xref: /linux/drivers/base/core.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/kallsyms.h>
25 #include <linux/mutex.h>
26 #include <linux/async.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static __init int sysfs_deprecated_setup(char *arg)
40 {
41 	return strict_strtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 int (*platform_notify)(struct device *dev) = NULL;
47 int (*platform_notify_remove)(struct device *dev) = NULL;
48 static struct kobject *dev_kobj;
49 struct kobject *sysfs_dev_char_kobj;
50 struct kobject *sysfs_dev_block_kobj;
51 
52 #ifdef CONFIG_BLOCK
53 static inline int device_is_not_partition(struct device *dev)
54 {
55 	return !(dev->type == &part_type);
56 }
57 #else
58 static inline int device_is_not_partition(struct device *dev)
59 {
60 	return 1;
61 }
62 #endif
63 
64 /**
65  * dev_driver_string - Return a device's driver name, if at all possible
66  * @dev: struct device to get the name of
67  *
68  * Will return the device's driver's name if it is bound to a device.  If
69  * the device is not bound to a driver, it will return the name of the bus
70  * it is attached to.  If it is not attached to a bus either, an empty
71  * string will be returned.
72  */
73 const char *dev_driver_string(const struct device *dev)
74 {
75 	struct device_driver *drv;
76 
77 	/* dev->driver can change to NULL underneath us because of unbinding,
78 	 * so be careful about accessing it.  dev->bus and dev->class should
79 	 * never change once they are set, so they don't need special care.
80 	 */
81 	drv = ACCESS_ONCE(dev->driver);
82 	return drv ? drv->name :
83 			(dev->bus ? dev->bus->name :
84 			(dev->class ? dev->class->name : ""));
85 }
86 EXPORT_SYMBOL(dev_driver_string);
87 
88 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
89 
90 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
91 			     char *buf)
92 {
93 	struct device_attribute *dev_attr = to_dev_attr(attr);
94 	struct device *dev = kobj_to_dev(kobj);
95 	ssize_t ret = -EIO;
96 
97 	if (dev_attr->show)
98 		ret = dev_attr->show(dev, dev_attr, buf);
99 	if (ret >= (ssize_t)PAGE_SIZE) {
100 		print_symbol("dev_attr_show: %s returned bad count\n",
101 				(unsigned long)dev_attr->show);
102 	}
103 	return ret;
104 }
105 
106 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
107 			      const char *buf, size_t count)
108 {
109 	struct device_attribute *dev_attr = to_dev_attr(attr);
110 	struct device *dev = kobj_to_dev(kobj);
111 	ssize_t ret = -EIO;
112 
113 	if (dev_attr->store)
114 		ret = dev_attr->store(dev, dev_attr, buf, count);
115 	return ret;
116 }
117 
118 static const struct sysfs_ops dev_sysfs_ops = {
119 	.show	= dev_attr_show,
120 	.store	= dev_attr_store,
121 };
122 
123 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
124 
125 ssize_t device_store_ulong(struct device *dev,
126 			   struct device_attribute *attr,
127 			   const char *buf, size_t size)
128 {
129 	struct dev_ext_attribute *ea = to_ext_attr(attr);
130 	char *end;
131 	unsigned long new = simple_strtoul(buf, &end, 0);
132 	if (end == buf)
133 		return -EINVAL;
134 	*(unsigned long *)(ea->var) = new;
135 	/* Always return full write size even if we didn't consume all */
136 	return size;
137 }
138 EXPORT_SYMBOL_GPL(device_store_ulong);
139 
140 ssize_t device_show_ulong(struct device *dev,
141 			  struct device_attribute *attr,
142 			  char *buf)
143 {
144 	struct dev_ext_attribute *ea = to_ext_attr(attr);
145 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
146 }
147 EXPORT_SYMBOL_GPL(device_show_ulong);
148 
149 ssize_t device_store_int(struct device *dev,
150 			 struct device_attribute *attr,
151 			 const char *buf, size_t size)
152 {
153 	struct dev_ext_attribute *ea = to_ext_attr(attr);
154 	char *end;
155 	long new = simple_strtol(buf, &end, 0);
156 	if (end == buf || new > INT_MAX || new < INT_MIN)
157 		return -EINVAL;
158 	*(int *)(ea->var) = new;
159 	/* Always return full write size even if we didn't consume all */
160 	return size;
161 }
162 EXPORT_SYMBOL_GPL(device_store_int);
163 
164 ssize_t device_show_int(struct device *dev,
165 			struct device_attribute *attr,
166 			char *buf)
167 {
168 	struct dev_ext_attribute *ea = to_ext_attr(attr);
169 
170 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
171 }
172 EXPORT_SYMBOL_GPL(device_show_int);
173 
174 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
175 			  const char *buf, size_t size)
176 {
177 	struct dev_ext_attribute *ea = to_ext_attr(attr);
178 
179 	if (strtobool(buf, ea->var) < 0)
180 		return -EINVAL;
181 
182 	return size;
183 }
184 EXPORT_SYMBOL_GPL(device_store_bool);
185 
186 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
187 			 char *buf)
188 {
189 	struct dev_ext_attribute *ea = to_ext_attr(attr);
190 
191 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
192 }
193 EXPORT_SYMBOL_GPL(device_show_bool);
194 
195 /**
196  * device_release - free device structure.
197  * @kobj: device's kobject.
198  *
199  * This is called once the reference count for the object
200  * reaches 0. We forward the call to the device's release
201  * method, which should handle actually freeing the structure.
202  */
203 static void device_release(struct kobject *kobj)
204 {
205 	struct device *dev = kobj_to_dev(kobj);
206 	struct device_private *p = dev->p;
207 
208 	/*
209 	 * Some platform devices are driven without driver attached
210 	 * and managed resources may have been acquired.  Make sure
211 	 * all resources are released.
212 	 *
213 	 * Drivers still can add resources into device after device
214 	 * is deleted but alive, so release devres here to avoid
215 	 * possible memory leak.
216 	 */
217 	devres_release_all(dev);
218 
219 	if (dev->release)
220 		dev->release(dev);
221 	else if (dev->type && dev->type->release)
222 		dev->type->release(dev);
223 	else if (dev->class && dev->class->dev_release)
224 		dev->class->dev_release(dev);
225 	else
226 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
227 			"function, it is broken and must be fixed.\n",
228 			dev_name(dev));
229 	kfree(p);
230 }
231 
232 static const void *device_namespace(struct kobject *kobj)
233 {
234 	struct device *dev = kobj_to_dev(kobj);
235 	const void *ns = NULL;
236 
237 	if (dev->class && dev->class->ns_type)
238 		ns = dev->class->namespace(dev);
239 
240 	return ns;
241 }
242 
243 static struct kobj_type device_ktype = {
244 	.release	= device_release,
245 	.sysfs_ops	= &dev_sysfs_ops,
246 	.namespace	= device_namespace,
247 };
248 
249 
250 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
251 {
252 	struct kobj_type *ktype = get_ktype(kobj);
253 
254 	if (ktype == &device_ktype) {
255 		struct device *dev = kobj_to_dev(kobj);
256 		if (dev->bus)
257 			return 1;
258 		if (dev->class)
259 			return 1;
260 	}
261 	return 0;
262 }
263 
264 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
265 {
266 	struct device *dev = kobj_to_dev(kobj);
267 
268 	if (dev->bus)
269 		return dev->bus->name;
270 	if (dev->class)
271 		return dev->class->name;
272 	return NULL;
273 }
274 
275 static int dev_uevent(struct kset *kset, struct kobject *kobj,
276 		      struct kobj_uevent_env *env)
277 {
278 	struct device *dev = kobj_to_dev(kobj);
279 	int retval = 0;
280 
281 	/* add device node properties if present */
282 	if (MAJOR(dev->devt)) {
283 		const char *tmp;
284 		const char *name;
285 		umode_t mode = 0;
286 		kuid_t uid = GLOBAL_ROOT_UID;
287 		kgid_t gid = GLOBAL_ROOT_GID;
288 
289 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
290 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
291 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
292 		if (name) {
293 			add_uevent_var(env, "DEVNAME=%s", name);
294 			if (mode)
295 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
296 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
297 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
298 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
299 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
300 			kfree(tmp);
301 		}
302 	}
303 
304 	if (dev->type && dev->type->name)
305 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
306 
307 	if (dev->driver)
308 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
309 
310 	/* Add common DT information about the device */
311 	of_device_uevent(dev, env);
312 
313 	/* have the bus specific function add its stuff */
314 	if (dev->bus && dev->bus->uevent) {
315 		retval = dev->bus->uevent(dev, env);
316 		if (retval)
317 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
318 				 dev_name(dev), __func__, retval);
319 	}
320 
321 	/* have the class specific function add its stuff */
322 	if (dev->class && dev->class->dev_uevent) {
323 		retval = dev->class->dev_uevent(dev, env);
324 		if (retval)
325 			pr_debug("device: '%s': %s: class uevent() "
326 				 "returned %d\n", dev_name(dev),
327 				 __func__, retval);
328 	}
329 
330 	/* have the device type specific function add its stuff */
331 	if (dev->type && dev->type->uevent) {
332 		retval = dev->type->uevent(dev, env);
333 		if (retval)
334 			pr_debug("device: '%s': %s: dev_type uevent() "
335 				 "returned %d\n", dev_name(dev),
336 				 __func__, retval);
337 	}
338 
339 	return retval;
340 }
341 
342 static const struct kset_uevent_ops device_uevent_ops = {
343 	.filter =	dev_uevent_filter,
344 	.name =		dev_uevent_name,
345 	.uevent =	dev_uevent,
346 };
347 
348 static ssize_t show_uevent(struct device *dev, struct device_attribute *attr,
349 			   char *buf)
350 {
351 	struct kobject *top_kobj;
352 	struct kset *kset;
353 	struct kobj_uevent_env *env = NULL;
354 	int i;
355 	size_t count = 0;
356 	int retval;
357 
358 	/* search the kset, the device belongs to */
359 	top_kobj = &dev->kobj;
360 	while (!top_kobj->kset && top_kobj->parent)
361 		top_kobj = top_kobj->parent;
362 	if (!top_kobj->kset)
363 		goto out;
364 
365 	kset = top_kobj->kset;
366 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
367 		goto out;
368 
369 	/* respect filter */
370 	if (kset->uevent_ops && kset->uevent_ops->filter)
371 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
372 			goto out;
373 
374 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
375 	if (!env)
376 		return -ENOMEM;
377 
378 	/* let the kset specific function add its keys */
379 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
380 	if (retval)
381 		goto out;
382 
383 	/* copy keys to file */
384 	for (i = 0; i < env->envp_idx; i++)
385 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
386 out:
387 	kfree(env);
388 	return count;
389 }
390 
391 static ssize_t store_uevent(struct device *dev, struct device_attribute *attr,
392 			    const char *buf, size_t count)
393 {
394 	enum kobject_action action;
395 
396 	if (kobject_action_type(buf, count, &action) == 0)
397 		kobject_uevent(&dev->kobj, action);
398 	else
399 		dev_err(dev, "uevent: unknown action-string\n");
400 	return count;
401 }
402 
403 static struct device_attribute uevent_attr =
404 	__ATTR(uevent, S_IRUGO | S_IWUSR, show_uevent, store_uevent);
405 
406 static ssize_t show_online(struct device *dev, struct device_attribute *attr,
407 			   char *buf)
408 {
409 	bool val;
410 
411 	lock_device_hotplug();
412 	val = !dev->offline;
413 	unlock_device_hotplug();
414 	return sprintf(buf, "%u\n", val);
415 }
416 
417 static ssize_t store_online(struct device *dev, struct device_attribute *attr,
418 			    const char *buf, size_t count)
419 {
420 	bool val;
421 	int ret;
422 
423 	ret = strtobool(buf, &val);
424 	if (ret < 0)
425 		return ret;
426 
427 	lock_device_hotplug();
428 	ret = val ? device_online(dev) : device_offline(dev);
429 	unlock_device_hotplug();
430 	return ret < 0 ? ret : count;
431 }
432 
433 static struct device_attribute online_attr =
434 	__ATTR(online, S_IRUGO | S_IWUSR, show_online, store_online);
435 
436 static int device_add_attributes(struct device *dev,
437 				 struct device_attribute *attrs)
438 {
439 	int error = 0;
440 	int i;
441 
442 	if (attrs) {
443 		for (i = 0; attr_name(attrs[i]); i++) {
444 			error = device_create_file(dev, &attrs[i]);
445 			if (error)
446 				break;
447 		}
448 		if (error)
449 			while (--i >= 0)
450 				device_remove_file(dev, &attrs[i]);
451 	}
452 	return error;
453 }
454 
455 static void device_remove_attributes(struct device *dev,
456 				     struct device_attribute *attrs)
457 {
458 	int i;
459 
460 	if (attrs)
461 		for (i = 0; attr_name(attrs[i]); i++)
462 			device_remove_file(dev, &attrs[i]);
463 }
464 
465 static int device_add_bin_attributes(struct device *dev,
466 				     struct bin_attribute *attrs)
467 {
468 	int error = 0;
469 	int i;
470 
471 	if (attrs) {
472 		for (i = 0; attr_name(attrs[i]); i++) {
473 			error = device_create_bin_file(dev, &attrs[i]);
474 			if (error)
475 				break;
476 		}
477 		if (error)
478 			while (--i >= 0)
479 				device_remove_bin_file(dev, &attrs[i]);
480 	}
481 	return error;
482 }
483 
484 static void device_remove_bin_attributes(struct device *dev,
485 					 struct bin_attribute *attrs)
486 {
487 	int i;
488 
489 	if (attrs)
490 		for (i = 0; attr_name(attrs[i]); i++)
491 			device_remove_bin_file(dev, &attrs[i]);
492 }
493 
494 static int device_add_groups(struct device *dev,
495 			     const struct attribute_group **groups)
496 {
497 	int error = 0;
498 	int i;
499 
500 	if (groups) {
501 		for (i = 0; groups[i]; i++) {
502 			error = sysfs_create_group(&dev->kobj, groups[i]);
503 			if (error) {
504 				while (--i >= 0)
505 					sysfs_remove_group(&dev->kobj,
506 							   groups[i]);
507 				break;
508 			}
509 		}
510 	}
511 	return error;
512 }
513 
514 static void device_remove_groups(struct device *dev,
515 				 const struct attribute_group **groups)
516 {
517 	int i;
518 
519 	if (groups)
520 		for (i = 0; groups[i]; i++)
521 			sysfs_remove_group(&dev->kobj, groups[i]);
522 }
523 
524 static int device_add_attrs(struct device *dev)
525 {
526 	struct class *class = dev->class;
527 	const struct device_type *type = dev->type;
528 	int error;
529 
530 	if (class) {
531 		error = device_add_attributes(dev, class->dev_attrs);
532 		if (error)
533 			return error;
534 		error = device_add_bin_attributes(dev, class->dev_bin_attrs);
535 		if (error)
536 			goto err_remove_class_attrs;
537 	}
538 
539 	if (type) {
540 		error = device_add_groups(dev, type->groups);
541 		if (error)
542 			goto err_remove_class_bin_attrs;
543 	}
544 
545 	error = device_add_groups(dev, dev->groups);
546 	if (error)
547 		goto err_remove_type_groups;
548 
549 	if (device_supports_offline(dev) && !dev->offline_disabled) {
550 		error = device_create_file(dev, &online_attr);
551 		if (error)
552 			goto err_remove_type_groups;
553 	}
554 
555 	return 0;
556 
557  err_remove_type_groups:
558 	if (type)
559 		device_remove_groups(dev, type->groups);
560  err_remove_class_bin_attrs:
561 	if (class)
562 		device_remove_bin_attributes(dev, class->dev_bin_attrs);
563  err_remove_class_attrs:
564 	if (class)
565 		device_remove_attributes(dev, class->dev_attrs);
566 
567 	return error;
568 }
569 
570 static void device_remove_attrs(struct device *dev)
571 {
572 	struct class *class = dev->class;
573 	const struct device_type *type = dev->type;
574 
575 	device_remove_file(dev, &online_attr);
576 	device_remove_groups(dev, dev->groups);
577 
578 	if (type)
579 		device_remove_groups(dev, type->groups);
580 
581 	if (class) {
582 		device_remove_attributes(dev, class->dev_attrs);
583 		device_remove_bin_attributes(dev, class->dev_bin_attrs);
584 	}
585 }
586 
587 
588 static ssize_t show_dev(struct device *dev, struct device_attribute *attr,
589 			char *buf)
590 {
591 	return print_dev_t(buf, dev->devt);
592 }
593 
594 static struct device_attribute devt_attr =
595 	__ATTR(dev, S_IRUGO, show_dev, NULL);
596 
597 /* /sys/devices/ */
598 struct kset *devices_kset;
599 
600 /**
601  * device_create_file - create sysfs attribute file for device.
602  * @dev: device.
603  * @attr: device attribute descriptor.
604  */
605 int device_create_file(struct device *dev,
606 		       const struct device_attribute *attr)
607 {
608 	int error = 0;
609 
610 	if (dev) {
611 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
612 			"Attribute %s: write permission without 'store'\n",
613 			attr->attr.name);
614 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
615 			"Attribute %s: read permission without 'show'\n",
616 			attr->attr.name);
617 		error = sysfs_create_file(&dev->kobj, &attr->attr);
618 	}
619 
620 	return error;
621 }
622 
623 /**
624  * device_remove_file - remove sysfs attribute file.
625  * @dev: device.
626  * @attr: device attribute descriptor.
627  */
628 void device_remove_file(struct device *dev,
629 			const struct device_attribute *attr)
630 {
631 	if (dev)
632 		sysfs_remove_file(&dev->kobj, &attr->attr);
633 }
634 
635 /**
636  * device_create_bin_file - create sysfs binary attribute file for device.
637  * @dev: device.
638  * @attr: device binary attribute descriptor.
639  */
640 int device_create_bin_file(struct device *dev,
641 			   const struct bin_attribute *attr)
642 {
643 	int error = -EINVAL;
644 	if (dev)
645 		error = sysfs_create_bin_file(&dev->kobj, attr);
646 	return error;
647 }
648 EXPORT_SYMBOL_GPL(device_create_bin_file);
649 
650 /**
651  * device_remove_bin_file - remove sysfs binary attribute file
652  * @dev: device.
653  * @attr: device binary attribute descriptor.
654  */
655 void device_remove_bin_file(struct device *dev,
656 			    const struct bin_attribute *attr)
657 {
658 	if (dev)
659 		sysfs_remove_bin_file(&dev->kobj, attr);
660 }
661 EXPORT_SYMBOL_GPL(device_remove_bin_file);
662 
663 /**
664  * device_schedule_callback_owner - helper to schedule a callback for a device
665  * @dev: device.
666  * @func: callback function to invoke later.
667  * @owner: module owning the callback routine
668  *
669  * Attribute methods must not unregister themselves or their parent device
670  * (which would amount to the same thing).  Attempts to do so will deadlock,
671  * since unregistration is mutually exclusive with driver callbacks.
672  *
673  * Instead methods can call this routine, which will attempt to allocate
674  * and schedule a workqueue request to call back @func with @dev as its
675  * argument in the workqueue's process context.  @dev will be pinned until
676  * @func returns.
677  *
678  * This routine is usually called via the inline device_schedule_callback(),
679  * which automatically sets @owner to THIS_MODULE.
680  *
681  * Returns 0 if the request was submitted, -ENOMEM if storage could not
682  * be allocated, -ENODEV if a reference to @owner isn't available.
683  *
684  * NOTE: This routine won't work if CONFIG_SYSFS isn't set!  It uses an
685  * underlying sysfs routine (since it is intended for use by attribute
686  * methods), and if sysfs isn't available you'll get nothing but -ENOSYS.
687  */
688 int device_schedule_callback_owner(struct device *dev,
689 		void (*func)(struct device *), struct module *owner)
690 {
691 	return sysfs_schedule_callback(&dev->kobj,
692 			(void (*)(void *)) func, dev, owner);
693 }
694 EXPORT_SYMBOL_GPL(device_schedule_callback_owner);
695 
696 static void klist_children_get(struct klist_node *n)
697 {
698 	struct device_private *p = to_device_private_parent(n);
699 	struct device *dev = p->device;
700 
701 	get_device(dev);
702 }
703 
704 static void klist_children_put(struct klist_node *n)
705 {
706 	struct device_private *p = to_device_private_parent(n);
707 	struct device *dev = p->device;
708 
709 	put_device(dev);
710 }
711 
712 /**
713  * device_initialize - init device structure.
714  * @dev: device.
715  *
716  * This prepares the device for use by other layers by initializing
717  * its fields.
718  * It is the first half of device_register(), if called by
719  * that function, though it can also be called separately, so one
720  * may use @dev's fields. In particular, get_device()/put_device()
721  * may be used for reference counting of @dev after calling this
722  * function.
723  *
724  * All fields in @dev must be initialized by the caller to 0, except
725  * for those explicitly set to some other value.  The simplest
726  * approach is to use kzalloc() to allocate the structure containing
727  * @dev.
728  *
729  * NOTE: Use put_device() to give up your reference instead of freeing
730  * @dev directly once you have called this function.
731  */
732 void device_initialize(struct device *dev)
733 {
734 	dev->kobj.kset = devices_kset;
735 	kobject_init(&dev->kobj, &device_ktype);
736 	INIT_LIST_HEAD(&dev->dma_pools);
737 	mutex_init(&dev->mutex);
738 	lockdep_set_novalidate_class(&dev->mutex);
739 	spin_lock_init(&dev->devres_lock);
740 	INIT_LIST_HEAD(&dev->devres_head);
741 	device_pm_init(dev);
742 	set_dev_node(dev, -1);
743 }
744 
745 struct kobject *virtual_device_parent(struct device *dev)
746 {
747 	static struct kobject *virtual_dir = NULL;
748 
749 	if (!virtual_dir)
750 		virtual_dir = kobject_create_and_add("virtual",
751 						     &devices_kset->kobj);
752 
753 	return virtual_dir;
754 }
755 
756 struct class_dir {
757 	struct kobject kobj;
758 	struct class *class;
759 };
760 
761 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
762 
763 static void class_dir_release(struct kobject *kobj)
764 {
765 	struct class_dir *dir = to_class_dir(kobj);
766 	kfree(dir);
767 }
768 
769 static const
770 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
771 {
772 	struct class_dir *dir = to_class_dir(kobj);
773 	return dir->class->ns_type;
774 }
775 
776 static struct kobj_type class_dir_ktype = {
777 	.release	= class_dir_release,
778 	.sysfs_ops	= &kobj_sysfs_ops,
779 	.child_ns_type	= class_dir_child_ns_type
780 };
781 
782 static struct kobject *
783 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
784 {
785 	struct class_dir *dir;
786 	int retval;
787 
788 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
789 	if (!dir)
790 		return NULL;
791 
792 	dir->class = class;
793 	kobject_init(&dir->kobj, &class_dir_ktype);
794 
795 	dir->kobj.kset = &class->p->glue_dirs;
796 
797 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
798 	if (retval < 0) {
799 		kobject_put(&dir->kobj);
800 		return NULL;
801 	}
802 	return &dir->kobj;
803 }
804 
805 
806 static struct kobject *get_device_parent(struct device *dev,
807 					 struct device *parent)
808 {
809 	if (dev->class) {
810 		static DEFINE_MUTEX(gdp_mutex);
811 		struct kobject *kobj = NULL;
812 		struct kobject *parent_kobj;
813 		struct kobject *k;
814 
815 #ifdef CONFIG_BLOCK
816 		/* block disks show up in /sys/block */
817 		if (sysfs_deprecated && dev->class == &block_class) {
818 			if (parent && parent->class == &block_class)
819 				return &parent->kobj;
820 			return &block_class.p->subsys.kobj;
821 		}
822 #endif
823 
824 		/*
825 		 * If we have no parent, we live in "virtual".
826 		 * Class-devices with a non class-device as parent, live
827 		 * in a "glue" directory to prevent namespace collisions.
828 		 */
829 		if (parent == NULL)
830 			parent_kobj = virtual_device_parent(dev);
831 		else if (parent->class && !dev->class->ns_type)
832 			return &parent->kobj;
833 		else
834 			parent_kobj = &parent->kobj;
835 
836 		mutex_lock(&gdp_mutex);
837 
838 		/* find our class-directory at the parent and reference it */
839 		spin_lock(&dev->class->p->glue_dirs.list_lock);
840 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
841 			if (k->parent == parent_kobj) {
842 				kobj = kobject_get(k);
843 				break;
844 			}
845 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
846 		if (kobj) {
847 			mutex_unlock(&gdp_mutex);
848 			return kobj;
849 		}
850 
851 		/* or create a new class-directory at the parent device */
852 		k = class_dir_create_and_add(dev->class, parent_kobj);
853 		/* do not emit an uevent for this simple "glue" directory */
854 		mutex_unlock(&gdp_mutex);
855 		return k;
856 	}
857 
858 	/* subsystems can specify a default root directory for their devices */
859 	if (!parent && dev->bus && dev->bus->dev_root)
860 		return &dev->bus->dev_root->kobj;
861 
862 	if (parent)
863 		return &parent->kobj;
864 	return NULL;
865 }
866 
867 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
868 {
869 	/* see if we live in a "glue" directory */
870 	if (!glue_dir || !dev->class ||
871 	    glue_dir->kset != &dev->class->p->glue_dirs)
872 		return;
873 
874 	kobject_put(glue_dir);
875 }
876 
877 static void cleanup_device_parent(struct device *dev)
878 {
879 	cleanup_glue_dir(dev, dev->kobj.parent);
880 }
881 
882 static int device_add_class_symlinks(struct device *dev)
883 {
884 	int error;
885 
886 	if (!dev->class)
887 		return 0;
888 
889 	error = sysfs_create_link(&dev->kobj,
890 				  &dev->class->p->subsys.kobj,
891 				  "subsystem");
892 	if (error)
893 		goto out;
894 
895 	if (dev->parent && device_is_not_partition(dev)) {
896 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
897 					  "device");
898 		if (error)
899 			goto out_subsys;
900 	}
901 
902 #ifdef CONFIG_BLOCK
903 	/* /sys/block has directories and does not need symlinks */
904 	if (sysfs_deprecated && dev->class == &block_class)
905 		return 0;
906 #endif
907 
908 	/* link in the class directory pointing to the device */
909 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
910 				  &dev->kobj, dev_name(dev));
911 	if (error)
912 		goto out_device;
913 
914 	return 0;
915 
916 out_device:
917 	sysfs_remove_link(&dev->kobj, "device");
918 
919 out_subsys:
920 	sysfs_remove_link(&dev->kobj, "subsystem");
921 out:
922 	return error;
923 }
924 
925 static void device_remove_class_symlinks(struct device *dev)
926 {
927 	if (!dev->class)
928 		return;
929 
930 	if (dev->parent && device_is_not_partition(dev))
931 		sysfs_remove_link(&dev->kobj, "device");
932 	sysfs_remove_link(&dev->kobj, "subsystem");
933 #ifdef CONFIG_BLOCK
934 	if (sysfs_deprecated && dev->class == &block_class)
935 		return;
936 #endif
937 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
938 }
939 
940 /**
941  * dev_set_name - set a device name
942  * @dev: device
943  * @fmt: format string for the device's name
944  */
945 int dev_set_name(struct device *dev, const char *fmt, ...)
946 {
947 	va_list vargs;
948 	int err;
949 
950 	va_start(vargs, fmt);
951 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
952 	va_end(vargs);
953 	return err;
954 }
955 EXPORT_SYMBOL_GPL(dev_set_name);
956 
957 /**
958  * device_to_dev_kobj - select a /sys/dev/ directory for the device
959  * @dev: device
960  *
961  * By default we select char/ for new entries.  Setting class->dev_obj
962  * to NULL prevents an entry from being created.  class->dev_kobj must
963  * be set (or cleared) before any devices are registered to the class
964  * otherwise device_create_sys_dev_entry() and
965  * device_remove_sys_dev_entry() will disagree about the presence of
966  * the link.
967  */
968 static struct kobject *device_to_dev_kobj(struct device *dev)
969 {
970 	struct kobject *kobj;
971 
972 	if (dev->class)
973 		kobj = dev->class->dev_kobj;
974 	else
975 		kobj = sysfs_dev_char_kobj;
976 
977 	return kobj;
978 }
979 
980 static int device_create_sys_dev_entry(struct device *dev)
981 {
982 	struct kobject *kobj = device_to_dev_kobj(dev);
983 	int error = 0;
984 	char devt_str[15];
985 
986 	if (kobj) {
987 		format_dev_t(devt_str, dev->devt);
988 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
989 	}
990 
991 	return error;
992 }
993 
994 static void device_remove_sys_dev_entry(struct device *dev)
995 {
996 	struct kobject *kobj = device_to_dev_kobj(dev);
997 	char devt_str[15];
998 
999 	if (kobj) {
1000 		format_dev_t(devt_str, dev->devt);
1001 		sysfs_remove_link(kobj, devt_str);
1002 	}
1003 }
1004 
1005 int device_private_init(struct device *dev)
1006 {
1007 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1008 	if (!dev->p)
1009 		return -ENOMEM;
1010 	dev->p->device = dev;
1011 	klist_init(&dev->p->klist_children, klist_children_get,
1012 		   klist_children_put);
1013 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1014 	return 0;
1015 }
1016 
1017 /**
1018  * device_add - add device to device hierarchy.
1019  * @dev: device.
1020  *
1021  * This is part 2 of device_register(), though may be called
1022  * separately _iff_ device_initialize() has been called separately.
1023  *
1024  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1025  * to the global and sibling lists for the device, then
1026  * adds it to the other relevant subsystems of the driver model.
1027  *
1028  * Do not call this routine or device_register() more than once for
1029  * any device structure.  The driver model core is not designed to work
1030  * with devices that get unregistered and then spring back to life.
1031  * (Among other things, it's very hard to guarantee that all references
1032  * to the previous incarnation of @dev have been dropped.)  Allocate
1033  * and register a fresh new struct device instead.
1034  *
1035  * NOTE: _Never_ directly free @dev after calling this function, even
1036  * if it returned an error! Always use put_device() to give up your
1037  * reference instead.
1038  */
1039 int device_add(struct device *dev)
1040 {
1041 	struct device *parent = NULL;
1042 	struct kobject *kobj;
1043 	struct class_interface *class_intf;
1044 	int error = -EINVAL;
1045 
1046 	dev = get_device(dev);
1047 	if (!dev)
1048 		goto done;
1049 
1050 	if (!dev->p) {
1051 		error = device_private_init(dev);
1052 		if (error)
1053 			goto done;
1054 	}
1055 
1056 	/*
1057 	 * for statically allocated devices, which should all be converted
1058 	 * some day, we need to initialize the name. We prevent reading back
1059 	 * the name, and force the use of dev_name()
1060 	 */
1061 	if (dev->init_name) {
1062 		dev_set_name(dev, "%s", dev->init_name);
1063 		dev->init_name = NULL;
1064 	}
1065 
1066 	/* subsystems can specify simple device enumeration */
1067 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1068 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1069 
1070 	if (!dev_name(dev)) {
1071 		error = -EINVAL;
1072 		goto name_error;
1073 	}
1074 
1075 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1076 
1077 	parent = get_device(dev->parent);
1078 	kobj = get_device_parent(dev, parent);
1079 	if (kobj)
1080 		dev->kobj.parent = kobj;
1081 
1082 	/* use parent numa_node */
1083 	if (parent)
1084 		set_dev_node(dev, dev_to_node(parent));
1085 
1086 	/* first, register with generic layer. */
1087 	/* we require the name to be set before, and pass NULL */
1088 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1089 	if (error)
1090 		goto Error;
1091 
1092 	/* notify platform of device entry */
1093 	if (platform_notify)
1094 		platform_notify(dev);
1095 
1096 	error = device_create_file(dev, &uevent_attr);
1097 	if (error)
1098 		goto attrError;
1099 
1100 	if (MAJOR(dev->devt)) {
1101 		error = device_create_file(dev, &devt_attr);
1102 		if (error)
1103 			goto ueventattrError;
1104 
1105 		error = device_create_sys_dev_entry(dev);
1106 		if (error)
1107 			goto devtattrError;
1108 
1109 		devtmpfs_create_node(dev);
1110 	}
1111 
1112 	error = device_add_class_symlinks(dev);
1113 	if (error)
1114 		goto SymlinkError;
1115 	error = device_add_attrs(dev);
1116 	if (error)
1117 		goto AttrsError;
1118 	error = bus_add_device(dev);
1119 	if (error)
1120 		goto BusError;
1121 	error = dpm_sysfs_add(dev);
1122 	if (error)
1123 		goto DPMError;
1124 	device_pm_add(dev);
1125 
1126 	/* Notify clients of device addition.  This call must come
1127 	 * after dpm_sysfs_add() and before kobject_uevent().
1128 	 */
1129 	if (dev->bus)
1130 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1131 					     BUS_NOTIFY_ADD_DEVICE, dev);
1132 
1133 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1134 	bus_probe_device(dev);
1135 	if (parent)
1136 		klist_add_tail(&dev->p->knode_parent,
1137 			       &parent->p->klist_children);
1138 
1139 	if (dev->class) {
1140 		mutex_lock(&dev->class->p->mutex);
1141 		/* tie the class to the device */
1142 		klist_add_tail(&dev->knode_class,
1143 			       &dev->class->p->klist_devices);
1144 
1145 		/* notify any interfaces that the device is here */
1146 		list_for_each_entry(class_intf,
1147 				    &dev->class->p->interfaces, node)
1148 			if (class_intf->add_dev)
1149 				class_intf->add_dev(dev, class_intf);
1150 		mutex_unlock(&dev->class->p->mutex);
1151 	}
1152 done:
1153 	put_device(dev);
1154 	return error;
1155  DPMError:
1156 	bus_remove_device(dev);
1157  BusError:
1158 	device_remove_attrs(dev);
1159  AttrsError:
1160 	device_remove_class_symlinks(dev);
1161  SymlinkError:
1162 	if (MAJOR(dev->devt))
1163 		devtmpfs_delete_node(dev);
1164 	if (MAJOR(dev->devt))
1165 		device_remove_sys_dev_entry(dev);
1166  devtattrError:
1167 	if (MAJOR(dev->devt))
1168 		device_remove_file(dev, &devt_attr);
1169  ueventattrError:
1170 	device_remove_file(dev, &uevent_attr);
1171  attrError:
1172 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1173 	kobject_del(&dev->kobj);
1174  Error:
1175 	cleanup_device_parent(dev);
1176 	if (parent)
1177 		put_device(parent);
1178 name_error:
1179 	kfree(dev->p);
1180 	dev->p = NULL;
1181 	goto done;
1182 }
1183 
1184 /**
1185  * device_register - register a device with the system.
1186  * @dev: pointer to the device structure
1187  *
1188  * This happens in two clean steps - initialize the device
1189  * and add it to the system. The two steps can be called
1190  * separately, but this is the easiest and most common.
1191  * I.e. you should only call the two helpers separately if
1192  * have a clearly defined need to use and refcount the device
1193  * before it is added to the hierarchy.
1194  *
1195  * For more information, see the kerneldoc for device_initialize()
1196  * and device_add().
1197  *
1198  * NOTE: _Never_ directly free @dev after calling this function, even
1199  * if it returned an error! Always use put_device() to give up the
1200  * reference initialized in this function instead.
1201  */
1202 int device_register(struct device *dev)
1203 {
1204 	device_initialize(dev);
1205 	return device_add(dev);
1206 }
1207 
1208 /**
1209  * get_device - increment reference count for device.
1210  * @dev: device.
1211  *
1212  * This simply forwards the call to kobject_get(), though
1213  * we do take care to provide for the case that we get a NULL
1214  * pointer passed in.
1215  */
1216 struct device *get_device(struct device *dev)
1217 {
1218 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1219 }
1220 
1221 /**
1222  * put_device - decrement reference count.
1223  * @dev: device in question.
1224  */
1225 void put_device(struct device *dev)
1226 {
1227 	/* might_sleep(); */
1228 	if (dev)
1229 		kobject_put(&dev->kobj);
1230 }
1231 
1232 /**
1233  * device_del - delete device from system.
1234  * @dev: device.
1235  *
1236  * This is the first part of the device unregistration
1237  * sequence. This removes the device from the lists we control
1238  * from here, has it removed from the other driver model
1239  * subsystems it was added to in device_add(), and removes it
1240  * from the kobject hierarchy.
1241  *
1242  * NOTE: this should be called manually _iff_ device_add() was
1243  * also called manually.
1244  */
1245 void device_del(struct device *dev)
1246 {
1247 	struct device *parent = dev->parent;
1248 	struct class_interface *class_intf;
1249 
1250 	/* Notify clients of device removal.  This call must come
1251 	 * before dpm_sysfs_remove().
1252 	 */
1253 	if (dev->bus)
1254 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1255 					     BUS_NOTIFY_DEL_DEVICE, dev);
1256 	dpm_sysfs_remove(dev);
1257 	if (parent)
1258 		klist_del(&dev->p->knode_parent);
1259 	if (MAJOR(dev->devt)) {
1260 		devtmpfs_delete_node(dev);
1261 		device_remove_sys_dev_entry(dev);
1262 		device_remove_file(dev, &devt_attr);
1263 	}
1264 	if (dev->class) {
1265 		device_remove_class_symlinks(dev);
1266 
1267 		mutex_lock(&dev->class->p->mutex);
1268 		/* notify any interfaces that the device is now gone */
1269 		list_for_each_entry(class_intf,
1270 				    &dev->class->p->interfaces, node)
1271 			if (class_intf->remove_dev)
1272 				class_intf->remove_dev(dev, class_intf);
1273 		/* remove the device from the class list */
1274 		klist_del(&dev->knode_class);
1275 		mutex_unlock(&dev->class->p->mutex);
1276 	}
1277 	device_remove_file(dev, &uevent_attr);
1278 	device_remove_attrs(dev);
1279 	bus_remove_device(dev);
1280 	device_pm_remove(dev);
1281 	driver_deferred_probe_del(dev);
1282 
1283 	/* Notify the platform of the removal, in case they
1284 	 * need to do anything...
1285 	 */
1286 	if (platform_notify_remove)
1287 		platform_notify_remove(dev);
1288 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1289 	cleanup_device_parent(dev);
1290 	kobject_del(&dev->kobj);
1291 	put_device(parent);
1292 }
1293 
1294 /**
1295  * device_unregister - unregister device from system.
1296  * @dev: device going away.
1297  *
1298  * We do this in two parts, like we do device_register(). First,
1299  * we remove it from all the subsystems with device_del(), then
1300  * we decrement the reference count via put_device(). If that
1301  * is the final reference count, the device will be cleaned up
1302  * via device_release() above. Otherwise, the structure will
1303  * stick around until the final reference to the device is dropped.
1304  */
1305 void device_unregister(struct device *dev)
1306 {
1307 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1308 	device_del(dev);
1309 	put_device(dev);
1310 }
1311 
1312 static struct device *next_device(struct klist_iter *i)
1313 {
1314 	struct klist_node *n = klist_next(i);
1315 	struct device *dev = NULL;
1316 	struct device_private *p;
1317 
1318 	if (n) {
1319 		p = to_device_private_parent(n);
1320 		dev = p->device;
1321 	}
1322 	return dev;
1323 }
1324 
1325 /**
1326  * device_get_devnode - path of device node file
1327  * @dev: device
1328  * @mode: returned file access mode
1329  * @uid: returned file owner
1330  * @gid: returned file group
1331  * @tmp: possibly allocated string
1332  *
1333  * Return the relative path of a possible device node.
1334  * Non-default names may need to allocate a memory to compose
1335  * a name. This memory is returned in tmp and needs to be
1336  * freed by the caller.
1337  */
1338 const char *device_get_devnode(struct device *dev,
1339 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1340 			       const char **tmp)
1341 {
1342 	char *s;
1343 
1344 	*tmp = NULL;
1345 
1346 	/* the device type may provide a specific name */
1347 	if (dev->type && dev->type->devnode)
1348 		*tmp = dev->type->devnode(dev, mode, uid, gid);
1349 	if (*tmp)
1350 		return *tmp;
1351 
1352 	/* the class may provide a specific name */
1353 	if (dev->class && dev->class->devnode)
1354 		*tmp = dev->class->devnode(dev, mode);
1355 	if (*tmp)
1356 		return *tmp;
1357 
1358 	/* return name without allocation, tmp == NULL */
1359 	if (strchr(dev_name(dev), '!') == NULL)
1360 		return dev_name(dev);
1361 
1362 	/* replace '!' in the name with '/' */
1363 	*tmp = kstrdup(dev_name(dev), GFP_KERNEL);
1364 	if (!*tmp)
1365 		return NULL;
1366 	while ((s = strchr(*tmp, '!')))
1367 		s[0] = '/';
1368 	return *tmp;
1369 }
1370 
1371 /**
1372  * device_for_each_child - device child iterator.
1373  * @parent: parent struct device.
1374  * @fn: function to be called for each device.
1375  * @data: data for the callback.
1376  *
1377  * Iterate over @parent's child devices, and call @fn for each,
1378  * passing it @data.
1379  *
1380  * We check the return of @fn each time. If it returns anything
1381  * other than 0, we break out and return that value.
1382  */
1383 int device_for_each_child(struct device *parent, void *data,
1384 			  int (*fn)(struct device *dev, void *data))
1385 {
1386 	struct klist_iter i;
1387 	struct device *child;
1388 	int error = 0;
1389 
1390 	if (!parent->p)
1391 		return 0;
1392 
1393 	klist_iter_init(&parent->p->klist_children, &i);
1394 	while ((child = next_device(&i)) && !error)
1395 		error = fn(child, data);
1396 	klist_iter_exit(&i);
1397 	return error;
1398 }
1399 
1400 /**
1401  * device_find_child - device iterator for locating a particular device.
1402  * @parent: parent struct device
1403  * @match: Callback function to check device
1404  * @data: Data to pass to match function
1405  *
1406  * This is similar to the device_for_each_child() function above, but it
1407  * returns a reference to a device that is 'found' for later use, as
1408  * determined by the @match callback.
1409  *
1410  * The callback should return 0 if the device doesn't match and non-zero
1411  * if it does.  If the callback returns non-zero and a reference to the
1412  * current device can be obtained, this function will return to the caller
1413  * and not iterate over any more devices.
1414  *
1415  * NOTE: you will need to drop the reference with put_device() after use.
1416  */
1417 struct device *device_find_child(struct device *parent, void *data,
1418 				 int (*match)(struct device *dev, void *data))
1419 {
1420 	struct klist_iter i;
1421 	struct device *child;
1422 
1423 	if (!parent)
1424 		return NULL;
1425 
1426 	klist_iter_init(&parent->p->klist_children, &i);
1427 	while ((child = next_device(&i)))
1428 		if (match(child, data) && get_device(child))
1429 			break;
1430 	klist_iter_exit(&i);
1431 	return child;
1432 }
1433 
1434 int __init devices_init(void)
1435 {
1436 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1437 	if (!devices_kset)
1438 		return -ENOMEM;
1439 	dev_kobj = kobject_create_and_add("dev", NULL);
1440 	if (!dev_kobj)
1441 		goto dev_kobj_err;
1442 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1443 	if (!sysfs_dev_block_kobj)
1444 		goto block_kobj_err;
1445 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1446 	if (!sysfs_dev_char_kobj)
1447 		goto char_kobj_err;
1448 
1449 	return 0;
1450 
1451  char_kobj_err:
1452 	kobject_put(sysfs_dev_block_kobj);
1453  block_kobj_err:
1454 	kobject_put(dev_kobj);
1455  dev_kobj_err:
1456 	kset_unregister(devices_kset);
1457 	return -ENOMEM;
1458 }
1459 
1460 EXPORT_SYMBOL_GPL(device_for_each_child);
1461 EXPORT_SYMBOL_GPL(device_find_child);
1462 
1463 EXPORT_SYMBOL_GPL(device_initialize);
1464 EXPORT_SYMBOL_GPL(device_add);
1465 EXPORT_SYMBOL_GPL(device_register);
1466 
1467 EXPORT_SYMBOL_GPL(device_del);
1468 EXPORT_SYMBOL_GPL(device_unregister);
1469 EXPORT_SYMBOL_GPL(get_device);
1470 EXPORT_SYMBOL_GPL(put_device);
1471 
1472 EXPORT_SYMBOL_GPL(device_create_file);
1473 EXPORT_SYMBOL_GPL(device_remove_file);
1474 
1475 static DEFINE_MUTEX(device_hotplug_lock);
1476 
1477 void lock_device_hotplug(void)
1478 {
1479 	mutex_lock(&device_hotplug_lock);
1480 }
1481 
1482 void unlock_device_hotplug(void)
1483 {
1484 	mutex_unlock(&device_hotplug_lock);
1485 }
1486 
1487 static int device_check_offline(struct device *dev, void *not_used)
1488 {
1489 	int ret;
1490 
1491 	ret = device_for_each_child(dev, NULL, device_check_offline);
1492 	if (ret)
1493 		return ret;
1494 
1495 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1496 }
1497 
1498 /**
1499  * device_offline - Prepare the device for hot-removal.
1500  * @dev: Device to be put offline.
1501  *
1502  * Execute the device bus type's .offline() callback, if present, to prepare
1503  * the device for a subsequent hot-removal.  If that succeeds, the device must
1504  * not be used until either it is removed or its bus type's .online() callback
1505  * is executed.
1506  *
1507  * Call under device_hotplug_lock.
1508  */
1509 int device_offline(struct device *dev)
1510 {
1511 	int ret;
1512 
1513 	if (dev->offline_disabled)
1514 		return -EPERM;
1515 
1516 	ret = device_for_each_child(dev, NULL, device_check_offline);
1517 	if (ret)
1518 		return ret;
1519 
1520 	device_lock(dev);
1521 	if (device_supports_offline(dev)) {
1522 		if (dev->offline) {
1523 			ret = 1;
1524 		} else {
1525 			ret = dev->bus->offline(dev);
1526 			if (!ret) {
1527 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1528 				dev->offline = true;
1529 			}
1530 		}
1531 	}
1532 	device_unlock(dev);
1533 
1534 	return ret;
1535 }
1536 
1537 /**
1538  * device_online - Put the device back online after successful device_offline().
1539  * @dev: Device to be put back online.
1540  *
1541  * If device_offline() has been successfully executed for @dev, but the device
1542  * has not been removed subsequently, execute its bus type's .online() callback
1543  * to indicate that the device can be used again.
1544  *
1545  * Call under device_hotplug_lock.
1546  */
1547 int device_online(struct device *dev)
1548 {
1549 	int ret = 0;
1550 
1551 	device_lock(dev);
1552 	if (device_supports_offline(dev)) {
1553 		if (dev->offline) {
1554 			ret = dev->bus->online(dev);
1555 			if (!ret) {
1556 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1557 				dev->offline = false;
1558 			}
1559 		} else {
1560 			ret = 1;
1561 		}
1562 	}
1563 	device_unlock(dev);
1564 
1565 	return ret;
1566 }
1567 
1568 struct root_device {
1569 	struct device dev;
1570 	struct module *owner;
1571 };
1572 
1573 static inline struct root_device *to_root_device(struct device *d)
1574 {
1575 	return container_of(d, struct root_device, dev);
1576 }
1577 
1578 static void root_device_release(struct device *dev)
1579 {
1580 	kfree(to_root_device(dev));
1581 }
1582 
1583 /**
1584  * __root_device_register - allocate and register a root device
1585  * @name: root device name
1586  * @owner: owner module of the root device, usually THIS_MODULE
1587  *
1588  * This function allocates a root device and registers it
1589  * using device_register(). In order to free the returned
1590  * device, use root_device_unregister().
1591  *
1592  * Root devices are dummy devices which allow other devices
1593  * to be grouped under /sys/devices. Use this function to
1594  * allocate a root device and then use it as the parent of
1595  * any device which should appear under /sys/devices/{name}
1596  *
1597  * The /sys/devices/{name} directory will also contain a
1598  * 'module' symlink which points to the @owner directory
1599  * in sysfs.
1600  *
1601  * Returns &struct device pointer on success, or ERR_PTR() on error.
1602  *
1603  * Note: You probably want to use root_device_register().
1604  */
1605 struct device *__root_device_register(const char *name, struct module *owner)
1606 {
1607 	struct root_device *root;
1608 	int err = -ENOMEM;
1609 
1610 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1611 	if (!root)
1612 		return ERR_PTR(err);
1613 
1614 	err = dev_set_name(&root->dev, "%s", name);
1615 	if (err) {
1616 		kfree(root);
1617 		return ERR_PTR(err);
1618 	}
1619 
1620 	root->dev.release = root_device_release;
1621 
1622 	err = device_register(&root->dev);
1623 	if (err) {
1624 		put_device(&root->dev);
1625 		return ERR_PTR(err);
1626 	}
1627 
1628 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
1629 	if (owner) {
1630 		struct module_kobject *mk = &owner->mkobj;
1631 
1632 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1633 		if (err) {
1634 			device_unregister(&root->dev);
1635 			return ERR_PTR(err);
1636 		}
1637 		root->owner = owner;
1638 	}
1639 #endif
1640 
1641 	return &root->dev;
1642 }
1643 EXPORT_SYMBOL_GPL(__root_device_register);
1644 
1645 /**
1646  * root_device_unregister - unregister and free a root device
1647  * @dev: device going away
1648  *
1649  * This function unregisters and cleans up a device that was created by
1650  * root_device_register().
1651  */
1652 void root_device_unregister(struct device *dev)
1653 {
1654 	struct root_device *root = to_root_device(dev);
1655 
1656 	if (root->owner)
1657 		sysfs_remove_link(&root->dev.kobj, "module");
1658 
1659 	device_unregister(dev);
1660 }
1661 EXPORT_SYMBOL_GPL(root_device_unregister);
1662 
1663 
1664 static void device_create_release(struct device *dev)
1665 {
1666 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1667 	kfree(dev);
1668 }
1669 
1670 /**
1671  * device_create_vargs - creates a device and registers it with sysfs
1672  * @class: pointer to the struct class that this device should be registered to
1673  * @parent: pointer to the parent struct device of this new device, if any
1674  * @devt: the dev_t for the char device to be added
1675  * @drvdata: the data to be added to the device for callbacks
1676  * @fmt: string for the device's name
1677  * @args: va_list for the device's name
1678  *
1679  * This function can be used by char device classes.  A struct device
1680  * will be created in sysfs, registered to the specified class.
1681  *
1682  * A "dev" file will be created, showing the dev_t for the device, if
1683  * the dev_t is not 0,0.
1684  * If a pointer to a parent struct device is passed in, the newly created
1685  * struct device will be a child of that device in sysfs.
1686  * The pointer to the struct device will be returned from the call.
1687  * Any further sysfs files that might be required can be created using this
1688  * pointer.
1689  *
1690  * Returns &struct device pointer on success, or ERR_PTR() on error.
1691  *
1692  * Note: the struct class passed to this function must have previously
1693  * been created with a call to class_create().
1694  */
1695 struct device *device_create_vargs(struct class *class, struct device *parent,
1696 				   dev_t devt, void *drvdata, const char *fmt,
1697 				   va_list args)
1698 {
1699 	struct device *dev = NULL;
1700 	int retval = -ENODEV;
1701 
1702 	if (class == NULL || IS_ERR(class))
1703 		goto error;
1704 
1705 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1706 	if (!dev) {
1707 		retval = -ENOMEM;
1708 		goto error;
1709 	}
1710 
1711 	dev->devt = devt;
1712 	dev->class = class;
1713 	dev->parent = parent;
1714 	dev->release = device_create_release;
1715 	dev_set_drvdata(dev, drvdata);
1716 
1717 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1718 	if (retval)
1719 		goto error;
1720 
1721 	retval = device_register(dev);
1722 	if (retval)
1723 		goto error;
1724 
1725 	return dev;
1726 
1727 error:
1728 	put_device(dev);
1729 	return ERR_PTR(retval);
1730 }
1731 EXPORT_SYMBOL_GPL(device_create_vargs);
1732 
1733 /**
1734  * device_create - creates a device and registers it with sysfs
1735  * @class: pointer to the struct class that this device should be registered to
1736  * @parent: pointer to the parent struct device of this new device, if any
1737  * @devt: the dev_t for the char device to be added
1738  * @drvdata: the data to be added to the device for callbacks
1739  * @fmt: string for the device's name
1740  *
1741  * This function can be used by char device classes.  A struct device
1742  * will be created in sysfs, registered to the specified class.
1743  *
1744  * A "dev" file will be created, showing the dev_t for the device, if
1745  * the dev_t is not 0,0.
1746  * If a pointer to a parent struct device is passed in, the newly created
1747  * struct device will be a child of that device in sysfs.
1748  * The pointer to the struct device will be returned from the call.
1749  * Any further sysfs files that might be required can be created using this
1750  * pointer.
1751  *
1752  * Returns &struct device pointer on success, or ERR_PTR() on error.
1753  *
1754  * Note: the struct class passed to this function must have previously
1755  * been created with a call to class_create().
1756  */
1757 struct device *device_create(struct class *class, struct device *parent,
1758 			     dev_t devt, void *drvdata, const char *fmt, ...)
1759 {
1760 	va_list vargs;
1761 	struct device *dev;
1762 
1763 	va_start(vargs, fmt);
1764 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1765 	va_end(vargs);
1766 	return dev;
1767 }
1768 EXPORT_SYMBOL_GPL(device_create);
1769 
1770 static int __match_devt(struct device *dev, const void *data)
1771 {
1772 	const dev_t *devt = data;
1773 
1774 	return dev->devt == *devt;
1775 }
1776 
1777 /**
1778  * device_destroy - removes a device that was created with device_create()
1779  * @class: pointer to the struct class that this device was registered with
1780  * @devt: the dev_t of the device that was previously registered
1781  *
1782  * This call unregisters and cleans up a device that was created with a
1783  * call to device_create().
1784  */
1785 void device_destroy(struct class *class, dev_t devt)
1786 {
1787 	struct device *dev;
1788 
1789 	dev = class_find_device(class, NULL, &devt, __match_devt);
1790 	if (dev) {
1791 		put_device(dev);
1792 		device_unregister(dev);
1793 	}
1794 }
1795 EXPORT_SYMBOL_GPL(device_destroy);
1796 
1797 /**
1798  * device_rename - renames a device
1799  * @dev: the pointer to the struct device to be renamed
1800  * @new_name: the new name of the device
1801  *
1802  * It is the responsibility of the caller to provide mutual
1803  * exclusion between two different calls of device_rename
1804  * on the same device to ensure that new_name is valid and
1805  * won't conflict with other devices.
1806  *
1807  * Note: Don't call this function.  Currently, the networking layer calls this
1808  * function, but that will change.  The following text from Kay Sievers offers
1809  * some insight:
1810  *
1811  * Renaming devices is racy at many levels, symlinks and other stuff are not
1812  * replaced atomically, and you get a "move" uevent, but it's not easy to
1813  * connect the event to the old and new device. Device nodes are not renamed at
1814  * all, there isn't even support for that in the kernel now.
1815  *
1816  * In the meantime, during renaming, your target name might be taken by another
1817  * driver, creating conflicts. Or the old name is taken directly after you
1818  * renamed it -- then you get events for the same DEVPATH, before you even see
1819  * the "move" event. It's just a mess, and nothing new should ever rely on
1820  * kernel device renaming. Besides that, it's not even implemented now for
1821  * other things than (driver-core wise very simple) network devices.
1822  *
1823  * We are currently about to change network renaming in udev to completely
1824  * disallow renaming of devices in the same namespace as the kernel uses,
1825  * because we can't solve the problems properly, that arise with swapping names
1826  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1827  * be allowed to some other name than eth[0-9]*, for the aforementioned
1828  * reasons.
1829  *
1830  * Make up a "real" name in the driver before you register anything, or add
1831  * some other attributes for userspace to find the device, or use udev to add
1832  * symlinks -- but never rename kernel devices later, it's a complete mess. We
1833  * don't even want to get into that and try to implement the missing pieces in
1834  * the core. We really have other pieces to fix in the driver core mess. :)
1835  */
1836 int device_rename(struct device *dev, const char *new_name)
1837 {
1838 	char *old_device_name = NULL;
1839 	int error;
1840 
1841 	dev = get_device(dev);
1842 	if (!dev)
1843 		return -EINVAL;
1844 
1845 	pr_debug("device: '%s': %s: renaming to '%s'\n", dev_name(dev),
1846 		 __func__, new_name);
1847 
1848 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1849 	if (!old_device_name) {
1850 		error = -ENOMEM;
1851 		goto out;
1852 	}
1853 
1854 	if (dev->class) {
1855 		error = sysfs_rename_link(&dev->class->p->subsys.kobj,
1856 			&dev->kobj, old_device_name, new_name);
1857 		if (error)
1858 			goto out;
1859 	}
1860 
1861 	error = kobject_rename(&dev->kobj, new_name);
1862 	if (error)
1863 		goto out;
1864 
1865 out:
1866 	put_device(dev);
1867 
1868 	kfree(old_device_name);
1869 
1870 	return error;
1871 }
1872 EXPORT_SYMBOL_GPL(device_rename);
1873 
1874 static int device_move_class_links(struct device *dev,
1875 				   struct device *old_parent,
1876 				   struct device *new_parent)
1877 {
1878 	int error = 0;
1879 
1880 	if (old_parent)
1881 		sysfs_remove_link(&dev->kobj, "device");
1882 	if (new_parent)
1883 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1884 					  "device");
1885 	return error;
1886 }
1887 
1888 /**
1889  * device_move - moves a device to a new parent
1890  * @dev: the pointer to the struct device to be moved
1891  * @new_parent: the new parent of the device (can by NULL)
1892  * @dpm_order: how to reorder the dpm_list
1893  */
1894 int device_move(struct device *dev, struct device *new_parent,
1895 		enum dpm_order dpm_order)
1896 {
1897 	int error;
1898 	struct device *old_parent;
1899 	struct kobject *new_parent_kobj;
1900 
1901 	dev = get_device(dev);
1902 	if (!dev)
1903 		return -EINVAL;
1904 
1905 	device_pm_lock();
1906 	new_parent = get_device(new_parent);
1907 	new_parent_kobj = get_device_parent(dev, new_parent);
1908 
1909 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1910 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1911 	error = kobject_move(&dev->kobj, new_parent_kobj);
1912 	if (error) {
1913 		cleanup_glue_dir(dev, new_parent_kobj);
1914 		put_device(new_parent);
1915 		goto out;
1916 	}
1917 	old_parent = dev->parent;
1918 	dev->parent = new_parent;
1919 	if (old_parent)
1920 		klist_remove(&dev->p->knode_parent);
1921 	if (new_parent) {
1922 		klist_add_tail(&dev->p->knode_parent,
1923 			       &new_parent->p->klist_children);
1924 		set_dev_node(dev, dev_to_node(new_parent));
1925 	}
1926 
1927 	if (dev->class) {
1928 		error = device_move_class_links(dev, old_parent, new_parent);
1929 		if (error) {
1930 			/* We ignore errors on cleanup since we're hosed anyway... */
1931 			device_move_class_links(dev, new_parent, old_parent);
1932 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1933 				if (new_parent)
1934 					klist_remove(&dev->p->knode_parent);
1935 				dev->parent = old_parent;
1936 				if (old_parent) {
1937 					klist_add_tail(&dev->p->knode_parent,
1938 						       &old_parent->p->klist_children);
1939 					set_dev_node(dev, dev_to_node(old_parent));
1940 				}
1941 			}
1942 			cleanup_glue_dir(dev, new_parent_kobj);
1943 			put_device(new_parent);
1944 			goto out;
1945 		}
1946 	}
1947 	switch (dpm_order) {
1948 	case DPM_ORDER_NONE:
1949 		break;
1950 	case DPM_ORDER_DEV_AFTER_PARENT:
1951 		device_pm_move_after(dev, new_parent);
1952 		break;
1953 	case DPM_ORDER_PARENT_BEFORE_DEV:
1954 		device_pm_move_before(new_parent, dev);
1955 		break;
1956 	case DPM_ORDER_DEV_LAST:
1957 		device_pm_move_last(dev);
1958 		break;
1959 	}
1960 
1961 	put_device(old_parent);
1962 out:
1963 	device_pm_unlock();
1964 	put_device(dev);
1965 	return error;
1966 }
1967 EXPORT_SYMBOL_GPL(device_move);
1968 
1969 /**
1970  * device_shutdown - call ->shutdown() on each device to shutdown.
1971  */
1972 void device_shutdown(void)
1973 {
1974 	struct device *dev;
1975 
1976 	spin_lock(&devices_kset->list_lock);
1977 	/*
1978 	 * Walk the devices list backward, shutting down each in turn.
1979 	 * Beware that device unplug events may also start pulling
1980 	 * devices offline, even as the system is shutting down.
1981 	 */
1982 	while (!list_empty(&devices_kset->list)) {
1983 		dev = list_entry(devices_kset->list.prev, struct device,
1984 				kobj.entry);
1985 
1986 		/*
1987 		 * hold reference count of device's parent to
1988 		 * prevent it from being freed because parent's
1989 		 * lock is to be held
1990 		 */
1991 		get_device(dev->parent);
1992 		get_device(dev);
1993 		/*
1994 		 * Make sure the device is off the kset list, in the
1995 		 * event that dev->*->shutdown() doesn't remove it.
1996 		 */
1997 		list_del_init(&dev->kobj.entry);
1998 		spin_unlock(&devices_kset->list_lock);
1999 
2000 		/* hold lock to avoid race with probe/release */
2001 		if (dev->parent)
2002 			device_lock(dev->parent);
2003 		device_lock(dev);
2004 
2005 		/* Don't allow any more runtime suspends */
2006 		pm_runtime_get_noresume(dev);
2007 		pm_runtime_barrier(dev);
2008 
2009 		if (dev->bus && dev->bus->shutdown) {
2010 			if (initcall_debug)
2011 				dev_info(dev, "shutdown\n");
2012 			dev->bus->shutdown(dev);
2013 		} else if (dev->driver && dev->driver->shutdown) {
2014 			if (initcall_debug)
2015 				dev_info(dev, "shutdown\n");
2016 			dev->driver->shutdown(dev);
2017 		}
2018 
2019 		device_unlock(dev);
2020 		if (dev->parent)
2021 			device_unlock(dev->parent);
2022 
2023 		put_device(dev);
2024 		put_device(dev->parent);
2025 
2026 		spin_lock(&devices_kset->list_lock);
2027 	}
2028 	spin_unlock(&devices_kset->list_lock);
2029 	async_synchronize_full();
2030 }
2031 
2032 /*
2033  * Device logging functions
2034  */
2035 
2036 #ifdef CONFIG_PRINTK
2037 static int
2038 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2039 {
2040 	const char *subsys;
2041 	size_t pos = 0;
2042 
2043 	if (dev->class)
2044 		subsys = dev->class->name;
2045 	else if (dev->bus)
2046 		subsys = dev->bus->name;
2047 	else
2048 		return 0;
2049 
2050 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2051 
2052 	/*
2053 	 * Add device identifier DEVICE=:
2054 	 *   b12:8         block dev_t
2055 	 *   c127:3        char dev_t
2056 	 *   n8            netdev ifindex
2057 	 *   +sound:card0  subsystem:devname
2058 	 */
2059 	if (MAJOR(dev->devt)) {
2060 		char c;
2061 
2062 		if (strcmp(subsys, "block") == 0)
2063 			c = 'b';
2064 		else
2065 			c = 'c';
2066 		pos++;
2067 		pos += snprintf(hdr + pos, hdrlen - pos,
2068 				"DEVICE=%c%u:%u",
2069 				c, MAJOR(dev->devt), MINOR(dev->devt));
2070 	} else if (strcmp(subsys, "net") == 0) {
2071 		struct net_device *net = to_net_dev(dev);
2072 
2073 		pos++;
2074 		pos += snprintf(hdr + pos, hdrlen - pos,
2075 				"DEVICE=n%u", net->ifindex);
2076 	} else {
2077 		pos++;
2078 		pos += snprintf(hdr + pos, hdrlen - pos,
2079 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2080 	}
2081 
2082 	return pos;
2083 }
2084 EXPORT_SYMBOL(create_syslog_header);
2085 
2086 int dev_vprintk_emit(int level, const struct device *dev,
2087 		     const char *fmt, va_list args)
2088 {
2089 	char hdr[128];
2090 	size_t hdrlen;
2091 
2092 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2093 
2094 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2095 }
2096 EXPORT_SYMBOL(dev_vprintk_emit);
2097 
2098 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2099 {
2100 	va_list args;
2101 	int r;
2102 
2103 	va_start(args, fmt);
2104 
2105 	r = dev_vprintk_emit(level, dev, fmt, args);
2106 
2107 	va_end(args);
2108 
2109 	return r;
2110 }
2111 EXPORT_SYMBOL(dev_printk_emit);
2112 
2113 static int __dev_printk(const char *level, const struct device *dev,
2114 			struct va_format *vaf)
2115 {
2116 	if (!dev)
2117 		return printk("%s(NULL device *): %pV", level, vaf);
2118 
2119 	return dev_printk_emit(level[1] - '0', dev,
2120 			       "%s %s: %pV",
2121 			       dev_driver_string(dev), dev_name(dev), vaf);
2122 }
2123 
2124 int dev_printk(const char *level, const struct device *dev,
2125 	       const char *fmt, ...)
2126 {
2127 	struct va_format vaf;
2128 	va_list args;
2129 	int r;
2130 
2131 	va_start(args, fmt);
2132 
2133 	vaf.fmt = fmt;
2134 	vaf.va = &args;
2135 
2136 	r = __dev_printk(level, dev, &vaf);
2137 
2138 	va_end(args);
2139 
2140 	return r;
2141 }
2142 EXPORT_SYMBOL(dev_printk);
2143 
2144 #define define_dev_printk_level(func, kern_level)		\
2145 int func(const struct device *dev, const char *fmt, ...)	\
2146 {								\
2147 	struct va_format vaf;					\
2148 	va_list args;						\
2149 	int r;							\
2150 								\
2151 	va_start(args, fmt);					\
2152 								\
2153 	vaf.fmt = fmt;						\
2154 	vaf.va = &args;						\
2155 								\
2156 	r = __dev_printk(kern_level, dev, &vaf);		\
2157 								\
2158 	va_end(args);						\
2159 								\
2160 	return r;						\
2161 }								\
2162 EXPORT_SYMBOL(func);
2163 
2164 define_dev_printk_level(dev_emerg, KERN_EMERG);
2165 define_dev_printk_level(dev_alert, KERN_ALERT);
2166 define_dev_printk_level(dev_crit, KERN_CRIT);
2167 define_dev_printk_level(dev_err, KERN_ERR);
2168 define_dev_printk_level(dev_warn, KERN_WARNING);
2169 define_dev_printk_level(dev_notice, KERN_NOTICE);
2170 define_dev_printk_level(_dev_info, KERN_INFO);
2171 
2172 #endif
2173