xref: /linux/drivers/base/firmware_loader/main.c (revision 61f21988d806a5c93c39179f2d91ea2d3219b025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40 
41 #include <generated/utsrelease.h>
42 
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46 
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50 
51 struct firmware_cache {
52 	/* firmware_buf instance will be added into the below list */
53 	spinlock_t lock;
54 	struct list_head head;
55 	int state;
56 
57 #ifdef CONFIG_FW_CACHE
58 	/*
59 	 * Names of firmware images which have been cached successfully
60 	 * will be added into the below list so that device uncache
61 	 * helper can trace which firmware images have been cached
62 	 * before.
63 	 */
64 	spinlock_t name_lock;
65 	struct list_head fw_names;
66 
67 	struct delayed_work work;
68 
69 	struct notifier_block   pm_notify;
70 #endif
71 };
72 
73 struct fw_cache_entry {
74 	struct list_head list;
75 	const char *name;
76 };
77 
78 struct fw_name_devm {
79 	unsigned long magic;
80 	const char *name;
81 };
82 
83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85 	return container_of(ref, struct fw_priv, ref);
86 }
87 
88 #define	FW_LOADER_NO_CACHE	0
89 #define	FW_LOADER_START_CACHE	1
90 
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92  * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94 
95 struct firmware_cache fw_cache;
96 
97 void fw_state_init(struct fw_priv *fw_priv)
98 {
99 	struct fw_state *fw_st = &fw_priv->fw_st;
100 
101 	init_completion(&fw_st->completion);
102 	fw_st->status = FW_STATUS_UNKNOWN;
103 }
104 
105 static inline int fw_state_wait(struct fw_priv *fw_priv)
106 {
107 	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
108 }
109 
110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
111 
112 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
113 					  struct firmware_cache *fwc,
114 					  void *dbuf,
115 					  size_t size,
116 					  size_t offset,
117 					  u32 opt_flags)
118 {
119 	struct fw_priv *fw_priv;
120 
121 	/* For a partial read, the buffer must be preallocated. */
122 	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
123 		return NULL;
124 
125 	/* Only partial reads are allowed to use an offset. */
126 	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
127 		return NULL;
128 
129 	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
130 	if (!fw_priv)
131 		return NULL;
132 
133 	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
134 	if (!fw_priv->fw_name) {
135 		kfree(fw_priv);
136 		return NULL;
137 	}
138 
139 	kref_init(&fw_priv->ref);
140 	fw_priv->fwc = fwc;
141 	fw_priv->data = dbuf;
142 	fw_priv->allocated_size = size;
143 	fw_priv->offset = offset;
144 	fw_priv->opt_flags = opt_flags;
145 	fw_state_init(fw_priv);
146 #ifdef CONFIG_FW_LOADER_USER_HELPER
147 	INIT_LIST_HEAD(&fw_priv->pending_list);
148 #endif
149 
150 	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
151 
152 	return fw_priv;
153 }
154 
155 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
156 {
157 	struct fw_priv *tmp;
158 	struct firmware_cache *fwc = &fw_cache;
159 
160 	list_for_each_entry(tmp, &fwc->head, list)
161 		if (!strcmp(tmp->fw_name, fw_name))
162 			return tmp;
163 	return NULL;
164 }
165 
166 /* Returns 1 for batching firmware requests with the same name */
167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
168 			 struct fw_priv **fw_priv, void *dbuf, size_t size,
169 			 size_t offset, u32 opt_flags)
170 {
171 	struct fw_priv *tmp;
172 
173 	spin_lock(&fwc->lock);
174 	/*
175 	 * Do not merge requests that are marked to be non-cached or
176 	 * are performing partial reads.
177 	 */
178 	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
179 		tmp = __lookup_fw_priv(fw_name);
180 		if (tmp) {
181 			kref_get(&tmp->ref);
182 			spin_unlock(&fwc->lock);
183 			*fw_priv = tmp;
184 			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
185 			return 1;
186 		}
187 	}
188 
189 	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
190 	if (tmp) {
191 		INIT_LIST_HEAD(&tmp->list);
192 		if (!(opt_flags & FW_OPT_NOCACHE))
193 			list_add(&tmp->list, &fwc->head);
194 	}
195 	spin_unlock(&fwc->lock);
196 
197 	*fw_priv = tmp;
198 
199 	return tmp ? 0 : -ENOMEM;
200 }
201 
202 static void __free_fw_priv(struct kref *ref)
203 	__releases(&fwc->lock)
204 {
205 	struct fw_priv *fw_priv = to_fw_priv(ref);
206 	struct firmware_cache *fwc = fw_priv->fwc;
207 
208 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
209 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
210 		 (unsigned int)fw_priv->size);
211 
212 	list_del(&fw_priv->list);
213 	spin_unlock(&fwc->lock);
214 
215 	if (fw_is_paged_buf(fw_priv))
216 		fw_free_paged_buf(fw_priv);
217 	else if (!fw_priv->allocated_size)
218 		vfree(fw_priv->data);
219 
220 	kfree_const(fw_priv->fw_name);
221 	kfree(fw_priv);
222 }
223 
224 void free_fw_priv(struct fw_priv *fw_priv)
225 {
226 	struct firmware_cache *fwc = fw_priv->fwc;
227 	spin_lock(&fwc->lock);
228 	if (!kref_put(&fw_priv->ref, __free_fw_priv))
229 		spin_unlock(&fwc->lock);
230 }
231 
232 #ifdef CONFIG_FW_LOADER_PAGED_BUF
233 bool fw_is_paged_buf(struct fw_priv *fw_priv)
234 {
235 	return fw_priv->is_paged_buf;
236 }
237 
238 void fw_free_paged_buf(struct fw_priv *fw_priv)
239 {
240 	int i;
241 
242 	if (!fw_priv->pages)
243 		return;
244 
245 	vunmap(fw_priv->data);
246 
247 	for (i = 0; i < fw_priv->nr_pages; i++)
248 		__free_page(fw_priv->pages[i]);
249 	kvfree(fw_priv->pages);
250 	fw_priv->pages = NULL;
251 	fw_priv->page_array_size = 0;
252 	fw_priv->nr_pages = 0;
253 	fw_priv->data = NULL;
254 	fw_priv->size = 0;
255 }
256 
257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
258 {
259 	/* If the array of pages is too small, grow it */
260 	if (fw_priv->page_array_size < pages_needed) {
261 		int new_array_size = max(pages_needed,
262 					 fw_priv->page_array_size * 2);
263 		struct page **new_pages;
264 
265 		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
266 					   GFP_KERNEL);
267 		if (!new_pages)
268 			return -ENOMEM;
269 		memcpy(new_pages, fw_priv->pages,
270 		       fw_priv->page_array_size * sizeof(void *));
271 		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
272 		       (new_array_size - fw_priv->page_array_size));
273 		kvfree(fw_priv->pages);
274 		fw_priv->pages = new_pages;
275 		fw_priv->page_array_size = new_array_size;
276 	}
277 
278 	while (fw_priv->nr_pages < pages_needed) {
279 		fw_priv->pages[fw_priv->nr_pages] =
280 			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
281 
282 		if (!fw_priv->pages[fw_priv->nr_pages])
283 			return -ENOMEM;
284 		fw_priv->nr_pages++;
285 	}
286 
287 	return 0;
288 }
289 
290 int fw_map_paged_buf(struct fw_priv *fw_priv)
291 {
292 	/* one pages buffer should be mapped/unmapped only once */
293 	if (!fw_priv->pages)
294 		return 0;
295 
296 	vunmap(fw_priv->data);
297 	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
298 			     PAGE_KERNEL_RO);
299 	if (!fw_priv->data)
300 		return -ENOMEM;
301 
302 	return 0;
303 }
304 #endif
305 
306 /*
307  * ZSTD-compressed firmware support
308  */
309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
311 			      size_t in_size, const void *in_buffer)
312 {
313 	size_t len, out_size, workspace_size;
314 	void *workspace, *out_buf;
315 	zstd_dctx *ctx;
316 	int err;
317 
318 	if (fw_priv->allocated_size) {
319 		out_size = fw_priv->allocated_size;
320 		out_buf = fw_priv->data;
321 	} else {
322 		zstd_frame_header params;
323 
324 		if (zstd_get_frame_header(&params, in_buffer, in_size) ||
325 		    params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
326 			dev_dbg(dev, "%s: invalid zstd header\n", __func__);
327 			return -EINVAL;
328 		}
329 		out_size = params.frameContentSize;
330 		out_buf = vzalloc(out_size);
331 		if (!out_buf)
332 			return -ENOMEM;
333 	}
334 
335 	workspace_size = zstd_dctx_workspace_bound();
336 	workspace = kvzalloc(workspace_size, GFP_KERNEL);
337 	if (!workspace) {
338 		err = -ENOMEM;
339 		goto error;
340 	}
341 
342 	ctx = zstd_init_dctx(workspace, workspace_size);
343 	if (!ctx) {
344 		dev_dbg(dev, "%s: failed to initialize context\n", __func__);
345 		err = -EINVAL;
346 		goto error;
347 	}
348 
349 	len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
350 	if (zstd_is_error(len)) {
351 		dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
352 			zstd_get_error_code(len));
353 		err = -EINVAL;
354 		goto error;
355 	}
356 
357 	if (!fw_priv->allocated_size)
358 		fw_priv->data = out_buf;
359 	fw_priv->size = len;
360 	err = 0;
361 
362  error:
363 	kvfree(workspace);
364 	if (err && !fw_priv->allocated_size)
365 		vfree(out_buf);
366 	return err;
367 }
368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
369 
370 /*
371  * XZ-compressed firmware support
372  */
373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
374 /* show an error and return the standard error code */
375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
376 {
377 	if (xz_ret != XZ_STREAM_END) {
378 		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
379 		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
380 	}
381 	return 0;
382 }
383 
384 /* single-shot decompression onto the pre-allocated buffer */
385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
386 				   size_t in_size, const void *in_buffer)
387 {
388 	struct xz_dec *xz_dec;
389 	struct xz_buf xz_buf;
390 	enum xz_ret xz_ret;
391 
392 	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
393 	if (!xz_dec)
394 		return -ENOMEM;
395 
396 	xz_buf.in_size = in_size;
397 	xz_buf.in = in_buffer;
398 	xz_buf.in_pos = 0;
399 	xz_buf.out_size = fw_priv->allocated_size;
400 	xz_buf.out = fw_priv->data;
401 	xz_buf.out_pos = 0;
402 
403 	xz_ret = xz_dec_run(xz_dec, &xz_buf);
404 	xz_dec_end(xz_dec);
405 
406 	fw_priv->size = xz_buf.out_pos;
407 	return fw_decompress_xz_error(dev, xz_ret);
408 }
409 
410 /* decompression on paged buffer and map it */
411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
412 				  size_t in_size, const void *in_buffer)
413 {
414 	struct xz_dec *xz_dec;
415 	struct xz_buf xz_buf;
416 	enum xz_ret xz_ret;
417 	struct page *page;
418 	int err = 0;
419 
420 	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
421 	if (!xz_dec)
422 		return -ENOMEM;
423 
424 	xz_buf.in_size = in_size;
425 	xz_buf.in = in_buffer;
426 	xz_buf.in_pos = 0;
427 
428 	fw_priv->is_paged_buf = true;
429 	fw_priv->size = 0;
430 	do {
431 		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
432 			err = -ENOMEM;
433 			goto out;
434 		}
435 
436 		/* decompress onto the new allocated page */
437 		page = fw_priv->pages[fw_priv->nr_pages - 1];
438 		xz_buf.out = kmap_local_page(page);
439 		xz_buf.out_pos = 0;
440 		xz_buf.out_size = PAGE_SIZE;
441 		xz_ret = xz_dec_run(xz_dec, &xz_buf);
442 		kunmap_local(xz_buf.out);
443 		fw_priv->size += xz_buf.out_pos;
444 		/* partial decompression means either end or error */
445 		if (xz_buf.out_pos != PAGE_SIZE)
446 			break;
447 	} while (xz_ret == XZ_OK);
448 
449 	err = fw_decompress_xz_error(dev, xz_ret);
450 	if (!err)
451 		err = fw_map_paged_buf(fw_priv);
452 
453  out:
454 	xz_dec_end(xz_dec);
455 	return err;
456 }
457 
458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
459 			    size_t in_size, const void *in_buffer)
460 {
461 	/* if the buffer is pre-allocated, we can perform in single-shot mode */
462 	if (fw_priv->data)
463 		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
464 	else
465 		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
466 }
467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
468 
469 /* direct firmware loading support */
470 static char fw_path_para[256];
471 static const char * const fw_path[] = {
472 	fw_path_para,
473 	"/lib/firmware/updates/" UTS_RELEASE,
474 	"/lib/firmware/updates",
475 	"/lib/firmware/" UTS_RELEASE,
476 	"/lib/firmware"
477 };
478 
479 /*
480  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
481  * from kernel command line because firmware_class is generally built in
482  * kernel instead of module.
483  */
484 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
485 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
486 
487 static int
488 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
489 			   const char *suffix,
490 			   int (*decompress)(struct device *dev,
491 					     struct fw_priv *fw_priv,
492 					     size_t in_size,
493 					     const void *in_buffer))
494 {
495 	size_t size;
496 	int i, len;
497 	int rc = -ENOENT;
498 	char *path;
499 	size_t msize = INT_MAX;
500 	void *buffer = NULL;
501 
502 	/* Already populated data member means we're loading into a buffer */
503 	if (!decompress && fw_priv->data) {
504 		buffer = fw_priv->data;
505 		msize = fw_priv->allocated_size;
506 	}
507 
508 	path = __getname();
509 	if (!path)
510 		return -ENOMEM;
511 
512 	wait_for_initramfs();
513 	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
514 		size_t file_size = 0;
515 		size_t *file_size_ptr = NULL;
516 
517 		/* skip the unset customized path */
518 		if (!fw_path[i][0])
519 			continue;
520 
521 		len = snprintf(path, PATH_MAX, "%s/%s%s",
522 			       fw_path[i], fw_priv->fw_name, suffix);
523 		if (len >= PATH_MAX) {
524 			rc = -ENAMETOOLONG;
525 			break;
526 		}
527 
528 		fw_priv->size = 0;
529 
530 		/*
531 		 * The total file size is only examined when doing a partial
532 		 * read; the "full read" case needs to fail if the whole
533 		 * firmware was not completely loaded.
534 		 */
535 		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
536 			file_size_ptr = &file_size;
537 
538 		/* load firmware files from the mount namespace of init */
539 		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
540 						       &buffer, msize,
541 						       file_size_ptr,
542 						       READING_FIRMWARE);
543 		if (rc < 0) {
544 			if (rc != -ENOENT)
545 				dev_warn(device, "loading %s failed with error %d\n",
546 					 path, rc);
547 			else
548 				dev_dbg(device, "loading %s failed for no such file or directory.\n",
549 					 path);
550 			continue;
551 		}
552 		size = rc;
553 		rc = 0;
554 
555 		dev_dbg(device, "Loading firmware from %s\n", path);
556 		if (decompress) {
557 			dev_dbg(device, "f/w decompressing %s\n",
558 				fw_priv->fw_name);
559 			rc = decompress(device, fw_priv, size, buffer);
560 			/* discard the superfluous original content */
561 			vfree(buffer);
562 			buffer = NULL;
563 			if (rc) {
564 				fw_free_paged_buf(fw_priv);
565 				continue;
566 			}
567 		} else {
568 			dev_dbg(device, "direct-loading %s\n",
569 				fw_priv->fw_name);
570 			if (!fw_priv->data)
571 				fw_priv->data = buffer;
572 			fw_priv->size = size;
573 		}
574 		fw_state_done(fw_priv);
575 		break;
576 	}
577 	__putname(path);
578 
579 	return rc;
580 }
581 
582 /* firmware holds the ownership of pages */
583 static void firmware_free_data(const struct firmware *fw)
584 {
585 	/* Loaded directly? */
586 	if (!fw->priv) {
587 		vfree(fw->data);
588 		return;
589 	}
590 	free_fw_priv(fw->priv);
591 }
592 
593 /* store the pages buffer info firmware from buf */
594 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
595 {
596 	fw->priv = fw_priv;
597 	fw->size = fw_priv->size;
598 	fw->data = fw_priv->data;
599 
600 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
601 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
602 		 (unsigned int)fw_priv->size);
603 }
604 
605 #ifdef CONFIG_FW_CACHE
606 static void fw_name_devm_release(struct device *dev, void *res)
607 {
608 	struct fw_name_devm *fwn = res;
609 
610 	if (fwn->magic == (unsigned long)&fw_cache)
611 		pr_debug("%s: fw_name-%s devm-%p released\n",
612 				__func__, fwn->name, res);
613 	kfree_const(fwn->name);
614 }
615 
616 static int fw_devm_match(struct device *dev, void *res,
617 		void *match_data)
618 {
619 	struct fw_name_devm *fwn = res;
620 
621 	return (fwn->magic == (unsigned long)&fw_cache) &&
622 		!strcmp(fwn->name, match_data);
623 }
624 
625 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
626 		const char *name)
627 {
628 	struct fw_name_devm *fwn;
629 
630 	fwn = devres_find(dev, fw_name_devm_release,
631 			  fw_devm_match, (void *)name);
632 	return fwn;
633 }
634 
635 static bool fw_cache_is_setup(struct device *dev, const char *name)
636 {
637 	struct fw_name_devm *fwn;
638 
639 	fwn = fw_find_devm_name(dev, name);
640 	if (fwn)
641 		return true;
642 
643 	return false;
644 }
645 
646 /* add firmware name into devres list */
647 static int fw_add_devm_name(struct device *dev, const char *name)
648 {
649 	struct fw_name_devm *fwn;
650 
651 	if (fw_cache_is_setup(dev, name))
652 		return 0;
653 
654 	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
655 			   GFP_KERNEL);
656 	if (!fwn)
657 		return -ENOMEM;
658 	fwn->name = kstrdup_const(name, GFP_KERNEL);
659 	if (!fwn->name) {
660 		devres_free(fwn);
661 		return -ENOMEM;
662 	}
663 
664 	fwn->magic = (unsigned long)&fw_cache;
665 	devres_add(dev, fwn);
666 
667 	return 0;
668 }
669 #else
670 static bool fw_cache_is_setup(struct device *dev, const char *name)
671 {
672 	return false;
673 }
674 
675 static int fw_add_devm_name(struct device *dev, const char *name)
676 {
677 	return 0;
678 }
679 #endif
680 
681 int assign_fw(struct firmware *fw, struct device *device)
682 {
683 	struct fw_priv *fw_priv = fw->priv;
684 	int ret;
685 
686 	mutex_lock(&fw_lock);
687 	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
688 		mutex_unlock(&fw_lock);
689 		return -ENOENT;
690 	}
691 
692 	/*
693 	 * add firmware name into devres list so that we can auto cache
694 	 * and uncache firmware for device.
695 	 *
696 	 * device may has been deleted already, but the problem
697 	 * should be fixed in devres or driver core.
698 	 */
699 	/* don't cache firmware handled without uevent */
700 	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
701 	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
702 		ret = fw_add_devm_name(device, fw_priv->fw_name);
703 		if (ret) {
704 			mutex_unlock(&fw_lock);
705 			return ret;
706 		}
707 	}
708 
709 	/*
710 	 * After caching firmware image is started, let it piggyback
711 	 * on request firmware.
712 	 */
713 	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
714 	    fw_priv->fwc->state == FW_LOADER_START_CACHE)
715 		fw_cache_piggyback_on_request(fw_priv);
716 
717 	/* pass the pages buffer to driver at the last minute */
718 	fw_set_page_data(fw_priv, fw);
719 	mutex_unlock(&fw_lock);
720 	return 0;
721 }
722 
723 /* prepare firmware and firmware_buf structs;
724  * return 0 if a firmware is already assigned, 1 if need to load one,
725  * or a negative error code
726  */
727 static int
728 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
729 			  struct device *device, void *dbuf, size_t size,
730 			  size_t offset, u32 opt_flags)
731 {
732 	struct firmware *firmware;
733 	struct fw_priv *fw_priv;
734 	int ret;
735 
736 	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
737 	if (!firmware) {
738 		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
739 			__func__);
740 		return -ENOMEM;
741 	}
742 
743 	if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
744 		dev_dbg(device, "using built-in %s\n", name);
745 		return 0; /* assigned */
746 	}
747 
748 	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
749 				   offset, opt_flags);
750 
751 	/*
752 	 * bind with 'priv' now to avoid warning in failure path
753 	 * of requesting firmware.
754 	 */
755 	firmware->priv = fw_priv;
756 
757 	if (ret > 0) {
758 		ret = fw_state_wait(fw_priv);
759 		if (!ret) {
760 			fw_set_page_data(fw_priv, firmware);
761 			return 0; /* assigned */
762 		}
763 	}
764 
765 	if (ret < 0)
766 		return ret;
767 	return 1; /* need to load */
768 }
769 
770 /*
771  * Batched requests need only one wake, we need to do this step last due to the
772  * fallback mechanism. The buf is protected with kref_get(), and it won't be
773  * released until the last user calls release_firmware().
774  *
775  * Failed batched requests are possible as well, in such cases we just share
776  * the struct fw_priv and won't release it until all requests are woken
777  * and have gone through this same path.
778  */
779 static void fw_abort_batch_reqs(struct firmware *fw)
780 {
781 	struct fw_priv *fw_priv;
782 
783 	/* Loaded directly? */
784 	if (!fw || !fw->priv)
785 		return;
786 
787 	fw_priv = fw->priv;
788 	mutex_lock(&fw_lock);
789 	if (!fw_state_is_aborted(fw_priv))
790 		fw_state_aborted(fw_priv);
791 	mutex_unlock(&fw_lock);
792 }
793 
794 #if defined(CONFIG_FW_LOADER_DEBUG)
795 #include <crypto/hash.h>
796 #include <crypto/sha2.h>
797 
798 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
799 {
800 	struct shash_desc *shash;
801 	struct crypto_shash *alg;
802 	u8 *sha256buf;
803 	char *outbuf;
804 
805 	alg = crypto_alloc_shash("sha256", 0, 0);
806 	if (!alg)
807 		return;
808 
809 	sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
810 	outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
811 	shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
812 	if (!sha256buf || !outbuf || !shash)
813 		goto out_free;
814 
815 	shash->tfm = alg;
816 
817 	if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
818 		goto out_shash;
819 
820 	for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
821 		sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
822 	outbuf[SHA256_BLOCK_SIZE] = 0;
823 	dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
824 
825 out_shash:
826 	crypto_free_shash(alg);
827 out_free:
828 	kfree(shash);
829 	kfree(outbuf);
830 	kfree(sha256buf);
831 }
832 #else
833 static void fw_log_firmware_info(const struct firmware *fw, const char *name,
834 				 struct device *device)
835 {}
836 #endif
837 
838 /* called from request_firmware() and request_firmware_work_func() */
839 static int
840 _request_firmware(const struct firmware **firmware_p, const char *name,
841 		  struct device *device, void *buf, size_t size,
842 		  size_t offset, u32 opt_flags)
843 {
844 	struct firmware *fw = NULL;
845 	struct cred *kern_cred = NULL;
846 	const struct cred *old_cred;
847 	bool nondirect = false;
848 	int ret;
849 
850 	if (!firmware_p)
851 		return -EINVAL;
852 
853 	if (!name || name[0] == '\0') {
854 		ret = -EINVAL;
855 		goto out;
856 	}
857 
858 	ret = _request_firmware_prepare(&fw, name, device, buf, size,
859 					offset, opt_flags);
860 	if (ret <= 0) /* error or already assigned */
861 		goto out;
862 
863 	/*
864 	 * We are about to try to access the firmware file. Because we may have been
865 	 * called by a driver when serving an unrelated request from userland, we use
866 	 * the kernel credentials to read the file.
867 	 */
868 	kern_cred = prepare_kernel_cred(&init_task);
869 	if (!kern_cred) {
870 		ret = -ENOMEM;
871 		goto out;
872 	}
873 	old_cred = override_creds(kern_cred);
874 
875 	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
876 
877 	/* Only full reads can support decompression, platform, and sysfs. */
878 	if (!(opt_flags & FW_OPT_PARTIAL))
879 		nondirect = true;
880 
881 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
882 	if (ret == -ENOENT && nondirect)
883 		ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
884 						 fw_decompress_zstd);
885 #endif
886 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
887 	if (ret == -ENOENT && nondirect)
888 		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
889 						 fw_decompress_xz);
890 #endif
891 	if (ret == -ENOENT && nondirect)
892 		ret = firmware_fallback_platform(fw->priv);
893 
894 	if (ret) {
895 		if (!(opt_flags & FW_OPT_NO_WARN))
896 			dev_warn(device,
897 				 "Direct firmware load for %s failed with error %d\n",
898 				 name, ret);
899 		if (nondirect)
900 			ret = firmware_fallback_sysfs(fw, name, device,
901 						      opt_flags, ret);
902 	} else
903 		ret = assign_fw(fw, device);
904 
905 	revert_creds(old_cred);
906 	put_cred(kern_cred);
907 
908 out:
909 	if (ret < 0) {
910 		fw_abort_batch_reqs(fw);
911 		release_firmware(fw);
912 		fw = NULL;
913 	} else {
914 		fw_log_firmware_info(fw, name, device);
915 	}
916 
917 	*firmware_p = fw;
918 	return ret;
919 }
920 
921 /**
922  * request_firmware() - send firmware request and wait for it
923  * @firmware_p: pointer to firmware image
924  * @name: name of firmware file
925  * @device: device for which firmware is being loaded
926  *
927  *      @firmware_p will be used to return a firmware image by the name
928  *      of @name for device @device.
929  *
930  *      Should be called from user context where sleeping is allowed.
931  *
932  *      @name will be used as $FIRMWARE in the uevent environment and
933  *      should be distinctive enough not to be confused with any other
934  *      firmware image for this or any other device.
935  *
936  *	Caller must hold the reference count of @device.
937  *
938  *	The function can be called safely inside device's suspend and
939  *	resume callback.
940  **/
941 int
942 request_firmware(const struct firmware **firmware_p, const char *name,
943 		 struct device *device)
944 {
945 	int ret;
946 
947 	/* Need to pin this module until return */
948 	__module_get(THIS_MODULE);
949 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
950 				FW_OPT_UEVENT);
951 	module_put(THIS_MODULE);
952 	return ret;
953 }
954 EXPORT_SYMBOL(request_firmware);
955 
956 /**
957  * firmware_request_nowarn() - request for an optional fw module
958  * @firmware: pointer to firmware image
959  * @name: name of firmware file
960  * @device: device for which firmware is being loaded
961  *
962  * This function is similar in behaviour to request_firmware(), except it
963  * doesn't produce warning messages when the file is not found. The sysfs
964  * fallback mechanism is enabled if direct filesystem lookup fails. However,
965  * failures to find the firmware file with it are still suppressed. It is
966  * therefore up to the driver to check for the return value of this call and to
967  * decide when to inform the users of errors.
968  **/
969 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
970 			    struct device *device)
971 {
972 	int ret;
973 
974 	/* Need to pin this module until return */
975 	__module_get(THIS_MODULE);
976 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
977 				FW_OPT_UEVENT | FW_OPT_NO_WARN);
978 	module_put(THIS_MODULE);
979 	return ret;
980 }
981 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
982 
983 /**
984  * request_firmware_direct() - load firmware directly without usermode helper
985  * @firmware_p: pointer to firmware image
986  * @name: name of firmware file
987  * @device: device for which firmware is being loaded
988  *
989  * This function works pretty much like request_firmware(), but this doesn't
990  * fall back to usermode helper even if the firmware couldn't be loaded
991  * directly from fs.  Hence it's useful for loading optional firmwares, which
992  * aren't always present, without extra long timeouts of udev.
993  **/
994 int request_firmware_direct(const struct firmware **firmware_p,
995 			    const char *name, struct device *device)
996 {
997 	int ret;
998 
999 	__module_get(THIS_MODULE);
1000 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1001 				FW_OPT_UEVENT | FW_OPT_NO_WARN |
1002 				FW_OPT_NOFALLBACK_SYSFS);
1003 	module_put(THIS_MODULE);
1004 	return ret;
1005 }
1006 EXPORT_SYMBOL_GPL(request_firmware_direct);
1007 
1008 /**
1009  * firmware_request_platform() - request firmware with platform-fw fallback
1010  * @firmware: pointer to firmware image
1011  * @name: name of firmware file
1012  * @device: device for which firmware is being loaded
1013  *
1014  * This function is similar in behaviour to request_firmware, except that if
1015  * direct filesystem lookup fails, it will fallback to looking for a copy of the
1016  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1017  **/
1018 int firmware_request_platform(const struct firmware **firmware,
1019 			      const char *name, struct device *device)
1020 {
1021 	int ret;
1022 
1023 	/* Need to pin this module until return */
1024 	__module_get(THIS_MODULE);
1025 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1026 				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1027 	module_put(THIS_MODULE);
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL_GPL(firmware_request_platform);
1031 
1032 /**
1033  * firmware_request_cache() - cache firmware for suspend so resume can use it
1034  * @name: name of firmware file
1035  * @device: device for which firmware should be cached for
1036  *
1037  * There are some devices with an optimization that enables the device to not
1038  * require loading firmware on system reboot. This optimization may still
1039  * require the firmware present on resume from suspend. This routine can be
1040  * used to ensure the firmware is present on resume from suspend in these
1041  * situations. This helper is not compatible with drivers which use
1042  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1043  **/
1044 int firmware_request_cache(struct device *device, const char *name)
1045 {
1046 	int ret;
1047 
1048 	mutex_lock(&fw_lock);
1049 	ret = fw_add_devm_name(device, name);
1050 	mutex_unlock(&fw_lock);
1051 
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(firmware_request_cache);
1055 
1056 /**
1057  * request_firmware_into_buf() - load firmware into a previously allocated buffer
1058  * @firmware_p: pointer to firmware image
1059  * @name: name of firmware file
1060  * @device: device for which firmware is being loaded and DMA region allocated
1061  * @buf: address of buffer to load firmware into
1062  * @size: size of buffer
1063  *
1064  * This function works pretty much like request_firmware(), but it doesn't
1065  * allocate a buffer to hold the firmware data. Instead, the firmware
1066  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1067  * data member is pointed at @buf.
1068  *
1069  * This function doesn't cache firmware either.
1070  */
1071 int
1072 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1073 			  struct device *device, void *buf, size_t size)
1074 {
1075 	int ret;
1076 
1077 	if (fw_cache_is_setup(device, name))
1078 		return -EOPNOTSUPP;
1079 
1080 	__module_get(THIS_MODULE);
1081 	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1082 				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1083 	module_put(THIS_MODULE);
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(request_firmware_into_buf);
1087 
1088 /**
1089  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1090  * @firmware_p: pointer to firmware image
1091  * @name: name of firmware file
1092  * @device: device for which firmware is being loaded and DMA region allocated
1093  * @buf: address of buffer to load firmware into
1094  * @size: size of buffer
1095  * @offset: offset into file to read
1096  *
1097  * This function works pretty much like request_firmware_into_buf except
1098  * it allows a partial read of the file.
1099  */
1100 int
1101 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1102 				  const char *name, struct device *device,
1103 				  void *buf, size_t size, size_t offset)
1104 {
1105 	int ret;
1106 
1107 	if (fw_cache_is_setup(device, name))
1108 		return -EOPNOTSUPP;
1109 
1110 	__module_get(THIS_MODULE);
1111 	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1112 				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1113 				FW_OPT_PARTIAL);
1114 	module_put(THIS_MODULE);
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1118 
1119 /**
1120  * release_firmware() - release the resource associated with a firmware image
1121  * @fw: firmware resource to release
1122  **/
1123 void release_firmware(const struct firmware *fw)
1124 {
1125 	if (fw) {
1126 		if (!firmware_is_builtin(fw))
1127 			firmware_free_data(fw);
1128 		kfree(fw);
1129 	}
1130 }
1131 EXPORT_SYMBOL(release_firmware);
1132 
1133 /* Async support */
1134 struct firmware_work {
1135 	struct work_struct work;
1136 	struct module *module;
1137 	const char *name;
1138 	struct device *device;
1139 	void *context;
1140 	void (*cont)(const struct firmware *fw, void *context);
1141 	u32 opt_flags;
1142 };
1143 
1144 static void request_firmware_work_func(struct work_struct *work)
1145 {
1146 	struct firmware_work *fw_work;
1147 	const struct firmware *fw;
1148 
1149 	fw_work = container_of(work, struct firmware_work, work);
1150 
1151 	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1152 			  fw_work->opt_flags);
1153 	fw_work->cont(fw, fw_work->context);
1154 	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1155 
1156 	module_put(fw_work->module);
1157 	kfree_const(fw_work->name);
1158 	kfree(fw_work);
1159 }
1160 
1161 /**
1162  * request_firmware_nowait() - asynchronous version of request_firmware
1163  * @module: module requesting the firmware
1164  * @uevent: sends uevent to copy the firmware image if this flag
1165  *	is non-zero else the firmware copy must be done manually.
1166  * @name: name of firmware file
1167  * @device: device for which firmware is being loaded
1168  * @gfp: allocation flags
1169  * @context: will be passed over to @cont, and
1170  *	@fw may be %NULL if firmware request fails.
1171  * @cont: function will be called asynchronously when the firmware
1172  *	request is over.
1173  *
1174  *	Caller must hold the reference count of @device.
1175  *
1176  *	Asynchronous variant of request_firmware() for user contexts:
1177  *		- sleep for as small periods as possible since it may
1178  *		  increase kernel boot time of built-in device drivers
1179  *		  requesting firmware in their ->probe() methods, if
1180  *		  @gfp is GFP_KERNEL.
1181  *
1182  *		- can't sleep at all if @gfp is GFP_ATOMIC.
1183  **/
1184 int
1185 request_firmware_nowait(
1186 	struct module *module, bool uevent,
1187 	const char *name, struct device *device, gfp_t gfp, void *context,
1188 	void (*cont)(const struct firmware *fw, void *context))
1189 {
1190 	struct firmware_work *fw_work;
1191 
1192 	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1193 	if (!fw_work)
1194 		return -ENOMEM;
1195 
1196 	fw_work->module = module;
1197 	fw_work->name = kstrdup_const(name, gfp);
1198 	if (!fw_work->name) {
1199 		kfree(fw_work);
1200 		return -ENOMEM;
1201 	}
1202 	fw_work->device = device;
1203 	fw_work->context = context;
1204 	fw_work->cont = cont;
1205 	fw_work->opt_flags = FW_OPT_NOWAIT |
1206 		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1207 
1208 	if (!uevent && fw_cache_is_setup(device, name)) {
1209 		kfree_const(fw_work->name);
1210 		kfree(fw_work);
1211 		return -EOPNOTSUPP;
1212 	}
1213 
1214 	if (!try_module_get(module)) {
1215 		kfree_const(fw_work->name);
1216 		kfree(fw_work);
1217 		return -EFAULT;
1218 	}
1219 
1220 	get_device(fw_work->device);
1221 	INIT_WORK(&fw_work->work, request_firmware_work_func);
1222 	schedule_work(&fw_work->work);
1223 	return 0;
1224 }
1225 EXPORT_SYMBOL(request_firmware_nowait);
1226 
1227 #ifdef CONFIG_FW_CACHE
1228 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1229 
1230 /**
1231  * cache_firmware() - cache one firmware image in kernel memory space
1232  * @fw_name: the firmware image name
1233  *
1234  * Cache firmware in kernel memory so that drivers can use it when
1235  * system isn't ready for them to request firmware image from userspace.
1236  * Once it returns successfully, driver can use request_firmware or its
1237  * nowait version to get the cached firmware without any interacting
1238  * with userspace
1239  *
1240  * Return 0 if the firmware image has been cached successfully
1241  * Return !0 otherwise
1242  *
1243  */
1244 static int cache_firmware(const char *fw_name)
1245 {
1246 	int ret;
1247 	const struct firmware *fw;
1248 
1249 	pr_debug("%s: %s\n", __func__, fw_name);
1250 
1251 	ret = request_firmware(&fw, fw_name, NULL);
1252 	if (!ret)
1253 		kfree(fw);
1254 
1255 	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1256 
1257 	return ret;
1258 }
1259 
1260 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1261 {
1262 	struct fw_priv *tmp;
1263 	struct firmware_cache *fwc = &fw_cache;
1264 
1265 	spin_lock(&fwc->lock);
1266 	tmp = __lookup_fw_priv(fw_name);
1267 	spin_unlock(&fwc->lock);
1268 
1269 	return tmp;
1270 }
1271 
1272 /**
1273  * uncache_firmware() - remove one cached firmware image
1274  * @fw_name: the firmware image name
1275  *
1276  * Uncache one firmware image which has been cached successfully
1277  * before.
1278  *
1279  * Return 0 if the firmware cache has been removed successfully
1280  * Return !0 otherwise
1281  *
1282  */
1283 static int uncache_firmware(const char *fw_name)
1284 {
1285 	struct fw_priv *fw_priv;
1286 	struct firmware fw;
1287 
1288 	pr_debug("%s: %s\n", __func__, fw_name);
1289 
1290 	if (firmware_request_builtin(&fw, fw_name))
1291 		return 0;
1292 
1293 	fw_priv = lookup_fw_priv(fw_name);
1294 	if (fw_priv) {
1295 		free_fw_priv(fw_priv);
1296 		return 0;
1297 	}
1298 
1299 	return -EINVAL;
1300 }
1301 
1302 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1303 {
1304 	struct fw_cache_entry *fce;
1305 
1306 	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1307 	if (!fce)
1308 		goto exit;
1309 
1310 	fce->name = kstrdup_const(name, GFP_ATOMIC);
1311 	if (!fce->name) {
1312 		kfree(fce);
1313 		fce = NULL;
1314 		goto exit;
1315 	}
1316 exit:
1317 	return fce;
1318 }
1319 
1320 static int __fw_entry_found(const char *name)
1321 {
1322 	struct firmware_cache *fwc = &fw_cache;
1323 	struct fw_cache_entry *fce;
1324 
1325 	list_for_each_entry(fce, &fwc->fw_names, list) {
1326 		if (!strcmp(fce->name, name))
1327 			return 1;
1328 	}
1329 	return 0;
1330 }
1331 
1332 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1333 {
1334 	const char *name = fw_priv->fw_name;
1335 	struct firmware_cache *fwc = fw_priv->fwc;
1336 	struct fw_cache_entry *fce;
1337 
1338 	spin_lock(&fwc->name_lock);
1339 	if (__fw_entry_found(name))
1340 		goto found;
1341 
1342 	fce = alloc_fw_cache_entry(name);
1343 	if (fce) {
1344 		list_add(&fce->list, &fwc->fw_names);
1345 		kref_get(&fw_priv->ref);
1346 		pr_debug("%s: fw: %s\n", __func__, name);
1347 	}
1348 found:
1349 	spin_unlock(&fwc->name_lock);
1350 }
1351 
1352 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1353 {
1354 	kfree_const(fce->name);
1355 	kfree(fce);
1356 }
1357 
1358 static void __async_dev_cache_fw_image(void *fw_entry,
1359 				       async_cookie_t cookie)
1360 {
1361 	struct fw_cache_entry *fce = fw_entry;
1362 	struct firmware_cache *fwc = &fw_cache;
1363 	int ret;
1364 
1365 	ret = cache_firmware(fce->name);
1366 	if (ret) {
1367 		spin_lock(&fwc->name_lock);
1368 		list_del(&fce->list);
1369 		spin_unlock(&fwc->name_lock);
1370 
1371 		free_fw_cache_entry(fce);
1372 	}
1373 }
1374 
1375 /* called with dev->devres_lock held */
1376 static void dev_create_fw_entry(struct device *dev, void *res,
1377 				void *data)
1378 {
1379 	struct fw_name_devm *fwn = res;
1380 	const char *fw_name = fwn->name;
1381 	struct list_head *head = data;
1382 	struct fw_cache_entry *fce;
1383 
1384 	fce = alloc_fw_cache_entry(fw_name);
1385 	if (fce)
1386 		list_add(&fce->list, head);
1387 }
1388 
1389 static int devm_name_match(struct device *dev, void *res,
1390 			   void *match_data)
1391 {
1392 	struct fw_name_devm *fwn = res;
1393 	return (fwn->magic == (unsigned long)match_data);
1394 }
1395 
1396 static void dev_cache_fw_image(struct device *dev, void *data)
1397 {
1398 	LIST_HEAD(todo);
1399 	struct fw_cache_entry *fce;
1400 	struct fw_cache_entry *fce_next;
1401 	struct firmware_cache *fwc = &fw_cache;
1402 
1403 	devres_for_each_res(dev, fw_name_devm_release,
1404 			    devm_name_match, &fw_cache,
1405 			    dev_create_fw_entry, &todo);
1406 
1407 	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1408 		list_del(&fce->list);
1409 
1410 		spin_lock(&fwc->name_lock);
1411 		/* only one cache entry for one firmware */
1412 		if (!__fw_entry_found(fce->name)) {
1413 			list_add(&fce->list, &fwc->fw_names);
1414 		} else {
1415 			free_fw_cache_entry(fce);
1416 			fce = NULL;
1417 		}
1418 		spin_unlock(&fwc->name_lock);
1419 
1420 		if (fce)
1421 			async_schedule_domain(__async_dev_cache_fw_image,
1422 					      (void *)fce,
1423 					      &fw_cache_domain);
1424 	}
1425 }
1426 
1427 static void __device_uncache_fw_images(void)
1428 {
1429 	struct firmware_cache *fwc = &fw_cache;
1430 	struct fw_cache_entry *fce;
1431 
1432 	spin_lock(&fwc->name_lock);
1433 	while (!list_empty(&fwc->fw_names)) {
1434 		fce = list_entry(fwc->fw_names.next,
1435 				struct fw_cache_entry, list);
1436 		list_del(&fce->list);
1437 		spin_unlock(&fwc->name_lock);
1438 
1439 		uncache_firmware(fce->name);
1440 		free_fw_cache_entry(fce);
1441 
1442 		spin_lock(&fwc->name_lock);
1443 	}
1444 	spin_unlock(&fwc->name_lock);
1445 }
1446 
1447 /**
1448  * device_cache_fw_images() - cache devices' firmware
1449  *
1450  * If one device called request_firmware or its nowait version
1451  * successfully before, the firmware names are recored into the
1452  * device's devres link list, so device_cache_fw_images can call
1453  * cache_firmware() to cache these firmwares for the device,
1454  * then the device driver can load its firmwares easily at
1455  * time when system is not ready to complete loading firmware.
1456  */
1457 static void device_cache_fw_images(void)
1458 {
1459 	struct firmware_cache *fwc = &fw_cache;
1460 	DEFINE_WAIT(wait);
1461 
1462 	pr_debug("%s\n", __func__);
1463 
1464 	/* cancel uncache work */
1465 	cancel_delayed_work_sync(&fwc->work);
1466 
1467 	fw_fallback_set_cache_timeout();
1468 
1469 	mutex_lock(&fw_lock);
1470 	fwc->state = FW_LOADER_START_CACHE;
1471 	dpm_for_each_dev(NULL, dev_cache_fw_image);
1472 	mutex_unlock(&fw_lock);
1473 
1474 	/* wait for completion of caching firmware for all devices */
1475 	async_synchronize_full_domain(&fw_cache_domain);
1476 
1477 	fw_fallback_set_default_timeout();
1478 }
1479 
1480 /**
1481  * device_uncache_fw_images() - uncache devices' firmware
1482  *
1483  * uncache all firmwares which have been cached successfully
1484  * by device_uncache_fw_images earlier
1485  */
1486 static void device_uncache_fw_images(void)
1487 {
1488 	pr_debug("%s\n", __func__);
1489 	__device_uncache_fw_images();
1490 }
1491 
1492 static void device_uncache_fw_images_work(struct work_struct *work)
1493 {
1494 	device_uncache_fw_images();
1495 }
1496 
1497 /**
1498  * device_uncache_fw_images_delay() - uncache devices firmwares
1499  * @delay: number of milliseconds to delay uncache device firmwares
1500  *
1501  * uncache all devices's firmwares which has been cached successfully
1502  * by device_cache_fw_images after @delay milliseconds.
1503  */
1504 static void device_uncache_fw_images_delay(unsigned long delay)
1505 {
1506 	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1507 			   msecs_to_jiffies(delay));
1508 }
1509 
1510 static int fw_pm_notify(struct notifier_block *notify_block,
1511 			unsigned long mode, void *unused)
1512 {
1513 	switch (mode) {
1514 	case PM_HIBERNATION_PREPARE:
1515 	case PM_SUSPEND_PREPARE:
1516 	case PM_RESTORE_PREPARE:
1517 		/*
1518 		 * kill pending fallback requests with a custom fallback
1519 		 * to avoid stalling suspend.
1520 		 */
1521 		kill_pending_fw_fallback_reqs(true);
1522 		device_cache_fw_images();
1523 		break;
1524 
1525 	case PM_POST_SUSPEND:
1526 	case PM_POST_HIBERNATION:
1527 	case PM_POST_RESTORE:
1528 		/*
1529 		 * In case that system sleep failed and syscore_suspend is
1530 		 * not called.
1531 		 */
1532 		mutex_lock(&fw_lock);
1533 		fw_cache.state = FW_LOADER_NO_CACHE;
1534 		mutex_unlock(&fw_lock);
1535 
1536 		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1537 		break;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /* stop caching firmware once syscore_suspend is reached */
1544 static int fw_suspend(void)
1545 {
1546 	fw_cache.state = FW_LOADER_NO_CACHE;
1547 	return 0;
1548 }
1549 
1550 static struct syscore_ops fw_syscore_ops = {
1551 	.suspend = fw_suspend,
1552 };
1553 
1554 static int __init register_fw_pm_ops(void)
1555 {
1556 	int ret;
1557 
1558 	spin_lock_init(&fw_cache.name_lock);
1559 	INIT_LIST_HEAD(&fw_cache.fw_names);
1560 
1561 	INIT_DELAYED_WORK(&fw_cache.work,
1562 			  device_uncache_fw_images_work);
1563 
1564 	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1565 	ret = register_pm_notifier(&fw_cache.pm_notify);
1566 	if (ret)
1567 		return ret;
1568 
1569 	register_syscore_ops(&fw_syscore_ops);
1570 
1571 	return ret;
1572 }
1573 
1574 static inline void unregister_fw_pm_ops(void)
1575 {
1576 	unregister_syscore_ops(&fw_syscore_ops);
1577 	unregister_pm_notifier(&fw_cache.pm_notify);
1578 }
1579 #else
1580 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1581 {
1582 }
1583 static inline int register_fw_pm_ops(void)
1584 {
1585 	return 0;
1586 }
1587 static inline void unregister_fw_pm_ops(void)
1588 {
1589 }
1590 #endif
1591 
1592 static void __init fw_cache_init(void)
1593 {
1594 	spin_lock_init(&fw_cache.lock);
1595 	INIT_LIST_HEAD(&fw_cache.head);
1596 	fw_cache.state = FW_LOADER_NO_CACHE;
1597 }
1598 
1599 static int fw_shutdown_notify(struct notifier_block *unused1,
1600 			      unsigned long unused2, void *unused3)
1601 {
1602 	/*
1603 	 * Kill all pending fallback requests to avoid both stalling shutdown,
1604 	 * and avoid a deadlock with the usermode_lock.
1605 	 */
1606 	kill_pending_fw_fallback_reqs(false);
1607 
1608 	return NOTIFY_DONE;
1609 }
1610 
1611 static struct notifier_block fw_shutdown_nb = {
1612 	.notifier_call = fw_shutdown_notify,
1613 };
1614 
1615 static int __init firmware_class_init(void)
1616 {
1617 	int ret;
1618 
1619 	/* No need to unfold these on exit */
1620 	fw_cache_init();
1621 
1622 	ret = register_fw_pm_ops();
1623 	if (ret)
1624 		return ret;
1625 
1626 	ret = register_reboot_notifier(&fw_shutdown_nb);
1627 	if (ret)
1628 		goto out;
1629 
1630 	return register_sysfs_loader();
1631 
1632 out:
1633 	unregister_fw_pm_ops();
1634 	return ret;
1635 }
1636 
1637 static void __exit firmware_class_exit(void)
1638 {
1639 	unregister_fw_pm_ops();
1640 	unregister_reboot_notifier(&fw_shutdown_nb);
1641 	unregister_sysfs_loader();
1642 }
1643 
1644 fs_initcall(firmware_class_init);
1645 module_exit(firmware_class_exit);
1646