1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/zstd.h> 39 #include <linux/xz.h> 40 41 #include <generated/utsrelease.h> 42 43 #include "../base.h" 44 #include "firmware.h" 45 #include "fallback.h" 46 47 MODULE_AUTHOR("Manuel Estrada Sainz"); 48 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 49 MODULE_LICENSE("GPL"); 50 51 struct firmware_cache { 52 /* firmware_buf instance will be added into the below list */ 53 spinlock_t lock; 54 struct list_head head; 55 int state; 56 57 #ifdef CONFIG_FW_CACHE 58 /* 59 * Names of firmware images which have been cached successfully 60 * will be added into the below list so that device uncache 61 * helper can trace which firmware images have been cached 62 * before. 63 */ 64 spinlock_t name_lock; 65 struct list_head fw_names; 66 67 struct delayed_work work; 68 69 struct notifier_block pm_notify; 70 #endif 71 }; 72 73 struct fw_cache_entry { 74 struct list_head list; 75 const char *name; 76 }; 77 78 struct fw_name_devm { 79 unsigned long magic; 80 const char *name; 81 }; 82 83 static inline struct fw_priv *to_fw_priv(struct kref *ref) 84 { 85 return container_of(ref, struct fw_priv, ref); 86 } 87 88 #define FW_LOADER_NO_CACHE 0 89 #define FW_LOADER_START_CACHE 1 90 91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 92 * guarding for corner cases a global lock should be OK */ 93 DEFINE_MUTEX(fw_lock); 94 95 struct firmware_cache fw_cache; 96 97 void fw_state_init(struct fw_priv *fw_priv) 98 { 99 struct fw_state *fw_st = &fw_priv->fw_st; 100 101 init_completion(&fw_st->completion); 102 fw_st->status = FW_STATUS_UNKNOWN; 103 } 104 105 static inline int fw_state_wait(struct fw_priv *fw_priv) 106 { 107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 108 } 109 110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); 111 112 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 113 struct firmware_cache *fwc, 114 void *dbuf, 115 size_t size, 116 size_t offset, 117 u32 opt_flags) 118 { 119 struct fw_priv *fw_priv; 120 121 /* For a partial read, the buffer must be preallocated. */ 122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 123 return NULL; 124 125 /* Only partial reads are allowed to use an offset. */ 126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 127 return NULL; 128 129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 130 if (!fw_priv) 131 return NULL; 132 133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 134 if (!fw_priv->fw_name) { 135 kfree(fw_priv); 136 return NULL; 137 } 138 139 kref_init(&fw_priv->ref); 140 fw_priv->fwc = fwc; 141 fw_priv->data = dbuf; 142 fw_priv->allocated_size = size; 143 fw_priv->offset = offset; 144 fw_priv->opt_flags = opt_flags; 145 fw_state_init(fw_priv); 146 #ifdef CONFIG_FW_LOADER_USER_HELPER 147 INIT_LIST_HEAD(&fw_priv->pending_list); 148 #endif 149 150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 151 152 return fw_priv; 153 } 154 155 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 156 { 157 struct fw_priv *tmp; 158 struct firmware_cache *fwc = &fw_cache; 159 160 list_for_each_entry(tmp, &fwc->head, list) 161 if (!strcmp(tmp->fw_name, fw_name)) 162 return tmp; 163 return NULL; 164 } 165 166 /* Returns 1 for batching firmware requests with the same name */ 167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc, 168 struct fw_priv **fw_priv, void *dbuf, size_t size, 169 size_t offset, u32 opt_flags) 170 { 171 struct fw_priv *tmp; 172 173 spin_lock(&fwc->lock); 174 /* 175 * Do not merge requests that are marked to be non-cached or 176 * are performing partial reads. 177 */ 178 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 179 tmp = __lookup_fw_priv(fw_name); 180 if (tmp) { 181 kref_get(&tmp->ref); 182 spin_unlock(&fwc->lock); 183 *fw_priv = tmp; 184 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 185 return 1; 186 } 187 } 188 189 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 190 if (tmp) { 191 INIT_LIST_HEAD(&tmp->list); 192 if (!(opt_flags & FW_OPT_NOCACHE)) 193 list_add(&tmp->list, &fwc->head); 194 } 195 spin_unlock(&fwc->lock); 196 197 *fw_priv = tmp; 198 199 return tmp ? 0 : -ENOMEM; 200 } 201 202 static void __free_fw_priv(struct kref *ref) 203 __releases(&fwc->lock) 204 { 205 struct fw_priv *fw_priv = to_fw_priv(ref); 206 struct firmware_cache *fwc = fw_priv->fwc; 207 208 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 209 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 210 (unsigned int)fw_priv->size); 211 212 list_del(&fw_priv->list); 213 spin_unlock(&fwc->lock); 214 215 if (fw_is_paged_buf(fw_priv)) 216 fw_free_paged_buf(fw_priv); 217 else if (!fw_priv->allocated_size) 218 vfree(fw_priv->data); 219 220 kfree_const(fw_priv->fw_name); 221 kfree(fw_priv); 222 } 223 224 void free_fw_priv(struct fw_priv *fw_priv) 225 { 226 struct firmware_cache *fwc = fw_priv->fwc; 227 spin_lock(&fwc->lock); 228 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 229 spin_unlock(&fwc->lock); 230 } 231 232 #ifdef CONFIG_FW_LOADER_PAGED_BUF 233 bool fw_is_paged_buf(struct fw_priv *fw_priv) 234 { 235 return fw_priv->is_paged_buf; 236 } 237 238 void fw_free_paged_buf(struct fw_priv *fw_priv) 239 { 240 int i; 241 242 if (!fw_priv->pages) 243 return; 244 245 vunmap(fw_priv->data); 246 247 for (i = 0; i < fw_priv->nr_pages; i++) 248 __free_page(fw_priv->pages[i]); 249 kvfree(fw_priv->pages); 250 fw_priv->pages = NULL; 251 fw_priv->page_array_size = 0; 252 fw_priv->nr_pages = 0; 253 fw_priv->data = NULL; 254 fw_priv->size = 0; 255 } 256 257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 258 { 259 /* If the array of pages is too small, grow it */ 260 if (fw_priv->page_array_size < pages_needed) { 261 int new_array_size = max(pages_needed, 262 fw_priv->page_array_size * 2); 263 struct page **new_pages; 264 265 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 266 GFP_KERNEL); 267 if (!new_pages) 268 return -ENOMEM; 269 memcpy(new_pages, fw_priv->pages, 270 fw_priv->page_array_size * sizeof(void *)); 271 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 272 (new_array_size - fw_priv->page_array_size)); 273 kvfree(fw_priv->pages); 274 fw_priv->pages = new_pages; 275 fw_priv->page_array_size = new_array_size; 276 } 277 278 while (fw_priv->nr_pages < pages_needed) { 279 fw_priv->pages[fw_priv->nr_pages] = 280 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 281 282 if (!fw_priv->pages[fw_priv->nr_pages]) 283 return -ENOMEM; 284 fw_priv->nr_pages++; 285 } 286 287 return 0; 288 } 289 290 int fw_map_paged_buf(struct fw_priv *fw_priv) 291 { 292 /* one pages buffer should be mapped/unmapped only once */ 293 if (!fw_priv->pages) 294 return 0; 295 296 vunmap(fw_priv->data); 297 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 298 PAGE_KERNEL_RO); 299 if (!fw_priv->data) 300 return -ENOMEM; 301 302 return 0; 303 } 304 #endif 305 306 /* 307 * ZSTD-compressed firmware support 308 */ 309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv, 311 size_t in_size, const void *in_buffer) 312 { 313 size_t len, out_size, workspace_size; 314 void *workspace, *out_buf; 315 zstd_dctx *ctx; 316 int err; 317 318 if (fw_priv->allocated_size) { 319 out_size = fw_priv->allocated_size; 320 out_buf = fw_priv->data; 321 } else { 322 zstd_frame_header params; 323 324 if (zstd_get_frame_header(¶ms, in_buffer, in_size) || 325 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { 326 dev_dbg(dev, "%s: invalid zstd header\n", __func__); 327 return -EINVAL; 328 } 329 out_size = params.frameContentSize; 330 out_buf = vzalloc(out_size); 331 if (!out_buf) 332 return -ENOMEM; 333 } 334 335 workspace_size = zstd_dctx_workspace_bound(); 336 workspace = kvzalloc(workspace_size, GFP_KERNEL); 337 if (!workspace) { 338 err = -ENOMEM; 339 goto error; 340 } 341 342 ctx = zstd_init_dctx(workspace, workspace_size); 343 if (!ctx) { 344 dev_dbg(dev, "%s: failed to initialize context\n", __func__); 345 err = -EINVAL; 346 goto error; 347 } 348 349 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size); 350 if (zstd_is_error(len)) { 351 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__, 352 zstd_get_error_code(len)); 353 err = -EINVAL; 354 goto error; 355 } 356 357 if (!fw_priv->allocated_size) 358 fw_priv->data = out_buf; 359 fw_priv->size = len; 360 err = 0; 361 362 error: 363 kvfree(workspace); 364 if (err && !fw_priv->allocated_size) 365 vfree(out_buf); 366 return err; 367 } 368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */ 369 370 /* 371 * XZ-compressed firmware support 372 */ 373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 374 /* show an error and return the standard error code */ 375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 376 { 377 if (xz_ret != XZ_STREAM_END) { 378 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 379 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 380 } 381 return 0; 382 } 383 384 /* single-shot decompression onto the pre-allocated buffer */ 385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 386 size_t in_size, const void *in_buffer) 387 { 388 struct xz_dec *xz_dec; 389 struct xz_buf xz_buf; 390 enum xz_ret xz_ret; 391 392 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 393 if (!xz_dec) 394 return -ENOMEM; 395 396 xz_buf.in_size = in_size; 397 xz_buf.in = in_buffer; 398 xz_buf.in_pos = 0; 399 xz_buf.out_size = fw_priv->allocated_size; 400 xz_buf.out = fw_priv->data; 401 xz_buf.out_pos = 0; 402 403 xz_ret = xz_dec_run(xz_dec, &xz_buf); 404 xz_dec_end(xz_dec); 405 406 fw_priv->size = xz_buf.out_pos; 407 return fw_decompress_xz_error(dev, xz_ret); 408 } 409 410 /* decompression on paged buffer and map it */ 411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 412 size_t in_size, const void *in_buffer) 413 { 414 struct xz_dec *xz_dec; 415 struct xz_buf xz_buf; 416 enum xz_ret xz_ret; 417 struct page *page; 418 int err = 0; 419 420 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 421 if (!xz_dec) 422 return -ENOMEM; 423 424 xz_buf.in_size = in_size; 425 xz_buf.in = in_buffer; 426 xz_buf.in_pos = 0; 427 428 fw_priv->is_paged_buf = true; 429 fw_priv->size = 0; 430 do { 431 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 432 err = -ENOMEM; 433 goto out; 434 } 435 436 /* decompress onto the new allocated page */ 437 page = fw_priv->pages[fw_priv->nr_pages - 1]; 438 xz_buf.out = kmap_local_page(page); 439 xz_buf.out_pos = 0; 440 xz_buf.out_size = PAGE_SIZE; 441 xz_ret = xz_dec_run(xz_dec, &xz_buf); 442 kunmap_local(xz_buf.out); 443 fw_priv->size += xz_buf.out_pos; 444 /* partial decompression means either end or error */ 445 if (xz_buf.out_pos != PAGE_SIZE) 446 break; 447 } while (xz_ret == XZ_OK); 448 449 err = fw_decompress_xz_error(dev, xz_ret); 450 if (!err) 451 err = fw_map_paged_buf(fw_priv); 452 453 out: 454 xz_dec_end(xz_dec); 455 return err; 456 } 457 458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 459 size_t in_size, const void *in_buffer) 460 { 461 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 462 if (fw_priv->data) 463 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 464 else 465 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 466 } 467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */ 468 469 /* direct firmware loading support */ 470 static char fw_path_para[256]; 471 static const char * const fw_path[] = { 472 fw_path_para, 473 "/lib/firmware/updates/" UTS_RELEASE, 474 "/lib/firmware/updates", 475 "/lib/firmware/" UTS_RELEASE, 476 "/lib/firmware" 477 }; 478 479 /* 480 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 481 * from kernel command line because firmware_class is generally built in 482 * kernel instead of module. 483 */ 484 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 485 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 486 487 static int 488 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 489 const char *suffix, 490 int (*decompress)(struct device *dev, 491 struct fw_priv *fw_priv, 492 size_t in_size, 493 const void *in_buffer)) 494 { 495 size_t size; 496 int i, len; 497 int rc = -ENOENT; 498 char *path; 499 size_t msize = INT_MAX; 500 void *buffer = NULL; 501 502 /* Already populated data member means we're loading into a buffer */ 503 if (!decompress && fw_priv->data) { 504 buffer = fw_priv->data; 505 msize = fw_priv->allocated_size; 506 } 507 508 path = __getname(); 509 if (!path) 510 return -ENOMEM; 511 512 wait_for_initramfs(); 513 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 514 size_t file_size = 0; 515 size_t *file_size_ptr = NULL; 516 517 /* skip the unset customized path */ 518 if (!fw_path[i][0]) 519 continue; 520 521 len = snprintf(path, PATH_MAX, "%s/%s%s", 522 fw_path[i], fw_priv->fw_name, suffix); 523 if (len >= PATH_MAX) { 524 rc = -ENAMETOOLONG; 525 break; 526 } 527 528 fw_priv->size = 0; 529 530 /* 531 * The total file size is only examined when doing a partial 532 * read; the "full read" case needs to fail if the whole 533 * firmware was not completely loaded. 534 */ 535 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 536 file_size_ptr = &file_size; 537 538 /* load firmware files from the mount namespace of init */ 539 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 540 &buffer, msize, 541 file_size_ptr, 542 READING_FIRMWARE); 543 if (rc < 0) { 544 if (rc != -ENOENT) 545 dev_warn(device, "loading %s failed with error %d\n", 546 path, rc); 547 else 548 dev_dbg(device, "loading %s failed for no such file or directory.\n", 549 path); 550 continue; 551 } 552 size = rc; 553 rc = 0; 554 555 dev_dbg(device, "Loading firmware from %s\n", path); 556 if (decompress) { 557 dev_dbg(device, "f/w decompressing %s\n", 558 fw_priv->fw_name); 559 rc = decompress(device, fw_priv, size, buffer); 560 /* discard the superfluous original content */ 561 vfree(buffer); 562 buffer = NULL; 563 if (rc) { 564 fw_free_paged_buf(fw_priv); 565 continue; 566 } 567 } else { 568 dev_dbg(device, "direct-loading %s\n", 569 fw_priv->fw_name); 570 if (!fw_priv->data) 571 fw_priv->data = buffer; 572 fw_priv->size = size; 573 } 574 fw_state_done(fw_priv); 575 break; 576 } 577 __putname(path); 578 579 return rc; 580 } 581 582 /* firmware holds the ownership of pages */ 583 static void firmware_free_data(const struct firmware *fw) 584 { 585 /* Loaded directly? */ 586 if (!fw->priv) { 587 vfree(fw->data); 588 return; 589 } 590 free_fw_priv(fw->priv); 591 } 592 593 /* store the pages buffer info firmware from buf */ 594 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 595 { 596 fw->priv = fw_priv; 597 fw->size = fw_priv->size; 598 fw->data = fw_priv->data; 599 600 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 601 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 602 (unsigned int)fw_priv->size); 603 } 604 605 #ifdef CONFIG_FW_CACHE 606 static void fw_name_devm_release(struct device *dev, void *res) 607 { 608 struct fw_name_devm *fwn = res; 609 610 if (fwn->magic == (unsigned long)&fw_cache) 611 pr_debug("%s: fw_name-%s devm-%p released\n", 612 __func__, fwn->name, res); 613 kfree_const(fwn->name); 614 } 615 616 static int fw_devm_match(struct device *dev, void *res, 617 void *match_data) 618 { 619 struct fw_name_devm *fwn = res; 620 621 return (fwn->magic == (unsigned long)&fw_cache) && 622 !strcmp(fwn->name, match_data); 623 } 624 625 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 626 const char *name) 627 { 628 struct fw_name_devm *fwn; 629 630 fwn = devres_find(dev, fw_name_devm_release, 631 fw_devm_match, (void *)name); 632 return fwn; 633 } 634 635 static bool fw_cache_is_setup(struct device *dev, const char *name) 636 { 637 struct fw_name_devm *fwn; 638 639 fwn = fw_find_devm_name(dev, name); 640 if (fwn) 641 return true; 642 643 return false; 644 } 645 646 /* add firmware name into devres list */ 647 static int fw_add_devm_name(struct device *dev, const char *name) 648 { 649 struct fw_name_devm *fwn; 650 651 if (fw_cache_is_setup(dev, name)) 652 return 0; 653 654 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 655 GFP_KERNEL); 656 if (!fwn) 657 return -ENOMEM; 658 fwn->name = kstrdup_const(name, GFP_KERNEL); 659 if (!fwn->name) { 660 devres_free(fwn); 661 return -ENOMEM; 662 } 663 664 fwn->magic = (unsigned long)&fw_cache; 665 devres_add(dev, fwn); 666 667 return 0; 668 } 669 #else 670 static bool fw_cache_is_setup(struct device *dev, const char *name) 671 { 672 return false; 673 } 674 675 static int fw_add_devm_name(struct device *dev, const char *name) 676 { 677 return 0; 678 } 679 #endif 680 681 int assign_fw(struct firmware *fw, struct device *device) 682 { 683 struct fw_priv *fw_priv = fw->priv; 684 int ret; 685 686 mutex_lock(&fw_lock); 687 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 688 mutex_unlock(&fw_lock); 689 return -ENOENT; 690 } 691 692 /* 693 * add firmware name into devres list so that we can auto cache 694 * and uncache firmware for device. 695 * 696 * device may has been deleted already, but the problem 697 * should be fixed in devres or driver core. 698 */ 699 /* don't cache firmware handled without uevent */ 700 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 701 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 702 ret = fw_add_devm_name(device, fw_priv->fw_name); 703 if (ret) { 704 mutex_unlock(&fw_lock); 705 return ret; 706 } 707 } 708 709 /* 710 * After caching firmware image is started, let it piggyback 711 * on request firmware. 712 */ 713 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 714 fw_priv->fwc->state == FW_LOADER_START_CACHE) 715 fw_cache_piggyback_on_request(fw_priv); 716 717 /* pass the pages buffer to driver at the last minute */ 718 fw_set_page_data(fw_priv, fw); 719 mutex_unlock(&fw_lock); 720 return 0; 721 } 722 723 /* prepare firmware and firmware_buf structs; 724 * return 0 if a firmware is already assigned, 1 if need to load one, 725 * or a negative error code 726 */ 727 static int 728 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 729 struct device *device, void *dbuf, size_t size, 730 size_t offset, u32 opt_flags) 731 { 732 struct firmware *firmware; 733 struct fw_priv *fw_priv; 734 int ret; 735 736 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 737 if (!firmware) { 738 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 739 __func__); 740 return -ENOMEM; 741 } 742 743 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { 744 dev_dbg(device, "using built-in %s\n", name); 745 return 0; /* assigned */ 746 } 747 748 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 749 offset, opt_flags); 750 751 /* 752 * bind with 'priv' now to avoid warning in failure path 753 * of requesting firmware. 754 */ 755 firmware->priv = fw_priv; 756 757 if (ret > 0) { 758 ret = fw_state_wait(fw_priv); 759 if (!ret) { 760 fw_set_page_data(fw_priv, firmware); 761 return 0; /* assigned */ 762 } 763 } 764 765 if (ret < 0) 766 return ret; 767 return 1; /* need to load */ 768 } 769 770 /* 771 * Batched requests need only one wake, we need to do this step last due to the 772 * fallback mechanism. The buf is protected with kref_get(), and it won't be 773 * released until the last user calls release_firmware(). 774 * 775 * Failed batched requests are possible as well, in such cases we just share 776 * the struct fw_priv and won't release it until all requests are woken 777 * and have gone through this same path. 778 */ 779 static void fw_abort_batch_reqs(struct firmware *fw) 780 { 781 struct fw_priv *fw_priv; 782 783 /* Loaded directly? */ 784 if (!fw || !fw->priv) 785 return; 786 787 fw_priv = fw->priv; 788 mutex_lock(&fw_lock); 789 if (!fw_state_is_aborted(fw_priv)) 790 fw_state_aborted(fw_priv); 791 mutex_unlock(&fw_lock); 792 } 793 794 #if defined(CONFIG_FW_LOADER_DEBUG) 795 #include <crypto/hash.h> 796 #include <crypto/sha2.h> 797 798 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device) 799 { 800 struct shash_desc *shash; 801 struct crypto_shash *alg; 802 u8 *sha256buf; 803 char *outbuf; 804 805 alg = crypto_alloc_shash("sha256", 0, 0); 806 if (!alg) 807 return; 808 809 sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 810 outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL); 811 shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL); 812 if (!sha256buf || !outbuf || !shash) 813 goto out_free; 814 815 shash->tfm = alg; 816 817 if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0) 818 goto out_shash; 819 820 for (int i = 0; i < SHA256_DIGEST_SIZE; i++) 821 sprintf(&outbuf[i * 2], "%02x", sha256buf[i]); 822 outbuf[SHA256_BLOCK_SIZE] = 0; 823 dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf); 824 825 out_shash: 826 crypto_free_shash(alg); 827 out_free: 828 kfree(shash); 829 kfree(outbuf); 830 kfree(sha256buf); 831 } 832 #else 833 static void fw_log_firmware_info(const struct firmware *fw, const char *name, 834 struct device *device) 835 {} 836 #endif 837 838 /* called from request_firmware() and request_firmware_work_func() */ 839 static int 840 _request_firmware(const struct firmware **firmware_p, const char *name, 841 struct device *device, void *buf, size_t size, 842 size_t offset, u32 opt_flags) 843 { 844 struct firmware *fw = NULL; 845 struct cred *kern_cred = NULL; 846 const struct cred *old_cred; 847 bool nondirect = false; 848 int ret; 849 850 if (!firmware_p) 851 return -EINVAL; 852 853 if (!name || name[0] == '\0') { 854 ret = -EINVAL; 855 goto out; 856 } 857 858 ret = _request_firmware_prepare(&fw, name, device, buf, size, 859 offset, opt_flags); 860 if (ret <= 0) /* error or already assigned */ 861 goto out; 862 863 /* 864 * We are about to try to access the firmware file. Because we may have been 865 * called by a driver when serving an unrelated request from userland, we use 866 * the kernel credentials to read the file. 867 */ 868 kern_cred = prepare_kernel_cred(&init_task); 869 if (!kern_cred) { 870 ret = -ENOMEM; 871 goto out; 872 } 873 old_cred = override_creds(kern_cred); 874 875 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 876 877 /* Only full reads can support decompression, platform, and sysfs. */ 878 if (!(opt_flags & FW_OPT_PARTIAL)) 879 nondirect = true; 880 881 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 882 if (ret == -ENOENT && nondirect) 883 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst", 884 fw_decompress_zstd); 885 #endif 886 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 887 if (ret == -ENOENT && nondirect) 888 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 889 fw_decompress_xz); 890 #endif 891 if (ret == -ENOENT && nondirect) 892 ret = firmware_fallback_platform(fw->priv); 893 894 if (ret) { 895 if (!(opt_flags & FW_OPT_NO_WARN)) 896 dev_warn(device, 897 "Direct firmware load for %s failed with error %d\n", 898 name, ret); 899 if (nondirect) 900 ret = firmware_fallback_sysfs(fw, name, device, 901 opt_flags, ret); 902 } else 903 ret = assign_fw(fw, device); 904 905 revert_creds(old_cred); 906 put_cred(kern_cred); 907 908 out: 909 if (ret < 0) { 910 fw_abort_batch_reqs(fw); 911 release_firmware(fw); 912 fw = NULL; 913 } else { 914 fw_log_firmware_info(fw, name, device); 915 } 916 917 *firmware_p = fw; 918 return ret; 919 } 920 921 /** 922 * request_firmware() - send firmware request and wait for it 923 * @firmware_p: pointer to firmware image 924 * @name: name of firmware file 925 * @device: device for which firmware is being loaded 926 * 927 * @firmware_p will be used to return a firmware image by the name 928 * of @name for device @device. 929 * 930 * Should be called from user context where sleeping is allowed. 931 * 932 * @name will be used as $FIRMWARE in the uevent environment and 933 * should be distinctive enough not to be confused with any other 934 * firmware image for this or any other device. 935 * 936 * Caller must hold the reference count of @device. 937 * 938 * The function can be called safely inside device's suspend and 939 * resume callback. 940 **/ 941 int 942 request_firmware(const struct firmware **firmware_p, const char *name, 943 struct device *device) 944 { 945 int ret; 946 947 /* Need to pin this module until return */ 948 __module_get(THIS_MODULE); 949 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 950 FW_OPT_UEVENT); 951 module_put(THIS_MODULE); 952 return ret; 953 } 954 EXPORT_SYMBOL(request_firmware); 955 956 /** 957 * firmware_request_nowarn() - request for an optional fw module 958 * @firmware: pointer to firmware image 959 * @name: name of firmware file 960 * @device: device for which firmware is being loaded 961 * 962 * This function is similar in behaviour to request_firmware(), except it 963 * doesn't produce warning messages when the file is not found. The sysfs 964 * fallback mechanism is enabled if direct filesystem lookup fails. However, 965 * failures to find the firmware file with it are still suppressed. It is 966 * therefore up to the driver to check for the return value of this call and to 967 * decide when to inform the users of errors. 968 **/ 969 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 970 struct device *device) 971 { 972 int ret; 973 974 /* Need to pin this module until return */ 975 __module_get(THIS_MODULE); 976 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 977 FW_OPT_UEVENT | FW_OPT_NO_WARN); 978 module_put(THIS_MODULE); 979 return ret; 980 } 981 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 982 983 /** 984 * request_firmware_direct() - load firmware directly without usermode helper 985 * @firmware_p: pointer to firmware image 986 * @name: name of firmware file 987 * @device: device for which firmware is being loaded 988 * 989 * This function works pretty much like request_firmware(), but this doesn't 990 * fall back to usermode helper even if the firmware couldn't be loaded 991 * directly from fs. Hence it's useful for loading optional firmwares, which 992 * aren't always present, without extra long timeouts of udev. 993 **/ 994 int request_firmware_direct(const struct firmware **firmware_p, 995 const char *name, struct device *device) 996 { 997 int ret; 998 999 __module_get(THIS_MODULE); 1000 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 1001 FW_OPT_UEVENT | FW_OPT_NO_WARN | 1002 FW_OPT_NOFALLBACK_SYSFS); 1003 module_put(THIS_MODULE); 1004 return ret; 1005 } 1006 EXPORT_SYMBOL_GPL(request_firmware_direct); 1007 1008 /** 1009 * firmware_request_platform() - request firmware with platform-fw fallback 1010 * @firmware: pointer to firmware image 1011 * @name: name of firmware file 1012 * @device: device for which firmware is being loaded 1013 * 1014 * This function is similar in behaviour to request_firmware, except that if 1015 * direct filesystem lookup fails, it will fallback to looking for a copy of the 1016 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 1017 **/ 1018 int firmware_request_platform(const struct firmware **firmware, 1019 const char *name, struct device *device) 1020 { 1021 int ret; 1022 1023 /* Need to pin this module until return */ 1024 __module_get(THIS_MODULE); 1025 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 1026 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 1027 module_put(THIS_MODULE); 1028 return ret; 1029 } 1030 EXPORT_SYMBOL_GPL(firmware_request_platform); 1031 1032 /** 1033 * firmware_request_cache() - cache firmware for suspend so resume can use it 1034 * @name: name of firmware file 1035 * @device: device for which firmware should be cached for 1036 * 1037 * There are some devices with an optimization that enables the device to not 1038 * require loading firmware on system reboot. This optimization may still 1039 * require the firmware present on resume from suspend. This routine can be 1040 * used to ensure the firmware is present on resume from suspend in these 1041 * situations. This helper is not compatible with drivers which use 1042 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 1043 **/ 1044 int firmware_request_cache(struct device *device, const char *name) 1045 { 1046 int ret; 1047 1048 mutex_lock(&fw_lock); 1049 ret = fw_add_devm_name(device, name); 1050 mutex_unlock(&fw_lock); 1051 1052 return ret; 1053 } 1054 EXPORT_SYMBOL_GPL(firmware_request_cache); 1055 1056 /** 1057 * request_firmware_into_buf() - load firmware into a previously allocated buffer 1058 * @firmware_p: pointer to firmware image 1059 * @name: name of firmware file 1060 * @device: device for which firmware is being loaded and DMA region allocated 1061 * @buf: address of buffer to load firmware into 1062 * @size: size of buffer 1063 * 1064 * This function works pretty much like request_firmware(), but it doesn't 1065 * allocate a buffer to hold the firmware data. Instead, the firmware 1066 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 1067 * data member is pointed at @buf. 1068 * 1069 * This function doesn't cache firmware either. 1070 */ 1071 int 1072 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 1073 struct device *device, void *buf, size_t size) 1074 { 1075 int ret; 1076 1077 if (fw_cache_is_setup(device, name)) 1078 return -EOPNOTSUPP; 1079 1080 __module_get(THIS_MODULE); 1081 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 1082 FW_OPT_UEVENT | FW_OPT_NOCACHE); 1083 module_put(THIS_MODULE); 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(request_firmware_into_buf); 1087 1088 /** 1089 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 1090 * @firmware_p: pointer to firmware image 1091 * @name: name of firmware file 1092 * @device: device for which firmware is being loaded and DMA region allocated 1093 * @buf: address of buffer to load firmware into 1094 * @size: size of buffer 1095 * @offset: offset into file to read 1096 * 1097 * This function works pretty much like request_firmware_into_buf except 1098 * it allows a partial read of the file. 1099 */ 1100 int 1101 request_partial_firmware_into_buf(const struct firmware **firmware_p, 1102 const char *name, struct device *device, 1103 void *buf, size_t size, size_t offset) 1104 { 1105 int ret; 1106 1107 if (fw_cache_is_setup(device, name)) 1108 return -EOPNOTSUPP; 1109 1110 __module_get(THIS_MODULE); 1111 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 1112 FW_OPT_UEVENT | FW_OPT_NOCACHE | 1113 FW_OPT_PARTIAL); 1114 module_put(THIS_MODULE); 1115 return ret; 1116 } 1117 EXPORT_SYMBOL(request_partial_firmware_into_buf); 1118 1119 /** 1120 * release_firmware() - release the resource associated with a firmware image 1121 * @fw: firmware resource to release 1122 **/ 1123 void release_firmware(const struct firmware *fw) 1124 { 1125 if (fw) { 1126 if (!firmware_is_builtin(fw)) 1127 firmware_free_data(fw); 1128 kfree(fw); 1129 } 1130 } 1131 EXPORT_SYMBOL(release_firmware); 1132 1133 /* Async support */ 1134 struct firmware_work { 1135 struct work_struct work; 1136 struct module *module; 1137 const char *name; 1138 struct device *device; 1139 void *context; 1140 void (*cont)(const struct firmware *fw, void *context); 1141 u32 opt_flags; 1142 }; 1143 1144 static void request_firmware_work_func(struct work_struct *work) 1145 { 1146 struct firmware_work *fw_work; 1147 const struct firmware *fw; 1148 1149 fw_work = container_of(work, struct firmware_work, work); 1150 1151 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1152 fw_work->opt_flags); 1153 fw_work->cont(fw, fw_work->context); 1154 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1155 1156 module_put(fw_work->module); 1157 kfree_const(fw_work->name); 1158 kfree(fw_work); 1159 } 1160 1161 /** 1162 * request_firmware_nowait() - asynchronous version of request_firmware 1163 * @module: module requesting the firmware 1164 * @uevent: sends uevent to copy the firmware image if this flag 1165 * is non-zero else the firmware copy must be done manually. 1166 * @name: name of firmware file 1167 * @device: device for which firmware is being loaded 1168 * @gfp: allocation flags 1169 * @context: will be passed over to @cont, and 1170 * @fw may be %NULL if firmware request fails. 1171 * @cont: function will be called asynchronously when the firmware 1172 * request is over. 1173 * 1174 * Caller must hold the reference count of @device. 1175 * 1176 * Asynchronous variant of request_firmware() for user contexts: 1177 * - sleep for as small periods as possible since it may 1178 * increase kernel boot time of built-in device drivers 1179 * requesting firmware in their ->probe() methods, if 1180 * @gfp is GFP_KERNEL. 1181 * 1182 * - can't sleep at all if @gfp is GFP_ATOMIC. 1183 **/ 1184 int 1185 request_firmware_nowait( 1186 struct module *module, bool uevent, 1187 const char *name, struct device *device, gfp_t gfp, void *context, 1188 void (*cont)(const struct firmware *fw, void *context)) 1189 { 1190 struct firmware_work *fw_work; 1191 1192 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1193 if (!fw_work) 1194 return -ENOMEM; 1195 1196 fw_work->module = module; 1197 fw_work->name = kstrdup_const(name, gfp); 1198 if (!fw_work->name) { 1199 kfree(fw_work); 1200 return -ENOMEM; 1201 } 1202 fw_work->device = device; 1203 fw_work->context = context; 1204 fw_work->cont = cont; 1205 fw_work->opt_flags = FW_OPT_NOWAIT | 1206 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1207 1208 if (!uevent && fw_cache_is_setup(device, name)) { 1209 kfree_const(fw_work->name); 1210 kfree(fw_work); 1211 return -EOPNOTSUPP; 1212 } 1213 1214 if (!try_module_get(module)) { 1215 kfree_const(fw_work->name); 1216 kfree(fw_work); 1217 return -EFAULT; 1218 } 1219 1220 get_device(fw_work->device); 1221 INIT_WORK(&fw_work->work, request_firmware_work_func); 1222 schedule_work(&fw_work->work); 1223 return 0; 1224 } 1225 EXPORT_SYMBOL(request_firmware_nowait); 1226 1227 #ifdef CONFIG_FW_CACHE 1228 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1229 1230 /** 1231 * cache_firmware() - cache one firmware image in kernel memory space 1232 * @fw_name: the firmware image name 1233 * 1234 * Cache firmware in kernel memory so that drivers can use it when 1235 * system isn't ready for them to request firmware image from userspace. 1236 * Once it returns successfully, driver can use request_firmware or its 1237 * nowait version to get the cached firmware without any interacting 1238 * with userspace 1239 * 1240 * Return 0 if the firmware image has been cached successfully 1241 * Return !0 otherwise 1242 * 1243 */ 1244 static int cache_firmware(const char *fw_name) 1245 { 1246 int ret; 1247 const struct firmware *fw; 1248 1249 pr_debug("%s: %s\n", __func__, fw_name); 1250 1251 ret = request_firmware(&fw, fw_name, NULL); 1252 if (!ret) 1253 kfree(fw); 1254 1255 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1256 1257 return ret; 1258 } 1259 1260 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1261 { 1262 struct fw_priv *tmp; 1263 struct firmware_cache *fwc = &fw_cache; 1264 1265 spin_lock(&fwc->lock); 1266 tmp = __lookup_fw_priv(fw_name); 1267 spin_unlock(&fwc->lock); 1268 1269 return tmp; 1270 } 1271 1272 /** 1273 * uncache_firmware() - remove one cached firmware image 1274 * @fw_name: the firmware image name 1275 * 1276 * Uncache one firmware image which has been cached successfully 1277 * before. 1278 * 1279 * Return 0 if the firmware cache has been removed successfully 1280 * Return !0 otherwise 1281 * 1282 */ 1283 static int uncache_firmware(const char *fw_name) 1284 { 1285 struct fw_priv *fw_priv; 1286 struct firmware fw; 1287 1288 pr_debug("%s: %s\n", __func__, fw_name); 1289 1290 if (firmware_request_builtin(&fw, fw_name)) 1291 return 0; 1292 1293 fw_priv = lookup_fw_priv(fw_name); 1294 if (fw_priv) { 1295 free_fw_priv(fw_priv); 1296 return 0; 1297 } 1298 1299 return -EINVAL; 1300 } 1301 1302 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1303 { 1304 struct fw_cache_entry *fce; 1305 1306 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1307 if (!fce) 1308 goto exit; 1309 1310 fce->name = kstrdup_const(name, GFP_ATOMIC); 1311 if (!fce->name) { 1312 kfree(fce); 1313 fce = NULL; 1314 goto exit; 1315 } 1316 exit: 1317 return fce; 1318 } 1319 1320 static int __fw_entry_found(const char *name) 1321 { 1322 struct firmware_cache *fwc = &fw_cache; 1323 struct fw_cache_entry *fce; 1324 1325 list_for_each_entry(fce, &fwc->fw_names, list) { 1326 if (!strcmp(fce->name, name)) 1327 return 1; 1328 } 1329 return 0; 1330 } 1331 1332 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1333 { 1334 const char *name = fw_priv->fw_name; 1335 struct firmware_cache *fwc = fw_priv->fwc; 1336 struct fw_cache_entry *fce; 1337 1338 spin_lock(&fwc->name_lock); 1339 if (__fw_entry_found(name)) 1340 goto found; 1341 1342 fce = alloc_fw_cache_entry(name); 1343 if (fce) { 1344 list_add(&fce->list, &fwc->fw_names); 1345 kref_get(&fw_priv->ref); 1346 pr_debug("%s: fw: %s\n", __func__, name); 1347 } 1348 found: 1349 spin_unlock(&fwc->name_lock); 1350 } 1351 1352 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1353 { 1354 kfree_const(fce->name); 1355 kfree(fce); 1356 } 1357 1358 static void __async_dev_cache_fw_image(void *fw_entry, 1359 async_cookie_t cookie) 1360 { 1361 struct fw_cache_entry *fce = fw_entry; 1362 struct firmware_cache *fwc = &fw_cache; 1363 int ret; 1364 1365 ret = cache_firmware(fce->name); 1366 if (ret) { 1367 spin_lock(&fwc->name_lock); 1368 list_del(&fce->list); 1369 spin_unlock(&fwc->name_lock); 1370 1371 free_fw_cache_entry(fce); 1372 } 1373 } 1374 1375 /* called with dev->devres_lock held */ 1376 static void dev_create_fw_entry(struct device *dev, void *res, 1377 void *data) 1378 { 1379 struct fw_name_devm *fwn = res; 1380 const char *fw_name = fwn->name; 1381 struct list_head *head = data; 1382 struct fw_cache_entry *fce; 1383 1384 fce = alloc_fw_cache_entry(fw_name); 1385 if (fce) 1386 list_add(&fce->list, head); 1387 } 1388 1389 static int devm_name_match(struct device *dev, void *res, 1390 void *match_data) 1391 { 1392 struct fw_name_devm *fwn = res; 1393 return (fwn->magic == (unsigned long)match_data); 1394 } 1395 1396 static void dev_cache_fw_image(struct device *dev, void *data) 1397 { 1398 LIST_HEAD(todo); 1399 struct fw_cache_entry *fce; 1400 struct fw_cache_entry *fce_next; 1401 struct firmware_cache *fwc = &fw_cache; 1402 1403 devres_for_each_res(dev, fw_name_devm_release, 1404 devm_name_match, &fw_cache, 1405 dev_create_fw_entry, &todo); 1406 1407 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1408 list_del(&fce->list); 1409 1410 spin_lock(&fwc->name_lock); 1411 /* only one cache entry for one firmware */ 1412 if (!__fw_entry_found(fce->name)) { 1413 list_add(&fce->list, &fwc->fw_names); 1414 } else { 1415 free_fw_cache_entry(fce); 1416 fce = NULL; 1417 } 1418 spin_unlock(&fwc->name_lock); 1419 1420 if (fce) 1421 async_schedule_domain(__async_dev_cache_fw_image, 1422 (void *)fce, 1423 &fw_cache_domain); 1424 } 1425 } 1426 1427 static void __device_uncache_fw_images(void) 1428 { 1429 struct firmware_cache *fwc = &fw_cache; 1430 struct fw_cache_entry *fce; 1431 1432 spin_lock(&fwc->name_lock); 1433 while (!list_empty(&fwc->fw_names)) { 1434 fce = list_entry(fwc->fw_names.next, 1435 struct fw_cache_entry, list); 1436 list_del(&fce->list); 1437 spin_unlock(&fwc->name_lock); 1438 1439 uncache_firmware(fce->name); 1440 free_fw_cache_entry(fce); 1441 1442 spin_lock(&fwc->name_lock); 1443 } 1444 spin_unlock(&fwc->name_lock); 1445 } 1446 1447 /** 1448 * device_cache_fw_images() - cache devices' firmware 1449 * 1450 * If one device called request_firmware or its nowait version 1451 * successfully before, the firmware names are recored into the 1452 * device's devres link list, so device_cache_fw_images can call 1453 * cache_firmware() to cache these firmwares for the device, 1454 * then the device driver can load its firmwares easily at 1455 * time when system is not ready to complete loading firmware. 1456 */ 1457 static void device_cache_fw_images(void) 1458 { 1459 struct firmware_cache *fwc = &fw_cache; 1460 DEFINE_WAIT(wait); 1461 1462 pr_debug("%s\n", __func__); 1463 1464 /* cancel uncache work */ 1465 cancel_delayed_work_sync(&fwc->work); 1466 1467 fw_fallback_set_cache_timeout(); 1468 1469 mutex_lock(&fw_lock); 1470 fwc->state = FW_LOADER_START_CACHE; 1471 dpm_for_each_dev(NULL, dev_cache_fw_image); 1472 mutex_unlock(&fw_lock); 1473 1474 /* wait for completion of caching firmware for all devices */ 1475 async_synchronize_full_domain(&fw_cache_domain); 1476 1477 fw_fallback_set_default_timeout(); 1478 } 1479 1480 /** 1481 * device_uncache_fw_images() - uncache devices' firmware 1482 * 1483 * uncache all firmwares which have been cached successfully 1484 * by device_uncache_fw_images earlier 1485 */ 1486 static void device_uncache_fw_images(void) 1487 { 1488 pr_debug("%s\n", __func__); 1489 __device_uncache_fw_images(); 1490 } 1491 1492 static void device_uncache_fw_images_work(struct work_struct *work) 1493 { 1494 device_uncache_fw_images(); 1495 } 1496 1497 /** 1498 * device_uncache_fw_images_delay() - uncache devices firmwares 1499 * @delay: number of milliseconds to delay uncache device firmwares 1500 * 1501 * uncache all devices's firmwares which has been cached successfully 1502 * by device_cache_fw_images after @delay milliseconds. 1503 */ 1504 static void device_uncache_fw_images_delay(unsigned long delay) 1505 { 1506 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1507 msecs_to_jiffies(delay)); 1508 } 1509 1510 static int fw_pm_notify(struct notifier_block *notify_block, 1511 unsigned long mode, void *unused) 1512 { 1513 switch (mode) { 1514 case PM_HIBERNATION_PREPARE: 1515 case PM_SUSPEND_PREPARE: 1516 case PM_RESTORE_PREPARE: 1517 /* 1518 * kill pending fallback requests with a custom fallback 1519 * to avoid stalling suspend. 1520 */ 1521 kill_pending_fw_fallback_reqs(true); 1522 device_cache_fw_images(); 1523 break; 1524 1525 case PM_POST_SUSPEND: 1526 case PM_POST_HIBERNATION: 1527 case PM_POST_RESTORE: 1528 /* 1529 * In case that system sleep failed and syscore_suspend is 1530 * not called. 1531 */ 1532 mutex_lock(&fw_lock); 1533 fw_cache.state = FW_LOADER_NO_CACHE; 1534 mutex_unlock(&fw_lock); 1535 1536 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1537 break; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* stop caching firmware once syscore_suspend is reached */ 1544 static int fw_suspend(void) 1545 { 1546 fw_cache.state = FW_LOADER_NO_CACHE; 1547 return 0; 1548 } 1549 1550 static struct syscore_ops fw_syscore_ops = { 1551 .suspend = fw_suspend, 1552 }; 1553 1554 static int __init register_fw_pm_ops(void) 1555 { 1556 int ret; 1557 1558 spin_lock_init(&fw_cache.name_lock); 1559 INIT_LIST_HEAD(&fw_cache.fw_names); 1560 1561 INIT_DELAYED_WORK(&fw_cache.work, 1562 device_uncache_fw_images_work); 1563 1564 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1565 ret = register_pm_notifier(&fw_cache.pm_notify); 1566 if (ret) 1567 return ret; 1568 1569 register_syscore_ops(&fw_syscore_ops); 1570 1571 return ret; 1572 } 1573 1574 static inline void unregister_fw_pm_ops(void) 1575 { 1576 unregister_syscore_ops(&fw_syscore_ops); 1577 unregister_pm_notifier(&fw_cache.pm_notify); 1578 } 1579 #else 1580 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1581 { 1582 } 1583 static inline int register_fw_pm_ops(void) 1584 { 1585 return 0; 1586 } 1587 static inline void unregister_fw_pm_ops(void) 1588 { 1589 } 1590 #endif 1591 1592 static void __init fw_cache_init(void) 1593 { 1594 spin_lock_init(&fw_cache.lock); 1595 INIT_LIST_HEAD(&fw_cache.head); 1596 fw_cache.state = FW_LOADER_NO_CACHE; 1597 } 1598 1599 static int fw_shutdown_notify(struct notifier_block *unused1, 1600 unsigned long unused2, void *unused3) 1601 { 1602 /* 1603 * Kill all pending fallback requests to avoid both stalling shutdown, 1604 * and avoid a deadlock with the usermode_lock. 1605 */ 1606 kill_pending_fw_fallback_reqs(false); 1607 1608 return NOTIFY_DONE; 1609 } 1610 1611 static struct notifier_block fw_shutdown_nb = { 1612 .notifier_call = fw_shutdown_notify, 1613 }; 1614 1615 static int __init firmware_class_init(void) 1616 { 1617 int ret; 1618 1619 /* No need to unfold these on exit */ 1620 fw_cache_init(); 1621 1622 ret = register_fw_pm_ops(); 1623 if (ret) 1624 return ret; 1625 1626 ret = register_reboot_notifier(&fw_shutdown_nb); 1627 if (ret) 1628 goto out; 1629 1630 return register_sysfs_loader(); 1631 1632 out: 1633 unregister_fw_pm_ops(); 1634 return ret; 1635 } 1636 1637 static void __exit firmware_class_exit(void) 1638 { 1639 unregister_fw_pm_ops(); 1640 unregister_reboot_notifier(&fw_shutdown_nb); 1641 unregister_sysfs_loader(); 1642 } 1643 1644 fs_initcall(firmware_class_init); 1645 module_exit(firmware_class_exit); 1646