_cache_fw_image(void *fw_entry, 1369 async_cookie_t cookie) 1370 { 1371 struct fw_cache_entry *fce = fw_entry; 1372 struct firmware_cache *fwc = &fw_cache; 1373 int ret; 1374 1375 ret = cache_firmware(fce->name); 1376 if (ret) { 1377 spin_lock(&fwc->name_lock); 1378 list_del(&fce->list); 1379 spin_unlock(&fwc->name_lock); 1380 1381 free_fw_cache_entry(fce); 1382 } 1383 } 1384 1385 /* called with dev->devres_lock held */ 1386 static void dev_create_fw_entry(struct device *dev, void *res, 1387 void *data) 1388 { 1389 struct fw_name_devm *fwn = res; 1390 const char *fw_name = fwn->name; 1391 struct list_head *head = data; 1392 struct fw_cache_entry *fce; 1393 1394 fce = alloc_fw_cache_entry(fw_name); 1395 if (fce) 1396 list_add(&fce->list, head); 1397 } 1398 1399 static int devm_name_match(struct device *dev, void *res, 1400 void *match_data) 1401 { 1402 struct fw_name_devm *fwn = res; 1403 return (fwn->magic == (unsigned long)match_data); 1404 } 1405 1406 static void dev_cache_fw_image(struct device *dev, void *data) 1407 { 1408 LIST_HEAD(todo); 1409 struct fw_cache_entry *fce; 1410 struct fw_cache_entry *fce_next; 1411 struct firmware_cache *fwc = &fw_cache; 1412 1413 devres_for_each_res(dev, fw_name_devm_release, 1414 devm_name_match, &fw_cache, 1415 dev_create_fw_entry, &todo); 1416 1417 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1418 list_del(&fce->list); 1419 1420 spin_lock(&fwc->name_lock); 1421 /* only one cache entry for one firmware */ 1422 if (!__fw_entry_found(fce->name)) { 1423 list_add(&fce->list, &fwc->fw_names); 1424 } else { 1425 free_fw_cache_entry(fce); 1426 fce = NULL; 1427 } 1428 spin_unlock(&fwc->name_lock); 1429 1430 if (fce) 1431 async_schedule_domain(__async_dev_cache_fw_image, 1432 (void *)fce, 1433 &fw_cache_domain); 1434 } 1435 } 1436 1437 static void __device_uncache_fw_images(void) 1438 { 1439 struct firmware_cache *fwc = &fw_cache; 1440 struct fw_cache_entry *fce; 1441 1442 spin_lock(&fwc->name_lock); 1443 while (!list_empty(&fwc->fw_names)) { 1444 fce = list_entry(fwc->fw_names.next, 1445 struct fw_cache_entry, list); 1446 list_del(&fce->list); 1447 spin_unlock(&fwc->name_lock); 1448 1449 uncache_firmware(fce->name); 1450 free_fw_cache_entry(fce); 1451 1452 spin_lock(&fwc->name_lock); 1453 } 1454 spin_unlock(&fwc->name_lock); 1455 } 1456 1457 /** 1458 * device_cache_fw_images() - cache devices' firmware 1459 * 1460 * If one device called request_firmware or its nowait version 1461 * successfully before, the firmware names are recored into the 1462 * device's devres link list, so device_cache_fw_images can call 1463 * cache_firmware() to cache these firmwares for the device, 1464 * then the device driver can load its firmwares easily at 1465 * time when system is not ready to complete loading firmware. 1466 */ 1467 static void device_cache_fw_images(void) 1468 { 1469 struct firmware_cache *fwc = &fw_cache; 1470 DEFINE_WAIT(wait); 1471 1472 pr_debug("%s\n", __func__); 1473 1474 /* cancel uncache work */ 1475 cancel_delayed_work_sync(&fwc->work); 1476 1477 fw_fallback_set_cache_timeout(); 1478 1479 mutex_lock(&fw_lock); 1480 fwc->state = FW_LOADER_START_CACHE; 1481 dpm_for_each_dev(NULL, dev_cache_fw_image); 1482 mutex_unlock(&fw_lock); 1483 1484 /* wait for completion of caching firmware for all devices */ 1485 async_synchronize_full_domain(&fw_cache_domain); 1486 1487 fw_fallback_set_default_timeout(); 1488 } 1489 1490 /** 1491 * device_uncache_fw_images() - uncache devices' firmware 1492 * 1493 * uncache all firmwares which have been cached successfully 1494 * by device_uncache_fw_images earlier 1495 */ 1496 static void device_uncache_fw_images(void) 1497 { 1498 pr_debug("%s\n", __func__); 1499 __device_uncache_fw_images(); 1500 } 1501 1502 static void device_uncache_fw_images_work(struct work_struct *work) 1503 { 1504 device_uncache_fw_images(); 1505 } 1506 1507 /** 1508 * device_uncache_fw_images_delay() - uncache devices firmwares 1509 * @delay: number of milliseconds to delay uncache device firmwares 1510 * 1511 * uncache all devices's firmwares which has been cached successfully 1512 * by device_cache_fw_images after @delay milliseconds. 1513 */ 1514 static void device_uncache_fw_images_delay(unsigned long delay) 1515 { 1516 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1517 msecs_to_jiffies(delay)); 1518 } 1519 1520 static int fw_pm_notify(struct notifier_block *notify_block, 1521 unsigned long mode, void *unused) 1522 { 1523 switch (mode) { 1524 case PM_HIBERNATION_PREPARE: 1525 case PM_SUSPEND_PREPARE: 1526 case PM_RESTORE_PREPARE: 1527 /* 1528 * Here, kill pending fallback requests will only kill 1529 * non-uevent firmware request to avoid stalling suspend. 1530 */ 1531 kill_pending_fw_fallback_reqs(false); 1532 device_cache_fw_images(); 1533 break; 1534 1535 case PM_POST_SUSPEND: 1536 case PM_POST_HIBERNATION: 1537 case PM_POST_RESTORE: 1538 /* 1539 * In case that system sleep failed and syscore_suspend is 1540 * not called. 1541 */ 1542 mutex_lock(&fw_lock); 1543 fw_cache.state = FW_LOADER_NO_CACHE; 1544 mutex_unlock(&fw_lock); 1545 1546 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1547 break; 1548 } 1549 1550 return 0; 1551 } 1552 1553 /* stop caching firmware once syscore_suspend is reached */ 1554 static int fw_suspend(void) 1555 { 1556 fw_cache.state = FW_LOADER_NO_CACHE; 1557 return 0; 1558 } 1559 1560 static struct syscore_ops fw_syscore_ops = { 1561 .suspend = fw_suspend, 1562 }; 1563 1564 static int __init register_fw_pm_ops(void) 1565 { 1566 int ret; 1567 1568 spin_lock_init(&fw_cache.name_lock); 1569 INIT_LIST_HEAD(&fw_cache.fw_names); 1570 1571 INIT_DELAYED_WORK(&fw_cache.work, 1572 device_uncache_fw_images_work); 1573 1574 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1575 ret = register_pm_notifier(&fw_cache.pm_notify); 1576 if (ret) 1577 return ret; 1578 1579 register_syscore_ops(&fw_syscore_ops); 1580 1581 return ret; 1582 } 1583 1584 static inline void unregister_fw_pm_ops(void) 1585 { 1586 unregister_syscore_ops(&fw_syscore_ops); 1587 unregister_pm_notifier(&fw_cache.pm_notify); 1588 } 1589 #else 1590 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1591 { 1592 } 1593 static inline int register_fw_pm_ops(void) 1594 { 1595 return 0; 1596 } 1597 static inline void unregister_fw_pm_ops(void) 1598 { 1599 } 1600 #endif 1601 1602 static void __init fw_cache_init(void) 1603 { 1604 spin_lock_init(&fw_cache.lock); 1605 INIT_LIST_HEAD(&fw_cache.head); 1606 fw_cache.state = FW_LOADER_NO_CACHE; 1607 } 1608 1609 static int fw_shutdown_notify(struct notifier_block *unused1, 1610 unsigned long unused2, void *unused3) 1611 { 1612 /* 1613 * Kill all pending fallback requests to avoid both stalling shutdown, 1614 * and avoid a deadlock with the usermode_lock. 1615 */ 1616 kill_pending_fw_fallback_reqs(true); 1617 1618 return NOTIFY_DONE; 1619 } 1620 1621 static struct notifier_block fw_shutdown_nb = { 1622 .notifier_call = fw_shutdown_notify, 1623 }; 1624 1625 static int __init firmware_class_init(void) 1626 { 1627 int ret; 1628 1629 /* No need to unfold these on exit */ 1630 fw_cache_init(); 1631 1632 ret = register_fw_pm_ops(); 1633 if (ret) 1634 return ret; 1635 1636 ret = register_reboot_notifier(&fw_shutdown_nb); 1637 if (ret) 1638 goto out; 1639 1640 return register_sysfs_loader(); 1641 1642 out: 1643 unregister_fw_pm_ops(); 1644 return ret; 1645 } 1646 1647 static void __exit firmware_class_exit(void) 1648 { 1649 unregister_fw_pm_ops(); 1650 unregister_reboot_notifier(&fw_shutdown_nb); 1651 unregister_sysfs_loader(); 1652 } 1653 1654 fs_initcall(firmware_class_init); 1655 module_exit(firmware_class_exit); 1656