xref: /linux/drivers/base/firmware_loader/main.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/xz.h>
39 
40 #include <generated/utsrelease.h>
41 
42 #include "../base.h"
43 #include "firmware.h"
44 #include "fallback.h"
45 
46 MODULE_AUTHOR("Manuel Estrada Sainz");
47 MODULE_DESCRIPTION("Multi purpose firmware loading support");
48 MODULE_LICENSE("GPL");
49 
50 struct firmware_cache {
51 	/* firmware_buf instance will be added into the below list */
52 	spinlock_t lock;
53 	struct list_head head;
54 	int state;
55 
56 #ifdef CONFIG_FW_CACHE
57 	/*
58 	 * Names of firmware images which have been cached successfully
59 	 * will be added into the below list so that device uncache
60 	 * helper can trace which firmware images have been cached
61 	 * before.
62 	 */
63 	spinlock_t name_lock;
64 	struct list_head fw_names;
65 
66 	struct delayed_work work;
67 
68 	struct notifier_block   pm_notify;
69 #endif
70 };
71 
72 struct fw_cache_entry {
73 	struct list_head list;
74 	const char *name;
75 };
76 
77 struct fw_name_devm {
78 	unsigned long magic;
79 	const char *name;
80 };
81 
82 static inline struct fw_priv *to_fw_priv(struct kref *ref)
83 {
84 	return container_of(ref, struct fw_priv, ref);
85 }
86 
87 #define	FW_LOADER_NO_CACHE	0
88 #define	FW_LOADER_START_CACHE	1
89 
90 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
91  * guarding for corner cases a global lock should be OK */
92 DEFINE_MUTEX(fw_lock);
93 
94 static struct firmware_cache fw_cache;
95 
96 /* Builtin firmware support */
97 
98 #ifdef CONFIG_FW_LOADER
99 
100 extern struct builtin_fw __start_builtin_fw[];
101 extern struct builtin_fw __end_builtin_fw[];
102 
103 static void fw_copy_to_prealloc_buf(struct firmware *fw,
104 				    void *buf, size_t size)
105 {
106 	if (!buf || size < fw->size)
107 		return;
108 	memcpy(buf, fw->data, fw->size);
109 }
110 
111 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
112 				    void *buf, size_t size)
113 {
114 	struct builtin_fw *b_fw;
115 
116 	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
117 		if (strcmp(name, b_fw->name) == 0) {
118 			fw->size = b_fw->size;
119 			fw->data = b_fw->data;
120 			fw_copy_to_prealloc_buf(fw, buf, size);
121 
122 			return true;
123 		}
124 	}
125 
126 	return false;
127 }
128 
129 static bool fw_is_builtin_firmware(const struct firmware *fw)
130 {
131 	struct builtin_fw *b_fw;
132 
133 	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
134 		if (fw->data == b_fw->data)
135 			return true;
136 
137 	return false;
138 }
139 
140 #else /* Module case - no builtin firmware support */
141 
142 static inline bool fw_get_builtin_firmware(struct firmware *fw,
143 					   const char *name, void *buf,
144 					   size_t size)
145 {
146 	return false;
147 }
148 
149 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
150 {
151 	return false;
152 }
153 #endif
154 
155 static void fw_state_init(struct fw_priv *fw_priv)
156 {
157 	struct fw_state *fw_st = &fw_priv->fw_st;
158 
159 	init_completion(&fw_st->completion);
160 	fw_st->status = FW_STATUS_UNKNOWN;
161 }
162 
163 static inline int fw_state_wait(struct fw_priv *fw_priv)
164 {
165 	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
166 }
167 
168 static int fw_cache_piggyback_on_request(const char *name);
169 
170 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
171 					  struct firmware_cache *fwc,
172 					  void *dbuf,
173 					  size_t size,
174 					  size_t offset,
175 					  u32 opt_flags)
176 {
177 	struct fw_priv *fw_priv;
178 
179 	/* For a partial read, the buffer must be preallocated. */
180 	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
181 		return NULL;
182 
183 	/* Only partial reads are allowed to use an offset. */
184 	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
185 		return NULL;
186 
187 	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
188 	if (!fw_priv)
189 		return NULL;
190 
191 	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
192 	if (!fw_priv->fw_name) {
193 		kfree(fw_priv);
194 		return NULL;
195 	}
196 
197 	kref_init(&fw_priv->ref);
198 	fw_priv->fwc = fwc;
199 	fw_priv->data = dbuf;
200 	fw_priv->allocated_size = size;
201 	fw_priv->offset = offset;
202 	fw_priv->opt_flags = opt_flags;
203 	fw_state_init(fw_priv);
204 #ifdef CONFIG_FW_LOADER_USER_HELPER
205 	INIT_LIST_HEAD(&fw_priv->pending_list);
206 #endif
207 
208 	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
209 
210 	return fw_priv;
211 }
212 
213 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
214 {
215 	struct fw_priv *tmp;
216 	struct firmware_cache *fwc = &fw_cache;
217 
218 	list_for_each_entry(tmp, &fwc->head, list)
219 		if (!strcmp(tmp->fw_name, fw_name))
220 			return tmp;
221 	return NULL;
222 }
223 
224 /* Returns 1 for batching firmware requests with the same name */
225 static int alloc_lookup_fw_priv(const char *fw_name,
226 				struct firmware_cache *fwc,
227 				struct fw_priv **fw_priv,
228 				void *dbuf,
229 				size_t size,
230 				size_t offset,
231 				u32 opt_flags)
232 {
233 	struct fw_priv *tmp;
234 
235 	spin_lock(&fwc->lock);
236 	/*
237 	 * Do not merge requests that are marked to be non-cached or
238 	 * are performing partial reads.
239 	 */
240 	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
241 		tmp = __lookup_fw_priv(fw_name);
242 		if (tmp) {
243 			kref_get(&tmp->ref);
244 			spin_unlock(&fwc->lock);
245 			*fw_priv = tmp;
246 			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
247 			return 1;
248 		}
249 	}
250 
251 	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
252 	if (tmp) {
253 		INIT_LIST_HEAD(&tmp->list);
254 		if (!(opt_flags & FW_OPT_NOCACHE))
255 			list_add(&tmp->list, &fwc->head);
256 	}
257 	spin_unlock(&fwc->lock);
258 
259 	*fw_priv = tmp;
260 
261 	return tmp ? 0 : -ENOMEM;
262 }
263 
264 static void __free_fw_priv(struct kref *ref)
265 	__releases(&fwc->lock)
266 {
267 	struct fw_priv *fw_priv = to_fw_priv(ref);
268 	struct firmware_cache *fwc = fw_priv->fwc;
269 
270 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
271 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
272 		 (unsigned int)fw_priv->size);
273 
274 	list_del(&fw_priv->list);
275 	spin_unlock(&fwc->lock);
276 
277 	if (fw_is_paged_buf(fw_priv))
278 		fw_free_paged_buf(fw_priv);
279 	else if (!fw_priv->allocated_size)
280 		vfree(fw_priv->data);
281 
282 	kfree_const(fw_priv->fw_name);
283 	kfree(fw_priv);
284 }
285 
286 static void free_fw_priv(struct fw_priv *fw_priv)
287 {
288 	struct firmware_cache *fwc = fw_priv->fwc;
289 	spin_lock(&fwc->lock);
290 	if (!kref_put(&fw_priv->ref, __free_fw_priv))
291 		spin_unlock(&fwc->lock);
292 }
293 
294 #ifdef CONFIG_FW_LOADER_PAGED_BUF
295 bool fw_is_paged_buf(struct fw_priv *fw_priv)
296 {
297 	return fw_priv->is_paged_buf;
298 }
299 
300 void fw_free_paged_buf(struct fw_priv *fw_priv)
301 {
302 	int i;
303 
304 	if (!fw_priv->pages)
305 		return;
306 
307 	vunmap(fw_priv->data);
308 
309 	for (i = 0; i < fw_priv->nr_pages; i++)
310 		__free_page(fw_priv->pages[i]);
311 	kvfree(fw_priv->pages);
312 	fw_priv->pages = NULL;
313 	fw_priv->page_array_size = 0;
314 	fw_priv->nr_pages = 0;
315 }
316 
317 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
318 {
319 	/* If the array of pages is too small, grow it */
320 	if (fw_priv->page_array_size < pages_needed) {
321 		int new_array_size = max(pages_needed,
322 					 fw_priv->page_array_size * 2);
323 		struct page **new_pages;
324 
325 		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
326 					   GFP_KERNEL);
327 		if (!new_pages)
328 			return -ENOMEM;
329 		memcpy(new_pages, fw_priv->pages,
330 		       fw_priv->page_array_size * sizeof(void *));
331 		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
332 		       (new_array_size - fw_priv->page_array_size));
333 		kvfree(fw_priv->pages);
334 		fw_priv->pages = new_pages;
335 		fw_priv->page_array_size = new_array_size;
336 	}
337 
338 	while (fw_priv->nr_pages < pages_needed) {
339 		fw_priv->pages[fw_priv->nr_pages] =
340 			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
341 
342 		if (!fw_priv->pages[fw_priv->nr_pages])
343 			return -ENOMEM;
344 		fw_priv->nr_pages++;
345 	}
346 
347 	return 0;
348 }
349 
350 int fw_map_paged_buf(struct fw_priv *fw_priv)
351 {
352 	/* one pages buffer should be mapped/unmapped only once */
353 	if (!fw_priv->pages)
354 		return 0;
355 
356 	vunmap(fw_priv->data);
357 	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
358 			     PAGE_KERNEL_RO);
359 	if (!fw_priv->data)
360 		return -ENOMEM;
361 
362 	return 0;
363 }
364 #endif
365 
366 /*
367  * XZ-compressed firmware support
368  */
369 #ifdef CONFIG_FW_LOADER_COMPRESS
370 /* show an error and return the standard error code */
371 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
372 {
373 	if (xz_ret != XZ_STREAM_END) {
374 		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
375 		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
376 	}
377 	return 0;
378 }
379 
380 /* single-shot decompression onto the pre-allocated buffer */
381 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
382 				   size_t in_size, const void *in_buffer)
383 {
384 	struct xz_dec *xz_dec;
385 	struct xz_buf xz_buf;
386 	enum xz_ret xz_ret;
387 
388 	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
389 	if (!xz_dec)
390 		return -ENOMEM;
391 
392 	xz_buf.in_size = in_size;
393 	xz_buf.in = in_buffer;
394 	xz_buf.in_pos = 0;
395 	xz_buf.out_size = fw_priv->allocated_size;
396 	xz_buf.out = fw_priv->data;
397 	xz_buf.out_pos = 0;
398 
399 	xz_ret = xz_dec_run(xz_dec, &xz_buf);
400 	xz_dec_end(xz_dec);
401 
402 	fw_priv->size = xz_buf.out_pos;
403 	return fw_decompress_xz_error(dev, xz_ret);
404 }
405 
406 /* decompression on paged buffer and map it */
407 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
408 				  size_t in_size, const void *in_buffer)
409 {
410 	struct xz_dec *xz_dec;
411 	struct xz_buf xz_buf;
412 	enum xz_ret xz_ret;
413 	struct page *page;
414 	int err = 0;
415 
416 	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
417 	if (!xz_dec)
418 		return -ENOMEM;
419 
420 	xz_buf.in_size = in_size;
421 	xz_buf.in = in_buffer;
422 	xz_buf.in_pos = 0;
423 
424 	fw_priv->is_paged_buf = true;
425 	fw_priv->size = 0;
426 	do {
427 		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
428 			err = -ENOMEM;
429 			goto out;
430 		}
431 
432 		/* decompress onto the new allocated page */
433 		page = fw_priv->pages[fw_priv->nr_pages - 1];
434 		xz_buf.out = kmap(page);
435 		xz_buf.out_pos = 0;
436 		xz_buf.out_size = PAGE_SIZE;
437 		xz_ret = xz_dec_run(xz_dec, &xz_buf);
438 		kunmap(page);
439 		fw_priv->size += xz_buf.out_pos;
440 		/* partial decompression means either end or error */
441 		if (xz_buf.out_pos != PAGE_SIZE)
442 			break;
443 	} while (xz_ret == XZ_OK);
444 
445 	err = fw_decompress_xz_error(dev, xz_ret);
446 	if (!err)
447 		err = fw_map_paged_buf(fw_priv);
448 
449  out:
450 	xz_dec_end(xz_dec);
451 	return err;
452 }
453 
454 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
455 			    size_t in_size, const void *in_buffer)
456 {
457 	/* if the buffer is pre-allocated, we can perform in single-shot mode */
458 	if (fw_priv->data)
459 		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
460 	else
461 		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
462 }
463 #endif /* CONFIG_FW_LOADER_COMPRESS */
464 
465 /* direct firmware loading support */
466 static char fw_path_para[256];
467 static const char * const fw_path[] = {
468 	fw_path_para,
469 	"/lib/firmware/updates/" UTS_RELEASE,
470 	"/lib/firmware/updates",
471 	"/lib/firmware/" UTS_RELEASE,
472 	"/lib/firmware"
473 };
474 
475 /*
476  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
477  * from kernel command line because firmware_class is generally built in
478  * kernel instead of module.
479  */
480 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
481 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
482 
483 static int
484 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
485 			   const char *suffix,
486 			   int (*decompress)(struct device *dev,
487 					     struct fw_priv *fw_priv,
488 					     size_t in_size,
489 					     const void *in_buffer))
490 {
491 	size_t size;
492 	int i, len;
493 	int rc = -ENOENT;
494 	char *path;
495 	size_t msize = INT_MAX;
496 	void *buffer = NULL;
497 
498 	/* Already populated data member means we're loading into a buffer */
499 	if (!decompress && fw_priv->data) {
500 		buffer = fw_priv->data;
501 		msize = fw_priv->allocated_size;
502 	}
503 
504 	path = __getname();
505 	if (!path)
506 		return -ENOMEM;
507 
508 	wait_for_initramfs();
509 	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
510 		size_t file_size = 0;
511 		size_t *file_size_ptr = NULL;
512 
513 		/* skip the unset customized path */
514 		if (!fw_path[i][0])
515 			continue;
516 
517 		len = snprintf(path, PATH_MAX, "%s/%s%s",
518 			       fw_path[i], fw_priv->fw_name, suffix);
519 		if (len >= PATH_MAX) {
520 			rc = -ENAMETOOLONG;
521 			break;
522 		}
523 
524 		fw_priv->size = 0;
525 
526 		/*
527 		 * The total file size is only examined when doing a partial
528 		 * read; the "full read" case needs to fail if the whole
529 		 * firmware was not completely loaded.
530 		 */
531 		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
532 			file_size_ptr = &file_size;
533 
534 		/* load firmware files from the mount namespace of init */
535 		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
536 						       &buffer, msize,
537 						       file_size_ptr,
538 						       READING_FIRMWARE);
539 		if (rc < 0) {
540 			if (rc != -ENOENT)
541 				dev_warn(device, "loading %s failed with error %d\n",
542 					 path, rc);
543 			else
544 				dev_dbg(device, "loading %s failed for no such file or directory.\n",
545 					 path);
546 			continue;
547 		}
548 		size = rc;
549 		rc = 0;
550 
551 		dev_dbg(device, "Loading firmware from %s\n", path);
552 		if (decompress) {
553 			dev_dbg(device, "f/w decompressing %s\n",
554 				fw_priv->fw_name);
555 			rc = decompress(device, fw_priv, size, buffer);
556 			/* discard the superfluous original content */
557 			vfree(buffer);
558 			buffer = NULL;
559 			if (rc) {
560 				fw_free_paged_buf(fw_priv);
561 				continue;
562 			}
563 		} else {
564 			dev_dbg(device, "direct-loading %s\n",
565 				fw_priv->fw_name);
566 			if (!fw_priv->data)
567 				fw_priv->data = buffer;
568 			fw_priv->size = size;
569 		}
570 		fw_state_done(fw_priv);
571 		break;
572 	}
573 	__putname(path);
574 
575 	return rc;
576 }
577 
578 /* firmware holds the ownership of pages */
579 static void firmware_free_data(const struct firmware *fw)
580 {
581 	/* Loaded directly? */
582 	if (!fw->priv) {
583 		vfree(fw->data);
584 		return;
585 	}
586 	free_fw_priv(fw->priv);
587 }
588 
589 /* store the pages buffer info firmware from buf */
590 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
591 {
592 	fw->priv = fw_priv;
593 	fw->size = fw_priv->size;
594 	fw->data = fw_priv->data;
595 
596 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
597 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
598 		 (unsigned int)fw_priv->size);
599 }
600 
601 #ifdef CONFIG_FW_CACHE
602 static void fw_name_devm_release(struct device *dev, void *res)
603 {
604 	struct fw_name_devm *fwn = res;
605 
606 	if (fwn->magic == (unsigned long)&fw_cache)
607 		pr_debug("%s: fw_name-%s devm-%p released\n",
608 				__func__, fwn->name, res);
609 	kfree_const(fwn->name);
610 }
611 
612 static int fw_devm_match(struct device *dev, void *res,
613 		void *match_data)
614 {
615 	struct fw_name_devm *fwn = res;
616 
617 	return (fwn->magic == (unsigned long)&fw_cache) &&
618 		!strcmp(fwn->name, match_data);
619 }
620 
621 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
622 		const char *name)
623 {
624 	struct fw_name_devm *fwn;
625 
626 	fwn = devres_find(dev, fw_name_devm_release,
627 			  fw_devm_match, (void *)name);
628 	return fwn;
629 }
630 
631 static bool fw_cache_is_setup(struct device *dev, const char *name)
632 {
633 	struct fw_name_devm *fwn;
634 
635 	fwn = fw_find_devm_name(dev, name);
636 	if (fwn)
637 		return true;
638 
639 	return false;
640 }
641 
642 /* add firmware name into devres list */
643 static int fw_add_devm_name(struct device *dev, const char *name)
644 {
645 	struct fw_name_devm *fwn;
646 
647 	if (fw_cache_is_setup(dev, name))
648 		return 0;
649 
650 	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
651 			   GFP_KERNEL);
652 	if (!fwn)
653 		return -ENOMEM;
654 	fwn->name = kstrdup_const(name, GFP_KERNEL);
655 	if (!fwn->name) {
656 		devres_free(fwn);
657 		return -ENOMEM;
658 	}
659 
660 	fwn->magic = (unsigned long)&fw_cache;
661 	devres_add(dev, fwn);
662 
663 	return 0;
664 }
665 #else
666 static bool fw_cache_is_setup(struct device *dev, const char *name)
667 {
668 	return false;
669 }
670 
671 static int fw_add_devm_name(struct device *dev, const char *name)
672 {
673 	return 0;
674 }
675 #endif
676 
677 int assign_fw(struct firmware *fw, struct device *device)
678 {
679 	struct fw_priv *fw_priv = fw->priv;
680 	int ret;
681 
682 	mutex_lock(&fw_lock);
683 	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
684 		mutex_unlock(&fw_lock);
685 		return -ENOENT;
686 	}
687 
688 	/*
689 	 * add firmware name into devres list so that we can auto cache
690 	 * and uncache firmware for device.
691 	 *
692 	 * device may has been deleted already, but the problem
693 	 * should be fixed in devres or driver core.
694 	 */
695 	/* don't cache firmware handled without uevent */
696 	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
697 	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
698 		ret = fw_add_devm_name(device, fw_priv->fw_name);
699 		if (ret) {
700 			mutex_unlock(&fw_lock);
701 			return ret;
702 		}
703 	}
704 
705 	/*
706 	 * After caching firmware image is started, let it piggyback
707 	 * on request firmware.
708 	 */
709 	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
710 	    fw_priv->fwc->state == FW_LOADER_START_CACHE) {
711 		if (fw_cache_piggyback_on_request(fw_priv->fw_name))
712 			kref_get(&fw_priv->ref);
713 	}
714 
715 	/* pass the pages buffer to driver at the last minute */
716 	fw_set_page_data(fw_priv, fw);
717 	mutex_unlock(&fw_lock);
718 	return 0;
719 }
720 
721 /* prepare firmware and firmware_buf structs;
722  * return 0 if a firmware is already assigned, 1 if need to load one,
723  * or a negative error code
724  */
725 static int
726 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
727 			  struct device *device, void *dbuf, size_t size,
728 			  size_t offset, u32 opt_flags)
729 {
730 	struct firmware *firmware;
731 	struct fw_priv *fw_priv;
732 	int ret;
733 
734 	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
735 	if (!firmware) {
736 		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
737 			__func__);
738 		return -ENOMEM;
739 	}
740 
741 	if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
742 		dev_dbg(device, "using built-in %s\n", name);
743 		return 0; /* assigned */
744 	}
745 
746 	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
747 				   offset, opt_flags);
748 
749 	/*
750 	 * bind with 'priv' now to avoid warning in failure path
751 	 * of requesting firmware.
752 	 */
753 	firmware->priv = fw_priv;
754 
755 	if (ret > 0) {
756 		ret = fw_state_wait(fw_priv);
757 		if (!ret) {
758 			fw_set_page_data(fw_priv, firmware);
759 			return 0; /* assigned */
760 		}
761 	}
762 
763 	if (ret < 0)
764 		return ret;
765 	return 1; /* need to load */
766 }
767 
768 /*
769  * Batched requests need only one wake, we need to do this step last due to the
770  * fallback mechanism. The buf is protected with kref_get(), and it won't be
771  * released until the last user calls release_firmware().
772  *
773  * Failed batched requests are possible as well, in such cases we just share
774  * the struct fw_priv and won't release it until all requests are woken
775  * and have gone through this same path.
776  */
777 static void fw_abort_batch_reqs(struct firmware *fw)
778 {
779 	struct fw_priv *fw_priv;
780 
781 	/* Loaded directly? */
782 	if (!fw || !fw->priv)
783 		return;
784 
785 	fw_priv = fw->priv;
786 	if (!fw_state_is_aborted(fw_priv))
787 		fw_state_aborted(fw_priv);
788 }
789 
790 /* called from request_firmware() and request_firmware_work_func() */
791 static int
792 _request_firmware(const struct firmware **firmware_p, const char *name,
793 		  struct device *device, void *buf, size_t size,
794 		  size_t offset, u32 opt_flags)
795 {
796 	struct firmware *fw = NULL;
797 	bool nondirect = false;
798 	int ret;
799 
800 	if (!firmware_p)
801 		return -EINVAL;
802 
803 	if (!name || name[0] == '\0') {
804 		ret = -EINVAL;
805 		goto out;
806 	}
807 
808 	ret = _request_firmware_prepare(&fw, name, device, buf, size,
809 					offset, opt_flags);
810 	if (ret <= 0) /* error or already assigned */
811 		goto out;
812 
813 	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
814 
815 	/* Only full reads can support decompression, platform, and sysfs. */
816 	if (!(opt_flags & FW_OPT_PARTIAL))
817 		nondirect = true;
818 
819 #ifdef CONFIG_FW_LOADER_COMPRESS
820 	if (ret == -ENOENT && nondirect)
821 		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
822 						 fw_decompress_xz);
823 #endif
824 	if (ret == -ENOENT && nondirect)
825 		ret = firmware_fallback_platform(fw->priv);
826 
827 	if (ret) {
828 		if (!(opt_flags & FW_OPT_NO_WARN))
829 			dev_warn(device,
830 				 "Direct firmware load for %s failed with error %d\n",
831 				 name, ret);
832 		if (nondirect)
833 			ret = firmware_fallback_sysfs(fw, name, device,
834 						      opt_flags, ret);
835 	} else
836 		ret = assign_fw(fw, device);
837 
838  out:
839 	if (ret < 0) {
840 		fw_abort_batch_reqs(fw);
841 		release_firmware(fw);
842 		fw = NULL;
843 	}
844 
845 	*firmware_p = fw;
846 	return ret;
847 }
848 
849 /**
850  * request_firmware() - send firmware request and wait for it
851  * @firmware_p: pointer to firmware image
852  * @name: name of firmware file
853  * @device: device for which firmware is being loaded
854  *
855  *      @firmware_p will be used to return a firmware image by the name
856  *      of @name for device @device.
857  *
858  *      Should be called from user context where sleeping is allowed.
859  *
860  *      @name will be used as $FIRMWARE in the uevent environment and
861  *      should be distinctive enough not to be confused with any other
862  *      firmware image for this or any other device.
863  *
864  *	Caller must hold the reference count of @device.
865  *
866  *	The function can be called safely inside device's suspend and
867  *	resume callback.
868  **/
869 int
870 request_firmware(const struct firmware **firmware_p, const char *name,
871 		 struct device *device)
872 {
873 	int ret;
874 
875 	/* Need to pin this module until return */
876 	__module_get(THIS_MODULE);
877 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
878 				FW_OPT_UEVENT);
879 	module_put(THIS_MODULE);
880 	return ret;
881 }
882 EXPORT_SYMBOL(request_firmware);
883 
884 /**
885  * firmware_request_nowarn() - request for an optional fw module
886  * @firmware: pointer to firmware image
887  * @name: name of firmware file
888  * @device: device for which firmware is being loaded
889  *
890  * This function is similar in behaviour to request_firmware(), except it
891  * doesn't produce warning messages when the file is not found. The sysfs
892  * fallback mechanism is enabled if direct filesystem lookup fails. However,
893  * failures to find the firmware file with it are still suppressed. It is
894  * therefore up to the driver to check for the return value of this call and to
895  * decide when to inform the users of errors.
896  **/
897 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
898 			    struct device *device)
899 {
900 	int ret;
901 
902 	/* Need to pin this module until return */
903 	__module_get(THIS_MODULE);
904 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
905 				FW_OPT_UEVENT | FW_OPT_NO_WARN);
906 	module_put(THIS_MODULE);
907 	return ret;
908 }
909 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
910 
911 /**
912  * request_firmware_direct() - load firmware directly without usermode helper
913  * @firmware_p: pointer to firmware image
914  * @name: name of firmware file
915  * @device: device for which firmware is being loaded
916  *
917  * This function works pretty much like request_firmware(), but this doesn't
918  * fall back to usermode helper even if the firmware couldn't be loaded
919  * directly from fs.  Hence it's useful for loading optional firmwares, which
920  * aren't always present, without extra long timeouts of udev.
921  **/
922 int request_firmware_direct(const struct firmware **firmware_p,
923 			    const char *name, struct device *device)
924 {
925 	int ret;
926 
927 	__module_get(THIS_MODULE);
928 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
929 				FW_OPT_UEVENT | FW_OPT_NO_WARN |
930 				FW_OPT_NOFALLBACK_SYSFS);
931 	module_put(THIS_MODULE);
932 	return ret;
933 }
934 EXPORT_SYMBOL_GPL(request_firmware_direct);
935 
936 /**
937  * firmware_request_platform() - request firmware with platform-fw fallback
938  * @firmware: pointer to firmware image
939  * @name: name of firmware file
940  * @device: device for which firmware is being loaded
941  *
942  * This function is similar in behaviour to request_firmware, except that if
943  * direct filesystem lookup fails, it will fallback to looking for a copy of the
944  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
945  **/
946 int firmware_request_platform(const struct firmware **firmware,
947 			      const char *name, struct device *device)
948 {
949 	int ret;
950 
951 	/* Need to pin this module until return */
952 	__module_get(THIS_MODULE);
953 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
954 				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
955 	module_put(THIS_MODULE);
956 	return ret;
957 }
958 EXPORT_SYMBOL_GPL(firmware_request_platform);
959 
960 /**
961  * firmware_request_cache() - cache firmware for suspend so resume can use it
962  * @name: name of firmware file
963  * @device: device for which firmware should be cached for
964  *
965  * There are some devices with an optimization that enables the device to not
966  * require loading firmware on system reboot. This optimization may still
967  * require the firmware present on resume from suspend. This routine can be
968  * used to ensure the firmware is present on resume from suspend in these
969  * situations. This helper is not compatible with drivers which use
970  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
971  **/
972 int firmware_request_cache(struct device *device, const char *name)
973 {
974 	int ret;
975 
976 	mutex_lock(&fw_lock);
977 	ret = fw_add_devm_name(device, name);
978 	mutex_unlock(&fw_lock);
979 
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(firmware_request_cache);
983 
984 /**
985  * request_firmware_into_buf() - load firmware into a previously allocated buffer
986  * @firmware_p: pointer to firmware image
987  * @name: name of firmware file
988  * @device: device for which firmware is being loaded and DMA region allocated
989  * @buf: address of buffer to load firmware into
990  * @size: size of buffer
991  *
992  * This function works pretty much like request_firmware(), but it doesn't
993  * allocate a buffer to hold the firmware data. Instead, the firmware
994  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
995  * data member is pointed at @buf.
996  *
997  * This function doesn't cache firmware either.
998  */
999 int
1000 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1001 			  struct device *device, void *buf, size_t size)
1002 {
1003 	int ret;
1004 
1005 	if (fw_cache_is_setup(device, name))
1006 		return -EOPNOTSUPP;
1007 
1008 	__module_get(THIS_MODULE);
1009 	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1010 				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1011 	module_put(THIS_MODULE);
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(request_firmware_into_buf);
1015 
1016 /**
1017  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1018  * @firmware_p: pointer to firmware image
1019  * @name: name of firmware file
1020  * @device: device for which firmware is being loaded and DMA region allocated
1021  * @buf: address of buffer to load firmware into
1022  * @size: size of buffer
1023  * @offset: offset into file to read
1024  *
1025  * This function works pretty much like request_firmware_into_buf except
1026  * it allows a partial read of the file.
1027  */
1028 int
1029 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1030 				  const char *name, struct device *device,
1031 				  void *buf, size_t size, size_t offset)
1032 {
1033 	int ret;
1034 
1035 	if (fw_cache_is_setup(device, name))
1036 		return -EOPNOTSUPP;
1037 
1038 	__module_get(THIS_MODULE);
1039 	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1040 				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1041 				FW_OPT_PARTIAL);
1042 	module_put(THIS_MODULE);
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1046 
1047 /**
1048  * release_firmware() - release the resource associated with a firmware image
1049  * @fw: firmware resource to release
1050  **/
1051 void release_firmware(const struct firmware *fw)
1052 {
1053 	if (fw) {
1054 		if (!fw_is_builtin_firmware(fw))
1055 			firmware_free_data(fw);
1056 		kfree(fw);
1057 	}
1058 }
1059 EXPORT_SYMBOL(release_firmware);
1060 
1061 /* Async support */
1062 struct firmware_work {
1063 	struct work_struct work;
1064 	struct module *module;
1065 	const char *name;
1066 	struct device *device;
1067 	void *context;
1068 	void (*cont)(const struct firmware *fw, void *context);
1069 	u32 opt_flags;
1070 };
1071 
1072 static void request_firmware_work_func(struct work_struct *work)
1073 {
1074 	struct firmware_work *fw_work;
1075 	const struct firmware *fw;
1076 
1077 	fw_work = container_of(work, struct firmware_work, work);
1078 
1079 	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1080 			  fw_work->opt_flags);
1081 	fw_work->cont(fw, fw_work->context);
1082 	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1083 
1084 	module_put(fw_work->module);
1085 	kfree_const(fw_work->name);
1086 	kfree(fw_work);
1087 }
1088 
1089 /**
1090  * request_firmware_nowait() - asynchronous version of request_firmware
1091  * @module: module requesting the firmware
1092  * @uevent: sends uevent to copy the firmware image if this flag
1093  *	is non-zero else the firmware copy must be done manually.
1094  * @name: name of firmware file
1095  * @device: device for which firmware is being loaded
1096  * @gfp: allocation flags
1097  * @context: will be passed over to @cont, and
1098  *	@fw may be %NULL if firmware request fails.
1099  * @cont: function will be called asynchronously when the firmware
1100  *	request is over.
1101  *
1102  *	Caller must hold the reference count of @device.
1103  *
1104  *	Asynchronous variant of request_firmware() for user contexts:
1105  *		- sleep for as small periods as possible since it may
1106  *		  increase kernel boot time of built-in device drivers
1107  *		  requesting firmware in their ->probe() methods, if
1108  *		  @gfp is GFP_KERNEL.
1109  *
1110  *		- can't sleep at all if @gfp is GFP_ATOMIC.
1111  **/
1112 int
1113 request_firmware_nowait(
1114 	struct module *module, bool uevent,
1115 	const char *name, struct device *device, gfp_t gfp, void *context,
1116 	void (*cont)(const struct firmware *fw, void *context))
1117 {
1118 	struct firmware_work *fw_work;
1119 
1120 	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1121 	if (!fw_work)
1122 		return -ENOMEM;
1123 
1124 	fw_work->module = module;
1125 	fw_work->name = kstrdup_const(name, gfp);
1126 	if (!fw_work->name) {
1127 		kfree(fw_work);
1128 		return -ENOMEM;
1129 	}
1130 	fw_work->device = device;
1131 	fw_work->context = context;
1132 	fw_work->cont = cont;
1133 	fw_work->opt_flags = FW_OPT_NOWAIT |
1134 		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1135 
1136 	if (!uevent && fw_cache_is_setup(device, name)) {
1137 		kfree_const(fw_work->name);
1138 		kfree(fw_work);
1139 		return -EOPNOTSUPP;
1140 	}
1141 
1142 	if (!try_module_get(module)) {
1143 		kfree_const(fw_work->name);
1144 		kfree(fw_work);
1145 		return -EFAULT;
1146 	}
1147 
1148 	get_device(fw_work->device);
1149 	INIT_WORK(&fw_work->work, request_firmware_work_func);
1150 	schedule_work(&fw_work->work);
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(request_firmware_nowait);
1154 
1155 #ifdef CONFIG_FW_CACHE
1156 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1157 
1158 /**
1159  * cache_firmware() - cache one firmware image in kernel memory space
1160  * @fw_name: the firmware image name
1161  *
1162  * Cache firmware in kernel memory so that drivers can use it when
1163  * system isn't ready for them to request firmware image from userspace.
1164  * Once it returns successfully, driver can use request_firmware or its
1165  * nowait version to get the cached firmware without any interacting
1166  * with userspace
1167  *
1168  * Return 0 if the firmware image has been cached successfully
1169  * Return !0 otherwise
1170  *
1171  */
1172 static int cache_firmware(const char *fw_name)
1173 {
1174 	int ret;
1175 	const struct firmware *fw;
1176 
1177 	pr_debug("%s: %s\n", __func__, fw_name);
1178 
1179 	ret = request_firmware(&fw, fw_name, NULL);
1180 	if (!ret)
1181 		kfree(fw);
1182 
1183 	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1184 
1185 	return ret;
1186 }
1187 
1188 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1189 {
1190 	struct fw_priv *tmp;
1191 	struct firmware_cache *fwc = &fw_cache;
1192 
1193 	spin_lock(&fwc->lock);
1194 	tmp = __lookup_fw_priv(fw_name);
1195 	spin_unlock(&fwc->lock);
1196 
1197 	return tmp;
1198 }
1199 
1200 /**
1201  * uncache_firmware() - remove one cached firmware image
1202  * @fw_name: the firmware image name
1203  *
1204  * Uncache one firmware image which has been cached successfully
1205  * before.
1206  *
1207  * Return 0 if the firmware cache has been removed successfully
1208  * Return !0 otherwise
1209  *
1210  */
1211 static int uncache_firmware(const char *fw_name)
1212 {
1213 	struct fw_priv *fw_priv;
1214 	struct firmware fw;
1215 
1216 	pr_debug("%s: %s\n", __func__, fw_name);
1217 
1218 	if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1219 		return 0;
1220 
1221 	fw_priv = lookup_fw_priv(fw_name);
1222 	if (fw_priv) {
1223 		free_fw_priv(fw_priv);
1224 		return 0;
1225 	}
1226 
1227 	return -EINVAL;
1228 }
1229 
1230 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1231 {
1232 	struct fw_cache_entry *fce;
1233 
1234 	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1235 	if (!fce)
1236 		goto exit;
1237 
1238 	fce->name = kstrdup_const(name, GFP_ATOMIC);
1239 	if (!fce->name) {
1240 		kfree(fce);
1241 		fce = NULL;
1242 		goto exit;
1243 	}
1244 exit:
1245 	return fce;
1246 }
1247 
1248 static int __fw_entry_found(const char *name)
1249 {
1250 	struct firmware_cache *fwc = &fw_cache;
1251 	struct fw_cache_entry *fce;
1252 
1253 	list_for_each_entry(fce, &fwc->fw_names, list) {
1254 		if (!strcmp(fce->name, name))
1255 			return 1;
1256 	}
1257 	return 0;
1258 }
1259 
1260 static int fw_cache_piggyback_on_request(const char *name)
1261 {
1262 	struct firmware_cache *fwc = &fw_cache;
1263 	struct fw_cache_entry *fce;
1264 	int ret = 0;
1265 
1266 	spin_lock(&fwc->name_lock);
1267 	if (__fw_entry_found(name))
1268 		goto found;
1269 
1270 	fce = alloc_fw_cache_entry(name);
1271 	if (fce) {
1272 		ret = 1;
1273 		list_add(&fce->list, &fwc->fw_names);
1274 		pr_debug("%s: fw: %s\n", __func__, name);
1275 	}
1276 found:
1277 	spin_unlock(&fwc->name_lock);
1278 	return ret;
1279 }
1280 
1281 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1282 {
1283 	kfree_const(fce->name);
1284 	kfree(fce);
1285 }
1286 
1287 static void __async_dev_cache_fw_image(void *fw_entry,
1288 				       async_cookie_t cookie)
1289 {
1290 	struct fw_cache_entry *fce = fw_entry;
1291 	struct firmware_cache *fwc = &fw_cache;
1292 	int ret;
1293 
1294 	ret = cache_firmware(fce->name);
1295 	if (ret) {
1296 		spin_lock(&fwc->name_lock);
1297 		list_del(&fce->list);
1298 		spin_unlock(&fwc->name_lock);
1299 
1300 		free_fw_cache_entry(fce);
1301 	}
1302 }
1303 
1304 /* called with dev->devres_lock held */
1305 static void dev_create_fw_entry(struct device *dev, void *res,
1306 				void *data)
1307 {
1308 	struct fw_name_devm *fwn = res;
1309 	const char *fw_name = fwn->name;
1310 	struct list_head *head = data;
1311 	struct fw_cache_entry *fce;
1312 
1313 	fce = alloc_fw_cache_entry(fw_name);
1314 	if (fce)
1315 		list_add(&fce->list, head);
1316 }
1317 
1318 static int devm_name_match(struct device *dev, void *res,
1319 			   void *match_data)
1320 {
1321 	struct fw_name_devm *fwn = res;
1322 	return (fwn->magic == (unsigned long)match_data);
1323 }
1324 
1325 static void dev_cache_fw_image(struct device *dev, void *data)
1326 {
1327 	LIST_HEAD(todo);
1328 	struct fw_cache_entry *fce;
1329 	struct fw_cache_entry *fce_next;
1330 	struct firmware_cache *fwc = &fw_cache;
1331 
1332 	devres_for_each_res(dev, fw_name_devm_release,
1333 			    devm_name_match, &fw_cache,
1334 			    dev_create_fw_entry, &todo);
1335 
1336 	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1337 		list_del(&fce->list);
1338 
1339 		spin_lock(&fwc->name_lock);
1340 		/* only one cache entry for one firmware */
1341 		if (!__fw_entry_found(fce->name)) {
1342 			list_add(&fce->list, &fwc->fw_names);
1343 		} else {
1344 			free_fw_cache_entry(fce);
1345 			fce = NULL;
1346 		}
1347 		spin_unlock(&fwc->name_lock);
1348 
1349 		if (fce)
1350 			async_schedule_domain(__async_dev_cache_fw_image,
1351 					      (void *)fce,
1352 					      &fw_cache_domain);
1353 	}
1354 }
1355 
1356 static void __device_uncache_fw_images(void)
1357 {
1358 	struct firmware_cache *fwc = &fw_cache;
1359 	struct fw_cache_entry *fce;
1360 
1361 	spin_lock(&fwc->name_lock);
1362 	while (!list_empty(&fwc->fw_names)) {
1363 		fce = list_entry(fwc->fw_names.next,
1364 				struct fw_cache_entry, list);
1365 		list_del(&fce->list);
1366 		spin_unlock(&fwc->name_lock);
1367 
1368 		uncache_firmware(fce->name);
1369 		free_fw_cache_entry(fce);
1370 
1371 		spin_lock(&fwc->name_lock);
1372 	}
1373 	spin_unlock(&fwc->name_lock);
1374 }
1375 
1376 /**
1377  * device_cache_fw_images() - cache devices' firmware
1378  *
1379  * If one device called request_firmware or its nowait version
1380  * successfully before, the firmware names are recored into the
1381  * device's devres link list, so device_cache_fw_images can call
1382  * cache_firmware() to cache these firmwares for the device,
1383  * then the device driver can load its firmwares easily at
1384  * time when system is not ready to complete loading firmware.
1385  */
1386 static void device_cache_fw_images(void)
1387 {
1388 	struct firmware_cache *fwc = &fw_cache;
1389 	DEFINE_WAIT(wait);
1390 
1391 	pr_debug("%s\n", __func__);
1392 
1393 	/* cancel uncache work */
1394 	cancel_delayed_work_sync(&fwc->work);
1395 
1396 	fw_fallback_set_cache_timeout();
1397 
1398 	mutex_lock(&fw_lock);
1399 	fwc->state = FW_LOADER_START_CACHE;
1400 	dpm_for_each_dev(NULL, dev_cache_fw_image);
1401 	mutex_unlock(&fw_lock);
1402 
1403 	/* wait for completion of caching firmware for all devices */
1404 	async_synchronize_full_domain(&fw_cache_domain);
1405 
1406 	fw_fallback_set_default_timeout();
1407 }
1408 
1409 /**
1410  * device_uncache_fw_images() - uncache devices' firmware
1411  *
1412  * uncache all firmwares which have been cached successfully
1413  * by device_uncache_fw_images earlier
1414  */
1415 static void device_uncache_fw_images(void)
1416 {
1417 	pr_debug("%s\n", __func__);
1418 	__device_uncache_fw_images();
1419 }
1420 
1421 static void device_uncache_fw_images_work(struct work_struct *work)
1422 {
1423 	device_uncache_fw_images();
1424 }
1425 
1426 /**
1427  * device_uncache_fw_images_delay() - uncache devices firmwares
1428  * @delay: number of milliseconds to delay uncache device firmwares
1429  *
1430  * uncache all devices's firmwares which has been cached successfully
1431  * by device_cache_fw_images after @delay milliseconds.
1432  */
1433 static void device_uncache_fw_images_delay(unsigned long delay)
1434 {
1435 	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1436 			   msecs_to_jiffies(delay));
1437 }
1438 
1439 static int fw_pm_notify(struct notifier_block *notify_block,
1440 			unsigned long mode, void *unused)
1441 {
1442 	switch (mode) {
1443 	case PM_HIBERNATION_PREPARE:
1444 	case PM_SUSPEND_PREPARE:
1445 	case PM_RESTORE_PREPARE:
1446 		/*
1447 		 * kill pending fallback requests with a custom fallback
1448 		 * to avoid stalling suspend.
1449 		 */
1450 		kill_pending_fw_fallback_reqs(true);
1451 		device_cache_fw_images();
1452 		break;
1453 
1454 	case PM_POST_SUSPEND:
1455 	case PM_POST_HIBERNATION:
1456 	case PM_POST_RESTORE:
1457 		/*
1458 		 * In case that system sleep failed and syscore_suspend is
1459 		 * not called.
1460 		 */
1461 		mutex_lock(&fw_lock);
1462 		fw_cache.state = FW_LOADER_NO_CACHE;
1463 		mutex_unlock(&fw_lock);
1464 
1465 		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1466 		break;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 /* stop caching firmware once syscore_suspend is reached */
1473 static int fw_suspend(void)
1474 {
1475 	fw_cache.state = FW_LOADER_NO_CACHE;
1476 	return 0;
1477 }
1478 
1479 static struct syscore_ops fw_syscore_ops = {
1480 	.suspend = fw_suspend,
1481 };
1482 
1483 static int __init register_fw_pm_ops(void)
1484 {
1485 	int ret;
1486 
1487 	spin_lock_init(&fw_cache.name_lock);
1488 	INIT_LIST_HEAD(&fw_cache.fw_names);
1489 
1490 	INIT_DELAYED_WORK(&fw_cache.work,
1491 			  device_uncache_fw_images_work);
1492 
1493 	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1494 	ret = register_pm_notifier(&fw_cache.pm_notify);
1495 	if (ret)
1496 		return ret;
1497 
1498 	register_syscore_ops(&fw_syscore_ops);
1499 
1500 	return ret;
1501 }
1502 
1503 static inline void unregister_fw_pm_ops(void)
1504 {
1505 	unregister_syscore_ops(&fw_syscore_ops);
1506 	unregister_pm_notifier(&fw_cache.pm_notify);
1507 }
1508 #else
1509 static int fw_cache_piggyback_on_request(const char *name)
1510 {
1511 	return 0;
1512 }
1513 static inline int register_fw_pm_ops(void)
1514 {
1515 	return 0;
1516 }
1517 static inline void unregister_fw_pm_ops(void)
1518 {
1519 }
1520 #endif
1521 
1522 static void __init fw_cache_init(void)
1523 {
1524 	spin_lock_init(&fw_cache.lock);
1525 	INIT_LIST_HEAD(&fw_cache.head);
1526 	fw_cache.state = FW_LOADER_NO_CACHE;
1527 }
1528 
1529 static int fw_shutdown_notify(struct notifier_block *unused1,
1530 			      unsigned long unused2, void *unused3)
1531 {
1532 	/*
1533 	 * Kill all pending fallback requests to avoid both stalling shutdown,
1534 	 * and avoid a deadlock with the usermode_lock.
1535 	 */
1536 	kill_pending_fw_fallback_reqs(false);
1537 
1538 	return NOTIFY_DONE;
1539 }
1540 
1541 static struct notifier_block fw_shutdown_nb = {
1542 	.notifier_call = fw_shutdown_notify,
1543 };
1544 
1545 static int __init firmware_class_init(void)
1546 {
1547 	int ret;
1548 
1549 	/* No need to unfold these on exit */
1550 	fw_cache_init();
1551 
1552 	ret = register_fw_pm_ops();
1553 	if (ret)
1554 		return ret;
1555 
1556 	ret = register_reboot_notifier(&fw_shutdown_nb);
1557 	if (ret)
1558 		goto out;
1559 
1560 	return register_sysfs_loader();
1561 
1562 out:
1563 	unregister_fw_pm_ops();
1564 	return ret;
1565 }
1566 
1567 static void __exit firmware_class_exit(void)
1568 {
1569 	unregister_fw_pm_ops();
1570 	unregister_reboot_notifier(&fw_shutdown_nb);
1571 	unregister_sysfs_loader();
1572 }
1573 
1574 fs_initcall(firmware_class_init);
1575 module_exit(firmware_class_exit);
1576