xref: /linux/drivers/base/core.c (revision f6d1975cd2668d239bb97ef4833ad1ddc5ffed6d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 
48 /**
49  * __fwnode_link_add - Create a link between two fwnode_handles.
50  * @con: Consumer end of the link.
51  * @sup: Supplier end of the link.
52  *
53  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
54  * represents the detail that the firmware lists @sup fwnode as supplying a
55  * resource to @con.
56  *
57  * The driver core will use the fwnode link to create a device link between the
58  * two device objects corresponding to @con and @sup when they are created. The
59  * driver core will automatically delete the fwnode link between @con and @sup
60  * after doing that.
61  *
62  * Attempts to create duplicate links between the same pair of fwnode handles
63  * are ignored and there is no reference counting.
64  */
65 static int __fwnode_link_add(struct fwnode_handle *con,
66 			     struct fwnode_handle *sup, u8 flags)
67 {
68 	struct fwnode_link *link;
69 
70 	list_for_each_entry(link, &sup->consumers, s_hook)
71 		if (link->consumer == con) {
72 			link->flags |= flags;
73 			return 0;
74 		}
75 
76 	link = kzalloc(sizeof(*link), GFP_KERNEL);
77 	if (!link)
78 		return -ENOMEM;
79 
80 	link->supplier = sup;
81 	INIT_LIST_HEAD(&link->s_hook);
82 	link->consumer = con;
83 	INIT_LIST_HEAD(&link->c_hook);
84 	link->flags = flags;
85 
86 	list_add(&link->s_hook, &sup->consumers);
87 	list_add(&link->c_hook, &con->suppliers);
88 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
89 		 con, sup);
90 
91 	return 0;
92 }
93 
94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
95 {
96 	int ret;
97 
98 	mutex_lock(&fwnode_link_lock);
99 	ret = __fwnode_link_add(con, sup, 0);
100 	mutex_unlock(&fwnode_link_lock);
101 	return ret;
102 }
103 
104 /**
105  * __fwnode_link_del - Delete a link between two fwnode_handles.
106  * @link: the fwnode_link to be deleted
107  *
108  * The fwnode_link_lock needs to be held when this function is called.
109  */
110 static void __fwnode_link_del(struct fwnode_link *link)
111 {
112 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
113 		 link->consumer, link->supplier);
114 	list_del(&link->s_hook);
115 	list_del(&link->c_hook);
116 	kfree(link);
117 }
118 
119 /**
120  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
121  * @link: the fwnode_link to be marked
122  *
123  * The fwnode_link_lock needs to be held when this function is called.
124  */
125 static void __fwnode_link_cycle(struct fwnode_link *link)
126 {
127 	pr_debug("%pfwf: Relaxing link with %pfwf\n",
128 		 link->consumer, link->supplier);
129 	link->flags |= FWLINK_FLAG_CYCLE;
130 }
131 
132 /**
133  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
134  * @fwnode: fwnode whose supplier links need to be deleted
135  *
136  * Deletes all supplier links connecting directly to @fwnode.
137  */
138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
139 {
140 	struct fwnode_link *link, *tmp;
141 
142 	mutex_lock(&fwnode_link_lock);
143 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
144 		__fwnode_link_del(link);
145 	mutex_unlock(&fwnode_link_lock);
146 }
147 
148 /**
149  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
150  * @fwnode: fwnode whose consumer links need to be deleted
151  *
152  * Deletes all consumer links connecting directly to @fwnode.
153  */
154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
155 {
156 	struct fwnode_link *link, *tmp;
157 
158 	mutex_lock(&fwnode_link_lock);
159 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
160 		__fwnode_link_del(link);
161 	mutex_unlock(&fwnode_link_lock);
162 }
163 
164 /**
165  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
166  * @fwnode: fwnode whose links needs to be deleted
167  *
168  * Deletes all links connecting directly to a fwnode.
169  */
170 void fwnode_links_purge(struct fwnode_handle *fwnode)
171 {
172 	fwnode_links_purge_suppliers(fwnode);
173 	fwnode_links_purge_consumers(fwnode);
174 }
175 
176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
177 {
178 	struct fwnode_handle *child;
179 
180 	/* Don't purge consumer links of an added child */
181 	if (fwnode->dev)
182 		return;
183 
184 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
185 	fwnode_links_purge_consumers(fwnode);
186 
187 	fwnode_for_each_available_child_node(fwnode, child)
188 		fw_devlink_purge_absent_suppliers(child);
189 }
190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
191 
192 /**
193  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
194  * @from: move consumers away from this fwnode
195  * @to: move consumers to this fwnode
196  *
197  * Move all consumer links from @from fwnode to @to fwnode.
198  */
199 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
200 					  struct fwnode_handle *to)
201 {
202 	struct fwnode_link *link, *tmp;
203 
204 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
205 		__fwnode_link_add(link->consumer, to, link->flags);
206 		__fwnode_link_del(link);
207 	}
208 }
209 
210 /**
211  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
212  * @fwnode: fwnode from which to pick up dangling consumers
213  * @new_sup: fwnode of new supplier
214  *
215  * If the @fwnode has a corresponding struct device and the device supports
216  * probing (that is, added to a bus), then we want to let fw_devlink create
217  * MANAGED device links to this device, so leave @fwnode and its descendant's
218  * fwnode links alone.
219  *
220  * Otherwise, move its consumers to the new supplier @new_sup.
221  */
222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
223 						   struct fwnode_handle *new_sup)
224 {
225 	struct fwnode_handle *child;
226 
227 	if (fwnode->dev && fwnode->dev->bus)
228 		return;
229 
230 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
231 	__fwnode_links_move_consumers(fwnode, new_sup);
232 
233 	fwnode_for_each_available_child_node(fwnode, child)
234 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
235 }
236 
237 static DEFINE_MUTEX(device_links_lock);
238 DEFINE_STATIC_SRCU(device_links_srcu);
239 
240 static inline void device_links_write_lock(void)
241 {
242 	mutex_lock(&device_links_lock);
243 }
244 
245 static inline void device_links_write_unlock(void)
246 {
247 	mutex_unlock(&device_links_lock);
248 }
249 
250 int device_links_read_lock(void) __acquires(&device_links_srcu)
251 {
252 	return srcu_read_lock(&device_links_srcu);
253 }
254 
255 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
256 {
257 	srcu_read_unlock(&device_links_srcu, idx);
258 }
259 
260 int device_links_read_lock_held(void)
261 {
262 	return srcu_read_lock_held(&device_links_srcu);
263 }
264 
265 static void device_link_synchronize_removal(void)
266 {
267 	synchronize_srcu(&device_links_srcu);
268 }
269 
270 static void device_link_remove_from_lists(struct device_link *link)
271 {
272 	list_del_rcu(&link->s_node);
273 	list_del_rcu(&link->c_node);
274 }
275 
276 static bool device_is_ancestor(struct device *dev, struct device *target)
277 {
278 	while (target->parent) {
279 		target = target->parent;
280 		if (dev == target)
281 			return true;
282 	}
283 	return false;
284 }
285 
286 static inline bool device_link_flag_is_sync_state_only(u32 flags)
287 {
288 	return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) ==
289 		(DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED);
290 }
291 
292 /**
293  * device_is_dependent - Check if one device depends on another one
294  * @dev: Device to check dependencies for.
295  * @target: Device to check against.
296  *
297  * Check if @target depends on @dev or any device dependent on it (its child or
298  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
299  */
300 int device_is_dependent(struct device *dev, void *target)
301 {
302 	struct device_link *link;
303 	int ret;
304 
305 	/*
306 	 * The "ancestors" check is needed to catch the case when the target
307 	 * device has not been completely initialized yet and it is still
308 	 * missing from the list of children of its parent device.
309 	 */
310 	if (dev == target || device_is_ancestor(dev, target))
311 		return 1;
312 
313 	ret = device_for_each_child(dev, target, device_is_dependent);
314 	if (ret)
315 		return ret;
316 
317 	list_for_each_entry(link, &dev->links.consumers, s_node) {
318 		if (device_link_flag_is_sync_state_only(link->flags))
319 			continue;
320 
321 		if (link->consumer == target)
322 			return 1;
323 
324 		ret = device_is_dependent(link->consumer, target);
325 		if (ret)
326 			break;
327 	}
328 	return ret;
329 }
330 
331 static void device_link_init_status(struct device_link *link,
332 				    struct device *consumer,
333 				    struct device *supplier)
334 {
335 	switch (supplier->links.status) {
336 	case DL_DEV_PROBING:
337 		switch (consumer->links.status) {
338 		case DL_DEV_PROBING:
339 			/*
340 			 * A consumer driver can create a link to a supplier
341 			 * that has not completed its probing yet as long as it
342 			 * knows that the supplier is already functional (for
343 			 * example, it has just acquired some resources from the
344 			 * supplier).
345 			 */
346 			link->status = DL_STATE_CONSUMER_PROBE;
347 			break;
348 		default:
349 			link->status = DL_STATE_DORMANT;
350 			break;
351 		}
352 		break;
353 	case DL_DEV_DRIVER_BOUND:
354 		switch (consumer->links.status) {
355 		case DL_DEV_PROBING:
356 			link->status = DL_STATE_CONSUMER_PROBE;
357 			break;
358 		case DL_DEV_DRIVER_BOUND:
359 			link->status = DL_STATE_ACTIVE;
360 			break;
361 		default:
362 			link->status = DL_STATE_AVAILABLE;
363 			break;
364 		}
365 		break;
366 	case DL_DEV_UNBINDING:
367 		link->status = DL_STATE_SUPPLIER_UNBIND;
368 		break;
369 	default:
370 		link->status = DL_STATE_DORMANT;
371 		break;
372 	}
373 }
374 
375 static int device_reorder_to_tail(struct device *dev, void *not_used)
376 {
377 	struct device_link *link;
378 
379 	/*
380 	 * Devices that have not been registered yet will be put to the ends
381 	 * of the lists during the registration, so skip them here.
382 	 */
383 	if (device_is_registered(dev))
384 		devices_kset_move_last(dev);
385 
386 	if (device_pm_initialized(dev))
387 		device_pm_move_last(dev);
388 
389 	device_for_each_child(dev, NULL, device_reorder_to_tail);
390 	list_for_each_entry(link, &dev->links.consumers, s_node) {
391 		if (device_link_flag_is_sync_state_only(link->flags))
392 			continue;
393 		device_reorder_to_tail(link->consumer, NULL);
394 	}
395 
396 	return 0;
397 }
398 
399 /**
400  * device_pm_move_to_tail - Move set of devices to the end of device lists
401  * @dev: Device to move
402  *
403  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
404  *
405  * It moves the @dev along with all of its children and all of its consumers
406  * to the ends of the device_kset and dpm_list, recursively.
407  */
408 void device_pm_move_to_tail(struct device *dev)
409 {
410 	int idx;
411 
412 	idx = device_links_read_lock();
413 	device_pm_lock();
414 	device_reorder_to_tail(dev, NULL);
415 	device_pm_unlock();
416 	device_links_read_unlock(idx);
417 }
418 
419 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
420 
421 static ssize_t status_show(struct device *dev,
422 			   struct device_attribute *attr, char *buf)
423 {
424 	const char *output;
425 
426 	switch (to_devlink(dev)->status) {
427 	case DL_STATE_NONE:
428 		output = "not tracked";
429 		break;
430 	case DL_STATE_DORMANT:
431 		output = "dormant";
432 		break;
433 	case DL_STATE_AVAILABLE:
434 		output = "available";
435 		break;
436 	case DL_STATE_CONSUMER_PROBE:
437 		output = "consumer probing";
438 		break;
439 	case DL_STATE_ACTIVE:
440 		output = "active";
441 		break;
442 	case DL_STATE_SUPPLIER_UNBIND:
443 		output = "supplier unbinding";
444 		break;
445 	default:
446 		output = "unknown";
447 		break;
448 	}
449 
450 	return sysfs_emit(buf, "%s\n", output);
451 }
452 static DEVICE_ATTR_RO(status);
453 
454 static ssize_t auto_remove_on_show(struct device *dev,
455 				   struct device_attribute *attr, char *buf)
456 {
457 	struct device_link *link = to_devlink(dev);
458 	const char *output;
459 
460 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
461 		output = "supplier unbind";
462 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
463 		output = "consumer unbind";
464 	else
465 		output = "never";
466 
467 	return sysfs_emit(buf, "%s\n", output);
468 }
469 static DEVICE_ATTR_RO(auto_remove_on);
470 
471 static ssize_t runtime_pm_show(struct device *dev,
472 			       struct device_attribute *attr, char *buf)
473 {
474 	struct device_link *link = to_devlink(dev);
475 
476 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
477 }
478 static DEVICE_ATTR_RO(runtime_pm);
479 
480 static ssize_t sync_state_only_show(struct device *dev,
481 				    struct device_attribute *attr, char *buf)
482 {
483 	struct device_link *link = to_devlink(dev);
484 
485 	return sysfs_emit(buf, "%d\n",
486 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
487 }
488 static DEVICE_ATTR_RO(sync_state_only);
489 
490 static struct attribute *devlink_attrs[] = {
491 	&dev_attr_status.attr,
492 	&dev_attr_auto_remove_on.attr,
493 	&dev_attr_runtime_pm.attr,
494 	&dev_attr_sync_state_only.attr,
495 	NULL,
496 };
497 ATTRIBUTE_GROUPS(devlink);
498 
499 static void device_link_release_fn(struct work_struct *work)
500 {
501 	struct device_link *link = container_of(work, struct device_link, rm_work);
502 
503 	/* Ensure that all references to the link object have been dropped. */
504 	device_link_synchronize_removal();
505 
506 	pm_runtime_release_supplier(link);
507 	/*
508 	 * If supplier_preactivated is set, the link has been dropped between
509 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
510 	 * in __driver_probe_device().  In that case, drop the supplier's
511 	 * PM-runtime usage counter to remove the reference taken by
512 	 * pm_runtime_get_suppliers().
513 	 */
514 	if (link->supplier_preactivated)
515 		pm_runtime_put_noidle(link->supplier);
516 
517 	pm_request_idle(link->supplier);
518 
519 	put_device(link->consumer);
520 	put_device(link->supplier);
521 	kfree(link);
522 }
523 
524 static void devlink_dev_release(struct device *dev)
525 {
526 	struct device_link *link = to_devlink(dev);
527 
528 	INIT_WORK(&link->rm_work, device_link_release_fn);
529 	/*
530 	 * It may take a while to complete this work because of the SRCU
531 	 * synchronization in device_link_release_fn() and if the consumer or
532 	 * supplier devices get deleted when it runs, so put it into the "long"
533 	 * workqueue.
534 	 */
535 	queue_work(system_long_wq, &link->rm_work);
536 }
537 
538 static struct class devlink_class = {
539 	.name = "devlink",
540 	.dev_groups = devlink_groups,
541 	.dev_release = devlink_dev_release,
542 };
543 
544 static int devlink_add_symlinks(struct device *dev,
545 				struct class_interface *class_intf)
546 {
547 	int ret;
548 	size_t len;
549 	struct device_link *link = to_devlink(dev);
550 	struct device *sup = link->supplier;
551 	struct device *con = link->consumer;
552 	char *buf;
553 
554 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
555 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
556 	len += strlen(":");
557 	len += strlen("supplier:") + 1;
558 	buf = kzalloc(len, GFP_KERNEL);
559 	if (!buf)
560 		return -ENOMEM;
561 
562 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
563 	if (ret)
564 		goto out;
565 
566 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
567 	if (ret)
568 		goto err_con;
569 
570 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
571 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
572 	if (ret)
573 		goto err_con_dev;
574 
575 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
576 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
577 	if (ret)
578 		goto err_sup_dev;
579 
580 	goto out;
581 
582 err_sup_dev:
583 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
584 	sysfs_remove_link(&sup->kobj, buf);
585 err_con_dev:
586 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
587 err_con:
588 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
589 out:
590 	kfree(buf);
591 	return ret;
592 }
593 
594 static void devlink_remove_symlinks(struct device *dev,
595 				   struct class_interface *class_intf)
596 {
597 	struct device_link *link = to_devlink(dev);
598 	size_t len;
599 	struct device *sup = link->supplier;
600 	struct device *con = link->consumer;
601 	char *buf;
602 
603 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
604 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 
606 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
607 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
608 	len += strlen(":");
609 	len += strlen("supplier:") + 1;
610 	buf = kzalloc(len, GFP_KERNEL);
611 	if (!buf) {
612 		WARN(1, "Unable to properly free device link symlinks!\n");
613 		return;
614 	}
615 
616 	if (device_is_registered(con)) {
617 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
618 		sysfs_remove_link(&con->kobj, buf);
619 	}
620 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
621 	sysfs_remove_link(&sup->kobj, buf);
622 	kfree(buf);
623 }
624 
625 static struct class_interface devlink_class_intf = {
626 	.class = &devlink_class,
627 	.add_dev = devlink_add_symlinks,
628 	.remove_dev = devlink_remove_symlinks,
629 };
630 
631 static int __init devlink_class_init(void)
632 {
633 	int ret;
634 
635 	ret = class_register(&devlink_class);
636 	if (ret)
637 		return ret;
638 
639 	ret = class_interface_register(&devlink_class_intf);
640 	if (ret)
641 		class_unregister(&devlink_class);
642 
643 	return ret;
644 }
645 postcore_initcall(devlink_class_init);
646 
647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
648 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
649 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
650 			       DL_FLAG_SYNC_STATE_ONLY | \
651 			       DL_FLAG_INFERRED | \
652 			       DL_FLAG_CYCLE)
653 
654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
655 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
656 
657 /**
658  * device_link_add - Create a link between two devices.
659  * @consumer: Consumer end of the link.
660  * @supplier: Supplier end of the link.
661  * @flags: Link flags.
662  *
663  * The caller is responsible for the proper synchronization of the link creation
664  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
665  * runtime PM framework to take the link into account.  Second, if the
666  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
667  * be forced into the active meta state and reference-counted upon the creation
668  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
669  * ignored.
670  *
671  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
672  * expected to release the link returned by it directly with the help of either
673  * device_link_del() or device_link_remove().
674  *
675  * If that flag is not set, however, the caller of this function is handing the
676  * management of the link over to the driver core entirely and its return value
677  * can only be used to check whether or not the link is present.  In that case,
678  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
679  * flags can be used to indicate to the driver core when the link can be safely
680  * deleted.  Namely, setting one of them in @flags indicates to the driver core
681  * that the link is not going to be used (by the given caller of this function)
682  * after unbinding the consumer or supplier driver, respectively, from its
683  * device, so the link can be deleted at that point.  If none of them is set,
684  * the link will be maintained until one of the devices pointed to by it (either
685  * the consumer or the supplier) is unregistered.
686  *
687  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
688  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
689  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
690  * be used to request the driver core to automatically probe for a consumer
691  * driver after successfully binding a driver to the supplier device.
692  *
693  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
694  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
695  * the same time is invalid and will cause NULL to be returned upfront.
696  * However, if a device link between the given @consumer and @supplier pair
697  * exists already when this function is called for them, the existing link will
698  * be returned regardless of its current type and status (the link's flags may
699  * be modified then).  The caller of this function is then expected to treat
700  * the link as though it has just been created, so (in particular) if
701  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
702  * explicitly when not needed any more (as stated above).
703  *
704  * A side effect of the link creation is re-ordering of dpm_list and the
705  * devices_kset list by moving the consumer device and all devices depending
706  * on it to the ends of these lists (that does not happen to devices that have
707  * not been registered when this function is called).
708  *
709  * The supplier device is required to be registered when this function is called
710  * and NULL will be returned if that is not the case.  The consumer device need
711  * not be registered, however.
712  */
713 struct device_link *device_link_add(struct device *consumer,
714 				    struct device *supplier, u32 flags)
715 {
716 	struct device_link *link;
717 
718 	if (!consumer || !supplier || consumer == supplier ||
719 	    flags & ~DL_ADD_VALID_FLAGS ||
720 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
721 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
722 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
723 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
724 		return NULL;
725 
726 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
727 		if (pm_runtime_get_sync(supplier) < 0) {
728 			pm_runtime_put_noidle(supplier);
729 			return NULL;
730 		}
731 	}
732 
733 	if (!(flags & DL_FLAG_STATELESS))
734 		flags |= DL_FLAG_MANAGED;
735 
736 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
737 	    !device_link_flag_is_sync_state_only(flags))
738 		return NULL;
739 
740 	device_links_write_lock();
741 	device_pm_lock();
742 
743 	/*
744 	 * If the supplier has not been fully registered yet or there is a
745 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
746 	 * the supplier already in the graph, return NULL. If the link is a
747 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
748 	 * because it only affects sync_state() callbacks.
749 	 */
750 	if (!device_pm_initialized(supplier)
751 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
752 		  device_is_dependent(consumer, supplier))) {
753 		link = NULL;
754 		goto out;
755 	}
756 
757 	/*
758 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
759 	 * So, only create it if the consumer hasn't probed yet.
760 	 */
761 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
762 	    consumer->links.status != DL_DEV_NO_DRIVER &&
763 	    consumer->links.status != DL_DEV_PROBING) {
764 		link = NULL;
765 		goto out;
766 	}
767 
768 	/*
769 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
770 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
771 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
772 	 */
773 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
774 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
775 
776 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
777 		if (link->consumer != consumer)
778 			continue;
779 
780 		if (link->flags & DL_FLAG_INFERRED &&
781 		    !(flags & DL_FLAG_INFERRED))
782 			link->flags &= ~DL_FLAG_INFERRED;
783 
784 		if (flags & DL_FLAG_PM_RUNTIME) {
785 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
786 				pm_runtime_new_link(consumer);
787 				link->flags |= DL_FLAG_PM_RUNTIME;
788 			}
789 			if (flags & DL_FLAG_RPM_ACTIVE)
790 				refcount_inc(&link->rpm_active);
791 		}
792 
793 		if (flags & DL_FLAG_STATELESS) {
794 			kref_get(&link->kref);
795 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
796 			    !(link->flags & DL_FLAG_STATELESS)) {
797 				link->flags |= DL_FLAG_STATELESS;
798 				goto reorder;
799 			} else {
800 				link->flags |= DL_FLAG_STATELESS;
801 				goto out;
802 			}
803 		}
804 
805 		/*
806 		 * If the life time of the link following from the new flags is
807 		 * longer than indicated by the flags of the existing link,
808 		 * update the existing link to stay around longer.
809 		 */
810 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
811 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
812 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
813 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
814 			}
815 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
816 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
817 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
818 		}
819 		if (!(link->flags & DL_FLAG_MANAGED)) {
820 			kref_get(&link->kref);
821 			link->flags |= DL_FLAG_MANAGED;
822 			device_link_init_status(link, consumer, supplier);
823 		}
824 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
825 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
826 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
827 			goto reorder;
828 		}
829 
830 		goto out;
831 	}
832 
833 	link = kzalloc(sizeof(*link), GFP_KERNEL);
834 	if (!link)
835 		goto out;
836 
837 	refcount_set(&link->rpm_active, 1);
838 
839 	get_device(supplier);
840 	link->supplier = supplier;
841 	INIT_LIST_HEAD(&link->s_node);
842 	get_device(consumer);
843 	link->consumer = consumer;
844 	INIT_LIST_HEAD(&link->c_node);
845 	link->flags = flags;
846 	kref_init(&link->kref);
847 
848 	link->link_dev.class = &devlink_class;
849 	device_set_pm_not_required(&link->link_dev);
850 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
851 		     dev_bus_name(supplier), dev_name(supplier),
852 		     dev_bus_name(consumer), dev_name(consumer));
853 	if (device_register(&link->link_dev)) {
854 		put_device(&link->link_dev);
855 		link = NULL;
856 		goto out;
857 	}
858 
859 	if (flags & DL_FLAG_PM_RUNTIME) {
860 		if (flags & DL_FLAG_RPM_ACTIVE)
861 			refcount_inc(&link->rpm_active);
862 
863 		pm_runtime_new_link(consumer);
864 	}
865 
866 	/* Determine the initial link state. */
867 	if (flags & DL_FLAG_STATELESS)
868 		link->status = DL_STATE_NONE;
869 	else
870 		device_link_init_status(link, consumer, supplier);
871 
872 	/*
873 	 * Some callers expect the link creation during consumer driver probe to
874 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
875 	 */
876 	if (link->status == DL_STATE_CONSUMER_PROBE &&
877 	    flags & DL_FLAG_PM_RUNTIME)
878 		pm_runtime_resume(supplier);
879 
880 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
881 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
882 
883 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
884 		dev_dbg(consumer,
885 			"Linked as a sync state only consumer to %s\n",
886 			dev_name(supplier));
887 		goto out;
888 	}
889 
890 reorder:
891 	/*
892 	 * Move the consumer and all of the devices depending on it to the end
893 	 * of dpm_list and the devices_kset list.
894 	 *
895 	 * It is necessary to hold dpm_list locked throughout all that or else
896 	 * we may end up suspending with a wrong ordering of it.
897 	 */
898 	device_reorder_to_tail(consumer, NULL);
899 
900 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
901 
902 out:
903 	device_pm_unlock();
904 	device_links_write_unlock();
905 
906 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
907 		pm_runtime_put(supplier);
908 
909 	return link;
910 }
911 EXPORT_SYMBOL_GPL(device_link_add);
912 
913 static void __device_link_del(struct kref *kref)
914 {
915 	struct device_link *link = container_of(kref, struct device_link, kref);
916 
917 	dev_dbg(link->consumer, "Dropping the link to %s\n",
918 		dev_name(link->supplier));
919 
920 	pm_runtime_drop_link(link);
921 
922 	device_link_remove_from_lists(link);
923 	device_unregister(&link->link_dev);
924 }
925 
926 static void device_link_put_kref(struct device_link *link)
927 {
928 	if (link->flags & DL_FLAG_STATELESS)
929 		kref_put(&link->kref, __device_link_del);
930 	else if (!device_is_registered(link->consumer))
931 		__device_link_del(&link->kref);
932 	else
933 		WARN(1, "Unable to drop a managed device link reference\n");
934 }
935 
936 /**
937  * device_link_del - Delete a stateless link between two devices.
938  * @link: Device link to delete.
939  *
940  * The caller must ensure proper synchronization of this function with runtime
941  * PM.  If the link was added multiple times, it needs to be deleted as often.
942  * Care is required for hotplugged devices:  Their links are purged on removal
943  * and calling device_link_del() is then no longer allowed.
944  */
945 void device_link_del(struct device_link *link)
946 {
947 	device_links_write_lock();
948 	device_link_put_kref(link);
949 	device_links_write_unlock();
950 }
951 EXPORT_SYMBOL_GPL(device_link_del);
952 
953 /**
954  * device_link_remove - Delete a stateless link between two devices.
955  * @consumer: Consumer end of the link.
956  * @supplier: Supplier end of the link.
957  *
958  * The caller must ensure proper synchronization of this function with runtime
959  * PM.
960  */
961 void device_link_remove(void *consumer, struct device *supplier)
962 {
963 	struct device_link *link;
964 
965 	if (WARN_ON(consumer == supplier))
966 		return;
967 
968 	device_links_write_lock();
969 
970 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
971 		if (link->consumer == consumer) {
972 			device_link_put_kref(link);
973 			break;
974 		}
975 	}
976 
977 	device_links_write_unlock();
978 }
979 EXPORT_SYMBOL_GPL(device_link_remove);
980 
981 static void device_links_missing_supplier(struct device *dev)
982 {
983 	struct device_link *link;
984 
985 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
986 		if (link->status != DL_STATE_CONSUMER_PROBE)
987 			continue;
988 
989 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
990 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
991 		} else {
992 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
993 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
994 		}
995 	}
996 }
997 
998 static bool dev_is_best_effort(struct device *dev)
999 {
1000 	return (fw_devlink_best_effort && dev->can_match) ||
1001 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1002 }
1003 
1004 static struct fwnode_handle *fwnode_links_check_suppliers(
1005 						struct fwnode_handle *fwnode)
1006 {
1007 	struct fwnode_link *link;
1008 
1009 	if (!fwnode || fw_devlink_is_permissive())
1010 		return NULL;
1011 
1012 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1013 		if (!(link->flags & FWLINK_FLAG_CYCLE))
1014 			return link->supplier;
1015 
1016 	return NULL;
1017 }
1018 
1019 /**
1020  * device_links_check_suppliers - Check presence of supplier drivers.
1021  * @dev: Consumer device.
1022  *
1023  * Check links from this device to any suppliers.  Walk the list of the device's
1024  * links to suppliers and see if all of them are available.  If not, simply
1025  * return -EPROBE_DEFER.
1026  *
1027  * We need to guarantee that the supplier will not go away after the check has
1028  * been positive here.  It only can go away in __device_release_driver() and
1029  * that function  checks the device's links to consumers.  This means we need to
1030  * mark the link as "consumer probe in progress" to make the supplier removal
1031  * wait for us to complete (or bad things may happen).
1032  *
1033  * Links without the DL_FLAG_MANAGED flag set are ignored.
1034  */
1035 int device_links_check_suppliers(struct device *dev)
1036 {
1037 	struct device_link *link;
1038 	int ret = 0, fwnode_ret = 0;
1039 	struct fwnode_handle *sup_fw;
1040 
1041 	/*
1042 	 * Device waiting for supplier to become available is not allowed to
1043 	 * probe.
1044 	 */
1045 	mutex_lock(&fwnode_link_lock);
1046 	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1047 	if (sup_fw) {
1048 		if (!dev_is_best_effort(dev)) {
1049 			fwnode_ret = -EPROBE_DEFER;
1050 			dev_err_probe(dev, -EPROBE_DEFER,
1051 				    "wait for supplier %pfwf\n", sup_fw);
1052 		} else {
1053 			fwnode_ret = -EAGAIN;
1054 		}
1055 	}
1056 	mutex_unlock(&fwnode_link_lock);
1057 	if (fwnode_ret == -EPROBE_DEFER)
1058 		return fwnode_ret;
1059 
1060 	device_links_write_lock();
1061 
1062 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1063 		if (!(link->flags & DL_FLAG_MANAGED))
1064 			continue;
1065 
1066 		if (link->status != DL_STATE_AVAILABLE &&
1067 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1068 
1069 			if (dev_is_best_effort(dev) &&
1070 			    link->flags & DL_FLAG_INFERRED &&
1071 			    !link->supplier->can_match) {
1072 				ret = -EAGAIN;
1073 				continue;
1074 			}
1075 
1076 			device_links_missing_supplier(dev);
1077 			dev_err_probe(dev, -EPROBE_DEFER,
1078 				      "supplier %s not ready\n",
1079 				      dev_name(link->supplier));
1080 			ret = -EPROBE_DEFER;
1081 			break;
1082 		}
1083 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1084 	}
1085 	dev->links.status = DL_DEV_PROBING;
1086 
1087 	device_links_write_unlock();
1088 
1089 	return ret ? ret : fwnode_ret;
1090 }
1091 
1092 /**
1093  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1094  * @dev: Device to call sync_state() on
1095  * @list: List head to queue the @dev on
1096  *
1097  * Queues a device for a sync_state() callback when the device links write lock
1098  * isn't held. This allows the sync_state() execution flow to use device links
1099  * APIs.  The caller must ensure this function is called with
1100  * device_links_write_lock() held.
1101  *
1102  * This function does a get_device() to make sure the device is not freed while
1103  * on this list.
1104  *
1105  * So the caller must also ensure that device_links_flush_sync_list() is called
1106  * as soon as the caller releases device_links_write_lock().  This is necessary
1107  * to make sure the sync_state() is called in a timely fashion and the
1108  * put_device() is called on this device.
1109  */
1110 static void __device_links_queue_sync_state(struct device *dev,
1111 					    struct list_head *list)
1112 {
1113 	struct device_link *link;
1114 
1115 	if (!dev_has_sync_state(dev))
1116 		return;
1117 	if (dev->state_synced)
1118 		return;
1119 
1120 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1121 		if (!(link->flags & DL_FLAG_MANAGED))
1122 			continue;
1123 		if (link->status != DL_STATE_ACTIVE)
1124 			return;
1125 	}
1126 
1127 	/*
1128 	 * Set the flag here to avoid adding the same device to a list more
1129 	 * than once. This can happen if new consumers get added to the device
1130 	 * and probed before the list is flushed.
1131 	 */
1132 	dev->state_synced = true;
1133 
1134 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1135 		return;
1136 
1137 	get_device(dev);
1138 	list_add_tail(&dev->links.defer_sync, list);
1139 }
1140 
1141 /**
1142  * device_links_flush_sync_list - Call sync_state() on a list of devices
1143  * @list: List of devices to call sync_state() on
1144  * @dont_lock_dev: Device for which lock is already held by the caller
1145  *
1146  * Calls sync_state() on all the devices that have been queued for it. This
1147  * function is used in conjunction with __device_links_queue_sync_state(). The
1148  * @dont_lock_dev parameter is useful when this function is called from a
1149  * context where a device lock is already held.
1150  */
1151 static void device_links_flush_sync_list(struct list_head *list,
1152 					 struct device *dont_lock_dev)
1153 {
1154 	struct device *dev, *tmp;
1155 
1156 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1157 		list_del_init(&dev->links.defer_sync);
1158 
1159 		if (dev != dont_lock_dev)
1160 			device_lock(dev);
1161 
1162 		dev_sync_state(dev);
1163 
1164 		if (dev != dont_lock_dev)
1165 			device_unlock(dev);
1166 
1167 		put_device(dev);
1168 	}
1169 }
1170 
1171 void device_links_supplier_sync_state_pause(void)
1172 {
1173 	device_links_write_lock();
1174 	defer_sync_state_count++;
1175 	device_links_write_unlock();
1176 }
1177 
1178 void device_links_supplier_sync_state_resume(void)
1179 {
1180 	struct device *dev, *tmp;
1181 	LIST_HEAD(sync_list);
1182 
1183 	device_links_write_lock();
1184 	if (!defer_sync_state_count) {
1185 		WARN(true, "Unmatched sync_state pause/resume!");
1186 		goto out;
1187 	}
1188 	defer_sync_state_count--;
1189 	if (defer_sync_state_count)
1190 		goto out;
1191 
1192 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1193 		/*
1194 		 * Delete from deferred_sync list before queuing it to
1195 		 * sync_list because defer_sync is used for both lists.
1196 		 */
1197 		list_del_init(&dev->links.defer_sync);
1198 		__device_links_queue_sync_state(dev, &sync_list);
1199 	}
1200 out:
1201 	device_links_write_unlock();
1202 
1203 	device_links_flush_sync_list(&sync_list, NULL);
1204 }
1205 
1206 static int sync_state_resume_initcall(void)
1207 {
1208 	device_links_supplier_sync_state_resume();
1209 	return 0;
1210 }
1211 late_initcall(sync_state_resume_initcall);
1212 
1213 static void __device_links_supplier_defer_sync(struct device *sup)
1214 {
1215 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1216 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1217 }
1218 
1219 static void device_link_drop_managed(struct device_link *link)
1220 {
1221 	link->flags &= ~DL_FLAG_MANAGED;
1222 	WRITE_ONCE(link->status, DL_STATE_NONE);
1223 	kref_put(&link->kref, __device_link_del);
1224 }
1225 
1226 static ssize_t waiting_for_supplier_show(struct device *dev,
1227 					 struct device_attribute *attr,
1228 					 char *buf)
1229 {
1230 	bool val;
1231 
1232 	device_lock(dev);
1233 	mutex_lock(&fwnode_link_lock);
1234 	val = !!fwnode_links_check_suppliers(dev->fwnode);
1235 	mutex_unlock(&fwnode_link_lock);
1236 	device_unlock(dev);
1237 	return sysfs_emit(buf, "%u\n", val);
1238 }
1239 static DEVICE_ATTR_RO(waiting_for_supplier);
1240 
1241 /**
1242  * device_links_force_bind - Prepares device to be force bound
1243  * @dev: Consumer device.
1244  *
1245  * device_bind_driver() force binds a device to a driver without calling any
1246  * driver probe functions. So the consumer really isn't going to wait for any
1247  * supplier before it's bound to the driver. We still want the device link
1248  * states to be sensible when this happens.
1249  *
1250  * In preparation for device_bind_driver(), this function goes through each
1251  * supplier device links and checks if the supplier is bound. If it is, then
1252  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1253  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1254  */
1255 void device_links_force_bind(struct device *dev)
1256 {
1257 	struct device_link *link, *ln;
1258 
1259 	device_links_write_lock();
1260 
1261 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1262 		if (!(link->flags & DL_FLAG_MANAGED))
1263 			continue;
1264 
1265 		if (link->status != DL_STATE_AVAILABLE) {
1266 			device_link_drop_managed(link);
1267 			continue;
1268 		}
1269 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1270 	}
1271 	dev->links.status = DL_DEV_PROBING;
1272 
1273 	device_links_write_unlock();
1274 }
1275 
1276 /**
1277  * device_links_driver_bound - Update device links after probing its driver.
1278  * @dev: Device to update the links for.
1279  *
1280  * The probe has been successful, so update links from this device to any
1281  * consumers by changing their status to "available".
1282  *
1283  * Also change the status of @dev's links to suppliers to "active".
1284  *
1285  * Links without the DL_FLAG_MANAGED flag set are ignored.
1286  */
1287 void device_links_driver_bound(struct device *dev)
1288 {
1289 	struct device_link *link, *ln;
1290 	LIST_HEAD(sync_list);
1291 
1292 	/*
1293 	 * If a device binds successfully, it's expected to have created all
1294 	 * the device links it needs to or make new device links as it needs
1295 	 * them. So, fw_devlink no longer needs to create device links to any
1296 	 * of the device's suppliers.
1297 	 *
1298 	 * Also, if a child firmware node of this bound device is not added as a
1299 	 * device by now, assume it is never going to be added. Make this bound
1300 	 * device the fallback supplier to the dangling consumers of the child
1301 	 * firmware node because this bound device is probably implementing the
1302 	 * child firmware node functionality and we don't want the dangling
1303 	 * consumers to defer probe indefinitely waiting for a device for the
1304 	 * child firmware node.
1305 	 */
1306 	if (dev->fwnode && dev->fwnode->dev == dev) {
1307 		struct fwnode_handle *child;
1308 		fwnode_links_purge_suppliers(dev->fwnode);
1309 		mutex_lock(&fwnode_link_lock);
1310 		fwnode_for_each_available_child_node(dev->fwnode, child)
1311 			__fw_devlink_pickup_dangling_consumers(child,
1312 							       dev->fwnode);
1313 		__fw_devlink_link_to_consumers(dev);
1314 		mutex_unlock(&fwnode_link_lock);
1315 	}
1316 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1317 
1318 	device_links_write_lock();
1319 
1320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1321 		if (!(link->flags & DL_FLAG_MANAGED))
1322 			continue;
1323 
1324 		/*
1325 		 * Links created during consumer probe may be in the "consumer
1326 		 * probe" state to start with if the supplier is still probing
1327 		 * when they are created and they may become "active" if the
1328 		 * consumer probe returns first.  Skip them here.
1329 		 */
1330 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1331 		    link->status == DL_STATE_ACTIVE)
1332 			continue;
1333 
1334 		WARN_ON(link->status != DL_STATE_DORMANT);
1335 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1336 
1337 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1338 			driver_deferred_probe_add(link->consumer);
1339 	}
1340 
1341 	if (defer_sync_state_count)
1342 		__device_links_supplier_defer_sync(dev);
1343 	else
1344 		__device_links_queue_sync_state(dev, &sync_list);
1345 
1346 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1347 		struct device *supplier;
1348 
1349 		if (!(link->flags & DL_FLAG_MANAGED))
1350 			continue;
1351 
1352 		supplier = link->supplier;
1353 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1354 			/*
1355 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1356 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1357 			 * save to drop the managed link completely.
1358 			 */
1359 			device_link_drop_managed(link);
1360 		} else if (dev_is_best_effort(dev) &&
1361 			   link->flags & DL_FLAG_INFERRED &&
1362 			   link->status != DL_STATE_CONSUMER_PROBE &&
1363 			   !link->supplier->can_match) {
1364 			/*
1365 			 * When dev_is_best_effort() is true, we ignore device
1366 			 * links to suppliers that don't have a driver.  If the
1367 			 * consumer device still managed to probe, there's no
1368 			 * point in maintaining a device link in a weird state
1369 			 * (consumer probed before supplier). So delete it.
1370 			 */
1371 			device_link_drop_managed(link);
1372 		} else {
1373 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1374 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1375 		}
1376 
1377 		/*
1378 		 * This needs to be done even for the deleted
1379 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1380 		 * device link that was preventing the supplier from getting a
1381 		 * sync_state() call.
1382 		 */
1383 		if (defer_sync_state_count)
1384 			__device_links_supplier_defer_sync(supplier);
1385 		else
1386 			__device_links_queue_sync_state(supplier, &sync_list);
1387 	}
1388 
1389 	dev->links.status = DL_DEV_DRIVER_BOUND;
1390 
1391 	device_links_write_unlock();
1392 
1393 	device_links_flush_sync_list(&sync_list, dev);
1394 }
1395 
1396 /**
1397  * __device_links_no_driver - Update links of a device without a driver.
1398  * @dev: Device without a drvier.
1399  *
1400  * Delete all non-persistent links from this device to any suppliers.
1401  *
1402  * Persistent links stay around, but their status is changed to "available",
1403  * unless they already are in the "supplier unbind in progress" state in which
1404  * case they need not be updated.
1405  *
1406  * Links without the DL_FLAG_MANAGED flag set are ignored.
1407  */
1408 static void __device_links_no_driver(struct device *dev)
1409 {
1410 	struct device_link *link, *ln;
1411 
1412 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1413 		if (!(link->flags & DL_FLAG_MANAGED))
1414 			continue;
1415 
1416 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1417 			device_link_drop_managed(link);
1418 			continue;
1419 		}
1420 
1421 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1422 		    link->status != DL_STATE_ACTIVE)
1423 			continue;
1424 
1425 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1426 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1427 		} else {
1428 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1429 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1430 		}
1431 	}
1432 
1433 	dev->links.status = DL_DEV_NO_DRIVER;
1434 }
1435 
1436 /**
1437  * device_links_no_driver - Update links after failing driver probe.
1438  * @dev: Device whose driver has just failed to probe.
1439  *
1440  * Clean up leftover links to consumers for @dev and invoke
1441  * %__device_links_no_driver() to update links to suppliers for it as
1442  * appropriate.
1443  *
1444  * Links without the DL_FLAG_MANAGED flag set are ignored.
1445  */
1446 void device_links_no_driver(struct device *dev)
1447 {
1448 	struct device_link *link;
1449 
1450 	device_links_write_lock();
1451 
1452 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1453 		if (!(link->flags & DL_FLAG_MANAGED))
1454 			continue;
1455 
1456 		/*
1457 		 * The probe has failed, so if the status of the link is
1458 		 * "consumer probe" or "active", it must have been added by
1459 		 * a probing consumer while this device was still probing.
1460 		 * Change its state to "dormant", as it represents a valid
1461 		 * relationship, but it is not functionally meaningful.
1462 		 */
1463 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1464 		    link->status == DL_STATE_ACTIVE)
1465 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1466 	}
1467 
1468 	__device_links_no_driver(dev);
1469 
1470 	device_links_write_unlock();
1471 }
1472 
1473 /**
1474  * device_links_driver_cleanup - Update links after driver removal.
1475  * @dev: Device whose driver has just gone away.
1476  *
1477  * Update links to consumers for @dev by changing their status to "dormant" and
1478  * invoke %__device_links_no_driver() to update links to suppliers for it as
1479  * appropriate.
1480  *
1481  * Links without the DL_FLAG_MANAGED flag set are ignored.
1482  */
1483 void device_links_driver_cleanup(struct device *dev)
1484 {
1485 	struct device_link *link, *ln;
1486 
1487 	device_links_write_lock();
1488 
1489 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1490 		if (!(link->flags & DL_FLAG_MANAGED))
1491 			continue;
1492 
1493 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1494 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1495 
1496 		/*
1497 		 * autoremove the links between this @dev and its consumer
1498 		 * devices that are not active, i.e. where the link state
1499 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1500 		 */
1501 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1502 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1503 			device_link_drop_managed(link);
1504 
1505 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1506 	}
1507 
1508 	list_del_init(&dev->links.defer_sync);
1509 	__device_links_no_driver(dev);
1510 
1511 	device_links_write_unlock();
1512 }
1513 
1514 /**
1515  * device_links_busy - Check if there are any busy links to consumers.
1516  * @dev: Device to check.
1517  *
1518  * Check each consumer of the device and return 'true' if its link's status
1519  * is one of "consumer probe" or "active" (meaning that the given consumer is
1520  * probing right now or its driver is present).  Otherwise, change the link
1521  * state to "supplier unbind" to prevent the consumer from being probed
1522  * successfully going forward.
1523  *
1524  * Return 'false' if there are no probing or active consumers.
1525  *
1526  * Links without the DL_FLAG_MANAGED flag set are ignored.
1527  */
1528 bool device_links_busy(struct device *dev)
1529 {
1530 	struct device_link *link;
1531 	bool ret = false;
1532 
1533 	device_links_write_lock();
1534 
1535 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1536 		if (!(link->flags & DL_FLAG_MANAGED))
1537 			continue;
1538 
1539 		if (link->status == DL_STATE_CONSUMER_PROBE
1540 		    || link->status == DL_STATE_ACTIVE) {
1541 			ret = true;
1542 			break;
1543 		}
1544 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1545 	}
1546 
1547 	dev->links.status = DL_DEV_UNBINDING;
1548 
1549 	device_links_write_unlock();
1550 	return ret;
1551 }
1552 
1553 /**
1554  * device_links_unbind_consumers - Force unbind consumers of the given device.
1555  * @dev: Device to unbind the consumers of.
1556  *
1557  * Walk the list of links to consumers for @dev and if any of them is in the
1558  * "consumer probe" state, wait for all device probes in progress to complete
1559  * and start over.
1560  *
1561  * If that's not the case, change the status of the link to "supplier unbind"
1562  * and check if the link was in the "active" state.  If so, force the consumer
1563  * driver to unbind and start over (the consumer will not re-probe as we have
1564  * changed the state of the link already).
1565  *
1566  * Links without the DL_FLAG_MANAGED flag set are ignored.
1567  */
1568 void device_links_unbind_consumers(struct device *dev)
1569 {
1570 	struct device_link *link;
1571 
1572  start:
1573 	device_links_write_lock();
1574 
1575 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1576 		enum device_link_state status;
1577 
1578 		if (!(link->flags & DL_FLAG_MANAGED) ||
1579 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1580 			continue;
1581 
1582 		status = link->status;
1583 		if (status == DL_STATE_CONSUMER_PROBE) {
1584 			device_links_write_unlock();
1585 
1586 			wait_for_device_probe();
1587 			goto start;
1588 		}
1589 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1590 		if (status == DL_STATE_ACTIVE) {
1591 			struct device *consumer = link->consumer;
1592 
1593 			get_device(consumer);
1594 
1595 			device_links_write_unlock();
1596 
1597 			device_release_driver_internal(consumer, NULL,
1598 						       consumer->parent);
1599 			put_device(consumer);
1600 			goto start;
1601 		}
1602 	}
1603 
1604 	device_links_write_unlock();
1605 }
1606 
1607 /**
1608  * device_links_purge - Delete existing links to other devices.
1609  * @dev: Target device.
1610  */
1611 static void device_links_purge(struct device *dev)
1612 {
1613 	struct device_link *link, *ln;
1614 
1615 	if (dev->class == &devlink_class)
1616 		return;
1617 
1618 	/*
1619 	 * Delete all of the remaining links from this device to any other
1620 	 * devices (either consumers or suppliers).
1621 	 */
1622 	device_links_write_lock();
1623 
1624 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1625 		WARN_ON(link->status == DL_STATE_ACTIVE);
1626 		__device_link_del(&link->kref);
1627 	}
1628 
1629 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1630 		WARN_ON(link->status != DL_STATE_DORMANT &&
1631 			link->status != DL_STATE_NONE);
1632 		__device_link_del(&link->kref);
1633 	}
1634 
1635 	device_links_write_unlock();
1636 }
1637 
1638 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1639 					 DL_FLAG_SYNC_STATE_ONLY)
1640 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1641 					 DL_FLAG_AUTOPROBE_CONSUMER)
1642 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1643 					 DL_FLAG_PM_RUNTIME)
1644 
1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1646 static int __init fw_devlink_setup(char *arg)
1647 {
1648 	if (!arg)
1649 		return -EINVAL;
1650 
1651 	if (strcmp(arg, "off") == 0) {
1652 		fw_devlink_flags = 0;
1653 	} else if (strcmp(arg, "permissive") == 0) {
1654 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1655 	} else if (strcmp(arg, "on") == 0) {
1656 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1657 	} else if (strcmp(arg, "rpm") == 0) {
1658 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1659 	}
1660 	return 0;
1661 }
1662 early_param("fw_devlink", fw_devlink_setup);
1663 
1664 static bool fw_devlink_strict;
1665 static int __init fw_devlink_strict_setup(char *arg)
1666 {
1667 	return kstrtobool(arg, &fw_devlink_strict);
1668 }
1669 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1670 
1671 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1673 
1674 static int fw_devlink_sync_state;
1675 static int __init fw_devlink_sync_state_setup(char *arg)
1676 {
1677 	if (!arg)
1678 		return -EINVAL;
1679 
1680 	if (strcmp(arg, "strict") == 0) {
1681 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1682 		return 0;
1683 	} else if (strcmp(arg, "timeout") == 0) {
1684 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1685 		return 0;
1686 	}
1687 	return -EINVAL;
1688 }
1689 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1690 
1691 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1692 {
1693 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1694 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1695 
1696 	return fw_devlink_flags;
1697 }
1698 
1699 static bool fw_devlink_is_permissive(void)
1700 {
1701 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1702 }
1703 
1704 bool fw_devlink_is_strict(void)
1705 {
1706 	return fw_devlink_strict && !fw_devlink_is_permissive();
1707 }
1708 
1709 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1710 {
1711 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1712 		return;
1713 
1714 	fwnode_call_int_op(fwnode, add_links);
1715 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1716 }
1717 
1718 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1719 {
1720 	struct fwnode_handle *child = NULL;
1721 
1722 	fw_devlink_parse_fwnode(fwnode);
1723 
1724 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1725 		fw_devlink_parse_fwtree(child);
1726 }
1727 
1728 static void fw_devlink_relax_link(struct device_link *link)
1729 {
1730 	if (!(link->flags & DL_FLAG_INFERRED))
1731 		return;
1732 
1733 	if (device_link_flag_is_sync_state_only(link->flags))
1734 		return;
1735 
1736 	pm_runtime_drop_link(link);
1737 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1738 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1739 		dev_name(link->supplier));
1740 }
1741 
1742 static int fw_devlink_no_driver(struct device *dev, void *data)
1743 {
1744 	struct device_link *link = to_devlink(dev);
1745 
1746 	if (!link->supplier->can_match)
1747 		fw_devlink_relax_link(link);
1748 
1749 	return 0;
1750 }
1751 
1752 void fw_devlink_drivers_done(void)
1753 {
1754 	fw_devlink_drv_reg_done = true;
1755 	device_links_write_lock();
1756 	class_for_each_device(&devlink_class, NULL, NULL,
1757 			      fw_devlink_no_driver);
1758 	device_links_write_unlock();
1759 }
1760 
1761 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1762 {
1763 	struct device_link *link = to_devlink(dev);
1764 	struct device *sup = link->supplier;
1765 
1766 	if (!(link->flags & DL_FLAG_MANAGED) ||
1767 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1768 	    !dev_has_sync_state(sup))
1769 		return 0;
1770 
1771 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1772 		dev_warn(sup, "sync_state() pending due to %s\n",
1773 			 dev_name(link->consumer));
1774 		return 0;
1775 	}
1776 
1777 	if (!list_empty(&sup->links.defer_sync))
1778 		return 0;
1779 
1780 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1781 	sup->state_synced = true;
1782 	get_device(sup);
1783 	list_add_tail(&sup->links.defer_sync, data);
1784 
1785 	return 0;
1786 }
1787 
1788 void fw_devlink_probing_done(void)
1789 {
1790 	LIST_HEAD(sync_list);
1791 
1792 	device_links_write_lock();
1793 	class_for_each_device(&devlink_class, NULL, &sync_list,
1794 			      fw_devlink_dev_sync_state);
1795 	device_links_write_unlock();
1796 	device_links_flush_sync_list(&sync_list, NULL);
1797 }
1798 
1799 /**
1800  * wait_for_init_devices_probe - Try to probe any device needed for init
1801  *
1802  * Some devices might need to be probed and bound successfully before the kernel
1803  * boot sequence can finish and move on to init/userspace. For example, a
1804  * network interface might need to be bound to be able to mount a NFS rootfs.
1805  *
1806  * With fw_devlink=on by default, some of these devices might be blocked from
1807  * probing because they are waiting on a optional supplier that doesn't have a
1808  * driver. While fw_devlink will eventually identify such devices and unblock
1809  * the probing automatically, it might be too late by the time it unblocks the
1810  * probing of devices. For example, the IP4 autoconfig might timeout before
1811  * fw_devlink unblocks probing of the network interface.
1812  *
1813  * This function is available to temporarily try and probe all devices that have
1814  * a driver even if some of their suppliers haven't been added or don't have
1815  * drivers.
1816  *
1817  * The drivers can then decide which of the suppliers are optional vs mandatory
1818  * and probe the device if possible. By the time this function returns, all such
1819  * "best effort" probes are guaranteed to be completed. If a device successfully
1820  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1821  * device where the supplier hasn't yet probed successfully because they have to
1822  * be optional dependencies.
1823  *
1824  * Any devices that didn't successfully probe go back to being treated as if
1825  * this function was never called.
1826  *
1827  * This also means that some devices that aren't needed for init and could have
1828  * waited for their optional supplier to probe (when the supplier's module is
1829  * loaded later on) would end up probing prematurely with limited functionality.
1830  * So call this function only when boot would fail without it.
1831  */
1832 void __init wait_for_init_devices_probe(void)
1833 {
1834 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1835 		return;
1836 
1837 	/*
1838 	 * Wait for all ongoing probes to finish so that the "best effort" is
1839 	 * only applied to devices that can't probe otherwise.
1840 	 */
1841 	wait_for_device_probe();
1842 
1843 	pr_info("Trying to probe devices needed for running init ...\n");
1844 	fw_devlink_best_effort = true;
1845 	driver_deferred_probe_trigger();
1846 
1847 	/*
1848 	 * Wait for all "best effort" probes to finish before going back to
1849 	 * normal enforcement.
1850 	 */
1851 	wait_for_device_probe();
1852 	fw_devlink_best_effort = false;
1853 }
1854 
1855 static void fw_devlink_unblock_consumers(struct device *dev)
1856 {
1857 	struct device_link *link;
1858 
1859 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1860 		return;
1861 
1862 	device_links_write_lock();
1863 	list_for_each_entry(link, &dev->links.consumers, s_node)
1864 		fw_devlink_relax_link(link);
1865 	device_links_write_unlock();
1866 }
1867 
1868 
1869 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1870 {
1871 	struct device *dev;
1872 	bool ret;
1873 
1874 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1875 		return false;
1876 
1877 	dev = get_dev_from_fwnode(fwnode);
1878 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1879 	put_device(dev);
1880 
1881 	return ret;
1882 }
1883 
1884 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1885 {
1886 	struct fwnode_handle *parent;
1887 
1888 	fwnode_for_each_parent_node(fwnode, parent) {
1889 		if (fwnode_init_without_drv(parent)) {
1890 			fwnode_handle_put(parent);
1891 			return true;
1892 		}
1893 	}
1894 
1895 	return false;
1896 }
1897 
1898 /**
1899  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1900  * @con: Potential consumer device.
1901  * @sup_handle: Potential supplier's fwnode.
1902  *
1903  * Needs to be called with fwnode_lock and device link lock held.
1904  *
1905  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1906  * depend on @con. This function can detect multiple cyles between @sup_handle
1907  * and @con. When such dependency cycles are found, convert all device links
1908  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1909  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1910  * converted into a device link in the future, they are created as
1911  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1912  * fw_devlink=permissive just between the devices in the cycle. We need to do
1913  * this because, at this point, fw_devlink can't tell which of these
1914  * dependencies is not a real dependency.
1915  *
1916  * Return true if one or more cycles were found. Otherwise, return false.
1917  */
1918 static bool __fw_devlink_relax_cycles(struct device *con,
1919 				 struct fwnode_handle *sup_handle)
1920 {
1921 	struct device *sup_dev = NULL, *par_dev = NULL;
1922 	struct fwnode_link *link;
1923 	struct device_link *dev_link;
1924 	bool ret = false;
1925 
1926 	if (!sup_handle)
1927 		return false;
1928 
1929 	/*
1930 	 * We aren't trying to find all cycles. Just a cycle between con and
1931 	 * sup_handle.
1932 	 */
1933 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
1934 		return false;
1935 
1936 	sup_handle->flags |= FWNODE_FLAG_VISITED;
1937 
1938 	sup_dev = get_dev_from_fwnode(sup_handle);
1939 
1940 	/* Termination condition. */
1941 	if (sup_dev == con) {
1942 		ret = true;
1943 		goto out;
1944 	}
1945 
1946 	/*
1947 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
1948 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
1949 	 * further.
1950 	 */
1951 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
1952 	    con->links.status == DL_DEV_NO_DRIVER) {
1953 		ret = false;
1954 		goto out;
1955 	}
1956 
1957 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1958 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
1959 			__fwnode_link_cycle(link);
1960 			ret = true;
1961 		}
1962 	}
1963 
1964 	/*
1965 	 * Give priority to device parent over fwnode parent to account for any
1966 	 * quirks in how fwnodes are converted to devices.
1967 	 */
1968 	if (sup_dev)
1969 		par_dev = get_device(sup_dev->parent);
1970 	else
1971 		par_dev = fwnode_get_next_parent_dev(sup_handle);
1972 
1973 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1974 		ret = true;
1975 
1976 	if (!sup_dev)
1977 		goto out;
1978 
1979 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1980 		/*
1981 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1982 		 * such due to a cycle.
1983 		 */
1984 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1985 		    !(dev_link->flags & DL_FLAG_CYCLE))
1986 			continue;
1987 
1988 		if (__fw_devlink_relax_cycles(con,
1989 					      dev_link->supplier->fwnode)) {
1990 			fw_devlink_relax_link(dev_link);
1991 			dev_link->flags |= DL_FLAG_CYCLE;
1992 			ret = true;
1993 		}
1994 	}
1995 
1996 out:
1997 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
1998 	put_device(sup_dev);
1999 	put_device(par_dev);
2000 	return ret;
2001 }
2002 
2003 /**
2004  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2005  * @con: consumer device for the device link
2006  * @sup_handle: fwnode handle of supplier
2007  * @link: fwnode link that's being converted to a device link
2008  *
2009  * This function will try to create a device link between the consumer device
2010  * @con and the supplier device represented by @sup_handle.
2011  *
2012  * The supplier has to be provided as a fwnode because incorrect cycles in
2013  * fwnode links can sometimes cause the supplier device to never be created.
2014  * This function detects such cases and returns an error if it cannot create a
2015  * device link from the consumer to a missing supplier.
2016  *
2017  * Returns,
2018  * 0 on successfully creating a device link
2019  * -EINVAL if the device link cannot be created as expected
2020  * -EAGAIN if the device link cannot be created right now, but it may be
2021  *  possible to do that in the future
2022  */
2023 static int fw_devlink_create_devlink(struct device *con,
2024 				     struct fwnode_handle *sup_handle,
2025 				     struct fwnode_link *link)
2026 {
2027 	struct device *sup_dev;
2028 	int ret = 0;
2029 	u32 flags;
2030 
2031 	if (con->fwnode == link->consumer)
2032 		flags = fw_devlink_get_flags(link->flags);
2033 	else
2034 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2035 
2036 	/*
2037 	 * In some cases, a device P might also be a supplier to its child node
2038 	 * C. However, this would defer the probe of C until the probe of P
2039 	 * completes successfully. This is perfectly fine in the device driver
2040 	 * model. device_add() doesn't guarantee probe completion of the device
2041 	 * by the time it returns.
2042 	 *
2043 	 * However, there are a few drivers that assume C will finish probing
2044 	 * as soon as it's added and before P finishes probing. So, we provide
2045 	 * a flag to let fw_devlink know not to delay the probe of C until the
2046 	 * probe of P completes successfully.
2047 	 *
2048 	 * When such a flag is set, we can't create device links where P is the
2049 	 * supplier of C as that would delay the probe of C.
2050 	 */
2051 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2052 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2053 		return -EINVAL;
2054 
2055 	/*
2056 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2057 	 * So cycle detection isn't necessary and shouldn't be done.
2058 	 */
2059 	if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
2060 		device_links_write_lock();
2061 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2062 			__fwnode_link_cycle(link);
2063 			flags = fw_devlink_get_flags(link->flags);
2064 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2065 				 sup_handle);
2066 		}
2067 		device_links_write_unlock();
2068 	}
2069 
2070 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2071 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2072 	else
2073 		sup_dev = get_dev_from_fwnode(sup_handle);
2074 
2075 	if (sup_dev) {
2076 		/*
2077 		 * If it's one of those drivers that don't actually bind to
2078 		 * their device using driver core, then don't wait on this
2079 		 * supplier device indefinitely.
2080 		 */
2081 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2082 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2083 			dev_dbg(con,
2084 				"Not linking %pfwf - dev might never probe\n",
2085 				sup_handle);
2086 			ret = -EINVAL;
2087 			goto out;
2088 		}
2089 
2090 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2091 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2092 				flags, dev_name(sup_dev));
2093 			ret = -EINVAL;
2094 		}
2095 
2096 		goto out;
2097 	}
2098 
2099 	/*
2100 	 * Supplier or supplier's ancestor already initialized without a struct
2101 	 * device or being probed by a driver.
2102 	 */
2103 	if (fwnode_init_without_drv(sup_handle) ||
2104 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2105 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2106 			sup_handle);
2107 		return -EINVAL;
2108 	}
2109 
2110 	ret = -EAGAIN;
2111 out:
2112 	put_device(sup_dev);
2113 	return ret;
2114 }
2115 
2116 /**
2117  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2118  * @dev: Device that needs to be linked to its consumers
2119  *
2120  * This function looks at all the consumer fwnodes of @dev and creates device
2121  * links between the consumer device and @dev (supplier).
2122  *
2123  * If the consumer device has not been added yet, then this function creates a
2124  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2125  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2126  * sync_state() callback before the real consumer device gets to be added and
2127  * then probed.
2128  *
2129  * Once device links are created from the real consumer to @dev (supplier), the
2130  * fwnode links are deleted.
2131  */
2132 static void __fw_devlink_link_to_consumers(struct device *dev)
2133 {
2134 	struct fwnode_handle *fwnode = dev->fwnode;
2135 	struct fwnode_link *link, *tmp;
2136 
2137 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2138 		struct device *con_dev;
2139 		bool own_link = true;
2140 		int ret;
2141 
2142 		con_dev = get_dev_from_fwnode(link->consumer);
2143 		/*
2144 		 * If consumer device is not available yet, make a "proxy"
2145 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2146 		 * the supplier device. This is necessary to make sure the
2147 		 * supplier doesn't get a sync_state() callback before the real
2148 		 * consumer can create a device link to the supplier.
2149 		 *
2150 		 * This proxy link step is needed to handle the case where the
2151 		 * consumer's parent device is added before the supplier.
2152 		 */
2153 		if (!con_dev) {
2154 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2155 			/*
2156 			 * However, if the consumer's parent device is also the
2157 			 * parent of the supplier, don't create a
2158 			 * consumer-supplier link from the parent to its child
2159 			 * device. Such a dependency is impossible.
2160 			 */
2161 			if (con_dev &&
2162 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2163 				put_device(con_dev);
2164 				con_dev = NULL;
2165 			} else {
2166 				own_link = false;
2167 			}
2168 		}
2169 
2170 		if (!con_dev)
2171 			continue;
2172 
2173 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2174 		put_device(con_dev);
2175 		if (!own_link || ret == -EAGAIN)
2176 			continue;
2177 
2178 		__fwnode_link_del(link);
2179 	}
2180 }
2181 
2182 /**
2183  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2184  * @dev: The consumer device that needs to be linked to its suppliers
2185  * @fwnode: Root of the fwnode tree that is used to create device links
2186  *
2187  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2188  * @fwnode and creates device links between @dev (consumer) and all the
2189  * supplier devices of the entire fwnode tree at @fwnode.
2190  *
2191  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2192  * and the real suppliers of @dev. Once these device links are created, the
2193  * fwnode links are deleted.
2194  *
2195  * In addition, it also looks at all the suppliers of the entire fwnode tree
2196  * because some of the child devices of @dev that have not been added yet
2197  * (because @dev hasn't probed) might already have their suppliers added to
2198  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2199  * @dev (consumer) and these suppliers to make sure they don't execute their
2200  * sync_state() callbacks before these child devices have a chance to create
2201  * their device links. The fwnode links that correspond to the child devices
2202  * aren't delete because they are needed later to create the device links
2203  * between the real consumer and supplier devices.
2204  */
2205 static void __fw_devlink_link_to_suppliers(struct device *dev,
2206 					   struct fwnode_handle *fwnode)
2207 {
2208 	bool own_link = (dev->fwnode == fwnode);
2209 	struct fwnode_link *link, *tmp;
2210 	struct fwnode_handle *child = NULL;
2211 
2212 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2213 		int ret;
2214 		struct fwnode_handle *sup = link->supplier;
2215 
2216 		ret = fw_devlink_create_devlink(dev, sup, link);
2217 		if (!own_link || ret == -EAGAIN)
2218 			continue;
2219 
2220 		__fwnode_link_del(link);
2221 	}
2222 
2223 	/*
2224 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2225 	 * all the descendants. This proxy link step is needed to handle the
2226 	 * case where the supplier is added before the consumer's parent device
2227 	 * (@dev).
2228 	 */
2229 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2230 		__fw_devlink_link_to_suppliers(dev, child);
2231 }
2232 
2233 static void fw_devlink_link_device(struct device *dev)
2234 {
2235 	struct fwnode_handle *fwnode = dev->fwnode;
2236 
2237 	if (!fw_devlink_flags)
2238 		return;
2239 
2240 	fw_devlink_parse_fwtree(fwnode);
2241 
2242 	mutex_lock(&fwnode_link_lock);
2243 	__fw_devlink_link_to_consumers(dev);
2244 	__fw_devlink_link_to_suppliers(dev, fwnode);
2245 	mutex_unlock(&fwnode_link_lock);
2246 }
2247 
2248 /* Device links support end. */
2249 
2250 int (*platform_notify)(struct device *dev) = NULL;
2251 int (*platform_notify_remove)(struct device *dev) = NULL;
2252 static struct kobject *dev_kobj;
2253 struct kobject *sysfs_dev_char_kobj;
2254 struct kobject *sysfs_dev_block_kobj;
2255 
2256 static DEFINE_MUTEX(device_hotplug_lock);
2257 
2258 void lock_device_hotplug(void)
2259 {
2260 	mutex_lock(&device_hotplug_lock);
2261 }
2262 
2263 void unlock_device_hotplug(void)
2264 {
2265 	mutex_unlock(&device_hotplug_lock);
2266 }
2267 
2268 int lock_device_hotplug_sysfs(void)
2269 {
2270 	if (mutex_trylock(&device_hotplug_lock))
2271 		return 0;
2272 
2273 	/* Avoid busy looping (5 ms of sleep should do). */
2274 	msleep(5);
2275 	return restart_syscall();
2276 }
2277 
2278 #ifdef CONFIG_BLOCK
2279 static inline int device_is_not_partition(struct device *dev)
2280 {
2281 	return !(dev->type == &part_type);
2282 }
2283 #else
2284 static inline int device_is_not_partition(struct device *dev)
2285 {
2286 	return 1;
2287 }
2288 #endif
2289 
2290 static void device_platform_notify(struct device *dev)
2291 {
2292 	acpi_device_notify(dev);
2293 
2294 	software_node_notify(dev);
2295 
2296 	if (platform_notify)
2297 		platform_notify(dev);
2298 }
2299 
2300 static void device_platform_notify_remove(struct device *dev)
2301 {
2302 	acpi_device_notify_remove(dev);
2303 
2304 	software_node_notify_remove(dev);
2305 
2306 	if (platform_notify_remove)
2307 		platform_notify_remove(dev);
2308 }
2309 
2310 /**
2311  * dev_driver_string - Return a device's driver name, if at all possible
2312  * @dev: struct device to get the name of
2313  *
2314  * Will return the device's driver's name if it is bound to a device.  If
2315  * the device is not bound to a driver, it will return the name of the bus
2316  * it is attached to.  If it is not attached to a bus either, an empty
2317  * string will be returned.
2318  */
2319 const char *dev_driver_string(const struct device *dev)
2320 {
2321 	struct device_driver *drv;
2322 
2323 	/* dev->driver can change to NULL underneath us because of unbinding,
2324 	 * so be careful about accessing it.  dev->bus and dev->class should
2325 	 * never change once they are set, so they don't need special care.
2326 	 */
2327 	drv = READ_ONCE(dev->driver);
2328 	return drv ? drv->name : dev_bus_name(dev);
2329 }
2330 EXPORT_SYMBOL(dev_driver_string);
2331 
2332 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2333 
2334 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2335 			     char *buf)
2336 {
2337 	struct device_attribute *dev_attr = to_dev_attr(attr);
2338 	struct device *dev = kobj_to_dev(kobj);
2339 	ssize_t ret = -EIO;
2340 
2341 	if (dev_attr->show)
2342 		ret = dev_attr->show(dev, dev_attr, buf);
2343 	if (ret >= (ssize_t)PAGE_SIZE) {
2344 		printk("dev_attr_show: %pS returned bad count\n",
2345 				dev_attr->show);
2346 	}
2347 	return ret;
2348 }
2349 
2350 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2351 			      const char *buf, size_t count)
2352 {
2353 	struct device_attribute *dev_attr = to_dev_attr(attr);
2354 	struct device *dev = kobj_to_dev(kobj);
2355 	ssize_t ret = -EIO;
2356 
2357 	if (dev_attr->store)
2358 		ret = dev_attr->store(dev, dev_attr, buf, count);
2359 	return ret;
2360 }
2361 
2362 static const struct sysfs_ops dev_sysfs_ops = {
2363 	.show	= dev_attr_show,
2364 	.store	= dev_attr_store,
2365 };
2366 
2367 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2368 
2369 ssize_t device_store_ulong(struct device *dev,
2370 			   struct device_attribute *attr,
2371 			   const char *buf, size_t size)
2372 {
2373 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2374 	int ret;
2375 	unsigned long new;
2376 
2377 	ret = kstrtoul(buf, 0, &new);
2378 	if (ret)
2379 		return ret;
2380 	*(unsigned long *)(ea->var) = new;
2381 	/* Always return full write size even if we didn't consume all */
2382 	return size;
2383 }
2384 EXPORT_SYMBOL_GPL(device_store_ulong);
2385 
2386 ssize_t device_show_ulong(struct device *dev,
2387 			  struct device_attribute *attr,
2388 			  char *buf)
2389 {
2390 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2391 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2392 }
2393 EXPORT_SYMBOL_GPL(device_show_ulong);
2394 
2395 ssize_t device_store_int(struct device *dev,
2396 			 struct device_attribute *attr,
2397 			 const char *buf, size_t size)
2398 {
2399 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2400 	int ret;
2401 	long new;
2402 
2403 	ret = kstrtol(buf, 0, &new);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (new > INT_MAX || new < INT_MIN)
2408 		return -EINVAL;
2409 	*(int *)(ea->var) = new;
2410 	/* Always return full write size even if we didn't consume all */
2411 	return size;
2412 }
2413 EXPORT_SYMBOL_GPL(device_store_int);
2414 
2415 ssize_t device_show_int(struct device *dev,
2416 			struct device_attribute *attr,
2417 			char *buf)
2418 {
2419 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2420 
2421 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2422 }
2423 EXPORT_SYMBOL_GPL(device_show_int);
2424 
2425 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2426 			  const char *buf, size_t size)
2427 {
2428 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2429 
2430 	if (kstrtobool(buf, ea->var) < 0)
2431 		return -EINVAL;
2432 
2433 	return size;
2434 }
2435 EXPORT_SYMBOL_GPL(device_store_bool);
2436 
2437 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2438 			 char *buf)
2439 {
2440 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2441 
2442 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2443 }
2444 EXPORT_SYMBOL_GPL(device_show_bool);
2445 
2446 /**
2447  * device_release - free device structure.
2448  * @kobj: device's kobject.
2449  *
2450  * This is called once the reference count for the object
2451  * reaches 0. We forward the call to the device's release
2452  * method, which should handle actually freeing the structure.
2453  */
2454 static void device_release(struct kobject *kobj)
2455 {
2456 	struct device *dev = kobj_to_dev(kobj);
2457 	struct device_private *p = dev->p;
2458 
2459 	/*
2460 	 * Some platform devices are driven without driver attached
2461 	 * and managed resources may have been acquired.  Make sure
2462 	 * all resources are released.
2463 	 *
2464 	 * Drivers still can add resources into device after device
2465 	 * is deleted but alive, so release devres here to avoid
2466 	 * possible memory leak.
2467 	 */
2468 	devres_release_all(dev);
2469 
2470 	kfree(dev->dma_range_map);
2471 
2472 	if (dev->release)
2473 		dev->release(dev);
2474 	else if (dev->type && dev->type->release)
2475 		dev->type->release(dev);
2476 	else if (dev->class && dev->class->dev_release)
2477 		dev->class->dev_release(dev);
2478 	else
2479 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2480 			dev_name(dev));
2481 	kfree(p);
2482 }
2483 
2484 static const void *device_namespace(const struct kobject *kobj)
2485 {
2486 	const struct device *dev = kobj_to_dev(kobj);
2487 	const void *ns = NULL;
2488 
2489 	if (dev->class && dev->class->ns_type)
2490 		ns = dev->class->namespace(dev);
2491 
2492 	return ns;
2493 }
2494 
2495 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2496 {
2497 	const struct device *dev = kobj_to_dev(kobj);
2498 
2499 	if (dev->class && dev->class->get_ownership)
2500 		dev->class->get_ownership(dev, uid, gid);
2501 }
2502 
2503 static const struct kobj_type device_ktype = {
2504 	.release	= device_release,
2505 	.sysfs_ops	= &dev_sysfs_ops,
2506 	.namespace	= device_namespace,
2507 	.get_ownership	= device_get_ownership,
2508 };
2509 
2510 
2511 static int dev_uevent_filter(const struct kobject *kobj)
2512 {
2513 	const struct kobj_type *ktype = get_ktype(kobj);
2514 
2515 	if (ktype == &device_ktype) {
2516 		const struct device *dev = kobj_to_dev(kobj);
2517 		if (dev->bus)
2518 			return 1;
2519 		if (dev->class)
2520 			return 1;
2521 	}
2522 	return 0;
2523 }
2524 
2525 static const char *dev_uevent_name(const struct kobject *kobj)
2526 {
2527 	const struct device *dev = kobj_to_dev(kobj);
2528 
2529 	if (dev->bus)
2530 		return dev->bus->name;
2531 	if (dev->class)
2532 		return dev->class->name;
2533 	return NULL;
2534 }
2535 
2536 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2537 {
2538 	const struct device *dev = kobj_to_dev(kobj);
2539 	int retval = 0;
2540 
2541 	/* add device node properties if present */
2542 	if (MAJOR(dev->devt)) {
2543 		const char *tmp;
2544 		const char *name;
2545 		umode_t mode = 0;
2546 		kuid_t uid = GLOBAL_ROOT_UID;
2547 		kgid_t gid = GLOBAL_ROOT_GID;
2548 
2549 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2550 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2551 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2552 		if (name) {
2553 			add_uevent_var(env, "DEVNAME=%s", name);
2554 			if (mode)
2555 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2556 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2557 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2558 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2559 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2560 			kfree(tmp);
2561 		}
2562 	}
2563 
2564 	if (dev->type && dev->type->name)
2565 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2566 
2567 	if (dev->driver)
2568 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2569 
2570 	/* Add common DT information about the device */
2571 	of_device_uevent(dev, env);
2572 
2573 	/* have the bus specific function add its stuff */
2574 	if (dev->bus && dev->bus->uevent) {
2575 		retval = dev->bus->uevent(dev, env);
2576 		if (retval)
2577 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2578 				 dev_name(dev), __func__, retval);
2579 	}
2580 
2581 	/* have the class specific function add its stuff */
2582 	if (dev->class && dev->class->dev_uevent) {
2583 		retval = dev->class->dev_uevent(dev, env);
2584 		if (retval)
2585 			pr_debug("device: '%s': %s: class uevent() "
2586 				 "returned %d\n", dev_name(dev),
2587 				 __func__, retval);
2588 	}
2589 
2590 	/* have the device type specific function add its stuff */
2591 	if (dev->type && dev->type->uevent) {
2592 		retval = dev->type->uevent(dev, env);
2593 		if (retval)
2594 			pr_debug("device: '%s': %s: dev_type uevent() "
2595 				 "returned %d\n", dev_name(dev),
2596 				 __func__, retval);
2597 	}
2598 
2599 	return retval;
2600 }
2601 
2602 static const struct kset_uevent_ops device_uevent_ops = {
2603 	.filter =	dev_uevent_filter,
2604 	.name =		dev_uevent_name,
2605 	.uevent =	dev_uevent,
2606 };
2607 
2608 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2609 			   char *buf)
2610 {
2611 	struct kobject *top_kobj;
2612 	struct kset *kset;
2613 	struct kobj_uevent_env *env = NULL;
2614 	int i;
2615 	int len = 0;
2616 	int retval;
2617 
2618 	/* search the kset, the device belongs to */
2619 	top_kobj = &dev->kobj;
2620 	while (!top_kobj->kset && top_kobj->parent)
2621 		top_kobj = top_kobj->parent;
2622 	if (!top_kobj->kset)
2623 		goto out;
2624 
2625 	kset = top_kobj->kset;
2626 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2627 		goto out;
2628 
2629 	/* respect filter */
2630 	if (kset->uevent_ops && kset->uevent_ops->filter)
2631 		if (!kset->uevent_ops->filter(&dev->kobj))
2632 			goto out;
2633 
2634 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2635 	if (!env)
2636 		return -ENOMEM;
2637 
2638 	/* let the kset specific function add its keys */
2639 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2640 	if (retval)
2641 		goto out;
2642 
2643 	/* copy keys to file */
2644 	for (i = 0; i < env->envp_idx; i++)
2645 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2646 out:
2647 	kfree(env);
2648 	return len;
2649 }
2650 
2651 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2652 			    const char *buf, size_t count)
2653 {
2654 	int rc;
2655 
2656 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2657 
2658 	if (rc) {
2659 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2660 		return rc;
2661 	}
2662 
2663 	return count;
2664 }
2665 static DEVICE_ATTR_RW(uevent);
2666 
2667 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2668 			   char *buf)
2669 {
2670 	bool val;
2671 
2672 	device_lock(dev);
2673 	val = !dev->offline;
2674 	device_unlock(dev);
2675 	return sysfs_emit(buf, "%u\n", val);
2676 }
2677 
2678 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2679 			    const char *buf, size_t count)
2680 {
2681 	bool val;
2682 	int ret;
2683 
2684 	ret = kstrtobool(buf, &val);
2685 	if (ret < 0)
2686 		return ret;
2687 
2688 	ret = lock_device_hotplug_sysfs();
2689 	if (ret)
2690 		return ret;
2691 
2692 	ret = val ? device_online(dev) : device_offline(dev);
2693 	unlock_device_hotplug();
2694 	return ret < 0 ? ret : count;
2695 }
2696 static DEVICE_ATTR_RW(online);
2697 
2698 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2699 			      char *buf)
2700 {
2701 	const char *loc;
2702 
2703 	switch (dev->removable) {
2704 	case DEVICE_REMOVABLE:
2705 		loc = "removable";
2706 		break;
2707 	case DEVICE_FIXED:
2708 		loc = "fixed";
2709 		break;
2710 	default:
2711 		loc = "unknown";
2712 	}
2713 	return sysfs_emit(buf, "%s\n", loc);
2714 }
2715 static DEVICE_ATTR_RO(removable);
2716 
2717 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2718 {
2719 	return sysfs_create_groups(&dev->kobj, groups);
2720 }
2721 EXPORT_SYMBOL_GPL(device_add_groups);
2722 
2723 void device_remove_groups(struct device *dev,
2724 			  const struct attribute_group **groups)
2725 {
2726 	sysfs_remove_groups(&dev->kobj, groups);
2727 }
2728 EXPORT_SYMBOL_GPL(device_remove_groups);
2729 
2730 union device_attr_group_devres {
2731 	const struct attribute_group *group;
2732 	const struct attribute_group **groups;
2733 };
2734 
2735 static void devm_attr_group_remove(struct device *dev, void *res)
2736 {
2737 	union device_attr_group_devres *devres = res;
2738 	const struct attribute_group *group = devres->group;
2739 
2740 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2741 	sysfs_remove_group(&dev->kobj, group);
2742 }
2743 
2744 static void devm_attr_groups_remove(struct device *dev, void *res)
2745 {
2746 	union device_attr_group_devres *devres = res;
2747 	const struct attribute_group **groups = devres->groups;
2748 
2749 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2750 	sysfs_remove_groups(&dev->kobj, groups);
2751 }
2752 
2753 /**
2754  * devm_device_add_group - given a device, create a managed attribute group
2755  * @dev:	The device to create the group for
2756  * @grp:	The attribute group to create
2757  *
2758  * This function creates a group for the first time.  It will explicitly
2759  * warn and error if any of the attribute files being created already exist.
2760  *
2761  * Returns 0 on success or error code on failure.
2762  */
2763 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2764 {
2765 	union device_attr_group_devres *devres;
2766 	int error;
2767 
2768 	devres = devres_alloc(devm_attr_group_remove,
2769 			      sizeof(*devres), GFP_KERNEL);
2770 	if (!devres)
2771 		return -ENOMEM;
2772 
2773 	error = sysfs_create_group(&dev->kobj, grp);
2774 	if (error) {
2775 		devres_free(devres);
2776 		return error;
2777 	}
2778 
2779 	devres->group = grp;
2780 	devres_add(dev, devres);
2781 	return 0;
2782 }
2783 EXPORT_SYMBOL_GPL(devm_device_add_group);
2784 
2785 /**
2786  * devm_device_add_groups - create a bunch of managed attribute groups
2787  * @dev:	The device to create the group for
2788  * @groups:	The attribute groups to create, NULL terminated
2789  *
2790  * This function creates a bunch of managed attribute groups.  If an error
2791  * occurs when creating a group, all previously created groups will be
2792  * removed, unwinding everything back to the original state when this
2793  * function was called.  It will explicitly warn and error if any of the
2794  * attribute files being created already exist.
2795  *
2796  * Returns 0 on success or error code from sysfs_create_group on failure.
2797  */
2798 int devm_device_add_groups(struct device *dev,
2799 			   const struct attribute_group **groups)
2800 {
2801 	union device_attr_group_devres *devres;
2802 	int error;
2803 
2804 	devres = devres_alloc(devm_attr_groups_remove,
2805 			      sizeof(*devres), GFP_KERNEL);
2806 	if (!devres)
2807 		return -ENOMEM;
2808 
2809 	error = sysfs_create_groups(&dev->kobj, groups);
2810 	if (error) {
2811 		devres_free(devres);
2812 		return error;
2813 	}
2814 
2815 	devres->groups = groups;
2816 	devres_add(dev, devres);
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2820 
2821 static int device_add_attrs(struct device *dev)
2822 {
2823 	const struct class *class = dev->class;
2824 	const struct device_type *type = dev->type;
2825 	int error;
2826 
2827 	if (class) {
2828 		error = device_add_groups(dev, class->dev_groups);
2829 		if (error)
2830 			return error;
2831 	}
2832 
2833 	if (type) {
2834 		error = device_add_groups(dev, type->groups);
2835 		if (error)
2836 			goto err_remove_class_groups;
2837 	}
2838 
2839 	error = device_add_groups(dev, dev->groups);
2840 	if (error)
2841 		goto err_remove_type_groups;
2842 
2843 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2844 		error = device_create_file(dev, &dev_attr_online);
2845 		if (error)
2846 			goto err_remove_dev_groups;
2847 	}
2848 
2849 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2850 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2851 		if (error)
2852 			goto err_remove_dev_online;
2853 	}
2854 
2855 	if (dev_removable_is_valid(dev)) {
2856 		error = device_create_file(dev, &dev_attr_removable);
2857 		if (error)
2858 			goto err_remove_dev_waiting_for_supplier;
2859 	}
2860 
2861 	if (dev_add_physical_location(dev)) {
2862 		error = device_add_group(dev,
2863 			&dev_attr_physical_location_group);
2864 		if (error)
2865 			goto err_remove_dev_removable;
2866 	}
2867 
2868 	return 0;
2869 
2870  err_remove_dev_removable:
2871 	device_remove_file(dev, &dev_attr_removable);
2872  err_remove_dev_waiting_for_supplier:
2873 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2874  err_remove_dev_online:
2875 	device_remove_file(dev, &dev_attr_online);
2876  err_remove_dev_groups:
2877 	device_remove_groups(dev, dev->groups);
2878  err_remove_type_groups:
2879 	if (type)
2880 		device_remove_groups(dev, type->groups);
2881  err_remove_class_groups:
2882 	if (class)
2883 		device_remove_groups(dev, class->dev_groups);
2884 
2885 	return error;
2886 }
2887 
2888 static void device_remove_attrs(struct device *dev)
2889 {
2890 	const struct class *class = dev->class;
2891 	const struct device_type *type = dev->type;
2892 
2893 	if (dev->physical_location) {
2894 		device_remove_group(dev, &dev_attr_physical_location_group);
2895 		kfree(dev->physical_location);
2896 	}
2897 
2898 	device_remove_file(dev, &dev_attr_removable);
2899 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2900 	device_remove_file(dev, &dev_attr_online);
2901 	device_remove_groups(dev, dev->groups);
2902 
2903 	if (type)
2904 		device_remove_groups(dev, type->groups);
2905 
2906 	if (class)
2907 		device_remove_groups(dev, class->dev_groups);
2908 }
2909 
2910 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2911 			char *buf)
2912 {
2913 	return print_dev_t(buf, dev->devt);
2914 }
2915 static DEVICE_ATTR_RO(dev);
2916 
2917 /* /sys/devices/ */
2918 struct kset *devices_kset;
2919 
2920 /**
2921  * devices_kset_move_before - Move device in the devices_kset's list.
2922  * @deva: Device to move.
2923  * @devb: Device @deva should come before.
2924  */
2925 static void devices_kset_move_before(struct device *deva, struct device *devb)
2926 {
2927 	if (!devices_kset)
2928 		return;
2929 	pr_debug("devices_kset: Moving %s before %s\n",
2930 		 dev_name(deva), dev_name(devb));
2931 	spin_lock(&devices_kset->list_lock);
2932 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2933 	spin_unlock(&devices_kset->list_lock);
2934 }
2935 
2936 /**
2937  * devices_kset_move_after - Move device in the devices_kset's list.
2938  * @deva: Device to move
2939  * @devb: Device @deva should come after.
2940  */
2941 static void devices_kset_move_after(struct device *deva, struct device *devb)
2942 {
2943 	if (!devices_kset)
2944 		return;
2945 	pr_debug("devices_kset: Moving %s after %s\n",
2946 		 dev_name(deva), dev_name(devb));
2947 	spin_lock(&devices_kset->list_lock);
2948 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2949 	spin_unlock(&devices_kset->list_lock);
2950 }
2951 
2952 /**
2953  * devices_kset_move_last - move the device to the end of devices_kset's list.
2954  * @dev: device to move
2955  */
2956 void devices_kset_move_last(struct device *dev)
2957 {
2958 	if (!devices_kset)
2959 		return;
2960 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2961 	spin_lock(&devices_kset->list_lock);
2962 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2963 	spin_unlock(&devices_kset->list_lock);
2964 }
2965 
2966 /**
2967  * device_create_file - create sysfs attribute file for device.
2968  * @dev: device.
2969  * @attr: device attribute descriptor.
2970  */
2971 int device_create_file(struct device *dev,
2972 		       const struct device_attribute *attr)
2973 {
2974 	int error = 0;
2975 
2976 	if (dev) {
2977 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2978 			"Attribute %s: write permission without 'store'\n",
2979 			attr->attr.name);
2980 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2981 			"Attribute %s: read permission without 'show'\n",
2982 			attr->attr.name);
2983 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2984 	}
2985 
2986 	return error;
2987 }
2988 EXPORT_SYMBOL_GPL(device_create_file);
2989 
2990 /**
2991  * device_remove_file - remove sysfs attribute file.
2992  * @dev: device.
2993  * @attr: device attribute descriptor.
2994  */
2995 void device_remove_file(struct device *dev,
2996 			const struct device_attribute *attr)
2997 {
2998 	if (dev)
2999 		sysfs_remove_file(&dev->kobj, &attr->attr);
3000 }
3001 EXPORT_SYMBOL_GPL(device_remove_file);
3002 
3003 /**
3004  * device_remove_file_self - remove sysfs attribute file from its own method.
3005  * @dev: device.
3006  * @attr: device attribute descriptor.
3007  *
3008  * See kernfs_remove_self() for details.
3009  */
3010 bool device_remove_file_self(struct device *dev,
3011 			     const struct device_attribute *attr)
3012 {
3013 	if (dev)
3014 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3015 	else
3016 		return false;
3017 }
3018 EXPORT_SYMBOL_GPL(device_remove_file_self);
3019 
3020 /**
3021  * device_create_bin_file - create sysfs binary attribute file for device.
3022  * @dev: device.
3023  * @attr: device binary attribute descriptor.
3024  */
3025 int device_create_bin_file(struct device *dev,
3026 			   const struct bin_attribute *attr)
3027 {
3028 	int error = -EINVAL;
3029 	if (dev)
3030 		error = sysfs_create_bin_file(&dev->kobj, attr);
3031 	return error;
3032 }
3033 EXPORT_SYMBOL_GPL(device_create_bin_file);
3034 
3035 /**
3036  * device_remove_bin_file - remove sysfs binary attribute file
3037  * @dev: device.
3038  * @attr: device binary attribute descriptor.
3039  */
3040 void device_remove_bin_file(struct device *dev,
3041 			    const struct bin_attribute *attr)
3042 {
3043 	if (dev)
3044 		sysfs_remove_bin_file(&dev->kobj, attr);
3045 }
3046 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3047 
3048 static void klist_children_get(struct klist_node *n)
3049 {
3050 	struct device_private *p = to_device_private_parent(n);
3051 	struct device *dev = p->device;
3052 
3053 	get_device(dev);
3054 }
3055 
3056 static void klist_children_put(struct klist_node *n)
3057 {
3058 	struct device_private *p = to_device_private_parent(n);
3059 	struct device *dev = p->device;
3060 
3061 	put_device(dev);
3062 }
3063 
3064 /**
3065  * device_initialize - init device structure.
3066  * @dev: device.
3067  *
3068  * This prepares the device for use by other layers by initializing
3069  * its fields.
3070  * It is the first half of device_register(), if called by
3071  * that function, though it can also be called separately, so one
3072  * may use @dev's fields. In particular, get_device()/put_device()
3073  * may be used for reference counting of @dev after calling this
3074  * function.
3075  *
3076  * All fields in @dev must be initialized by the caller to 0, except
3077  * for those explicitly set to some other value.  The simplest
3078  * approach is to use kzalloc() to allocate the structure containing
3079  * @dev.
3080  *
3081  * NOTE: Use put_device() to give up your reference instead of freeing
3082  * @dev directly once you have called this function.
3083  */
3084 void device_initialize(struct device *dev)
3085 {
3086 	dev->kobj.kset = devices_kset;
3087 	kobject_init(&dev->kobj, &device_ktype);
3088 	INIT_LIST_HEAD(&dev->dma_pools);
3089 	mutex_init(&dev->mutex);
3090 	lockdep_set_novalidate_class(&dev->mutex);
3091 	spin_lock_init(&dev->devres_lock);
3092 	INIT_LIST_HEAD(&dev->devres_head);
3093 	device_pm_init(dev);
3094 	set_dev_node(dev, NUMA_NO_NODE);
3095 	INIT_LIST_HEAD(&dev->links.consumers);
3096 	INIT_LIST_HEAD(&dev->links.suppliers);
3097 	INIT_LIST_HEAD(&dev->links.defer_sync);
3098 	dev->links.status = DL_DEV_NO_DRIVER;
3099 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3100     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3101     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3102 	dev->dma_coherent = dma_default_coherent;
3103 #endif
3104 #ifdef CONFIG_SWIOTLB
3105 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
3106 #endif
3107 }
3108 EXPORT_SYMBOL_GPL(device_initialize);
3109 
3110 struct kobject *virtual_device_parent(struct device *dev)
3111 {
3112 	static struct kobject *virtual_dir = NULL;
3113 
3114 	if (!virtual_dir)
3115 		virtual_dir = kobject_create_and_add("virtual",
3116 						     &devices_kset->kobj);
3117 
3118 	return virtual_dir;
3119 }
3120 
3121 struct class_dir {
3122 	struct kobject kobj;
3123 	const struct class *class;
3124 };
3125 
3126 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3127 
3128 static void class_dir_release(struct kobject *kobj)
3129 {
3130 	struct class_dir *dir = to_class_dir(kobj);
3131 	kfree(dir);
3132 }
3133 
3134 static const
3135 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3136 {
3137 	const struct class_dir *dir = to_class_dir(kobj);
3138 	return dir->class->ns_type;
3139 }
3140 
3141 static const struct kobj_type class_dir_ktype = {
3142 	.release	= class_dir_release,
3143 	.sysfs_ops	= &kobj_sysfs_ops,
3144 	.child_ns_type	= class_dir_child_ns_type
3145 };
3146 
3147 static struct kobject *
3148 class_dir_create_and_add(const struct class *class, struct kobject *parent_kobj)
3149 {
3150 	struct class_dir *dir;
3151 	int retval;
3152 
3153 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3154 	if (!dir)
3155 		return ERR_PTR(-ENOMEM);
3156 
3157 	dir->class = class;
3158 	kobject_init(&dir->kobj, &class_dir_ktype);
3159 
3160 	dir->kobj.kset = &class->p->glue_dirs;
3161 
3162 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3163 	if (retval < 0) {
3164 		kobject_put(&dir->kobj);
3165 		return ERR_PTR(retval);
3166 	}
3167 	return &dir->kobj;
3168 }
3169 
3170 static DEFINE_MUTEX(gdp_mutex);
3171 
3172 static struct kobject *get_device_parent(struct device *dev,
3173 					 struct device *parent)
3174 {
3175 	struct kobject *kobj = NULL;
3176 
3177 	if (dev->class) {
3178 		struct kobject *parent_kobj;
3179 		struct kobject *k;
3180 
3181 		/*
3182 		 * If we have no parent, we live in "virtual".
3183 		 * Class-devices with a non class-device as parent, live
3184 		 * in a "glue" directory to prevent namespace collisions.
3185 		 */
3186 		if (parent == NULL)
3187 			parent_kobj = virtual_device_parent(dev);
3188 		else if (parent->class && !dev->class->ns_type)
3189 			return &parent->kobj;
3190 		else
3191 			parent_kobj = &parent->kobj;
3192 
3193 		mutex_lock(&gdp_mutex);
3194 
3195 		/* find our class-directory at the parent and reference it */
3196 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3197 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3198 			if (k->parent == parent_kobj) {
3199 				kobj = kobject_get(k);
3200 				break;
3201 			}
3202 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3203 		if (kobj) {
3204 			mutex_unlock(&gdp_mutex);
3205 			return kobj;
3206 		}
3207 
3208 		/* or create a new class-directory at the parent device */
3209 		k = class_dir_create_and_add(dev->class, parent_kobj);
3210 		/* do not emit an uevent for this simple "glue" directory */
3211 		mutex_unlock(&gdp_mutex);
3212 		return k;
3213 	}
3214 
3215 	/* subsystems can specify a default root directory for their devices */
3216 	if (!parent && dev->bus) {
3217 		struct device *dev_root = bus_get_dev_root(dev->bus);
3218 
3219 		if (dev_root) {
3220 			kobj = &dev_root->kobj;
3221 			put_device(dev_root);
3222 			return kobj;
3223 		}
3224 	}
3225 
3226 	if (parent)
3227 		return &parent->kobj;
3228 	return NULL;
3229 }
3230 
3231 static inline bool live_in_glue_dir(struct kobject *kobj,
3232 				    struct device *dev)
3233 {
3234 	if (!kobj || !dev->class ||
3235 	    kobj->kset != &dev->class->p->glue_dirs)
3236 		return false;
3237 	return true;
3238 }
3239 
3240 static inline struct kobject *get_glue_dir(struct device *dev)
3241 {
3242 	return dev->kobj.parent;
3243 }
3244 
3245 /**
3246  * kobject_has_children - Returns whether a kobject has children.
3247  * @kobj: the object to test
3248  *
3249  * This will return whether a kobject has other kobjects as children.
3250  *
3251  * It does NOT account for the presence of attribute files, only sub
3252  * directories. It also assumes there is no concurrent addition or
3253  * removal of such children, and thus relies on external locking.
3254  */
3255 static inline bool kobject_has_children(struct kobject *kobj)
3256 {
3257 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3258 
3259 	return kobj->sd && kobj->sd->dir.subdirs;
3260 }
3261 
3262 /*
3263  * make sure cleaning up dir as the last step, we need to make
3264  * sure .release handler of kobject is run with holding the
3265  * global lock
3266  */
3267 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3268 {
3269 	unsigned int ref;
3270 
3271 	/* see if we live in a "glue" directory */
3272 	if (!live_in_glue_dir(glue_dir, dev))
3273 		return;
3274 
3275 	mutex_lock(&gdp_mutex);
3276 	/**
3277 	 * There is a race condition between removing glue directory
3278 	 * and adding a new device under the glue directory.
3279 	 *
3280 	 * CPU1:                                         CPU2:
3281 	 *
3282 	 * device_add()
3283 	 *   get_device_parent()
3284 	 *     class_dir_create_and_add()
3285 	 *       kobject_add_internal()
3286 	 *         create_dir()    // create glue_dir
3287 	 *
3288 	 *                                               device_add()
3289 	 *                                                 get_device_parent()
3290 	 *                                                   kobject_get() // get glue_dir
3291 	 *
3292 	 * device_del()
3293 	 *   cleanup_glue_dir()
3294 	 *     kobject_del(glue_dir)
3295 	 *
3296 	 *                                               kobject_add()
3297 	 *                                                 kobject_add_internal()
3298 	 *                                                   create_dir() // in glue_dir
3299 	 *                                                     sysfs_create_dir_ns()
3300 	 *                                                       kernfs_create_dir_ns(sd)
3301 	 *
3302 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3303 	 *       sysfs_put()        // free glue_dir->sd
3304 	 *
3305 	 *                                                         // sd is freed
3306 	 *                                                         kernfs_new_node(sd)
3307 	 *                                                           kernfs_get(glue_dir)
3308 	 *                                                           kernfs_add_one()
3309 	 *                                                           kernfs_put()
3310 	 *
3311 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3312 	 * a new device under glue dir, the glue_dir kobject reference count
3313 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3314 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3315 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3316 	 *
3317 	 * Then the CPU2 will see a stale "empty" but still potentially used
3318 	 * glue dir around in kernfs_new_node().
3319 	 *
3320 	 * In order to avoid this happening, we also should make sure that
3321 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3322 	 * for glue_dir kobj is 1.
3323 	 */
3324 	ref = kref_read(&glue_dir->kref);
3325 	if (!kobject_has_children(glue_dir) && !--ref)
3326 		kobject_del(glue_dir);
3327 	kobject_put(glue_dir);
3328 	mutex_unlock(&gdp_mutex);
3329 }
3330 
3331 static int device_add_class_symlinks(struct device *dev)
3332 {
3333 	struct device_node *of_node = dev_of_node(dev);
3334 	int error;
3335 
3336 	if (of_node) {
3337 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3338 		if (error)
3339 			dev_warn(dev, "Error %d creating of_node link\n",error);
3340 		/* An error here doesn't warrant bringing down the device */
3341 	}
3342 
3343 	if (!dev->class)
3344 		return 0;
3345 
3346 	error = sysfs_create_link(&dev->kobj,
3347 				  &dev->class->p->subsys.kobj,
3348 				  "subsystem");
3349 	if (error)
3350 		goto out_devnode;
3351 
3352 	if (dev->parent && device_is_not_partition(dev)) {
3353 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3354 					  "device");
3355 		if (error)
3356 			goto out_subsys;
3357 	}
3358 
3359 	/* link in the class directory pointing to the device */
3360 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3361 				  &dev->kobj, dev_name(dev));
3362 	if (error)
3363 		goto out_device;
3364 
3365 	return 0;
3366 
3367 out_device:
3368 	sysfs_remove_link(&dev->kobj, "device");
3369 
3370 out_subsys:
3371 	sysfs_remove_link(&dev->kobj, "subsystem");
3372 out_devnode:
3373 	sysfs_remove_link(&dev->kobj, "of_node");
3374 	return error;
3375 }
3376 
3377 static void device_remove_class_symlinks(struct device *dev)
3378 {
3379 	if (dev_of_node(dev))
3380 		sysfs_remove_link(&dev->kobj, "of_node");
3381 
3382 	if (!dev->class)
3383 		return;
3384 
3385 	if (dev->parent && device_is_not_partition(dev))
3386 		sysfs_remove_link(&dev->kobj, "device");
3387 	sysfs_remove_link(&dev->kobj, "subsystem");
3388 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3389 }
3390 
3391 /**
3392  * dev_set_name - set a device name
3393  * @dev: device
3394  * @fmt: format string for the device's name
3395  */
3396 int dev_set_name(struct device *dev, const char *fmt, ...)
3397 {
3398 	va_list vargs;
3399 	int err;
3400 
3401 	va_start(vargs, fmt);
3402 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3403 	va_end(vargs);
3404 	return err;
3405 }
3406 EXPORT_SYMBOL_GPL(dev_set_name);
3407 
3408 /**
3409  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3410  * @dev: device
3411  *
3412  * By default we select char/ for new entries.  Setting class->dev_obj
3413  * to NULL prevents an entry from being created.  class->dev_kobj must
3414  * be set (or cleared) before any devices are registered to the class
3415  * otherwise device_create_sys_dev_entry() and
3416  * device_remove_sys_dev_entry() will disagree about the presence of
3417  * the link.
3418  */
3419 static struct kobject *device_to_dev_kobj(struct device *dev)
3420 {
3421 	struct kobject *kobj;
3422 
3423 	if (dev->class)
3424 		kobj = dev->class->dev_kobj;
3425 	else
3426 		kobj = sysfs_dev_char_kobj;
3427 
3428 	return kobj;
3429 }
3430 
3431 static int device_create_sys_dev_entry(struct device *dev)
3432 {
3433 	struct kobject *kobj = device_to_dev_kobj(dev);
3434 	int error = 0;
3435 	char devt_str[15];
3436 
3437 	if (kobj) {
3438 		format_dev_t(devt_str, dev->devt);
3439 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3440 	}
3441 
3442 	return error;
3443 }
3444 
3445 static void device_remove_sys_dev_entry(struct device *dev)
3446 {
3447 	struct kobject *kobj = device_to_dev_kobj(dev);
3448 	char devt_str[15];
3449 
3450 	if (kobj) {
3451 		format_dev_t(devt_str, dev->devt);
3452 		sysfs_remove_link(kobj, devt_str);
3453 	}
3454 }
3455 
3456 static int device_private_init(struct device *dev)
3457 {
3458 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3459 	if (!dev->p)
3460 		return -ENOMEM;
3461 	dev->p->device = dev;
3462 	klist_init(&dev->p->klist_children, klist_children_get,
3463 		   klist_children_put);
3464 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3465 	return 0;
3466 }
3467 
3468 /**
3469  * device_add - add device to device hierarchy.
3470  * @dev: device.
3471  *
3472  * This is part 2 of device_register(), though may be called
3473  * separately _iff_ device_initialize() has been called separately.
3474  *
3475  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3476  * to the global and sibling lists for the device, then
3477  * adds it to the other relevant subsystems of the driver model.
3478  *
3479  * Do not call this routine or device_register() more than once for
3480  * any device structure.  The driver model core is not designed to work
3481  * with devices that get unregistered and then spring back to life.
3482  * (Among other things, it's very hard to guarantee that all references
3483  * to the previous incarnation of @dev have been dropped.)  Allocate
3484  * and register a fresh new struct device instead.
3485  *
3486  * NOTE: _Never_ directly free @dev after calling this function, even
3487  * if it returned an error! Always use put_device() to give up your
3488  * reference instead.
3489  *
3490  * Rule of thumb is: if device_add() succeeds, you should call
3491  * device_del() when you want to get rid of it. If device_add() has
3492  * *not* succeeded, use *only* put_device() to drop the reference
3493  * count.
3494  */
3495 int device_add(struct device *dev)
3496 {
3497 	struct device *parent;
3498 	struct kobject *kobj;
3499 	struct class_interface *class_intf;
3500 	int error = -EINVAL;
3501 	struct kobject *glue_dir = NULL;
3502 
3503 	dev = get_device(dev);
3504 	if (!dev)
3505 		goto done;
3506 
3507 	if (!dev->p) {
3508 		error = device_private_init(dev);
3509 		if (error)
3510 			goto done;
3511 	}
3512 
3513 	/*
3514 	 * for statically allocated devices, which should all be converted
3515 	 * some day, we need to initialize the name. We prevent reading back
3516 	 * the name, and force the use of dev_name()
3517 	 */
3518 	if (dev->init_name) {
3519 		dev_set_name(dev, "%s", dev->init_name);
3520 		dev->init_name = NULL;
3521 	}
3522 
3523 	/* subsystems can specify simple device enumeration */
3524 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3525 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3526 
3527 	if (!dev_name(dev)) {
3528 		error = -EINVAL;
3529 		goto name_error;
3530 	}
3531 
3532 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3533 
3534 	parent = get_device(dev->parent);
3535 	kobj = get_device_parent(dev, parent);
3536 	if (IS_ERR(kobj)) {
3537 		error = PTR_ERR(kobj);
3538 		goto parent_error;
3539 	}
3540 	if (kobj)
3541 		dev->kobj.parent = kobj;
3542 
3543 	/* use parent numa_node */
3544 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3545 		set_dev_node(dev, dev_to_node(parent));
3546 
3547 	/* first, register with generic layer. */
3548 	/* we require the name to be set before, and pass NULL */
3549 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3550 	if (error) {
3551 		glue_dir = kobj;
3552 		goto Error;
3553 	}
3554 
3555 	/* notify platform of device entry */
3556 	device_platform_notify(dev);
3557 
3558 	error = device_create_file(dev, &dev_attr_uevent);
3559 	if (error)
3560 		goto attrError;
3561 
3562 	error = device_add_class_symlinks(dev);
3563 	if (error)
3564 		goto SymlinkError;
3565 	error = device_add_attrs(dev);
3566 	if (error)
3567 		goto AttrsError;
3568 	error = bus_add_device(dev);
3569 	if (error)
3570 		goto BusError;
3571 	error = dpm_sysfs_add(dev);
3572 	if (error)
3573 		goto DPMError;
3574 	device_pm_add(dev);
3575 
3576 	if (MAJOR(dev->devt)) {
3577 		error = device_create_file(dev, &dev_attr_dev);
3578 		if (error)
3579 			goto DevAttrError;
3580 
3581 		error = device_create_sys_dev_entry(dev);
3582 		if (error)
3583 			goto SysEntryError;
3584 
3585 		devtmpfs_create_node(dev);
3586 	}
3587 
3588 	/* Notify clients of device addition.  This call must come
3589 	 * after dpm_sysfs_add() and before kobject_uevent().
3590 	 */
3591 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3592 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3593 
3594 	/*
3595 	 * Check if any of the other devices (consumers) have been waiting for
3596 	 * this device (supplier) to be added so that they can create a device
3597 	 * link to it.
3598 	 *
3599 	 * This needs to happen after device_pm_add() because device_link_add()
3600 	 * requires the supplier be registered before it's called.
3601 	 *
3602 	 * But this also needs to happen before bus_probe_device() to make sure
3603 	 * waiting consumers can link to it before the driver is bound to the
3604 	 * device and the driver sync_state callback is called for this device.
3605 	 */
3606 	if (dev->fwnode && !dev->fwnode->dev) {
3607 		dev->fwnode->dev = dev;
3608 		fw_devlink_link_device(dev);
3609 	}
3610 
3611 	bus_probe_device(dev);
3612 
3613 	/*
3614 	 * If all driver registration is done and a newly added device doesn't
3615 	 * match with any driver, don't block its consumers from probing in
3616 	 * case the consumer device is able to operate without this supplier.
3617 	 */
3618 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3619 		fw_devlink_unblock_consumers(dev);
3620 
3621 	if (parent)
3622 		klist_add_tail(&dev->p->knode_parent,
3623 			       &parent->p->klist_children);
3624 
3625 	if (dev->class) {
3626 		mutex_lock(&dev->class->p->mutex);
3627 		/* tie the class to the device */
3628 		klist_add_tail(&dev->p->knode_class,
3629 			       &dev->class->p->klist_devices);
3630 
3631 		/* notify any interfaces that the device is here */
3632 		list_for_each_entry(class_intf,
3633 				    &dev->class->p->interfaces, node)
3634 			if (class_intf->add_dev)
3635 				class_intf->add_dev(dev, class_intf);
3636 		mutex_unlock(&dev->class->p->mutex);
3637 	}
3638 done:
3639 	put_device(dev);
3640 	return error;
3641  SysEntryError:
3642 	if (MAJOR(dev->devt))
3643 		device_remove_file(dev, &dev_attr_dev);
3644  DevAttrError:
3645 	device_pm_remove(dev);
3646 	dpm_sysfs_remove(dev);
3647  DPMError:
3648 	dev->driver = NULL;
3649 	bus_remove_device(dev);
3650  BusError:
3651 	device_remove_attrs(dev);
3652  AttrsError:
3653 	device_remove_class_symlinks(dev);
3654  SymlinkError:
3655 	device_remove_file(dev, &dev_attr_uevent);
3656  attrError:
3657 	device_platform_notify_remove(dev);
3658 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3659 	glue_dir = get_glue_dir(dev);
3660 	kobject_del(&dev->kobj);
3661  Error:
3662 	cleanup_glue_dir(dev, glue_dir);
3663 parent_error:
3664 	put_device(parent);
3665 name_error:
3666 	kfree(dev->p);
3667 	dev->p = NULL;
3668 	goto done;
3669 }
3670 EXPORT_SYMBOL_GPL(device_add);
3671 
3672 /**
3673  * device_register - register a device with the system.
3674  * @dev: pointer to the device structure
3675  *
3676  * This happens in two clean steps - initialize the device
3677  * and add it to the system. The two steps can be called
3678  * separately, but this is the easiest and most common.
3679  * I.e. you should only call the two helpers separately if
3680  * have a clearly defined need to use and refcount the device
3681  * before it is added to the hierarchy.
3682  *
3683  * For more information, see the kerneldoc for device_initialize()
3684  * and device_add().
3685  *
3686  * NOTE: _Never_ directly free @dev after calling this function, even
3687  * if it returned an error! Always use put_device() to give up the
3688  * reference initialized in this function instead.
3689  */
3690 int device_register(struct device *dev)
3691 {
3692 	device_initialize(dev);
3693 	return device_add(dev);
3694 }
3695 EXPORT_SYMBOL_GPL(device_register);
3696 
3697 /**
3698  * get_device - increment reference count for device.
3699  * @dev: device.
3700  *
3701  * This simply forwards the call to kobject_get(), though
3702  * we do take care to provide for the case that we get a NULL
3703  * pointer passed in.
3704  */
3705 struct device *get_device(struct device *dev)
3706 {
3707 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3708 }
3709 EXPORT_SYMBOL_GPL(get_device);
3710 
3711 /**
3712  * put_device - decrement reference count.
3713  * @dev: device in question.
3714  */
3715 void put_device(struct device *dev)
3716 {
3717 	/* might_sleep(); */
3718 	if (dev)
3719 		kobject_put(&dev->kobj);
3720 }
3721 EXPORT_SYMBOL_GPL(put_device);
3722 
3723 bool kill_device(struct device *dev)
3724 {
3725 	/*
3726 	 * Require the device lock and set the "dead" flag to guarantee that
3727 	 * the update behavior is consistent with the other bitfields near
3728 	 * it and that we cannot have an asynchronous probe routine trying
3729 	 * to run while we are tearing out the bus/class/sysfs from
3730 	 * underneath the device.
3731 	 */
3732 	device_lock_assert(dev);
3733 
3734 	if (dev->p->dead)
3735 		return false;
3736 	dev->p->dead = true;
3737 	return true;
3738 }
3739 EXPORT_SYMBOL_GPL(kill_device);
3740 
3741 /**
3742  * device_del - delete device from system.
3743  * @dev: device.
3744  *
3745  * This is the first part of the device unregistration
3746  * sequence. This removes the device from the lists we control
3747  * from here, has it removed from the other driver model
3748  * subsystems it was added to in device_add(), and removes it
3749  * from the kobject hierarchy.
3750  *
3751  * NOTE: this should be called manually _iff_ device_add() was
3752  * also called manually.
3753  */
3754 void device_del(struct device *dev)
3755 {
3756 	struct device *parent = dev->parent;
3757 	struct kobject *glue_dir = NULL;
3758 	struct class_interface *class_intf;
3759 	unsigned int noio_flag;
3760 
3761 	device_lock(dev);
3762 	kill_device(dev);
3763 	device_unlock(dev);
3764 
3765 	if (dev->fwnode && dev->fwnode->dev == dev)
3766 		dev->fwnode->dev = NULL;
3767 
3768 	/* Notify clients of device removal.  This call must come
3769 	 * before dpm_sysfs_remove().
3770 	 */
3771 	noio_flag = memalloc_noio_save();
3772 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3773 
3774 	dpm_sysfs_remove(dev);
3775 	if (parent)
3776 		klist_del(&dev->p->knode_parent);
3777 	if (MAJOR(dev->devt)) {
3778 		devtmpfs_delete_node(dev);
3779 		device_remove_sys_dev_entry(dev);
3780 		device_remove_file(dev, &dev_attr_dev);
3781 	}
3782 	if (dev->class) {
3783 		device_remove_class_symlinks(dev);
3784 
3785 		mutex_lock(&dev->class->p->mutex);
3786 		/* notify any interfaces that the device is now gone */
3787 		list_for_each_entry(class_intf,
3788 				    &dev->class->p->interfaces, node)
3789 			if (class_intf->remove_dev)
3790 				class_intf->remove_dev(dev, class_intf);
3791 		/* remove the device from the class list */
3792 		klist_del(&dev->p->knode_class);
3793 		mutex_unlock(&dev->class->p->mutex);
3794 	}
3795 	device_remove_file(dev, &dev_attr_uevent);
3796 	device_remove_attrs(dev);
3797 	bus_remove_device(dev);
3798 	device_pm_remove(dev);
3799 	driver_deferred_probe_del(dev);
3800 	device_platform_notify_remove(dev);
3801 	device_links_purge(dev);
3802 
3803 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3804 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3805 	glue_dir = get_glue_dir(dev);
3806 	kobject_del(&dev->kobj);
3807 	cleanup_glue_dir(dev, glue_dir);
3808 	memalloc_noio_restore(noio_flag);
3809 	put_device(parent);
3810 }
3811 EXPORT_SYMBOL_GPL(device_del);
3812 
3813 /**
3814  * device_unregister - unregister device from system.
3815  * @dev: device going away.
3816  *
3817  * We do this in two parts, like we do device_register(). First,
3818  * we remove it from all the subsystems with device_del(), then
3819  * we decrement the reference count via put_device(). If that
3820  * is the final reference count, the device will be cleaned up
3821  * via device_release() above. Otherwise, the structure will
3822  * stick around until the final reference to the device is dropped.
3823  */
3824 void device_unregister(struct device *dev)
3825 {
3826 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3827 	device_del(dev);
3828 	put_device(dev);
3829 }
3830 EXPORT_SYMBOL_GPL(device_unregister);
3831 
3832 static struct device *prev_device(struct klist_iter *i)
3833 {
3834 	struct klist_node *n = klist_prev(i);
3835 	struct device *dev = NULL;
3836 	struct device_private *p;
3837 
3838 	if (n) {
3839 		p = to_device_private_parent(n);
3840 		dev = p->device;
3841 	}
3842 	return dev;
3843 }
3844 
3845 static struct device *next_device(struct klist_iter *i)
3846 {
3847 	struct klist_node *n = klist_next(i);
3848 	struct device *dev = NULL;
3849 	struct device_private *p;
3850 
3851 	if (n) {
3852 		p = to_device_private_parent(n);
3853 		dev = p->device;
3854 	}
3855 	return dev;
3856 }
3857 
3858 /**
3859  * device_get_devnode - path of device node file
3860  * @dev: device
3861  * @mode: returned file access mode
3862  * @uid: returned file owner
3863  * @gid: returned file group
3864  * @tmp: possibly allocated string
3865  *
3866  * Return the relative path of a possible device node.
3867  * Non-default names may need to allocate a memory to compose
3868  * a name. This memory is returned in tmp and needs to be
3869  * freed by the caller.
3870  */
3871 const char *device_get_devnode(const struct device *dev,
3872 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3873 			       const char **tmp)
3874 {
3875 	char *s;
3876 
3877 	*tmp = NULL;
3878 
3879 	/* the device type may provide a specific name */
3880 	if (dev->type && dev->type->devnode)
3881 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3882 	if (*tmp)
3883 		return *tmp;
3884 
3885 	/* the class may provide a specific name */
3886 	if (dev->class && dev->class->devnode)
3887 		*tmp = dev->class->devnode(dev, mode);
3888 	if (*tmp)
3889 		return *tmp;
3890 
3891 	/* return name without allocation, tmp == NULL */
3892 	if (strchr(dev_name(dev), '!') == NULL)
3893 		return dev_name(dev);
3894 
3895 	/* replace '!' in the name with '/' */
3896 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3897 	if (!s)
3898 		return NULL;
3899 	strreplace(s, '!', '/');
3900 	return *tmp = s;
3901 }
3902 
3903 /**
3904  * device_for_each_child - device child iterator.
3905  * @parent: parent struct device.
3906  * @fn: function to be called for each device.
3907  * @data: data for the callback.
3908  *
3909  * Iterate over @parent's child devices, and call @fn for each,
3910  * passing it @data.
3911  *
3912  * We check the return of @fn each time. If it returns anything
3913  * other than 0, we break out and return that value.
3914  */
3915 int device_for_each_child(struct device *parent, void *data,
3916 			  int (*fn)(struct device *dev, void *data))
3917 {
3918 	struct klist_iter i;
3919 	struct device *child;
3920 	int error = 0;
3921 
3922 	if (!parent->p)
3923 		return 0;
3924 
3925 	klist_iter_init(&parent->p->klist_children, &i);
3926 	while (!error && (child = next_device(&i)))
3927 		error = fn(child, data);
3928 	klist_iter_exit(&i);
3929 	return error;
3930 }
3931 EXPORT_SYMBOL_GPL(device_for_each_child);
3932 
3933 /**
3934  * device_for_each_child_reverse - device child iterator in reversed order.
3935  * @parent: parent struct device.
3936  * @fn: function to be called for each device.
3937  * @data: data for the callback.
3938  *
3939  * Iterate over @parent's child devices, and call @fn for each,
3940  * passing it @data.
3941  *
3942  * We check the return of @fn each time. If it returns anything
3943  * other than 0, we break out and return that value.
3944  */
3945 int device_for_each_child_reverse(struct device *parent, void *data,
3946 				  int (*fn)(struct device *dev, void *data))
3947 {
3948 	struct klist_iter i;
3949 	struct device *child;
3950 	int error = 0;
3951 
3952 	if (!parent->p)
3953 		return 0;
3954 
3955 	klist_iter_init(&parent->p->klist_children, &i);
3956 	while ((child = prev_device(&i)) && !error)
3957 		error = fn(child, data);
3958 	klist_iter_exit(&i);
3959 	return error;
3960 }
3961 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3962 
3963 /**
3964  * device_find_child - device iterator for locating a particular device.
3965  * @parent: parent struct device
3966  * @match: Callback function to check device
3967  * @data: Data to pass to match function
3968  *
3969  * This is similar to the device_for_each_child() function above, but it
3970  * returns a reference to a device that is 'found' for later use, as
3971  * determined by the @match callback.
3972  *
3973  * The callback should return 0 if the device doesn't match and non-zero
3974  * if it does.  If the callback returns non-zero and a reference to the
3975  * current device can be obtained, this function will return to the caller
3976  * and not iterate over any more devices.
3977  *
3978  * NOTE: you will need to drop the reference with put_device() after use.
3979  */
3980 struct device *device_find_child(struct device *parent, void *data,
3981 				 int (*match)(struct device *dev, void *data))
3982 {
3983 	struct klist_iter i;
3984 	struct device *child;
3985 
3986 	if (!parent)
3987 		return NULL;
3988 
3989 	klist_iter_init(&parent->p->klist_children, &i);
3990 	while ((child = next_device(&i)))
3991 		if (match(child, data) && get_device(child))
3992 			break;
3993 	klist_iter_exit(&i);
3994 	return child;
3995 }
3996 EXPORT_SYMBOL_GPL(device_find_child);
3997 
3998 /**
3999  * device_find_child_by_name - device iterator for locating a child device.
4000  * @parent: parent struct device
4001  * @name: name of the child device
4002  *
4003  * This is similar to the device_find_child() function above, but it
4004  * returns a reference to a device that has the name @name.
4005  *
4006  * NOTE: you will need to drop the reference with put_device() after use.
4007  */
4008 struct device *device_find_child_by_name(struct device *parent,
4009 					 const char *name)
4010 {
4011 	struct klist_iter i;
4012 	struct device *child;
4013 
4014 	if (!parent)
4015 		return NULL;
4016 
4017 	klist_iter_init(&parent->p->klist_children, &i);
4018 	while ((child = next_device(&i)))
4019 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4020 			break;
4021 	klist_iter_exit(&i);
4022 	return child;
4023 }
4024 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4025 
4026 static int match_any(struct device *dev, void *unused)
4027 {
4028 	return 1;
4029 }
4030 
4031 /**
4032  * device_find_any_child - device iterator for locating a child device, if any.
4033  * @parent: parent struct device
4034  *
4035  * This is similar to the device_find_child() function above, but it
4036  * returns a reference to a child device, if any.
4037  *
4038  * NOTE: you will need to drop the reference with put_device() after use.
4039  */
4040 struct device *device_find_any_child(struct device *parent)
4041 {
4042 	return device_find_child(parent, NULL, match_any);
4043 }
4044 EXPORT_SYMBOL_GPL(device_find_any_child);
4045 
4046 int __init devices_init(void)
4047 {
4048 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4049 	if (!devices_kset)
4050 		return -ENOMEM;
4051 	dev_kobj = kobject_create_and_add("dev", NULL);
4052 	if (!dev_kobj)
4053 		goto dev_kobj_err;
4054 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4055 	if (!sysfs_dev_block_kobj)
4056 		goto block_kobj_err;
4057 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4058 	if (!sysfs_dev_char_kobj)
4059 		goto char_kobj_err;
4060 
4061 	return 0;
4062 
4063  char_kobj_err:
4064 	kobject_put(sysfs_dev_block_kobj);
4065  block_kobj_err:
4066 	kobject_put(dev_kobj);
4067  dev_kobj_err:
4068 	kset_unregister(devices_kset);
4069 	return -ENOMEM;
4070 }
4071 
4072 static int device_check_offline(struct device *dev, void *not_used)
4073 {
4074 	int ret;
4075 
4076 	ret = device_for_each_child(dev, NULL, device_check_offline);
4077 	if (ret)
4078 		return ret;
4079 
4080 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4081 }
4082 
4083 /**
4084  * device_offline - Prepare the device for hot-removal.
4085  * @dev: Device to be put offline.
4086  *
4087  * Execute the device bus type's .offline() callback, if present, to prepare
4088  * the device for a subsequent hot-removal.  If that succeeds, the device must
4089  * not be used until either it is removed or its bus type's .online() callback
4090  * is executed.
4091  *
4092  * Call under device_hotplug_lock.
4093  */
4094 int device_offline(struct device *dev)
4095 {
4096 	int ret;
4097 
4098 	if (dev->offline_disabled)
4099 		return -EPERM;
4100 
4101 	ret = device_for_each_child(dev, NULL, device_check_offline);
4102 	if (ret)
4103 		return ret;
4104 
4105 	device_lock(dev);
4106 	if (device_supports_offline(dev)) {
4107 		if (dev->offline) {
4108 			ret = 1;
4109 		} else {
4110 			ret = dev->bus->offline(dev);
4111 			if (!ret) {
4112 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4113 				dev->offline = true;
4114 			}
4115 		}
4116 	}
4117 	device_unlock(dev);
4118 
4119 	return ret;
4120 }
4121 
4122 /**
4123  * device_online - Put the device back online after successful device_offline().
4124  * @dev: Device to be put back online.
4125  *
4126  * If device_offline() has been successfully executed for @dev, but the device
4127  * has not been removed subsequently, execute its bus type's .online() callback
4128  * to indicate that the device can be used again.
4129  *
4130  * Call under device_hotplug_lock.
4131  */
4132 int device_online(struct device *dev)
4133 {
4134 	int ret = 0;
4135 
4136 	device_lock(dev);
4137 	if (device_supports_offline(dev)) {
4138 		if (dev->offline) {
4139 			ret = dev->bus->online(dev);
4140 			if (!ret) {
4141 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4142 				dev->offline = false;
4143 			}
4144 		} else {
4145 			ret = 1;
4146 		}
4147 	}
4148 	device_unlock(dev);
4149 
4150 	return ret;
4151 }
4152 
4153 struct root_device {
4154 	struct device dev;
4155 	struct module *owner;
4156 };
4157 
4158 static inline struct root_device *to_root_device(struct device *d)
4159 {
4160 	return container_of(d, struct root_device, dev);
4161 }
4162 
4163 static void root_device_release(struct device *dev)
4164 {
4165 	kfree(to_root_device(dev));
4166 }
4167 
4168 /**
4169  * __root_device_register - allocate and register a root device
4170  * @name: root device name
4171  * @owner: owner module of the root device, usually THIS_MODULE
4172  *
4173  * This function allocates a root device and registers it
4174  * using device_register(). In order to free the returned
4175  * device, use root_device_unregister().
4176  *
4177  * Root devices are dummy devices which allow other devices
4178  * to be grouped under /sys/devices. Use this function to
4179  * allocate a root device and then use it as the parent of
4180  * any device which should appear under /sys/devices/{name}
4181  *
4182  * The /sys/devices/{name} directory will also contain a
4183  * 'module' symlink which points to the @owner directory
4184  * in sysfs.
4185  *
4186  * Returns &struct device pointer on success, or ERR_PTR() on error.
4187  *
4188  * Note: You probably want to use root_device_register().
4189  */
4190 struct device *__root_device_register(const char *name, struct module *owner)
4191 {
4192 	struct root_device *root;
4193 	int err = -ENOMEM;
4194 
4195 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4196 	if (!root)
4197 		return ERR_PTR(err);
4198 
4199 	err = dev_set_name(&root->dev, "%s", name);
4200 	if (err) {
4201 		kfree(root);
4202 		return ERR_PTR(err);
4203 	}
4204 
4205 	root->dev.release = root_device_release;
4206 
4207 	err = device_register(&root->dev);
4208 	if (err) {
4209 		put_device(&root->dev);
4210 		return ERR_PTR(err);
4211 	}
4212 
4213 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4214 	if (owner) {
4215 		struct module_kobject *mk = &owner->mkobj;
4216 
4217 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4218 		if (err) {
4219 			device_unregister(&root->dev);
4220 			return ERR_PTR(err);
4221 		}
4222 		root->owner = owner;
4223 	}
4224 #endif
4225 
4226 	return &root->dev;
4227 }
4228 EXPORT_SYMBOL_GPL(__root_device_register);
4229 
4230 /**
4231  * root_device_unregister - unregister and free a root device
4232  * @dev: device going away
4233  *
4234  * This function unregisters and cleans up a device that was created by
4235  * root_device_register().
4236  */
4237 void root_device_unregister(struct device *dev)
4238 {
4239 	struct root_device *root = to_root_device(dev);
4240 
4241 	if (root->owner)
4242 		sysfs_remove_link(&root->dev.kobj, "module");
4243 
4244 	device_unregister(dev);
4245 }
4246 EXPORT_SYMBOL_GPL(root_device_unregister);
4247 
4248 
4249 static void device_create_release(struct device *dev)
4250 {
4251 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4252 	kfree(dev);
4253 }
4254 
4255 static __printf(6, 0) struct device *
4256 device_create_groups_vargs(const struct class *class, struct device *parent,
4257 			   dev_t devt, void *drvdata,
4258 			   const struct attribute_group **groups,
4259 			   const char *fmt, va_list args)
4260 {
4261 	struct device *dev = NULL;
4262 	int retval = -ENODEV;
4263 
4264 	if (IS_ERR_OR_NULL(class))
4265 		goto error;
4266 
4267 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4268 	if (!dev) {
4269 		retval = -ENOMEM;
4270 		goto error;
4271 	}
4272 
4273 	device_initialize(dev);
4274 	dev->devt = devt;
4275 	dev->class = class;
4276 	dev->parent = parent;
4277 	dev->groups = groups;
4278 	dev->release = device_create_release;
4279 	dev_set_drvdata(dev, drvdata);
4280 
4281 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4282 	if (retval)
4283 		goto error;
4284 
4285 	retval = device_add(dev);
4286 	if (retval)
4287 		goto error;
4288 
4289 	return dev;
4290 
4291 error:
4292 	put_device(dev);
4293 	return ERR_PTR(retval);
4294 }
4295 
4296 /**
4297  * device_create - creates a device and registers it with sysfs
4298  * @class: pointer to the struct class that this device should be registered to
4299  * @parent: pointer to the parent struct device of this new device, if any
4300  * @devt: the dev_t for the char device to be added
4301  * @drvdata: the data to be added to the device for callbacks
4302  * @fmt: string for the device's name
4303  *
4304  * This function can be used by char device classes.  A struct device
4305  * will be created in sysfs, registered to the specified class.
4306  *
4307  * A "dev" file will be created, showing the dev_t for the device, if
4308  * the dev_t is not 0,0.
4309  * If a pointer to a parent struct device is passed in, the newly created
4310  * struct device will be a child of that device in sysfs.
4311  * The pointer to the struct device will be returned from the call.
4312  * Any further sysfs files that might be required can be created using this
4313  * pointer.
4314  *
4315  * Returns &struct device pointer on success, or ERR_PTR() on error.
4316  *
4317  * Note: the struct class passed to this function must have previously
4318  * been created with a call to class_create().
4319  */
4320 struct device *device_create(const struct class *class, struct device *parent,
4321 			     dev_t devt, void *drvdata, const char *fmt, ...)
4322 {
4323 	va_list vargs;
4324 	struct device *dev;
4325 
4326 	va_start(vargs, fmt);
4327 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4328 					  fmt, vargs);
4329 	va_end(vargs);
4330 	return dev;
4331 }
4332 EXPORT_SYMBOL_GPL(device_create);
4333 
4334 /**
4335  * device_create_with_groups - creates a device and registers it with sysfs
4336  * @class: pointer to the struct class that this device should be registered to
4337  * @parent: pointer to the parent struct device of this new device, if any
4338  * @devt: the dev_t for the char device to be added
4339  * @drvdata: the data to be added to the device for callbacks
4340  * @groups: NULL-terminated list of attribute groups to be created
4341  * @fmt: string for the device's name
4342  *
4343  * This function can be used by char device classes.  A struct device
4344  * will be created in sysfs, registered to the specified class.
4345  * Additional attributes specified in the groups parameter will also
4346  * be created automatically.
4347  *
4348  * A "dev" file will be created, showing the dev_t for the device, if
4349  * the dev_t is not 0,0.
4350  * If a pointer to a parent struct device is passed in, the newly created
4351  * struct device will be a child of that device in sysfs.
4352  * The pointer to the struct device will be returned from the call.
4353  * Any further sysfs files that might be required can be created using this
4354  * pointer.
4355  *
4356  * Returns &struct device pointer on success, or ERR_PTR() on error.
4357  *
4358  * Note: the struct class passed to this function must have previously
4359  * been created with a call to class_create().
4360  */
4361 struct device *device_create_with_groups(const struct class *class,
4362 					 struct device *parent, dev_t devt,
4363 					 void *drvdata,
4364 					 const struct attribute_group **groups,
4365 					 const char *fmt, ...)
4366 {
4367 	va_list vargs;
4368 	struct device *dev;
4369 
4370 	va_start(vargs, fmt);
4371 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4372 					 fmt, vargs);
4373 	va_end(vargs);
4374 	return dev;
4375 }
4376 EXPORT_SYMBOL_GPL(device_create_with_groups);
4377 
4378 /**
4379  * device_destroy - removes a device that was created with device_create()
4380  * @class: pointer to the struct class that this device was registered with
4381  * @devt: the dev_t of the device that was previously registered
4382  *
4383  * This call unregisters and cleans up a device that was created with a
4384  * call to device_create().
4385  */
4386 void device_destroy(const struct class *class, dev_t devt)
4387 {
4388 	struct device *dev;
4389 
4390 	dev = class_find_device_by_devt(class, devt);
4391 	if (dev) {
4392 		put_device(dev);
4393 		device_unregister(dev);
4394 	}
4395 }
4396 EXPORT_SYMBOL_GPL(device_destroy);
4397 
4398 /**
4399  * device_rename - renames a device
4400  * @dev: the pointer to the struct device to be renamed
4401  * @new_name: the new name of the device
4402  *
4403  * It is the responsibility of the caller to provide mutual
4404  * exclusion between two different calls of device_rename
4405  * on the same device to ensure that new_name is valid and
4406  * won't conflict with other devices.
4407  *
4408  * Note: Don't call this function.  Currently, the networking layer calls this
4409  * function, but that will change.  The following text from Kay Sievers offers
4410  * some insight:
4411  *
4412  * Renaming devices is racy at many levels, symlinks and other stuff are not
4413  * replaced atomically, and you get a "move" uevent, but it's not easy to
4414  * connect the event to the old and new device. Device nodes are not renamed at
4415  * all, there isn't even support for that in the kernel now.
4416  *
4417  * In the meantime, during renaming, your target name might be taken by another
4418  * driver, creating conflicts. Or the old name is taken directly after you
4419  * renamed it -- then you get events for the same DEVPATH, before you even see
4420  * the "move" event. It's just a mess, and nothing new should ever rely on
4421  * kernel device renaming. Besides that, it's not even implemented now for
4422  * other things than (driver-core wise very simple) network devices.
4423  *
4424  * We are currently about to change network renaming in udev to completely
4425  * disallow renaming of devices in the same namespace as the kernel uses,
4426  * because we can't solve the problems properly, that arise with swapping names
4427  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4428  * be allowed to some other name than eth[0-9]*, for the aforementioned
4429  * reasons.
4430  *
4431  * Make up a "real" name in the driver before you register anything, or add
4432  * some other attributes for userspace to find the device, or use udev to add
4433  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4434  * don't even want to get into that and try to implement the missing pieces in
4435  * the core. We really have other pieces to fix in the driver core mess. :)
4436  */
4437 int device_rename(struct device *dev, const char *new_name)
4438 {
4439 	struct kobject *kobj = &dev->kobj;
4440 	char *old_device_name = NULL;
4441 	int error;
4442 
4443 	dev = get_device(dev);
4444 	if (!dev)
4445 		return -EINVAL;
4446 
4447 	dev_dbg(dev, "renaming to %s\n", new_name);
4448 
4449 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4450 	if (!old_device_name) {
4451 		error = -ENOMEM;
4452 		goto out;
4453 	}
4454 
4455 	if (dev->class) {
4456 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4457 					     kobj, old_device_name,
4458 					     new_name, kobject_namespace(kobj));
4459 		if (error)
4460 			goto out;
4461 	}
4462 
4463 	error = kobject_rename(kobj, new_name);
4464 	if (error)
4465 		goto out;
4466 
4467 out:
4468 	put_device(dev);
4469 
4470 	kfree(old_device_name);
4471 
4472 	return error;
4473 }
4474 EXPORT_SYMBOL_GPL(device_rename);
4475 
4476 static int device_move_class_links(struct device *dev,
4477 				   struct device *old_parent,
4478 				   struct device *new_parent)
4479 {
4480 	int error = 0;
4481 
4482 	if (old_parent)
4483 		sysfs_remove_link(&dev->kobj, "device");
4484 	if (new_parent)
4485 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4486 					  "device");
4487 	return error;
4488 }
4489 
4490 /**
4491  * device_move - moves a device to a new parent
4492  * @dev: the pointer to the struct device to be moved
4493  * @new_parent: the new parent of the device (can be NULL)
4494  * @dpm_order: how to reorder the dpm_list
4495  */
4496 int device_move(struct device *dev, struct device *new_parent,
4497 		enum dpm_order dpm_order)
4498 {
4499 	int error;
4500 	struct device *old_parent;
4501 	struct kobject *new_parent_kobj;
4502 
4503 	dev = get_device(dev);
4504 	if (!dev)
4505 		return -EINVAL;
4506 
4507 	device_pm_lock();
4508 	new_parent = get_device(new_parent);
4509 	new_parent_kobj = get_device_parent(dev, new_parent);
4510 	if (IS_ERR(new_parent_kobj)) {
4511 		error = PTR_ERR(new_parent_kobj);
4512 		put_device(new_parent);
4513 		goto out;
4514 	}
4515 
4516 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4517 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4518 	error = kobject_move(&dev->kobj, new_parent_kobj);
4519 	if (error) {
4520 		cleanup_glue_dir(dev, new_parent_kobj);
4521 		put_device(new_parent);
4522 		goto out;
4523 	}
4524 	old_parent = dev->parent;
4525 	dev->parent = new_parent;
4526 	if (old_parent)
4527 		klist_remove(&dev->p->knode_parent);
4528 	if (new_parent) {
4529 		klist_add_tail(&dev->p->knode_parent,
4530 			       &new_parent->p->klist_children);
4531 		set_dev_node(dev, dev_to_node(new_parent));
4532 	}
4533 
4534 	if (dev->class) {
4535 		error = device_move_class_links(dev, old_parent, new_parent);
4536 		if (error) {
4537 			/* We ignore errors on cleanup since we're hosed anyway... */
4538 			device_move_class_links(dev, new_parent, old_parent);
4539 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4540 				if (new_parent)
4541 					klist_remove(&dev->p->knode_parent);
4542 				dev->parent = old_parent;
4543 				if (old_parent) {
4544 					klist_add_tail(&dev->p->knode_parent,
4545 						       &old_parent->p->klist_children);
4546 					set_dev_node(dev, dev_to_node(old_parent));
4547 				}
4548 			}
4549 			cleanup_glue_dir(dev, new_parent_kobj);
4550 			put_device(new_parent);
4551 			goto out;
4552 		}
4553 	}
4554 	switch (dpm_order) {
4555 	case DPM_ORDER_NONE:
4556 		break;
4557 	case DPM_ORDER_DEV_AFTER_PARENT:
4558 		device_pm_move_after(dev, new_parent);
4559 		devices_kset_move_after(dev, new_parent);
4560 		break;
4561 	case DPM_ORDER_PARENT_BEFORE_DEV:
4562 		device_pm_move_before(new_parent, dev);
4563 		devices_kset_move_before(new_parent, dev);
4564 		break;
4565 	case DPM_ORDER_DEV_LAST:
4566 		device_pm_move_last(dev);
4567 		devices_kset_move_last(dev);
4568 		break;
4569 	}
4570 
4571 	put_device(old_parent);
4572 out:
4573 	device_pm_unlock();
4574 	put_device(dev);
4575 	return error;
4576 }
4577 EXPORT_SYMBOL_GPL(device_move);
4578 
4579 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4580 				     kgid_t kgid)
4581 {
4582 	struct kobject *kobj = &dev->kobj;
4583 	const struct class *class = dev->class;
4584 	const struct device_type *type = dev->type;
4585 	int error;
4586 
4587 	if (class) {
4588 		/*
4589 		 * Change the device groups of the device class for @dev to
4590 		 * @kuid/@kgid.
4591 		 */
4592 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4593 						  kgid);
4594 		if (error)
4595 			return error;
4596 	}
4597 
4598 	if (type) {
4599 		/*
4600 		 * Change the device groups of the device type for @dev to
4601 		 * @kuid/@kgid.
4602 		 */
4603 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4604 						  kgid);
4605 		if (error)
4606 			return error;
4607 	}
4608 
4609 	/* Change the device groups of @dev to @kuid/@kgid. */
4610 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4611 	if (error)
4612 		return error;
4613 
4614 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4615 		/* Change online device attributes of @dev to @kuid/@kgid. */
4616 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4617 						kuid, kgid);
4618 		if (error)
4619 			return error;
4620 	}
4621 
4622 	return 0;
4623 }
4624 
4625 /**
4626  * device_change_owner - change the owner of an existing device.
4627  * @dev: device.
4628  * @kuid: new owner's kuid
4629  * @kgid: new owner's kgid
4630  *
4631  * This changes the owner of @dev and its corresponding sysfs entries to
4632  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4633  * core.
4634  *
4635  * Returns 0 on success or error code on failure.
4636  */
4637 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4638 {
4639 	int error;
4640 	struct kobject *kobj = &dev->kobj;
4641 
4642 	dev = get_device(dev);
4643 	if (!dev)
4644 		return -EINVAL;
4645 
4646 	/*
4647 	 * Change the kobject and the default attributes and groups of the
4648 	 * ktype associated with it to @kuid/@kgid.
4649 	 */
4650 	error = sysfs_change_owner(kobj, kuid, kgid);
4651 	if (error)
4652 		goto out;
4653 
4654 	/*
4655 	 * Change the uevent file for @dev to the new owner. The uevent file
4656 	 * was created in a separate step when @dev got added and we mirror
4657 	 * that step here.
4658 	 */
4659 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4660 					kgid);
4661 	if (error)
4662 		goto out;
4663 
4664 	/*
4665 	 * Change the device groups, the device groups associated with the
4666 	 * device class, and the groups associated with the device type of @dev
4667 	 * to @kuid/@kgid.
4668 	 */
4669 	error = device_attrs_change_owner(dev, kuid, kgid);
4670 	if (error)
4671 		goto out;
4672 
4673 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4674 	if (error)
4675 		goto out;
4676 
4677 	/*
4678 	 * Change the owner of the symlink located in the class directory of
4679 	 * the device class associated with @dev which points to the actual
4680 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4681 	 * symlink shows the same permissions as its target.
4682 	 */
4683 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4684 					dev_name(dev), kuid, kgid);
4685 	if (error)
4686 		goto out;
4687 
4688 out:
4689 	put_device(dev);
4690 	return error;
4691 }
4692 EXPORT_SYMBOL_GPL(device_change_owner);
4693 
4694 /**
4695  * device_shutdown - call ->shutdown() on each device to shutdown.
4696  */
4697 void device_shutdown(void)
4698 {
4699 	struct device *dev, *parent;
4700 
4701 	wait_for_device_probe();
4702 	device_block_probing();
4703 
4704 	cpufreq_suspend();
4705 
4706 	spin_lock(&devices_kset->list_lock);
4707 	/*
4708 	 * Walk the devices list backward, shutting down each in turn.
4709 	 * Beware that device unplug events may also start pulling
4710 	 * devices offline, even as the system is shutting down.
4711 	 */
4712 	while (!list_empty(&devices_kset->list)) {
4713 		dev = list_entry(devices_kset->list.prev, struct device,
4714 				kobj.entry);
4715 
4716 		/*
4717 		 * hold reference count of device's parent to
4718 		 * prevent it from being freed because parent's
4719 		 * lock is to be held
4720 		 */
4721 		parent = get_device(dev->parent);
4722 		get_device(dev);
4723 		/*
4724 		 * Make sure the device is off the kset list, in the
4725 		 * event that dev->*->shutdown() doesn't remove it.
4726 		 */
4727 		list_del_init(&dev->kobj.entry);
4728 		spin_unlock(&devices_kset->list_lock);
4729 
4730 		/* hold lock to avoid race with probe/release */
4731 		if (parent)
4732 			device_lock(parent);
4733 		device_lock(dev);
4734 
4735 		/* Don't allow any more runtime suspends */
4736 		pm_runtime_get_noresume(dev);
4737 		pm_runtime_barrier(dev);
4738 
4739 		if (dev->class && dev->class->shutdown_pre) {
4740 			if (initcall_debug)
4741 				dev_info(dev, "shutdown_pre\n");
4742 			dev->class->shutdown_pre(dev);
4743 		}
4744 		if (dev->bus && dev->bus->shutdown) {
4745 			if (initcall_debug)
4746 				dev_info(dev, "shutdown\n");
4747 			dev->bus->shutdown(dev);
4748 		} else if (dev->driver && dev->driver->shutdown) {
4749 			if (initcall_debug)
4750 				dev_info(dev, "shutdown\n");
4751 			dev->driver->shutdown(dev);
4752 		}
4753 
4754 		device_unlock(dev);
4755 		if (parent)
4756 			device_unlock(parent);
4757 
4758 		put_device(dev);
4759 		put_device(parent);
4760 
4761 		spin_lock(&devices_kset->list_lock);
4762 	}
4763 	spin_unlock(&devices_kset->list_lock);
4764 }
4765 
4766 /*
4767  * Device logging functions
4768  */
4769 
4770 #ifdef CONFIG_PRINTK
4771 static void
4772 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4773 {
4774 	const char *subsys;
4775 
4776 	memset(dev_info, 0, sizeof(*dev_info));
4777 
4778 	if (dev->class)
4779 		subsys = dev->class->name;
4780 	else if (dev->bus)
4781 		subsys = dev->bus->name;
4782 	else
4783 		return;
4784 
4785 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4786 
4787 	/*
4788 	 * Add device identifier DEVICE=:
4789 	 *   b12:8         block dev_t
4790 	 *   c127:3        char dev_t
4791 	 *   n8            netdev ifindex
4792 	 *   +sound:card0  subsystem:devname
4793 	 */
4794 	if (MAJOR(dev->devt)) {
4795 		char c;
4796 
4797 		if (strcmp(subsys, "block") == 0)
4798 			c = 'b';
4799 		else
4800 			c = 'c';
4801 
4802 		snprintf(dev_info->device, sizeof(dev_info->device),
4803 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4804 	} else if (strcmp(subsys, "net") == 0) {
4805 		struct net_device *net = to_net_dev(dev);
4806 
4807 		snprintf(dev_info->device, sizeof(dev_info->device),
4808 			 "n%u", net->ifindex);
4809 	} else {
4810 		snprintf(dev_info->device, sizeof(dev_info->device),
4811 			 "+%s:%s", subsys, dev_name(dev));
4812 	}
4813 }
4814 
4815 int dev_vprintk_emit(int level, const struct device *dev,
4816 		     const char *fmt, va_list args)
4817 {
4818 	struct dev_printk_info dev_info;
4819 
4820 	set_dev_info(dev, &dev_info);
4821 
4822 	return vprintk_emit(0, level, &dev_info, fmt, args);
4823 }
4824 EXPORT_SYMBOL(dev_vprintk_emit);
4825 
4826 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4827 {
4828 	va_list args;
4829 	int r;
4830 
4831 	va_start(args, fmt);
4832 
4833 	r = dev_vprintk_emit(level, dev, fmt, args);
4834 
4835 	va_end(args);
4836 
4837 	return r;
4838 }
4839 EXPORT_SYMBOL(dev_printk_emit);
4840 
4841 static void __dev_printk(const char *level, const struct device *dev,
4842 			struct va_format *vaf)
4843 {
4844 	if (dev)
4845 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4846 				dev_driver_string(dev), dev_name(dev), vaf);
4847 	else
4848 		printk("%s(NULL device *): %pV", level, vaf);
4849 }
4850 
4851 void _dev_printk(const char *level, const struct device *dev,
4852 		 const char *fmt, ...)
4853 {
4854 	struct va_format vaf;
4855 	va_list args;
4856 
4857 	va_start(args, fmt);
4858 
4859 	vaf.fmt = fmt;
4860 	vaf.va = &args;
4861 
4862 	__dev_printk(level, dev, &vaf);
4863 
4864 	va_end(args);
4865 }
4866 EXPORT_SYMBOL(_dev_printk);
4867 
4868 #define define_dev_printk_level(func, kern_level)		\
4869 void func(const struct device *dev, const char *fmt, ...)	\
4870 {								\
4871 	struct va_format vaf;					\
4872 	va_list args;						\
4873 								\
4874 	va_start(args, fmt);					\
4875 								\
4876 	vaf.fmt = fmt;						\
4877 	vaf.va = &args;						\
4878 								\
4879 	__dev_printk(kern_level, dev, &vaf);			\
4880 								\
4881 	va_end(args);						\
4882 }								\
4883 EXPORT_SYMBOL(func);
4884 
4885 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4886 define_dev_printk_level(_dev_alert, KERN_ALERT);
4887 define_dev_printk_level(_dev_crit, KERN_CRIT);
4888 define_dev_printk_level(_dev_err, KERN_ERR);
4889 define_dev_printk_level(_dev_warn, KERN_WARNING);
4890 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4891 define_dev_printk_level(_dev_info, KERN_INFO);
4892 
4893 #endif
4894 
4895 /**
4896  * dev_err_probe - probe error check and log helper
4897  * @dev: the pointer to the struct device
4898  * @err: error value to test
4899  * @fmt: printf-style format string
4900  * @...: arguments as specified in the format string
4901  *
4902  * This helper implements common pattern present in probe functions for error
4903  * checking: print debug or error message depending if the error value is
4904  * -EPROBE_DEFER and propagate error upwards.
4905  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4906  * checked later by reading devices_deferred debugfs attribute.
4907  * It replaces code sequence::
4908  *
4909  * 	if (err != -EPROBE_DEFER)
4910  * 		dev_err(dev, ...);
4911  * 	else
4912  * 		dev_dbg(dev, ...);
4913  * 	return err;
4914  *
4915  * with::
4916  *
4917  * 	return dev_err_probe(dev, err, ...);
4918  *
4919  * Note that it is deemed acceptable to use this function for error
4920  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4921  * The benefit compared to a normal dev_err() is the standardized format
4922  * of the error code and the fact that the error code is returned.
4923  *
4924  * Returns @err.
4925  *
4926  */
4927 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4928 {
4929 	struct va_format vaf;
4930 	va_list args;
4931 
4932 	va_start(args, fmt);
4933 	vaf.fmt = fmt;
4934 	vaf.va = &args;
4935 
4936 	if (err != -EPROBE_DEFER) {
4937 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4938 	} else {
4939 		device_set_deferred_probe_reason(dev, &vaf);
4940 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4941 	}
4942 
4943 	va_end(args);
4944 
4945 	return err;
4946 }
4947 EXPORT_SYMBOL_GPL(dev_err_probe);
4948 
4949 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4950 {
4951 	return fwnode && !IS_ERR(fwnode->secondary);
4952 }
4953 
4954 /**
4955  * set_primary_fwnode - Change the primary firmware node of a given device.
4956  * @dev: Device to handle.
4957  * @fwnode: New primary firmware node of the device.
4958  *
4959  * Set the device's firmware node pointer to @fwnode, but if a secondary
4960  * firmware node of the device is present, preserve it.
4961  *
4962  * Valid fwnode cases are:
4963  *  - primary --> secondary --> -ENODEV
4964  *  - primary --> NULL
4965  *  - secondary --> -ENODEV
4966  *  - NULL
4967  */
4968 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4969 {
4970 	struct device *parent = dev->parent;
4971 	struct fwnode_handle *fn = dev->fwnode;
4972 
4973 	if (fwnode) {
4974 		if (fwnode_is_primary(fn))
4975 			fn = fn->secondary;
4976 
4977 		if (fn) {
4978 			WARN_ON(fwnode->secondary);
4979 			fwnode->secondary = fn;
4980 		}
4981 		dev->fwnode = fwnode;
4982 	} else {
4983 		if (fwnode_is_primary(fn)) {
4984 			dev->fwnode = fn->secondary;
4985 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4986 			if (!(parent && fn == parent->fwnode))
4987 				fn->secondary = NULL;
4988 		} else {
4989 			dev->fwnode = NULL;
4990 		}
4991 	}
4992 }
4993 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4994 
4995 /**
4996  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4997  * @dev: Device to handle.
4998  * @fwnode: New secondary firmware node of the device.
4999  *
5000  * If a primary firmware node of the device is present, set its secondary
5001  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5002  * @fwnode.
5003  */
5004 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5005 {
5006 	if (fwnode)
5007 		fwnode->secondary = ERR_PTR(-ENODEV);
5008 
5009 	if (fwnode_is_primary(dev->fwnode))
5010 		dev->fwnode->secondary = fwnode;
5011 	else
5012 		dev->fwnode = fwnode;
5013 }
5014 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5015 
5016 /**
5017  * device_set_of_node_from_dev - reuse device-tree node of another device
5018  * @dev: device whose device-tree node is being set
5019  * @dev2: device whose device-tree node is being reused
5020  *
5021  * Takes another reference to the new device-tree node after first dropping
5022  * any reference held to the old node.
5023  */
5024 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5025 {
5026 	of_node_put(dev->of_node);
5027 	dev->of_node = of_node_get(dev2->of_node);
5028 	dev->of_node_reused = true;
5029 }
5030 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5031 
5032 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5033 {
5034 	dev->fwnode = fwnode;
5035 	dev->of_node = to_of_node(fwnode);
5036 }
5037 EXPORT_SYMBOL_GPL(device_set_node);
5038 
5039 int device_match_name(struct device *dev, const void *name)
5040 {
5041 	return sysfs_streq(dev_name(dev), name);
5042 }
5043 EXPORT_SYMBOL_GPL(device_match_name);
5044 
5045 int device_match_of_node(struct device *dev, const void *np)
5046 {
5047 	return dev->of_node == np;
5048 }
5049 EXPORT_SYMBOL_GPL(device_match_of_node);
5050 
5051 int device_match_fwnode(struct device *dev, const void *fwnode)
5052 {
5053 	return dev_fwnode(dev) == fwnode;
5054 }
5055 EXPORT_SYMBOL_GPL(device_match_fwnode);
5056 
5057 int device_match_devt(struct device *dev, const void *pdevt)
5058 {
5059 	return dev->devt == *(dev_t *)pdevt;
5060 }
5061 EXPORT_SYMBOL_GPL(device_match_devt);
5062 
5063 int device_match_acpi_dev(struct device *dev, const void *adev)
5064 {
5065 	return ACPI_COMPANION(dev) == adev;
5066 }
5067 EXPORT_SYMBOL(device_match_acpi_dev);
5068 
5069 int device_match_acpi_handle(struct device *dev, const void *handle)
5070 {
5071 	return ACPI_HANDLE(dev) == handle;
5072 }
5073 EXPORT_SYMBOL(device_match_acpi_handle);
5074 
5075 int device_match_any(struct device *dev, const void *unused)
5076 {
5077 	return 1;
5078 }
5079 EXPORT_SYMBOL_GPL(device_match_any);
5080