1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/zstd.h> 39 #include <linux/xz.h> 40 41 #include <generated/utsrelease.h> 42 43 #include "../base.h" 44 #include "firmware.h" 45 #include "fallback.h" 46 47 MODULE_AUTHOR("Manuel Estrada Sainz"); 48 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 49 MODULE_LICENSE("GPL"); 50 51 struct firmware_cache { 52 /* firmware_buf instance will be added into the below list */ 53 spinlock_t lock; 54 struct list_head head; 55 int state; 56 57 #ifdef CONFIG_FW_CACHE 58 /* 59 * Names of firmware images which have been cached successfully 60 * will be added into the below list so that device uncache 61 * helper can trace which firmware images have been cached 62 * before. 63 */ 64 spinlock_t name_lock; 65 struct list_head fw_names; 66 67 struct delayed_work work; 68 69 struct notifier_block pm_notify; 70 #endif 71 }; 72 73 struct fw_cache_entry { 74 struct list_head list; 75 const char *name; 76 }; 77 78 struct fw_name_devm { 79 unsigned long magic; 80 const char *name; 81 }; 82 83 static inline struct fw_priv *to_fw_priv(struct kref *ref) 84 { 85 return container_of(ref, struct fw_priv, ref); 86 } 87 88 #define FW_LOADER_NO_CACHE 0 89 #define FW_LOADER_START_CACHE 1 90 91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 92 * guarding for corner cases a global lock should be OK */ 93 DEFINE_MUTEX(fw_lock); 94 95 struct firmware_cache fw_cache; 96 97 void fw_state_init(struct fw_priv *fw_priv) 98 { 99 struct fw_state *fw_st = &fw_priv->fw_st; 100 101 init_completion(&fw_st->completion); 102 fw_st->status = FW_STATUS_UNKNOWN; 103 } 104 105 static inline int fw_state_wait(struct fw_priv *fw_priv) 106 { 107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 108 } 109 110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); 111 112 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 113 struct firmware_cache *fwc, 114 void *dbuf, 115 size_t size, 116 size_t offset, 117 u32 opt_flags) 118 { 119 struct fw_priv *fw_priv; 120 121 /* For a partial read, the buffer must be preallocated. */ 122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 123 return NULL; 124 125 /* Only partial reads are allowed to use an offset. */ 126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 127 return NULL; 128 129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 130 if (!fw_priv) 131 return NULL; 132 133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 134 if (!fw_priv->fw_name) { 135 kfree(fw_priv); 136 return NULL; 137 } 138 139 kref_init(&fw_priv->ref); 140 fw_priv->fwc = fwc; 141 fw_priv->data = dbuf; 142 fw_priv->allocated_size = size; 143 fw_priv->offset = offset; 144 fw_priv->opt_flags = opt_flags; 145 fw_state_init(fw_priv); 146 #ifdef CONFIG_FW_LOADER_USER_HELPER 147 INIT_LIST_HEAD(&fw_priv->pending_list); 148 #endif 149 150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 151 152 return fw_priv; 153 } 154 155 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 156 { 157 struct fw_priv *tmp; 158 struct firmware_cache *fwc = &fw_cache; 159 160 list_for_each_entry(tmp, &fwc->head, list) 161 if (!strcmp(tmp->fw_name, fw_name)) 162 return tmp; 163 return NULL; 164 } 165 166 /* Returns 1 for batching firmware requests with the same name */ 167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc, 168 struct fw_priv **fw_priv, void *dbuf, size_t size, 169 size_t offset, u32 opt_flags) 170 { 171 struct fw_priv *tmp; 172 173 spin_lock(&fwc->lock); 174 /* 175 * Do not merge requests that are marked to be non-cached or 176 * are performing partial reads. 177 */ 178 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 179 tmp = __lookup_fw_priv(fw_name); 180 if (tmp) { 181 kref_get(&tmp->ref); 182 spin_unlock(&fwc->lock); 183 *fw_priv = tmp; 184 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 185 return 1; 186 } 187 } 188 189 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 190 if (tmp) { 191 INIT_LIST_HEAD(&tmp->list); 192 if (!(opt_flags & FW_OPT_NOCACHE)) 193 list_add(&tmp->list, &fwc->head); 194 } 195 spin_unlock(&fwc->lock); 196 197 *fw_priv = tmp; 198 199 return tmp ? 0 : -ENOMEM; 200 } 201 202 static void __free_fw_priv(struct kref *ref) 203 __releases(&fwc->lock) 204 { 205 struct fw_priv *fw_priv = to_fw_priv(ref); 206 struct firmware_cache *fwc = fw_priv->fwc; 207 208 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 209 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 210 (unsigned int)fw_priv->size); 211 212 list_del(&fw_priv->list); 213 spin_unlock(&fwc->lock); 214 215 if (fw_is_paged_buf(fw_priv)) 216 fw_free_paged_buf(fw_priv); 217 else if (!fw_priv->allocated_size) 218 vfree(fw_priv->data); 219 220 kfree_const(fw_priv->fw_name); 221 kfree(fw_priv); 222 } 223 224 void free_fw_priv(struct fw_priv *fw_priv) 225 { 226 struct firmware_cache *fwc = fw_priv->fwc; 227 spin_lock(&fwc->lock); 228 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 229 spin_unlock(&fwc->lock); 230 } 231 232 #ifdef CONFIG_FW_LOADER_PAGED_BUF 233 bool fw_is_paged_buf(struct fw_priv *fw_priv) 234 { 235 return fw_priv->is_paged_buf; 236 } 237 238 void fw_free_paged_buf(struct fw_priv *fw_priv) 239 { 240 int i; 241 242 if (!fw_priv->pages) 243 return; 244 245 vunmap(fw_priv->data); 246 247 for (i = 0; i < fw_priv->nr_pages; i++) 248 __free_page(fw_priv->pages[i]); 249 kvfree(fw_priv->pages); 250 fw_priv->pages = NULL; 251 fw_priv->page_array_size = 0; 252 fw_priv->nr_pages = 0; 253 fw_priv->data = NULL; 254 fw_priv->size = 0; 255 } 256 257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 258 { 259 /* If the array of pages is too small, grow it */ 260 if (fw_priv->page_array_size < pages_needed) { 261 int new_array_size = max(pages_needed, 262 fw_priv->page_array_size * 2); 263 struct page **new_pages; 264 265 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 266 GFP_KERNEL); 267 if (!new_pages) 268 return -ENOMEM; 269 memcpy(new_pages, fw_priv->pages, 270 fw_priv->page_array_size * sizeof(void *)); 271 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 272 (new_array_size - fw_priv->page_array_size)); 273 kvfree(fw_priv->pages); 274 fw_priv->pages = new_pages; 275 fw_priv->page_array_size = new_array_size; 276 } 277 278 while (fw_priv->nr_pages < pages_needed) { 279 fw_priv->pages[fw_priv->nr_pages] = 280 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 281 282 if (!fw_priv->pages[fw_priv->nr_pages]) 283 return -ENOMEM; 284 fw_priv->nr_pages++; 285 } 286 287 return 0; 288 } 289 290 int fw_map_paged_buf(struct fw_priv *fw_priv) 291 { 292 /* one pages buffer should be mapped/unmapped only once */ 293 if (!fw_priv->pages) 294 return 0; 295 296 vunmap(fw_priv->data); 297 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 298 PAGE_KERNEL_RO); 299 if (!fw_priv->data) 300 return -ENOMEM; 301 302 return 0; 303 } 304 #endif 305 306 /* 307 * ZSTD-compressed firmware support 308 */ 309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv, 311 size_t in_size, const void *in_buffer) 312 { 313 size_t len, out_size, workspace_size; 314 void *workspace, *out_buf; 315 zstd_dctx *ctx; 316 int err; 317 318 if (fw_priv->allocated_size) { 319 out_size = fw_priv->allocated_size; 320 out_buf = fw_priv->data; 321 } else { 322 zstd_frame_header params; 323 324 if (zstd_get_frame_header(¶ms, in_buffer, in_size) || 325 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { 326 dev_dbg(dev, "%s: invalid zstd header\n", __func__); 327 return -EINVAL; 328 } 329 out_size = params.frameContentSize; 330 out_buf = vzalloc(out_size); 331 if (!out_buf) 332 return -ENOMEM; 333 } 334 335 workspace_size = zstd_dctx_workspace_bound(); 336 workspace = kvzalloc(workspace_size, GFP_KERNEL); 337 if (!workspace) { 338 err = -ENOMEM; 339 goto error; 340 } 341 342 ctx = zstd_init_dctx(workspace, workspace_size); 343 if (!ctx) { 344 dev_dbg(dev, "%s: failed to initialize context\n", __func__); 345 err = -EINVAL; 346 goto error; 347 } 348 349 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size); 350 if (zstd_is_error(len)) { 351 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__, 352 zstd_get_error_code(len)); 353 err = -EINVAL; 354 goto error; 355 } 356 357 if (!fw_priv->allocated_size) 358 fw_priv->data = out_buf; 359 fw_priv->size = len; 360 err = 0; 361 362 error: 363 kvfree(workspace); 364 if (err && !fw_priv->allocated_size) 365 vfree(out_buf); 366 return err; 367 } 368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */ 369 370 /* 371 * XZ-compressed firmware support 372 */ 373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 374 /* show an error and return the standard error code */ 375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 376 { 377 if (xz_ret != XZ_STREAM_END) { 378 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 379 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 380 } 381 return 0; 382 } 383 384 /* single-shot decompression onto the pre-allocated buffer */ 385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 386 size_t in_size, const void *in_buffer) 387 { 388 struct xz_dec *xz_dec; 389 struct xz_buf xz_buf; 390 enum xz_ret xz_ret; 391 392 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 393 if (!xz_dec) 394 return -ENOMEM; 395 396 xz_buf.in_size = in_size; 397 xz_buf.in = in_buffer; 398 xz_buf.in_pos = 0; 399 xz_buf.out_size = fw_priv->allocated_size; 400 xz_buf.out = fw_priv->data; 401 xz_buf.out_pos = 0; 402 403 xz_ret = xz_dec_run(xz_dec, &xz_buf); 404 xz_dec_end(xz_dec); 405 406 fw_priv->size = xz_buf.out_pos; 407 return fw_decompress_xz_error(dev, xz_ret); 408 } 409 410 /* decompression on paged buffer and map it */ 411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 412 size_t in_size, const void *in_buffer) 413 { 414 struct xz_dec *xz_dec; 415 struct xz_buf xz_buf; 416 enum xz_ret xz_ret; 417 struct page *page; 418 int err = 0; 419 420 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 421 if (!xz_dec) 422 return -ENOMEM; 423 424 xz_buf.in_size = in_size; 425 xz_buf.in = in_buffer; 426 xz_buf.in_pos = 0; 427 428 fw_priv->is_paged_buf = true; 429 fw_priv->size = 0; 430 do { 431 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 432 err = -ENOMEM; 433 goto out; 434 } 435 436 /* decompress onto the new allocated page */ 437 page = fw_priv->pages[fw_priv->nr_pages - 1]; 438 xz_buf.out = kmap_local_page(page); 439 xz_buf.out_pos = 0; 440 xz_buf.out_size = PAGE_SIZE; 441 xz_ret = xz_dec_run(xz_dec, &xz_buf); 442 kunmap_local(xz_buf.out); 443 fw_priv->size += xz_buf.out_pos; 444 /* partial decompression means either end or error */ 445 if (xz_buf.out_pos != PAGE_SIZE) 446 break; 447 } while (xz_ret == XZ_OK); 448 449 err = fw_decompress_xz_error(dev, xz_ret); 450 if (!err) 451 err = fw_map_paged_buf(fw_priv); 452 453 out: 454 xz_dec_end(xz_dec); 455 return err; 456 } 457 458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 459 size_t in_size, const void *in_buffer) 460 { 461 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 462 if (fw_priv->data) 463 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 464 else 465 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 466 } 467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */ 468 469 /* direct firmware loading support */ 470 static char fw_path_para[256]; 471 static const char * const fw_path[] = { 472 fw_path_para, 473 "/lib/firmware/updates/" UTS_RELEASE, 474 "/lib/firmware/updates", 475 "/lib/firmware/" UTS_RELEASE, 476 "/lib/firmware" 477 }; 478 479 /* 480 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 481 * from kernel command line because firmware_class is generally built in 482 * kernel instead of module. 483 */ 484 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 485 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 486 487 static int 488 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 489 const char *suffix, 490 int (*decompress)(struct device *dev, 491 struct fw_priv *fw_priv, 492 size_t in_size, 493 const void *in_buffer)) 494 { 495 size_t size; 496 int i, len, maxlen = 0; 497 int rc = -ENOENT; 498 char *path, *nt = NULL; 499 size_t msize = INT_MAX; 500 void *buffer = NULL; 501 502 /* Already populated data member means we're loading into a buffer */ 503 if (!decompress && fw_priv->data) { 504 buffer = fw_priv->data; 505 msize = fw_priv->allocated_size; 506 } 507 508 path = __getname(); 509 if (!path) 510 return -ENOMEM; 511 512 wait_for_initramfs(); 513 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 514 size_t file_size = 0; 515 size_t *file_size_ptr = NULL; 516 517 /* skip the unset customized path */ 518 if (!fw_path[i][0]) 519 continue; 520 521 /* strip off \n from customized path */ 522 maxlen = strlen(fw_path[i]); 523 if (i == 0) { 524 nt = strchr(fw_path[i], '\n'); 525 if (nt) 526 maxlen = nt - fw_path[i]; 527 } 528 529 len = snprintf(path, PATH_MAX, "%.*s/%s%s", 530 maxlen, fw_path[i], 531 fw_priv->fw_name, suffix); 532 if (len >= PATH_MAX) { 533 rc = -ENAMETOOLONG; 534 break; 535 } 536 537 fw_priv->size = 0; 538 539 /* 540 * The total file size is only examined when doing a partial 541 * read; the "full read" case needs to fail if the whole 542 * firmware was not completely loaded. 543 */ 544 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 545 file_size_ptr = &file_size; 546 547 /* load firmware files from the mount namespace of init */ 548 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 549 &buffer, msize, 550 file_size_ptr, 551 READING_FIRMWARE); 552 if (rc < 0) { 553 if (rc != -ENOENT) 554 dev_warn(device, "loading %s failed with error %d\n", 555 path, rc); 556 else 557 dev_dbg(device, "loading %s failed for no such file or directory.\n", 558 path); 559 continue; 560 } 561 size = rc; 562 rc = 0; 563 564 dev_dbg(device, "Loading firmware from %s\n", path); 565 if (decompress) { 566 dev_dbg(device, "f/w decompressing %s\n", 567 fw_priv->fw_name); 568 rc = decompress(device, fw_priv, size, buffer); 569 /* discard the superfluous original content */ 570 vfree(buffer); 571 buffer = NULL; 572 if (rc) { 573 fw_free_paged_buf(fw_priv); 574 continue; 575 } 576 } else { 577 dev_dbg(device, "direct-loading %s\n", 578 fw_priv->fw_name); 579 if (!fw_priv->data) 580 fw_priv->data = buffer; 581 fw_priv->size = size; 582 } 583 fw_state_done(fw_priv); 584 break; 585 } 586 __putname(path); 587 588 return rc; 589 } 590 591 /* firmware holds the ownership of pages */ 592 static void firmware_free_data(const struct firmware *fw) 593 { 594 /* Loaded directly? */ 595 if (!fw->priv) { 596 vfree(fw->data); 597 return; 598 } 599 free_fw_priv(fw->priv); 600 } 601 602 /* store the pages buffer info firmware from buf */ 603 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 604 { 605 fw->priv = fw_priv; 606 fw->size = fw_priv->size; 607 fw->data = fw_priv->data; 608 609 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 610 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 611 (unsigned int)fw_priv->size); 612 } 613 614 #ifdef CONFIG_FW_CACHE 615 static void fw_name_devm_release(struct device *dev, void *res) 616 { 617 struct fw_name_devm *fwn = res; 618 619 if (fwn->magic == (unsigned long)&fw_cache) 620 pr_debug("%s: fw_name-%s devm-%p released\n", 621 __func__, fwn->name, res); 622 kfree_const(fwn->name); 623 } 624 625 static int fw_devm_match(struct device *dev, void *res, 626 void *match_data) 627 { 628 struct fw_name_devm *fwn = res; 629 630 return (fwn->magic == (unsigned long)&fw_cache) && 631 !strcmp(fwn->name, match_data); 632 } 633 634 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 635 const char *name) 636 { 637 struct fw_name_devm *fwn; 638 639 fwn = devres_find(dev, fw_name_devm_release, 640 fw_devm_match, (void *)name); 641 return fwn; 642 } 643 644 static bool fw_cache_is_setup(struct device *dev, const char *name) 645 { 646 struct fw_name_devm *fwn; 647 648 fwn = fw_find_devm_name(dev, name); 649 if (fwn) 650 return true; 651 652 return false; 653 } 654 655 /* add firmware name into devres list */ 656 static int fw_add_devm_name(struct device *dev, const char *name) 657 { 658 struct fw_name_devm *fwn; 659 660 if (fw_cache_is_setup(dev, name)) 661 return 0; 662 663 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 664 GFP_KERNEL); 665 if (!fwn) 666 return -ENOMEM; 667 fwn->name = kstrdup_const(name, GFP_KERNEL); 668 if (!fwn->name) { 669 devres_free(fwn); 670 return -ENOMEM; 671 } 672 673 fwn->magic = (unsigned long)&fw_cache; 674 devres_add(dev, fwn); 675 676 return 0; 677 } 678 #else 679 static bool fw_cache_is_setup(struct device *dev, const char *name) 680 { 681 return false; 682 } 683 684 static int fw_add_devm_name(struct device *dev, const char *name) 685 { 686 return 0; 687 } 688 #endif 689 690 int assign_fw(struct firmware *fw, struct device *device) 691 { 692 struct fw_priv *fw_priv = fw->priv; 693 int ret; 694 695 mutex_lock(&fw_lock); 696 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 697 mutex_unlock(&fw_lock); 698 return -ENOENT; 699 } 700 701 /* 702 * add firmware name into devres list so that we can auto cache 703 * and uncache firmware for device. 704 * 705 * device may has been deleted already, but the problem 706 * should be fixed in devres or driver core. 707 */ 708 /* don't cache firmware handled without uevent */ 709 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 710 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 711 ret = fw_add_devm_name(device, fw_priv->fw_name); 712 if (ret) { 713 mutex_unlock(&fw_lock); 714 return ret; 715 } 716 } 717 718 /* 719 * After caching firmware image is started, let it piggyback 720 * on request firmware. 721 */ 722 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 723 fw_priv->fwc->state == FW_LOADER_START_CACHE) 724 fw_cache_piggyback_on_request(fw_priv); 725 726 /* pass the pages buffer to driver at the last minute */ 727 fw_set_page_data(fw_priv, fw); 728 mutex_unlock(&fw_lock); 729 return 0; 730 } 731 732 /* prepare firmware and firmware_buf structs; 733 * return 0 if a firmware is already assigned, 1 if need to load one, 734 * or a negative error code 735 */ 736 static int 737 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 738 struct device *device, void *dbuf, size_t size, 739 size_t offset, u32 opt_flags) 740 { 741 struct firmware *firmware; 742 struct fw_priv *fw_priv; 743 int ret; 744 745 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 746 if (!firmware) { 747 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 748 __func__); 749 return -ENOMEM; 750 } 751 752 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { 753 dev_dbg(device, "using built-in %s\n", name); 754 return 0; /* assigned */ 755 } 756 757 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 758 offset, opt_flags); 759 760 /* 761 * bind with 'priv' now to avoid warning in failure path 762 * of requesting firmware. 763 */ 764 firmware->priv = fw_priv; 765 766 if (ret > 0) { 767 ret = fw_state_wait(fw_priv); 768 if (!ret) { 769 fw_set_page_data(fw_priv, firmware); 770 return 0; /* assigned */ 771 } 772 } 773 774 if (ret < 0) 775 return ret; 776 return 1; /* need to load */ 777 } 778 779 /* 780 * Batched requests need only one wake, we need to do this step last due to the 781 * fallback mechanism. The buf is protected with kref_get(), and it won't be 782 * released until the last user calls release_firmware(). 783 * 784 * Failed batched requests are possible as well, in such cases we just share 785 * the struct fw_priv and won't release it until all requests are woken 786 * and have gone through this same path. 787 */ 788 static void fw_abort_batch_reqs(struct firmware *fw) 789 { 790 struct fw_priv *fw_priv; 791 792 /* Loaded directly? */ 793 if (!fw || !fw->priv) 794 return; 795 796 fw_priv = fw->priv; 797 mutex_lock(&fw_lock); 798 if (!fw_state_is_aborted(fw_priv)) 799 fw_state_aborted(fw_priv); 800 mutex_unlock(&fw_lock); 801 } 802 803 #if defined(CONFIG_FW_LOADER_DEBUG) 804 #include <crypto/hash.h> 805 #include <crypto/sha2.h> 806 807 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device) 808 { 809 struct shash_desc *shash; 810 struct crypto_shash *alg; 811 u8 *sha256buf; 812 char *outbuf; 813 814 alg = crypto_alloc_shash("sha256", 0, 0); 815 if (!alg) 816 return; 817 818 sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 819 outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL); 820 shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL); 821 if (!sha256buf || !outbuf || !shash) 822 goto out_free; 823 824 shash->tfm = alg; 825 826 if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0) 827 goto out_shash; 828 829 for (int i = 0; i < SHA256_DIGEST_SIZE; i++) 830 sprintf(&outbuf[i * 2], "%02x", sha256buf[i]); 831 outbuf[SHA256_BLOCK_SIZE] = 0; 832 dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf); 833 834 out_shash: 835 crypto_free_shash(alg); 836 out_free: 837 kfree(shash); 838 kfree(outbuf); 839 kfree(sha256buf); 840 } 841 #else 842 static void fw_log_firmware_info(const struct firmware *fw, const char *name, 843 struct device *device) 844 {} 845 #endif 846 847 /* called from request_firmware() and request_firmware_work_func() */ 848 static int 849 _request_firmware(const struct firmware **firmware_p, const char *name, 850 struct device *device, void *buf, size_t size, 851 size_t offset, u32 opt_flags) 852 { 853 struct firmware *fw = NULL; 854 struct cred *kern_cred = NULL; 855 const struct cred *old_cred; 856 bool nondirect = false; 857 int ret; 858 859 if (!firmware_p) 860 return -EINVAL; 861 862 if (!name || name[0] == '\0') { 863 ret = -EINVAL; 864 goto out; 865 } 866 867 ret = _request_firmware_prepare(&fw, name, device, buf, size, 868 offset, opt_flags); 869 if (ret <= 0) /* error or already assigned */ 870 goto out; 871 872 /* 873 * We are about to try to access the firmware file. Because we may have been 874 * called by a driver when serving an unrelated request from userland, we use 875 * the kernel credentials to read the file. 876 */ 877 kern_cred = prepare_kernel_cred(&init_task); 878 if (!kern_cred) { 879 ret = -ENOMEM; 880 goto out; 881 } 882 old_cred = override_creds(kern_cred); 883 884 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 885 886 /* Only full reads can support decompression, platform, and sysfs. */ 887 if (!(opt_flags & FW_OPT_PARTIAL)) 888 nondirect = true; 889 890 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 891 if (ret == -ENOENT && nondirect) 892 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst", 893 fw_decompress_zstd); 894 #endif 895 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 896 if (ret == -ENOENT && nondirect) 897 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 898 fw_decompress_xz); 899 #endif 900 if (ret == -ENOENT && nondirect) 901 ret = firmware_fallback_platform(fw->priv); 902 903 if (ret) { 904 if (!(opt_flags & FW_OPT_NO_WARN)) 905 dev_warn(device, 906 "Direct firmware load for %s failed with error %d\n", 907 name, ret); 908 if (nondirect) 909 ret = firmware_fallback_sysfs(fw, name, device, 910 opt_flags, ret); 911 } else 912 ret = assign_fw(fw, device); 913 914 revert_creds(old_cred); 915 put_cred(kern_cred); 916 917 out: 918 if (ret < 0) { 919 fw_abort_batch_reqs(fw); 920 release_firmware(fw); 921 fw = NULL; 922 } else { 923 fw_log_firmware_info(fw, name, device); 924 } 925 926 *firmware_p = fw; 927 return ret; 928 } 929 930 /** 931 * request_firmware() - send firmware request and wait for it 932 * @firmware_p: pointer to firmware image 933 * @name: name of firmware file 934 * @device: device for which firmware is being loaded 935 * 936 * @firmware_p will be used to return a firmware image by the name 937 * of @name for device @device. 938 * 939 * Should be called from user context where sleeping is allowed. 940 * 941 * @name will be used as $FIRMWARE in the uevent environment and 942 * should be distinctive enough not to be confused with any other 943 * firmware image for this or any other device. 944 * 945 * Caller must hold the reference count of @device. 946 * 947 * The function can be called safely inside device's suspend and 948 * resume callback. 949 **/ 950 int 951 request_firmware(const struct firmware **firmware_p, const char *name, 952 struct device *device) 953 { 954 int ret; 955 956 /* Need to pin this module until return */ 957 __module_get(THIS_MODULE); 958 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 959 FW_OPT_UEVENT); 960 module_put(THIS_MODULE); 961 return ret; 962 } 963 EXPORT_SYMBOL(request_firmware); 964 965 /** 966 * firmware_request_nowarn() - request for an optional fw module 967 * @firmware: pointer to firmware image 968 * @name: name of firmware file 969 * @device: device for which firmware is being loaded 970 * 971 * This function is similar in behaviour to request_firmware(), except it 972 * doesn't produce warning messages when the file is not found. The sysfs 973 * fallback mechanism is enabled if direct filesystem lookup fails. However, 974 * failures to find the firmware file with it are still suppressed. It is 975 * therefore up to the driver to check for the return value of this call and to 976 * decide when to inform the users of errors. 977 **/ 978 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 979 struct device *device) 980 { 981 int ret; 982 983 /* Need to pin this module until return */ 984 __module_get(THIS_MODULE); 985 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 986 FW_OPT_UEVENT | FW_OPT_NO_WARN); 987 module_put(THIS_MODULE); 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 991 992 /** 993 * request_firmware_direct() - load firmware directly without usermode helper 994 * @firmware_p: pointer to firmware image 995 * @name: name of firmware file 996 * @device: device for which firmware is being loaded 997 * 998 * This function works pretty much like request_firmware(), but this doesn't 999 * fall back to usermode helper even if the firmware couldn't be loaded 1000 * directly from fs. Hence it's useful for loading optional firmwares, which 1001 * aren't always present, without extra long timeouts of udev. 1002 **/ 1003 int request_firmware_direct(const struct firmware **firmware_p, 1004 const char *name, struct device *device) 1005 { 1006 int ret; 1007 1008 __module_get(THIS_MODULE); 1009 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 1010 FW_OPT_UEVENT | FW_OPT_NO_WARN | 1011 FW_OPT_NOFALLBACK_SYSFS); 1012 module_put(THIS_MODULE); 1013 return ret; 1014 } 1015 EXPORT_SYMBOL_GPL(request_firmware_direct); 1016 1017 /** 1018 * firmware_request_platform() - request firmware with platform-fw fallback 1019 * @firmware: pointer to firmware image 1020 * @name: name of firmware file 1021 * @device: device for which firmware is being loaded 1022 * 1023 * This function is similar in behaviour to request_firmware, except that if 1024 * direct filesystem lookup fails, it will fallback to looking for a copy of the 1025 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 1026 **/ 1027 int firmware_request_platform(const struct firmware **firmware, 1028 const char *name, struct device *device) 1029 { 1030 int ret; 1031 1032 /* Need to pin this module until return */ 1033 __module_get(THIS_MODULE); 1034 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 1035 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 1036 module_put(THIS_MODULE); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL_GPL(firmware_request_platform); 1040 1041 /** 1042 * firmware_request_cache() - cache firmware for suspend so resume can use it 1043 * @name: name of firmware file 1044 * @device: device for which firmware should be cached for 1045 * 1046 * There are some devices with an optimization that enables the device to not 1047 * require loading firmware on system reboot. This optimization may still 1048 * require the firmware present on resume from suspend. This routine can be 1049 * used to ensure the firmware is present on resume from suspend in these 1050 * situations. This helper is not compatible with drivers which use 1051 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 1052 **/ 1053 int firmware_request_cache(struct device *device, const char *name) 1054 { 1055 int ret; 1056 1057 mutex_lock(&fw_lock); 1058 ret = fw_add_devm_name(device, name); 1059 mutex_unlock(&fw_lock); 1060 1061 return ret; 1062 } 1063 EXPORT_SYMBOL_GPL(firmware_request_cache); 1064 1065 /** 1066 * request_firmware_into_buf() - load firmware into a previously allocated buffer 1067 * @firmware_p: pointer to firmware image 1068 * @name: name of firmware file 1069 * @device: device for which firmware is being loaded and DMA region allocated 1070 * @buf: address of buffer to load firmware into 1071 * @size: size of buffer 1072 * 1073 * This function works pretty much like request_firmware(), but it doesn't 1074 * allocate a buffer to hold the firmware data. Instead, the firmware 1075 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 1076 * data member is pointed at @buf. 1077 * 1078 * This function doesn't cache firmware either. 1079 */ 1080 int 1081 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 1082 struct device *device, void *buf, size_t size) 1083 { 1084 int ret; 1085 1086 if (fw_cache_is_setup(device, name)) 1087 return -EOPNOTSUPP; 1088 1089 __module_get(THIS_MODULE); 1090 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 1091 FW_OPT_UEVENT | FW_OPT_NOCACHE); 1092 module_put(THIS_MODULE); 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(request_firmware_into_buf); 1096 1097 /** 1098 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 1099 * @firmware_p: pointer to firmware image 1100 * @name: name of firmware file 1101 * @device: device for which firmware is being loaded and DMA region allocated 1102 * @buf: address of buffer to load firmware into 1103 * @size: size of buffer 1104 * @offset: offset into file to read 1105 * 1106 * This function works pretty much like request_firmware_into_buf except 1107 * it allows a partial read of the file. 1108 */ 1109 int 1110 request_partial_firmware_into_buf(const struct firmware **firmware_p, 1111 const char *name, struct device *device, 1112 void *buf, size_t size, size_t offset) 1113 { 1114 int ret; 1115 1116 if (fw_cache_is_setup(device, name)) 1117 return -EOPNOTSUPP; 1118 1119 __module_get(THIS_MODULE); 1120 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 1121 FW_OPT_UEVENT | FW_OPT_NOCACHE | 1122 FW_OPT_PARTIAL); 1123 module_put(THIS_MODULE); 1124 return ret; 1125 } 1126 EXPORT_SYMBOL(request_partial_firmware_into_buf); 1127 1128 /** 1129 * release_firmware() - release the resource associated with a firmware image 1130 * @fw: firmware resource to release 1131 **/ 1132 void release_firmware(const struct firmware *fw) 1133 { 1134 if (fw) { 1135 if (!firmware_is_builtin(fw)) 1136 firmware_free_data(fw); 1137 kfree(fw); 1138 } 1139 } 1140 EXPORT_SYMBOL(release_firmware); 1141 1142 /* Async support */ 1143 struct firmware_work { 1144 struct work_struct work; 1145 struct module *module; 1146 const char *name; 1147 struct device *device; 1148 void *context; 1149 void (*cont)(const struct firmware *fw, void *context); 1150 u32 opt_flags; 1151 }; 1152 1153 static void request_firmware_work_func(struct work_struct *work) 1154 { 1155 struct firmware_work *fw_work; 1156 const struct firmware *fw; 1157 1158 fw_work = container_of(work, struct firmware_work, work); 1159 1160 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1161 fw_work->opt_flags); 1162 fw_work->cont(fw, fw_work->context); 1163 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1164 1165 module_put(fw_work->module); 1166 kfree_const(fw_work->name); 1167 kfree(fw_work); 1168 } 1169 1170 /** 1171 * request_firmware_nowait() - asynchronous version of request_firmware 1172 * @module: module requesting the firmware 1173 * @uevent: sends uevent to copy the firmware image if this flag 1174 * is non-zero else the firmware copy must be done manually. 1175 * @name: name of firmware file 1176 * @device: device for which firmware is being loaded 1177 * @gfp: allocation flags 1178 * @context: will be passed over to @cont, and 1179 * @fw may be %NULL if firmware request fails. 1180 * @cont: function will be called asynchronously when the firmware 1181 * request is over. 1182 * 1183 * Caller must hold the reference count of @device. 1184 * 1185 * Asynchronous variant of request_firmware() for user contexts: 1186 * - sleep for as small periods as possible since it may 1187 * increase kernel boot time of built-in device drivers 1188 * requesting firmware in their ->probe() methods, if 1189 * @gfp is GFP_KERNEL. 1190 * 1191 * - can't sleep at all if @gfp is GFP_ATOMIC. 1192 **/ 1193 int 1194 request_firmware_nowait( 1195 struct module *module, bool uevent, 1196 const char *name, struct device *device, gfp_t gfp, void *context, 1197 void (*cont)(const struct firmware *fw, void *context)) 1198 { 1199 struct firmware_work *fw_work; 1200 1201 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1202 if (!fw_work) 1203 return -ENOMEM; 1204 1205 fw_work->module = module; 1206 fw_work->name = kstrdup_const(name, gfp); 1207 if (!fw_work->name) { 1208 kfree(fw_work); 1209 return -ENOMEM; 1210 } 1211 fw_work->device = device; 1212 fw_work->context = context; 1213 fw_work->cont = cont; 1214 fw_work->opt_flags = FW_OPT_NOWAIT | 1215 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1216 1217 if (!uevent && fw_cache_is_setup(device, name)) { 1218 kfree_const(fw_work->name); 1219 kfree(fw_work); 1220 return -EOPNOTSUPP; 1221 } 1222 1223 if (!try_module_get(module)) { 1224 kfree_const(fw_work->name); 1225 kfree(fw_work); 1226 return -EFAULT; 1227 } 1228 1229 get_device(fw_work->device); 1230 INIT_WORK(&fw_work->work, request_firmware_work_func); 1231 schedule_work(&fw_work->work); 1232 return 0; 1233 } 1234 EXPORT_SYMBOL(request_firmware_nowait); 1235 1236 #ifdef CONFIG_FW_CACHE 1237 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1238 1239 /** 1240 * cache_firmware() - cache one firmware image in kernel memory space 1241 * @fw_name: the firmware image name 1242 * 1243 * Cache firmware in kernel memory so that drivers can use it when 1244 * system isn't ready for them to request firmware image from userspace. 1245 * Once it returns successfully, driver can use request_firmware or its 1246 * nowait version to get the cached firmware without any interacting 1247 * with userspace 1248 * 1249 * Return 0 if the firmware image has been cached successfully 1250 * Return !0 otherwise 1251 * 1252 */ 1253 static int cache_firmware(const char *fw_name) 1254 { 1255 int ret; 1256 const struct firmware *fw; 1257 1258 pr_debug("%s: %s\n", __func__, fw_name); 1259 1260 ret = request_firmware(&fw, fw_name, NULL); 1261 if (!ret) 1262 kfree(fw); 1263 1264 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1265 1266 return ret; 1267 } 1268 1269 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1270 { 1271 struct fw_priv *tmp; 1272 struct firmware_cache *fwc = &fw_cache; 1273 1274 spin_lock(&fwc->lock); 1275 tmp = __lookup_fw_priv(fw_name); 1276 spin_unlock(&fwc->lock); 1277 1278 return tmp; 1279 } 1280 1281 /** 1282 * uncache_firmware() - remove one cached firmware image 1283 * @fw_name: the firmware image name 1284 * 1285 * Uncache one firmware image which has been cached successfully 1286 * before. 1287 * 1288 * Return 0 if the firmware cache has been removed successfully 1289 * Return !0 otherwise 1290 * 1291 */ 1292 static int uncache_firmware(const char *fw_name) 1293 { 1294 struct fw_priv *fw_priv; 1295 struct firmware fw; 1296 1297 pr_debug("%s: %s\n", __func__, fw_name); 1298 1299 if (firmware_request_builtin(&fw, fw_name)) 1300 return 0; 1301 1302 fw_priv = lookup_fw_priv(fw_name); 1303 if (fw_priv) { 1304 free_fw_priv(fw_priv); 1305 return 0; 1306 } 1307 1308 return -EINVAL; 1309 } 1310 1311 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1312 { 1313 struct fw_cache_entry *fce; 1314 1315 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1316 if (!fce) 1317 goto exit; 1318 1319 fce->name = kstrdup_const(name, GFP_ATOMIC); 1320 if (!fce->name) { 1321 kfree(fce); 1322 fce = NULL; 1323 goto exit; 1324 } 1325 exit: 1326 return fce; 1327 } 1328 1329 static int __fw_entry_found(const char *name) 1330 { 1331 struct firmware_cache *fwc = &fw_cache; 1332 struct fw_cache_entry *fce; 1333 1334 list_for_each_entry(fce, &fwc->fw_names, list) { 1335 if (!strcmp(fce->name, name)) 1336 return 1; 1337 } 1338 return 0; 1339 } 1340 1341 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1342 { 1343 const char *name = fw_priv->fw_name; 1344 struct firmware_cache *fwc = fw_priv->fwc; 1345 struct fw_cache_entry *fce; 1346 1347 spin_lock(&fwc->name_lock); 1348 if (__fw_entry_found(name)) 1349 goto found; 1350 1351 fce = alloc_fw_cache_entry(name); 1352 if (fce) { 1353 list_add(&fce->list, &fwc->fw_names); 1354 kref_get(&fw_priv->ref); 1355 pr_debug("%s: fw: %s\n", __func__, name); 1356 } 1357 found: 1358 spin_unlock(&fwc->name_lock); 1359 } 1360 1361 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1362 { 1363 kfree_const(fce->name); 1364 kfree(fce); 1365 } 1366 1367 static void __async_dev_cache_fw_image(void *fw_entry, 1368 async_cookie_t cookie) 1369 { 1370 struct fw_cache_entry *fce = fw_entry; 1371 struct firmware_cache *fwc = &fw_cache; 1372 int ret; 1373 1374 ret = cache_firmware(fce->name); 1375 if (ret) { 1376 spin_lock(&fwc->name_lock); 1377 list_del(&fce->list); 1378 spin_unlock(&fwc->name_lock); 1379 1380 free_fw_cache_entry(fce); 1381 } 1382 } 1383 1384 /* called with dev->devres_lock held */ 1385 static void dev_create_fw_entry(struct device *dev, void *res, 1386 void *data) 1387 { 1388 struct fw_name_devm *fwn = res; 1389 const char *fw_name = fwn->name; 1390 struct list_head *head = data; 1391 struct fw_cache_entry *fce; 1392 1393 fce = alloc_fw_cache_entry(fw_name); 1394 if (fce) 1395 list_add(&fce->list, head); 1396 } 1397 1398 static int devm_name_match(struct device *dev, void *res, 1399 void *match_data) 1400 { 1401 struct fw_name_devm *fwn = res; 1402 return (fwn->magic == (unsigned long)match_data); 1403 } 1404 1405 static void dev_cache_fw_image(struct device *dev, void *data) 1406 { 1407 LIST_HEAD(todo); 1408 struct fw_cache_entry *fce; 1409 struct fw_cache_entry *fce_next; 1410 struct firmware_cache *fwc = &fw_cache; 1411 1412 devres_for_each_res(dev, fw_name_devm_release, 1413 devm_name_match, &fw_cache, 1414 dev_create_fw_entry, &todo); 1415 1416 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1417 list_del(&fce->list); 1418 1419 spin_lock(&fwc->name_lock); 1420 /* only one cache entry for one firmware */ 1421 if (!__fw_entry_found(fce->name)) { 1422 list_add(&fce->list, &fwc->fw_names); 1423 } else { 1424 free_fw_cache_entry(fce); 1425 fce = NULL; 1426 } 1427 spin_unlock(&fwc->name_lock); 1428 1429 if (fce) 1430 async_schedule_domain(__async_dev_cache_fw_image, 1431 (void *)fce, 1432 &fw_cache_domain); 1433 } 1434 } 1435 1436 static void __device_uncache_fw_images(void) 1437 { 1438 struct firmware_cache *fwc = &fw_cache; 1439 struct fw_cache_entry *fce; 1440 1441 spin_lock(&fwc->name_lock); 1442 while (!list_empty(&fwc->fw_names)) { 1443 fce = list_entry(fwc->fw_names.next, 1444 struct fw_cache_entry, list); 1445 list_del(&fce->list); 1446 spin_unlock(&fwc->name_lock); 1447 1448 uncache_firmware(fce->name); 1449 free_fw_cache_entry(fce); 1450 1451 spin_lock(&fwc->name_lock); 1452 } 1453 spin_unlock(&fwc->name_lock); 1454 } 1455 1456 /** 1457 * device_cache_fw_images() - cache devices' firmware 1458 * 1459 * If one device called request_firmware or its nowait version 1460 * successfully before, the firmware names are recored into the 1461 * device's devres link list, so device_cache_fw_images can call 1462 * cache_firmware() to cache these firmwares for the device, 1463 * then the device driver can load its firmwares easily at 1464 * time when system is not ready to complete loading firmware. 1465 */ 1466 static void device_cache_fw_images(void) 1467 { 1468 struct firmware_cache *fwc = &fw_cache; 1469 DEFINE_WAIT(wait); 1470 1471 pr_debug("%s\n", __func__); 1472 1473 /* cancel uncache work */ 1474 cancel_delayed_work_sync(&fwc->work); 1475 1476 fw_fallback_set_cache_timeout(); 1477 1478 mutex_lock(&fw_lock); 1479 fwc->state = FW_LOADER_START_CACHE; 1480 dpm_for_each_dev(NULL, dev_cache_fw_image); 1481 mutex_unlock(&fw_lock); 1482 1483 /* wait for completion of caching firmware for all devices */ 1484 async_synchronize_full_domain(&fw_cache_domain); 1485 1486 fw_fallback_set_default_timeout(); 1487 } 1488 1489 /** 1490 * device_uncache_fw_images() - uncache devices' firmware 1491 * 1492 * uncache all firmwares which have been cached successfully 1493 * by device_uncache_fw_images earlier 1494 */ 1495 static void device_uncache_fw_images(void) 1496 { 1497 pr_debug("%s\n", __func__); 1498 __device_uncache_fw_images(); 1499 } 1500 1501 static void device_uncache_fw_images_work(struct work_struct *work) 1502 { 1503 device_uncache_fw_images(); 1504 } 1505 1506 /** 1507 * device_uncache_fw_images_delay() - uncache devices firmwares 1508 * @delay: number of milliseconds to delay uncache device firmwares 1509 * 1510 * uncache all devices's firmwares which has been cached successfully 1511 * by device_cache_fw_images after @delay milliseconds. 1512 */ 1513 static void device_uncache_fw_images_delay(unsigned long delay) 1514 { 1515 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1516 msecs_to_jiffies(delay)); 1517 } 1518 1519 static int fw_pm_notify(struct notifier_block *notify_block, 1520 unsigned long mode, void *unused) 1521 { 1522 switch (mode) { 1523 case PM_HIBERNATION_PREPARE: 1524 case PM_SUSPEND_PREPARE: 1525 case PM_RESTORE_PREPARE: 1526 /* 1527 * kill pending fallback requests with a custom fallback 1528 * to avoid stalling suspend. 1529 */ 1530 kill_pending_fw_fallback_reqs(true); 1531 device_cache_fw_images(); 1532 break; 1533 1534 case PM_POST_SUSPEND: 1535 case PM_POST_HIBERNATION: 1536 case PM_POST_RESTORE: 1537 /* 1538 * In case that system sleep failed and syscore_suspend is 1539 * not called. 1540 */ 1541 mutex_lock(&fw_lock); 1542 fw_cache.state = FW_LOADER_NO_CACHE; 1543 mutex_unlock(&fw_lock); 1544 1545 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1546 break; 1547 } 1548 1549 return 0; 1550 } 1551 1552 /* stop caching firmware once syscore_suspend is reached */ 1553 static int fw_suspend(void) 1554 { 1555 fw_cache.state = FW_LOADER_NO_CACHE; 1556 return 0; 1557 } 1558 1559 static struct syscore_ops fw_syscore_ops = { 1560 .suspend = fw_suspend, 1561 }; 1562 1563 static int __init register_fw_pm_ops(void) 1564 { 1565 int ret; 1566 1567 spin_lock_init(&fw_cache.name_lock); 1568 INIT_LIST_HEAD(&fw_cache.fw_names); 1569 1570 INIT_DELAYED_WORK(&fw_cache.work, 1571 device_uncache_fw_images_work); 1572 1573 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1574 ret = register_pm_notifier(&fw_cache.pm_notify); 1575 if (ret) 1576 return ret; 1577 1578 register_syscore_ops(&fw_syscore_ops); 1579 1580 return ret; 1581 } 1582 1583 static inline void unregister_fw_pm_ops(void) 1584 { 1585 unregister_syscore_ops(&fw_syscore_ops); 1586 unregister_pm_notifier(&fw_cache.pm_notify); 1587 } 1588 #else 1589 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1590 { 1591 } 1592 static inline int register_fw_pm_ops(void) 1593 { 1594 return 0; 1595 } 1596 static inline void unregister_fw_pm_ops(void) 1597 { 1598 } 1599 #endif 1600 1601 static void __init fw_cache_init(void) 1602 { 1603 spin_lock_init(&fw_cache.lock); 1604 INIT_LIST_HEAD(&fw_cache.head); 1605 fw_cache.state = FW_LOADER_NO_CACHE; 1606 } 1607 1608 static int fw_shutdown_notify(struct notifier_block *unused1, 1609 unsigned long unused2, void *unused3) 1610 { 1611 /* 1612 * Kill all pending fallback requests to avoid both stalling shutdown, 1613 * and avoid a deadlock with the usermode_lock. 1614 */ 1615 kill_pending_fw_fallback_reqs(false); 1616 1617 return NOTIFY_DONE; 1618 } 1619 1620 static struct notifier_block fw_shutdown_nb = { 1621 .notifier_call = fw_shutdown_notify, 1622 }; 1623 1624 static int __init firmware_class_init(void) 1625 { 1626 int ret; 1627 1628 /* No need to unfold these on exit */ 1629 fw_cache_init(); 1630 1631 ret = register_fw_pm_ops(); 1632 if (ret) 1633 return ret; 1634 1635 ret = register_reboot_notifier(&fw_shutdown_nb); 1636 if (ret) 1637 goto out; 1638 1639 return register_sysfs_loader(); 1640 1641 out: 1642 unregister_fw_pm_ops(); 1643 return ret; 1644 } 1645 1646 static void __exit firmware_class_exit(void) 1647 { 1648 unregister_fw_pm_ops(); 1649 unregister_reboot_notifier(&fw_shutdown_nb); 1650 unregister_sysfs_loader(); 1651 } 1652 1653 fs_initcall(firmware_class_init); 1654 module_exit(firmware_class_exit); 1655