xref: /linux/drivers/base/core.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35 
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39 
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49 
50 /**
51  * __fwnode_link_add - Create a link between two fwnode_handles.
52  * @con: Consumer end of the link.
53  * @sup: Supplier end of the link.
54  * @flags: Link flags.
55  *
56  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57  * represents the detail that the firmware lists @sup fwnode as supplying a
58  * resource to @con.
59  *
60  * The driver core will use the fwnode link to create a device link between the
61  * two device objects corresponding to @con and @sup when they are created. The
62  * driver core will automatically delete the fwnode link between @con and @sup
63  * after doing that.
64  *
65  * Attempts to create duplicate links between the same pair of fwnode handles
66  * are ignored and there is no reference counting.
67  */
68 static int __fwnode_link_add(struct fwnode_handle *con,
69 			     struct fwnode_handle *sup, u8 flags)
70 {
71 	struct fwnode_link *link;
72 
73 	list_for_each_entry(link, &sup->consumers, s_hook)
74 		if (link->consumer == con) {
75 			link->flags |= flags;
76 			return 0;
77 		}
78 
79 	link = kzalloc(sizeof(*link), GFP_KERNEL);
80 	if (!link)
81 		return -ENOMEM;
82 
83 	link->supplier = sup;
84 	INIT_LIST_HEAD(&link->s_hook);
85 	link->consumer = con;
86 	INIT_LIST_HEAD(&link->c_hook);
87 	link->flags = flags;
88 
89 	list_add(&link->s_hook, &sup->consumers);
90 	list_add(&link->c_hook, &con->suppliers);
91 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 		 con, sup);
93 
94 	return 0;
95 }
96 
97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 		    u8 flags)
99 {
100 	guard(mutex)(&fwnode_link_lock);
101 
102 	return __fwnode_link_add(con, sup, flags);
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	guard(mutex)(&fwnode_link_lock);
144 
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	guard(mutex)(&fwnode_link_lock);
160 
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 		output = "supplier unbind";
465 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n",
489 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492 
493 static struct attribute *devlink_attrs[] = {
494 	&dev_attr_status.attr,
495 	&dev_attr_auto_remove_on.attr,
496 	&dev_attr_runtime_pm.attr,
497 	&dev_attr_sync_state_only.attr,
498 	NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501 
502 static void device_link_release_fn(struct work_struct *work)
503 {
504 	struct device_link *link = container_of(work, struct device_link, rm_work);
505 
506 	/* Ensure that all references to the link object have been dropped. */
507 	device_link_synchronize_removal();
508 
509 	pm_runtime_release_supplier(link);
510 	/*
511 	 * If supplier_preactivated is set, the link has been dropped between
512 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 	 * in __driver_probe_device().  In that case, drop the supplier's
514 	 * PM-runtime usage counter to remove the reference taken by
515 	 * pm_runtime_get_suppliers().
516 	 */
517 	if (link->supplier_preactivated)
518 		pm_runtime_put_noidle(link->supplier);
519 
520 	pm_request_idle(link->supplier);
521 
522 	put_device(link->consumer);
523 	put_device(link->supplier);
524 	kfree(link);
525 }
526 
527 static void devlink_dev_release(struct device *dev)
528 {
529 	struct device_link *link = to_devlink(dev);
530 
531 	INIT_WORK(&link->rm_work, device_link_release_fn);
532 	/*
533 	 * It may take a while to complete this work because of the SRCU
534 	 * synchronization in device_link_release_fn() and if the consumer or
535 	 * supplier devices get deleted when it runs, so put it into the
536 	 * dedicated workqueue.
537 	 */
538 	queue_work(device_link_wq, &link->rm_work);
539 }
540 
541 /**
542  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543  */
544 void device_link_wait_removal(void)
545 {
546 	/*
547 	 * devlink removal jobs are queued in the dedicated work queue.
548 	 * To be sure that all removal jobs are terminated, ensure that any
549 	 * scheduled work has run to completion.
550 	 */
551 	flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554 
555 static struct class devlink_class = {
556 	.name = "devlink",
557 	.dev_groups = devlink_groups,
558 	.dev_release = devlink_dev_release,
559 };
560 
561 static int devlink_add_symlinks(struct device *dev)
562 {
563 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 	int ret;
565 	struct device_link *link = to_devlink(dev);
566 	struct device *sup = link->supplier;
567 	struct device *con = link->consumer;
568 
569 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 	if (ret)
571 		goto out;
572 
573 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 	if (ret)
575 		goto err_con;
576 
577 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 	if (!buf_con) {
579 		ret = -ENOMEM;
580 		goto err_con_dev;
581 	}
582 
583 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 	if (ret)
585 		goto err_con_dev;
586 
587 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 	if (!buf_sup) {
589 		ret = -ENOMEM;
590 		goto err_sup_dev;
591 	}
592 
593 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 	if (ret)
595 		goto err_sup_dev;
596 
597 	goto out;
598 
599 err_sup_dev:
600 	sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 	return ret;
607 }
608 
609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 	struct device_link *link = to_devlink(dev);
613 	struct device *sup = link->supplier;
614 	struct device *con = link->consumer;
615 
616 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
618 
619 	if (device_is_registered(con)) {
620 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 		if (!buf_sup)
622 			goto out;
623 		sysfs_remove_link(&con->kobj, buf_sup);
624 	}
625 
626 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 	if (!buf_con)
628 		goto out;
629 	sysfs_remove_link(&sup->kobj, buf_con);
630 
631 	return;
632 
633 out:
634 	WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636 
637 static struct class_interface devlink_class_intf = {
638 	.class = &devlink_class,
639 	.add_dev = devlink_add_symlinks,
640 	.remove_dev = devlink_remove_symlinks,
641 };
642 
643 static int __init devlink_class_init(void)
644 {
645 	int ret;
646 
647 	ret = class_register(&devlink_class);
648 	if (ret)
649 		return ret;
650 
651 	ret = class_interface_register(&devlink_class_intf);
652 	if (ret)
653 		class_unregister(&devlink_class);
654 
655 	return ret;
656 }
657 postcore_initcall(devlink_class_init);
658 
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
662 			       DL_FLAG_SYNC_STATE_ONLY | \
663 			       DL_FLAG_INFERRED | \
664 			       DL_FLAG_CYCLE)
665 
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668 
669 /**
670  * device_link_add - Create a link between two devices.
671  * @consumer: Consumer end of the link.
672  * @supplier: Supplier end of the link.
673  * @flags: Link flags.
674  *
675  * Return: On success, a device_link struct will be returned.
676  *         On error or invalid flag settings, NULL will be returned.
677  *
678  * The caller is responsible for the proper synchronization of the link creation
679  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680  * runtime PM framework to take the link into account.  Second, if the
681  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682  * be forced into the active meta state and reference-counted upon the creation
683  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684  * ignored.
685  *
686  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687  * expected to release the link returned by it directly with the help of either
688  * device_link_del() or device_link_remove().
689  *
690  * If that flag is not set, however, the caller of this function is handing the
691  * management of the link over to the driver core entirely and its return value
692  * can only be used to check whether or not the link is present.  In that case,
693  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694  * flags can be used to indicate to the driver core when the link can be safely
695  * deleted.  Namely, setting one of them in @flags indicates to the driver core
696  * that the link is not going to be used (by the given caller of this function)
697  * after unbinding the consumer or supplier driver, respectively, from its
698  * device, so the link can be deleted at that point.  If none of them is set,
699  * the link will be maintained until one of the devices pointed to by it (either
700  * the consumer or the supplier) is unregistered.
701  *
702  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705  * be used to request the driver core to automatically probe for a consumer
706  * driver after successfully binding a driver to the supplier device.
707  *
708  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710  * the same time is invalid and will cause NULL to be returned upfront.
711  * However, if a device link between the given @consumer and @supplier pair
712  * exists already when this function is called for them, the existing link will
713  * be returned regardless of its current type and status (the link's flags may
714  * be modified then).  The caller of this function is then expected to treat
715  * the link as though it has just been created, so (in particular) if
716  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717  * explicitly when not needed any more (as stated above).
718  *
719  * A side effect of the link creation is re-ordering of dpm_list and the
720  * devices_kset list by moving the consumer device and all devices depending
721  * on it to the ends of these lists (that does not happen to devices that have
722  * not been registered when this function is called).
723  *
724  * The supplier device is required to be registered when this function is called
725  * and NULL will be returned if that is not the case.  The consumer device need
726  * not be registered, however.
727  */
728 struct device_link *device_link_add(struct device *consumer,
729 				    struct device *supplier, u32 flags)
730 {
731 	struct device_link *link;
732 
733 	if (!consumer || !supplier || consumer == supplier ||
734 	    flags & ~DL_ADD_VALID_FLAGS ||
735 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 		return NULL;
740 
741 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 		if (pm_runtime_get_sync(supplier) < 0) {
743 			pm_runtime_put_noidle(supplier);
744 			return NULL;
745 		}
746 	}
747 
748 	if (!(flags & DL_FLAG_STATELESS))
749 		flags |= DL_FLAG_MANAGED;
750 
751 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 	    !device_link_flag_is_sync_state_only(flags))
753 		return NULL;
754 
755 	device_links_write_lock();
756 	device_pm_lock();
757 
758 	/*
759 	 * If the supplier has not been fully registered yet or there is a
760 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 	 * the supplier already in the graph, return NULL. If the link is a
762 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 	 * because it only affects sync_state() callbacks.
764 	 */
765 	if (!device_pm_initialized(supplier)
766 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 		  device_is_dependent(consumer, supplier))) {
768 		link = NULL;
769 		goto out;
770 	}
771 
772 	/*
773 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 	 * So, only create it if the consumer hasn't probed yet.
775 	 */
776 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 	    consumer->links.status != DL_DEV_NO_DRIVER &&
778 	    consumer->links.status != DL_DEV_PROBING) {
779 		link = NULL;
780 		goto out;
781 	}
782 
783 	/*
784 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 	 */
788 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790 
791 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 		if (link->consumer != consumer)
793 			continue;
794 
795 		if (link->flags & DL_FLAG_INFERRED &&
796 		    !(flags & DL_FLAG_INFERRED))
797 			link->flags &= ~DL_FLAG_INFERRED;
798 
799 		if (flags & DL_FLAG_PM_RUNTIME) {
800 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 				pm_runtime_new_link(consumer);
802 				link->flags |= DL_FLAG_PM_RUNTIME;
803 			}
804 			if (flags & DL_FLAG_RPM_ACTIVE)
805 				refcount_inc(&link->rpm_active);
806 		}
807 
808 		if (flags & DL_FLAG_STATELESS) {
809 			kref_get(&link->kref);
810 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 			    !(link->flags & DL_FLAG_STATELESS)) {
812 				link->flags |= DL_FLAG_STATELESS;
813 				goto reorder;
814 			} else {
815 				link->flags |= DL_FLAG_STATELESS;
816 				goto out;
817 			}
818 		}
819 
820 		/*
821 		 * If the life time of the link following from the new flags is
822 		 * longer than indicated by the flags of the existing link,
823 		 * update the existing link to stay around longer.
824 		 */
825 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 			}
830 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 		}
834 		if (!(link->flags & DL_FLAG_MANAGED)) {
835 			kref_get(&link->kref);
836 			link->flags |= DL_FLAG_MANAGED;
837 			device_link_init_status(link, consumer, supplier);
838 		}
839 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 			goto reorder;
843 		}
844 
845 		goto out;
846 	}
847 
848 	link = kzalloc(sizeof(*link), GFP_KERNEL);
849 	if (!link)
850 		goto out;
851 
852 	refcount_set(&link->rpm_active, 1);
853 
854 	get_device(supplier);
855 	link->supplier = supplier;
856 	INIT_LIST_HEAD(&link->s_node);
857 	get_device(consumer);
858 	link->consumer = consumer;
859 	INIT_LIST_HEAD(&link->c_node);
860 	link->flags = flags;
861 	kref_init(&link->kref);
862 
863 	link->link_dev.class = &devlink_class;
864 	device_set_pm_not_required(&link->link_dev);
865 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 		     dev_bus_name(supplier), dev_name(supplier),
867 		     dev_bus_name(consumer), dev_name(consumer));
868 	if (device_register(&link->link_dev)) {
869 		put_device(&link->link_dev);
870 		link = NULL;
871 		goto out;
872 	}
873 
874 	if (flags & DL_FLAG_PM_RUNTIME) {
875 		if (flags & DL_FLAG_RPM_ACTIVE)
876 			refcount_inc(&link->rpm_active);
877 
878 		pm_runtime_new_link(consumer);
879 	}
880 
881 	/* Determine the initial link state. */
882 	if (flags & DL_FLAG_STATELESS)
883 		link->status = DL_STATE_NONE;
884 	else
885 		device_link_init_status(link, consumer, supplier);
886 
887 	/*
888 	 * Some callers expect the link creation during consumer driver probe to
889 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 	 */
891 	if (link->status == DL_STATE_CONSUMER_PROBE &&
892 	    flags & DL_FLAG_PM_RUNTIME)
893 		pm_runtime_resume(supplier);
894 
895 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897 
898 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 		dev_dbg(consumer,
900 			"Linked as a sync state only consumer to %s\n",
901 			dev_name(supplier));
902 		goto out;
903 	}
904 
905 reorder:
906 	/*
907 	 * Move the consumer and all of the devices depending on it to the end
908 	 * of dpm_list and the devices_kset list.
909 	 *
910 	 * It is necessary to hold dpm_list locked throughout all that or else
911 	 * we may end up suspending with a wrong ordering of it.
912 	 */
913 	device_reorder_to_tail(consumer, NULL);
914 
915 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916 
917 out:
918 	device_pm_unlock();
919 	device_links_write_unlock();
920 
921 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 		pm_runtime_put(supplier);
923 
924 	return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927 
928 static void __device_link_del(struct kref *kref)
929 {
930 	struct device_link *link = container_of(kref, struct device_link, kref);
931 
932 	dev_dbg(link->consumer, "Dropping the link to %s\n",
933 		dev_name(link->supplier));
934 
935 	pm_runtime_drop_link(link);
936 
937 	device_link_remove_from_lists(link);
938 	device_unregister(&link->link_dev);
939 }
940 
941 static void device_link_put_kref(struct device_link *link)
942 {
943 	if (link->flags & DL_FLAG_STATELESS)
944 		kref_put(&link->kref, __device_link_del);
945 	else if (!device_is_registered(link->consumer))
946 		__device_link_del(&link->kref);
947 	else
948 		WARN(1, "Unable to drop a managed device link reference\n");
949 }
950 
951 /**
952  * device_link_del - Delete a stateless link between two devices.
953  * @link: Device link to delete.
954  *
955  * The caller must ensure proper synchronization of this function with runtime
956  * PM.  If the link was added multiple times, it needs to be deleted as often.
957  * Care is required for hotplugged devices:  Their links are purged on removal
958  * and calling device_link_del() is then no longer allowed.
959  */
960 void device_link_del(struct device_link *link)
961 {
962 	device_links_write_lock();
963 	device_link_put_kref(link);
964 	device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967 
968 /**
969  * device_link_remove - Delete a stateless link between two devices.
970  * @consumer: Consumer end of the link.
971  * @supplier: Supplier end of the link.
972  *
973  * The caller must ensure proper synchronization of this function with runtime
974  * PM.
975  */
976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 	struct device_link *link;
979 
980 	if (WARN_ON(consumer == supplier))
981 		return;
982 
983 	device_links_write_lock();
984 
985 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 		if (link->consumer == consumer) {
987 			device_link_put_kref(link);
988 			break;
989 		}
990 	}
991 
992 	device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995 
996 static void device_links_missing_supplier(struct device *dev)
997 {
998 	struct device_link *link;
999 
1000 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 		if (link->status != DL_STATE_CONSUMER_PROBE)
1002 			continue;
1003 
1004 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 		} else {
1007 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 		}
1010 	}
1011 }
1012 
1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 	return (fw_devlink_best_effort && dev->can_match) ||
1016 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018 
1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 						struct fwnode_handle *fwnode)
1021 {
1022 	struct fwnode_link *link;
1023 
1024 	if (!fwnode || fw_devlink_is_permissive())
1025 		return NULL;
1026 
1027 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 		if (!(link->flags &
1029 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 			return link->supplier;
1031 
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * device_links_check_suppliers - Check presence of supplier drivers.
1037  * @dev: Consumer device.
1038  *
1039  * Check links from this device to any suppliers.  Walk the list of the device's
1040  * links to suppliers and see if all of them are available.  If not, simply
1041  * return -EPROBE_DEFER.
1042  *
1043  * We need to guarantee that the supplier will not go away after the check has
1044  * been positive here.  It only can go away in __device_release_driver() and
1045  * that function  checks the device's links to consumers.  This means we need to
1046  * mark the link as "consumer probe in progress" to make the supplier removal
1047  * wait for us to complete (or bad things may happen).
1048  *
1049  * Links without the DL_FLAG_MANAGED flag set are ignored.
1050  */
1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 	struct device_link *link;
1054 	int ret = 0, fwnode_ret = 0;
1055 	struct fwnode_handle *sup_fw;
1056 
1057 	/*
1058 	 * Device waiting for supplier to become available is not allowed to
1059 	 * probe.
1060 	 */
1061 	scoped_guard(mutex, &fwnode_link_lock) {
1062 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 		if (sup_fw) {
1064 			if (dev_is_best_effort(dev))
1065 				fwnode_ret = -EAGAIN;
1066 			else
1067 				return dev_err_probe(dev, -EPROBE_DEFER,
1068 						     "wait for supplier %pfwf\n", sup_fw);
1069 		}
1070 	}
1071 
1072 	device_links_write_lock();
1073 
1074 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 		if (!(link->flags & DL_FLAG_MANAGED))
1076 			continue;
1077 
1078 		if (link->status != DL_STATE_AVAILABLE &&
1079 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080 
1081 			if (dev_is_best_effort(dev) &&
1082 			    link->flags & DL_FLAG_INFERRED &&
1083 			    !link->supplier->can_match) {
1084 				ret = -EAGAIN;
1085 				continue;
1086 			}
1087 
1088 			device_links_missing_supplier(dev);
1089 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 					    "supplier %s not ready\n", dev_name(link->supplier));
1091 			break;
1092 		}
1093 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 	}
1095 	dev->links.status = DL_DEV_PROBING;
1096 
1097 	device_links_write_unlock();
1098 
1099 	return ret ? ret : fwnode_ret;
1100 }
1101 
1102 /**
1103  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104  * @dev: Device to call sync_state() on
1105  * @list: List head to queue the @dev on
1106  *
1107  * Queues a device for a sync_state() callback when the device links write lock
1108  * isn't held. This allows the sync_state() execution flow to use device links
1109  * APIs.  The caller must ensure this function is called with
1110  * device_links_write_lock() held.
1111  *
1112  * This function does a get_device() to make sure the device is not freed while
1113  * on this list.
1114  *
1115  * So the caller must also ensure that device_links_flush_sync_list() is called
1116  * as soon as the caller releases device_links_write_lock().  This is necessary
1117  * to make sure the sync_state() is called in a timely fashion and the
1118  * put_device() is called on this device.
1119  */
1120 static void __device_links_queue_sync_state(struct device *dev,
1121 					    struct list_head *list)
1122 {
1123 	struct device_link *link;
1124 
1125 	if (!dev_has_sync_state(dev))
1126 		return;
1127 	if (dev->state_synced)
1128 		return;
1129 
1130 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 		if (!(link->flags & DL_FLAG_MANAGED))
1132 			continue;
1133 		if (link->status != DL_STATE_ACTIVE)
1134 			return;
1135 	}
1136 
1137 	/*
1138 	 * Set the flag here to avoid adding the same device to a list more
1139 	 * than once. This can happen if new consumers get added to the device
1140 	 * and probed before the list is flushed.
1141 	 */
1142 	dev->state_synced = true;
1143 
1144 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 		return;
1146 
1147 	get_device(dev);
1148 	list_add_tail(&dev->links.defer_sync, list);
1149 }
1150 
1151 /**
1152  * device_links_flush_sync_list - Call sync_state() on a list of devices
1153  * @list: List of devices to call sync_state() on
1154  * @dont_lock_dev: Device for which lock is already held by the caller
1155  *
1156  * Calls sync_state() on all the devices that have been queued for it. This
1157  * function is used in conjunction with __device_links_queue_sync_state(). The
1158  * @dont_lock_dev parameter is useful when this function is called from a
1159  * context where a device lock is already held.
1160  */
1161 static void device_links_flush_sync_list(struct list_head *list,
1162 					 struct device *dont_lock_dev)
1163 {
1164 	struct device *dev, *tmp;
1165 
1166 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 		list_del_init(&dev->links.defer_sync);
1168 
1169 		if (dev != dont_lock_dev)
1170 			device_lock(dev);
1171 
1172 		dev_sync_state(dev);
1173 
1174 		if (dev != dont_lock_dev)
1175 			device_unlock(dev);
1176 
1177 		put_device(dev);
1178 	}
1179 }
1180 
1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 	device_links_write_lock();
1184 	defer_sync_state_count++;
1185 	device_links_write_unlock();
1186 }
1187 
1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 	struct device *dev, *tmp;
1191 	LIST_HEAD(sync_list);
1192 
1193 	device_links_write_lock();
1194 	if (!defer_sync_state_count) {
1195 		WARN(true, "Unmatched sync_state pause/resume!");
1196 		goto out;
1197 	}
1198 	defer_sync_state_count--;
1199 	if (defer_sync_state_count)
1200 		goto out;
1201 
1202 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 		/*
1204 		 * Delete from deferred_sync list before queuing it to
1205 		 * sync_list because defer_sync is used for both lists.
1206 		 */
1207 		list_del_init(&dev->links.defer_sync);
1208 		__device_links_queue_sync_state(dev, &sync_list);
1209 	}
1210 out:
1211 	device_links_write_unlock();
1212 
1213 	device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215 
1216 static int sync_state_resume_initcall(void)
1217 {
1218 	device_links_supplier_sync_state_resume();
1219 	return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222 
1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228 
1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 	link->flags &= ~DL_FLAG_MANAGED;
1232 	WRITE_ONCE(link->status, DL_STATE_NONE);
1233 	kref_put(&link->kref, __device_link_del);
1234 }
1235 
1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 					 struct device_attribute *attr,
1238 					 char *buf)
1239 {
1240 	bool val;
1241 
1242 	device_lock(dev);
1243 	scoped_guard(mutex, &fwnode_link_lock)
1244 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 	device_unlock(dev);
1246 	return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249 
1250 /**
1251  * device_links_force_bind - Prepares device to be force bound
1252  * @dev: Consumer device.
1253  *
1254  * device_bind_driver() force binds a device to a driver without calling any
1255  * driver probe functions. So the consumer really isn't going to wait for any
1256  * supplier before it's bound to the driver. We still want the device link
1257  * states to be sensible when this happens.
1258  *
1259  * In preparation for device_bind_driver(), this function goes through each
1260  * supplier device links and checks if the supplier is bound. If it is, then
1261  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263  */
1264 void device_links_force_bind(struct device *dev)
1265 {
1266 	struct device_link *link, *ln;
1267 
1268 	device_links_write_lock();
1269 
1270 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 		if (!(link->flags & DL_FLAG_MANAGED))
1272 			continue;
1273 
1274 		if (link->status != DL_STATE_AVAILABLE) {
1275 			device_link_drop_managed(link);
1276 			continue;
1277 		}
1278 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 	}
1280 	dev->links.status = DL_DEV_PROBING;
1281 
1282 	device_links_write_unlock();
1283 }
1284 
1285 /**
1286  * device_links_driver_bound - Update device links after probing its driver.
1287  * @dev: Device to update the links for.
1288  *
1289  * The probe has been successful, so update links from this device to any
1290  * consumers by changing their status to "available".
1291  *
1292  * Also change the status of @dev's links to suppliers to "active".
1293  *
1294  * Links without the DL_FLAG_MANAGED flag set are ignored.
1295  */
1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 	struct device_link *link, *ln;
1299 	LIST_HEAD(sync_list);
1300 
1301 	/*
1302 	 * If a device binds successfully, it's expected to have created all
1303 	 * the device links it needs to or make new device links as it needs
1304 	 * them. So, fw_devlink no longer needs to create device links to any
1305 	 * of the device's suppliers.
1306 	 *
1307 	 * Also, if a child firmware node of this bound device is not added as a
1308 	 * device by now, assume it is never going to be added. Make this bound
1309 	 * device the fallback supplier to the dangling consumers of the child
1310 	 * firmware node because this bound device is probably implementing the
1311 	 * child firmware node functionality and we don't want the dangling
1312 	 * consumers to defer probe indefinitely waiting for a device for the
1313 	 * child firmware node.
1314 	 */
1315 	if (dev->fwnode && dev->fwnode->dev == dev) {
1316 		struct fwnode_handle *child;
1317 
1318 		fwnode_links_purge_suppliers(dev->fwnode);
1319 
1320 		guard(mutex)(&fwnode_link_lock);
1321 
1322 		fwnode_for_each_available_child_node(dev->fwnode, child)
1323 			__fw_devlink_pickup_dangling_consumers(child,
1324 							       dev->fwnode);
1325 		__fw_devlink_link_to_consumers(dev);
1326 	}
1327 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328 
1329 	device_links_write_lock();
1330 
1331 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 		if (!(link->flags & DL_FLAG_MANAGED))
1333 			continue;
1334 
1335 		/*
1336 		 * Links created during consumer probe may be in the "consumer
1337 		 * probe" state to start with if the supplier is still probing
1338 		 * when they are created and they may become "active" if the
1339 		 * consumer probe returns first.  Skip them here.
1340 		 */
1341 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 		    link->status == DL_STATE_ACTIVE)
1343 			continue;
1344 
1345 		WARN_ON(link->status != DL_STATE_DORMANT);
1346 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347 
1348 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 			driver_deferred_probe_add(link->consumer);
1350 	}
1351 
1352 	if (defer_sync_state_count)
1353 		__device_links_supplier_defer_sync(dev);
1354 	else
1355 		__device_links_queue_sync_state(dev, &sync_list);
1356 
1357 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 		struct device *supplier;
1359 
1360 		if (!(link->flags & DL_FLAG_MANAGED))
1361 			continue;
1362 
1363 		supplier = link->supplier;
1364 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 			/*
1366 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 			 * save to drop the managed link completely.
1369 			 */
1370 			device_link_drop_managed(link);
1371 		} else if (dev_is_best_effort(dev) &&
1372 			   link->flags & DL_FLAG_INFERRED &&
1373 			   link->status != DL_STATE_CONSUMER_PROBE &&
1374 			   !link->supplier->can_match) {
1375 			/*
1376 			 * When dev_is_best_effort() is true, we ignore device
1377 			 * links to suppliers that don't have a driver.  If the
1378 			 * consumer device still managed to probe, there's no
1379 			 * point in maintaining a device link in a weird state
1380 			 * (consumer probed before supplier). So delete it.
1381 			 */
1382 			device_link_drop_managed(link);
1383 		} else {
1384 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 		}
1387 
1388 		/*
1389 		 * This needs to be done even for the deleted
1390 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 		 * device link that was preventing the supplier from getting a
1392 		 * sync_state() call.
1393 		 */
1394 		if (defer_sync_state_count)
1395 			__device_links_supplier_defer_sync(supplier);
1396 		else
1397 			__device_links_queue_sync_state(supplier, &sync_list);
1398 	}
1399 
1400 	dev->links.status = DL_DEV_DRIVER_BOUND;
1401 
1402 	device_links_write_unlock();
1403 
1404 	device_links_flush_sync_list(&sync_list, dev);
1405 }
1406 
1407 /**
1408  * __device_links_no_driver - Update links of a device without a driver.
1409  * @dev: Device without a drvier.
1410  *
1411  * Delete all non-persistent links from this device to any suppliers.
1412  *
1413  * Persistent links stay around, but their status is changed to "available",
1414  * unless they already are in the "supplier unbind in progress" state in which
1415  * case they need not be updated.
1416  *
1417  * Links without the DL_FLAG_MANAGED flag set are ignored.
1418  */
1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 	struct device_link *link, *ln;
1422 
1423 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 		if (!(link->flags & DL_FLAG_MANAGED))
1425 			continue;
1426 
1427 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 			device_link_drop_managed(link);
1429 			continue;
1430 		}
1431 
1432 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 		    link->status != DL_STATE_ACTIVE)
1434 			continue;
1435 
1436 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 		} else {
1439 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 		}
1442 	}
1443 
1444 	dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446 
1447 /**
1448  * device_links_no_driver - Update links after failing driver probe.
1449  * @dev: Device whose driver has just failed to probe.
1450  *
1451  * Clean up leftover links to consumers for @dev and invoke
1452  * %__device_links_no_driver() to update links to suppliers for it as
1453  * appropriate.
1454  *
1455  * Links without the DL_FLAG_MANAGED flag set are ignored.
1456  */
1457 void device_links_no_driver(struct device *dev)
1458 {
1459 	struct device_link *link;
1460 
1461 	device_links_write_lock();
1462 
1463 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 		if (!(link->flags & DL_FLAG_MANAGED))
1465 			continue;
1466 
1467 		/*
1468 		 * The probe has failed, so if the status of the link is
1469 		 * "consumer probe" or "active", it must have been added by
1470 		 * a probing consumer while this device was still probing.
1471 		 * Change its state to "dormant", as it represents a valid
1472 		 * relationship, but it is not functionally meaningful.
1473 		 */
1474 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 		    link->status == DL_STATE_ACTIVE)
1476 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 	}
1478 
1479 	__device_links_no_driver(dev);
1480 
1481 	device_links_write_unlock();
1482 }
1483 
1484 /**
1485  * device_links_driver_cleanup - Update links after driver removal.
1486  * @dev: Device whose driver has just gone away.
1487  *
1488  * Update links to consumers for @dev by changing their status to "dormant" and
1489  * invoke %__device_links_no_driver() to update links to suppliers for it as
1490  * appropriate.
1491  *
1492  * Links without the DL_FLAG_MANAGED flag set are ignored.
1493  */
1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 	struct device_link *link, *ln;
1497 
1498 	device_links_write_lock();
1499 
1500 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 		if (!(link->flags & DL_FLAG_MANAGED))
1502 			continue;
1503 
1504 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506 
1507 		/*
1508 		 * autoremove the links between this @dev and its consumer
1509 		 * devices that are not active, i.e. where the link state
1510 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 		 */
1512 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 			device_link_drop_managed(link);
1515 
1516 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 	}
1518 
1519 	list_del_init(&dev->links.defer_sync);
1520 	__device_links_no_driver(dev);
1521 
1522 	device_links_write_unlock();
1523 }
1524 
1525 /**
1526  * device_links_busy - Check if there are any busy links to consumers.
1527  * @dev: Device to check.
1528  *
1529  * Check each consumer of the device and return 'true' if its link's status
1530  * is one of "consumer probe" or "active" (meaning that the given consumer is
1531  * probing right now or its driver is present).  Otherwise, change the link
1532  * state to "supplier unbind" to prevent the consumer from being probed
1533  * successfully going forward.
1534  *
1535  * Return 'false' if there are no probing or active consumers.
1536  *
1537  * Links without the DL_FLAG_MANAGED flag set are ignored.
1538  */
1539 bool device_links_busy(struct device *dev)
1540 {
1541 	struct device_link *link;
1542 	bool ret = false;
1543 
1544 	device_links_write_lock();
1545 
1546 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 		if (!(link->flags & DL_FLAG_MANAGED))
1548 			continue;
1549 
1550 		if (link->status == DL_STATE_CONSUMER_PROBE
1551 		    || link->status == DL_STATE_ACTIVE) {
1552 			ret = true;
1553 			break;
1554 		}
1555 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 	}
1557 
1558 	dev->links.status = DL_DEV_UNBINDING;
1559 
1560 	device_links_write_unlock();
1561 	return ret;
1562 }
1563 
1564 /**
1565  * device_links_unbind_consumers - Force unbind consumers of the given device.
1566  * @dev: Device to unbind the consumers of.
1567  *
1568  * Walk the list of links to consumers for @dev and if any of them is in the
1569  * "consumer probe" state, wait for all device probes in progress to complete
1570  * and start over.
1571  *
1572  * If that's not the case, change the status of the link to "supplier unbind"
1573  * and check if the link was in the "active" state.  If so, force the consumer
1574  * driver to unbind and start over (the consumer will not re-probe as we have
1575  * changed the state of the link already).
1576  *
1577  * Links without the DL_FLAG_MANAGED flag set are ignored.
1578  */
1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 	struct device_link *link;
1582 
1583  start:
1584 	device_links_write_lock();
1585 
1586 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 		enum device_link_state status;
1588 
1589 		if (!(link->flags & DL_FLAG_MANAGED) ||
1590 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 			continue;
1592 
1593 		status = link->status;
1594 		if (status == DL_STATE_CONSUMER_PROBE) {
1595 			device_links_write_unlock();
1596 
1597 			wait_for_device_probe();
1598 			goto start;
1599 		}
1600 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 		if (status == DL_STATE_ACTIVE) {
1602 			struct device *consumer = link->consumer;
1603 
1604 			get_device(consumer);
1605 
1606 			device_links_write_unlock();
1607 
1608 			device_release_driver_internal(consumer, NULL,
1609 						       consumer->parent);
1610 			put_device(consumer);
1611 			goto start;
1612 		}
1613 	}
1614 
1615 	device_links_write_unlock();
1616 }
1617 
1618 /**
1619  * device_links_purge - Delete existing links to other devices.
1620  * @dev: Target device.
1621  */
1622 static void device_links_purge(struct device *dev)
1623 {
1624 	struct device_link *link, *ln;
1625 
1626 	if (dev->class == &devlink_class)
1627 		return;
1628 
1629 	/*
1630 	 * Delete all of the remaining links from this device to any other
1631 	 * devices (either consumers or suppliers).
1632 	 */
1633 	device_links_write_lock();
1634 
1635 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 		WARN_ON(link->status == DL_STATE_ACTIVE);
1637 		__device_link_del(&link->kref);
1638 	}
1639 
1640 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 		WARN_ON(link->status != DL_STATE_DORMANT &&
1642 			link->status != DL_STATE_NONE);
1643 		__device_link_del(&link->kref);
1644 	}
1645 
1646 	device_links_write_unlock();
1647 }
1648 
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1650 					 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1652 					 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1654 					 DL_FLAG_PM_RUNTIME)
1655 
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 	if (!arg)
1660 		return -EINVAL;
1661 
1662 	if (strcmp(arg, "off") == 0) {
1663 		fw_devlink_flags = 0;
1664 	} else if (strcmp(arg, "permissive") == 0) {
1665 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 	} else if (strcmp(arg, "on") == 0) {
1667 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 	} else if (strcmp(arg, "rpm") == 0) {
1669 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 	}
1671 	return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674 
1675 static bool fw_devlink_strict;
1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 	return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681 
1682 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1684 
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690 
1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 	if (!arg)
1694 		return -EINVAL;
1695 
1696 	if (strcmp(arg, "strict") == 0) {
1697 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 		return 0;
1699 	} else if (strcmp(arg, "timeout") == 0) {
1700 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 		return 0;
1702 	}
1703 	return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706 
1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711 
1712 	return fw_devlink_flags;
1713 }
1714 
1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719 
1720 bool fw_devlink_is_strict(void)
1721 {
1722 	return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724 
1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 		return;
1729 
1730 	fwnode_call_int_op(fwnode, add_links);
1731 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733 
1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 	struct fwnode_handle *child = NULL;
1737 
1738 	fw_devlink_parse_fwnode(fwnode);
1739 
1740 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 		fw_devlink_parse_fwtree(child);
1742 }
1743 
1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 	if (!(link->flags & DL_FLAG_INFERRED))
1747 		return;
1748 
1749 	if (device_link_flag_is_sync_state_only(link->flags))
1750 		return;
1751 
1752 	pm_runtime_drop_link(link);
1753 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 		dev_name(link->supplier));
1756 }
1757 
1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 	struct device_link *link = to_devlink(dev);
1761 
1762 	if (!link->supplier->can_match)
1763 		fw_devlink_relax_link(link);
1764 
1765 	return 0;
1766 }
1767 
1768 void fw_devlink_drivers_done(void)
1769 {
1770 	fw_devlink_drv_reg_done = true;
1771 	device_links_write_lock();
1772 	class_for_each_device(&devlink_class, NULL, NULL,
1773 			      fw_devlink_no_driver);
1774 	device_links_write_unlock();
1775 }
1776 
1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 	struct device_link *link = to_devlink(dev);
1780 	struct device *sup = link->supplier;
1781 
1782 	if (!(link->flags & DL_FLAG_MANAGED) ||
1783 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 	    !dev_has_sync_state(sup))
1785 		return 0;
1786 
1787 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 		dev_warn(sup, "sync_state() pending due to %s\n",
1789 			 dev_name(link->consumer));
1790 		return 0;
1791 	}
1792 
1793 	if (!list_empty(&sup->links.defer_sync))
1794 		return 0;
1795 
1796 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 	sup->state_synced = true;
1798 	get_device(sup);
1799 	list_add_tail(&sup->links.defer_sync, data);
1800 
1801 	return 0;
1802 }
1803 
1804 void fw_devlink_probing_done(void)
1805 {
1806 	LIST_HEAD(sync_list);
1807 
1808 	device_links_write_lock();
1809 	class_for_each_device(&devlink_class, NULL, &sync_list,
1810 			      fw_devlink_dev_sync_state);
1811 	device_links_write_unlock();
1812 	device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814 
1815 /**
1816  * wait_for_init_devices_probe - Try to probe any device needed for init
1817  *
1818  * Some devices might need to be probed and bound successfully before the kernel
1819  * boot sequence can finish and move on to init/userspace. For example, a
1820  * network interface might need to be bound to be able to mount a NFS rootfs.
1821  *
1822  * With fw_devlink=on by default, some of these devices might be blocked from
1823  * probing because they are waiting on a optional supplier that doesn't have a
1824  * driver. While fw_devlink will eventually identify such devices and unblock
1825  * the probing automatically, it might be too late by the time it unblocks the
1826  * probing of devices. For example, the IP4 autoconfig might timeout before
1827  * fw_devlink unblocks probing of the network interface.
1828  *
1829  * This function is available to temporarily try and probe all devices that have
1830  * a driver even if some of their suppliers haven't been added or don't have
1831  * drivers.
1832  *
1833  * The drivers can then decide which of the suppliers are optional vs mandatory
1834  * and probe the device if possible. By the time this function returns, all such
1835  * "best effort" probes are guaranteed to be completed. If a device successfully
1836  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837  * device where the supplier hasn't yet probed successfully because they have to
1838  * be optional dependencies.
1839  *
1840  * Any devices that didn't successfully probe go back to being treated as if
1841  * this function was never called.
1842  *
1843  * This also means that some devices that aren't needed for init and could have
1844  * waited for their optional supplier to probe (when the supplier's module is
1845  * loaded later on) would end up probing prematurely with limited functionality.
1846  * So call this function only when boot would fail without it.
1847  */
1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 		return;
1852 
1853 	/*
1854 	 * Wait for all ongoing probes to finish so that the "best effort" is
1855 	 * only applied to devices that can't probe otherwise.
1856 	 */
1857 	wait_for_device_probe();
1858 
1859 	pr_info("Trying to probe devices needed for running init ...\n");
1860 	fw_devlink_best_effort = true;
1861 	driver_deferred_probe_trigger();
1862 
1863 	/*
1864 	 * Wait for all "best effort" probes to finish before going back to
1865 	 * normal enforcement.
1866 	 */
1867 	wait_for_device_probe();
1868 	fw_devlink_best_effort = false;
1869 }
1870 
1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 	struct device_link *link;
1874 
1875 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 		return;
1877 
1878 	device_links_write_lock();
1879 	list_for_each_entry(link, &dev->links.consumers, s_node)
1880 		fw_devlink_relax_link(link);
1881 	device_links_write_unlock();
1882 }
1883 
1884 #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1885 
1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 	struct device *dev;
1889 	bool ret;
1890 
1891 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 		return false;
1893 
1894 	dev = get_dev_from_fwnode(fwnode);
1895 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 	put_device(dev);
1897 
1898 	return ret;
1899 }
1900 
1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902 {
1903 	struct fwnode_handle *parent;
1904 
1905 	fwnode_for_each_parent_node(fwnode, parent) {
1906 		if (fwnode_init_without_drv(parent)) {
1907 			fwnode_handle_put(parent);
1908 			return true;
1909 		}
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 /**
1916  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917  * @ancestor: Firmware which is tested for being an ancestor
1918  * @child: Firmware which is tested for being the child
1919  *
1920  * A node is considered an ancestor of itself too.
1921  *
1922  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923  */
1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 				  const struct fwnode_handle *child)
1926 {
1927 	struct fwnode_handle *parent;
1928 
1929 	if (IS_ERR_OR_NULL(ancestor))
1930 		return false;
1931 
1932 	if (child == ancestor)
1933 		return true;
1934 
1935 	fwnode_for_each_parent_node(child, parent) {
1936 		if (parent == ancestor) {
1937 			fwnode_handle_put(parent);
1938 			return true;
1939 		}
1940 	}
1941 	return false;
1942 }
1943 
1944 /**
1945  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946  * @fwnode: firmware node
1947  *
1948  * Given a firmware node (@fwnode), this function finds its closest ancestor
1949  * firmware node that has a corresponding struct device and returns that struct
1950  * device.
1951  *
1952  * The caller is responsible for calling put_device() on the returned device
1953  * pointer.
1954  *
1955  * Return: a pointer to the device of the @fwnode's closest ancestor.
1956  */
1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958 {
1959 	struct fwnode_handle *parent;
1960 	struct device *dev;
1961 
1962 	fwnode_for_each_parent_node(fwnode, parent) {
1963 		dev = get_dev_from_fwnode(parent);
1964 		if (dev) {
1965 			fwnode_handle_put(parent);
1966 			return dev;
1967 		}
1968 	}
1969 	return NULL;
1970 }
1971 
1972 /**
1973  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974  * @con: Potential consumer device.
1975  * @sup_handle: Potential supplier's fwnode.
1976  *
1977  * Needs to be called with fwnode_lock and device link lock held.
1978  *
1979  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980  * depend on @con. This function can detect multiple cyles between @sup_handle
1981  * and @con. When such dependency cycles are found, convert all device links
1982  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984  * converted into a device link in the future, they are created as
1985  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986  * fw_devlink=permissive just between the devices in the cycle. We need to do
1987  * this because, at this point, fw_devlink can't tell which of these
1988  * dependencies is not a real dependency.
1989  *
1990  * Return true if one or more cycles were found. Otherwise, return false.
1991  */
1992 static bool __fw_devlink_relax_cycles(struct device *con,
1993 				 struct fwnode_handle *sup_handle)
1994 {
1995 	struct device *sup_dev = NULL, *par_dev = NULL;
1996 	struct fwnode_link *link;
1997 	struct device_link *dev_link;
1998 	bool ret = false;
1999 
2000 	if (!sup_handle)
2001 		return false;
2002 
2003 	/*
2004 	 * We aren't trying to find all cycles. Just a cycle between con and
2005 	 * sup_handle.
2006 	 */
2007 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 		return false;
2009 
2010 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2011 
2012 	sup_dev = get_dev_from_fwnode(sup_handle);
2013 
2014 	/* Termination condition. */
2015 	if (sup_dev == con) {
2016 		pr_debug("----- cycle: start -----\n");
2017 		ret = true;
2018 		goto out;
2019 	}
2020 
2021 	/*
2022 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 	 * further.
2025 	 */
2026 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2027 	    con->links.status == DL_DEV_NO_DRIVER) {
2028 		ret = false;
2029 		goto out;
2030 	}
2031 
2032 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 		if (link->flags & FWLINK_FLAG_IGNORE)
2034 			continue;
2035 
2036 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
2037 			__fwnode_link_cycle(link);
2038 			ret = true;
2039 		}
2040 	}
2041 
2042 	/*
2043 	 * Give priority to device parent over fwnode parent to account for any
2044 	 * quirks in how fwnodes are converted to devices.
2045 	 */
2046 	if (sup_dev)
2047 		par_dev = get_device(sup_dev->parent);
2048 	else
2049 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2050 
2051 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2052 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 			 par_dev->fwnode);
2054 		ret = true;
2055 	}
2056 
2057 	if (!sup_dev)
2058 		goto out;
2059 
2060 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 		/*
2062 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 		 * such due to a cycle.
2064 		 */
2065 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 		    !(dev_link->flags & DL_FLAG_CYCLE))
2067 			continue;
2068 
2069 		if (__fw_devlink_relax_cycles(con,
2070 					      dev_link->supplier->fwnode)) {
2071 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 				 dev_link->supplier->fwnode);
2073 			fw_devlink_relax_link(dev_link);
2074 			dev_link->flags |= DL_FLAG_CYCLE;
2075 			ret = true;
2076 		}
2077 	}
2078 
2079 out:
2080 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 	put_device(sup_dev);
2082 	put_device(par_dev);
2083 	return ret;
2084 }
2085 
2086 /**
2087  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2088  * @con: consumer device for the device link
2089  * @sup_handle: fwnode handle of supplier
2090  * @link: fwnode link that's being converted to a device link
2091  *
2092  * This function will try to create a device link between the consumer device
2093  * @con and the supplier device represented by @sup_handle.
2094  *
2095  * The supplier has to be provided as a fwnode because incorrect cycles in
2096  * fwnode links can sometimes cause the supplier device to never be created.
2097  * This function detects such cases and returns an error if it cannot create a
2098  * device link from the consumer to a missing supplier.
2099  *
2100  * Returns,
2101  * 0 on successfully creating a device link
2102  * -EINVAL if the device link cannot be created as expected
2103  * -EAGAIN if the device link cannot be created right now, but it may be
2104  *  possible to do that in the future
2105  */
2106 static int fw_devlink_create_devlink(struct device *con,
2107 				     struct fwnode_handle *sup_handle,
2108 				     struct fwnode_link *link)
2109 {
2110 	struct device *sup_dev;
2111 	int ret = 0;
2112 	u32 flags;
2113 
2114 	if (link->flags & FWLINK_FLAG_IGNORE)
2115 		return 0;
2116 
2117 	if (con->fwnode == link->consumer)
2118 		flags = fw_devlink_get_flags(link->flags);
2119 	else
2120 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2121 
2122 	/*
2123 	 * In some cases, a device P might also be a supplier to its child node
2124 	 * C. However, this would defer the probe of C until the probe of P
2125 	 * completes successfully. This is perfectly fine in the device driver
2126 	 * model. device_add() doesn't guarantee probe completion of the device
2127 	 * by the time it returns.
2128 	 *
2129 	 * However, there are a few drivers that assume C will finish probing
2130 	 * as soon as it's added and before P finishes probing. So, we provide
2131 	 * a flag to let fw_devlink know not to delay the probe of C until the
2132 	 * probe of P completes successfully.
2133 	 *
2134 	 * When such a flag is set, we can't create device links where P is the
2135 	 * supplier of C as that would delay the probe of C.
2136 	 */
2137 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2138 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2139 		return -EINVAL;
2140 
2141 	/*
2142 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2143 	 * So, one might expect that cycle detection isn't necessary for them.
2144 	 * However, if the device link was marked as SYNC_STATE_ONLY because
2145 	 * it's part of a cycle, then we still need to do cycle detection. This
2146 	 * is because the consumer and supplier might be part of multiple cycles
2147 	 * and we need to detect all those cycles.
2148 	 */
2149 	if (!device_link_flag_is_sync_state_only(flags) ||
2150 	    flags & DL_FLAG_CYCLE) {
2151 		device_links_write_lock();
2152 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2153 			__fwnode_link_cycle(link);
2154 			flags = fw_devlink_get_flags(link->flags);
2155 			pr_debug("----- cycle: end -----\n");
2156 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2157 				 sup_handle);
2158 		}
2159 		device_links_write_unlock();
2160 	}
2161 
2162 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2163 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2164 	else
2165 		sup_dev = get_dev_from_fwnode(sup_handle);
2166 
2167 	if (sup_dev) {
2168 		/*
2169 		 * If it's one of those drivers that don't actually bind to
2170 		 * their device using driver core, then don't wait on this
2171 		 * supplier device indefinitely.
2172 		 */
2173 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2174 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2175 			dev_dbg(con,
2176 				"Not linking %pfwf - dev might never probe\n",
2177 				sup_handle);
2178 			ret = -EINVAL;
2179 			goto out;
2180 		}
2181 
2182 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2183 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2184 				flags, dev_name(sup_dev));
2185 			ret = -EINVAL;
2186 		}
2187 
2188 		goto out;
2189 	}
2190 
2191 	/*
2192 	 * Supplier or supplier's ancestor already initialized without a struct
2193 	 * device or being probed by a driver.
2194 	 */
2195 	if (fwnode_init_without_drv(sup_handle) ||
2196 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2197 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2198 			sup_handle);
2199 		return -EINVAL;
2200 	}
2201 
2202 	ret = -EAGAIN;
2203 out:
2204 	put_device(sup_dev);
2205 	return ret;
2206 }
2207 
2208 /**
2209  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2210  * @dev: Device that needs to be linked to its consumers
2211  *
2212  * This function looks at all the consumer fwnodes of @dev and creates device
2213  * links between the consumer device and @dev (supplier).
2214  *
2215  * If the consumer device has not been added yet, then this function creates a
2216  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2217  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2218  * sync_state() callback before the real consumer device gets to be added and
2219  * then probed.
2220  *
2221  * Once device links are created from the real consumer to @dev (supplier), the
2222  * fwnode links are deleted.
2223  */
2224 static void __fw_devlink_link_to_consumers(struct device *dev)
2225 {
2226 	struct fwnode_handle *fwnode = dev->fwnode;
2227 	struct fwnode_link *link, *tmp;
2228 
2229 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2230 		struct device *con_dev;
2231 		bool own_link = true;
2232 		int ret;
2233 
2234 		con_dev = get_dev_from_fwnode(link->consumer);
2235 		/*
2236 		 * If consumer device is not available yet, make a "proxy"
2237 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2238 		 * the supplier device. This is necessary to make sure the
2239 		 * supplier doesn't get a sync_state() callback before the real
2240 		 * consumer can create a device link to the supplier.
2241 		 *
2242 		 * This proxy link step is needed to handle the case where the
2243 		 * consumer's parent device is added before the supplier.
2244 		 */
2245 		if (!con_dev) {
2246 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2247 			/*
2248 			 * However, if the consumer's parent device is also the
2249 			 * parent of the supplier, don't create a
2250 			 * consumer-supplier link from the parent to its child
2251 			 * device. Such a dependency is impossible.
2252 			 */
2253 			if (con_dev &&
2254 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2255 				put_device(con_dev);
2256 				con_dev = NULL;
2257 			} else {
2258 				own_link = false;
2259 			}
2260 		}
2261 
2262 		if (!con_dev)
2263 			continue;
2264 
2265 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2266 		put_device(con_dev);
2267 		if (!own_link || ret == -EAGAIN)
2268 			continue;
2269 
2270 		__fwnode_link_del(link);
2271 	}
2272 }
2273 
2274 /**
2275  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2276  * @dev: The consumer device that needs to be linked to its suppliers
2277  * @fwnode: Root of the fwnode tree that is used to create device links
2278  *
2279  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2280  * @fwnode and creates device links between @dev (consumer) and all the
2281  * supplier devices of the entire fwnode tree at @fwnode.
2282  *
2283  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2284  * and the real suppliers of @dev. Once these device links are created, the
2285  * fwnode links are deleted.
2286  *
2287  * In addition, it also looks at all the suppliers of the entire fwnode tree
2288  * because some of the child devices of @dev that have not been added yet
2289  * (because @dev hasn't probed) might already have their suppliers added to
2290  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2291  * @dev (consumer) and these suppliers to make sure they don't execute their
2292  * sync_state() callbacks before these child devices have a chance to create
2293  * their device links. The fwnode links that correspond to the child devices
2294  * aren't delete because they are needed later to create the device links
2295  * between the real consumer and supplier devices.
2296  */
2297 static void __fw_devlink_link_to_suppliers(struct device *dev,
2298 					   struct fwnode_handle *fwnode)
2299 {
2300 	bool own_link = (dev->fwnode == fwnode);
2301 	struct fwnode_link *link, *tmp;
2302 	struct fwnode_handle *child = NULL;
2303 
2304 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2305 		int ret;
2306 		struct fwnode_handle *sup = link->supplier;
2307 
2308 		ret = fw_devlink_create_devlink(dev, sup, link);
2309 		if (!own_link || ret == -EAGAIN)
2310 			continue;
2311 
2312 		__fwnode_link_del(link);
2313 	}
2314 
2315 	/*
2316 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2317 	 * all the descendants. This proxy link step is needed to handle the
2318 	 * case where the supplier is added before the consumer's parent device
2319 	 * (@dev).
2320 	 */
2321 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2322 		__fw_devlink_link_to_suppliers(dev, child);
2323 }
2324 
2325 static void fw_devlink_link_device(struct device *dev)
2326 {
2327 	struct fwnode_handle *fwnode = dev->fwnode;
2328 
2329 	if (!fw_devlink_flags)
2330 		return;
2331 
2332 	fw_devlink_parse_fwtree(fwnode);
2333 
2334 	guard(mutex)(&fwnode_link_lock);
2335 
2336 	__fw_devlink_link_to_consumers(dev);
2337 	__fw_devlink_link_to_suppliers(dev, fwnode);
2338 }
2339 
2340 /* Device links support end. */
2341 
2342 static struct kobject *dev_kobj;
2343 
2344 /* /sys/dev/char */
2345 static struct kobject *sysfs_dev_char_kobj;
2346 
2347 /* /sys/dev/block */
2348 static struct kobject *sysfs_dev_block_kobj;
2349 
2350 static DEFINE_MUTEX(device_hotplug_lock);
2351 
2352 void lock_device_hotplug(void)
2353 {
2354 	mutex_lock(&device_hotplug_lock);
2355 }
2356 
2357 void unlock_device_hotplug(void)
2358 {
2359 	mutex_unlock(&device_hotplug_lock);
2360 }
2361 
2362 int lock_device_hotplug_sysfs(void)
2363 {
2364 	if (mutex_trylock(&device_hotplug_lock))
2365 		return 0;
2366 
2367 	/* Avoid busy looping (5 ms of sleep should do). */
2368 	msleep(5);
2369 	return restart_syscall();
2370 }
2371 
2372 #ifdef CONFIG_BLOCK
2373 static inline int device_is_not_partition(struct device *dev)
2374 {
2375 	return !(dev->type == &part_type);
2376 }
2377 #else
2378 static inline int device_is_not_partition(struct device *dev)
2379 {
2380 	return 1;
2381 }
2382 #endif
2383 
2384 static void device_platform_notify(struct device *dev)
2385 {
2386 	acpi_device_notify(dev);
2387 
2388 	software_node_notify(dev);
2389 }
2390 
2391 static void device_platform_notify_remove(struct device *dev)
2392 {
2393 	software_node_notify_remove(dev);
2394 
2395 	acpi_device_notify_remove(dev);
2396 }
2397 
2398 /**
2399  * dev_driver_string - Return a device's driver name, if at all possible
2400  * @dev: struct device to get the name of
2401  *
2402  * Will return the device's driver's name if it is bound to a device.  If
2403  * the device is not bound to a driver, it will return the name of the bus
2404  * it is attached to.  If it is not attached to a bus either, an empty
2405  * string will be returned.
2406  */
2407 const char *dev_driver_string(const struct device *dev)
2408 {
2409 	struct device_driver *drv;
2410 
2411 	/* dev->driver can change to NULL underneath us because of unbinding,
2412 	 * so be careful about accessing it.  dev->bus and dev->class should
2413 	 * never change once they are set, so they don't need special care.
2414 	 */
2415 	drv = READ_ONCE(dev->driver);
2416 	return drv ? drv->name : dev_bus_name(dev);
2417 }
2418 EXPORT_SYMBOL(dev_driver_string);
2419 
2420 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2421 
2422 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2423 			     char *buf)
2424 {
2425 	struct device_attribute *dev_attr = to_dev_attr(attr);
2426 	struct device *dev = kobj_to_dev(kobj);
2427 	ssize_t ret = -EIO;
2428 
2429 	if (dev_attr->show)
2430 		ret = dev_attr->show(dev, dev_attr, buf);
2431 	if (ret >= (ssize_t)PAGE_SIZE) {
2432 		printk("dev_attr_show: %pS returned bad count\n",
2433 				dev_attr->show);
2434 	}
2435 	return ret;
2436 }
2437 
2438 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2439 			      const char *buf, size_t count)
2440 {
2441 	struct device_attribute *dev_attr = to_dev_attr(attr);
2442 	struct device *dev = kobj_to_dev(kobj);
2443 	ssize_t ret = -EIO;
2444 
2445 	if (dev_attr->store)
2446 		ret = dev_attr->store(dev, dev_attr, buf, count);
2447 	return ret;
2448 }
2449 
2450 static const struct sysfs_ops dev_sysfs_ops = {
2451 	.show	= dev_attr_show,
2452 	.store	= dev_attr_store,
2453 };
2454 
2455 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2456 
2457 ssize_t device_store_ulong(struct device *dev,
2458 			   struct device_attribute *attr,
2459 			   const char *buf, size_t size)
2460 {
2461 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2462 	int ret;
2463 	unsigned long new;
2464 
2465 	ret = kstrtoul(buf, 0, &new);
2466 	if (ret)
2467 		return ret;
2468 	*(unsigned long *)(ea->var) = new;
2469 	/* Always return full write size even if we didn't consume all */
2470 	return size;
2471 }
2472 EXPORT_SYMBOL_GPL(device_store_ulong);
2473 
2474 ssize_t device_show_ulong(struct device *dev,
2475 			  struct device_attribute *attr,
2476 			  char *buf)
2477 {
2478 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2479 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2480 }
2481 EXPORT_SYMBOL_GPL(device_show_ulong);
2482 
2483 ssize_t device_store_int(struct device *dev,
2484 			 struct device_attribute *attr,
2485 			 const char *buf, size_t size)
2486 {
2487 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2488 	int ret;
2489 	long new;
2490 
2491 	ret = kstrtol(buf, 0, &new);
2492 	if (ret)
2493 		return ret;
2494 
2495 	if (new > INT_MAX || new < INT_MIN)
2496 		return -EINVAL;
2497 	*(int *)(ea->var) = new;
2498 	/* Always return full write size even if we didn't consume all */
2499 	return size;
2500 }
2501 EXPORT_SYMBOL_GPL(device_store_int);
2502 
2503 ssize_t device_show_int(struct device *dev,
2504 			struct device_attribute *attr,
2505 			char *buf)
2506 {
2507 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2508 
2509 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2510 }
2511 EXPORT_SYMBOL_GPL(device_show_int);
2512 
2513 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2514 			  const char *buf, size_t size)
2515 {
2516 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2517 
2518 	if (kstrtobool(buf, ea->var) < 0)
2519 		return -EINVAL;
2520 
2521 	return size;
2522 }
2523 EXPORT_SYMBOL_GPL(device_store_bool);
2524 
2525 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2526 			 char *buf)
2527 {
2528 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2529 
2530 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2531 }
2532 EXPORT_SYMBOL_GPL(device_show_bool);
2533 
2534 ssize_t device_show_string(struct device *dev,
2535 			   struct device_attribute *attr, char *buf)
2536 {
2537 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2538 
2539 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2540 }
2541 EXPORT_SYMBOL_GPL(device_show_string);
2542 
2543 /**
2544  * device_release - free device structure.
2545  * @kobj: device's kobject.
2546  *
2547  * This is called once the reference count for the object
2548  * reaches 0. We forward the call to the device's release
2549  * method, which should handle actually freeing the structure.
2550  */
2551 static void device_release(struct kobject *kobj)
2552 {
2553 	struct device *dev = kobj_to_dev(kobj);
2554 	struct device_private *p = dev->p;
2555 
2556 	/*
2557 	 * Some platform devices are driven without driver attached
2558 	 * and managed resources may have been acquired.  Make sure
2559 	 * all resources are released.
2560 	 *
2561 	 * Drivers still can add resources into device after device
2562 	 * is deleted but alive, so release devres here to avoid
2563 	 * possible memory leak.
2564 	 */
2565 	devres_release_all(dev);
2566 
2567 	kfree(dev->dma_range_map);
2568 
2569 	if (dev->release)
2570 		dev->release(dev);
2571 	else if (dev->type && dev->type->release)
2572 		dev->type->release(dev);
2573 	else if (dev->class && dev->class->dev_release)
2574 		dev->class->dev_release(dev);
2575 	else
2576 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2577 			dev_name(dev));
2578 	kfree(p);
2579 }
2580 
2581 static const void *device_namespace(const struct kobject *kobj)
2582 {
2583 	const struct device *dev = kobj_to_dev(kobj);
2584 	const void *ns = NULL;
2585 
2586 	if (dev->class && dev->class->namespace)
2587 		ns = dev->class->namespace(dev);
2588 
2589 	return ns;
2590 }
2591 
2592 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2593 {
2594 	const struct device *dev = kobj_to_dev(kobj);
2595 
2596 	if (dev->class && dev->class->get_ownership)
2597 		dev->class->get_ownership(dev, uid, gid);
2598 }
2599 
2600 static const struct kobj_type device_ktype = {
2601 	.release	= device_release,
2602 	.sysfs_ops	= &dev_sysfs_ops,
2603 	.namespace	= device_namespace,
2604 	.get_ownership	= device_get_ownership,
2605 };
2606 
2607 
2608 static int dev_uevent_filter(const struct kobject *kobj)
2609 {
2610 	const struct kobj_type *ktype = get_ktype(kobj);
2611 
2612 	if (ktype == &device_ktype) {
2613 		const struct device *dev = kobj_to_dev(kobj);
2614 		if (dev->bus)
2615 			return 1;
2616 		if (dev->class)
2617 			return 1;
2618 	}
2619 	return 0;
2620 }
2621 
2622 static const char *dev_uevent_name(const struct kobject *kobj)
2623 {
2624 	const struct device *dev = kobj_to_dev(kobj);
2625 
2626 	if (dev->bus)
2627 		return dev->bus->name;
2628 	if (dev->class)
2629 		return dev->class->name;
2630 	return NULL;
2631 }
2632 
2633 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2634 {
2635 	const struct device *dev = kobj_to_dev(kobj);
2636 	int retval = 0;
2637 
2638 	/* add device node properties if present */
2639 	if (MAJOR(dev->devt)) {
2640 		const char *tmp;
2641 		const char *name;
2642 		umode_t mode = 0;
2643 		kuid_t uid = GLOBAL_ROOT_UID;
2644 		kgid_t gid = GLOBAL_ROOT_GID;
2645 
2646 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2647 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2648 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2649 		if (name) {
2650 			add_uevent_var(env, "DEVNAME=%s", name);
2651 			if (mode)
2652 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2653 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2654 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2655 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2656 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2657 			kfree(tmp);
2658 		}
2659 	}
2660 
2661 	if (dev->type && dev->type->name)
2662 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2663 
2664 	if (dev->driver)
2665 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2666 
2667 	/* Add common DT information about the device */
2668 	of_device_uevent(dev, env);
2669 
2670 	/* have the bus specific function add its stuff */
2671 	if (dev->bus && dev->bus->uevent) {
2672 		retval = dev->bus->uevent(dev, env);
2673 		if (retval)
2674 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2675 				 dev_name(dev), __func__, retval);
2676 	}
2677 
2678 	/* have the class specific function add its stuff */
2679 	if (dev->class && dev->class->dev_uevent) {
2680 		retval = dev->class->dev_uevent(dev, env);
2681 		if (retval)
2682 			pr_debug("device: '%s': %s: class uevent() "
2683 				 "returned %d\n", dev_name(dev),
2684 				 __func__, retval);
2685 	}
2686 
2687 	/* have the device type specific function add its stuff */
2688 	if (dev->type && dev->type->uevent) {
2689 		retval = dev->type->uevent(dev, env);
2690 		if (retval)
2691 			pr_debug("device: '%s': %s: dev_type uevent() "
2692 				 "returned %d\n", dev_name(dev),
2693 				 __func__, retval);
2694 	}
2695 
2696 	return retval;
2697 }
2698 
2699 static const struct kset_uevent_ops device_uevent_ops = {
2700 	.filter =	dev_uevent_filter,
2701 	.name =		dev_uevent_name,
2702 	.uevent =	dev_uevent,
2703 };
2704 
2705 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2706 			   char *buf)
2707 {
2708 	struct kobject *top_kobj;
2709 	struct kset *kset;
2710 	struct kobj_uevent_env *env = NULL;
2711 	int i;
2712 	int len = 0;
2713 	int retval;
2714 
2715 	/* search the kset, the device belongs to */
2716 	top_kobj = &dev->kobj;
2717 	while (!top_kobj->kset && top_kobj->parent)
2718 		top_kobj = top_kobj->parent;
2719 	if (!top_kobj->kset)
2720 		goto out;
2721 
2722 	kset = top_kobj->kset;
2723 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2724 		goto out;
2725 
2726 	/* respect filter */
2727 	if (kset->uevent_ops && kset->uevent_ops->filter)
2728 		if (!kset->uevent_ops->filter(&dev->kobj))
2729 			goto out;
2730 
2731 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2732 	if (!env)
2733 		return -ENOMEM;
2734 
2735 	/* Synchronize with really_probe() */
2736 	device_lock(dev);
2737 	/* let the kset specific function add its keys */
2738 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2739 	device_unlock(dev);
2740 	if (retval)
2741 		goto out;
2742 
2743 	/* copy keys to file */
2744 	for (i = 0; i < env->envp_idx; i++)
2745 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2746 out:
2747 	kfree(env);
2748 	return len;
2749 }
2750 
2751 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2752 			    const char *buf, size_t count)
2753 {
2754 	int rc;
2755 
2756 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2757 
2758 	if (rc) {
2759 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2760 		return rc;
2761 	}
2762 
2763 	return count;
2764 }
2765 static DEVICE_ATTR_RW(uevent);
2766 
2767 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2768 			   char *buf)
2769 {
2770 	bool val;
2771 
2772 	device_lock(dev);
2773 	val = !dev->offline;
2774 	device_unlock(dev);
2775 	return sysfs_emit(buf, "%u\n", val);
2776 }
2777 
2778 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2779 			    const char *buf, size_t count)
2780 {
2781 	bool val;
2782 	int ret;
2783 
2784 	ret = kstrtobool(buf, &val);
2785 	if (ret < 0)
2786 		return ret;
2787 
2788 	ret = lock_device_hotplug_sysfs();
2789 	if (ret)
2790 		return ret;
2791 
2792 	ret = val ? device_online(dev) : device_offline(dev);
2793 	unlock_device_hotplug();
2794 	return ret < 0 ? ret : count;
2795 }
2796 static DEVICE_ATTR_RW(online);
2797 
2798 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2799 			      char *buf)
2800 {
2801 	const char *loc;
2802 
2803 	switch (dev->removable) {
2804 	case DEVICE_REMOVABLE:
2805 		loc = "removable";
2806 		break;
2807 	case DEVICE_FIXED:
2808 		loc = "fixed";
2809 		break;
2810 	default:
2811 		loc = "unknown";
2812 	}
2813 	return sysfs_emit(buf, "%s\n", loc);
2814 }
2815 static DEVICE_ATTR_RO(removable);
2816 
2817 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2818 {
2819 	return sysfs_create_groups(&dev->kobj, groups);
2820 }
2821 EXPORT_SYMBOL_GPL(device_add_groups);
2822 
2823 void device_remove_groups(struct device *dev,
2824 			  const struct attribute_group **groups)
2825 {
2826 	sysfs_remove_groups(&dev->kobj, groups);
2827 }
2828 EXPORT_SYMBOL_GPL(device_remove_groups);
2829 
2830 union device_attr_group_devres {
2831 	const struct attribute_group *group;
2832 	const struct attribute_group **groups;
2833 };
2834 
2835 static void devm_attr_group_remove(struct device *dev, void *res)
2836 {
2837 	union device_attr_group_devres *devres = res;
2838 	const struct attribute_group *group = devres->group;
2839 
2840 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2841 	sysfs_remove_group(&dev->kobj, group);
2842 }
2843 
2844 /**
2845  * devm_device_add_group - given a device, create a managed attribute group
2846  * @dev:	The device to create the group for
2847  * @grp:	The attribute group to create
2848  *
2849  * This function creates a group for the first time.  It will explicitly
2850  * warn and error if any of the attribute files being created already exist.
2851  *
2852  * Returns 0 on success or error code on failure.
2853  */
2854 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2855 {
2856 	union device_attr_group_devres *devres;
2857 	int error;
2858 
2859 	devres = devres_alloc(devm_attr_group_remove,
2860 			      sizeof(*devres), GFP_KERNEL);
2861 	if (!devres)
2862 		return -ENOMEM;
2863 
2864 	error = sysfs_create_group(&dev->kobj, grp);
2865 	if (error) {
2866 		devres_free(devres);
2867 		return error;
2868 	}
2869 
2870 	devres->group = grp;
2871 	devres_add(dev, devres);
2872 	return 0;
2873 }
2874 EXPORT_SYMBOL_GPL(devm_device_add_group);
2875 
2876 static int device_add_attrs(struct device *dev)
2877 {
2878 	const struct class *class = dev->class;
2879 	const struct device_type *type = dev->type;
2880 	int error;
2881 
2882 	if (class) {
2883 		error = device_add_groups(dev, class->dev_groups);
2884 		if (error)
2885 			return error;
2886 	}
2887 
2888 	if (type) {
2889 		error = device_add_groups(dev, type->groups);
2890 		if (error)
2891 			goto err_remove_class_groups;
2892 	}
2893 
2894 	error = device_add_groups(dev, dev->groups);
2895 	if (error)
2896 		goto err_remove_type_groups;
2897 
2898 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2899 		error = device_create_file(dev, &dev_attr_online);
2900 		if (error)
2901 			goto err_remove_dev_groups;
2902 	}
2903 
2904 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2905 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2906 		if (error)
2907 			goto err_remove_dev_online;
2908 	}
2909 
2910 	if (dev_removable_is_valid(dev)) {
2911 		error = device_create_file(dev, &dev_attr_removable);
2912 		if (error)
2913 			goto err_remove_dev_waiting_for_supplier;
2914 	}
2915 
2916 	if (dev_add_physical_location(dev)) {
2917 		error = device_add_group(dev,
2918 			&dev_attr_physical_location_group);
2919 		if (error)
2920 			goto err_remove_dev_removable;
2921 	}
2922 
2923 	return 0;
2924 
2925  err_remove_dev_removable:
2926 	device_remove_file(dev, &dev_attr_removable);
2927  err_remove_dev_waiting_for_supplier:
2928 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2929  err_remove_dev_online:
2930 	device_remove_file(dev, &dev_attr_online);
2931  err_remove_dev_groups:
2932 	device_remove_groups(dev, dev->groups);
2933  err_remove_type_groups:
2934 	if (type)
2935 		device_remove_groups(dev, type->groups);
2936  err_remove_class_groups:
2937 	if (class)
2938 		device_remove_groups(dev, class->dev_groups);
2939 
2940 	return error;
2941 }
2942 
2943 static void device_remove_attrs(struct device *dev)
2944 {
2945 	const struct class *class = dev->class;
2946 	const struct device_type *type = dev->type;
2947 
2948 	if (dev->physical_location) {
2949 		device_remove_group(dev, &dev_attr_physical_location_group);
2950 		kfree(dev->physical_location);
2951 	}
2952 
2953 	device_remove_file(dev, &dev_attr_removable);
2954 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2955 	device_remove_file(dev, &dev_attr_online);
2956 	device_remove_groups(dev, dev->groups);
2957 
2958 	if (type)
2959 		device_remove_groups(dev, type->groups);
2960 
2961 	if (class)
2962 		device_remove_groups(dev, class->dev_groups);
2963 }
2964 
2965 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2966 			char *buf)
2967 {
2968 	return print_dev_t(buf, dev->devt);
2969 }
2970 static DEVICE_ATTR_RO(dev);
2971 
2972 /* /sys/devices/ */
2973 struct kset *devices_kset;
2974 
2975 /**
2976  * devices_kset_move_before - Move device in the devices_kset's list.
2977  * @deva: Device to move.
2978  * @devb: Device @deva should come before.
2979  */
2980 static void devices_kset_move_before(struct device *deva, struct device *devb)
2981 {
2982 	if (!devices_kset)
2983 		return;
2984 	pr_debug("devices_kset: Moving %s before %s\n",
2985 		 dev_name(deva), dev_name(devb));
2986 	spin_lock(&devices_kset->list_lock);
2987 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2988 	spin_unlock(&devices_kset->list_lock);
2989 }
2990 
2991 /**
2992  * devices_kset_move_after - Move device in the devices_kset's list.
2993  * @deva: Device to move
2994  * @devb: Device @deva should come after.
2995  */
2996 static void devices_kset_move_after(struct device *deva, struct device *devb)
2997 {
2998 	if (!devices_kset)
2999 		return;
3000 	pr_debug("devices_kset: Moving %s after %s\n",
3001 		 dev_name(deva), dev_name(devb));
3002 	spin_lock(&devices_kset->list_lock);
3003 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3004 	spin_unlock(&devices_kset->list_lock);
3005 }
3006 
3007 /**
3008  * devices_kset_move_last - move the device to the end of devices_kset's list.
3009  * @dev: device to move
3010  */
3011 void devices_kset_move_last(struct device *dev)
3012 {
3013 	if (!devices_kset)
3014 		return;
3015 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3016 	spin_lock(&devices_kset->list_lock);
3017 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3018 	spin_unlock(&devices_kset->list_lock);
3019 }
3020 
3021 /**
3022  * device_create_file - create sysfs attribute file for device.
3023  * @dev: device.
3024  * @attr: device attribute descriptor.
3025  */
3026 int device_create_file(struct device *dev,
3027 		       const struct device_attribute *attr)
3028 {
3029 	int error = 0;
3030 
3031 	if (dev) {
3032 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3033 			"Attribute %s: write permission without 'store'\n",
3034 			attr->attr.name);
3035 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3036 			"Attribute %s: read permission without 'show'\n",
3037 			attr->attr.name);
3038 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3039 	}
3040 
3041 	return error;
3042 }
3043 EXPORT_SYMBOL_GPL(device_create_file);
3044 
3045 /**
3046  * device_remove_file - remove sysfs attribute file.
3047  * @dev: device.
3048  * @attr: device attribute descriptor.
3049  */
3050 void device_remove_file(struct device *dev,
3051 			const struct device_attribute *attr)
3052 {
3053 	if (dev)
3054 		sysfs_remove_file(&dev->kobj, &attr->attr);
3055 }
3056 EXPORT_SYMBOL_GPL(device_remove_file);
3057 
3058 /**
3059  * device_remove_file_self - remove sysfs attribute file from its own method.
3060  * @dev: device.
3061  * @attr: device attribute descriptor.
3062  *
3063  * See kernfs_remove_self() for details.
3064  */
3065 bool device_remove_file_self(struct device *dev,
3066 			     const struct device_attribute *attr)
3067 {
3068 	if (dev)
3069 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3070 	else
3071 		return false;
3072 }
3073 EXPORT_SYMBOL_GPL(device_remove_file_self);
3074 
3075 /**
3076  * device_create_bin_file - create sysfs binary attribute file for device.
3077  * @dev: device.
3078  * @attr: device binary attribute descriptor.
3079  */
3080 int device_create_bin_file(struct device *dev,
3081 			   const struct bin_attribute *attr)
3082 {
3083 	int error = -EINVAL;
3084 	if (dev)
3085 		error = sysfs_create_bin_file(&dev->kobj, attr);
3086 	return error;
3087 }
3088 EXPORT_SYMBOL_GPL(device_create_bin_file);
3089 
3090 /**
3091  * device_remove_bin_file - remove sysfs binary attribute file
3092  * @dev: device.
3093  * @attr: device binary attribute descriptor.
3094  */
3095 void device_remove_bin_file(struct device *dev,
3096 			    const struct bin_attribute *attr)
3097 {
3098 	if (dev)
3099 		sysfs_remove_bin_file(&dev->kobj, attr);
3100 }
3101 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3102 
3103 static void klist_children_get(struct klist_node *n)
3104 {
3105 	struct device_private *p = to_device_private_parent(n);
3106 	struct device *dev = p->device;
3107 
3108 	get_device(dev);
3109 }
3110 
3111 static void klist_children_put(struct klist_node *n)
3112 {
3113 	struct device_private *p = to_device_private_parent(n);
3114 	struct device *dev = p->device;
3115 
3116 	put_device(dev);
3117 }
3118 
3119 /**
3120  * device_initialize - init device structure.
3121  * @dev: device.
3122  *
3123  * This prepares the device for use by other layers by initializing
3124  * its fields.
3125  * It is the first half of device_register(), if called by
3126  * that function, though it can also be called separately, so one
3127  * may use @dev's fields. In particular, get_device()/put_device()
3128  * may be used for reference counting of @dev after calling this
3129  * function.
3130  *
3131  * All fields in @dev must be initialized by the caller to 0, except
3132  * for those explicitly set to some other value.  The simplest
3133  * approach is to use kzalloc() to allocate the structure containing
3134  * @dev.
3135  *
3136  * NOTE: Use put_device() to give up your reference instead of freeing
3137  * @dev directly once you have called this function.
3138  */
3139 void device_initialize(struct device *dev)
3140 {
3141 	dev->kobj.kset = devices_kset;
3142 	kobject_init(&dev->kobj, &device_ktype);
3143 	INIT_LIST_HEAD(&dev->dma_pools);
3144 	mutex_init(&dev->mutex);
3145 	lockdep_set_novalidate_class(&dev->mutex);
3146 	spin_lock_init(&dev->devres_lock);
3147 	INIT_LIST_HEAD(&dev->devres_head);
3148 	device_pm_init(dev);
3149 	set_dev_node(dev, NUMA_NO_NODE);
3150 	INIT_LIST_HEAD(&dev->links.consumers);
3151 	INIT_LIST_HEAD(&dev->links.suppliers);
3152 	INIT_LIST_HEAD(&dev->links.defer_sync);
3153 	dev->links.status = DL_DEV_NO_DRIVER;
3154 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3155     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3156     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3157 	dev->dma_coherent = dma_default_coherent;
3158 #endif
3159 	swiotlb_dev_init(dev);
3160 }
3161 EXPORT_SYMBOL_GPL(device_initialize);
3162 
3163 struct kobject *virtual_device_parent(void)
3164 {
3165 	static struct kobject *virtual_dir = NULL;
3166 
3167 	if (!virtual_dir)
3168 		virtual_dir = kobject_create_and_add("virtual",
3169 						     &devices_kset->kobj);
3170 
3171 	return virtual_dir;
3172 }
3173 
3174 struct class_dir {
3175 	struct kobject kobj;
3176 	const struct class *class;
3177 };
3178 
3179 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3180 
3181 static void class_dir_release(struct kobject *kobj)
3182 {
3183 	struct class_dir *dir = to_class_dir(kobj);
3184 	kfree(dir);
3185 }
3186 
3187 static const
3188 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3189 {
3190 	const struct class_dir *dir = to_class_dir(kobj);
3191 	return dir->class->ns_type;
3192 }
3193 
3194 static const struct kobj_type class_dir_ktype = {
3195 	.release	= class_dir_release,
3196 	.sysfs_ops	= &kobj_sysfs_ops,
3197 	.child_ns_type	= class_dir_child_ns_type
3198 };
3199 
3200 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3201 						struct kobject *parent_kobj)
3202 {
3203 	struct class_dir *dir;
3204 	int retval;
3205 
3206 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3207 	if (!dir)
3208 		return ERR_PTR(-ENOMEM);
3209 
3210 	dir->class = sp->class;
3211 	kobject_init(&dir->kobj, &class_dir_ktype);
3212 
3213 	dir->kobj.kset = &sp->glue_dirs;
3214 
3215 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3216 	if (retval < 0) {
3217 		kobject_put(&dir->kobj);
3218 		return ERR_PTR(retval);
3219 	}
3220 	return &dir->kobj;
3221 }
3222 
3223 static DEFINE_MUTEX(gdp_mutex);
3224 
3225 static struct kobject *get_device_parent(struct device *dev,
3226 					 struct device *parent)
3227 {
3228 	struct subsys_private *sp = class_to_subsys(dev->class);
3229 	struct kobject *kobj = NULL;
3230 
3231 	if (sp) {
3232 		struct kobject *parent_kobj;
3233 		struct kobject *k;
3234 
3235 		/*
3236 		 * If we have no parent, we live in "virtual".
3237 		 * Class-devices with a non class-device as parent, live
3238 		 * in a "glue" directory to prevent namespace collisions.
3239 		 */
3240 		if (parent == NULL)
3241 			parent_kobj = virtual_device_parent();
3242 		else if (parent->class && !dev->class->ns_type) {
3243 			subsys_put(sp);
3244 			return &parent->kobj;
3245 		} else {
3246 			parent_kobj = &parent->kobj;
3247 		}
3248 
3249 		mutex_lock(&gdp_mutex);
3250 
3251 		/* find our class-directory at the parent and reference it */
3252 		spin_lock(&sp->glue_dirs.list_lock);
3253 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3254 			if (k->parent == parent_kobj) {
3255 				kobj = kobject_get(k);
3256 				break;
3257 			}
3258 		spin_unlock(&sp->glue_dirs.list_lock);
3259 		if (kobj) {
3260 			mutex_unlock(&gdp_mutex);
3261 			subsys_put(sp);
3262 			return kobj;
3263 		}
3264 
3265 		/* or create a new class-directory at the parent device */
3266 		k = class_dir_create_and_add(sp, parent_kobj);
3267 		/* do not emit an uevent for this simple "glue" directory */
3268 		mutex_unlock(&gdp_mutex);
3269 		subsys_put(sp);
3270 		return k;
3271 	}
3272 
3273 	/* subsystems can specify a default root directory for their devices */
3274 	if (!parent && dev->bus) {
3275 		struct device *dev_root = bus_get_dev_root(dev->bus);
3276 
3277 		if (dev_root) {
3278 			kobj = &dev_root->kobj;
3279 			put_device(dev_root);
3280 			return kobj;
3281 		}
3282 	}
3283 
3284 	if (parent)
3285 		return &parent->kobj;
3286 	return NULL;
3287 }
3288 
3289 static inline bool live_in_glue_dir(struct kobject *kobj,
3290 				    struct device *dev)
3291 {
3292 	struct subsys_private *sp;
3293 	bool retval;
3294 
3295 	if (!kobj || !dev->class)
3296 		return false;
3297 
3298 	sp = class_to_subsys(dev->class);
3299 	if (!sp)
3300 		return false;
3301 
3302 	if (kobj->kset == &sp->glue_dirs)
3303 		retval = true;
3304 	else
3305 		retval = false;
3306 
3307 	subsys_put(sp);
3308 	return retval;
3309 }
3310 
3311 static inline struct kobject *get_glue_dir(struct device *dev)
3312 {
3313 	return dev->kobj.parent;
3314 }
3315 
3316 /**
3317  * kobject_has_children - Returns whether a kobject has children.
3318  * @kobj: the object to test
3319  *
3320  * This will return whether a kobject has other kobjects as children.
3321  *
3322  * It does NOT account for the presence of attribute files, only sub
3323  * directories. It also assumes there is no concurrent addition or
3324  * removal of such children, and thus relies on external locking.
3325  */
3326 static inline bool kobject_has_children(struct kobject *kobj)
3327 {
3328 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3329 
3330 	return kobj->sd && kobj->sd->dir.subdirs;
3331 }
3332 
3333 /*
3334  * make sure cleaning up dir as the last step, we need to make
3335  * sure .release handler of kobject is run with holding the
3336  * global lock
3337  */
3338 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3339 {
3340 	unsigned int ref;
3341 
3342 	/* see if we live in a "glue" directory */
3343 	if (!live_in_glue_dir(glue_dir, dev))
3344 		return;
3345 
3346 	mutex_lock(&gdp_mutex);
3347 	/**
3348 	 * There is a race condition between removing glue directory
3349 	 * and adding a new device under the glue directory.
3350 	 *
3351 	 * CPU1:                                         CPU2:
3352 	 *
3353 	 * device_add()
3354 	 *   get_device_parent()
3355 	 *     class_dir_create_and_add()
3356 	 *       kobject_add_internal()
3357 	 *         create_dir()    // create glue_dir
3358 	 *
3359 	 *                                               device_add()
3360 	 *                                                 get_device_parent()
3361 	 *                                                   kobject_get() // get glue_dir
3362 	 *
3363 	 * device_del()
3364 	 *   cleanup_glue_dir()
3365 	 *     kobject_del(glue_dir)
3366 	 *
3367 	 *                                               kobject_add()
3368 	 *                                                 kobject_add_internal()
3369 	 *                                                   create_dir() // in glue_dir
3370 	 *                                                     sysfs_create_dir_ns()
3371 	 *                                                       kernfs_create_dir_ns(sd)
3372 	 *
3373 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3374 	 *       sysfs_put()        // free glue_dir->sd
3375 	 *
3376 	 *                                                         // sd is freed
3377 	 *                                                         kernfs_new_node(sd)
3378 	 *                                                           kernfs_get(glue_dir)
3379 	 *                                                           kernfs_add_one()
3380 	 *                                                           kernfs_put()
3381 	 *
3382 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3383 	 * a new device under glue dir, the glue_dir kobject reference count
3384 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3385 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3386 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3387 	 *
3388 	 * Then the CPU2 will see a stale "empty" but still potentially used
3389 	 * glue dir around in kernfs_new_node().
3390 	 *
3391 	 * In order to avoid this happening, we also should make sure that
3392 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3393 	 * for glue_dir kobj is 1.
3394 	 */
3395 	ref = kref_read(&glue_dir->kref);
3396 	if (!kobject_has_children(glue_dir) && !--ref)
3397 		kobject_del(glue_dir);
3398 	kobject_put(glue_dir);
3399 	mutex_unlock(&gdp_mutex);
3400 }
3401 
3402 static int device_add_class_symlinks(struct device *dev)
3403 {
3404 	struct device_node *of_node = dev_of_node(dev);
3405 	struct subsys_private *sp;
3406 	int error;
3407 
3408 	if (of_node) {
3409 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3410 		if (error)
3411 			dev_warn(dev, "Error %d creating of_node link\n",error);
3412 		/* An error here doesn't warrant bringing down the device */
3413 	}
3414 
3415 	sp = class_to_subsys(dev->class);
3416 	if (!sp)
3417 		return 0;
3418 
3419 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3420 	if (error)
3421 		goto out_devnode;
3422 
3423 	if (dev->parent && device_is_not_partition(dev)) {
3424 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3425 					  "device");
3426 		if (error)
3427 			goto out_subsys;
3428 	}
3429 
3430 	/* link in the class directory pointing to the device */
3431 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3432 	if (error)
3433 		goto out_device;
3434 	goto exit;
3435 
3436 out_device:
3437 	sysfs_remove_link(&dev->kobj, "device");
3438 out_subsys:
3439 	sysfs_remove_link(&dev->kobj, "subsystem");
3440 out_devnode:
3441 	sysfs_remove_link(&dev->kobj, "of_node");
3442 exit:
3443 	subsys_put(sp);
3444 	return error;
3445 }
3446 
3447 static void device_remove_class_symlinks(struct device *dev)
3448 {
3449 	struct subsys_private *sp = class_to_subsys(dev->class);
3450 
3451 	if (dev_of_node(dev))
3452 		sysfs_remove_link(&dev->kobj, "of_node");
3453 
3454 	if (!sp)
3455 		return;
3456 
3457 	if (dev->parent && device_is_not_partition(dev))
3458 		sysfs_remove_link(&dev->kobj, "device");
3459 	sysfs_remove_link(&dev->kobj, "subsystem");
3460 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3461 	subsys_put(sp);
3462 }
3463 
3464 /**
3465  * dev_set_name - set a device name
3466  * @dev: device
3467  * @fmt: format string for the device's name
3468  */
3469 int dev_set_name(struct device *dev, const char *fmt, ...)
3470 {
3471 	va_list vargs;
3472 	int err;
3473 
3474 	va_start(vargs, fmt);
3475 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3476 	va_end(vargs);
3477 	return err;
3478 }
3479 EXPORT_SYMBOL_GPL(dev_set_name);
3480 
3481 /* select a /sys/dev/ directory for the device */
3482 static struct kobject *device_to_dev_kobj(struct device *dev)
3483 {
3484 	if (is_blockdev(dev))
3485 		return sysfs_dev_block_kobj;
3486 	else
3487 		return sysfs_dev_char_kobj;
3488 }
3489 
3490 static int device_create_sys_dev_entry(struct device *dev)
3491 {
3492 	struct kobject *kobj = device_to_dev_kobj(dev);
3493 	int error = 0;
3494 	char devt_str[15];
3495 
3496 	if (kobj) {
3497 		format_dev_t(devt_str, dev->devt);
3498 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3499 	}
3500 
3501 	return error;
3502 }
3503 
3504 static void device_remove_sys_dev_entry(struct device *dev)
3505 {
3506 	struct kobject *kobj = device_to_dev_kobj(dev);
3507 	char devt_str[15];
3508 
3509 	if (kobj) {
3510 		format_dev_t(devt_str, dev->devt);
3511 		sysfs_remove_link(kobj, devt_str);
3512 	}
3513 }
3514 
3515 static int device_private_init(struct device *dev)
3516 {
3517 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3518 	if (!dev->p)
3519 		return -ENOMEM;
3520 	dev->p->device = dev;
3521 	klist_init(&dev->p->klist_children, klist_children_get,
3522 		   klist_children_put);
3523 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3524 	return 0;
3525 }
3526 
3527 /**
3528  * device_add - add device to device hierarchy.
3529  * @dev: device.
3530  *
3531  * This is part 2 of device_register(), though may be called
3532  * separately _iff_ device_initialize() has been called separately.
3533  *
3534  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3535  * to the global and sibling lists for the device, then
3536  * adds it to the other relevant subsystems of the driver model.
3537  *
3538  * Do not call this routine or device_register() more than once for
3539  * any device structure.  The driver model core is not designed to work
3540  * with devices that get unregistered and then spring back to life.
3541  * (Among other things, it's very hard to guarantee that all references
3542  * to the previous incarnation of @dev have been dropped.)  Allocate
3543  * and register a fresh new struct device instead.
3544  *
3545  * NOTE: _Never_ directly free @dev after calling this function, even
3546  * if it returned an error! Always use put_device() to give up your
3547  * reference instead.
3548  *
3549  * Rule of thumb is: if device_add() succeeds, you should call
3550  * device_del() when you want to get rid of it. If device_add() has
3551  * *not* succeeded, use *only* put_device() to drop the reference
3552  * count.
3553  */
3554 int device_add(struct device *dev)
3555 {
3556 	struct subsys_private *sp;
3557 	struct device *parent;
3558 	struct kobject *kobj;
3559 	struct class_interface *class_intf;
3560 	int error = -EINVAL;
3561 	struct kobject *glue_dir = NULL;
3562 
3563 	dev = get_device(dev);
3564 	if (!dev)
3565 		goto done;
3566 
3567 	if (!dev->p) {
3568 		error = device_private_init(dev);
3569 		if (error)
3570 			goto done;
3571 	}
3572 
3573 	/*
3574 	 * for statically allocated devices, which should all be converted
3575 	 * some day, we need to initialize the name. We prevent reading back
3576 	 * the name, and force the use of dev_name()
3577 	 */
3578 	if (dev->init_name) {
3579 		error = dev_set_name(dev, "%s", dev->init_name);
3580 		dev->init_name = NULL;
3581 	}
3582 
3583 	if (dev_name(dev))
3584 		error = 0;
3585 	/* subsystems can specify simple device enumeration */
3586 	else if (dev->bus && dev->bus->dev_name)
3587 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3588 	else
3589 		error = -EINVAL;
3590 	if (error)
3591 		goto name_error;
3592 
3593 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3594 
3595 	parent = get_device(dev->parent);
3596 	kobj = get_device_parent(dev, parent);
3597 	if (IS_ERR(kobj)) {
3598 		error = PTR_ERR(kobj);
3599 		goto parent_error;
3600 	}
3601 	if (kobj)
3602 		dev->kobj.parent = kobj;
3603 
3604 	/* use parent numa_node */
3605 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3606 		set_dev_node(dev, dev_to_node(parent));
3607 
3608 	/* first, register with generic layer. */
3609 	/* we require the name to be set before, and pass NULL */
3610 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3611 	if (error) {
3612 		glue_dir = kobj;
3613 		goto Error;
3614 	}
3615 
3616 	/* notify platform of device entry */
3617 	device_platform_notify(dev);
3618 
3619 	error = device_create_file(dev, &dev_attr_uevent);
3620 	if (error)
3621 		goto attrError;
3622 
3623 	error = device_add_class_symlinks(dev);
3624 	if (error)
3625 		goto SymlinkError;
3626 	error = device_add_attrs(dev);
3627 	if (error)
3628 		goto AttrsError;
3629 	error = bus_add_device(dev);
3630 	if (error)
3631 		goto BusError;
3632 	error = dpm_sysfs_add(dev);
3633 	if (error)
3634 		goto DPMError;
3635 	device_pm_add(dev);
3636 
3637 	if (MAJOR(dev->devt)) {
3638 		error = device_create_file(dev, &dev_attr_dev);
3639 		if (error)
3640 			goto DevAttrError;
3641 
3642 		error = device_create_sys_dev_entry(dev);
3643 		if (error)
3644 			goto SysEntryError;
3645 
3646 		devtmpfs_create_node(dev);
3647 	}
3648 
3649 	/* Notify clients of device addition.  This call must come
3650 	 * after dpm_sysfs_add() and before kobject_uevent().
3651 	 */
3652 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3653 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3654 
3655 	/*
3656 	 * Check if any of the other devices (consumers) have been waiting for
3657 	 * this device (supplier) to be added so that they can create a device
3658 	 * link to it.
3659 	 *
3660 	 * This needs to happen after device_pm_add() because device_link_add()
3661 	 * requires the supplier be registered before it's called.
3662 	 *
3663 	 * But this also needs to happen before bus_probe_device() to make sure
3664 	 * waiting consumers can link to it before the driver is bound to the
3665 	 * device and the driver sync_state callback is called for this device.
3666 	 */
3667 	if (dev->fwnode && !dev->fwnode->dev) {
3668 		dev->fwnode->dev = dev;
3669 		fw_devlink_link_device(dev);
3670 	}
3671 
3672 	bus_probe_device(dev);
3673 
3674 	/*
3675 	 * If all driver registration is done and a newly added device doesn't
3676 	 * match with any driver, don't block its consumers from probing in
3677 	 * case the consumer device is able to operate without this supplier.
3678 	 */
3679 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3680 		fw_devlink_unblock_consumers(dev);
3681 
3682 	if (parent)
3683 		klist_add_tail(&dev->p->knode_parent,
3684 			       &parent->p->klist_children);
3685 
3686 	sp = class_to_subsys(dev->class);
3687 	if (sp) {
3688 		mutex_lock(&sp->mutex);
3689 		/* tie the class to the device */
3690 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3691 
3692 		/* notify any interfaces that the device is here */
3693 		list_for_each_entry(class_intf, &sp->interfaces, node)
3694 			if (class_intf->add_dev)
3695 				class_intf->add_dev(dev);
3696 		mutex_unlock(&sp->mutex);
3697 		subsys_put(sp);
3698 	}
3699 done:
3700 	put_device(dev);
3701 	return error;
3702  SysEntryError:
3703 	if (MAJOR(dev->devt))
3704 		device_remove_file(dev, &dev_attr_dev);
3705  DevAttrError:
3706 	device_pm_remove(dev);
3707 	dpm_sysfs_remove(dev);
3708  DPMError:
3709 	dev->driver = NULL;
3710 	bus_remove_device(dev);
3711  BusError:
3712 	device_remove_attrs(dev);
3713  AttrsError:
3714 	device_remove_class_symlinks(dev);
3715  SymlinkError:
3716 	device_remove_file(dev, &dev_attr_uevent);
3717  attrError:
3718 	device_platform_notify_remove(dev);
3719 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3720 	glue_dir = get_glue_dir(dev);
3721 	kobject_del(&dev->kobj);
3722  Error:
3723 	cleanup_glue_dir(dev, glue_dir);
3724 parent_error:
3725 	put_device(parent);
3726 name_error:
3727 	kfree(dev->p);
3728 	dev->p = NULL;
3729 	goto done;
3730 }
3731 EXPORT_SYMBOL_GPL(device_add);
3732 
3733 /**
3734  * device_register - register a device with the system.
3735  * @dev: pointer to the device structure
3736  *
3737  * This happens in two clean steps - initialize the device
3738  * and add it to the system. The two steps can be called
3739  * separately, but this is the easiest and most common.
3740  * I.e. you should only call the two helpers separately if
3741  * have a clearly defined need to use and refcount the device
3742  * before it is added to the hierarchy.
3743  *
3744  * For more information, see the kerneldoc for device_initialize()
3745  * and device_add().
3746  *
3747  * NOTE: _Never_ directly free @dev after calling this function, even
3748  * if it returned an error! Always use put_device() to give up the
3749  * reference initialized in this function instead.
3750  */
3751 int device_register(struct device *dev)
3752 {
3753 	device_initialize(dev);
3754 	return device_add(dev);
3755 }
3756 EXPORT_SYMBOL_GPL(device_register);
3757 
3758 /**
3759  * get_device - increment reference count for device.
3760  * @dev: device.
3761  *
3762  * This simply forwards the call to kobject_get(), though
3763  * we do take care to provide for the case that we get a NULL
3764  * pointer passed in.
3765  */
3766 struct device *get_device(struct device *dev)
3767 {
3768 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3769 }
3770 EXPORT_SYMBOL_GPL(get_device);
3771 
3772 /**
3773  * put_device - decrement reference count.
3774  * @dev: device in question.
3775  */
3776 void put_device(struct device *dev)
3777 {
3778 	/* might_sleep(); */
3779 	if (dev)
3780 		kobject_put(&dev->kobj);
3781 }
3782 EXPORT_SYMBOL_GPL(put_device);
3783 
3784 bool kill_device(struct device *dev)
3785 {
3786 	/*
3787 	 * Require the device lock and set the "dead" flag to guarantee that
3788 	 * the update behavior is consistent with the other bitfields near
3789 	 * it and that we cannot have an asynchronous probe routine trying
3790 	 * to run while we are tearing out the bus/class/sysfs from
3791 	 * underneath the device.
3792 	 */
3793 	device_lock_assert(dev);
3794 
3795 	if (dev->p->dead)
3796 		return false;
3797 	dev->p->dead = true;
3798 	return true;
3799 }
3800 EXPORT_SYMBOL_GPL(kill_device);
3801 
3802 /**
3803  * device_del - delete device from system.
3804  * @dev: device.
3805  *
3806  * This is the first part of the device unregistration
3807  * sequence. This removes the device from the lists we control
3808  * from here, has it removed from the other driver model
3809  * subsystems it was added to in device_add(), and removes it
3810  * from the kobject hierarchy.
3811  *
3812  * NOTE: this should be called manually _iff_ device_add() was
3813  * also called manually.
3814  */
3815 void device_del(struct device *dev)
3816 {
3817 	struct subsys_private *sp;
3818 	struct device *parent = dev->parent;
3819 	struct kobject *glue_dir = NULL;
3820 	struct class_interface *class_intf;
3821 	unsigned int noio_flag;
3822 
3823 	device_lock(dev);
3824 	kill_device(dev);
3825 	device_unlock(dev);
3826 
3827 	if (dev->fwnode && dev->fwnode->dev == dev)
3828 		dev->fwnode->dev = NULL;
3829 
3830 	/* Notify clients of device removal.  This call must come
3831 	 * before dpm_sysfs_remove().
3832 	 */
3833 	noio_flag = memalloc_noio_save();
3834 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3835 
3836 	dpm_sysfs_remove(dev);
3837 	if (parent)
3838 		klist_del(&dev->p->knode_parent);
3839 	if (MAJOR(dev->devt)) {
3840 		devtmpfs_delete_node(dev);
3841 		device_remove_sys_dev_entry(dev);
3842 		device_remove_file(dev, &dev_attr_dev);
3843 	}
3844 
3845 	sp = class_to_subsys(dev->class);
3846 	if (sp) {
3847 		device_remove_class_symlinks(dev);
3848 
3849 		mutex_lock(&sp->mutex);
3850 		/* notify any interfaces that the device is now gone */
3851 		list_for_each_entry(class_intf, &sp->interfaces, node)
3852 			if (class_intf->remove_dev)
3853 				class_intf->remove_dev(dev);
3854 		/* remove the device from the class list */
3855 		klist_del(&dev->p->knode_class);
3856 		mutex_unlock(&sp->mutex);
3857 		subsys_put(sp);
3858 	}
3859 	device_remove_file(dev, &dev_attr_uevent);
3860 	device_remove_attrs(dev);
3861 	bus_remove_device(dev);
3862 	device_pm_remove(dev);
3863 	driver_deferred_probe_del(dev);
3864 	device_platform_notify_remove(dev);
3865 	device_links_purge(dev);
3866 
3867 	/*
3868 	 * If a device does not have a driver attached, we need to clean
3869 	 * up any managed resources. We do this in device_release(), but
3870 	 * it's never called (and we leak the device) if a managed
3871 	 * resource holds a reference to the device. So release all
3872 	 * managed resources here, like we do in driver_detach(). We
3873 	 * still need to do so again in device_release() in case someone
3874 	 * adds a new resource after this point, though.
3875 	 */
3876 	devres_release_all(dev);
3877 
3878 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3879 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3880 	glue_dir = get_glue_dir(dev);
3881 	kobject_del(&dev->kobj);
3882 	cleanup_glue_dir(dev, glue_dir);
3883 	memalloc_noio_restore(noio_flag);
3884 	put_device(parent);
3885 }
3886 EXPORT_SYMBOL_GPL(device_del);
3887 
3888 /**
3889  * device_unregister - unregister device from system.
3890  * @dev: device going away.
3891  *
3892  * We do this in two parts, like we do device_register(). First,
3893  * we remove it from all the subsystems with device_del(), then
3894  * we decrement the reference count via put_device(). If that
3895  * is the final reference count, the device will be cleaned up
3896  * via device_release() above. Otherwise, the structure will
3897  * stick around until the final reference to the device is dropped.
3898  */
3899 void device_unregister(struct device *dev)
3900 {
3901 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3902 	device_del(dev);
3903 	put_device(dev);
3904 }
3905 EXPORT_SYMBOL_GPL(device_unregister);
3906 
3907 static struct device *prev_device(struct klist_iter *i)
3908 {
3909 	struct klist_node *n = klist_prev(i);
3910 	struct device *dev = NULL;
3911 	struct device_private *p;
3912 
3913 	if (n) {
3914 		p = to_device_private_parent(n);
3915 		dev = p->device;
3916 	}
3917 	return dev;
3918 }
3919 
3920 static struct device *next_device(struct klist_iter *i)
3921 {
3922 	struct klist_node *n = klist_next(i);
3923 	struct device *dev = NULL;
3924 	struct device_private *p;
3925 
3926 	if (n) {
3927 		p = to_device_private_parent(n);
3928 		dev = p->device;
3929 	}
3930 	return dev;
3931 }
3932 
3933 /**
3934  * device_get_devnode - path of device node file
3935  * @dev: device
3936  * @mode: returned file access mode
3937  * @uid: returned file owner
3938  * @gid: returned file group
3939  * @tmp: possibly allocated string
3940  *
3941  * Return the relative path of a possible device node.
3942  * Non-default names may need to allocate a memory to compose
3943  * a name. This memory is returned in tmp and needs to be
3944  * freed by the caller.
3945  */
3946 const char *device_get_devnode(const struct device *dev,
3947 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3948 			       const char **tmp)
3949 {
3950 	char *s;
3951 
3952 	*tmp = NULL;
3953 
3954 	/* the device type may provide a specific name */
3955 	if (dev->type && dev->type->devnode)
3956 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3957 	if (*tmp)
3958 		return *tmp;
3959 
3960 	/* the class may provide a specific name */
3961 	if (dev->class && dev->class->devnode)
3962 		*tmp = dev->class->devnode(dev, mode);
3963 	if (*tmp)
3964 		return *tmp;
3965 
3966 	/* return name without allocation, tmp == NULL */
3967 	if (strchr(dev_name(dev), '!') == NULL)
3968 		return dev_name(dev);
3969 
3970 	/* replace '!' in the name with '/' */
3971 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3972 	if (!s)
3973 		return NULL;
3974 	return *tmp = s;
3975 }
3976 
3977 /**
3978  * device_for_each_child - device child iterator.
3979  * @parent: parent struct device.
3980  * @fn: function to be called for each device.
3981  * @data: data for the callback.
3982  *
3983  * Iterate over @parent's child devices, and call @fn for each,
3984  * passing it @data.
3985  *
3986  * We check the return of @fn each time. If it returns anything
3987  * other than 0, we break out and return that value.
3988  */
3989 int device_for_each_child(struct device *parent, void *data,
3990 			  int (*fn)(struct device *dev, void *data))
3991 {
3992 	struct klist_iter i;
3993 	struct device *child;
3994 	int error = 0;
3995 
3996 	if (!parent || !parent->p)
3997 		return 0;
3998 
3999 	klist_iter_init(&parent->p->klist_children, &i);
4000 	while (!error && (child = next_device(&i)))
4001 		error = fn(child, data);
4002 	klist_iter_exit(&i);
4003 	return error;
4004 }
4005 EXPORT_SYMBOL_GPL(device_for_each_child);
4006 
4007 /**
4008  * device_for_each_child_reverse - device child iterator in reversed order.
4009  * @parent: parent struct device.
4010  * @fn: function to be called for each device.
4011  * @data: data for the callback.
4012  *
4013  * Iterate over @parent's child devices, and call @fn for each,
4014  * passing it @data.
4015  *
4016  * We check the return of @fn each time. If it returns anything
4017  * other than 0, we break out and return that value.
4018  */
4019 int device_for_each_child_reverse(struct device *parent, void *data,
4020 				  int (*fn)(struct device *dev, void *data))
4021 {
4022 	struct klist_iter i;
4023 	struct device *child;
4024 	int error = 0;
4025 
4026 	if (!parent || !parent->p)
4027 		return 0;
4028 
4029 	klist_iter_init(&parent->p->klist_children, &i);
4030 	while ((child = prev_device(&i)) && !error)
4031 		error = fn(child, data);
4032 	klist_iter_exit(&i);
4033 	return error;
4034 }
4035 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4036 
4037 /**
4038  * device_for_each_child_reverse_from - device child iterator in reversed order.
4039  * @parent: parent struct device.
4040  * @from: optional starting point in child list
4041  * @fn: function to be called for each device.
4042  * @data: data for the callback.
4043  *
4044  * Iterate over @parent's child devices, starting at @from, and call @fn
4045  * for each, passing it @data. This helper is identical to
4046  * device_for_each_child_reverse() when @from is NULL.
4047  *
4048  * @fn is checked each iteration. If it returns anything other than 0,
4049  * iteration stop and that value is returned to the caller of
4050  * device_for_each_child_reverse_from();
4051  */
4052 int device_for_each_child_reverse_from(struct device *parent,
4053 				       struct device *from, const void *data,
4054 				       int (*fn)(struct device *, const void *))
4055 {
4056 	struct klist_iter i;
4057 	struct device *child;
4058 	int error = 0;
4059 
4060 	if (!parent->p)
4061 		return 0;
4062 
4063 	klist_iter_init_node(&parent->p->klist_children, &i,
4064 			     (from ? &from->p->knode_parent : NULL));
4065 	while ((child = prev_device(&i)) && !error)
4066 		error = fn(child, data);
4067 	klist_iter_exit(&i);
4068 	return error;
4069 }
4070 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4071 
4072 /**
4073  * device_find_child - device iterator for locating a particular device.
4074  * @parent: parent struct device
4075  * @match: Callback function to check device
4076  * @data: Data to pass to match function
4077  *
4078  * This is similar to the device_for_each_child() function above, but it
4079  * returns a reference to a device that is 'found' for later use, as
4080  * determined by the @match callback.
4081  *
4082  * The callback should return 0 if the device doesn't match and non-zero
4083  * if it does.  If the callback returns non-zero and a reference to the
4084  * current device can be obtained, this function will return to the caller
4085  * and not iterate over any more devices.
4086  *
4087  * NOTE: you will need to drop the reference with put_device() after use.
4088  */
4089 struct device *device_find_child(struct device *parent, void *data,
4090 				 int (*match)(struct device *dev, void *data))
4091 {
4092 	struct klist_iter i;
4093 	struct device *child;
4094 
4095 	if (!parent || !parent->p)
4096 		return NULL;
4097 
4098 	klist_iter_init(&parent->p->klist_children, &i);
4099 	while ((child = next_device(&i)))
4100 		if (match(child, data) && get_device(child))
4101 			break;
4102 	klist_iter_exit(&i);
4103 	return child;
4104 }
4105 EXPORT_SYMBOL_GPL(device_find_child);
4106 
4107 /**
4108  * device_find_child_by_name - device iterator for locating a child device.
4109  * @parent: parent struct device
4110  * @name: name of the child device
4111  *
4112  * This is similar to the device_find_child() function above, but it
4113  * returns a reference to a device that has the name @name.
4114  *
4115  * NOTE: you will need to drop the reference with put_device() after use.
4116  */
4117 struct device *device_find_child_by_name(struct device *parent,
4118 					 const char *name)
4119 {
4120 	struct klist_iter i;
4121 	struct device *child;
4122 
4123 	if (!parent)
4124 		return NULL;
4125 
4126 	klist_iter_init(&parent->p->klist_children, &i);
4127 	while ((child = next_device(&i)))
4128 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4129 			break;
4130 	klist_iter_exit(&i);
4131 	return child;
4132 }
4133 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4134 
4135 static int match_any(struct device *dev, void *unused)
4136 {
4137 	return 1;
4138 }
4139 
4140 /**
4141  * device_find_any_child - device iterator for locating a child device, if any.
4142  * @parent: parent struct device
4143  *
4144  * This is similar to the device_find_child() function above, but it
4145  * returns a reference to a child device, if any.
4146  *
4147  * NOTE: you will need to drop the reference with put_device() after use.
4148  */
4149 struct device *device_find_any_child(struct device *parent)
4150 {
4151 	return device_find_child(parent, NULL, match_any);
4152 }
4153 EXPORT_SYMBOL_GPL(device_find_any_child);
4154 
4155 int __init devices_init(void)
4156 {
4157 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4158 	if (!devices_kset)
4159 		return -ENOMEM;
4160 	dev_kobj = kobject_create_and_add("dev", NULL);
4161 	if (!dev_kobj)
4162 		goto dev_kobj_err;
4163 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4164 	if (!sysfs_dev_block_kobj)
4165 		goto block_kobj_err;
4166 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4167 	if (!sysfs_dev_char_kobj)
4168 		goto char_kobj_err;
4169 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4170 	if (!device_link_wq)
4171 		goto wq_err;
4172 
4173 	return 0;
4174 
4175  wq_err:
4176 	kobject_put(sysfs_dev_char_kobj);
4177  char_kobj_err:
4178 	kobject_put(sysfs_dev_block_kobj);
4179  block_kobj_err:
4180 	kobject_put(dev_kobj);
4181  dev_kobj_err:
4182 	kset_unregister(devices_kset);
4183 	return -ENOMEM;
4184 }
4185 
4186 static int device_check_offline(struct device *dev, void *not_used)
4187 {
4188 	int ret;
4189 
4190 	ret = device_for_each_child(dev, NULL, device_check_offline);
4191 	if (ret)
4192 		return ret;
4193 
4194 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4195 }
4196 
4197 /**
4198  * device_offline - Prepare the device for hot-removal.
4199  * @dev: Device to be put offline.
4200  *
4201  * Execute the device bus type's .offline() callback, if present, to prepare
4202  * the device for a subsequent hot-removal.  If that succeeds, the device must
4203  * not be used until either it is removed or its bus type's .online() callback
4204  * is executed.
4205  *
4206  * Call under device_hotplug_lock.
4207  */
4208 int device_offline(struct device *dev)
4209 {
4210 	int ret;
4211 
4212 	if (dev->offline_disabled)
4213 		return -EPERM;
4214 
4215 	ret = device_for_each_child(dev, NULL, device_check_offline);
4216 	if (ret)
4217 		return ret;
4218 
4219 	device_lock(dev);
4220 	if (device_supports_offline(dev)) {
4221 		if (dev->offline) {
4222 			ret = 1;
4223 		} else {
4224 			ret = dev->bus->offline(dev);
4225 			if (!ret) {
4226 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4227 				dev->offline = true;
4228 			}
4229 		}
4230 	}
4231 	device_unlock(dev);
4232 
4233 	return ret;
4234 }
4235 
4236 /**
4237  * device_online - Put the device back online after successful device_offline().
4238  * @dev: Device to be put back online.
4239  *
4240  * If device_offline() has been successfully executed for @dev, but the device
4241  * has not been removed subsequently, execute its bus type's .online() callback
4242  * to indicate that the device can be used again.
4243  *
4244  * Call under device_hotplug_lock.
4245  */
4246 int device_online(struct device *dev)
4247 {
4248 	int ret = 0;
4249 
4250 	device_lock(dev);
4251 	if (device_supports_offline(dev)) {
4252 		if (dev->offline) {
4253 			ret = dev->bus->online(dev);
4254 			if (!ret) {
4255 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4256 				dev->offline = false;
4257 			}
4258 		} else {
4259 			ret = 1;
4260 		}
4261 	}
4262 	device_unlock(dev);
4263 
4264 	return ret;
4265 }
4266 
4267 struct root_device {
4268 	struct device dev;
4269 	struct module *owner;
4270 };
4271 
4272 static inline struct root_device *to_root_device(struct device *d)
4273 {
4274 	return container_of(d, struct root_device, dev);
4275 }
4276 
4277 static void root_device_release(struct device *dev)
4278 {
4279 	kfree(to_root_device(dev));
4280 }
4281 
4282 /**
4283  * __root_device_register - allocate and register a root device
4284  * @name: root device name
4285  * @owner: owner module of the root device, usually THIS_MODULE
4286  *
4287  * This function allocates a root device and registers it
4288  * using device_register(). In order to free the returned
4289  * device, use root_device_unregister().
4290  *
4291  * Root devices are dummy devices which allow other devices
4292  * to be grouped under /sys/devices. Use this function to
4293  * allocate a root device and then use it as the parent of
4294  * any device which should appear under /sys/devices/{name}
4295  *
4296  * The /sys/devices/{name} directory will also contain a
4297  * 'module' symlink which points to the @owner directory
4298  * in sysfs.
4299  *
4300  * Returns &struct device pointer on success, or ERR_PTR() on error.
4301  *
4302  * Note: You probably want to use root_device_register().
4303  */
4304 struct device *__root_device_register(const char *name, struct module *owner)
4305 {
4306 	struct root_device *root;
4307 	int err = -ENOMEM;
4308 
4309 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4310 	if (!root)
4311 		return ERR_PTR(err);
4312 
4313 	err = dev_set_name(&root->dev, "%s", name);
4314 	if (err) {
4315 		kfree(root);
4316 		return ERR_PTR(err);
4317 	}
4318 
4319 	root->dev.release = root_device_release;
4320 
4321 	err = device_register(&root->dev);
4322 	if (err) {
4323 		put_device(&root->dev);
4324 		return ERR_PTR(err);
4325 	}
4326 
4327 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4328 	if (owner) {
4329 		struct module_kobject *mk = &owner->mkobj;
4330 
4331 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4332 		if (err) {
4333 			device_unregister(&root->dev);
4334 			return ERR_PTR(err);
4335 		}
4336 		root->owner = owner;
4337 	}
4338 #endif
4339 
4340 	return &root->dev;
4341 }
4342 EXPORT_SYMBOL_GPL(__root_device_register);
4343 
4344 /**
4345  * root_device_unregister - unregister and free a root device
4346  * @dev: device going away
4347  *
4348  * This function unregisters and cleans up a device that was created by
4349  * root_device_register().
4350  */
4351 void root_device_unregister(struct device *dev)
4352 {
4353 	struct root_device *root = to_root_device(dev);
4354 
4355 	if (root->owner)
4356 		sysfs_remove_link(&root->dev.kobj, "module");
4357 
4358 	device_unregister(dev);
4359 }
4360 EXPORT_SYMBOL_GPL(root_device_unregister);
4361 
4362 
4363 static void device_create_release(struct device *dev)
4364 {
4365 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4366 	kfree(dev);
4367 }
4368 
4369 static __printf(6, 0) struct device *
4370 device_create_groups_vargs(const struct class *class, struct device *parent,
4371 			   dev_t devt, void *drvdata,
4372 			   const struct attribute_group **groups,
4373 			   const char *fmt, va_list args)
4374 {
4375 	struct device *dev = NULL;
4376 	int retval = -ENODEV;
4377 
4378 	if (IS_ERR_OR_NULL(class))
4379 		goto error;
4380 
4381 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4382 	if (!dev) {
4383 		retval = -ENOMEM;
4384 		goto error;
4385 	}
4386 
4387 	device_initialize(dev);
4388 	dev->devt = devt;
4389 	dev->class = class;
4390 	dev->parent = parent;
4391 	dev->groups = groups;
4392 	dev->release = device_create_release;
4393 	dev_set_drvdata(dev, drvdata);
4394 
4395 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4396 	if (retval)
4397 		goto error;
4398 
4399 	retval = device_add(dev);
4400 	if (retval)
4401 		goto error;
4402 
4403 	return dev;
4404 
4405 error:
4406 	put_device(dev);
4407 	return ERR_PTR(retval);
4408 }
4409 
4410 /**
4411  * device_create - creates a device and registers it with sysfs
4412  * @class: pointer to the struct class that this device should be registered to
4413  * @parent: pointer to the parent struct device of this new device, if any
4414  * @devt: the dev_t for the char device to be added
4415  * @drvdata: the data to be added to the device for callbacks
4416  * @fmt: string for the device's name
4417  *
4418  * This function can be used by char device classes.  A struct device
4419  * will be created in sysfs, registered to the specified class.
4420  *
4421  * A "dev" file will be created, showing the dev_t for the device, if
4422  * the dev_t is not 0,0.
4423  * If a pointer to a parent struct device is passed in, the newly created
4424  * struct device will be a child of that device in sysfs.
4425  * The pointer to the struct device will be returned from the call.
4426  * Any further sysfs files that might be required can be created using this
4427  * pointer.
4428  *
4429  * Returns &struct device pointer on success, or ERR_PTR() on error.
4430  */
4431 struct device *device_create(const struct class *class, struct device *parent,
4432 			     dev_t devt, void *drvdata, const char *fmt, ...)
4433 {
4434 	va_list vargs;
4435 	struct device *dev;
4436 
4437 	va_start(vargs, fmt);
4438 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4439 					  fmt, vargs);
4440 	va_end(vargs);
4441 	return dev;
4442 }
4443 EXPORT_SYMBOL_GPL(device_create);
4444 
4445 /**
4446  * device_create_with_groups - creates a device and registers it with sysfs
4447  * @class: pointer to the struct class that this device should be registered to
4448  * @parent: pointer to the parent struct device of this new device, if any
4449  * @devt: the dev_t for the char device to be added
4450  * @drvdata: the data to be added to the device for callbacks
4451  * @groups: NULL-terminated list of attribute groups to be created
4452  * @fmt: string for the device's name
4453  *
4454  * This function can be used by char device classes.  A struct device
4455  * will be created in sysfs, registered to the specified class.
4456  * Additional attributes specified in the groups parameter will also
4457  * be created automatically.
4458  *
4459  * A "dev" file will be created, showing the dev_t for the device, if
4460  * the dev_t is not 0,0.
4461  * If a pointer to a parent struct device is passed in, the newly created
4462  * struct device will be a child of that device in sysfs.
4463  * The pointer to the struct device will be returned from the call.
4464  * Any further sysfs files that might be required can be created using this
4465  * pointer.
4466  *
4467  * Returns &struct device pointer on success, or ERR_PTR() on error.
4468  */
4469 struct device *device_create_with_groups(const struct class *class,
4470 					 struct device *parent, dev_t devt,
4471 					 void *drvdata,
4472 					 const struct attribute_group **groups,
4473 					 const char *fmt, ...)
4474 {
4475 	va_list vargs;
4476 	struct device *dev;
4477 
4478 	va_start(vargs, fmt);
4479 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4480 					 fmt, vargs);
4481 	va_end(vargs);
4482 	return dev;
4483 }
4484 EXPORT_SYMBOL_GPL(device_create_with_groups);
4485 
4486 /**
4487  * device_destroy - removes a device that was created with device_create()
4488  * @class: pointer to the struct class that this device was registered with
4489  * @devt: the dev_t of the device that was previously registered
4490  *
4491  * This call unregisters and cleans up a device that was created with a
4492  * call to device_create().
4493  */
4494 void device_destroy(const struct class *class, dev_t devt)
4495 {
4496 	struct device *dev;
4497 
4498 	dev = class_find_device_by_devt(class, devt);
4499 	if (dev) {
4500 		put_device(dev);
4501 		device_unregister(dev);
4502 	}
4503 }
4504 EXPORT_SYMBOL_GPL(device_destroy);
4505 
4506 /**
4507  * device_rename - renames a device
4508  * @dev: the pointer to the struct device to be renamed
4509  * @new_name: the new name of the device
4510  *
4511  * It is the responsibility of the caller to provide mutual
4512  * exclusion between two different calls of device_rename
4513  * on the same device to ensure that new_name is valid and
4514  * won't conflict with other devices.
4515  *
4516  * Note: given that some subsystems (networking and infiniband) use this
4517  * function, with no immediate plans for this to change, we cannot assume or
4518  * require that this function not be called at all.
4519  *
4520  * However, if you're writing new code, do not call this function. The following
4521  * text from Kay Sievers offers some insight:
4522  *
4523  * Renaming devices is racy at many levels, symlinks and other stuff are not
4524  * replaced atomically, and you get a "move" uevent, but it's not easy to
4525  * connect the event to the old and new device. Device nodes are not renamed at
4526  * all, there isn't even support for that in the kernel now.
4527  *
4528  * In the meantime, during renaming, your target name might be taken by another
4529  * driver, creating conflicts. Or the old name is taken directly after you
4530  * renamed it -- then you get events for the same DEVPATH, before you even see
4531  * the "move" event. It's just a mess, and nothing new should ever rely on
4532  * kernel device renaming. Besides that, it's not even implemented now for
4533  * other things than (driver-core wise very simple) network devices.
4534  *
4535  * Make up a "real" name in the driver before you register anything, or add
4536  * some other attributes for userspace to find the device, or use udev to add
4537  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4538  * don't even want to get into that and try to implement the missing pieces in
4539  * the core. We really have other pieces to fix in the driver core mess. :)
4540  */
4541 int device_rename(struct device *dev, const char *new_name)
4542 {
4543 	struct subsys_private *sp = NULL;
4544 	struct kobject *kobj = &dev->kobj;
4545 	char *old_device_name = NULL;
4546 	int error;
4547 	bool is_link_renamed = false;
4548 
4549 	dev = get_device(dev);
4550 	if (!dev)
4551 		return -EINVAL;
4552 
4553 	dev_dbg(dev, "renaming to %s\n", new_name);
4554 
4555 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4556 	if (!old_device_name) {
4557 		error = -ENOMEM;
4558 		goto out;
4559 	}
4560 
4561 	if (dev->class) {
4562 		sp = class_to_subsys(dev->class);
4563 
4564 		if (!sp) {
4565 			error = -EINVAL;
4566 			goto out;
4567 		}
4568 
4569 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4570 					     new_name, kobject_namespace(kobj));
4571 		if (error)
4572 			goto out;
4573 
4574 		is_link_renamed = true;
4575 	}
4576 
4577 	error = kobject_rename(kobj, new_name);
4578 out:
4579 	if (error && is_link_renamed)
4580 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4581 				     old_device_name, kobject_namespace(kobj));
4582 	subsys_put(sp);
4583 
4584 	put_device(dev);
4585 
4586 	kfree(old_device_name);
4587 
4588 	return error;
4589 }
4590 EXPORT_SYMBOL_GPL(device_rename);
4591 
4592 static int device_move_class_links(struct device *dev,
4593 				   struct device *old_parent,
4594 				   struct device *new_parent)
4595 {
4596 	int error = 0;
4597 
4598 	if (old_parent)
4599 		sysfs_remove_link(&dev->kobj, "device");
4600 	if (new_parent)
4601 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4602 					  "device");
4603 	return error;
4604 }
4605 
4606 /**
4607  * device_move - moves a device to a new parent
4608  * @dev: the pointer to the struct device to be moved
4609  * @new_parent: the new parent of the device (can be NULL)
4610  * @dpm_order: how to reorder the dpm_list
4611  */
4612 int device_move(struct device *dev, struct device *new_parent,
4613 		enum dpm_order dpm_order)
4614 {
4615 	int error;
4616 	struct device *old_parent;
4617 	struct kobject *new_parent_kobj;
4618 
4619 	dev = get_device(dev);
4620 	if (!dev)
4621 		return -EINVAL;
4622 
4623 	device_pm_lock();
4624 	new_parent = get_device(new_parent);
4625 	new_parent_kobj = get_device_parent(dev, new_parent);
4626 	if (IS_ERR(new_parent_kobj)) {
4627 		error = PTR_ERR(new_parent_kobj);
4628 		put_device(new_parent);
4629 		goto out;
4630 	}
4631 
4632 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4633 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4634 	error = kobject_move(&dev->kobj, new_parent_kobj);
4635 	if (error) {
4636 		cleanup_glue_dir(dev, new_parent_kobj);
4637 		put_device(new_parent);
4638 		goto out;
4639 	}
4640 	old_parent = dev->parent;
4641 	dev->parent = new_parent;
4642 	if (old_parent)
4643 		klist_remove(&dev->p->knode_parent);
4644 	if (new_parent) {
4645 		klist_add_tail(&dev->p->knode_parent,
4646 			       &new_parent->p->klist_children);
4647 		set_dev_node(dev, dev_to_node(new_parent));
4648 	}
4649 
4650 	if (dev->class) {
4651 		error = device_move_class_links(dev, old_parent, new_parent);
4652 		if (error) {
4653 			/* We ignore errors on cleanup since we're hosed anyway... */
4654 			device_move_class_links(dev, new_parent, old_parent);
4655 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4656 				if (new_parent)
4657 					klist_remove(&dev->p->knode_parent);
4658 				dev->parent = old_parent;
4659 				if (old_parent) {
4660 					klist_add_tail(&dev->p->knode_parent,
4661 						       &old_parent->p->klist_children);
4662 					set_dev_node(dev, dev_to_node(old_parent));
4663 				}
4664 			}
4665 			cleanup_glue_dir(dev, new_parent_kobj);
4666 			put_device(new_parent);
4667 			goto out;
4668 		}
4669 	}
4670 	switch (dpm_order) {
4671 	case DPM_ORDER_NONE:
4672 		break;
4673 	case DPM_ORDER_DEV_AFTER_PARENT:
4674 		device_pm_move_after(dev, new_parent);
4675 		devices_kset_move_after(dev, new_parent);
4676 		break;
4677 	case DPM_ORDER_PARENT_BEFORE_DEV:
4678 		device_pm_move_before(new_parent, dev);
4679 		devices_kset_move_before(new_parent, dev);
4680 		break;
4681 	case DPM_ORDER_DEV_LAST:
4682 		device_pm_move_last(dev);
4683 		devices_kset_move_last(dev);
4684 		break;
4685 	}
4686 
4687 	put_device(old_parent);
4688 out:
4689 	device_pm_unlock();
4690 	put_device(dev);
4691 	return error;
4692 }
4693 EXPORT_SYMBOL_GPL(device_move);
4694 
4695 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4696 				     kgid_t kgid)
4697 {
4698 	struct kobject *kobj = &dev->kobj;
4699 	const struct class *class = dev->class;
4700 	const struct device_type *type = dev->type;
4701 	int error;
4702 
4703 	if (class) {
4704 		/*
4705 		 * Change the device groups of the device class for @dev to
4706 		 * @kuid/@kgid.
4707 		 */
4708 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4709 						  kgid);
4710 		if (error)
4711 			return error;
4712 	}
4713 
4714 	if (type) {
4715 		/*
4716 		 * Change the device groups of the device type for @dev to
4717 		 * @kuid/@kgid.
4718 		 */
4719 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4720 						  kgid);
4721 		if (error)
4722 			return error;
4723 	}
4724 
4725 	/* Change the device groups of @dev to @kuid/@kgid. */
4726 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4727 	if (error)
4728 		return error;
4729 
4730 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4731 		/* Change online device attributes of @dev to @kuid/@kgid. */
4732 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4733 						kuid, kgid);
4734 		if (error)
4735 			return error;
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 /**
4742  * device_change_owner - change the owner of an existing device.
4743  * @dev: device.
4744  * @kuid: new owner's kuid
4745  * @kgid: new owner's kgid
4746  *
4747  * This changes the owner of @dev and its corresponding sysfs entries to
4748  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4749  * core.
4750  *
4751  * Returns 0 on success or error code on failure.
4752  */
4753 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4754 {
4755 	int error;
4756 	struct kobject *kobj = &dev->kobj;
4757 	struct subsys_private *sp;
4758 
4759 	dev = get_device(dev);
4760 	if (!dev)
4761 		return -EINVAL;
4762 
4763 	/*
4764 	 * Change the kobject and the default attributes and groups of the
4765 	 * ktype associated with it to @kuid/@kgid.
4766 	 */
4767 	error = sysfs_change_owner(kobj, kuid, kgid);
4768 	if (error)
4769 		goto out;
4770 
4771 	/*
4772 	 * Change the uevent file for @dev to the new owner. The uevent file
4773 	 * was created in a separate step when @dev got added and we mirror
4774 	 * that step here.
4775 	 */
4776 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4777 					kgid);
4778 	if (error)
4779 		goto out;
4780 
4781 	/*
4782 	 * Change the device groups, the device groups associated with the
4783 	 * device class, and the groups associated with the device type of @dev
4784 	 * to @kuid/@kgid.
4785 	 */
4786 	error = device_attrs_change_owner(dev, kuid, kgid);
4787 	if (error)
4788 		goto out;
4789 
4790 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4791 	if (error)
4792 		goto out;
4793 
4794 	/*
4795 	 * Change the owner of the symlink located in the class directory of
4796 	 * the device class associated with @dev which points to the actual
4797 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4798 	 * symlink shows the same permissions as its target.
4799 	 */
4800 	sp = class_to_subsys(dev->class);
4801 	if (!sp) {
4802 		error = -EINVAL;
4803 		goto out;
4804 	}
4805 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4806 	subsys_put(sp);
4807 
4808 out:
4809 	put_device(dev);
4810 	return error;
4811 }
4812 EXPORT_SYMBOL_GPL(device_change_owner);
4813 
4814 /**
4815  * device_shutdown - call ->shutdown() on each device to shutdown.
4816  */
4817 void device_shutdown(void)
4818 {
4819 	struct device *dev, *parent;
4820 
4821 	wait_for_device_probe();
4822 	device_block_probing();
4823 
4824 	cpufreq_suspend();
4825 
4826 	spin_lock(&devices_kset->list_lock);
4827 	/*
4828 	 * Walk the devices list backward, shutting down each in turn.
4829 	 * Beware that device unplug events may also start pulling
4830 	 * devices offline, even as the system is shutting down.
4831 	 */
4832 	while (!list_empty(&devices_kset->list)) {
4833 		dev = list_entry(devices_kset->list.prev, struct device,
4834 				kobj.entry);
4835 
4836 		/*
4837 		 * hold reference count of device's parent to
4838 		 * prevent it from being freed because parent's
4839 		 * lock is to be held
4840 		 */
4841 		parent = get_device(dev->parent);
4842 		get_device(dev);
4843 		/*
4844 		 * Make sure the device is off the kset list, in the
4845 		 * event that dev->*->shutdown() doesn't remove it.
4846 		 */
4847 		list_del_init(&dev->kobj.entry);
4848 		spin_unlock(&devices_kset->list_lock);
4849 
4850 		/* hold lock to avoid race with probe/release */
4851 		if (parent)
4852 			device_lock(parent);
4853 		device_lock(dev);
4854 
4855 		/* Don't allow any more runtime suspends */
4856 		pm_runtime_get_noresume(dev);
4857 		pm_runtime_barrier(dev);
4858 
4859 		if (dev->class && dev->class->shutdown_pre) {
4860 			if (initcall_debug)
4861 				dev_info(dev, "shutdown_pre\n");
4862 			dev->class->shutdown_pre(dev);
4863 		}
4864 		if (dev->bus && dev->bus->shutdown) {
4865 			if (initcall_debug)
4866 				dev_info(dev, "shutdown\n");
4867 			dev->bus->shutdown(dev);
4868 		} else if (dev->driver && dev->driver->shutdown) {
4869 			if (initcall_debug)
4870 				dev_info(dev, "shutdown\n");
4871 			dev->driver->shutdown(dev);
4872 		}
4873 
4874 		device_unlock(dev);
4875 		if (parent)
4876 			device_unlock(parent);
4877 
4878 		put_device(dev);
4879 		put_device(parent);
4880 
4881 		spin_lock(&devices_kset->list_lock);
4882 	}
4883 	spin_unlock(&devices_kset->list_lock);
4884 }
4885 
4886 /*
4887  * Device logging functions
4888  */
4889 
4890 #ifdef CONFIG_PRINTK
4891 static void
4892 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4893 {
4894 	const char *subsys;
4895 
4896 	memset(dev_info, 0, sizeof(*dev_info));
4897 
4898 	if (dev->class)
4899 		subsys = dev->class->name;
4900 	else if (dev->bus)
4901 		subsys = dev->bus->name;
4902 	else
4903 		return;
4904 
4905 	strscpy(dev_info->subsystem, subsys);
4906 
4907 	/*
4908 	 * Add device identifier DEVICE=:
4909 	 *   b12:8         block dev_t
4910 	 *   c127:3        char dev_t
4911 	 *   n8            netdev ifindex
4912 	 *   +sound:card0  subsystem:devname
4913 	 */
4914 	if (MAJOR(dev->devt)) {
4915 		char c;
4916 
4917 		if (strcmp(subsys, "block") == 0)
4918 			c = 'b';
4919 		else
4920 			c = 'c';
4921 
4922 		snprintf(dev_info->device, sizeof(dev_info->device),
4923 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4924 	} else if (strcmp(subsys, "net") == 0) {
4925 		struct net_device *net = to_net_dev(dev);
4926 
4927 		snprintf(dev_info->device, sizeof(dev_info->device),
4928 			 "n%u", net->ifindex);
4929 	} else {
4930 		snprintf(dev_info->device, sizeof(dev_info->device),
4931 			 "+%s:%s", subsys, dev_name(dev));
4932 	}
4933 }
4934 
4935 int dev_vprintk_emit(int level, const struct device *dev,
4936 		     const char *fmt, va_list args)
4937 {
4938 	struct dev_printk_info dev_info;
4939 
4940 	set_dev_info(dev, &dev_info);
4941 
4942 	return vprintk_emit(0, level, &dev_info, fmt, args);
4943 }
4944 EXPORT_SYMBOL(dev_vprintk_emit);
4945 
4946 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4947 {
4948 	va_list args;
4949 	int r;
4950 
4951 	va_start(args, fmt);
4952 
4953 	r = dev_vprintk_emit(level, dev, fmt, args);
4954 
4955 	va_end(args);
4956 
4957 	return r;
4958 }
4959 EXPORT_SYMBOL(dev_printk_emit);
4960 
4961 static void __dev_printk(const char *level, const struct device *dev,
4962 			struct va_format *vaf)
4963 {
4964 	if (dev)
4965 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4966 				dev_driver_string(dev), dev_name(dev), vaf);
4967 	else
4968 		printk("%s(NULL device *): %pV", level, vaf);
4969 }
4970 
4971 void _dev_printk(const char *level, const struct device *dev,
4972 		 const char *fmt, ...)
4973 {
4974 	struct va_format vaf;
4975 	va_list args;
4976 
4977 	va_start(args, fmt);
4978 
4979 	vaf.fmt = fmt;
4980 	vaf.va = &args;
4981 
4982 	__dev_printk(level, dev, &vaf);
4983 
4984 	va_end(args);
4985 }
4986 EXPORT_SYMBOL(_dev_printk);
4987 
4988 #define define_dev_printk_level(func, kern_level)		\
4989 void func(const struct device *dev, const char *fmt, ...)	\
4990 {								\
4991 	struct va_format vaf;					\
4992 	va_list args;						\
4993 								\
4994 	va_start(args, fmt);					\
4995 								\
4996 	vaf.fmt = fmt;						\
4997 	vaf.va = &args;						\
4998 								\
4999 	__dev_printk(kern_level, dev, &vaf);			\
5000 								\
5001 	va_end(args);						\
5002 }								\
5003 EXPORT_SYMBOL(func);
5004 
5005 define_dev_printk_level(_dev_emerg, KERN_EMERG);
5006 define_dev_printk_level(_dev_alert, KERN_ALERT);
5007 define_dev_printk_level(_dev_crit, KERN_CRIT);
5008 define_dev_printk_level(_dev_err, KERN_ERR);
5009 define_dev_printk_level(_dev_warn, KERN_WARNING);
5010 define_dev_printk_level(_dev_notice, KERN_NOTICE);
5011 define_dev_printk_level(_dev_info, KERN_INFO);
5012 
5013 #endif
5014 
5015 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
5016 			       const char *fmt, va_list vargsp)
5017 {
5018 	struct va_format vaf;
5019 	va_list vargs;
5020 
5021 	/*
5022 	 * On x86_64 and possibly on other architectures, va_list is actually a
5023 	 * size-1 array containing a structure.  As a result, function parameter
5024 	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5025 	 * T(*)[1], which is expected by its assignment to vaf.va below.
5026 	 *
5027 	 * One standard way to solve this mess is by creating a copy in a local
5028 	 * variable of type va_list and then using a pointer to that local copy
5029 	 * instead, which is the approach employed here.
5030 	 */
5031 	va_copy(vargs, vargsp);
5032 
5033 	vaf.fmt = fmt;
5034 	vaf.va = &vargs;
5035 
5036 	switch (err) {
5037 	case -EPROBE_DEFER:
5038 		device_set_deferred_probe_reason(dev, &vaf);
5039 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5040 		break;
5041 
5042 	case -ENOMEM:
5043 		/* Don't print anything on -ENOMEM, there's already enough output */
5044 		break;
5045 
5046 	default:
5047 		/* Log fatal final failures as errors, otherwise produce warnings */
5048 		if (fatal)
5049 			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5050 		else
5051 			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5052 		break;
5053 	}
5054 
5055 	va_end(vargs);
5056 }
5057 
5058 /**
5059  * dev_err_probe - probe error check and log helper
5060  * @dev: the pointer to the struct device
5061  * @err: error value to test
5062  * @fmt: printf-style format string
5063  * @...: arguments as specified in the format string
5064  *
5065  * This helper implements common pattern present in probe functions for error
5066  * checking: print debug or error message depending if the error value is
5067  * -EPROBE_DEFER and propagate error upwards.
5068  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5069  * checked later by reading devices_deferred debugfs attribute.
5070  * It replaces the following code sequence::
5071  *
5072  * 	if (err != -EPROBE_DEFER)
5073  * 		dev_err(dev, ...);
5074  * 	else
5075  * 		dev_dbg(dev, ...);
5076  * 	return err;
5077  *
5078  * with::
5079  *
5080  * 	return dev_err_probe(dev, err, ...);
5081  *
5082  * Using this helper in your probe function is totally fine even if @err
5083  * is known to never be -EPROBE_DEFER.
5084  * The benefit compared to a normal dev_err() is the standardized format
5085  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5086  * instead of "-35"), and having the error code returned allows more
5087  * compact error paths.
5088  *
5089  * Returns @err.
5090  */
5091 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5092 {
5093 	va_list vargs;
5094 
5095 	va_start(vargs, fmt);
5096 
5097 	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5098 	__dev_probe_failed(dev, err, true, fmt, vargs);
5099 
5100 	va_end(vargs);
5101 
5102 	return err;
5103 }
5104 EXPORT_SYMBOL_GPL(dev_err_probe);
5105 
5106 /**
5107  * dev_warn_probe - probe error check and log helper
5108  * @dev: the pointer to the struct device
5109  * @err: error value to test
5110  * @fmt: printf-style format string
5111  * @...: arguments as specified in the format string
5112  *
5113  * This helper implements common pattern present in probe functions for error
5114  * checking: print debug or warning message depending if the error value is
5115  * -EPROBE_DEFER and propagate error upwards.
5116  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5117  * checked later by reading devices_deferred debugfs attribute.
5118  * It replaces the following code sequence::
5119  *
5120  * 	if (err != -EPROBE_DEFER)
5121  * 		dev_warn(dev, ...);
5122  * 	else
5123  * 		dev_dbg(dev, ...);
5124  * 	return err;
5125  *
5126  * with::
5127  *
5128  * 	return dev_warn_probe(dev, err, ...);
5129  *
5130  * Using this helper in your probe function is totally fine even if @err
5131  * is known to never be -EPROBE_DEFER.
5132  * The benefit compared to a normal dev_warn() is the standardized format
5133  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5134  * instead of "-35"), and having the error code returned allows more
5135  * compact error paths.
5136  *
5137  * Returns @err.
5138  */
5139 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5140 {
5141 	va_list vargs;
5142 
5143 	va_start(vargs, fmt);
5144 
5145 	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5146 	__dev_probe_failed(dev, err, false, fmt, vargs);
5147 
5148 	va_end(vargs);
5149 
5150 	return err;
5151 }
5152 EXPORT_SYMBOL_GPL(dev_warn_probe);
5153 
5154 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5155 {
5156 	return fwnode && !IS_ERR(fwnode->secondary);
5157 }
5158 
5159 /**
5160  * set_primary_fwnode - Change the primary firmware node of a given device.
5161  * @dev: Device to handle.
5162  * @fwnode: New primary firmware node of the device.
5163  *
5164  * Set the device's firmware node pointer to @fwnode, but if a secondary
5165  * firmware node of the device is present, preserve it.
5166  *
5167  * Valid fwnode cases are:
5168  *  - primary --> secondary --> -ENODEV
5169  *  - primary --> NULL
5170  *  - secondary --> -ENODEV
5171  *  - NULL
5172  */
5173 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5174 {
5175 	struct device *parent = dev->parent;
5176 	struct fwnode_handle *fn = dev->fwnode;
5177 
5178 	if (fwnode) {
5179 		if (fwnode_is_primary(fn))
5180 			fn = fn->secondary;
5181 
5182 		if (fn) {
5183 			WARN_ON(fwnode->secondary);
5184 			fwnode->secondary = fn;
5185 		}
5186 		dev->fwnode = fwnode;
5187 	} else {
5188 		if (fwnode_is_primary(fn)) {
5189 			dev->fwnode = fn->secondary;
5190 
5191 			/* Skip nullifying fn->secondary if the primary is shared */
5192 			if (parent && fn == parent->fwnode)
5193 				return;
5194 
5195 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5196 			fn->secondary = NULL;
5197 		} else {
5198 			dev->fwnode = NULL;
5199 		}
5200 	}
5201 }
5202 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5203 
5204 /**
5205  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5206  * @dev: Device to handle.
5207  * @fwnode: New secondary firmware node of the device.
5208  *
5209  * If a primary firmware node of the device is present, set its secondary
5210  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5211  * @fwnode.
5212  */
5213 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5214 {
5215 	if (fwnode)
5216 		fwnode->secondary = ERR_PTR(-ENODEV);
5217 
5218 	if (fwnode_is_primary(dev->fwnode))
5219 		dev->fwnode->secondary = fwnode;
5220 	else
5221 		dev->fwnode = fwnode;
5222 }
5223 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5224 
5225 /**
5226  * device_set_of_node_from_dev - reuse device-tree node of another device
5227  * @dev: device whose device-tree node is being set
5228  * @dev2: device whose device-tree node is being reused
5229  *
5230  * Takes another reference to the new device-tree node after first dropping
5231  * any reference held to the old node.
5232  */
5233 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5234 {
5235 	of_node_put(dev->of_node);
5236 	dev->of_node = of_node_get(dev2->of_node);
5237 	dev->of_node_reused = true;
5238 }
5239 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5240 
5241 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5242 {
5243 	dev->fwnode = fwnode;
5244 	dev->of_node = to_of_node(fwnode);
5245 }
5246 EXPORT_SYMBOL_GPL(device_set_node);
5247 
5248 int device_match_name(struct device *dev, const void *name)
5249 {
5250 	return sysfs_streq(dev_name(dev), name);
5251 }
5252 EXPORT_SYMBOL_GPL(device_match_name);
5253 
5254 int device_match_of_node(struct device *dev, const void *np)
5255 {
5256 	return dev->of_node == np;
5257 }
5258 EXPORT_SYMBOL_GPL(device_match_of_node);
5259 
5260 int device_match_fwnode(struct device *dev, const void *fwnode)
5261 {
5262 	return dev_fwnode(dev) == fwnode;
5263 }
5264 EXPORT_SYMBOL_GPL(device_match_fwnode);
5265 
5266 int device_match_devt(struct device *dev, const void *pdevt)
5267 {
5268 	return dev->devt == *(dev_t *)pdevt;
5269 }
5270 EXPORT_SYMBOL_GPL(device_match_devt);
5271 
5272 int device_match_acpi_dev(struct device *dev, const void *adev)
5273 {
5274 	return ACPI_COMPANION(dev) == adev;
5275 }
5276 EXPORT_SYMBOL(device_match_acpi_dev);
5277 
5278 int device_match_acpi_handle(struct device *dev, const void *handle)
5279 {
5280 	return ACPI_HANDLE(dev) == handle;
5281 }
5282 EXPORT_SYMBOL(device_match_acpi_handle);
5283 
5284 int device_match_any(struct device *dev, const void *unused)
5285 {
5286 	return 1;
5287 }
5288 EXPORT_SYMBOL_GPL(device_match_any);
5289