xref: /linux/drivers/base/devcoredump.c (revision 09b1704f5b02c18dd02b21343530463fcfc92c54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(c) 2014 Intel Mobile Communications GmbH
4  * Copyright(c) 2015 Intel Deutschland GmbH
5  *
6  * Author: Johannes Berg <johannes@sipsolutions.net>
7  */
8 #include <linux/module.h>
9 #include <linux/device.h>
10 #include <linux/devcoredump.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/workqueue.h>
15 
16 static struct class devcd_class;
17 
18 /* global disable flag, for security purposes */
19 static bool devcd_disabled;
20 
21 struct devcd_entry {
22 	struct device devcd_dev;
23 	void *data;
24 	size_t datalen;
25 	/*
26 	 * There are 2 races for which mutex is required.
27 	 *
28 	 * The first race is between device creation and userspace writing to
29 	 * schedule immediately destruction.
30 	 *
31 	 * This race is handled by arming the timer before device creation, but
32 	 * when device creation fails the timer still exists.
33 	 *
34 	 * To solve this, hold the mutex during device_add(), and set
35 	 * init_completed on success before releasing the mutex.
36 	 *
37 	 * That way the timer will never fire until device_add() is called,
38 	 * it will do nothing if init_completed is not set. The timer is also
39 	 * cancelled in that case.
40 	 *
41 	 * The second race involves multiple parallel invocations of devcd_free(),
42 	 * add a deleted flag so only 1 can call the destructor.
43 	 */
44 	struct mutex mutex;
45 	bool init_completed, deleted;
46 	struct module *owner;
47 	ssize_t (*read)(char *buffer, loff_t offset, size_t count,
48 			void *data, size_t datalen);
49 	void (*free)(void *data);
50 	/*
51 	 * If nothing interferes and device_add() was returns success,
52 	 * del_wk will destroy the device after the timer fires.
53 	 *
54 	 * Multiple userspace processes can interfere in the working of the timer:
55 	 * - Writing to the coredump will reschedule the timer to run immediately,
56 	 *   if still armed.
57 	 *
58 	 *   This is handled by using "if (cancel_delayed_work()) {
59 	 *   schedule_delayed_work() }", to prevent re-arming after having
60 	 *   been previously fired.
61 	 * - Writing to /sys/class/devcoredump/disabled will destroy the
62 	 *   coredump synchronously.
63 	 *   This is handled by using disable_delayed_work_sync(), and then
64 	 *   checking if deleted flag is set with &devcd->mutex held.
65 	 */
66 	struct delayed_work del_wk;
67 	struct device *failing_dev;
68 };
69 
70 static struct devcd_entry *dev_to_devcd(struct device *dev)
71 {
72 	return container_of(dev, struct devcd_entry, devcd_dev);
73 }
74 
75 static void devcd_dev_release(struct device *dev)
76 {
77 	struct devcd_entry *devcd = dev_to_devcd(dev);
78 
79 	devcd->free(devcd->data);
80 	module_put(devcd->owner);
81 
82 	/*
83 	 * this seems racy, but I don't see a notifier or such on
84 	 * a struct device to know when it goes away?
85 	 */
86 	if (devcd->failing_dev->kobj.sd)
87 		sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj,
88 				  "devcoredump");
89 
90 	put_device(devcd->failing_dev);
91 	kfree(devcd);
92 }
93 
94 static void __devcd_del(struct devcd_entry *devcd)
95 {
96 	devcd->deleted = true;
97 	device_del(&devcd->devcd_dev);
98 	put_device(&devcd->devcd_dev);
99 }
100 
101 static void devcd_del(struct work_struct *wk)
102 {
103 	struct devcd_entry *devcd;
104 	bool init_completed;
105 
106 	devcd = container_of(wk, struct devcd_entry, del_wk.work);
107 
108 	/* devcd->mutex serializes against dev_coredumpm_timeout */
109 	mutex_lock(&devcd->mutex);
110 	init_completed = devcd->init_completed;
111 	mutex_unlock(&devcd->mutex);
112 
113 	if (init_completed)
114 		__devcd_del(devcd);
115 }
116 
117 static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj,
118 			       const struct bin_attribute *bin_attr,
119 			       char *buffer, loff_t offset, size_t count)
120 {
121 	struct device *dev = kobj_to_dev(kobj);
122 	struct devcd_entry *devcd = dev_to_devcd(dev);
123 
124 	return devcd->read(buffer, offset, count, devcd->data, devcd->datalen);
125 }
126 
127 static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj,
128 				const struct bin_attribute *bin_attr,
129 				char *buffer, loff_t offset, size_t count)
130 {
131 	struct device *dev = kobj_to_dev(kobj);
132 	struct devcd_entry *devcd = dev_to_devcd(dev);
133 
134 	/*
135 	 * Although it's tempting to use mod_delayed work here,
136 	 * that will cause a reschedule if the timer already fired.
137 	 */
138 	if (cancel_delayed_work(&devcd->del_wk))
139 		schedule_delayed_work(&devcd->del_wk, 0);
140 
141 	return count;
142 }
143 
144 static const struct bin_attribute devcd_attr_data =
145 	__BIN_ATTR(data, 0600, devcd_data_read, devcd_data_write, 0);
146 
147 static const struct bin_attribute *const devcd_dev_bin_attrs[] = {
148 	&devcd_attr_data, NULL,
149 };
150 
151 static const struct attribute_group devcd_dev_group = {
152 	.bin_attrs = devcd_dev_bin_attrs,
153 };
154 
155 static const struct attribute_group *devcd_dev_groups[] = {
156 	&devcd_dev_group, NULL,
157 };
158 
159 static int devcd_free(struct device *dev, void *data)
160 {
161 	struct devcd_entry *devcd = dev_to_devcd(dev);
162 
163 	/*
164 	 * To prevent a race with devcd_data_write(), disable work and
165 	 * complete manually instead.
166 	 *
167 	 * We cannot rely on the return value of
168 	 * disable_delayed_work_sync() here, because it might be in the
169 	 * middle of a cancel_delayed_work + schedule_delayed_work pair.
170 	 *
171 	 * devcd->mutex here guards against multiple parallel invocations
172 	 * of devcd_free().
173 	 */
174 	disable_delayed_work_sync(&devcd->del_wk);
175 	mutex_lock(&devcd->mutex);
176 	if (!devcd->deleted)
177 		__devcd_del(devcd);
178 	mutex_unlock(&devcd->mutex);
179 	return 0;
180 }
181 
182 static ssize_t disabled_show(const struct class *class, const struct class_attribute *attr,
183 			     char *buf)
184 {
185 	return sysfs_emit(buf, "%d\n", devcd_disabled);
186 }
187 
188 /*
189  *
190  *	disabled_store()                                	worker()
191  *	 class_for_each_device(&devcd_class,
192  *		NULL, NULL, devcd_free)
193  *         ...
194  *         ...
195  *	   while ((dev = class_dev_iter_next(&iter))
196  *                                                             devcd_del()
197  *                                                               device_del()
198  *                                                                 put_device() <- last reference
199  *             error = fn(dev, data)                           devcd_dev_release()
200  *             devcd_free(dev, data)                           kfree(devcd)
201  *
202  *
203  * In the above diagram, it looks like disabled_store() would be racing with parallelly
204  * running devcd_del() and result in memory abort after dropping its last reference with
205  * put_device(). However, this will not happens as fn(dev, data) runs
206  * with its own reference to device via klist_node so it is not its last reference.
207  * so, above situation would not occur.
208  */
209 
210 static ssize_t disabled_store(const struct class *class, const struct class_attribute *attr,
211 			      const char *buf, size_t count)
212 {
213 	long tmp = simple_strtol(buf, NULL, 10);
214 
215 	/*
216 	 * This essentially makes the attribute write-once, since you can't
217 	 * go back to not having it disabled. This is intentional, it serves
218 	 * as a system lockdown feature.
219 	 */
220 	if (tmp != 1)
221 		return -EINVAL;
222 
223 	devcd_disabled = true;
224 
225 	class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
226 
227 	return count;
228 }
229 static CLASS_ATTR_RW(disabled);
230 
231 static struct attribute *devcd_class_attrs[] = {
232 	&class_attr_disabled.attr,
233 	NULL,
234 };
235 ATTRIBUTE_GROUPS(devcd_class);
236 
237 static struct class devcd_class = {
238 	.name		= "devcoredump",
239 	.dev_release	= devcd_dev_release,
240 	.dev_groups	= devcd_dev_groups,
241 	.class_groups	= devcd_class_groups,
242 };
243 
244 static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count,
245 			   void *data, size_t datalen)
246 {
247 	return memory_read_from_buffer(buffer, count, &offset, data, datalen);
248 }
249 
250 static void devcd_freev(void *data)
251 {
252 	vfree(data);
253 }
254 
255 /**
256  * dev_coredumpv - create device coredump with vmalloc data
257  * @dev: the struct device for the crashed device
258  * @data: vmalloc data containing the device coredump
259  * @datalen: length of the data
260  * @gfp: allocation flags
261  *
262  * This function takes ownership of the vmalloc'ed data and will free
263  * it when it is no longer used. See dev_coredumpm() for more information.
264  */
265 void dev_coredumpv(struct device *dev, void *data, size_t datalen,
266 		   gfp_t gfp)
267 {
268 	dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev);
269 }
270 EXPORT_SYMBOL_GPL(dev_coredumpv);
271 
272 static int devcd_match_failing(struct device *dev, const void *failing)
273 {
274 	struct devcd_entry *devcd = dev_to_devcd(dev);
275 
276 	return devcd->failing_dev == failing;
277 }
278 
279 /**
280  * devcd_free_sgtable - free all the memory of the given scatterlist table
281  * (i.e. both pages and scatterlist instances)
282  * NOTE: if two tables allocated with devcd_alloc_sgtable and then chained
283  * using the sg_chain function then that function should be called only once
284  * on the chained table
285  * @data: pointer to sg_table to free
286  */
287 static void devcd_free_sgtable(void *data)
288 {
289 	_devcd_free_sgtable(data);
290 }
291 
292 /**
293  * devcd_read_from_sgtable - copy data from sg_table to a given buffer
294  * and return the number of bytes read
295  * @buffer: the buffer to copy the data to it
296  * @buf_len: the length of the buffer
297  * @data: the scatterlist table to copy from
298  * @offset: start copy from @offset@ bytes from the head of the data
299  *	in the given scatterlist
300  * @data_len: the length of the data in the sg_table
301  *
302  * Returns: the number of bytes copied
303  */
304 static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset,
305 				       size_t buf_len, void *data,
306 				       size_t data_len)
307 {
308 	struct scatterlist *table = data;
309 
310 	if (offset > data_len)
311 		return -EINVAL;
312 
313 	if (offset + buf_len > data_len)
314 		buf_len = data_len - offset;
315 	return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len,
316 				  offset);
317 }
318 
319 /**
320  * dev_coredump_put - remove device coredump
321  * @dev: the struct device for the crashed device
322  *
323  * dev_coredump_put() removes coredump, if exists, for a given device from
324  * the file system and free its associated data otherwise, does nothing.
325  *
326  * It is useful for modules that do not want to keep coredump
327  * available after its unload.
328  */
329 void dev_coredump_put(struct device *dev)
330 {
331 	struct device *existing;
332 
333 	existing = class_find_device(&devcd_class, NULL, dev,
334 				     devcd_match_failing);
335 	if (existing) {
336 		devcd_free(existing, NULL);
337 		put_device(existing);
338 	}
339 }
340 EXPORT_SYMBOL_GPL(dev_coredump_put);
341 
342 /**
343  * dev_coredumpm_timeout - create device coredump with read/free methods with a
344  * custom timeout.
345  * @dev: the struct device for the crashed device
346  * @owner: the module that contains the read/free functions, use %THIS_MODULE
347  * @data: data cookie for the @read/@free functions
348  * @datalen: length of the data
349  * @gfp: allocation flags
350  * @read: function to read from the given buffer
351  * @free: function to free the given buffer
352  * @timeout: time in jiffies to remove coredump
353  *
354  * Creates a new device coredump for the given device. If a previous one hasn't
355  * been read yet, the new coredump is discarded. The data lifetime is determined
356  * by the device coredump framework and when it is no longer needed the @free
357  * function will be called to free the data.
358  */
359 void dev_coredumpm_timeout(struct device *dev, struct module *owner,
360 			   void *data, size_t datalen, gfp_t gfp,
361 			   ssize_t (*read)(char *buffer, loff_t offset,
362 					   size_t count, void *data,
363 					   size_t datalen),
364 			   void (*free)(void *data),
365 			   unsigned long timeout)
366 {
367 	static atomic_t devcd_count = ATOMIC_INIT(0);
368 	struct devcd_entry *devcd;
369 	struct device *existing;
370 
371 	if (devcd_disabled)
372 		goto free;
373 
374 	existing = class_find_device(&devcd_class, NULL, dev,
375 				     devcd_match_failing);
376 	if (existing) {
377 		put_device(existing);
378 		goto free;
379 	}
380 
381 	if (!try_module_get(owner))
382 		goto free;
383 
384 	devcd = kzalloc(sizeof(*devcd), gfp);
385 	if (!devcd)
386 		goto put_module;
387 
388 	devcd->owner = owner;
389 	devcd->data = data;
390 	devcd->datalen = datalen;
391 	devcd->read = read;
392 	devcd->free = free;
393 	devcd->failing_dev = get_device(dev);
394 	devcd->deleted = false;
395 
396 	mutex_init(&devcd->mutex);
397 	device_initialize(&devcd->devcd_dev);
398 
399 	dev_set_name(&devcd->devcd_dev, "devcd%d",
400 		     atomic_inc_return(&devcd_count));
401 	devcd->devcd_dev.class = &devcd_class;
402 
403 	dev_set_uevent_suppress(&devcd->devcd_dev, true);
404 
405 	/* devcd->mutex prevents devcd_del() completing until init finishes */
406 	mutex_lock(&devcd->mutex);
407 	devcd->init_completed = false;
408 	INIT_DELAYED_WORK(&devcd->del_wk, devcd_del);
409 	schedule_delayed_work(&devcd->del_wk, timeout);
410 
411 	if (device_add(&devcd->devcd_dev))
412 		goto put_device;
413 
414 	/*
415 	 * These should normally not fail, but there is no problem
416 	 * continuing without the links, so just warn instead of
417 	 * failing.
418 	 */
419 	if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj,
420 			      "failing_device") ||
421 	    sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj,
422 		              "devcoredump"))
423 		dev_warn(dev, "devcoredump create_link failed\n");
424 
425 	dev_set_uevent_suppress(&devcd->devcd_dev, false);
426 	kobject_uevent(&devcd->devcd_dev.kobj, KOBJ_ADD);
427 
428 	/*
429 	 * Safe to run devcd_del() now that we are done with devcd_dev.
430 	 * Alternatively we could have taken a ref on devcd_dev before
431 	 * dropping the lock.
432 	 */
433 	devcd->init_completed = true;
434 	mutex_unlock(&devcd->mutex);
435 	return;
436  put_device:
437 	mutex_unlock(&devcd->mutex);
438 	cancel_delayed_work_sync(&devcd->del_wk);
439 	put_device(&devcd->devcd_dev);
440 
441  put_module:
442 	module_put(owner);
443  free:
444 	free(data);
445 }
446 EXPORT_SYMBOL_GPL(dev_coredumpm_timeout);
447 
448 /**
449  * dev_coredumpsg - create device coredump that uses scatterlist as data
450  * parameter
451  * @dev: the struct device for the crashed device
452  * @table: the dump data
453  * @datalen: length of the data
454  * @gfp: allocation flags
455  *
456  * Creates a new device coredump for the given device. If a previous one hasn't
457  * been read yet, the new coredump is discarded. The data lifetime is determined
458  * by the device coredump framework and when it is no longer needed
459  * it will free the data.
460  */
461 void dev_coredumpsg(struct device *dev, struct scatterlist *table,
462 		    size_t datalen, gfp_t gfp)
463 {
464 	dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable,
465 		      devcd_free_sgtable);
466 }
467 EXPORT_SYMBOL_GPL(dev_coredumpsg);
468 
469 static int __init devcoredump_init(void)
470 {
471 	return class_register(&devcd_class);
472 }
473 __initcall(devcoredump_init);
474 
475 static void __exit devcoredump_exit(void)
476 {
477 	class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
478 	class_unregister(&devcd_class);
479 }
480 __exitcall(devcoredump_exit);
481