1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/dd.c - The core device/driver interactions. 4 * 5 * This file contains the (sometimes tricky) code that controls the 6 * interactions between devices and drivers, which primarily includes 7 * driver binding and unbinding. 8 * 9 * All of this code used to exist in drivers/base/bus.c, but was 10 * relocated to here in the name of compartmentalization (since it wasn't 11 * strictly code just for the 'struct bus_type'. 12 * 13 * Copyright (c) 2002-5 Patrick Mochel 14 * Copyright (c) 2002-3 Open Source Development Labs 15 * Copyright (c) 2007-2009 Greg Kroah-Hartman <gregkh@suse.de> 16 * Copyright (c) 2007-2009 Novell Inc. 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/device.h> 21 #include <linux/delay.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/kthread.h> 26 #include <linux/wait.h> 27 #include <linux/async.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pinctrl/devinfo.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 /* 35 * Deferred Probe infrastructure. 36 * 37 * Sometimes driver probe order matters, but the kernel doesn't always have 38 * dependency information which means some drivers will get probed before a 39 * resource it depends on is available. For example, an SDHCI driver may 40 * first need a GPIO line from an i2c GPIO controller before it can be 41 * initialized. If a required resource is not available yet, a driver can 42 * request probing to be deferred by returning -EPROBE_DEFER from its probe hook 43 * 44 * Deferred probe maintains two lists of devices, a pending list and an active 45 * list. A driver returning -EPROBE_DEFER causes the device to be added to the 46 * pending list. A successful driver probe will trigger moving all devices 47 * from the pending to the active list so that the workqueue will eventually 48 * retry them. 49 * 50 * The deferred_probe_mutex must be held any time the deferred_probe_*_list 51 * of the (struct device*)->p->deferred_probe pointers are manipulated 52 */ 53 static DEFINE_MUTEX(deferred_probe_mutex); 54 static LIST_HEAD(deferred_probe_pending_list); 55 static LIST_HEAD(deferred_probe_active_list); 56 static atomic_t deferred_trigger_count = ATOMIC_INIT(0); 57 static struct dentry *deferred_devices; 58 static bool initcalls_done; 59 60 /* Save the async probe drivers' name from kernel cmdline */ 61 #define ASYNC_DRV_NAMES_MAX_LEN 256 62 static char async_probe_drv_names[ASYNC_DRV_NAMES_MAX_LEN]; 63 64 /* 65 * In some cases, like suspend to RAM or hibernation, It might be reasonable 66 * to prohibit probing of devices as it could be unsafe. 67 * Once defer_all_probes is true all drivers probes will be forcibly deferred. 68 */ 69 static bool defer_all_probes; 70 71 /* 72 * deferred_probe_work_func() - Retry probing devices in the active list. 73 */ 74 static void deferred_probe_work_func(struct work_struct *work) 75 { 76 struct device *dev; 77 struct device_private *private; 78 /* 79 * This block processes every device in the deferred 'active' list. 80 * Each device is removed from the active list and passed to 81 * bus_probe_device() to re-attempt the probe. The loop continues 82 * until every device in the active list is removed and retried. 83 * 84 * Note: Once the device is removed from the list and the mutex is 85 * released, it is possible for the device get freed by another thread 86 * and cause a illegal pointer dereference. This code uses 87 * get/put_device() to ensure the device structure cannot disappear 88 * from under our feet. 89 */ 90 mutex_lock(&deferred_probe_mutex); 91 while (!list_empty(&deferred_probe_active_list)) { 92 private = list_first_entry(&deferred_probe_active_list, 93 typeof(*dev->p), deferred_probe); 94 dev = private->device; 95 list_del_init(&private->deferred_probe); 96 97 get_device(dev); 98 99 /* 100 * Drop the mutex while probing each device; the probe path may 101 * manipulate the deferred list 102 */ 103 mutex_unlock(&deferred_probe_mutex); 104 105 /* 106 * Force the device to the end of the dpm_list since 107 * the PM code assumes that the order we add things to 108 * the list is a good order for suspend but deferred 109 * probe makes that very unsafe. 110 */ 111 device_pm_move_to_tail(dev); 112 113 dev_dbg(dev, "Retrying from deferred list\n"); 114 bus_probe_device(dev); 115 mutex_lock(&deferred_probe_mutex); 116 117 put_device(dev); 118 } 119 mutex_unlock(&deferred_probe_mutex); 120 } 121 static DECLARE_WORK(deferred_probe_work, deferred_probe_work_func); 122 123 void driver_deferred_probe_add(struct device *dev) 124 { 125 mutex_lock(&deferred_probe_mutex); 126 if (list_empty(&dev->p->deferred_probe)) { 127 dev_dbg(dev, "Added to deferred list\n"); 128 list_add_tail(&dev->p->deferred_probe, &deferred_probe_pending_list); 129 } 130 mutex_unlock(&deferred_probe_mutex); 131 } 132 133 void driver_deferred_probe_del(struct device *dev) 134 { 135 mutex_lock(&deferred_probe_mutex); 136 if (!list_empty(&dev->p->deferred_probe)) { 137 dev_dbg(dev, "Removed from deferred list\n"); 138 list_del_init(&dev->p->deferred_probe); 139 } 140 mutex_unlock(&deferred_probe_mutex); 141 } 142 143 static bool driver_deferred_probe_enable = false; 144 /** 145 * driver_deferred_probe_trigger() - Kick off re-probing deferred devices 146 * 147 * This functions moves all devices from the pending list to the active 148 * list and schedules the deferred probe workqueue to process them. It 149 * should be called anytime a driver is successfully bound to a device. 150 * 151 * Note, there is a race condition in multi-threaded probe. In the case where 152 * more than one device is probing at the same time, it is possible for one 153 * probe to complete successfully while another is about to defer. If the second 154 * depends on the first, then it will get put on the pending list after the 155 * trigger event has already occurred and will be stuck there. 156 * 157 * The atomic 'deferred_trigger_count' is used to determine if a successful 158 * trigger has occurred in the midst of probing a driver. If the trigger count 159 * changes in the midst of a probe, then deferred processing should be triggered 160 * again. 161 */ 162 static void driver_deferred_probe_trigger(void) 163 { 164 if (!driver_deferred_probe_enable) 165 return; 166 167 /* 168 * A successful probe means that all the devices in the pending list 169 * should be triggered to be reprobed. Move all the deferred devices 170 * into the active list so they can be retried by the workqueue 171 */ 172 mutex_lock(&deferred_probe_mutex); 173 atomic_inc(&deferred_trigger_count); 174 list_splice_tail_init(&deferred_probe_pending_list, 175 &deferred_probe_active_list); 176 mutex_unlock(&deferred_probe_mutex); 177 178 /* 179 * Kick the re-probe thread. It may already be scheduled, but it is 180 * safe to kick it again. 181 */ 182 schedule_work(&deferred_probe_work); 183 } 184 185 /** 186 * device_block_probing() - Block/defer device's probes 187 * 188 * It will disable probing of devices and defer their probes instead. 189 */ 190 void device_block_probing(void) 191 { 192 defer_all_probes = true; 193 /* sync with probes to avoid races. */ 194 wait_for_device_probe(); 195 } 196 197 /** 198 * device_unblock_probing() - Unblock/enable device's probes 199 * 200 * It will restore normal behavior and trigger re-probing of deferred 201 * devices. 202 */ 203 void device_unblock_probing(void) 204 { 205 defer_all_probes = false; 206 driver_deferred_probe_trigger(); 207 } 208 209 /* 210 * deferred_devs_show() - Show the devices in the deferred probe pending list. 211 */ 212 static int deferred_devs_show(struct seq_file *s, void *data) 213 { 214 struct device_private *curr; 215 216 mutex_lock(&deferred_probe_mutex); 217 218 list_for_each_entry(curr, &deferred_probe_pending_list, deferred_probe) 219 seq_printf(s, "%s\n", dev_name(curr->device)); 220 221 mutex_unlock(&deferred_probe_mutex); 222 223 return 0; 224 } 225 DEFINE_SHOW_ATTRIBUTE(deferred_devs); 226 227 static int deferred_probe_timeout = -1; 228 static int __init deferred_probe_timeout_setup(char *str) 229 { 230 int timeout; 231 232 if (!kstrtoint(str, 10, &timeout)) 233 deferred_probe_timeout = timeout; 234 return 1; 235 } 236 __setup("deferred_probe_timeout=", deferred_probe_timeout_setup); 237 238 /** 239 * driver_deferred_probe_check_state() - Check deferred probe state 240 * @dev: device to check 241 * 242 * Returns -ENODEV if init is done and all built-in drivers have had a chance 243 * to probe (i.e. initcalls are done), -ETIMEDOUT if deferred probe debug 244 * timeout has expired, or -EPROBE_DEFER if none of those conditions are met. 245 * 246 * Drivers or subsystems can opt-in to calling this function instead of directly 247 * returning -EPROBE_DEFER. 248 */ 249 int driver_deferred_probe_check_state(struct device *dev) 250 { 251 if (initcalls_done) { 252 if (!deferred_probe_timeout) { 253 dev_WARN(dev, "deferred probe timeout, ignoring dependency"); 254 return -ETIMEDOUT; 255 } 256 dev_warn(dev, "ignoring dependency for device, assuming no driver"); 257 return -ENODEV; 258 } 259 return -EPROBE_DEFER; 260 } 261 262 static void deferred_probe_timeout_work_func(struct work_struct *work) 263 { 264 struct device_private *private, *p; 265 266 deferred_probe_timeout = 0; 267 driver_deferred_probe_trigger(); 268 flush_work(&deferred_probe_work); 269 270 list_for_each_entry_safe(private, p, &deferred_probe_pending_list, deferred_probe) 271 dev_info(private->device, "deferred probe pending"); 272 } 273 static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, deferred_probe_timeout_work_func); 274 275 /** 276 * deferred_probe_initcall() - Enable probing of deferred devices 277 * 278 * We don't want to get in the way when the bulk of drivers are getting probed. 279 * Instead, this initcall makes sure that deferred probing is delayed until 280 * late_initcall time. 281 */ 282 static int deferred_probe_initcall(void) 283 { 284 deferred_devices = debugfs_create_file("devices_deferred", 0444, NULL, 285 NULL, &deferred_devs_fops); 286 287 driver_deferred_probe_enable = true; 288 driver_deferred_probe_trigger(); 289 /* Sort as many dependencies as possible before exiting initcalls */ 290 flush_work(&deferred_probe_work); 291 initcalls_done = true; 292 293 /* 294 * Trigger deferred probe again, this time we won't defer anything 295 * that is optional 296 */ 297 driver_deferred_probe_trigger(); 298 flush_work(&deferred_probe_work); 299 300 if (deferred_probe_timeout > 0) { 301 schedule_delayed_work(&deferred_probe_timeout_work, 302 deferred_probe_timeout * HZ); 303 } 304 return 0; 305 } 306 late_initcall(deferred_probe_initcall); 307 308 static void __exit deferred_probe_exit(void) 309 { 310 debugfs_remove_recursive(deferred_devices); 311 } 312 __exitcall(deferred_probe_exit); 313 314 /** 315 * device_is_bound() - Check if device is bound to a driver 316 * @dev: device to check 317 * 318 * Returns true if passed device has already finished probing successfully 319 * against a driver. 320 * 321 * This function must be called with the device lock held. 322 */ 323 bool device_is_bound(struct device *dev) 324 { 325 return dev->p && klist_node_attached(&dev->p->knode_driver); 326 } 327 328 static void driver_bound(struct device *dev) 329 { 330 if (device_is_bound(dev)) { 331 printk(KERN_WARNING "%s: device %s already bound\n", 332 __func__, kobject_name(&dev->kobj)); 333 return; 334 } 335 336 pr_debug("driver: '%s': %s: bound to device '%s'\n", dev->driver->name, 337 __func__, dev_name(dev)); 338 339 klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices); 340 device_links_driver_bound(dev); 341 342 device_pm_check_callbacks(dev); 343 344 /* 345 * Make sure the device is no longer in one of the deferred lists and 346 * kick off retrying all pending devices 347 */ 348 driver_deferred_probe_del(dev); 349 driver_deferred_probe_trigger(); 350 351 if (dev->bus) 352 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 353 BUS_NOTIFY_BOUND_DRIVER, dev); 354 355 kobject_uevent(&dev->kobj, KOBJ_BIND); 356 } 357 358 static ssize_t coredump_store(struct device *dev, struct device_attribute *attr, 359 const char *buf, size_t count) 360 { 361 device_lock(dev); 362 dev->driver->coredump(dev); 363 device_unlock(dev); 364 365 return count; 366 } 367 static DEVICE_ATTR_WO(coredump); 368 369 static int driver_sysfs_add(struct device *dev) 370 { 371 int ret; 372 373 if (dev->bus) 374 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 375 BUS_NOTIFY_BIND_DRIVER, dev); 376 377 ret = sysfs_create_link(&dev->driver->p->kobj, &dev->kobj, 378 kobject_name(&dev->kobj)); 379 if (ret) 380 goto fail; 381 382 ret = sysfs_create_link(&dev->kobj, &dev->driver->p->kobj, 383 "driver"); 384 if (ret) 385 goto rm_dev; 386 387 if (!IS_ENABLED(CONFIG_DEV_COREDUMP) || !dev->driver->coredump || 388 !device_create_file(dev, &dev_attr_coredump)) 389 return 0; 390 391 sysfs_remove_link(&dev->kobj, "driver"); 392 393 rm_dev: 394 sysfs_remove_link(&dev->driver->p->kobj, 395 kobject_name(&dev->kobj)); 396 397 fail: 398 return ret; 399 } 400 401 static void driver_sysfs_remove(struct device *dev) 402 { 403 struct device_driver *drv = dev->driver; 404 405 if (drv) { 406 if (drv->coredump) 407 device_remove_file(dev, &dev_attr_coredump); 408 sysfs_remove_link(&drv->p->kobj, kobject_name(&dev->kobj)); 409 sysfs_remove_link(&dev->kobj, "driver"); 410 } 411 } 412 413 /** 414 * device_bind_driver - bind a driver to one device. 415 * @dev: device. 416 * 417 * Allow manual attachment of a driver to a device. 418 * Caller must have already set @dev->driver. 419 * 420 * Note that this does not modify the bus reference count 421 * nor take the bus's rwsem. Please verify those are accounted 422 * for before calling this. (It is ok to call with no other effort 423 * from a driver's probe() method.) 424 * 425 * This function must be called with the device lock held. 426 */ 427 int device_bind_driver(struct device *dev) 428 { 429 int ret; 430 431 ret = driver_sysfs_add(dev); 432 if (!ret) 433 driver_bound(dev); 434 else if (dev->bus) 435 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 436 BUS_NOTIFY_DRIVER_NOT_BOUND, dev); 437 return ret; 438 } 439 EXPORT_SYMBOL_GPL(device_bind_driver); 440 441 static atomic_t probe_count = ATOMIC_INIT(0); 442 static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue); 443 444 static void driver_deferred_probe_add_trigger(struct device *dev, 445 int local_trigger_count) 446 { 447 driver_deferred_probe_add(dev); 448 /* Did a trigger occur while probing? Need to re-trigger if yes */ 449 if (local_trigger_count != atomic_read(&deferred_trigger_count)) 450 driver_deferred_probe_trigger(); 451 } 452 453 static int really_probe(struct device *dev, struct device_driver *drv) 454 { 455 int ret = -EPROBE_DEFER; 456 int local_trigger_count = atomic_read(&deferred_trigger_count); 457 bool test_remove = IS_ENABLED(CONFIG_DEBUG_TEST_DRIVER_REMOVE) && 458 !drv->suppress_bind_attrs; 459 460 if (defer_all_probes) { 461 /* 462 * Value of defer_all_probes can be set only by 463 * device_block_probing() which, in turn, will call 464 * wait_for_device_probe() right after that to avoid any races. 465 */ 466 dev_dbg(dev, "Driver %s force probe deferral\n", drv->name); 467 driver_deferred_probe_add(dev); 468 return ret; 469 } 470 471 ret = device_links_check_suppliers(dev); 472 if (ret == -EPROBE_DEFER) 473 driver_deferred_probe_add_trigger(dev, local_trigger_count); 474 if (ret) 475 return ret; 476 477 atomic_inc(&probe_count); 478 pr_debug("bus: '%s': %s: probing driver %s with device %s\n", 479 drv->bus->name, __func__, drv->name, dev_name(dev)); 480 WARN_ON(!list_empty(&dev->devres_head)); 481 482 re_probe: 483 dev->driver = drv; 484 485 /* If using pinctrl, bind pins now before probing */ 486 ret = pinctrl_bind_pins(dev); 487 if (ret) 488 goto pinctrl_bind_failed; 489 490 if (dev->bus->dma_configure) { 491 ret = dev->bus->dma_configure(dev); 492 if (ret) 493 goto probe_failed; 494 } 495 496 if (driver_sysfs_add(dev)) { 497 printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n", 498 __func__, dev_name(dev)); 499 goto probe_failed; 500 } 501 502 if (dev->pm_domain && dev->pm_domain->activate) { 503 ret = dev->pm_domain->activate(dev); 504 if (ret) 505 goto probe_failed; 506 } 507 508 if (dev->bus->probe) { 509 ret = dev->bus->probe(dev); 510 if (ret) 511 goto probe_failed; 512 } else if (drv->probe) { 513 ret = drv->probe(dev); 514 if (ret) 515 goto probe_failed; 516 } 517 518 if (test_remove) { 519 test_remove = false; 520 521 if (dev->bus->remove) 522 dev->bus->remove(dev); 523 else if (drv->remove) 524 drv->remove(dev); 525 526 devres_release_all(dev); 527 driver_sysfs_remove(dev); 528 dev->driver = NULL; 529 dev_set_drvdata(dev, NULL); 530 if (dev->pm_domain && dev->pm_domain->dismiss) 531 dev->pm_domain->dismiss(dev); 532 pm_runtime_reinit(dev); 533 534 goto re_probe; 535 } 536 537 pinctrl_init_done(dev); 538 539 if (dev->pm_domain && dev->pm_domain->sync) 540 dev->pm_domain->sync(dev); 541 542 driver_bound(dev); 543 ret = 1; 544 pr_debug("bus: '%s': %s: bound device %s to driver %s\n", 545 drv->bus->name, __func__, dev_name(dev), drv->name); 546 goto done; 547 548 probe_failed: 549 if (dev->bus) 550 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 551 BUS_NOTIFY_DRIVER_NOT_BOUND, dev); 552 pinctrl_bind_failed: 553 device_links_no_driver(dev); 554 devres_release_all(dev); 555 arch_teardown_dma_ops(dev); 556 driver_sysfs_remove(dev); 557 dev->driver = NULL; 558 dev_set_drvdata(dev, NULL); 559 if (dev->pm_domain && dev->pm_domain->dismiss) 560 dev->pm_domain->dismiss(dev); 561 pm_runtime_reinit(dev); 562 dev_pm_set_driver_flags(dev, 0); 563 564 switch (ret) { 565 case -EPROBE_DEFER: 566 /* Driver requested deferred probing */ 567 dev_dbg(dev, "Driver %s requests probe deferral\n", drv->name); 568 driver_deferred_probe_add_trigger(dev, local_trigger_count); 569 break; 570 case -ENODEV: 571 case -ENXIO: 572 pr_debug("%s: probe of %s rejects match %d\n", 573 drv->name, dev_name(dev), ret); 574 break; 575 default: 576 /* driver matched but the probe failed */ 577 printk(KERN_WARNING 578 "%s: probe of %s failed with error %d\n", 579 drv->name, dev_name(dev), ret); 580 } 581 /* 582 * Ignore errors returned by ->probe so that the next driver can try 583 * its luck. 584 */ 585 ret = 0; 586 done: 587 atomic_dec(&probe_count); 588 wake_up(&probe_waitqueue); 589 return ret; 590 } 591 592 /* 593 * For initcall_debug, show the driver probe time. 594 */ 595 static int really_probe_debug(struct device *dev, struct device_driver *drv) 596 { 597 ktime_t calltime, delta, rettime; 598 int ret; 599 600 calltime = ktime_get(); 601 ret = really_probe(dev, drv); 602 rettime = ktime_get(); 603 delta = ktime_sub(rettime, calltime); 604 printk(KERN_DEBUG "probe of %s returned %d after %lld usecs\n", 605 dev_name(dev), ret, (s64) ktime_to_us(delta)); 606 return ret; 607 } 608 609 /** 610 * driver_probe_done 611 * Determine if the probe sequence is finished or not. 612 * 613 * Should somehow figure out how to use a semaphore, not an atomic variable... 614 */ 615 int driver_probe_done(void) 616 { 617 pr_debug("%s: probe_count = %d\n", __func__, 618 atomic_read(&probe_count)); 619 if (atomic_read(&probe_count)) 620 return -EBUSY; 621 return 0; 622 } 623 624 /** 625 * wait_for_device_probe 626 * Wait for device probing to be completed. 627 */ 628 void wait_for_device_probe(void) 629 { 630 /* wait for the deferred probe workqueue to finish */ 631 flush_work(&deferred_probe_work); 632 633 /* wait for the known devices to complete their probing */ 634 wait_event(probe_waitqueue, atomic_read(&probe_count) == 0); 635 async_synchronize_full(); 636 } 637 EXPORT_SYMBOL_GPL(wait_for_device_probe); 638 639 /** 640 * driver_probe_device - attempt to bind device & driver together 641 * @drv: driver to bind a device to 642 * @dev: device to try to bind to the driver 643 * 644 * This function returns -ENODEV if the device is not registered, 645 * 1 if the device is bound successfully and 0 otherwise. 646 * 647 * This function must be called with @dev lock held. When called for a 648 * USB interface, @dev->parent lock must be held as well. 649 * 650 * If the device has a parent, runtime-resume the parent before driver probing. 651 */ 652 int driver_probe_device(struct device_driver *drv, struct device *dev) 653 { 654 int ret = 0; 655 656 if (!device_is_registered(dev)) 657 return -ENODEV; 658 659 pr_debug("bus: '%s': %s: matched device %s with driver %s\n", 660 drv->bus->name, __func__, dev_name(dev), drv->name); 661 662 pm_runtime_get_suppliers(dev); 663 if (dev->parent) 664 pm_runtime_get_sync(dev->parent); 665 666 pm_runtime_barrier(dev); 667 if (initcall_debug) 668 ret = really_probe_debug(dev, drv); 669 else 670 ret = really_probe(dev, drv); 671 pm_request_idle(dev); 672 673 if (dev->parent) 674 pm_runtime_put(dev->parent); 675 676 pm_runtime_put_suppliers(dev); 677 return ret; 678 } 679 680 static inline bool cmdline_requested_async_probing(const char *drv_name) 681 { 682 return parse_option_str(async_probe_drv_names, drv_name); 683 } 684 685 /* The option format is "driver_async_probe=drv_name1,drv_name2,..." */ 686 static int __init save_async_options(char *buf) 687 { 688 if (strlen(buf) >= ASYNC_DRV_NAMES_MAX_LEN) 689 printk(KERN_WARNING 690 "Too long list of driver names for 'driver_async_probe'!\n"); 691 692 strlcpy(async_probe_drv_names, buf, ASYNC_DRV_NAMES_MAX_LEN); 693 return 0; 694 } 695 __setup("driver_async_probe=", save_async_options); 696 697 bool driver_allows_async_probing(struct device_driver *drv) 698 { 699 switch (drv->probe_type) { 700 case PROBE_PREFER_ASYNCHRONOUS: 701 return true; 702 703 case PROBE_FORCE_SYNCHRONOUS: 704 return false; 705 706 default: 707 if (cmdline_requested_async_probing(drv->name)) 708 return true; 709 710 if (module_requested_async_probing(drv->owner)) 711 return true; 712 713 return false; 714 } 715 } 716 717 struct device_attach_data { 718 struct device *dev; 719 720 /* 721 * Indicates whether we are are considering asynchronous probing or 722 * not. Only initial binding after device or driver registration 723 * (including deferral processing) may be done asynchronously, the 724 * rest is always synchronous, as we expect it is being done by 725 * request from userspace. 726 */ 727 bool check_async; 728 729 /* 730 * Indicates if we are binding synchronous or asynchronous drivers. 731 * When asynchronous probing is enabled we'll execute 2 passes 732 * over drivers: first pass doing synchronous probing and second 733 * doing asynchronous probing (if synchronous did not succeed - 734 * most likely because there was no driver requiring synchronous 735 * probing - and we found asynchronous driver during first pass). 736 * The 2 passes are done because we can't shoot asynchronous 737 * probe for given device and driver from bus_for_each_drv() since 738 * driver pointer is not guaranteed to stay valid once 739 * bus_for_each_drv() iterates to the next driver on the bus. 740 */ 741 bool want_async; 742 743 /* 744 * We'll set have_async to 'true' if, while scanning for matching 745 * driver, we'll encounter one that requests asynchronous probing. 746 */ 747 bool have_async; 748 }; 749 750 static int __device_attach_driver(struct device_driver *drv, void *_data) 751 { 752 struct device_attach_data *data = _data; 753 struct device *dev = data->dev; 754 bool async_allowed; 755 int ret; 756 757 ret = driver_match_device(drv, dev); 758 if (ret == 0) { 759 /* no match */ 760 return 0; 761 } else if (ret == -EPROBE_DEFER) { 762 dev_dbg(dev, "Device match requests probe deferral\n"); 763 driver_deferred_probe_add(dev); 764 } else if (ret < 0) { 765 dev_dbg(dev, "Bus failed to match device: %d", ret); 766 return ret; 767 } /* ret > 0 means positive match */ 768 769 async_allowed = driver_allows_async_probing(drv); 770 771 if (async_allowed) 772 data->have_async = true; 773 774 if (data->check_async && async_allowed != data->want_async) 775 return 0; 776 777 return driver_probe_device(drv, dev); 778 } 779 780 static void __device_attach_async_helper(void *_dev, async_cookie_t cookie) 781 { 782 struct device *dev = _dev; 783 struct device_attach_data data = { 784 .dev = dev, 785 .check_async = true, 786 .want_async = true, 787 }; 788 789 device_lock(dev); 790 791 /* 792 * Check if device has already been removed or claimed. This may 793 * happen with driver loading, device discovery/registration, 794 * and deferred probe processing happens all at once with 795 * multiple threads. 796 */ 797 if (dev->p->dead || dev->driver) 798 goto out_unlock; 799 800 if (dev->parent) 801 pm_runtime_get_sync(dev->parent); 802 803 bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); 804 dev_dbg(dev, "async probe completed\n"); 805 806 pm_request_idle(dev); 807 808 if (dev->parent) 809 pm_runtime_put(dev->parent); 810 out_unlock: 811 device_unlock(dev); 812 813 put_device(dev); 814 } 815 816 static int __device_attach(struct device *dev, bool allow_async) 817 { 818 int ret = 0; 819 820 device_lock(dev); 821 if (dev->driver) { 822 if (device_is_bound(dev)) { 823 ret = 1; 824 goto out_unlock; 825 } 826 ret = device_bind_driver(dev); 827 if (ret == 0) 828 ret = 1; 829 else { 830 dev->driver = NULL; 831 ret = 0; 832 } 833 } else { 834 struct device_attach_data data = { 835 .dev = dev, 836 .check_async = allow_async, 837 .want_async = false, 838 }; 839 840 if (dev->parent) 841 pm_runtime_get_sync(dev->parent); 842 843 ret = bus_for_each_drv(dev->bus, NULL, &data, 844 __device_attach_driver); 845 if (!ret && allow_async && data.have_async) { 846 /* 847 * If we could not find appropriate driver 848 * synchronously and we are allowed to do 849 * async probes and there are drivers that 850 * want to probe asynchronously, we'll 851 * try them. 852 */ 853 dev_dbg(dev, "scheduling asynchronous probe\n"); 854 get_device(dev); 855 async_schedule_dev(__device_attach_async_helper, dev); 856 } else { 857 pm_request_idle(dev); 858 } 859 860 if (dev->parent) 861 pm_runtime_put(dev->parent); 862 } 863 out_unlock: 864 device_unlock(dev); 865 return ret; 866 } 867 868 /** 869 * device_attach - try to attach device to a driver. 870 * @dev: device. 871 * 872 * Walk the list of drivers that the bus has and call 873 * driver_probe_device() for each pair. If a compatible 874 * pair is found, break out and return. 875 * 876 * Returns 1 if the device was bound to a driver; 877 * 0 if no matching driver was found; 878 * -ENODEV if the device is not registered. 879 * 880 * When called for a USB interface, @dev->parent lock must be held. 881 */ 882 int device_attach(struct device *dev) 883 { 884 return __device_attach(dev, false); 885 } 886 EXPORT_SYMBOL_GPL(device_attach); 887 888 void device_initial_probe(struct device *dev) 889 { 890 __device_attach(dev, true); 891 } 892 893 /* 894 * __device_driver_lock - acquire locks needed to manipulate dev->drv 895 * @dev: Device we will update driver info for 896 * @parent: Parent device. Needed if the bus requires parent lock 897 * 898 * This function will take the required locks for manipulating dev->drv. 899 * Normally this will just be the @dev lock, but when called for a USB 900 * interface, @parent lock will be held as well. 901 */ 902 static void __device_driver_lock(struct device *dev, struct device *parent) 903 { 904 if (parent && dev->bus->need_parent_lock) 905 device_lock(parent); 906 device_lock(dev); 907 } 908 909 /* 910 * __device_driver_unlock - release locks needed to manipulate dev->drv 911 * @dev: Device we will update driver info for 912 * @parent: Parent device. Needed if the bus requires parent lock 913 * 914 * This function will release the required locks for manipulating dev->drv. 915 * Normally this will just be the the @dev lock, but when called for a 916 * USB interface, @parent lock will be released as well. 917 */ 918 static void __device_driver_unlock(struct device *dev, struct device *parent) 919 { 920 device_unlock(dev); 921 if (parent && dev->bus->need_parent_lock) 922 device_unlock(parent); 923 } 924 925 /** 926 * device_driver_attach - attach a specific driver to a specific device 927 * @drv: Driver to attach 928 * @dev: Device to attach it to 929 * 930 * Manually attach driver to a device. Will acquire both @dev lock and 931 * @dev->parent lock if needed. 932 */ 933 int device_driver_attach(struct device_driver *drv, struct device *dev) 934 { 935 int ret = 0; 936 937 __device_driver_lock(dev, dev->parent); 938 939 /* 940 * If device has been removed or someone has already successfully 941 * bound a driver before us just skip the driver probe call. 942 */ 943 if (!dev->p->dead && !dev->driver) 944 ret = driver_probe_device(drv, dev); 945 946 __device_driver_unlock(dev, dev->parent); 947 948 return ret; 949 } 950 951 static void __driver_attach_async_helper(void *_dev, async_cookie_t cookie) 952 { 953 struct device *dev = _dev; 954 struct device_driver *drv; 955 int ret = 0; 956 957 __device_driver_lock(dev, dev->parent); 958 959 drv = dev->p->async_driver; 960 961 /* 962 * If device has been removed or someone has already successfully 963 * bound a driver before us just skip the driver probe call. 964 */ 965 if (!dev->p->dead && !dev->driver) 966 ret = driver_probe_device(drv, dev); 967 968 __device_driver_unlock(dev, dev->parent); 969 970 dev_dbg(dev, "driver %s async attach completed: %d\n", drv->name, ret); 971 972 put_device(dev); 973 } 974 975 static int __driver_attach(struct device *dev, void *data) 976 { 977 struct device_driver *drv = data; 978 int ret; 979 980 /* 981 * Lock device and try to bind to it. We drop the error 982 * here and always return 0, because we need to keep trying 983 * to bind to devices and some drivers will return an error 984 * simply if it didn't support the device. 985 * 986 * driver_probe_device() will spit a warning if there 987 * is an error. 988 */ 989 990 ret = driver_match_device(drv, dev); 991 if (ret == 0) { 992 /* no match */ 993 return 0; 994 } else if (ret == -EPROBE_DEFER) { 995 dev_dbg(dev, "Device match requests probe deferral\n"); 996 driver_deferred_probe_add(dev); 997 } else if (ret < 0) { 998 dev_dbg(dev, "Bus failed to match device: %d", ret); 999 return ret; 1000 } /* ret > 0 means positive match */ 1001 1002 if (driver_allows_async_probing(drv)) { 1003 /* 1004 * Instead of probing the device synchronously we will 1005 * probe it asynchronously to allow for more parallelism. 1006 * 1007 * We only take the device lock here in order to guarantee 1008 * that the dev->driver and async_driver fields are protected 1009 */ 1010 dev_dbg(dev, "probing driver %s asynchronously\n", drv->name); 1011 device_lock(dev); 1012 if (!dev->driver) { 1013 get_device(dev); 1014 dev->p->async_driver = drv; 1015 async_schedule_dev(__driver_attach_async_helper, dev); 1016 } 1017 device_unlock(dev); 1018 return 0; 1019 } 1020 1021 device_driver_attach(drv, dev); 1022 1023 return 0; 1024 } 1025 1026 /** 1027 * driver_attach - try to bind driver to devices. 1028 * @drv: driver. 1029 * 1030 * Walk the list of devices that the bus has on it and try to 1031 * match the driver with each one. If driver_probe_device() 1032 * returns 0 and the @dev->driver is set, we've found a 1033 * compatible pair. 1034 */ 1035 int driver_attach(struct device_driver *drv) 1036 { 1037 return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach); 1038 } 1039 EXPORT_SYMBOL_GPL(driver_attach); 1040 1041 /* 1042 * __device_release_driver() must be called with @dev lock held. 1043 * When called for a USB interface, @dev->parent lock must be held as well. 1044 */ 1045 static void __device_release_driver(struct device *dev, struct device *parent) 1046 { 1047 struct device_driver *drv; 1048 1049 drv = dev->driver; 1050 if (drv) { 1051 while (device_links_busy(dev)) { 1052 __device_driver_unlock(dev, parent); 1053 1054 device_links_unbind_consumers(dev); 1055 1056 __device_driver_lock(dev, parent); 1057 /* 1058 * A concurrent invocation of the same function might 1059 * have released the driver successfully while this one 1060 * was waiting, so check for that. 1061 */ 1062 if (dev->driver != drv) 1063 return; 1064 } 1065 1066 pm_runtime_get_sync(dev); 1067 pm_runtime_clean_up_links(dev); 1068 1069 driver_sysfs_remove(dev); 1070 1071 if (dev->bus) 1072 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1073 BUS_NOTIFY_UNBIND_DRIVER, 1074 dev); 1075 1076 pm_runtime_put_sync(dev); 1077 1078 if (dev->bus && dev->bus->remove) 1079 dev->bus->remove(dev); 1080 else if (drv->remove) 1081 drv->remove(dev); 1082 1083 device_links_driver_cleanup(dev); 1084 1085 devres_release_all(dev); 1086 arch_teardown_dma_ops(dev); 1087 dev->driver = NULL; 1088 dev_set_drvdata(dev, NULL); 1089 if (dev->pm_domain && dev->pm_domain->dismiss) 1090 dev->pm_domain->dismiss(dev); 1091 pm_runtime_reinit(dev); 1092 dev_pm_set_driver_flags(dev, 0); 1093 1094 klist_remove(&dev->p->knode_driver); 1095 device_pm_check_callbacks(dev); 1096 if (dev->bus) 1097 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1098 BUS_NOTIFY_UNBOUND_DRIVER, 1099 dev); 1100 1101 kobject_uevent(&dev->kobj, KOBJ_UNBIND); 1102 } 1103 } 1104 1105 void device_release_driver_internal(struct device *dev, 1106 struct device_driver *drv, 1107 struct device *parent) 1108 { 1109 __device_driver_lock(dev, parent); 1110 1111 if (!drv || drv == dev->driver) 1112 __device_release_driver(dev, parent); 1113 1114 __device_driver_unlock(dev, parent); 1115 } 1116 1117 /** 1118 * device_release_driver - manually detach device from driver. 1119 * @dev: device. 1120 * 1121 * Manually detach device from driver. 1122 * When called for a USB interface, @dev->parent lock must be held. 1123 * 1124 * If this function is to be called with @dev->parent lock held, ensure that 1125 * the device's consumers are unbound in advance or that their locks can be 1126 * acquired under the @dev->parent lock. 1127 */ 1128 void device_release_driver(struct device *dev) 1129 { 1130 /* 1131 * If anyone calls device_release_driver() recursively from 1132 * within their ->remove callback for the same device, they 1133 * will deadlock right here. 1134 */ 1135 device_release_driver_internal(dev, NULL, NULL); 1136 } 1137 EXPORT_SYMBOL_GPL(device_release_driver); 1138 1139 /** 1140 * device_driver_detach - detach driver from a specific device 1141 * @dev: device to detach driver from 1142 * 1143 * Detach driver from device. Will acquire both @dev lock and @dev->parent 1144 * lock if needed. 1145 */ 1146 void device_driver_detach(struct device *dev) 1147 { 1148 device_release_driver_internal(dev, NULL, dev->parent); 1149 } 1150 1151 /** 1152 * driver_detach - detach driver from all devices it controls. 1153 * @drv: driver. 1154 */ 1155 void driver_detach(struct device_driver *drv) 1156 { 1157 struct device_private *dev_prv; 1158 struct device *dev; 1159 1160 if (driver_allows_async_probing(drv)) 1161 async_synchronize_full(); 1162 1163 for (;;) { 1164 spin_lock(&drv->p->klist_devices.k_lock); 1165 if (list_empty(&drv->p->klist_devices.k_list)) { 1166 spin_unlock(&drv->p->klist_devices.k_lock); 1167 break; 1168 } 1169 dev_prv = list_entry(drv->p->klist_devices.k_list.prev, 1170 struct device_private, 1171 knode_driver.n_node); 1172 dev = dev_prv->device; 1173 get_device(dev); 1174 spin_unlock(&drv->p->klist_devices.k_lock); 1175 device_release_driver_internal(dev, drv, dev->parent); 1176 put_device(dev); 1177 } 1178 } 1179