1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/kdev_t.h> 22 #include <linux/notifier.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * 53 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 54 * represents the detail that the firmware lists @sup fwnode as supplying a 55 * resource to @con. 56 * 57 * The driver core will use the fwnode link to create a device link between the 58 * two device objects corresponding to @con and @sup when they are created. The 59 * driver core will automatically delete the fwnode link between @con and @sup 60 * after doing that. 61 * 62 * Attempts to create duplicate links between the same pair of fwnode handles 63 * are ignored and there is no reference counting. 64 */ 65 static int __fwnode_link_add(struct fwnode_handle *con, 66 struct fwnode_handle *sup, u8 flags) 67 { 68 struct fwnode_link *link; 69 70 list_for_each_entry(link, &sup->consumers, s_hook) 71 if (link->consumer == con) { 72 link->flags |= flags; 73 return 0; 74 } 75 76 link = kzalloc(sizeof(*link), GFP_KERNEL); 77 if (!link) 78 return -ENOMEM; 79 80 link->supplier = sup; 81 INIT_LIST_HEAD(&link->s_hook); 82 link->consumer = con; 83 INIT_LIST_HEAD(&link->c_hook); 84 link->flags = flags; 85 86 list_add(&link->s_hook, &sup->consumers); 87 list_add(&link->c_hook, &con->suppliers); 88 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 89 con, sup); 90 91 return 0; 92 } 93 94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 95 { 96 int ret; 97 98 mutex_lock(&fwnode_link_lock); 99 ret = __fwnode_link_add(con, sup, 0); 100 mutex_unlock(&fwnode_link_lock); 101 return ret; 102 } 103 104 /** 105 * __fwnode_link_del - Delete a link between two fwnode_handles. 106 * @link: the fwnode_link to be deleted 107 * 108 * The fwnode_link_lock needs to be held when this function is called. 109 */ 110 static void __fwnode_link_del(struct fwnode_link *link) 111 { 112 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 113 link->consumer, link->supplier); 114 list_del(&link->s_hook); 115 list_del(&link->c_hook); 116 kfree(link); 117 } 118 119 /** 120 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 121 * @link: the fwnode_link to be marked 122 * 123 * The fwnode_link_lock needs to be held when this function is called. 124 */ 125 static void __fwnode_link_cycle(struct fwnode_link *link) 126 { 127 pr_debug("%pfwf: Relaxing link with %pfwf\n", 128 link->consumer, link->supplier); 129 link->flags |= FWLINK_FLAG_CYCLE; 130 } 131 132 /** 133 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 134 * @fwnode: fwnode whose supplier links need to be deleted 135 * 136 * Deletes all supplier links connecting directly to @fwnode. 137 */ 138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 139 { 140 struct fwnode_link *link, *tmp; 141 142 mutex_lock(&fwnode_link_lock); 143 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 144 __fwnode_link_del(link); 145 mutex_unlock(&fwnode_link_lock); 146 } 147 148 /** 149 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 150 * @fwnode: fwnode whose consumer links need to be deleted 151 * 152 * Deletes all consumer links connecting directly to @fwnode. 153 */ 154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 155 { 156 struct fwnode_link *link, *tmp; 157 158 mutex_lock(&fwnode_link_lock); 159 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 160 __fwnode_link_del(link); 161 mutex_unlock(&fwnode_link_lock); 162 } 163 164 /** 165 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 166 * @fwnode: fwnode whose links needs to be deleted 167 * 168 * Deletes all links connecting directly to a fwnode. 169 */ 170 void fwnode_links_purge(struct fwnode_handle *fwnode) 171 { 172 fwnode_links_purge_suppliers(fwnode); 173 fwnode_links_purge_consumers(fwnode); 174 } 175 176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 177 { 178 struct fwnode_handle *child; 179 180 /* Don't purge consumer links of an added child */ 181 if (fwnode->dev) 182 return; 183 184 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 185 fwnode_links_purge_consumers(fwnode); 186 187 fwnode_for_each_available_child_node(fwnode, child) 188 fw_devlink_purge_absent_suppliers(child); 189 } 190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 191 192 /** 193 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 194 * @from: move consumers away from this fwnode 195 * @to: move consumers to this fwnode 196 * 197 * Move all consumer links from @from fwnode to @to fwnode. 198 */ 199 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 200 struct fwnode_handle *to) 201 { 202 struct fwnode_link *link, *tmp; 203 204 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 205 __fwnode_link_add(link->consumer, to, link->flags); 206 __fwnode_link_del(link); 207 } 208 } 209 210 /** 211 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 212 * @fwnode: fwnode from which to pick up dangling consumers 213 * @new_sup: fwnode of new supplier 214 * 215 * If the @fwnode has a corresponding struct device and the device supports 216 * probing (that is, added to a bus), then we want to let fw_devlink create 217 * MANAGED device links to this device, so leave @fwnode and its descendant's 218 * fwnode links alone. 219 * 220 * Otherwise, move its consumers to the new supplier @new_sup. 221 */ 222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 223 struct fwnode_handle *new_sup) 224 { 225 struct fwnode_handle *child; 226 227 if (fwnode->dev && fwnode->dev->bus) 228 return; 229 230 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 231 __fwnode_links_move_consumers(fwnode, new_sup); 232 233 fwnode_for_each_available_child_node(fwnode, child) 234 __fw_devlink_pickup_dangling_consumers(child, new_sup); 235 } 236 237 static DEFINE_MUTEX(device_links_lock); 238 DEFINE_STATIC_SRCU(device_links_srcu); 239 240 static inline void device_links_write_lock(void) 241 { 242 mutex_lock(&device_links_lock); 243 } 244 245 static inline void device_links_write_unlock(void) 246 { 247 mutex_unlock(&device_links_lock); 248 } 249 250 int device_links_read_lock(void) __acquires(&device_links_srcu) 251 { 252 return srcu_read_lock(&device_links_srcu); 253 } 254 255 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 256 { 257 srcu_read_unlock(&device_links_srcu, idx); 258 } 259 260 int device_links_read_lock_held(void) 261 { 262 return srcu_read_lock_held(&device_links_srcu); 263 } 264 265 static void device_link_synchronize_removal(void) 266 { 267 synchronize_srcu(&device_links_srcu); 268 } 269 270 static void device_link_remove_from_lists(struct device_link *link) 271 { 272 list_del_rcu(&link->s_node); 273 list_del_rcu(&link->c_node); 274 } 275 276 static bool device_is_ancestor(struct device *dev, struct device *target) 277 { 278 while (target->parent) { 279 target = target->parent; 280 if (dev == target) 281 return true; 282 } 283 return false; 284 } 285 286 static inline bool device_link_flag_is_sync_state_only(u32 flags) 287 { 288 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) == 289 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED); 290 } 291 292 /** 293 * device_is_dependent - Check if one device depends on another one 294 * @dev: Device to check dependencies for. 295 * @target: Device to check against. 296 * 297 * Check if @target depends on @dev or any device dependent on it (its child or 298 * its consumer etc). Return 1 if that is the case or 0 otherwise. 299 */ 300 int device_is_dependent(struct device *dev, void *target) 301 { 302 struct device_link *link; 303 int ret; 304 305 /* 306 * The "ancestors" check is needed to catch the case when the target 307 * device has not been completely initialized yet and it is still 308 * missing from the list of children of its parent device. 309 */ 310 if (dev == target || device_is_ancestor(dev, target)) 311 return 1; 312 313 ret = device_for_each_child(dev, target, device_is_dependent); 314 if (ret) 315 return ret; 316 317 list_for_each_entry(link, &dev->links.consumers, s_node) { 318 if (device_link_flag_is_sync_state_only(link->flags)) 319 continue; 320 321 if (link->consumer == target) 322 return 1; 323 324 ret = device_is_dependent(link->consumer, target); 325 if (ret) 326 break; 327 } 328 return ret; 329 } 330 331 static void device_link_init_status(struct device_link *link, 332 struct device *consumer, 333 struct device *supplier) 334 { 335 switch (supplier->links.status) { 336 case DL_DEV_PROBING: 337 switch (consumer->links.status) { 338 case DL_DEV_PROBING: 339 /* 340 * A consumer driver can create a link to a supplier 341 * that has not completed its probing yet as long as it 342 * knows that the supplier is already functional (for 343 * example, it has just acquired some resources from the 344 * supplier). 345 */ 346 link->status = DL_STATE_CONSUMER_PROBE; 347 break; 348 default: 349 link->status = DL_STATE_DORMANT; 350 break; 351 } 352 break; 353 case DL_DEV_DRIVER_BOUND: 354 switch (consumer->links.status) { 355 case DL_DEV_PROBING: 356 link->status = DL_STATE_CONSUMER_PROBE; 357 break; 358 case DL_DEV_DRIVER_BOUND: 359 link->status = DL_STATE_ACTIVE; 360 break; 361 default: 362 link->status = DL_STATE_AVAILABLE; 363 break; 364 } 365 break; 366 case DL_DEV_UNBINDING: 367 link->status = DL_STATE_SUPPLIER_UNBIND; 368 break; 369 default: 370 link->status = DL_STATE_DORMANT; 371 break; 372 } 373 } 374 375 static int device_reorder_to_tail(struct device *dev, void *not_used) 376 { 377 struct device_link *link; 378 379 /* 380 * Devices that have not been registered yet will be put to the ends 381 * of the lists during the registration, so skip them here. 382 */ 383 if (device_is_registered(dev)) 384 devices_kset_move_last(dev); 385 386 if (device_pm_initialized(dev)) 387 device_pm_move_last(dev); 388 389 device_for_each_child(dev, NULL, device_reorder_to_tail); 390 list_for_each_entry(link, &dev->links.consumers, s_node) { 391 if (device_link_flag_is_sync_state_only(link->flags)) 392 continue; 393 device_reorder_to_tail(link->consumer, NULL); 394 } 395 396 return 0; 397 } 398 399 /** 400 * device_pm_move_to_tail - Move set of devices to the end of device lists 401 * @dev: Device to move 402 * 403 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 404 * 405 * It moves the @dev along with all of its children and all of its consumers 406 * to the ends of the device_kset and dpm_list, recursively. 407 */ 408 void device_pm_move_to_tail(struct device *dev) 409 { 410 int idx; 411 412 idx = device_links_read_lock(); 413 device_pm_lock(); 414 device_reorder_to_tail(dev, NULL); 415 device_pm_unlock(); 416 device_links_read_unlock(idx); 417 } 418 419 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 420 421 static ssize_t status_show(struct device *dev, 422 struct device_attribute *attr, char *buf) 423 { 424 const char *output; 425 426 switch (to_devlink(dev)->status) { 427 case DL_STATE_NONE: 428 output = "not tracked"; 429 break; 430 case DL_STATE_DORMANT: 431 output = "dormant"; 432 break; 433 case DL_STATE_AVAILABLE: 434 output = "available"; 435 break; 436 case DL_STATE_CONSUMER_PROBE: 437 output = "consumer probing"; 438 break; 439 case DL_STATE_ACTIVE: 440 output = "active"; 441 break; 442 case DL_STATE_SUPPLIER_UNBIND: 443 output = "supplier unbinding"; 444 break; 445 default: 446 output = "unknown"; 447 break; 448 } 449 450 return sysfs_emit(buf, "%s\n", output); 451 } 452 static DEVICE_ATTR_RO(status); 453 454 static ssize_t auto_remove_on_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct device_link *link = to_devlink(dev); 458 const char *output; 459 460 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 461 output = "supplier unbind"; 462 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 463 output = "consumer unbind"; 464 else 465 output = "never"; 466 467 return sysfs_emit(buf, "%s\n", output); 468 } 469 static DEVICE_ATTR_RO(auto_remove_on); 470 471 static ssize_t runtime_pm_show(struct device *dev, 472 struct device_attribute *attr, char *buf) 473 { 474 struct device_link *link = to_devlink(dev); 475 476 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 477 } 478 static DEVICE_ATTR_RO(runtime_pm); 479 480 static ssize_t sync_state_only_show(struct device *dev, 481 struct device_attribute *attr, char *buf) 482 { 483 struct device_link *link = to_devlink(dev); 484 485 return sysfs_emit(buf, "%d\n", 486 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 487 } 488 static DEVICE_ATTR_RO(sync_state_only); 489 490 static struct attribute *devlink_attrs[] = { 491 &dev_attr_status.attr, 492 &dev_attr_auto_remove_on.attr, 493 &dev_attr_runtime_pm.attr, 494 &dev_attr_sync_state_only.attr, 495 NULL, 496 }; 497 ATTRIBUTE_GROUPS(devlink); 498 499 static void device_link_release_fn(struct work_struct *work) 500 { 501 struct device_link *link = container_of(work, struct device_link, rm_work); 502 503 /* Ensure that all references to the link object have been dropped. */ 504 device_link_synchronize_removal(); 505 506 pm_runtime_release_supplier(link); 507 /* 508 * If supplier_preactivated is set, the link has been dropped between 509 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 510 * in __driver_probe_device(). In that case, drop the supplier's 511 * PM-runtime usage counter to remove the reference taken by 512 * pm_runtime_get_suppliers(). 513 */ 514 if (link->supplier_preactivated) 515 pm_runtime_put_noidle(link->supplier); 516 517 pm_request_idle(link->supplier); 518 519 put_device(link->consumer); 520 put_device(link->supplier); 521 kfree(link); 522 } 523 524 static void devlink_dev_release(struct device *dev) 525 { 526 struct device_link *link = to_devlink(dev); 527 528 INIT_WORK(&link->rm_work, device_link_release_fn); 529 /* 530 * It may take a while to complete this work because of the SRCU 531 * synchronization in device_link_release_fn() and if the consumer or 532 * supplier devices get deleted when it runs, so put it into the "long" 533 * workqueue. 534 */ 535 queue_work(system_long_wq, &link->rm_work); 536 } 537 538 static struct class devlink_class = { 539 .name = "devlink", 540 .dev_groups = devlink_groups, 541 .dev_release = devlink_dev_release, 542 }; 543 544 static int devlink_add_symlinks(struct device *dev, 545 struct class_interface *class_intf) 546 { 547 int ret; 548 size_t len; 549 struct device_link *link = to_devlink(dev); 550 struct device *sup = link->supplier; 551 struct device *con = link->consumer; 552 char *buf; 553 554 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 555 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 556 len += strlen(":"); 557 len += strlen("supplier:") + 1; 558 buf = kzalloc(len, GFP_KERNEL); 559 if (!buf) 560 return -ENOMEM; 561 562 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 563 if (ret) 564 goto out; 565 566 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 567 if (ret) 568 goto err_con; 569 570 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 571 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 572 if (ret) 573 goto err_con_dev; 574 575 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 576 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 577 if (ret) 578 goto err_sup_dev; 579 580 goto out; 581 582 err_sup_dev: 583 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 584 sysfs_remove_link(&sup->kobj, buf); 585 err_con_dev: 586 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 587 err_con: 588 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 589 out: 590 kfree(buf); 591 return ret; 592 } 593 594 static void devlink_remove_symlinks(struct device *dev, 595 struct class_interface *class_intf) 596 { 597 struct device_link *link = to_devlink(dev); 598 size_t len; 599 struct device *sup = link->supplier; 600 struct device *con = link->consumer; 601 char *buf; 602 603 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 606 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 607 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 608 len += strlen(":"); 609 len += strlen("supplier:") + 1; 610 buf = kzalloc(len, GFP_KERNEL); 611 if (!buf) { 612 WARN(1, "Unable to properly free device link symlinks!\n"); 613 return; 614 } 615 616 if (device_is_registered(con)) { 617 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 618 sysfs_remove_link(&con->kobj, buf); 619 } 620 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 621 sysfs_remove_link(&sup->kobj, buf); 622 kfree(buf); 623 } 624 625 static struct class_interface devlink_class_intf = { 626 .class = &devlink_class, 627 .add_dev = devlink_add_symlinks, 628 .remove_dev = devlink_remove_symlinks, 629 }; 630 631 static int __init devlink_class_init(void) 632 { 633 int ret; 634 635 ret = class_register(&devlink_class); 636 if (ret) 637 return ret; 638 639 ret = class_interface_register(&devlink_class_intf); 640 if (ret) 641 class_unregister(&devlink_class); 642 643 return ret; 644 } 645 postcore_initcall(devlink_class_init); 646 647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 648 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 649 DL_FLAG_AUTOPROBE_CONSUMER | \ 650 DL_FLAG_SYNC_STATE_ONLY | \ 651 DL_FLAG_INFERRED | \ 652 DL_FLAG_CYCLE) 653 654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 655 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 656 657 /** 658 * device_link_add - Create a link between two devices. 659 * @consumer: Consumer end of the link. 660 * @supplier: Supplier end of the link. 661 * @flags: Link flags. 662 * 663 * The caller is responsible for the proper synchronization of the link creation 664 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 665 * runtime PM framework to take the link into account. Second, if the 666 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 667 * be forced into the active meta state and reference-counted upon the creation 668 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 669 * ignored. 670 * 671 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 672 * expected to release the link returned by it directly with the help of either 673 * device_link_del() or device_link_remove(). 674 * 675 * If that flag is not set, however, the caller of this function is handing the 676 * management of the link over to the driver core entirely and its return value 677 * can only be used to check whether or not the link is present. In that case, 678 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 679 * flags can be used to indicate to the driver core when the link can be safely 680 * deleted. Namely, setting one of them in @flags indicates to the driver core 681 * that the link is not going to be used (by the given caller of this function) 682 * after unbinding the consumer or supplier driver, respectively, from its 683 * device, so the link can be deleted at that point. If none of them is set, 684 * the link will be maintained until one of the devices pointed to by it (either 685 * the consumer or the supplier) is unregistered. 686 * 687 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 688 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 689 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 690 * be used to request the driver core to automatically probe for a consumer 691 * driver after successfully binding a driver to the supplier device. 692 * 693 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 694 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 695 * the same time is invalid and will cause NULL to be returned upfront. 696 * However, if a device link between the given @consumer and @supplier pair 697 * exists already when this function is called for them, the existing link will 698 * be returned regardless of its current type and status (the link's flags may 699 * be modified then). The caller of this function is then expected to treat 700 * the link as though it has just been created, so (in particular) if 701 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 702 * explicitly when not needed any more (as stated above). 703 * 704 * A side effect of the link creation is re-ordering of dpm_list and the 705 * devices_kset list by moving the consumer device and all devices depending 706 * on it to the ends of these lists (that does not happen to devices that have 707 * not been registered when this function is called). 708 * 709 * The supplier device is required to be registered when this function is called 710 * and NULL will be returned if that is not the case. The consumer device need 711 * not be registered, however. 712 */ 713 struct device_link *device_link_add(struct device *consumer, 714 struct device *supplier, u32 flags) 715 { 716 struct device_link *link; 717 718 if (!consumer || !supplier || consumer == supplier || 719 flags & ~DL_ADD_VALID_FLAGS || 720 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 721 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 722 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 723 DL_FLAG_AUTOREMOVE_SUPPLIER))) 724 return NULL; 725 726 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 727 if (pm_runtime_get_sync(supplier) < 0) { 728 pm_runtime_put_noidle(supplier); 729 return NULL; 730 } 731 } 732 733 if (!(flags & DL_FLAG_STATELESS)) 734 flags |= DL_FLAG_MANAGED; 735 736 if (flags & DL_FLAG_SYNC_STATE_ONLY && 737 !device_link_flag_is_sync_state_only(flags)) 738 return NULL; 739 740 device_links_write_lock(); 741 device_pm_lock(); 742 743 /* 744 * If the supplier has not been fully registered yet or there is a 745 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 746 * the supplier already in the graph, return NULL. If the link is a 747 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 748 * because it only affects sync_state() callbacks. 749 */ 750 if (!device_pm_initialized(supplier) 751 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 752 device_is_dependent(consumer, supplier))) { 753 link = NULL; 754 goto out; 755 } 756 757 /* 758 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 759 * So, only create it if the consumer hasn't probed yet. 760 */ 761 if (flags & DL_FLAG_SYNC_STATE_ONLY && 762 consumer->links.status != DL_DEV_NO_DRIVER && 763 consumer->links.status != DL_DEV_PROBING) { 764 link = NULL; 765 goto out; 766 } 767 768 /* 769 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 770 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 771 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 772 */ 773 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 774 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 775 776 list_for_each_entry(link, &supplier->links.consumers, s_node) { 777 if (link->consumer != consumer) 778 continue; 779 780 if (link->flags & DL_FLAG_INFERRED && 781 !(flags & DL_FLAG_INFERRED)) 782 link->flags &= ~DL_FLAG_INFERRED; 783 784 if (flags & DL_FLAG_PM_RUNTIME) { 785 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 786 pm_runtime_new_link(consumer); 787 link->flags |= DL_FLAG_PM_RUNTIME; 788 } 789 if (flags & DL_FLAG_RPM_ACTIVE) 790 refcount_inc(&link->rpm_active); 791 } 792 793 if (flags & DL_FLAG_STATELESS) { 794 kref_get(&link->kref); 795 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 796 !(link->flags & DL_FLAG_STATELESS)) { 797 link->flags |= DL_FLAG_STATELESS; 798 goto reorder; 799 } else { 800 link->flags |= DL_FLAG_STATELESS; 801 goto out; 802 } 803 } 804 805 /* 806 * If the life time of the link following from the new flags is 807 * longer than indicated by the flags of the existing link, 808 * update the existing link to stay around longer. 809 */ 810 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 811 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 812 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 813 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 814 } 815 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 816 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 817 DL_FLAG_AUTOREMOVE_SUPPLIER); 818 } 819 if (!(link->flags & DL_FLAG_MANAGED)) { 820 kref_get(&link->kref); 821 link->flags |= DL_FLAG_MANAGED; 822 device_link_init_status(link, consumer, supplier); 823 } 824 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 825 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 826 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 827 goto reorder; 828 } 829 830 goto out; 831 } 832 833 link = kzalloc(sizeof(*link), GFP_KERNEL); 834 if (!link) 835 goto out; 836 837 refcount_set(&link->rpm_active, 1); 838 839 get_device(supplier); 840 link->supplier = supplier; 841 INIT_LIST_HEAD(&link->s_node); 842 get_device(consumer); 843 link->consumer = consumer; 844 INIT_LIST_HEAD(&link->c_node); 845 link->flags = flags; 846 kref_init(&link->kref); 847 848 link->link_dev.class = &devlink_class; 849 device_set_pm_not_required(&link->link_dev); 850 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 851 dev_bus_name(supplier), dev_name(supplier), 852 dev_bus_name(consumer), dev_name(consumer)); 853 if (device_register(&link->link_dev)) { 854 put_device(&link->link_dev); 855 link = NULL; 856 goto out; 857 } 858 859 if (flags & DL_FLAG_PM_RUNTIME) { 860 if (flags & DL_FLAG_RPM_ACTIVE) 861 refcount_inc(&link->rpm_active); 862 863 pm_runtime_new_link(consumer); 864 } 865 866 /* Determine the initial link state. */ 867 if (flags & DL_FLAG_STATELESS) 868 link->status = DL_STATE_NONE; 869 else 870 device_link_init_status(link, consumer, supplier); 871 872 /* 873 * Some callers expect the link creation during consumer driver probe to 874 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 875 */ 876 if (link->status == DL_STATE_CONSUMER_PROBE && 877 flags & DL_FLAG_PM_RUNTIME) 878 pm_runtime_resume(supplier); 879 880 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 881 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 882 883 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 884 dev_dbg(consumer, 885 "Linked as a sync state only consumer to %s\n", 886 dev_name(supplier)); 887 goto out; 888 } 889 890 reorder: 891 /* 892 * Move the consumer and all of the devices depending on it to the end 893 * of dpm_list and the devices_kset list. 894 * 895 * It is necessary to hold dpm_list locked throughout all that or else 896 * we may end up suspending with a wrong ordering of it. 897 */ 898 device_reorder_to_tail(consumer, NULL); 899 900 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 901 902 out: 903 device_pm_unlock(); 904 device_links_write_unlock(); 905 906 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 907 pm_runtime_put(supplier); 908 909 return link; 910 } 911 EXPORT_SYMBOL_GPL(device_link_add); 912 913 static void __device_link_del(struct kref *kref) 914 { 915 struct device_link *link = container_of(kref, struct device_link, kref); 916 917 dev_dbg(link->consumer, "Dropping the link to %s\n", 918 dev_name(link->supplier)); 919 920 pm_runtime_drop_link(link); 921 922 device_link_remove_from_lists(link); 923 device_unregister(&link->link_dev); 924 } 925 926 static void device_link_put_kref(struct device_link *link) 927 { 928 if (link->flags & DL_FLAG_STATELESS) 929 kref_put(&link->kref, __device_link_del); 930 else if (!device_is_registered(link->consumer)) 931 __device_link_del(&link->kref); 932 else 933 WARN(1, "Unable to drop a managed device link reference\n"); 934 } 935 936 /** 937 * device_link_del - Delete a stateless link between two devices. 938 * @link: Device link to delete. 939 * 940 * The caller must ensure proper synchronization of this function with runtime 941 * PM. If the link was added multiple times, it needs to be deleted as often. 942 * Care is required for hotplugged devices: Their links are purged on removal 943 * and calling device_link_del() is then no longer allowed. 944 */ 945 void device_link_del(struct device_link *link) 946 { 947 device_links_write_lock(); 948 device_link_put_kref(link); 949 device_links_write_unlock(); 950 } 951 EXPORT_SYMBOL_GPL(device_link_del); 952 953 /** 954 * device_link_remove - Delete a stateless link between two devices. 955 * @consumer: Consumer end of the link. 956 * @supplier: Supplier end of the link. 957 * 958 * The caller must ensure proper synchronization of this function with runtime 959 * PM. 960 */ 961 void device_link_remove(void *consumer, struct device *supplier) 962 { 963 struct device_link *link; 964 965 if (WARN_ON(consumer == supplier)) 966 return; 967 968 device_links_write_lock(); 969 970 list_for_each_entry(link, &supplier->links.consumers, s_node) { 971 if (link->consumer == consumer) { 972 device_link_put_kref(link); 973 break; 974 } 975 } 976 977 device_links_write_unlock(); 978 } 979 EXPORT_SYMBOL_GPL(device_link_remove); 980 981 static void device_links_missing_supplier(struct device *dev) 982 { 983 struct device_link *link; 984 985 list_for_each_entry(link, &dev->links.suppliers, c_node) { 986 if (link->status != DL_STATE_CONSUMER_PROBE) 987 continue; 988 989 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 990 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 991 } else { 992 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 993 WRITE_ONCE(link->status, DL_STATE_DORMANT); 994 } 995 } 996 } 997 998 static bool dev_is_best_effort(struct device *dev) 999 { 1000 return (fw_devlink_best_effort && dev->can_match) || 1001 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1002 } 1003 1004 static struct fwnode_handle *fwnode_links_check_suppliers( 1005 struct fwnode_handle *fwnode) 1006 { 1007 struct fwnode_link *link; 1008 1009 if (!fwnode || fw_devlink_is_permissive()) 1010 return NULL; 1011 1012 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1013 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1014 return link->supplier; 1015 1016 return NULL; 1017 } 1018 1019 /** 1020 * device_links_check_suppliers - Check presence of supplier drivers. 1021 * @dev: Consumer device. 1022 * 1023 * Check links from this device to any suppliers. Walk the list of the device's 1024 * links to suppliers and see if all of them are available. If not, simply 1025 * return -EPROBE_DEFER. 1026 * 1027 * We need to guarantee that the supplier will not go away after the check has 1028 * been positive here. It only can go away in __device_release_driver() and 1029 * that function checks the device's links to consumers. This means we need to 1030 * mark the link as "consumer probe in progress" to make the supplier removal 1031 * wait for us to complete (or bad things may happen). 1032 * 1033 * Links without the DL_FLAG_MANAGED flag set are ignored. 1034 */ 1035 int device_links_check_suppliers(struct device *dev) 1036 { 1037 struct device_link *link; 1038 int ret = 0, fwnode_ret = 0; 1039 struct fwnode_handle *sup_fw; 1040 1041 /* 1042 * Device waiting for supplier to become available is not allowed to 1043 * probe. 1044 */ 1045 mutex_lock(&fwnode_link_lock); 1046 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1047 if (sup_fw) { 1048 if (!dev_is_best_effort(dev)) { 1049 fwnode_ret = -EPROBE_DEFER; 1050 dev_err_probe(dev, -EPROBE_DEFER, 1051 "wait for supplier %pfwf\n", sup_fw); 1052 } else { 1053 fwnode_ret = -EAGAIN; 1054 } 1055 } 1056 mutex_unlock(&fwnode_link_lock); 1057 if (fwnode_ret == -EPROBE_DEFER) 1058 return fwnode_ret; 1059 1060 device_links_write_lock(); 1061 1062 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1063 if (!(link->flags & DL_FLAG_MANAGED)) 1064 continue; 1065 1066 if (link->status != DL_STATE_AVAILABLE && 1067 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1068 1069 if (dev_is_best_effort(dev) && 1070 link->flags & DL_FLAG_INFERRED && 1071 !link->supplier->can_match) { 1072 ret = -EAGAIN; 1073 continue; 1074 } 1075 1076 device_links_missing_supplier(dev); 1077 dev_err_probe(dev, -EPROBE_DEFER, 1078 "supplier %s not ready\n", 1079 dev_name(link->supplier)); 1080 ret = -EPROBE_DEFER; 1081 break; 1082 } 1083 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1084 } 1085 dev->links.status = DL_DEV_PROBING; 1086 1087 device_links_write_unlock(); 1088 1089 return ret ? ret : fwnode_ret; 1090 } 1091 1092 /** 1093 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1094 * @dev: Device to call sync_state() on 1095 * @list: List head to queue the @dev on 1096 * 1097 * Queues a device for a sync_state() callback when the device links write lock 1098 * isn't held. This allows the sync_state() execution flow to use device links 1099 * APIs. The caller must ensure this function is called with 1100 * device_links_write_lock() held. 1101 * 1102 * This function does a get_device() to make sure the device is not freed while 1103 * on this list. 1104 * 1105 * So the caller must also ensure that device_links_flush_sync_list() is called 1106 * as soon as the caller releases device_links_write_lock(). This is necessary 1107 * to make sure the sync_state() is called in a timely fashion and the 1108 * put_device() is called on this device. 1109 */ 1110 static void __device_links_queue_sync_state(struct device *dev, 1111 struct list_head *list) 1112 { 1113 struct device_link *link; 1114 1115 if (!dev_has_sync_state(dev)) 1116 return; 1117 if (dev->state_synced) 1118 return; 1119 1120 list_for_each_entry(link, &dev->links.consumers, s_node) { 1121 if (!(link->flags & DL_FLAG_MANAGED)) 1122 continue; 1123 if (link->status != DL_STATE_ACTIVE) 1124 return; 1125 } 1126 1127 /* 1128 * Set the flag here to avoid adding the same device to a list more 1129 * than once. This can happen if new consumers get added to the device 1130 * and probed before the list is flushed. 1131 */ 1132 dev->state_synced = true; 1133 1134 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1135 return; 1136 1137 get_device(dev); 1138 list_add_tail(&dev->links.defer_sync, list); 1139 } 1140 1141 /** 1142 * device_links_flush_sync_list - Call sync_state() on a list of devices 1143 * @list: List of devices to call sync_state() on 1144 * @dont_lock_dev: Device for which lock is already held by the caller 1145 * 1146 * Calls sync_state() on all the devices that have been queued for it. This 1147 * function is used in conjunction with __device_links_queue_sync_state(). The 1148 * @dont_lock_dev parameter is useful when this function is called from a 1149 * context where a device lock is already held. 1150 */ 1151 static void device_links_flush_sync_list(struct list_head *list, 1152 struct device *dont_lock_dev) 1153 { 1154 struct device *dev, *tmp; 1155 1156 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1157 list_del_init(&dev->links.defer_sync); 1158 1159 if (dev != dont_lock_dev) 1160 device_lock(dev); 1161 1162 dev_sync_state(dev); 1163 1164 if (dev != dont_lock_dev) 1165 device_unlock(dev); 1166 1167 put_device(dev); 1168 } 1169 } 1170 1171 void device_links_supplier_sync_state_pause(void) 1172 { 1173 device_links_write_lock(); 1174 defer_sync_state_count++; 1175 device_links_write_unlock(); 1176 } 1177 1178 void device_links_supplier_sync_state_resume(void) 1179 { 1180 struct device *dev, *tmp; 1181 LIST_HEAD(sync_list); 1182 1183 device_links_write_lock(); 1184 if (!defer_sync_state_count) { 1185 WARN(true, "Unmatched sync_state pause/resume!"); 1186 goto out; 1187 } 1188 defer_sync_state_count--; 1189 if (defer_sync_state_count) 1190 goto out; 1191 1192 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1193 /* 1194 * Delete from deferred_sync list before queuing it to 1195 * sync_list because defer_sync is used for both lists. 1196 */ 1197 list_del_init(&dev->links.defer_sync); 1198 __device_links_queue_sync_state(dev, &sync_list); 1199 } 1200 out: 1201 device_links_write_unlock(); 1202 1203 device_links_flush_sync_list(&sync_list, NULL); 1204 } 1205 1206 static int sync_state_resume_initcall(void) 1207 { 1208 device_links_supplier_sync_state_resume(); 1209 return 0; 1210 } 1211 late_initcall(sync_state_resume_initcall); 1212 1213 static void __device_links_supplier_defer_sync(struct device *sup) 1214 { 1215 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1216 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1217 } 1218 1219 static void device_link_drop_managed(struct device_link *link) 1220 { 1221 link->flags &= ~DL_FLAG_MANAGED; 1222 WRITE_ONCE(link->status, DL_STATE_NONE); 1223 kref_put(&link->kref, __device_link_del); 1224 } 1225 1226 static ssize_t waiting_for_supplier_show(struct device *dev, 1227 struct device_attribute *attr, 1228 char *buf) 1229 { 1230 bool val; 1231 1232 device_lock(dev); 1233 mutex_lock(&fwnode_link_lock); 1234 val = !!fwnode_links_check_suppliers(dev->fwnode); 1235 mutex_unlock(&fwnode_link_lock); 1236 device_unlock(dev); 1237 return sysfs_emit(buf, "%u\n", val); 1238 } 1239 static DEVICE_ATTR_RO(waiting_for_supplier); 1240 1241 /** 1242 * device_links_force_bind - Prepares device to be force bound 1243 * @dev: Consumer device. 1244 * 1245 * device_bind_driver() force binds a device to a driver without calling any 1246 * driver probe functions. So the consumer really isn't going to wait for any 1247 * supplier before it's bound to the driver. We still want the device link 1248 * states to be sensible when this happens. 1249 * 1250 * In preparation for device_bind_driver(), this function goes through each 1251 * supplier device links and checks if the supplier is bound. If it is, then 1252 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1253 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1254 */ 1255 void device_links_force_bind(struct device *dev) 1256 { 1257 struct device_link *link, *ln; 1258 1259 device_links_write_lock(); 1260 1261 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1262 if (!(link->flags & DL_FLAG_MANAGED)) 1263 continue; 1264 1265 if (link->status != DL_STATE_AVAILABLE) { 1266 device_link_drop_managed(link); 1267 continue; 1268 } 1269 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1270 } 1271 dev->links.status = DL_DEV_PROBING; 1272 1273 device_links_write_unlock(); 1274 } 1275 1276 /** 1277 * device_links_driver_bound - Update device links after probing its driver. 1278 * @dev: Device to update the links for. 1279 * 1280 * The probe has been successful, so update links from this device to any 1281 * consumers by changing their status to "available". 1282 * 1283 * Also change the status of @dev's links to suppliers to "active". 1284 * 1285 * Links without the DL_FLAG_MANAGED flag set are ignored. 1286 */ 1287 void device_links_driver_bound(struct device *dev) 1288 { 1289 struct device_link *link, *ln; 1290 LIST_HEAD(sync_list); 1291 1292 /* 1293 * If a device binds successfully, it's expected to have created all 1294 * the device links it needs to or make new device links as it needs 1295 * them. So, fw_devlink no longer needs to create device links to any 1296 * of the device's suppliers. 1297 * 1298 * Also, if a child firmware node of this bound device is not added as a 1299 * device by now, assume it is never going to be added. Make this bound 1300 * device the fallback supplier to the dangling consumers of the child 1301 * firmware node because this bound device is probably implementing the 1302 * child firmware node functionality and we don't want the dangling 1303 * consumers to defer probe indefinitely waiting for a device for the 1304 * child firmware node. 1305 */ 1306 if (dev->fwnode && dev->fwnode->dev == dev) { 1307 struct fwnode_handle *child; 1308 fwnode_links_purge_suppliers(dev->fwnode); 1309 mutex_lock(&fwnode_link_lock); 1310 fwnode_for_each_available_child_node(dev->fwnode, child) 1311 __fw_devlink_pickup_dangling_consumers(child, 1312 dev->fwnode); 1313 __fw_devlink_link_to_consumers(dev); 1314 mutex_unlock(&fwnode_link_lock); 1315 } 1316 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1317 1318 device_links_write_lock(); 1319 1320 list_for_each_entry(link, &dev->links.consumers, s_node) { 1321 if (!(link->flags & DL_FLAG_MANAGED)) 1322 continue; 1323 1324 /* 1325 * Links created during consumer probe may be in the "consumer 1326 * probe" state to start with if the supplier is still probing 1327 * when they are created and they may become "active" if the 1328 * consumer probe returns first. Skip them here. 1329 */ 1330 if (link->status == DL_STATE_CONSUMER_PROBE || 1331 link->status == DL_STATE_ACTIVE) 1332 continue; 1333 1334 WARN_ON(link->status != DL_STATE_DORMANT); 1335 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1336 1337 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1338 driver_deferred_probe_add(link->consumer); 1339 } 1340 1341 if (defer_sync_state_count) 1342 __device_links_supplier_defer_sync(dev); 1343 else 1344 __device_links_queue_sync_state(dev, &sync_list); 1345 1346 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1347 struct device *supplier; 1348 1349 if (!(link->flags & DL_FLAG_MANAGED)) 1350 continue; 1351 1352 supplier = link->supplier; 1353 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1354 /* 1355 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1356 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1357 * save to drop the managed link completely. 1358 */ 1359 device_link_drop_managed(link); 1360 } else if (dev_is_best_effort(dev) && 1361 link->flags & DL_FLAG_INFERRED && 1362 link->status != DL_STATE_CONSUMER_PROBE && 1363 !link->supplier->can_match) { 1364 /* 1365 * When dev_is_best_effort() is true, we ignore device 1366 * links to suppliers that don't have a driver. If the 1367 * consumer device still managed to probe, there's no 1368 * point in maintaining a device link in a weird state 1369 * (consumer probed before supplier). So delete it. 1370 */ 1371 device_link_drop_managed(link); 1372 } else { 1373 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1374 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1375 } 1376 1377 /* 1378 * This needs to be done even for the deleted 1379 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1380 * device link that was preventing the supplier from getting a 1381 * sync_state() call. 1382 */ 1383 if (defer_sync_state_count) 1384 __device_links_supplier_defer_sync(supplier); 1385 else 1386 __device_links_queue_sync_state(supplier, &sync_list); 1387 } 1388 1389 dev->links.status = DL_DEV_DRIVER_BOUND; 1390 1391 device_links_write_unlock(); 1392 1393 device_links_flush_sync_list(&sync_list, dev); 1394 } 1395 1396 /** 1397 * __device_links_no_driver - Update links of a device without a driver. 1398 * @dev: Device without a drvier. 1399 * 1400 * Delete all non-persistent links from this device to any suppliers. 1401 * 1402 * Persistent links stay around, but their status is changed to "available", 1403 * unless they already are in the "supplier unbind in progress" state in which 1404 * case they need not be updated. 1405 * 1406 * Links without the DL_FLAG_MANAGED flag set are ignored. 1407 */ 1408 static void __device_links_no_driver(struct device *dev) 1409 { 1410 struct device_link *link, *ln; 1411 1412 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1413 if (!(link->flags & DL_FLAG_MANAGED)) 1414 continue; 1415 1416 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1417 device_link_drop_managed(link); 1418 continue; 1419 } 1420 1421 if (link->status != DL_STATE_CONSUMER_PROBE && 1422 link->status != DL_STATE_ACTIVE) 1423 continue; 1424 1425 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1426 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1427 } else { 1428 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1429 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1430 } 1431 } 1432 1433 dev->links.status = DL_DEV_NO_DRIVER; 1434 } 1435 1436 /** 1437 * device_links_no_driver - Update links after failing driver probe. 1438 * @dev: Device whose driver has just failed to probe. 1439 * 1440 * Clean up leftover links to consumers for @dev and invoke 1441 * %__device_links_no_driver() to update links to suppliers for it as 1442 * appropriate. 1443 * 1444 * Links without the DL_FLAG_MANAGED flag set are ignored. 1445 */ 1446 void device_links_no_driver(struct device *dev) 1447 { 1448 struct device_link *link; 1449 1450 device_links_write_lock(); 1451 1452 list_for_each_entry(link, &dev->links.consumers, s_node) { 1453 if (!(link->flags & DL_FLAG_MANAGED)) 1454 continue; 1455 1456 /* 1457 * The probe has failed, so if the status of the link is 1458 * "consumer probe" or "active", it must have been added by 1459 * a probing consumer while this device was still probing. 1460 * Change its state to "dormant", as it represents a valid 1461 * relationship, but it is not functionally meaningful. 1462 */ 1463 if (link->status == DL_STATE_CONSUMER_PROBE || 1464 link->status == DL_STATE_ACTIVE) 1465 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1466 } 1467 1468 __device_links_no_driver(dev); 1469 1470 device_links_write_unlock(); 1471 } 1472 1473 /** 1474 * device_links_driver_cleanup - Update links after driver removal. 1475 * @dev: Device whose driver has just gone away. 1476 * 1477 * Update links to consumers for @dev by changing their status to "dormant" and 1478 * invoke %__device_links_no_driver() to update links to suppliers for it as 1479 * appropriate. 1480 * 1481 * Links without the DL_FLAG_MANAGED flag set are ignored. 1482 */ 1483 void device_links_driver_cleanup(struct device *dev) 1484 { 1485 struct device_link *link, *ln; 1486 1487 device_links_write_lock(); 1488 1489 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1490 if (!(link->flags & DL_FLAG_MANAGED)) 1491 continue; 1492 1493 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1494 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1495 1496 /* 1497 * autoremove the links between this @dev and its consumer 1498 * devices that are not active, i.e. where the link state 1499 * has moved to DL_STATE_SUPPLIER_UNBIND. 1500 */ 1501 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1502 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1503 device_link_drop_managed(link); 1504 1505 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1506 } 1507 1508 list_del_init(&dev->links.defer_sync); 1509 __device_links_no_driver(dev); 1510 1511 device_links_write_unlock(); 1512 } 1513 1514 /** 1515 * device_links_busy - Check if there are any busy links to consumers. 1516 * @dev: Device to check. 1517 * 1518 * Check each consumer of the device and return 'true' if its link's status 1519 * is one of "consumer probe" or "active" (meaning that the given consumer is 1520 * probing right now or its driver is present). Otherwise, change the link 1521 * state to "supplier unbind" to prevent the consumer from being probed 1522 * successfully going forward. 1523 * 1524 * Return 'false' if there are no probing or active consumers. 1525 * 1526 * Links without the DL_FLAG_MANAGED flag set are ignored. 1527 */ 1528 bool device_links_busy(struct device *dev) 1529 { 1530 struct device_link *link; 1531 bool ret = false; 1532 1533 device_links_write_lock(); 1534 1535 list_for_each_entry(link, &dev->links.consumers, s_node) { 1536 if (!(link->flags & DL_FLAG_MANAGED)) 1537 continue; 1538 1539 if (link->status == DL_STATE_CONSUMER_PROBE 1540 || link->status == DL_STATE_ACTIVE) { 1541 ret = true; 1542 break; 1543 } 1544 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1545 } 1546 1547 dev->links.status = DL_DEV_UNBINDING; 1548 1549 device_links_write_unlock(); 1550 return ret; 1551 } 1552 1553 /** 1554 * device_links_unbind_consumers - Force unbind consumers of the given device. 1555 * @dev: Device to unbind the consumers of. 1556 * 1557 * Walk the list of links to consumers for @dev and if any of them is in the 1558 * "consumer probe" state, wait for all device probes in progress to complete 1559 * and start over. 1560 * 1561 * If that's not the case, change the status of the link to "supplier unbind" 1562 * and check if the link was in the "active" state. If so, force the consumer 1563 * driver to unbind and start over (the consumer will not re-probe as we have 1564 * changed the state of the link already). 1565 * 1566 * Links without the DL_FLAG_MANAGED flag set are ignored. 1567 */ 1568 void device_links_unbind_consumers(struct device *dev) 1569 { 1570 struct device_link *link; 1571 1572 start: 1573 device_links_write_lock(); 1574 1575 list_for_each_entry(link, &dev->links.consumers, s_node) { 1576 enum device_link_state status; 1577 1578 if (!(link->flags & DL_FLAG_MANAGED) || 1579 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1580 continue; 1581 1582 status = link->status; 1583 if (status == DL_STATE_CONSUMER_PROBE) { 1584 device_links_write_unlock(); 1585 1586 wait_for_device_probe(); 1587 goto start; 1588 } 1589 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1590 if (status == DL_STATE_ACTIVE) { 1591 struct device *consumer = link->consumer; 1592 1593 get_device(consumer); 1594 1595 device_links_write_unlock(); 1596 1597 device_release_driver_internal(consumer, NULL, 1598 consumer->parent); 1599 put_device(consumer); 1600 goto start; 1601 } 1602 } 1603 1604 device_links_write_unlock(); 1605 } 1606 1607 /** 1608 * device_links_purge - Delete existing links to other devices. 1609 * @dev: Target device. 1610 */ 1611 static void device_links_purge(struct device *dev) 1612 { 1613 struct device_link *link, *ln; 1614 1615 if (dev->class == &devlink_class) 1616 return; 1617 1618 /* 1619 * Delete all of the remaining links from this device to any other 1620 * devices (either consumers or suppliers). 1621 */ 1622 device_links_write_lock(); 1623 1624 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1625 WARN_ON(link->status == DL_STATE_ACTIVE); 1626 __device_link_del(&link->kref); 1627 } 1628 1629 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1630 WARN_ON(link->status != DL_STATE_DORMANT && 1631 link->status != DL_STATE_NONE); 1632 __device_link_del(&link->kref); 1633 } 1634 1635 device_links_write_unlock(); 1636 } 1637 1638 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1639 DL_FLAG_SYNC_STATE_ONLY) 1640 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1641 DL_FLAG_AUTOPROBE_CONSUMER) 1642 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1643 DL_FLAG_PM_RUNTIME) 1644 1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1646 static int __init fw_devlink_setup(char *arg) 1647 { 1648 if (!arg) 1649 return -EINVAL; 1650 1651 if (strcmp(arg, "off") == 0) { 1652 fw_devlink_flags = 0; 1653 } else if (strcmp(arg, "permissive") == 0) { 1654 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1655 } else if (strcmp(arg, "on") == 0) { 1656 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1657 } else if (strcmp(arg, "rpm") == 0) { 1658 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1659 } 1660 return 0; 1661 } 1662 early_param("fw_devlink", fw_devlink_setup); 1663 1664 static bool fw_devlink_strict; 1665 static int __init fw_devlink_strict_setup(char *arg) 1666 { 1667 return kstrtobool(arg, &fw_devlink_strict); 1668 } 1669 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1670 1671 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1673 1674 static int fw_devlink_sync_state; 1675 static int __init fw_devlink_sync_state_setup(char *arg) 1676 { 1677 if (!arg) 1678 return -EINVAL; 1679 1680 if (strcmp(arg, "strict") == 0) { 1681 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1682 return 0; 1683 } else if (strcmp(arg, "timeout") == 0) { 1684 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1685 return 0; 1686 } 1687 return -EINVAL; 1688 } 1689 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1690 1691 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1692 { 1693 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1694 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1695 1696 return fw_devlink_flags; 1697 } 1698 1699 static bool fw_devlink_is_permissive(void) 1700 { 1701 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1702 } 1703 1704 bool fw_devlink_is_strict(void) 1705 { 1706 return fw_devlink_strict && !fw_devlink_is_permissive(); 1707 } 1708 1709 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1710 { 1711 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1712 return; 1713 1714 fwnode_call_int_op(fwnode, add_links); 1715 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1716 } 1717 1718 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1719 { 1720 struct fwnode_handle *child = NULL; 1721 1722 fw_devlink_parse_fwnode(fwnode); 1723 1724 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1725 fw_devlink_parse_fwtree(child); 1726 } 1727 1728 static void fw_devlink_relax_link(struct device_link *link) 1729 { 1730 if (!(link->flags & DL_FLAG_INFERRED)) 1731 return; 1732 1733 if (device_link_flag_is_sync_state_only(link->flags)) 1734 return; 1735 1736 pm_runtime_drop_link(link); 1737 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1738 dev_dbg(link->consumer, "Relaxing link with %s\n", 1739 dev_name(link->supplier)); 1740 } 1741 1742 static int fw_devlink_no_driver(struct device *dev, void *data) 1743 { 1744 struct device_link *link = to_devlink(dev); 1745 1746 if (!link->supplier->can_match) 1747 fw_devlink_relax_link(link); 1748 1749 return 0; 1750 } 1751 1752 void fw_devlink_drivers_done(void) 1753 { 1754 fw_devlink_drv_reg_done = true; 1755 device_links_write_lock(); 1756 class_for_each_device(&devlink_class, NULL, NULL, 1757 fw_devlink_no_driver); 1758 device_links_write_unlock(); 1759 } 1760 1761 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1762 { 1763 struct device_link *link = to_devlink(dev); 1764 struct device *sup = link->supplier; 1765 1766 if (!(link->flags & DL_FLAG_MANAGED) || 1767 link->status == DL_STATE_ACTIVE || sup->state_synced || 1768 !dev_has_sync_state(sup)) 1769 return 0; 1770 1771 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1772 dev_warn(sup, "sync_state() pending due to %s\n", 1773 dev_name(link->consumer)); 1774 return 0; 1775 } 1776 1777 if (!list_empty(&sup->links.defer_sync)) 1778 return 0; 1779 1780 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1781 sup->state_synced = true; 1782 get_device(sup); 1783 list_add_tail(&sup->links.defer_sync, data); 1784 1785 return 0; 1786 } 1787 1788 void fw_devlink_probing_done(void) 1789 { 1790 LIST_HEAD(sync_list); 1791 1792 device_links_write_lock(); 1793 class_for_each_device(&devlink_class, NULL, &sync_list, 1794 fw_devlink_dev_sync_state); 1795 device_links_write_unlock(); 1796 device_links_flush_sync_list(&sync_list, NULL); 1797 } 1798 1799 /** 1800 * wait_for_init_devices_probe - Try to probe any device needed for init 1801 * 1802 * Some devices might need to be probed and bound successfully before the kernel 1803 * boot sequence can finish and move on to init/userspace. For example, a 1804 * network interface might need to be bound to be able to mount a NFS rootfs. 1805 * 1806 * With fw_devlink=on by default, some of these devices might be blocked from 1807 * probing because they are waiting on a optional supplier that doesn't have a 1808 * driver. While fw_devlink will eventually identify such devices and unblock 1809 * the probing automatically, it might be too late by the time it unblocks the 1810 * probing of devices. For example, the IP4 autoconfig might timeout before 1811 * fw_devlink unblocks probing of the network interface. 1812 * 1813 * This function is available to temporarily try and probe all devices that have 1814 * a driver even if some of their suppliers haven't been added or don't have 1815 * drivers. 1816 * 1817 * The drivers can then decide which of the suppliers are optional vs mandatory 1818 * and probe the device if possible. By the time this function returns, all such 1819 * "best effort" probes are guaranteed to be completed. If a device successfully 1820 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1821 * device where the supplier hasn't yet probed successfully because they have to 1822 * be optional dependencies. 1823 * 1824 * Any devices that didn't successfully probe go back to being treated as if 1825 * this function was never called. 1826 * 1827 * This also means that some devices that aren't needed for init and could have 1828 * waited for their optional supplier to probe (when the supplier's module is 1829 * loaded later on) would end up probing prematurely with limited functionality. 1830 * So call this function only when boot would fail without it. 1831 */ 1832 void __init wait_for_init_devices_probe(void) 1833 { 1834 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1835 return; 1836 1837 /* 1838 * Wait for all ongoing probes to finish so that the "best effort" is 1839 * only applied to devices that can't probe otherwise. 1840 */ 1841 wait_for_device_probe(); 1842 1843 pr_info("Trying to probe devices needed for running init ...\n"); 1844 fw_devlink_best_effort = true; 1845 driver_deferred_probe_trigger(); 1846 1847 /* 1848 * Wait for all "best effort" probes to finish before going back to 1849 * normal enforcement. 1850 */ 1851 wait_for_device_probe(); 1852 fw_devlink_best_effort = false; 1853 } 1854 1855 static void fw_devlink_unblock_consumers(struct device *dev) 1856 { 1857 struct device_link *link; 1858 1859 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1860 return; 1861 1862 device_links_write_lock(); 1863 list_for_each_entry(link, &dev->links.consumers, s_node) 1864 fw_devlink_relax_link(link); 1865 device_links_write_unlock(); 1866 } 1867 1868 1869 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1870 { 1871 struct device *dev; 1872 bool ret; 1873 1874 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1875 return false; 1876 1877 dev = get_dev_from_fwnode(fwnode); 1878 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1879 put_device(dev); 1880 1881 return ret; 1882 } 1883 1884 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1885 { 1886 struct fwnode_handle *parent; 1887 1888 fwnode_for_each_parent_node(fwnode, parent) { 1889 if (fwnode_init_without_drv(parent)) { 1890 fwnode_handle_put(parent); 1891 return true; 1892 } 1893 } 1894 1895 return false; 1896 } 1897 1898 /** 1899 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1900 * @con: Potential consumer device. 1901 * @sup_handle: Potential supplier's fwnode. 1902 * 1903 * Needs to be called with fwnode_lock and device link lock held. 1904 * 1905 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1906 * depend on @con. This function can detect multiple cyles between @sup_handle 1907 * and @con. When such dependency cycles are found, convert all device links 1908 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1909 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1910 * converted into a device link in the future, they are created as 1911 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1912 * fw_devlink=permissive just between the devices in the cycle. We need to do 1913 * this because, at this point, fw_devlink can't tell which of these 1914 * dependencies is not a real dependency. 1915 * 1916 * Return true if one or more cycles were found. Otherwise, return false. 1917 */ 1918 static bool __fw_devlink_relax_cycles(struct device *con, 1919 struct fwnode_handle *sup_handle) 1920 { 1921 struct device *sup_dev = NULL, *par_dev = NULL; 1922 struct fwnode_link *link; 1923 struct device_link *dev_link; 1924 bool ret = false; 1925 1926 if (!sup_handle) 1927 return false; 1928 1929 /* 1930 * We aren't trying to find all cycles. Just a cycle between con and 1931 * sup_handle. 1932 */ 1933 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1934 return false; 1935 1936 sup_handle->flags |= FWNODE_FLAG_VISITED; 1937 1938 sup_dev = get_dev_from_fwnode(sup_handle); 1939 1940 /* Termination condition. */ 1941 if (sup_dev == con) { 1942 ret = true; 1943 goto out; 1944 } 1945 1946 /* 1947 * If sup_dev is bound to a driver and @con hasn't started binding to a 1948 * driver, sup_dev can't be a consumer of @con. So, no need to check 1949 * further. 1950 */ 1951 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1952 con->links.status == DL_DEV_NO_DRIVER) { 1953 ret = false; 1954 goto out; 1955 } 1956 1957 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1958 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1959 __fwnode_link_cycle(link); 1960 ret = true; 1961 } 1962 } 1963 1964 /* 1965 * Give priority to device parent over fwnode parent to account for any 1966 * quirks in how fwnodes are converted to devices. 1967 */ 1968 if (sup_dev) 1969 par_dev = get_device(sup_dev->parent); 1970 else 1971 par_dev = fwnode_get_next_parent_dev(sup_handle); 1972 1973 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1974 ret = true; 1975 1976 if (!sup_dev) 1977 goto out; 1978 1979 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1980 /* 1981 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1982 * such due to a cycle. 1983 */ 1984 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1985 !(dev_link->flags & DL_FLAG_CYCLE)) 1986 continue; 1987 1988 if (__fw_devlink_relax_cycles(con, 1989 dev_link->supplier->fwnode)) { 1990 fw_devlink_relax_link(dev_link); 1991 dev_link->flags |= DL_FLAG_CYCLE; 1992 ret = true; 1993 } 1994 } 1995 1996 out: 1997 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 1998 put_device(sup_dev); 1999 put_device(par_dev); 2000 return ret; 2001 } 2002 2003 /** 2004 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2005 * @con: consumer device for the device link 2006 * @sup_handle: fwnode handle of supplier 2007 * @link: fwnode link that's being converted to a device link 2008 * 2009 * This function will try to create a device link between the consumer device 2010 * @con and the supplier device represented by @sup_handle. 2011 * 2012 * The supplier has to be provided as a fwnode because incorrect cycles in 2013 * fwnode links can sometimes cause the supplier device to never be created. 2014 * This function detects such cases and returns an error if it cannot create a 2015 * device link from the consumer to a missing supplier. 2016 * 2017 * Returns, 2018 * 0 on successfully creating a device link 2019 * -EINVAL if the device link cannot be created as expected 2020 * -EAGAIN if the device link cannot be created right now, but it may be 2021 * possible to do that in the future 2022 */ 2023 static int fw_devlink_create_devlink(struct device *con, 2024 struct fwnode_handle *sup_handle, 2025 struct fwnode_link *link) 2026 { 2027 struct device *sup_dev; 2028 int ret = 0; 2029 u32 flags; 2030 2031 if (con->fwnode == link->consumer) 2032 flags = fw_devlink_get_flags(link->flags); 2033 else 2034 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2035 2036 /* 2037 * In some cases, a device P might also be a supplier to its child node 2038 * C. However, this would defer the probe of C until the probe of P 2039 * completes successfully. This is perfectly fine in the device driver 2040 * model. device_add() doesn't guarantee probe completion of the device 2041 * by the time it returns. 2042 * 2043 * However, there are a few drivers that assume C will finish probing 2044 * as soon as it's added and before P finishes probing. So, we provide 2045 * a flag to let fw_devlink know not to delay the probe of C until the 2046 * probe of P completes successfully. 2047 * 2048 * When such a flag is set, we can't create device links where P is the 2049 * supplier of C as that would delay the probe of C. 2050 */ 2051 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2052 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2053 return -EINVAL; 2054 2055 /* 2056 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2057 * So cycle detection isn't necessary and shouldn't be done. 2058 */ 2059 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) { 2060 device_links_write_lock(); 2061 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2062 __fwnode_link_cycle(link); 2063 flags = fw_devlink_get_flags(link->flags); 2064 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2065 sup_handle); 2066 } 2067 device_links_write_unlock(); 2068 } 2069 2070 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2071 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2072 else 2073 sup_dev = get_dev_from_fwnode(sup_handle); 2074 2075 if (sup_dev) { 2076 /* 2077 * If it's one of those drivers that don't actually bind to 2078 * their device using driver core, then don't wait on this 2079 * supplier device indefinitely. 2080 */ 2081 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2082 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2083 dev_dbg(con, 2084 "Not linking %pfwf - dev might never probe\n", 2085 sup_handle); 2086 ret = -EINVAL; 2087 goto out; 2088 } 2089 2090 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2091 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2092 flags, dev_name(sup_dev)); 2093 ret = -EINVAL; 2094 } 2095 2096 goto out; 2097 } 2098 2099 /* 2100 * Supplier or supplier's ancestor already initialized without a struct 2101 * device or being probed by a driver. 2102 */ 2103 if (fwnode_init_without_drv(sup_handle) || 2104 fwnode_ancestor_init_without_drv(sup_handle)) { 2105 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2106 sup_handle); 2107 return -EINVAL; 2108 } 2109 2110 ret = -EAGAIN; 2111 out: 2112 put_device(sup_dev); 2113 return ret; 2114 } 2115 2116 /** 2117 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2118 * @dev: Device that needs to be linked to its consumers 2119 * 2120 * This function looks at all the consumer fwnodes of @dev and creates device 2121 * links between the consumer device and @dev (supplier). 2122 * 2123 * If the consumer device has not been added yet, then this function creates a 2124 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2125 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2126 * sync_state() callback before the real consumer device gets to be added and 2127 * then probed. 2128 * 2129 * Once device links are created from the real consumer to @dev (supplier), the 2130 * fwnode links are deleted. 2131 */ 2132 static void __fw_devlink_link_to_consumers(struct device *dev) 2133 { 2134 struct fwnode_handle *fwnode = dev->fwnode; 2135 struct fwnode_link *link, *tmp; 2136 2137 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2138 struct device *con_dev; 2139 bool own_link = true; 2140 int ret; 2141 2142 con_dev = get_dev_from_fwnode(link->consumer); 2143 /* 2144 * If consumer device is not available yet, make a "proxy" 2145 * SYNC_STATE_ONLY link from the consumer's parent device to 2146 * the supplier device. This is necessary to make sure the 2147 * supplier doesn't get a sync_state() callback before the real 2148 * consumer can create a device link to the supplier. 2149 * 2150 * This proxy link step is needed to handle the case where the 2151 * consumer's parent device is added before the supplier. 2152 */ 2153 if (!con_dev) { 2154 con_dev = fwnode_get_next_parent_dev(link->consumer); 2155 /* 2156 * However, if the consumer's parent device is also the 2157 * parent of the supplier, don't create a 2158 * consumer-supplier link from the parent to its child 2159 * device. Such a dependency is impossible. 2160 */ 2161 if (con_dev && 2162 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2163 put_device(con_dev); 2164 con_dev = NULL; 2165 } else { 2166 own_link = false; 2167 } 2168 } 2169 2170 if (!con_dev) 2171 continue; 2172 2173 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2174 put_device(con_dev); 2175 if (!own_link || ret == -EAGAIN) 2176 continue; 2177 2178 __fwnode_link_del(link); 2179 } 2180 } 2181 2182 /** 2183 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2184 * @dev: The consumer device that needs to be linked to its suppliers 2185 * @fwnode: Root of the fwnode tree that is used to create device links 2186 * 2187 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2188 * @fwnode and creates device links between @dev (consumer) and all the 2189 * supplier devices of the entire fwnode tree at @fwnode. 2190 * 2191 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2192 * and the real suppliers of @dev. Once these device links are created, the 2193 * fwnode links are deleted. 2194 * 2195 * In addition, it also looks at all the suppliers of the entire fwnode tree 2196 * because some of the child devices of @dev that have not been added yet 2197 * (because @dev hasn't probed) might already have their suppliers added to 2198 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2199 * @dev (consumer) and these suppliers to make sure they don't execute their 2200 * sync_state() callbacks before these child devices have a chance to create 2201 * their device links. The fwnode links that correspond to the child devices 2202 * aren't delete because they are needed later to create the device links 2203 * between the real consumer and supplier devices. 2204 */ 2205 static void __fw_devlink_link_to_suppliers(struct device *dev, 2206 struct fwnode_handle *fwnode) 2207 { 2208 bool own_link = (dev->fwnode == fwnode); 2209 struct fwnode_link *link, *tmp; 2210 struct fwnode_handle *child = NULL; 2211 2212 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2213 int ret; 2214 struct fwnode_handle *sup = link->supplier; 2215 2216 ret = fw_devlink_create_devlink(dev, sup, link); 2217 if (!own_link || ret == -EAGAIN) 2218 continue; 2219 2220 __fwnode_link_del(link); 2221 } 2222 2223 /* 2224 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2225 * all the descendants. This proxy link step is needed to handle the 2226 * case where the supplier is added before the consumer's parent device 2227 * (@dev). 2228 */ 2229 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2230 __fw_devlink_link_to_suppliers(dev, child); 2231 } 2232 2233 static void fw_devlink_link_device(struct device *dev) 2234 { 2235 struct fwnode_handle *fwnode = dev->fwnode; 2236 2237 if (!fw_devlink_flags) 2238 return; 2239 2240 fw_devlink_parse_fwtree(fwnode); 2241 2242 mutex_lock(&fwnode_link_lock); 2243 __fw_devlink_link_to_consumers(dev); 2244 __fw_devlink_link_to_suppliers(dev, fwnode); 2245 mutex_unlock(&fwnode_link_lock); 2246 } 2247 2248 /* Device links support end. */ 2249 2250 int (*platform_notify)(struct device *dev) = NULL; 2251 int (*platform_notify_remove)(struct device *dev) = NULL; 2252 static struct kobject *dev_kobj; 2253 struct kobject *sysfs_dev_char_kobj; 2254 struct kobject *sysfs_dev_block_kobj; 2255 2256 static DEFINE_MUTEX(device_hotplug_lock); 2257 2258 void lock_device_hotplug(void) 2259 { 2260 mutex_lock(&device_hotplug_lock); 2261 } 2262 2263 void unlock_device_hotplug(void) 2264 { 2265 mutex_unlock(&device_hotplug_lock); 2266 } 2267 2268 int lock_device_hotplug_sysfs(void) 2269 { 2270 if (mutex_trylock(&device_hotplug_lock)) 2271 return 0; 2272 2273 /* Avoid busy looping (5 ms of sleep should do). */ 2274 msleep(5); 2275 return restart_syscall(); 2276 } 2277 2278 #ifdef CONFIG_BLOCK 2279 static inline int device_is_not_partition(struct device *dev) 2280 { 2281 return !(dev->type == &part_type); 2282 } 2283 #else 2284 static inline int device_is_not_partition(struct device *dev) 2285 { 2286 return 1; 2287 } 2288 #endif 2289 2290 static void device_platform_notify(struct device *dev) 2291 { 2292 acpi_device_notify(dev); 2293 2294 software_node_notify(dev); 2295 2296 if (platform_notify) 2297 platform_notify(dev); 2298 } 2299 2300 static void device_platform_notify_remove(struct device *dev) 2301 { 2302 acpi_device_notify_remove(dev); 2303 2304 software_node_notify_remove(dev); 2305 2306 if (platform_notify_remove) 2307 platform_notify_remove(dev); 2308 } 2309 2310 /** 2311 * dev_driver_string - Return a device's driver name, if at all possible 2312 * @dev: struct device to get the name of 2313 * 2314 * Will return the device's driver's name if it is bound to a device. If 2315 * the device is not bound to a driver, it will return the name of the bus 2316 * it is attached to. If it is not attached to a bus either, an empty 2317 * string will be returned. 2318 */ 2319 const char *dev_driver_string(const struct device *dev) 2320 { 2321 struct device_driver *drv; 2322 2323 /* dev->driver can change to NULL underneath us because of unbinding, 2324 * so be careful about accessing it. dev->bus and dev->class should 2325 * never change once they are set, so they don't need special care. 2326 */ 2327 drv = READ_ONCE(dev->driver); 2328 return drv ? drv->name : dev_bus_name(dev); 2329 } 2330 EXPORT_SYMBOL(dev_driver_string); 2331 2332 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2333 2334 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2335 char *buf) 2336 { 2337 struct device_attribute *dev_attr = to_dev_attr(attr); 2338 struct device *dev = kobj_to_dev(kobj); 2339 ssize_t ret = -EIO; 2340 2341 if (dev_attr->show) 2342 ret = dev_attr->show(dev, dev_attr, buf); 2343 if (ret >= (ssize_t)PAGE_SIZE) { 2344 printk("dev_attr_show: %pS returned bad count\n", 2345 dev_attr->show); 2346 } 2347 return ret; 2348 } 2349 2350 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2351 const char *buf, size_t count) 2352 { 2353 struct device_attribute *dev_attr = to_dev_attr(attr); 2354 struct device *dev = kobj_to_dev(kobj); 2355 ssize_t ret = -EIO; 2356 2357 if (dev_attr->store) 2358 ret = dev_attr->store(dev, dev_attr, buf, count); 2359 return ret; 2360 } 2361 2362 static const struct sysfs_ops dev_sysfs_ops = { 2363 .show = dev_attr_show, 2364 .store = dev_attr_store, 2365 }; 2366 2367 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2368 2369 ssize_t device_store_ulong(struct device *dev, 2370 struct device_attribute *attr, 2371 const char *buf, size_t size) 2372 { 2373 struct dev_ext_attribute *ea = to_ext_attr(attr); 2374 int ret; 2375 unsigned long new; 2376 2377 ret = kstrtoul(buf, 0, &new); 2378 if (ret) 2379 return ret; 2380 *(unsigned long *)(ea->var) = new; 2381 /* Always return full write size even if we didn't consume all */ 2382 return size; 2383 } 2384 EXPORT_SYMBOL_GPL(device_store_ulong); 2385 2386 ssize_t device_show_ulong(struct device *dev, 2387 struct device_attribute *attr, 2388 char *buf) 2389 { 2390 struct dev_ext_attribute *ea = to_ext_attr(attr); 2391 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2392 } 2393 EXPORT_SYMBOL_GPL(device_show_ulong); 2394 2395 ssize_t device_store_int(struct device *dev, 2396 struct device_attribute *attr, 2397 const char *buf, size_t size) 2398 { 2399 struct dev_ext_attribute *ea = to_ext_attr(attr); 2400 int ret; 2401 long new; 2402 2403 ret = kstrtol(buf, 0, &new); 2404 if (ret) 2405 return ret; 2406 2407 if (new > INT_MAX || new < INT_MIN) 2408 return -EINVAL; 2409 *(int *)(ea->var) = new; 2410 /* Always return full write size even if we didn't consume all */ 2411 return size; 2412 } 2413 EXPORT_SYMBOL_GPL(device_store_int); 2414 2415 ssize_t device_show_int(struct device *dev, 2416 struct device_attribute *attr, 2417 char *buf) 2418 { 2419 struct dev_ext_attribute *ea = to_ext_attr(attr); 2420 2421 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2422 } 2423 EXPORT_SYMBOL_GPL(device_show_int); 2424 2425 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2426 const char *buf, size_t size) 2427 { 2428 struct dev_ext_attribute *ea = to_ext_attr(attr); 2429 2430 if (kstrtobool(buf, ea->var) < 0) 2431 return -EINVAL; 2432 2433 return size; 2434 } 2435 EXPORT_SYMBOL_GPL(device_store_bool); 2436 2437 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2438 char *buf) 2439 { 2440 struct dev_ext_attribute *ea = to_ext_attr(attr); 2441 2442 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2443 } 2444 EXPORT_SYMBOL_GPL(device_show_bool); 2445 2446 /** 2447 * device_release - free device structure. 2448 * @kobj: device's kobject. 2449 * 2450 * This is called once the reference count for the object 2451 * reaches 0. We forward the call to the device's release 2452 * method, which should handle actually freeing the structure. 2453 */ 2454 static void device_release(struct kobject *kobj) 2455 { 2456 struct device *dev = kobj_to_dev(kobj); 2457 struct device_private *p = dev->p; 2458 2459 /* 2460 * Some platform devices are driven without driver attached 2461 * and managed resources may have been acquired. Make sure 2462 * all resources are released. 2463 * 2464 * Drivers still can add resources into device after device 2465 * is deleted but alive, so release devres here to avoid 2466 * possible memory leak. 2467 */ 2468 devres_release_all(dev); 2469 2470 kfree(dev->dma_range_map); 2471 2472 if (dev->release) 2473 dev->release(dev); 2474 else if (dev->type && dev->type->release) 2475 dev->type->release(dev); 2476 else if (dev->class && dev->class->dev_release) 2477 dev->class->dev_release(dev); 2478 else 2479 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2480 dev_name(dev)); 2481 kfree(p); 2482 } 2483 2484 static const void *device_namespace(const struct kobject *kobj) 2485 { 2486 const struct device *dev = kobj_to_dev(kobj); 2487 const void *ns = NULL; 2488 2489 if (dev->class && dev->class->ns_type) 2490 ns = dev->class->namespace(dev); 2491 2492 return ns; 2493 } 2494 2495 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2496 { 2497 const struct device *dev = kobj_to_dev(kobj); 2498 2499 if (dev->class && dev->class->get_ownership) 2500 dev->class->get_ownership(dev, uid, gid); 2501 } 2502 2503 static const struct kobj_type device_ktype = { 2504 .release = device_release, 2505 .sysfs_ops = &dev_sysfs_ops, 2506 .namespace = device_namespace, 2507 .get_ownership = device_get_ownership, 2508 }; 2509 2510 2511 static int dev_uevent_filter(const struct kobject *kobj) 2512 { 2513 const struct kobj_type *ktype = get_ktype(kobj); 2514 2515 if (ktype == &device_ktype) { 2516 const struct device *dev = kobj_to_dev(kobj); 2517 if (dev->bus) 2518 return 1; 2519 if (dev->class) 2520 return 1; 2521 } 2522 return 0; 2523 } 2524 2525 static const char *dev_uevent_name(const struct kobject *kobj) 2526 { 2527 const struct device *dev = kobj_to_dev(kobj); 2528 2529 if (dev->bus) 2530 return dev->bus->name; 2531 if (dev->class) 2532 return dev->class->name; 2533 return NULL; 2534 } 2535 2536 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2537 { 2538 const struct device *dev = kobj_to_dev(kobj); 2539 int retval = 0; 2540 2541 /* add device node properties if present */ 2542 if (MAJOR(dev->devt)) { 2543 const char *tmp; 2544 const char *name; 2545 umode_t mode = 0; 2546 kuid_t uid = GLOBAL_ROOT_UID; 2547 kgid_t gid = GLOBAL_ROOT_GID; 2548 2549 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2550 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2551 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2552 if (name) { 2553 add_uevent_var(env, "DEVNAME=%s", name); 2554 if (mode) 2555 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2556 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2557 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2558 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2559 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2560 kfree(tmp); 2561 } 2562 } 2563 2564 if (dev->type && dev->type->name) 2565 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2566 2567 if (dev->driver) 2568 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2569 2570 /* Add common DT information about the device */ 2571 of_device_uevent(dev, env); 2572 2573 /* have the bus specific function add its stuff */ 2574 if (dev->bus && dev->bus->uevent) { 2575 retval = dev->bus->uevent(dev, env); 2576 if (retval) 2577 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2578 dev_name(dev), __func__, retval); 2579 } 2580 2581 /* have the class specific function add its stuff */ 2582 if (dev->class && dev->class->dev_uevent) { 2583 retval = dev->class->dev_uevent(dev, env); 2584 if (retval) 2585 pr_debug("device: '%s': %s: class uevent() " 2586 "returned %d\n", dev_name(dev), 2587 __func__, retval); 2588 } 2589 2590 /* have the device type specific function add its stuff */ 2591 if (dev->type && dev->type->uevent) { 2592 retval = dev->type->uevent(dev, env); 2593 if (retval) 2594 pr_debug("device: '%s': %s: dev_type uevent() " 2595 "returned %d\n", dev_name(dev), 2596 __func__, retval); 2597 } 2598 2599 return retval; 2600 } 2601 2602 static const struct kset_uevent_ops device_uevent_ops = { 2603 .filter = dev_uevent_filter, 2604 .name = dev_uevent_name, 2605 .uevent = dev_uevent, 2606 }; 2607 2608 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2609 char *buf) 2610 { 2611 struct kobject *top_kobj; 2612 struct kset *kset; 2613 struct kobj_uevent_env *env = NULL; 2614 int i; 2615 int len = 0; 2616 int retval; 2617 2618 /* search the kset, the device belongs to */ 2619 top_kobj = &dev->kobj; 2620 while (!top_kobj->kset && top_kobj->parent) 2621 top_kobj = top_kobj->parent; 2622 if (!top_kobj->kset) 2623 goto out; 2624 2625 kset = top_kobj->kset; 2626 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2627 goto out; 2628 2629 /* respect filter */ 2630 if (kset->uevent_ops && kset->uevent_ops->filter) 2631 if (!kset->uevent_ops->filter(&dev->kobj)) 2632 goto out; 2633 2634 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2635 if (!env) 2636 return -ENOMEM; 2637 2638 /* let the kset specific function add its keys */ 2639 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2640 if (retval) 2641 goto out; 2642 2643 /* copy keys to file */ 2644 for (i = 0; i < env->envp_idx; i++) 2645 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2646 out: 2647 kfree(env); 2648 return len; 2649 } 2650 2651 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2652 const char *buf, size_t count) 2653 { 2654 int rc; 2655 2656 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2657 2658 if (rc) { 2659 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2660 return rc; 2661 } 2662 2663 return count; 2664 } 2665 static DEVICE_ATTR_RW(uevent); 2666 2667 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2668 char *buf) 2669 { 2670 bool val; 2671 2672 device_lock(dev); 2673 val = !dev->offline; 2674 device_unlock(dev); 2675 return sysfs_emit(buf, "%u\n", val); 2676 } 2677 2678 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2679 const char *buf, size_t count) 2680 { 2681 bool val; 2682 int ret; 2683 2684 ret = kstrtobool(buf, &val); 2685 if (ret < 0) 2686 return ret; 2687 2688 ret = lock_device_hotplug_sysfs(); 2689 if (ret) 2690 return ret; 2691 2692 ret = val ? device_online(dev) : device_offline(dev); 2693 unlock_device_hotplug(); 2694 return ret < 0 ? ret : count; 2695 } 2696 static DEVICE_ATTR_RW(online); 2697 2698 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2699 char *buf) 2700 { 2701 const char *loc; 2702 2703 switch (dev->removable) { 2704 case DEVICE_REMOVABLE: 2705 loc = "removable"; 2706 break; 2707 case DEVICE_FIXED: 2708 loc = "fixed"; 2709 break; 2710 default: 2711 loc = "unknown"; 2712 } 2713 return sysfs_emit(buf, "%s\n", loc); 2714 } 2715 static DEVICE_ATTR_RO(removable); 2716 2717 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2718 { 2719 return sysfs_create_groups(&dev->kobj, groups); 2720 } 2721 EXPORT_SYMBOL_GPL(device_add_groups); 2722 2723 void device_remove_groups(struct device *dev, 2724 const struct attribute_group **groups) 2725 { 2726 sysfs_remove_groups(&dev->kobj, groups); 2727 } 2728 EXPORT_SYMBOL_GPL(device_remove_groups); 2729 2730 union device_attr_group_devres { 2731 const struct attribute_group *group; 2732 const struct attribute_group **groups; 2733 }; 2734 2735 static void devm_attr_group_remove(struct device *dev, void *res) 2736 { 2737 union device_attr_group_devres *devres = res; 2738 const struct attribute_group *group = devres->group; 2739 2740 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2741 sysfs_remove_group(&dev->kobj, group); 2742 } 2743 2744 static void devm_attr_groups_remove(struct device *dev, void *res) 2745 { 2746 union device_attr_group_devres *devres = res; 2747 const struct attribute_group **groups = devres->groups; 2748 2749 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2750 sysfs_remove_groups(&dev->kobj, groups); 2751 } 2752 2753 /** 2754 * devm_device_add_group - given a device, create a managed attribute group 2755 * @dev: The device to create the group for 2756 * @grp: The attribute group to create 2757 * 2758 * This function creates a group for the first time. It will explicitly 2759 * warn and error if any of the attribute files being created already exist. 2760 * 2761 * Returns 0 on success or error code on failure. 2762 */ 2763 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2764 { 2765 union device_attr_group_devres *devres; 2766 int error; 2767 2768 devres = devres_alloc(devm_attr_group_remove, 2769 sizeof(*devres), GFP_KERNEL); 2770 if (!devres) 2771 return -ENOMEM; 2772 2773 error = sysfs_create_group(&dev->kobj, grp); 2774 if (error) { 2775 devres_free(devres); 2776 return error; 2777 } 2778 2779 devres->group = grp; 2780 devres_add(dev, devres); 2781 return 0; 2782 } 2783 EXPORT_SYMBOL_GPL(devm_device_add_group); 2784 2785 /** 2786 * devm_device_add_groups - create a bunch of managed attribute groups 2787 * @dev: The device to create the group for 2788 * @groups: The attribute groups to create, NULL terminated 2789 * 2790 * This function creates a bunch of managed attribute groups. If an error 2791 * occurs when creating a group, all previously created groups will be 2792 * removed, unwinding everything back to the original state when this 2793 * function was called. It will explicitly warn and error if any of the 2794 * attribute files being created already exist. 2795 * 2796 * Returns 0 on success or error code from sysfs_create_group on failure. 2797 */ 2798 int devm_device_add_groups(struct device *dev, 2799 const struct attribute_group **groups) 2800 { 2801 union device_attr_group_devres *devres; 2802 int error; 2803 2804 devres = devres_alloc(devm_attr_groups_remove, 2805 sizeof(*devres), GFP_KERNEL); 2806 if (!devres) 2807 return -ENOMEM; 2808 2809 error = sysfs_create_groups(&dev->kobj, groups); 2810 if (error) { 2811 devres_free(devres); 2812 return error; 2813 } 2814 2815 devres->groups = groups; 2816 devres_add(dev, devres); 2817 return 0; 2818 } 2819 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2820 2821 static int device_add_attrs(struct device *dev) 2822 { 2823 const struct class *class = dev->class; 2824 const struct device_type *type = dev->type; 2825 int error; 2826 2827 if (class) { 2828 error = device_add_groups(dev, class->dev_groups); 2829 if (error) 2830 return error; 2831 } 2832 2833 if (type) { 2834 error = device_add_groups(dev, type->groups); 2835 if (error) 2836 goto err_remove_class_groups; 2837 } 2838 2839 error = device_add_groups(dev, dev->groups); 2840 if (error) 2841 goto err_remove_type_groups; 2842 2843 if (device_supports_offline(dev) && !dev->offline_disabled) { 2844 error = device_create_file(dev, &dev_attr_online); 2845 if (error) 2846 goto err_remove_dev_groups; 2847 } 2848 2849 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2850 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2851 if (error) 2852 goto err_remove_dev_online; 2853 } 2854 2855 if (dev_removable_is_valid(dev)) { 2856 error = device_create_file(dev, &dev_attr_removable); 2857 if (error) 2858 goto err_remove_dev_waiting_for_supplier; 2859 } 2860 2861 if (dev_add_physical_location(dev)) { 2862 error = device_add_group(dev, 2863 &dev_attr_physical_location_group); 2864 if (error) 2865 goto err_remove_dev_removable; 2866 } 2867 2868 return 0; 2869 2870 err_remove_dev_removable: 2871 device_remove_file(dev, &dev_attr_removable); 2872 err_remove_dev_waiting_for_supplier: 2873 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2874 err_remove_dev_online: 2875 device_remove_file(dev, &dev_attr_online); 2876 err_remove_dev_groups: 2877 device_remove_groups(dev, dev->groups); 2878 err_remove_type_groups: 2879 if (type) 2880 device_remove_groups(dev, type->groups); 2881 err_remove_class_groups: 2882 if (class) 2883 device_remove_groups(dev, class->dev_groups); 2884 2885 return error; 2886 } 2887 2888 static void device_remove_attrs(struct device *dev) 2889 { 2890 const struct class *class = dev->class; 2891 const struct device_type *type = dev->type; 2892 2893 if (dev->physical_location) { 2894 device_remove_group(dev, &dev_attr_physical_location_group); 2895 kfree(dev->physical_location); 2896 } 2897 2898 device_remove_file(dev, &dev_attr_removable); 2899 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2900 device_remove_file(dev, &dev_attr_online); 2901 device_remove_groups(dev, dev->groups); 2902 2903 if (type) 2904 device_remove_groups(dev, type->groups); 2905 2906 if (class) 2907 device_remove_groups(dev, class->dev_groups); 2908 } 2909 2910 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2911 char *buf) 2912 { 2913 return print_dev_t(buf, dev->devt); 2914 } 2915 static DEVICE_ATTR_RO(dev); 2916 2917 /* /sys/devices/ */ 2918 struct kset *devices_kset; 2919 2920 /** 2921 * devices_kset_move_before - Move device in the devices_kset's list. 2922 * @deva: Device to move. 2923 * @devb: Device @deva should come before. 2924 */ 2925 static void devices_kset_move_before(struct device *deva, struct device *devb) 2926 { 2927 if (!devices_kset) 2928 return; 2929 pr_debug("devices_kset: Moving %s before %s\n", 2930 dev_name(deva), dev_name(devb)); 2931 spin_lock(&devices_kset->list_lock); 2932 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2933 spin_unlock(&devices_kset->list_lock); 2934 } 2935 2936 /** 2937 * devices_kset_move_after - Move device in the devices_kset's list. 2938 * @deva: Device to move 2939 * @devb: Device @deva should come after. 2940 */ 2941 static void devices_kset_move_after(struct device *deva, struct device *devb) 2942 { 2943 if (!devices_kset) 2944 return; 2945 pr_debug("devices_kset: Moving %s after %s\n", 2946 dev_name(deva), dev_name(devb)); 2947 spin_lock(&devices_kset->list_lock); 2948 list_move(&deva->kobj.entry, &devb->kobj.entry); 2949 spin_unlock(&devices_kset->list_lock); 2950 } 2951 2952 /** 2953 * devices_kset_move_last - move the device to the end of devices_kset's list. 2954 * @dev: device to move 2955 */ 2956 void devices_kset_move_last(struct device *dev) 2957 { 2958 if (!devices_kset) 2959 return; 2960 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2961 spin_lock(&devices_kset->list_lock); 2962 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2963 spin_unlock(&devices_kset->list_lock); 2964 } 2965 2966 /** 2967 * device_create_file - create sysfs attribute file for device. 2968 * @dev: device. 2969 * @attr: device attribute descriptor. 2970 */ 2971 int device_create_file(struct device *dev, 2972 const struct device_attribute *attr) 2973 { 2974 int error = 0; 2975 2976 if (dev) { 2977 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2978 "Attribute %s: write permission without 'store'\n", 2979 attr->attr.name); 2980 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2981 "Attribute %s: read permission without 'show'\n", 2982 attr->attr.name); 2983 error = sysfs_create_file(&dev->kobj, &attr->attr); 2984 } 2985 2986 return error; 2987 } 2988 EXPORT_SYMBOL_GPL(device_create_file); 2989 2990 /** 2991 * device_remove_file - remove sysfs attribute file. 2992 * @dev: device. 2993 * @attr: device attribute descriptor. 2994 */ 2995 void device_remove_file(struct device *dev, 2996 const struct device_attribute *attr) 2997 { 2998 if (dev) 2999 sysfs_remove_file(&dev->kobj, &attr->attr); 3000 } 3001 EXPORT_SYMBOL_GPL(device_remove_file); 3002 3003 /** 3004 * device_remove_file_self - remove sysfs attribute file from its own method. 3005 * @dev: device. 3006 * @attr: device attribute descriptor. 3007 * 3008 * See kernfs_remove_self() for details. 3009 */ 3010 bool device_remove_file_self(struct device *dev, 3011 const struct device_attribute *attr) 3012 { 3013 if (dev) 3014 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3015 else 3016 return false; 3017 } 3018 EXPORT_SYMBOL_GPL(device_remove_file_self); 3019 3020 /** 3021 * device_create_bin_file - create sysfs binary attribute file for device. 3022 * @dev: device. 3023 * @attr: device binary attribute descriptor. 3024 */ 3025 int device_create_bin_file(struct device *dev, 3026 const struct bin_attribute *attr) 3027 { 3028 int error = -EINVAL; 3029 if (dev) 3030 error = sysfs_create_bin_file(&dev->kobj, attr); 3031 return error; 3032 } 3033 EXPORT_SYMBOL_GPL(device_create_bin_file); 3034 3035 /** 3036 * device_remove_bin_file - remove sysfs binary attribute file 3037 * @dev: device. 3038 * @attr: device binary attribute descriptor. 3039 */ 3040 void device_remove_bin_file(struct device *dev, 3041 const struct bin_attribute *attr) 3042 { 3043 if (dev) 3044 sysfs_remove_bin_file(&dev->kobj, attr); 3045 } 3046 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3047 3048 static void klist_children_get(struct klist_node *n) 3049 { 3050 struct device_private *p = to_device_private_parent(n); 3051 struct device *dev = p->device; 3052 3053 get_device(dev); 3054 } 3055 3056 static void klist_children_put(struct klist_node *n) 3057 { 3058 struct device_private *p = to_device_private_parent(n); 3059 struct device *dev = p->device; 3060 3061 put_device(dev); 3062 } 3063 3064 /** 3065 * device_initialize - init device structure. 3066 * @dev: device. 3067 * 3068 * This prepares the device for use by other layers by initializing 3069 * its fields. 3070 * It is the first half of device_register(), if called by 3071 * that function, though it can also be called separately, so one 3072 * may use @dev's fields. In particular, get_device()/put_device() 3073 * may be used for reference counting of @dev after calling this 3074 * function. 3075 * 3076 * All fields in @dev must be initialized by the caller to 0, except 3077 * for those explicitly set to some other value. The simplest 3078 * approach is to use kzalloc() to allocate the structure containing 3079 * @dev. 3080 * 3081 * NOTE: Use put_device() to give up your reference instead of freeing 3082 * @dev directly once you have called this function. 3083 */ 3084 void device_initialize(struct device *dev) 3085 { 3086 dev->kobj.kset = devices_kset; 3087 kobject_init(&dev->kobj, &device_ktype); 3088 INIT_LIST_HEAD(&dev->dma_pools); 3089 mutex_init(&dev->mutex); 3090 lockdep_set_novalidate_class(&dev->mutex); 3091 spin_lock_init(&dev->devres_lock); 3092 INIT_LIST_HEAD(&dev->devres_head); 3093 device_pm_init(dev); 3094 set_dev_node(dev, NUMA_NO_NODE); 3095 INIT_LIST_HEAD(&dev->links.consumers); 3096 INIT_LIST_HEAD(&dev->links.suppliers); 3097 INIT_LIST_HEAD(&dev->links.defer_sync); 3098 dev->links.status = DL_DEV_NO_DRIVER; 3099 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3100 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3101 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3102 dev->dma_coherent = dma_default_coherent; 3103 #endif 3104 #ifdef CONFIG_SWIOTLB 3105 dev->dma_io_tlb_mem = &io_tlb_default_mem; 3106 #endif 3107 } 3108 EXPORT_SYMBOL_GPL(device_initialize); 3109 3110 struct kobject *virtual_device_parent(struct device *dev) 3111 { 3112 static struct kobject *virtual_dir = NULL; 3113 3114 if (!virtual_dir) 3115 virtual_dir = kobject_create_and_add("virtual", 3116 &devices_kset->kobj); 3117 3118 return virtual_dir; 3119 } 3120 3121 struct class_dir { 3122 struct kobject kobj; 3123 const struct class *class; 3124 }; 3125 3126 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3127 3128 static void class_dir_release(struct kobject *kobj) 3129 { 3130 struct class_dir *dir = to_class_dir(kobj); 3131 kfree(dir); 3132 } 3133 3134 static const 3135 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3136 { 3137 const struct class_dir *dir = to_class_dir(kobj); 3138 return dir->class->ns_type; 3139 } 3140 3141 static const struct kobj_type class_dir_ktype = { 3142 .release = class_dir_release, 3143 .sysfs_ops = &kobj_sysfs_ops, 3144 .child_ns_type = class_dir_child_ns_type 3145 }; 3146 3147 static struct kobject * 3148 class_dir_create_and_add(const struct class *class, struct kobject *parent_kobj) 3149 { 3150 struct class_dir *dir; 3151 int retval; 3152 3153 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3154 if (!dir) 3155 return ERR_PTR(-ENOMEM); 3156 3157 dir->class = class; 3158 kobject_init(&dir->kobj, &class_dir_ktype); 3159 3160 dir->kobj.kset = &class->p->glue_dirs; 3161 3162 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 3163 if (retval < 0) { 3164 kobject_put(&dir->kobj); 3165 return ERR_PTR(retval); 3166 } 3167 return &dir->kobj; 3168 } 3169 3170 static DEFINE_MUTEX(gdp_mutex); 3171 3172 static struct kobject *get_device_parent(struct device *dev, 3173 struct device *parent) 3174 { 3175 struct kobject *kobj = NULL; 3176 3177 if (dev->class) { 3178 struct kobject *parent_kobj; 3179 struct kobject *k; 3180 3181 /* 3182 * If we have no parent, we live in "virtual". 3183 * Class-devices with a non class-device as parent, live 3184 * in a "glue" directory to prevent namespace collisions. 3185 */ 3186 if (parent == NULL) 3187 parent_kobj = virtual_device_parent(dev); 3188 else if (parent->class && !dev->class->ns_type) 3189 return &parent->kobj; 3190 else 3191 parent_kobj = &parent->kobj; 3192 3193 mutex_lock(&gdp_mutex); 3194 3195 /* find our class-directory at the parent and reference it */ 3196 spin_lock(&dev->class->p->glue_dirs.list_lock); 3197 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 3198 if (k->parent == parent_kobj) { 3199 kobj = kobject_get(k); 3200 break; 3201 } 3202 spin_unlock(&dev->class->p->glue_dirs.list_lock); 3203 if (kobj) { 3204 mutex_unlock(&gdp_mutex); 3205 return kobj; 3206 } 3207 3208 /* or create a new class-directory at the parent device */ 3209 k = class_dir_create_and_add(dev->class, parent_kobj); 3210 /* do not emit an uevent for this simple "glue" directory */ 3211 mutex_unlock(&gdp_mutex); 3212 return k; 3213 } 3214 3215 /* subsystems can specify a default root directory for their devices */ 3216 if (!parent && dev->bus) { 3217 struct device *dev_root = bus_get_dev_root(dev->bus); 3218 3219 if (dev_root) { 3220 kobj = &dev_root->kobj; 3221 put_device(dev_root); 3222 return kobj; 3223 } 3224 } 3225 3226 if (parent) 3227 return &parent->kobj; 3228 return NULL; 3229 } 3230 3231 static inline bool live_in_glue_dir(struct kobject *kobj, 3232 struct device *dev) 3233 { 3234 if (!kobj || !dev->class || 3235 kobj->kset != &dev->class->p->glue_dirs) 3236 return false; 3237 return true; 3238 } 3239 3240 static inline struct kobject *get_glue_dir(struct device *dev) 3241 { 3242 return dev->kobj.parent; 3243 } 3244 3245 /** 3246 * kobject_has_children - Returns whether a kobject has children. 3247 * @kobj: the object to test 3248 * 3249 * This will return whether a kobject has other kobjects as children. 3250 * 3251 * It does NOT account for the presence of attribute files, only sub 3252 * directories. It also assumes there is no concurrent addition or 3253 * removal of such children, and thus relies on external locking. 3254 */ 3255 static inline bool kobject_has_children(struct kobject *kobj) 3256 { 3257 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3258 3259 return kobj->sd && kobj->sd->dir.subdirs; 3260 } 3261 3262 /* 3263 * make sure cleaning up dir as the last step, we need to make 3264 * sure .release handler of kobject is run with holding the 3265 * global lock 3266 */ 3267 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3268 { 3269 unsigned int ref; 3270 3271 /* see if we live in a "glue" directory */ 3272 if (!live_in_glue_dir(glue_dir, dev)) 3273 return; 3274 3275 mutex_lock(&gdp_mutex); 3276 /** 3277 * There is a race condition between removing glue directory 3278 * and adding a new device under the glue directory. 3279 * 3280 * CPU1: CPU2: 3281 * 3282 * device_add() 3283 * get_device_parent() 3284 * class_dir_create_and_add() 3285 * kobject_add_internal() 3286 * create_dir() // create glue_dir 3287 * 3288 * device_add() 3289 * get_device_parent() 3290 * kobject_get() // get glue_dir 3291 * 3292 * device_del() 3293 * cleanup_glue_dir() 3294 * kobject_del(glue_dir) 3295 * 3296 * kobject_add() 3297 * kobject_add_internal() 3298 * create_dir() // in glue_dir 3299 * sysfs_create_dir_ns() 3300 * kernfs_create_dir_ns(sd) 3301 * 3302 * sysfs_remove_dir() // glue_dir->sd=NULL 3303 * sysfs_put() // free glue_dir->sd 3304 * 3305 * // sd is freed 3306 * kernfs_new_node(sd) 3307 * kernfs_get(glue_dir) 3308 * kernfs_add_one() 3309 * kernfs_put() 3310 * 3311 * Before CPU1 remove last child device under glue dir, if CPU2 add 3312 * a new device under glue dir, the glue_dir kobject reference count 3313 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3314 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3315 * and sysfs_put(). This result in glue_dir->sd is freed. 3316 * 3317 * Then the CPU2 will see a stale "empty" but still potentially used 3318 * glue dir around in kernfs_new_node(). 3319 * 3320 * In order to avoid this happening, we also should make sure that 3321 * kernfs_node for glue_dir is released in CPU1 only when refcount 3322 * for glue_dir kobj is 1. 3323 */ 3324 ref = kref_read(&glue_dir->kref); 3325 if (!kobject_has_children(glue_dir) && !--ref) 3326 kobject_del(glue_dir); 3327 kobject_put(glue_dir); 3328 mutex_unlock(&gdp_mutex); 3329 } 3330 3331 static int device_add_class_symlinks(struct device *dev) 3332 { 3333 struct device_node *of_node = dev_of_node(dev); 3334 int error; 3335 3336 if (of_node) { 3337 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3338 if (error) 3339 dev_warn(dev, "Error %d creating of_node link\n",error); 3340 /* An error here doesn't warrant bringing down the device */ 3341 } 3342 3343 if (!dev->class) 3344 return 0; 3345 3346 error = sysfs_create_link(&dev->kobj, 3347 &dev->class->p->subsys.kobj, 3348 "subsystem"); 3349 if (error) 3350 goto out_devnode; 3351 3352 if (dev->parent && device_is_not_partition(dev)) { 3353 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3354 "device"); 3355 if (error) 3356 goto out_subsys; 3357 } 3358 3359 /* link in the class directory pointing to the device */ 3360 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3361 &dev->kobj, dev_name(dev)); 3362 if (error) 3363 goto out_device; 3364 3365 return 0; 3366 3367 out_device: 3368 sysfs_remove_link(&dev->kobj, "device"); 3369 3370 out_subsys: 3371 sysfs_remove_link(&dev->kobj, "subsystem"); 3372 out_devnode: 3373 sysfs_remove_link(&dev->kobj, "of_node"); 3374 return error; 3375 } 3376 3377 static void device_remove_class_symlinks(struct device *dev) 3378 { 3379 if (dev_of_node(dev)) 3380 sysfs_remove_link(&dev->kobj, "of_node"); 3381 3382 if (!dev->class) 3383 return; 3384 3385 if (dev->parent && device_is_not_partition(dev)) 3386 sysfs_remove_link(&dev->kobj, "device"); 3387 sysfs_remove_link(&dev->kobj, "subsystem"); 3388 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3389 } 3390 3391 /** 3392 * dev_set_name - set a device name 3393 * @dev: device 3394 * @fmt: format string for the device's name 3395 */ 3396 int dev_set_name(struct device *dev, const char *fmt, ...) 3397 { 3398 va_list vargs; 3399 int err; 3400 3401 va_start(vargs, fmt); 3402 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3403 va_end(vargs); 3404 return err; 3405 } 3406 EXPORT_SYMBOL_GPL(dev_set_name); 3407 3408 /** 3409 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3410 * @dev: device 3411 * 3412 * By default we select char/ for new entries. Setting class->dev_obj 3413 * to NULL prevents an entry from being created. class->dev_kobj must 3414 * be set (or cleared) before any devices are registered to the class 3415 * otherwise device_create_sys_dev_entry() and 3416 * device_remove_sys_dev_entry() will disagree about the presence of 3417 * the link. 3418 */ 3419 static struct kobject *device_to_dev_kobj(struct device *dev) 3420 { 3421 struct kobject *kobj; 3422 3423 if (dev->class) 3424 kobj = dev->class->dev_kobj; 3425 else 3426 kobj = sysfs_dev_char_kobj; 3427 3428 return kobj; 3429 } 3430 3431 static int device_create_sys_dev_entry(struct device *dev) 3432 { 3433 struct kobject *kobj = device_to_dev_kobj(dev); 3434 int error = 0; 3435 char devt_str[15]; 3436 3437 if (kobj) { 3438 format_dev_t(devt_str, dev->devt); 3439 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3440 } 3441 3442 return error; 3443 } 3444 3445 static void device_remove_sys_dev_entry(struct device *dev) 3446 { 3447 struct kobject *kobj = device_to_dev_kobj(dev); 3448 char devt_str[15]; 3449 3450 if (kobj) { 3451 format_dev_t(devt_str, dev->devt); 3452 sysfs_remove_link(kobj, devt_str); 3453 } 3454 } 3455 3456 static int device_private_init(struct device *dev) 3457 { 3458 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3459 if (!dev->p) 3460 return -ENOMEM; 3461 dev->p->device = dev; 3462 klist_init(&dev->p->klist_children, klist_children_get, 3463 klist_children_put); 3464 INIT_LIST_HEAD(&dev->p->deferred_probe); 3465 return 0; 3466 } 3467 3468 /** 3469 * device_add - add device to device hierarchy. 3470 * @dev: device. 3471 * 3472 * This is part 2 of device_register(), though may be called 3473 * separately _iff_ device_initialize() has been called separately. 3474 * 3475 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3476 * to the global and sibling lists for the device, then 3477 * adds it to the other relevant subsystems of the driver model. 3478 * 3479 * Do not call this routine or device_register() more than once for 3480 * any device structure. The driver model core is not designed to work 3481 * with devices that get unregistered and then spring back to life. 3482 * (Among other things, it's very hard to guarantee that all references 3483 * to the previous incarnation of @dev have been dropped.) Allocate 3484 * and register a fresh new struct device instead. 3485 * 3486 * NOTE: _Never_ directly free @dev after calling this function, even 3487 * if it returned an error! Always use put_device() to give up your 3488 * reference instead. 3489 * 3490 * Rule of thumb is: if device_add() succeeds, you should call 3491 * device_del() when you want to get rid of it. If device_add() has 3492 * *not* succeeded, use *only* put_device() to drop the reference 3493 * count. 3494 */ 3495 int device_add(struct device *dev) 3496 { 3497 struct device *parent; 3498 struct kobject *kobj; 3499 struct class_interface *class_intf; 3500 int error = -EINVAL; 3501 struct kobject *glue_dir = NULL; 3502 3503 dev = get_device(dev); 3504 if (!dev) 3505 goto done; 3506 3507 if (!dev->p) { 3508 error = device_private_init(dev); 3509 if (error) 3510 goto done; 3511 } 3512 3513 /* 3514 * for statically allocated devices, which should all be converted 3515 * some day, we need to initialize the name. We prevent reading back 3516 * the name, and force the use of dev_name() 3517 */ 3518 if (dev->init_name) { 3519 dev_set_name(dev, "%s", dev->init_name); 3520 dev->init_name = NULL; 3521 } 3522 3523 /* subsystems can specify simple device enumeration */ 3524 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3525 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3526 3527 if (!dev_name(dev)) { 3528 error = -EINVAL; 3529 goto name_error; 3530 } 3531 3532 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3533 3534 parent = get_device(dev->parent); 3535 kobj = get_device_parent(dev, parent); 3536 if (IS_ERR(kobj)) { 3537 error = PTR_ERR(kobj); 3538 goto parent_error; 3539 } 3540 if (kobj) 3541 dev->kobj.parent = kobj; 3542 3543 /* use parent numa_node */ 3544 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3545 set_dev_node(dev, dev_to_node(parent)); 3546 3547 /* first, register with generic layer. */ 3548 /* we require the name to be set before, and pass NULL */ 3549 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3550 if (error) { 3551 glue_dir = kobj; 3552 goto Error; 3553 } 3554 3555 /* notify platform of device entry */ 3556 device_platform_notify(dev); 3557 3558 error = device_create_file(dev, &dev_attr_uevent); 3559 if (error) 3560 goto attrError; 3561 3562 error = device_add_class_symlinks(dev); 3563 if (error) 3564 goto SymlinkError; 3565 error = device_add_attrs(dev); 3566 if (error) 3567 goto AttrsError; 3568 error = bus_add_device(dev); 3569 if (error) 3570 goto BusError; 3571 error = dpm_sysfs_add(dev); 3572 if (error) 3573 goto DPMError; 3574 device_pm_add(dev); 3575 3576 if (MAJOR(dev->devt)) { 3577 error = device_create_file(dev, &dev_attr_dev); 3578 if (error) 3579 goto DevAttrError; 3580 3581 error = device_create_sys_dev_entry(dev); 3582 if (error) 3583 goto SysEntryError; 3584 3585 devtmpfs_create_node(dev); 3586 } 3587 3588 /* Notify clients of device addition. This call must come 3589 * after dpm_sysfs_add() and before kobject_uevent(). 3590 */ 3591 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3592 kobject_uevent(&dev->kobj, KOBJ_ADD); 3593 3594 /* 3595 * Check if any of the other devices (consumers) have been waiting for 3596 * this device (supplier) to be added so that they can create a device 3597 * link to it. 3598 * 3599 * This needs to happen after device_pm_add() because device_link_add() 3600 * requires the supplier be registered before it's called. 3601 * 3602 * But this also needs to happen before bus_probe_device() to make sure 3603 * waiting consumers can link to it before the driver is bound to the 3604 * device and the driver sync_state callback is called for this device. 3605 */ 3606 if (dev->fwnode && !dev->fwnode->dev) { 3607 dev->fwnode->dev = dev; 3608 fw_devlink_link_device(dev); 3609 } 3610 3611 bus_probe_device(dev); 3612 3613 /* 3614 * If all driver registration is done and a newly added device doesn't 3615 * match with any driver, don't block its consumers from probing in 3616 * case the consumer device is able to operate without this supplier. 3617 */ 3618 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3619 fw_devlink_unblock_consumers(dev); 3620 3621 if (parent) 3622 klist_add_tail(&dev->p->knode_parent, 3623 &parent->p->klist_children); 3624 3625 if (dev->class) { 3626 mutex_lock(&dev->class->p->mutex); 3627 /* tie the class to the device */ 3628 klist_add_tail(&dev->p->knode_class, 3629 &dev->class->p->klist_devices); 3630 3631 /* notify any interfaces that the device is here */ 3632 list_for_each_entry(class_intf, 3633 &dev->class->p->interfaces, node) 3634 if (class_intf->add_dev) 3635 class_intf->add_dev(dev, class_intf); 3636 mutex_unlock(&dev->class->p->mutex); 3637 } 3638 done: 3639 put_device(dev); 3640 return error; 3641 SysEntryError: 3642 if (MAJOR(dev->devt)) 3643 device_remove_file(dev, &dev_attr_dev); 3644 DevAttrError: 3645 device_pm_remove(dev); 3646 dpm_sysfs_remove(dev); 3647 DPMError: 3648 dev->driver = NULL; 3649 bus_remove_device(dev); 3650 BusError: 3651 device_remove_attrs(dev); 3652 AttrsError: 3653 device_remove_class_symlinks(dev); 3654 SymlinkError: 3655 device_remove_file(dev, &dev_attr_uevent); 3656 attrError: 3657 device_platform_notify_remove(dev); 3658 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3659 glue_dir = get_glue_dir(dev); 3660 kobject_del(&dev->kobj); 3661 Error: 3662 cleanup_glue_dir(dev, glue_dir); 3663 parent_error: 3664 put_device(parent); 3665 name_error: 3666 kfree(dev->p); 3667 dev->p = NULL; 3668 goto done; 3669 } 3670 EXPORT_SYMBOL_GPL(device_add); 3671 3672 /** 3673 * device_register - register a device with the system. 3674 * @dev: pointer to the device structure 3675 * 3676 * This happens in two clean steps - initialize the device 3677 * and add it to the system. The two steps can be called 3678 * separately, but this is the easiest and most common. 3679 * I.e. you should only call the two helpers separately if 3680 * have a clearly defined need to use and refcount the device 3681 * before it is added to the hierarchy. 3682 * 3683 * For more information, see the kerneldoc for device_initialize() 3684 * and device_add(). 3685 * 3686 * NOTE: _Never_ directly free @dev after calling this function, even 3687 * if it returned an error! Always use put_device() to give up the 3688 * reference initialized in this function instead. 3689 */ 3690 int device_register(struct device *dev) 3691 { 3692 device_initialize(dev); 3693 return device_add(dev); 3694 } 3695 EXPORT_SYMBOL_GPL(device_register); 3696 3697 /** 3698 * get_device - increment reference count for device. 3699 * @dev: device. 3700 * 3701 * This simply forwards the call to kobject_get(), though 3702 * we do take care to provide for the case that we get a NULL 3703 * pointer passed in. 3704 */ 3705 struct device *get_device(struct device *dev) 3706 { 3707 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3708 } 3709 EXPORT_SYMBOL_GPL(get_device); 3710 3711 /** 3712 * put_device - decrement reference count. 3713 * @dev: device in question. 3714 */ 3715 void put_device(struct device *dev) 3716 { 3717 /* might_sleep(); */ 3718 if (dev) 3719 kobject_put(&dev->kobj); 3720 } 3721 EXPORT_SYMBOL_GPL(put_device); 3722 3723 bool kill_device(struct device *dev) 3724 { 3725 /* 3726 * Require the device lock and set the "dead" flag to guarantee that 3727 * the update behavior is consistent with the other bitfields near 3728 * it and that we cannot have an asynchronous probe routine trying 3729 * to run while we are tearing out the bus/class/sysfs from 3730 * underneath the device. 3731 */ 3732 device_lock_assert(dev); 3733 3734 if (dev->p->dead) 3735 return false; 3736 dev->p->dead = true; 3737 return true; 3738 } 3739 EXPORT_SYMBOL_GPL(kill_device); 3740 3741 /** 3742 * device_del - delete device from system. 3743 * @dev: device. 3744 * 3745 * This is the first part of the device unregistration 3746 * sequence. This removes the device from the lists we control 3747 * from here, has it removed from the other driver model 3748 * subsystems it was added to in device_add(), and removes it 3749 * from the kobject hierarchy. 3750 * 3751 * NOTE: this should be called manually _iff_ device_add() was 3752 * also called manually. 3753 */ 3754 void device_del(struct device *dev) 3755 { 3756 struct device *parent = dev->parent; 3757 struct kobject *glue_dir = NULL; 3758 struct class_interface *class_intf; 3759 unsigned int noio_flag; 3760 3761 device_lock(dev); 3762 kill_device(dev); 3763 device_unlock(dev); 3764 3765 if (dev->fwnode && dev->fwnode->dev == dev) 3766 dev->fwnode->dev = NULL; 3767 3768 /* Notify clients of device removal. This call must come 3769 * before dpm_sysfs_remove(). 3770 */ 3771 noio_flag = memalloc_noio_save(); 3772 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3773 3774 dpm_sysfs_remove(dev); 3775 if (parent) 3776 klist_del(&dev->p->knode_parent); 3777 if (MAJOR(dev->devt)) { 3778 devtmpfs_delete_node(dev); 3779 device_remove_sys_dev_entry(dev); 3780 device_remove_file(dev, &dev_attr_dev); 3781 } 3782 if (dev->class) { 3783 device_remove_class_symlinks(dev); 3784 3785 mutex_lock(&dev->class->p->mutex); 3786 /* notify any interfaces that the device is now gone */ 3787 list_for_each_entry(class_intf, 3788 &dev->class->p->interfaces, node) 3789 if (class_intf->remove_dev) 3790 class_intf->remove_dev(dev, class_intf); 3791 /* remove the device from the class list */ 3792 klist_del(&dev->p->knode_class); 3793 mutex_unlock(&dev->class->p->mutex); 3794 } 3795 device_remove_file(dev, &dev_attr_uevent); 3796 device_remove_attrs(dev); 3797 bus_remove_device(dev); 3798 device_pm_remove(dev); 3799 driver_deferred_probe_del(dev); 3800 device_platform_notify_remove(dev); 3801 device_links_purge(dev); 3802 3803 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3804 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3805 glue_dir = get_glue_dir(dev); 3806 kobject_del(&dev->kobj); 3807 cleanup_glue_dir(dev, glue_dir); 3808 memalloc_noio_restore(noio_flag); 3809 put_device(parent); 3810 } 3811 EXPORT_SYMBOL_GPL(device_del); 3812 3813 /** 3814 * device_unregister - unregister device from system. 3815 * @dev: device going away. 3816 * 3817 * We do this in two parts, like we do device_register(). First, 3818 * we remove it from all the subsystems with device_del(), then 3819 * we decrement the reference count via put_device(). If that 3820 * is the final reference count, the device will be cleaned up 3821 * via device_release() above. Otherwise, the structure will 3822 * stick around until the final reference to the device is dropped. 3823 */ 3824 void device_unregister(struct device *dev) 3825 { 3826 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3827 device_del(dev); 3828 put_device(dev); 3829 } 3830 EXPORT_SYMBOL_GPL(device_unregister); 3831 3832 static struct device *prev_device(struct klist_iter *i) 3833 { 3834 struct klist_node *n = klist_prev(i); 3835 struct device *dev = NULL; 3836 struct device_private *p; 3837 3838 if (n) { 3839 p = to_device_private_parent(n); 3840 dev = p->device; 3841 } 3842 return dev; 3843 } 3844 3845 static struct device *next_device(struct klist_iter *i) 3846 { 3847 struct klist_node *n = klist_next(i); 3848 struct device *dev = NULL; 3849 struct device_private *p; 3850 3851 if (n) { 3852 p = to_device_private_parent(n); 3853 dev = p->device; 3854 } 3855 return dev; 3856 } 3857 3858 /** 3859 * device_get_devnode - path of device node file 3860 * @dev: device 3861 * @mode: returned file access mode 3862 * @uid: returned file owner 3863 * @gid: returned file group 3864 * @tmp: possibly allocated string 3865 * 3866 * Return the relative path of a possible device node. 3867 * Non-default names may need to allocate a memory to compose 3868 * a name. This memory is returned in tmp and needs to be 3869 * freed by the caller. 3870 */ 3871 const char *device_get_devnode(const struct device *dev, 3872 umode_t *mode, kuid_t *uid, kgid_t *gid, 3873 const char **tmp) 3874 { 3875 char *s; 3876 3877 *tmp = NULL; 3878 3879 /* the device type may provide a specific name */ 3880 if (dev->type && dev->type->devnode) 3881 *tmp = dev->type->devnode(dev, mode, uid, gid); 3882 if (*tmp) 3883 return *tmp; 3884 3885 /* the class may provide a specific name */ 3886 if (dev->class && dev->class->devnode) 3887 *tmp = dev->class->devnode(dev, mode); 3888 if (*tmp) 3889 return *tmp; 3890 3891 /* return name without allocation, tmp == NULL */ 3892 if (strchr(dev_name(dev), '!') == NULL) 3893 return dev_name(dev); 3894 3895 /* replace '!' in the name with '/' */ 3896 s = kstrdup(dev_name(dev), GFP_KERNEL); 3897 if (!s) 3898 return NULL; 3899 strreplace(s, '!', '/'); 3900 return *tmp = s; 3901 } 3902 3903 /** 3904 * device_for_each_child - device child iterator. 3905 * @parent: parent struct device. 3906 * @fn: function to be called for each device. 3907 * @data: data for the callback. 3908 * 3909 * Iterate over @parent's child devices, and call @fn for each, 3910 * passing it @data. 3911 * 3912 * We check the return of @fn each time. If it returns anything 3913 * other than 0, we break out and return that value. 3914 */ 3915 int device_for_each_child(struct device *parent, void *data, 3916 int (*fn)(struct device *dev, void *data)) 3917 { 3918 struct klist_iter i; 3919 struct device *child; 3920 int error = 0; 3921 3922 if (!parent->p) 3923 return 0; 3924 3925 klist_iter_init(&parent->p->klist_children, &i); 3926 while (!error && (child = next_device(&i))) 3927 error = fn(child, data); 3928 klist_iter_exit(&i); 3929 return error; 3930 } 3931 EXPORT_SYMBOL_GPL(device_for_each_child); 3932 3933 /** 3934 * device_for_each_child_reverse - device child iterator in reversed order. 3935 * @parent: parent struct device. 3936 * @fn: function to be called for each device. 3937 * @data: data for the callback. 3938 * 3939 * Iterate over @parent's child devices, and call @fn for each, 3940 * passing it @data. 3941 * 3942 * We check the return of @fn each time. If it returns anything 3943 * other than 0, we break out and return that value. 3944 */ 3945 int device_for_each_child_reverse(struct device *parent, void *data, 3946 int (*fn)(struct device *dev, void *data)) 3947 { 3948 struct klist_iter i; 3949 struct device *child; 3950 int error = 0; 3951 3952 if (!parent->p) 3953 return 0; 3954 3955 klist_iter_init(&parent->p->klist_children, &i); 3956 while ((child = prev_device(&i)) && !error) 3957 error = fn(child, data); 3958 klist_iter_exit(&i); 3959 return error; 3960 } 3961 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3962 3963 /** 3964 * device_find_child - device iterator for locating a particular device. 3965 * @parent: parent struct device 3966 * @match: Callback function to check device 3967 * @data: Data to pass to match function 3968 * 3969 * This is similar to the device_for_each_child() function above, but it 3970 * returns a reference to a device that is 'found' for later use, as 3971 * determined by the @match callback. 3972 * 3973 * The callback should return 0 if the device doesn't match and non-zero 3974 * if it does. If the callback returns non-zero and a reference to the 3975 * current device can be obtained, this function will return to the caller 3976 * and not iterate over any more devices. 3977 * 3978 * NOTE: you will need to drop the reference with put_device() after use. 3979 */ 3980 struct device *device_find_child(struct device *parent, void *data, 3981 int (*match)(struct device *dev, void *data)) 3982 { 3983 struct klist_iter i; 3984 struct device *child; 3985 3986 if (!parent) 3987 return NULL; 3988 3989 klist_iter_init(&parent->p->klist_children, &i); 3990 while ((child = next_device(&i))) 3991 if (match(child, data) && get_device(child)) 3992 break; 3993 klist_iter_exit(&i); 3994 return child; 3995 } 3996 EXPORT_SYMBOL_GPL(device_find_child); 3997 3998 /** 3999 * device_find_child_by_name - device iterator for locating a child device. 4000 * @parent: parent struct device 4001 * @name: name of the child device 4002 * 4003 * This is similar to the device_find_child() function above, but it 4004 * returns a reference to a device that has the name @name. 4005 * 4006 * NOTE: you will need to drop the reference with put_device() after use. 4007 */ 4008 struct device *device_find_child_by_name(struct device *parent, 4009 const char *name) 4010 { 4011 struct klist_iter i; 4012 struct device *child; 4013 4014 if (!parent) 4015 return NULL; 4016 4017 klist_iter_init(&parent->p->klist_children, &i); 4018 while ((child = next_device(&i))) 4019 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4020 break; 4021 klist_iter_exit(&i); 4022 return child; 4023 } 4024 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4025 4026 static int match_any(struct device *dev, void *unused) 4027 { 4028 return 1; 4029 } 4030 4031 /** 4032 * device_find_any_child - device iterator for locating a child device, if any. 4033 * @parent: parent struct device 4034 * 4035 * This is similar to the device_find_child() function above, but it 4036 * returns a reference to a child device, if any. 4037 * 4038 * NOTE: you will need to drop the reference with put_device() after use. 4039 */ 4040 struct device *device_find_any_child(struct device *parent) 4041 { 4042 return device_find_child(parent, NULL, match_any); 4043 } 4044 EXPORT_SYMBOL_GPL(device_find_any_child); 4045 4046 int __init devices_init(void) 4047 { 4048 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4049 if (!devices_kset) 4050 return -ENOMEM; 4051 dev_kobj = kobject_create_and_add("dev", NULL); 4052 if (!dev_kobj) 4053 goto dev_kobj_err; 4054 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4055 if (!sysfs_dev_block_kobj) 4056 goto block_kobj_err; 4057 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4058 if (!sysfs_dev_char_kobj) 4059 goto char_kobj_err; 4060 4061 return 0; 4062 4063 char_kobj_err: 4064 kobject_put(sysfs_dev_block_kobj); 4065 block_kobj_err: 4066 kobject_put(dev_kobj); 4067 dev_kobj_err: 4068 kset_unregister(devices_kset); 4069 return -ENOMEM; 4070 } 4071 4072 static int device_check_offline(struct device *dev, void *not_used) 4073 { 4074 int ret; 4075 4076 ret = device_for_each_child(dev, NULL, device_check_offline); 4077 if (ret) 4078 return ret; 4079 4080 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4081 } 4082 4083 /** 4084 * device_offline - Prepare the device for hot-removal. 4085 * @dev: Device to be put offline. 4086 * 4087 * Execute the device bus type's .offline() callback, if present, to prepare 4088 * the device for a subsequent hot-removal. If that succeeds, the device must 4089 * not be used until either it is removed or its bus type's .online() callback 4090 * is executed. 4091 * 4092 * Call under device_hotplug_lock. 4093 */ 4094 int device_offline(struct device *dev) 4095 { 4096 int ret; 4097 4098 if (dev->offline_disabled) 4099 return -EPERM; 4100 4101 ret = device_for_each_child(dev, NULL, device_check_offline); 4102 if (ret) 4103 return ret; 4104 4105 device_lock(dev); 4106 if (device_supports_offline(dev)) { 4107 if (dev->offline) { 4108 ret = 1; 4109 } else { 4110 ret = dev->bus->offline(dev); 4111 if (!ret) { 4112 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4113 dev->offline = true; 4114 } 4115 } 4116 } 4117 device_unlock(dev); 4118 4119 return ret; 4120 } 4121 4122 /** 4123 * device_online - Put the device back online after successful device_offline(). 4124 * @dev: Device to be put back online. 4125 * 4126 * If device_offline() has been successfully executed for @dev, but the device 4127 * has not been removed subsequently, execute its bus type's .online() callback 4128 * to indicate that the device can be used again. 4129 * 4130 * Call under device_hotplug_lock. 4131 */ 4132 int device_online(struct device *dev) 4133 { 4134 int ret = 0; 4135 4136 device_lock(dev); 4137 if (device_supports_offline(dev)) { 4138 if (dev->offline) { 4139 ret = dev->bus->online(dev); 4140 if (!ret) { 4141 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4142 dev->offline = false; 4143 } 4144 } else { 4145 ret = 1; 4146 } 4147 } 4148 device_unlock(dev); 4149 4150 return ret; 4151 } 4152 4153 struct root_device { 4154 struct device dev; 4155 struct module *owner; 4156 }; 4157 4158 static inline struct root_device *to_root_device(struct device *d) 4159 { 4160 return container_of(d, struct root_device, dev); 4161 } 4162 4163 static void root_device_release(struct device *dev) 4164 { 4165 kfree(to_root_device(dev)); 4166 } 4167 4168 /** 4169 * __root_device_register - allocate and register a root device 4170 * @name: root device name 4171 * @owner: owner module of the root device, usually THIS_MODULE 4172 * 4173 * This function allocates a root device and registers it 4174 * using device_register(). In order to free the returned 4175 * device, use root_device_unregister(). 4176 * 4177 * Root devices are dummy devices which allow other devices 4178 * to be grouped under /sys/devices. Use this function to 4179 * allocate a root device and then use it as the parent of 4180 * any device which should appear under /sys/devices/{name} 4181 * 4182 * The /sys/devices/{name} directory will also contain a 4183 * 'module' symlink which points to the @owner directory 4184 * in sysfs. 4185 * 4186 * Returns &struct device pointer on success, or ERR_PTR() on error. 4187 * 4188 * Note: You probably want to use root_device_register(). 4189 */ 4190 struct device *__root_device_register(const char *name, struct module *owner) 4191 { 4192 struct root_device *root; 4193 int err = -ENOMEM; 4194 4195 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4196 if (!root) 4197 return ERR_PTR(err); 4198 4199 err = dev_set_name(&root->dev, "%s", name); 4200 if (err) { 4201 kfree(root); 4202 return ERR_PTR(err); 4203 } 4204 4205 root->dev.release = root_device_release; 4206 4207 err = device_register(&root->dev); 4208 if (err) { 4209 put_device(&root->dev); 4210 return ERR_PTR(err); 4211 } 4212 4213 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4214 if (owner) { 4215 struct module_kobject *mk = &owner->mkobj; 4216 4217 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4218 if (err) { 4219 device_unregister(&root->dev); 4220 return ERR_PTR(err); 4221 } 4222 root->owner = owner; 4223 } 4224 #endif 4225 4226 return &root->dev; 4227 } 4228 EXPORT_SYMBOL_GPL(__root_device_register); 4229 4230 /** 4231 * root_device_unregister - unregister and free a root device 4232 * @dev: device going away 4233 * 4234 * This function unregisters and cleans up a device that was created by 4235 * root_device_register(). 4236 */ 4237 void root_device_unregister(struct device *dev) 4238 { 4239 struct root_device *root = to_root_device(dev); 4240 4241 if (root->owner) 4242 sysfs_remove_link(&root->dev.kobj, "module"); 4243 4244 device_unregister(dev); 4245 } 4246 EXPORT_SYMBOL_GPL(root_device_unregister); 4247 4248 4249 static void device_create_release(struct device *dev) 4250 { 4251 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4252 kfree(dev); 4253 } 4254 4255 static __printf(6, 0) struct device * 4256 device_create_groups_vargs(const struct class *class, struct device *parent, 4257 dev_t devt, void *drvdata, 4258 const struct attribute_group **groups, 4259 const char *fmt, va_list args) 4260 { 4261 struct device *dev = NULL; 4262 int retval = -ENODEV; 4263 4264 if (IS_ERR_OR_NULL(class)) 4265 goto error; 4266 4267 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4268 if (!dev) { 4269 retval = -ENOMEM; 4270 goto error; 4271 } 4272 4273 device_initialize(dev); 4274 dev->devt = devt; 4275 dev->class = class; 4276 dev->parent = parent; 4277 dev->groups = groups; 4278 dev->release = device_create_release; 4279 dev_set_drvdata(dev, drvdata); 4280 4281 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4282 if (retval) 4283 goto error; 4284 4285 retval = device_add(dev); 4286 if (retval) 4287 goto error; 4288 4289 return dev; 4290 4291 error: 4292 put_device(dev); 4293 return ERR_PTR(retval); 4294 } 4295 4296 /** 4297 * device_create - creates a device and registers it with sysfs 4298 * @class: pointer to the struct class that this device should be registered to 4299 * @parent: pointer to the parent struct device of this new device, if any 4300 * @devt: the dev_t for the char device to be added 4301 * @drvdata: the data to be added to the device for callbacks 4302 * @fmt: string for the device's name 4303 * 4304 * This function can be used by char device classes. A struct device 4305 * will be created in sysfs, registered to the specified class. 4306 * 4307 * A "dev" file will be created, showing the dev_t for the device, if 4308 * the dev_t is not 0,0. 4309 * If a pointer to a parent struct device is passed in, the newly created 4310 * struct device will be a child of that device in sysfs. 4311 * The pointer to the struct device will be returned from the call. 4312 * Any further sysfs files that might be required can be created using this 4313 * pointer. 4314 * 4315 * Returns &struct device pointer on success, or ERR_PTR() on error. 4316 * 4317 * Note: the struct class passed to this function must have previously 4318 * been created with a call to class_create(). 4319 */ 4320 struct device *device_create(const struct class *class, struct device *parent, 4321 dev_t devt, void *drvdata, const char *fmt, ...) 4322 { 4323 va_list vargs; 4324 struct device *dev; 4325 4326 va_start(vargs, fmt); 4327 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4328 fmt, vargs); 4329 va_end(vargs); 4330 return dev; 4331 } 4332 EXPORT_SYMBOL_GPL(device_create); 4333 4334 /** 4335 * device_create_with_groups - creates a device and registers it with sysfs 4336 * @class: pointer to the struct class that this device should be registered to 4337 * @parent: pointer to the parent struct device of this new device, if any 4338 * @devt: the dev_t for the char device to be added 4339 * @drvdata: the data to be added to the device for callbacks 4340 * @groups: NULL-terminated list of attribute groups to be created 4341 * @fmt: string for the device's name 4342 * 4343 * This function can be used by char device classes. A struct device 4344 * will be created in sysfs, registered to the specified class. 4345 * Additional attributes specified in the groups parameter will also 4346 * be created automatically. 4347 * 4348 * A "dev" file will be created, showing the dev_t for the device, if 4349 * the dev_t is not 0,0. 4350 * If a pointer to a parent struct device is passed in, the newly created 4351 * struct device will be a child of that device in sysfs. 4352 * The pointer to the struct device will be returned from the call. 4353 * Any further sysfs files that might be required can be created using this 4354 * pointer. 4355 * 4356 * Returns &struct device pointer on success, or ERR_PTR() on error. 4357 * 4358 * Note: the struct class passed to this function must have previously 4359 * been created with a call to class_create(). 4360 */ 4361 struct device *device_create_with_groups(const struct class *class, 4362 struct device *parent, dev_t devt, 4363 void *drvdata, 4364 const struct attribute_group **groups, 4365 const char *fmt, ...) 4366 { 4367 va_list vargs; 4368 struct device *dev; 4369 4370 va_start(vargs, fmt); 4371 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4372 fmt, vargs); 4373 va_end(vargs); 4374 return dev; 4375 } 4376 EXPORT_SYMBOL_GPL(device_create_with_groups); 4377 4378 /** 4379 * device_destroy - removes a device that was created with device_create() 4380 * @class: pointer to the struct class that this device was registered with 4381 * @devt: the dev_t of the device that was previously registered 4382 * 4383 * This call unregisters and cleans up a device that was created with a 4384 * call to device_create(). 4385 */ 4386 void device_destroy(const struct class *class, dev_t devt) 4387 { 4388 struct device *dev; 4389 4390 dev = class_find_device_by_devt(class, devt); 4391 if (dev) { 4392 put_device(dev); 4393 device_unregister(dev); 4394 } 4395 } 4396 EXPORT_SYMBOL_GPL(device_destroy); 4397 4398 /** 4399 * device_rename - renames a device 4400 * @dev: the pointer to the struct device to be renamed 4401 * @new_name: the new name of the device 4402 * 4403 * It is the responsibility of the caller to provide mutual 4404 * exclusion between two different calls of device_rename 4405 * on the same device to ensure that new_name is valid and 4406 * won't conflict with other devices. 4407 * 4408 * Note: Don't call this function. Currently, the networking layer calls this 4409 * function, but that will change. The following text from Kay Sievers offers 4410 * some insight: 4411 * 4412 * Renaming devices is racy at many levels, symlinks and other stuff are not 4413 * replaced atomically, and you get a "move" uevent, but it's not easy to 4414 * connect the event to the old and new device. Device nodes are not renamed at 4415 * all, there isn't even support for that in the kernel now. 4416 * 4417 * In the meantime, during renaming, your target name might be taken by another 4418 * driver, creating conflicts. Or the old name is taken directly after you 4419 * renamed it -- then you get events for the same DEVPATH, before you even see 4420 * the "move" event. It's just a mess, and nothing new should ever rely on 4421 * kernel device renaming. Besides that, it's not even implemented now for 4422 * other things than (driver-core wise very simple) network devices. 4423 * 4424 * We are currently about to change network renaming in udev to completely 4425 * disallow renaming of devices in the same namespace as the kernel uses, 4426 * because we can't solve the problems properly, that arise with swapping names 4427 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4428 * be allowed to some other name than eth[0-9]*, for the aforementioned 4429 * reasons. 4430 * 4431 * Make up a "real" name in the driver before you register anything, or add 4432 * some other attributes for userspace to find the device, or use udev to add 4433 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4434 * don't even want to get into that and try to implement the missing pieces in 4435 * the core. We really have other pieces to fix in the driver core mess. :) 4436 */ 4437 int device_rename(struct device *dev, const char *new_name) 4438 { 4439 struct kobject *kobj = &dev->kobj; 4440 char *old_device_name = NULL; 4441 int error; 4442 4443 dev = get_device(dev); 4444 if (!dev) 4445 return -EINVAL; 4446 4447 dev_dbg(dev, "renaming to %s\n", new_name); 4448 4449 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4450 if (!old_device_name) { 4451 error = -ENOMEM; 4452 goto out; 4453 } 4454 4455 if (dev->class) { 4456 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4457 kobj, old_device_name, 4458 new_name, kobject_namespace(kobj)); 4459 if (error) 4460 goto out; 4461 } 4462 4463 error = kobject_rename(kobj, new_name); 4464 if (error) 4465 goto out; 4466 4467 out: 4468 put_device(dev); 4469 4470 kfree(old_device_name); 4471 4472 return error; 4473 } 4474 EXPORT_SYMBOL_GPL(device_rename); 4475 4476 static int device_move_class_links(struct device *dev, 4477 struct device *old_parent, 4478 struct device *new_parent) 4479 { 4480 int error = 0; 4481 4482 if (old_parent) 4483 sysfs_remove_link(&dev->kobj, "device"); 4484 if (new_parent) 4485 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4486 "device"); 4487 return error; 4488 } 4489 4490 /** 4491 * device_move - moves a device to a new parent 4492 * @dev: the pointer to the struct device to be moved 4493 * @new_parent: the new parent of the device (can be NULL) 4494 * @dpm_order: how to reorder the dpm_list 4495 */ 4496 int device_move(struct device *dev, struct device *new_parent, 4497 enum dpm_order dpm_order) 4498 { 4499 int error; 4500 struct device *old_parent; 4501 struct kobject *new_parent_kobj; 4502 4503 dev = get_device(dev); 4504 if (!dev) 4505 return -EINVAL; 4506 4507 device_pm_lock(); 4508 new_parent = get_device(new_parent); 4509 new_parent_kobj = get_device_parent(dev, new_parent); 4510 if (IS_ERR(new_parent_kobj)) { 4511 error = PTR_ERR(new_parent_kobj); 4512 put_device(new_parent); 4513 goto out; 4514 } 4515 4516 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4517 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4518 error = kobject_move(&dev->kobj, new_parent_kobj); 4519 if (error) { 4520 cleanup_glue_dir(dev, new_parent_kobj); 4521 put_device(new_parent); 4522 goto out; 4523 } 4524 old_parent = dev->parent; 4525 dev->parent = new_parent; 4526 if (old_parent) 4527 klist_remove(&dev->p->knode_parent); 4528 if (new_parent) { 4529 klist_add_tail(&dev->p->knode_parent, 4530 &new_parent->p->klist_children); 4531 set_dev_node(dev, dev_to_node(new_parent)); 4532 } 4533 4534 if (dev->class) { 4535 error = device_move_class_links(dev, old_parent, new_parent); 4536 if (error) { 4537 /* We ignore errors on cleanup since we're hosed anyway... */ 4538 device_move_class_links(dev, new_parent, old_parent); 4539 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4540 if (new_parent) 4541 klist_remove(&dev->p->knode_parent); 4542 dev->parent = old_parent; 4543 if (old_parent) { 4544 klist_add_tail(&dev->p->knode_parent, 4545 &old_parent->p->klist_children); 4546 set_dev_node(dev, dev_to_node(old_parent)); 4547 } 4548 } 4549 cleanup_glue_dir(dev, new_parent_kobj); 4550 put_device(new_parent); 4551 goto out; 4552 } 4553 } 4554 switch (dpm_order) { 4555 case DPM_ORDER_NONE: 4556 break; 4557 case DPM_ORDER_DEV_AFTER_PARENT: 4558 device_pm_move_after(dev, new_parent); 4559 devices_kset_move_after(dev, new_parent); 4560 break; 4561 case DPM_ORDER_PARENT_BEFORE_DEV: 4562 device_pm_move_before(new_parent, dev); 4563 devices_kset_move_before(new_parent, dev); 4564 break; 4565 case DPM_ORDER_DEV_LAST: 4566 device_pm_move_last(dev); 4567 devices_kset_move_last(dev); 4568 break; 4569 } 4570 4571 put_device(old_parent); 4572 out: 4573 device_pm_unlock(); 4574 put_device(dev); 4575 return error; 4576 } 4577 EXPORT_SYMBOL_GPL(device_move); 4578 4579 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4580 kgid_t kgid) 4581 { 4582 struct kobject *kobj = &dev->kobj; 4583 const struct class *class = dev->class; 4584 const struct device_type *type = dev->type; 4585 int error; 4586 4587 if (class) { 4588 /* 4589 * Change the device groups of the device class for @dev to 4590 * @kuid/@kgid. 4591 */ 4592 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4593 kgid); 4594 if (error) 4595 return error; 4596 } 4597 4598 if (type) { 4599 /* 4600 * Change the device groups of the device type for @dev to 4601 * @kuid/@kgid. 4602 */ 4603 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4604 kgid); 4605 if (error) 4606 return error; 4607 } 4608 4609 /* Change the device groups of @dev to @kuid/@kgid. */ 4610 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4611 if (error) 4612 return error; 4613 4614 if (device_supports_offline(dev) && !dev->offline_disabled) { 4615 /* Change online device attributes of @dev to @kuid/@kgid. */ 4616 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4617 kuid, kgid); 4618 if (error) 4619 return error; 4620 } 4621 4622 return 0; 4623 } 4624 4625 /** 4626 * device_change_owner - change the owner of an existing device. 4627 * @dev: device. 4628 * @kuid: new owner's kuid 4629 * @kgid: new owner's kgid 4630 * 4631 * This changes the owner of @dev and its corresponding sysfs entries to 4632 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4633 * core. 4634 * 4635 * Returns 0 on success or error code on failure. 4636 */ 4637 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4638 { 4639 int error; 4640 struct kobject *kobj = &dev->kobj; 4641 4642 dev = get_device(dev); 4643 if (!dev) 4644 return -EINVAL; 4645 4646 /* 4647 * Change the kobject and the default attributes and groups of the 4648 * ktype associated with it to @kuid/@kgid. 4649 */ 4650 error = sysfs_change_owner(kobj, kuid, kgid); 4651 if (error) 4652 goto out; 4653 4654 /* 4655 * Change the uevent file for @dev to the new owner. The uevent file 4656 * was created in a separate step when @dev got added and we mirror 4657 * that step here. 4658 */ 4659 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4660 kgid); 4661 if (error) 4662 goto out; 4663 4664 /* 4665 * Change the device groups, the device groups associated with the 4666 * device class, and the groups associated with the device type of @dev 4667 * to @kuid/@kgid. 4668 */ 4669 error = device_attrs_change_owner(dev, kuid, kgid); 4670 if (error) 4671 goto out; 4672 4673 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4674 if (error) 4675 goto out; 4676 4677 /* 4678 * Change the owner of the symlink located in the class directory of 4679 * the device class associated with @dev which points to the actual 4680 * directory entry for @dev to @kuid/@kgid. This ensures that the 4681 * symlink shows the same permissions as its target. 4682 */ 4683 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4684 dev_name(dev), kuid, kgid); 4685 if (error) 4686 goto out; 4687 4688 out: 4689 put_device(dev); 4690 return error; 4691 } 4692 EXPORT_SYMBOL_GPL(device_change_owner); 4693 4694 /** 4695 * device_shutdown - call ->shutdown() on each device to shutdown. 4696 */ 4697 void device_shutdown(void) 4698 { 4699 struct device *dev, *parent; 4700 4701 wait_for_device_probe(); 4702 device_block_probing(); 4703 4704 cpufreq_suspend(); 4705 4706 spin_lock(&devices_kset->list_lock); 4707 /* 4708 * Walk the devices list backward, shutting down each in turn. 4709 * Beware that device unplug events may also start pulling 4710 * devices offline, even as the system is shutting down. 4711 */ 4712 while (!list_empty(&devices_kset->list)) { 4713 dev = list_entry(devices_kset->list.prev, struct device, 4714 kobj.entry); 4715 4716 /* 4717 * hold reference count of device's parent to 4718 * prevent it from being freed because parent's 4719 * lock is to be held 4720 */ 4721 parent = get_device(dev->parent); 4722 get_device(dev); 4723 /* 4724 * Make sure the device is off the kset list, in the 4725 * event that dev->*->shutdown() doesn't remove it. 4726 */ 4727 list_del_init(&dev->kobj.entry); 4728 spin_unlock(&devices_kset->list_lock); 4729 4730 /* hold lock to avoid race with probe/release */ 4731 if (parent) 4732 device_lock(parent); 4733 device_lock(dev); 4734 4735 /* Don't allow any more runtime suspends */ 4736 pm_runtime_get_noresume(dev); 4737 pm_runtime_barrier(dev); 4738 4739 if (dev->class && dev->class->shutdown_pre) { 4740 if (initcall_debug) 4741 dev_info(dev, "shutdown_pre\n"); 4742 dev->class->shutdown_pre(dev); 4743 } 4744 if (dev->bus && dev->bus->shutdown) { 4745 if (initcall_debug) 4746 dev_info(dev, "shutdown\n"); 4747 dev->bus->shutdown(dev); 4748 } else if (dev->driver && dev->driver->shutdown) { 4749 if (initcall_debug) 4750 dev_info(dev, "shutdown\n"); 4751 dev->driver->shutdown(dev); 4752 } 4753 4754 device_unlock(dev); 4755 if (parent) 4756 device_unlock(parent); 4757 4758 put_device(dev); 4759 put_device(parent); 4760 4761 spin_lock(&devices_kset->list_lock); 4762 } 4763 spin_unlock(&devices_kset->list_lock); 4764 } 4765 4766 /* 4767 * Device logging functions 4768 */ 4769 4770 #ifdef CONFIG_PRINTK 4771 static void 4772 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4773 { 4774 const char *subsys; 4775 4776 memset(dev_info, 0, sizeof(*dev_info)); 4777 4778 if (dev->class) 4779 subsys = dev->class->name; 4780 else if (dev->bus) 4781 subsys = dev->bus->name; 4782 else 4783 return; 4784 4785 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4786 4787 /* 4788 * Add device identifier DEVICE=: 4789 * b12:8 block dev_t 4790 * c127:3 char dev_t 4791 * n8 netdev ifindex 4792 * +sound:card0 subsystem:devname 4793 */ 4794 if (MAJOR(dev->devt)) { 4795 char c; 4796 4797 if (strcmp(subsys, "block") == 0) 4798 c = 'b'; 4799 else 4800 c = 'c'; 4801 4802 snprintf(dev_info->device, sizeof(dev_info->device), 4803 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4804 } else if (strcmp(subsys, "net") == 0) { 4805 struct net_device *net = to_net_dev(dev); 4806 4807 snprintf(dev_info->device, sizeof(dev_info->device), 4808 "n%u", net->ifindex); 4809 } else { 4810 snprintf(dev_info->device, sizeof(dev_info->device), 4811 "+%s:%s", subsys, dev_name(dev)); 4812 } 4813 } 4814 4815 int dev_vprintk_emit(int level, const struct device *dev, 4816 const char *fmt, va_list args) 4817 { 4818 struct dev_printk_info dev_info; 4819 4820 set_dev_info(dev, &dev_info); 4821 4822 return vprintk_emit(0, level, &dev_info, fmt, args); 4823 } 4824 EXPORT_SYMBOL(dev_vprintk_emit); 4825 4826 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4827 { 4828 va_list args; 4829 int r; 4830 4831 va_start(args, fmt); 4832 4833 r = dev_vprintk_emit(level, dev, fmt, args); 4834 4835 va_end(args); 4836 4837 return r; 4838 } 4839 EXPORT_SYMBOL(dev_printk_emit); 4840 4841 static void __dev_printk(const char *level, const struct device *dev, 4842 struct va_format *vaf) 4843 { 4844 if (dev) 4845 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4846 dev_driver_string(dev), dev_name(dev), vaf); 4847 else 4848 printk("%s(NULL device *): %pV", level, vaf); 4849 } 4850 4851 void _dev_printk(const char *level, const struct device *dev, 4852 const char *fmt, ...) 4853 { 4854 struct va_format vaf; 4855 va_list args; 4856 4857 va_start(args, fmt); 4858 4859 vaf.fmt = fmt; 4860 vaf.va = &args; 4861 4862 __dev_printk(level, dev, &vaf); 4863 4864 va_end(args); 4865 } 4866 EXPORT_SYMBOL(_dev_printk); 4867 4868 #define define_dev_printk_level(func, kern_level) \ 4869 void func(const struct device *dev, const char *fmt, ...) \ 4870 { \ 4871 struct va_format vaf; \ 4872 va_list args; \ 4873 \ 4874 va_start(args, fmt); \ 4875 \ 4876 vaf.fmt = fmt; \ 4877 vaf.va = &args; \ 4878 \ 4879 __dev_printk(kern_level, dev, &vaf); \ 4880 \ 4881 va_end(args); \ 4882 } \ 4883 EXPORT_SYMBOL(func); 4884 4885 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4886 define_dev_printk_level(_dev_alert, KERN_ALERT); 4887 define_dev_printk_level(_dev_crit, KERN_CRIT); 4888 define_dev_printk_level(_dev_err, KERN_ERR); 4889 define_dev_printk_level(_dev_warn, KERN_WARNING); 4890 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4891 define_dev_printk_level(_dev_info, KERN_INFO); 4892 4893 #endif 4894 4895 /** 4896 * dev_err_probe - probe error check and log helper 4897 * @dev: the pointer to the struct device 4898 * @err: error value to test 4899 * @fmt: printf-style format string 4900 * @...: arguments as specified in the format string 4901 * 4902 * This helper implements common pattern present in probe functions for error 4903 * checking: print debug or error message depending if the error value is 4904 * -EPROBE_DEFER and propagate error upwards. 4905 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4906 * checked later by reading devices_deferred debugfs attribute. 4907 * It replaces code sequence:: 4908 * 4909 * if (err != -EPROBE_DEFER) 4910 * dev_err(dev, ...); 4911 * else 4912 * dev_dbg(dev, ...); 4913 * return err; 4914 * 4915 * with:: 4916 * 4917 * return dev_err_probe(dev, err, ...); 4918 * 4919 * Note that it is deemed acceptable to use this function for error 4920 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4921 * The benefit compared to a normal dev_err() is the standardized format 4922 * of the error code and the fact that the error code is returned. 4923 * 4924 * Returns @err. 4925 * 4926 */ 4927 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4928 { 4929 struct va_format vaf; 4930 va_list args; 4931 4932 va_start(args, fmt); 4933 vaf.fmt = fmt; 4934 vaf.va = &args; 4935 4936 if (err != -EPROBE_DEFER) { 4937 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4938 } else { 4939 device_set_deferred_probe_reason(dev, &vaf); 4940 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4941 } 4942 4943 va_end(args); 4944 4945 return err; 4946 } 4947 EXPORT_SYMBOL_GPL(dev_err_probe); 4948 4949 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4950 { 4951 return fwnode && !IS_ERR(fwnode->secondary); 4952 } 4953 4954 /** 4955 * set_primary_fwnode - Change the primary firmware node of a given device. 4956 * @dev: Device to handle. 4957 * @fwnode: New primary firmware node of the device. 4958 * 4959 * Set the device's firmware node pointer to @fwnode, but if a secondary 4960 * firmware node of the device is present, preserve it. 4961 * 4962 * Valid fwnode cases are: 4963 * - primary --> secondary --> -ENODEV 4964 * - primary --> NULL 4965 * - secondary --> -ENODEV 4966 * - NULL 4967 */ 4968 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4969 { 4970 struct device *parent = dev->parent; 4971 struct fwnode_handle *fn = dev->fwnode; 4972 4973 if (fwnode) { 4974 if (fwnode_is_primary(fn)) 4975 fn = fn->secondary; 4976 4977 if (fn) { 4978 WARN_ON(fwnode->secondary); 4979 fwnode->secondary = fn; 4980 } 4981 dev->fwnode = fwnode; 4982 } else { 4983 if (fwnode_is_primary(fn)) { 4984 dev->fwnode = fn->secondary; 4985 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4986 if (!(parent && fn == parent->fwnode)) 4987 fn->secondary = NULL; 4988 } else { 4989 dev->fwnode = NULL; 4990 } 4991 } 4992 } 4993 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4994 4995 /** 4996 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4997 * @dev: Device to handle. 4998 * @fwnode: New secondary firmware node of the device. 4999 * 5000 * If a primary firmware node of the device is present, set its secondary 5001 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5002 * @fwnode. 5003 */ 5004 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5005 { 5006 if (fwnode) 5007 fwnode->secondary = ERR_PTR(-ENODEV); 5008 5009 if (fwnode_is_primary(dev->fwnode)) 5010 dev->fwnode->secondary = fwnode; 5011 else 5012 dev->fwnode = fwnode; 5013 } 5014 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5015 5016 /** 5017 * device_set_of_node_from_dev - reuse device-tree node of another device 5018 * @dev: device whose device-tree node is being set 5019 * @dev2: device whose device-tree node is being reused 5020 * 5021 * Takes another reference to the new device-tree node after first dropping 5022 * any reference held to the old node. 5023 */ 5024 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5025 { 5026 of_node_put(dev->of_node); 5027 dev->of_node = of_node_get(dev2->of_node); 5028 dev->of_node_reused = true; 5029 } 5030 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5031 5032 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5033 { 5034 dev->fwnode = fwnode; 5035 dev->of_node = to_of_node(fwnode); 5036 } 5037 EXPORT_SYMBOL_GPL(device_set_node); 5038 5039 int device_match_name(struct device *dev, const void *name) 5040 { 5041 return sysfs_streq(dev_name(dev), name); 5042 } 5043 EXPORT_SYMBOL_GPL(device_match_name); 5044 5045 int device_match_of_node(struct device *dev, const void *np) 5046 { 5047 return dev->of_node == np; 5048 } 5049 EXPORT_SYMBOL_GPL(device_match_of_node); 5050 5051 int device_match_fwnode(struct device *dev, const void *fwnode) 5052 { 5053 return dev_fwnode(dev) == fwnode; 5054 } 5055 EXPORT_SYMBOL_GPL(device_match_fwnode); 5056 5057 int device_match_devt(struct device *dev, const void *pdevt) 5058 { 5059 return dev->devt == *(dev_t *)pdevt; 5060 } 5061 EXPORT_SYMBOL_GPL(device_match_devt); 5062 5063 int device_match_acpi_dev(struct device *dev, const void *adev) 5064 { 5065 return ACPI_COMPANION(dev) == adev; 5066 } 5067 EXPORT_SYMBOL(device_match_acpi_dev); 5068 5069 int device_match_acpi_handle(struct device *dev, const void *handle) 5070 { 5071 return ACPI_HANDLE(dev) == handle; 5072 } 5073 EXPORT_SYMBOL(device_match_acpi_handle); 5074 5075 int device_match_any(struct device *dev, const void *unused) 5076 { 5077 return 1; 5078 } 5079 EXPORT_SYMBOL_GPL(device_match_any); 5080