xref: /linux/drivers/base/core.c (revision f63a47b34b140ed1ca39d7e4bd4f1cdc617fc316)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * drivers/base/core.c - core driver model code (device registration, etc)
4   *
5   * Copyright (c) 2002-3 Patrick Mochel
6   * Copyright (c) 2002-3 Open Source Development Labs
7   * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8   * Copyright (c) 2006 Novell, Inc.
9   */
10  
11  #include <linux/acpi.h>
12  #include <linux/cpufreq.h>
13  #include <linux/device.h>
14  #include <linux/err.h>
15  #include <linux/fwnode.h>
16  #include <linux/init.h>
17  #include <linux/kstrtox.h>
18  #include <linux/module.h>
19  #include <linux/slab.h>
20  #include <linux/kdev_t.h>
21  #include <linux/notifier.h>
22  #include <linux/of.h>
23  #include <linux/of_device.h>
24  #include <linux/blkdev.h>
25  #include <linux/mutex.h>
26  #include <linux/pm_runtime.h>
27  #include <linux/netdevice.h>
28  #include <linux/sched/signal.h>
29  #include <linux/sched/mm.h>
30  #include <linux/string_helpers.h>
31  #include <linux/swiotlb.h>
32  #include <linux/sysfs.h>
33  #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34  
35  #include "base.h"
36  #include "physical_location.h"
37  #include "power/power.h"
38  
39  /* Device links support. */
40  static LIST_HEAD(deferred_sync);
41  static unsigned int defer_sync_state_count = 1;
42  static DEFINE_MUTEX(fwnode_link_lock);
43  static bool fw_devlink_is_permissive(void);
44  static void __fw_devlink_link_to_consumers(struct device *dev);
45  static bool fw_devlink_drv_reg_done;
46  static bool fw_devlink_best_effort;
47  static struct workqueue_struct *device_link_wq;
48  
49  /**
50   * __fwnode_link_add - Create a link between two fwnode_handles.
51   * @con: Consumer end of the link.
52   * @sup: Supplier end of the link.
53   * @flags: Link flags.
54   *
55   * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
56   * represents the detail that the firmware lists @sup fwnode as supplying a
57   * resource to @con.
58   *
59   * The driver core will use the fwnode link to create a device link between the
60   * two device objects corresponding to @con and @sup when they are created. The
61   * driver core will automatically delete the fwnode link between @con and @sup
62   * after doing that.
63   *
64   * Attempts to create duplicate links between the same pair of fwnode handles
65   * are ignored and there is no reference counting.
66   */
67  static int __fwnode_link_add(struct fwnode_handle *con,
68  			     struct fwnode_handle *sup, u8 flags)
69  {
70  	struct fwnode_link *link;
71  
72  	list_for_each_entry(link, &sup->consumers, s_hook)
73  		if (link->consumer == con) {
74  			link->flags |= flags;
75  			return 0;
76  		}
77  
78  	link = kzalloc(sizeof(*link), GFP_KERNEL);
79  	if (!link)
80  		return -ENOMEM;
81  
82  	link->supplier = sup;
83  	INIT_LIST_HEAD(&link->s_hook);
84  	link->consumer = con;
85  	INIT_LIST_HEAD(&link->c_hook);
86  	link->flags = flags;
87  
88  	list_add(&link->s_hook, &sup->consumers);
89  	list_add(&link->c_hook, &con->suppliers);
90  	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
91  		 con, sup);
92  
93  	return 0;
94  }
95  
96  int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
97  		    u8 flags)
98  {
99  	int ret;
100  
101  	mutex_lock(&fwnode_link_lock);
102  	ret = __fwnode_link_add(con, sup, flags);
103  	mutex_unlock(&fwnode_link_lock);
104  	return ret;
105  }
106  
107  /**
108   * __fwnode_link_del - Delete a link between two fwnode_handles.
109   * @link: the fwnode_link to be deleted
110   *
111   * The fwnode_link_lock needs to be held when this function is called.
112   */
113  static void __fwnode_link_del(struct fwnode_link *link)
114  {
115  	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
116  		 link->consumer, link->supplier);
117  	list_del(&link->s_hook);
118  	list_del(&link->c_hook);
119  	kfree(link);
120  }
121  
122  /**
123   * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
124   * @link: the fwnode_link to be marked
125   *
126   * The fwnode_link_lock needs to be held when this function is called.
127   */
128  static void __fwnode_link_cycle(struct fwnode_link *link)
129  {
130  	pr_debug("%pfwf: cycle: depends on %pfwf\n",
131  		 link->consumer, link->supplier);
132  	link->flags |= FWLINK_FLAG_CYCLE;
133  }
134  
135  /**
136   * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
137   * @fwnode: fwnode whose supplier links need to be deleted
138   *
139   * Deletes all supplier links connecting directly to @fwnode.
140   */
141  static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
142  {
143  	struct fwnode_link *link, *tmp;
144  
145  	mutex_lock(&fwnode_link_lock);
146  	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
147  		__fwnode_link_del(link);
148  	mutex_unlock(&fwnode_link_lock);
149  }
150  
151  /**
152   * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
153   * @fwnode: fwnode whose consumer links need to be deleted
154   *
155   * Deletes all consumer links connecting directly to @fwnode.
156   */
157  static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
158  {
159  	struct fwnode_link *link, *tmp;
160  
161  	mutex_lock(&fwnode_link_lock);
162  	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
163  		__fwnode_link_del(link);
164  	mutex_unlock(&fwnode_link_lock);
165  }
166  
167  /**
168   * fwnode_links_purge - Delete all links connected to a fwnode_handle.
169   * @fwnode: fwnode whose links needs to be deleted
170   *
171   * Deletes all links connecting directly to a fwnode.
172   */
173  void fwnode_links_purge(struct fwnode_handle *fwnode)
174  {
175  	fwnode_links_purge_suppliers(fwnode);
176  	fwnode_links_purge_consumers(fwnode);
177  }
178  
179  void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
180  {
181  	struct fwnode_handle *child;
182  
183  	/* Don't purge consumer links of an added child */
184  	if (fwnode->dev)
185  		return;
186  
187  	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
188  	fwnode_links_purge_consumers(fwnode);
189  
190  	fwnode_for_each_available_child_node(fwnode, child)
191  		fw_devlink_purge_absent_suppliers(child);
192  }
193  EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
194  
195  /**
196   * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
197   * @from: move consumers away from this fwnode
198   * @to: move consumers to this fwnode
199   *
200   * Move all consumer links from @from fwnode to @to fwnode.
201   */
202  static void __fwnode_links_move_consumers(struct fwnode_handle *from,
203  					  struct fwnode_handle *to)
204  {
205  	struct fwnode_link *link, *tmp;
206  
207  	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
208  		__fwnode_link_add(link->consumer, to, link->flags);
209  		__fwnode_link_del(link);
210  	}
211  }
212  
213  /**
214   * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
215   * @fwnode: fwnode from which to pick up dangling consumers
216   * @new_sup: fwnode of new supplier
217   *
218   * If the @fwnode has a corresponding struct device and the device supports
219   * probing (that is, added to a bus), then we want to let fw_devlink create
220   * MANAGED device links to this device, so leave @fwnode and its descendant's
221   * fwnode links alone.
222   *
223   * Otherwise, move its consumers to the new supplier @new_sup.
224   */
225  static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
226  						   struct fwnode_handle *new_sup)
227  {
228  	struct fwnode_handle *child;
229  
230  	if (fwnode->dev && fwnode->dev->bus)
231  		return;
232  
233  	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
234  	__fwnode_links_move_consumers(fwnode, new_sup);
235  
236  	fwnode_for_each_available_child_node(fwnode, child)
237  		__fw_devlink_pickup_dangling_consumers(child, new_sup);
238  }
239  
240  static DEFINE_MUTEX(device_links_lock);
241  DEFINE_STATIC_SRCU(device_links_srcu);
242  
243  static inline void device_links_write_lock(void)
244  {
245  	mutex_lock(&device_links_lock);
246  }
247  
248  static inline void device_links_write_unlock(void)
249  {
250  	mutex_unlock(&device_links_lock);
251  }
252  
253  int device_links_read_lock(void) __acquires(&device_links_srcu)
254  {
255  	return srcu_read_lock(&device_links_srcu);
256  }
257  
258  void device_links_read_unlock(int idx) __releases(&device_links_srcu)
259  {
260  	srcu_read_unlock(&device_links_srcu, idx);
261  }
262  
263  int device_links_read_lock_held(void)
264  {
265  	return srcu_read_lock_held(&device_links_srcu);
266  }
267  
268  static void device_link_synchronize_removal(void)
269  {
270  	synchronize_srcu(&device_links_srcu);
271  }
272  
273  static void device_link_remove_from_lists(struct device_link *link)
274  {
275  	list_del_rcu(&link->s_node);
276  	list_del_rcu(&link->c_node);
277  }
278  
279  static bool device_is_ancestor(struct device *dev, struct device *target)
280  {
281  	while (target->parent) {
282  		target = target->parent;
283  		if (dev == target)
284  			return true;
285  	}
286  	return false;
287  }
288  
289  #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
290  				 DL_FLAG_CYCLE | \
291  				 DL_FLAG_MANAGED)
292  static inline bool device_link_flag_is_sync_state_only(u32 flags)
293  {
294  	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
295  }
296  
297  /**
298   * device_is_dependent - Check if one device depends on another one
299   * @dev: Device to check dependencies for.
300   * @target: Device to check against.
301   *
302   * Check if @target depends on @dev or any device dependent on it (its child or
303   * its consumer etc).  Return 1 if that is the case or 0 otherwise.
304   */
305  static int device_is_dependent(struct device *dev, void *target)
306  {
307  	struct device_link *link;
308  	int ret;
309  
310  	/*
311  	 * The "ancestors" check is needed to catch the case when the target
312  	 * device has not been completely initialized yet and it is still
313  	 * missing from the list of children of its parent device.
314  	 */
315  	if (dev == target || device_is_ancestor(dev, target))
316  		return 1;
317  
318  	ret = device_for_each_child(dev, target, device_is_dependent);
319  	if (ret)
320  		return ret;
321  
322  	list_for_each_entry(link, &dev->links.consumers, s_node) {
323  		if (device_link_flag_is_sync_state_only(link->flags))
324  			continue;
325  
326  		if (link->consumer == target)
327  			return 1;
328  
329  		ret = device_is_dependent(link->consumer, target);
330  		if (ret)
331  			break;
332  	}
333  	return ret;
334  }
335  
336  static void device_link_init_status(struct device_link *link,
337  				    struct device *consumer,
338  				    struct device *supplier)
339  {
340  	switch (supplier->links.status) {
341  	case DL_DEV_PROBING:
342  		switch (consumer->links.status) {
343  		case DL_DEV_PROBING:
344  			/*
345  			 * A consumer driver can create a link to a supplier
346  			 * that has not completed its probing yet as long as it
347  			 * knows that the supplier is already functional (for
348  			 * example, it has just acquired some resources from the
349  			 * supplier).
350  			 */
351  			link->status = DL_STATE_CONSUMER_PROBE;
352  			break;
353  		default:
354  			link->status = DL_STATE_DORMANT;
355  			break;
356  		}
357  		break;
358  	case DL_DEV_DRIVER_BOUND:
359  		switch (consumer->links.status) {
360  		case DL_DEV_PROBING:
361  			link->status = DL_STATE_CONSUMER_PROBE;
362  			break;
363  		case DL_DEV_DRIVER_BOUND:
364  			link->status = DL_STATE_ACTIVE;
365  			break;
366  		default:
367  			link->status = DL_STATE_AVAILABLE;
368  			break;
369  		}
370  		break;
371  	case DL_DEV_UNBINDING:
372  		link->status = DL_STATE_SUPPLIER_UNBIND;
373  		break;
374  	default:
375  		link->status = DL_STATE_DORMANT;
376  		break;
377  	}
378  }
379  
380  static int device_reorder_to_tail(struct device *dev, void *not_used)
381  {
382  	struct device_link *link;
383  
384  	/*
385  	 * Devices that have not been registered yet will be put to the ends
386  	 * of the lists during the registration, so skip them here.
387  	 */
388  	if (device_is_registered(dev))
389  		devices_kset_move_last(dev);
390  
391  	if (device_pm_initialized(dev))
392  		device_pm_move_last(dev);
393  
394  	device_for_each_child(dev, NULL, device_reorder_to_tail);
395  	list_for_each_entry(link, &dev->links.consumers, s_node) {
396  		if (device_link_flag_is_sync_state_only(link->flags))
397  			continue;
398  		device_reorder_to_tail(link->consumer, NULL);
399  	}
400  
401  	return 0;
402  }
403  
404  /**
405   * device_pm_move_to_tail - Move set of devices to the end of device lists
406   * @dev: Device to move
407   *
408   * This is a device_reorder_to_tail() wrapper taking the requisite locks.
409   *
410   * It moves the @dev along with all of its children and all of its consumers
411   * to the ends of the device_kset and dpm_list, recursively.
412   */
413  void device_pm_move_to_tail(struct device *dev)
414  {
415  	int idx;
416  
417  	idx = device_links_read_lock();
418  	device_pm_lock();
419  	device_reorder_to_tail(dev, NULL);
420  	device_pm_unlock();
421  	device_links_read_unlock(idx);
422  }
423  
424  #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
425  
426  static ssize_t status_show(struct device *dev,
427  			   struct device_attribute *attr, char *buf)
428  {
429  	const char *output;
430  
431  	switch (to_devlink(dev)->status) {
432  	case DL_STATE_NONE:
433  		output = "not tracked";
434  		break;
435  	case DL_STATE_DORMANT:
436  		output = "dormant";
437  		break;
438  	case DL_STATE_AVAILABLE:
439  		output = "available";
440  		break;
441  	case DL_STATE_CONSUMER_PROBE:
442  		output = "consumer probing";
443  		break;
444  	case DL_STATE_ACTIVE:
445  		output = "active";
446  		break;
447  	case DL_STATE_SUPPLIER_UNBIND:
448  		output = "supplier unbinding";
449  		break;
450  	default:
451  		output = "unknown";
452  		break;
453  	}
454  
455  	return sysfs_emit(buf, "%s\n", output);
456  }
457  static DEVICE_ATTR_RO(status);
458  
459  static ssize_t auto_remove_on_show(struct device *dev,
460  				   struct device_attribute *attr, char *buf)
461  {
462  	struct device_link *link = to_devlink(dev);
463  	const char *output;
464  
465  	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
466  		output = "supplier unbind";
467  	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
468  		output = "consumer unbind";
469  	else
470  		output = "never";
471  
472  	return sysfs_emit(buf, "%s\n", output);
473  }
474  static DEVICE_ATTR_RO(auto_remove_on);
475  
476  static ssize_t runtime_pm_show(struct device *dev,
477  			       struct device_attribute *attr, char *buf)
478  {
479  	struct device_link *link = to_devlink(dev);
480  
481  	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
482  }
483  static DEVICE_ATTR_RO(runtime_pm);
484  
485  static ssize_t sync_state_only_show(struct device *dev,
486  				    struct device_attribute *attr, char *buf)
487  {
488  	struct device_link *link = to_devlink(dev);
489  
490  	return sysfs_emit(buf, "%d\n",
491  			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
492  }
493  static DEVICE_ATTR_RO(sync_state_only);
494  
495  static struct attribute *devlink_attrs[] = {
496  	&dev_attr_status.attr,
497  	&dev_attr_auto_remove_on.attr,
498  	&dev_attr_runtime_pm.attr,
499  	&dev_attr_sync_state_only.attr,
500  	NULL,
501  };
502  ATTRIBUTE_GROUPS(devlink);
503  
504  static void device_link_release_fn(struct work_struct *work)
505  {
506  	struct device_link *link = container_of(work, struct device_link, rm_work);
507  
508  	/* Ensure that all references to the link object have been dropped. */
509  	device_link_synchronize_removal();
510  
511  	pm_runtime_release_supplier(link);
512  	/*
513  	 * If supplier_preactivated is set, the link has been dropped between
514  	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
515  	 * in __driver_probe_device().  In that case, drop the supplier's
516  	 * PM-runtime usage counter to remove the reference taken by
517  	 * pm_runtime_get_suppliers().
518  	 */
519  	if (link->supplier_preactivated)
520  		pm_runtime_put_noidle(link->supplier);
521  
522  	pm_request_idle(link->supplier);
523  
524  	put_device(link->consumer);
525  	put_device(link->supplier);
526  	kfree(link);
527  }
528  
529  static void devlink_dev_release(struct device *dev)
530  {
531  	struct device_link *link = to_devlink(dev);
532  
533  	INIT_WORK(&link->rm_work, device_link_release_fn);
534  	/*
535  	 * It may take a while to complete this work because of the SRCU
536  	 * synchronization in device_link_release_fn() and if the consumer or
537  	 * supplier devices get deleted when it runs, so put it into the
538  	 * dedicated workqueue.
539  	 */
540  	queue_work(device_link_wq, &link->rm_work);
541  }
542  
543  /**
544   * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
545   */
546  void device_link_wait_removal(void)
547  {
548  	/*
549  	 * devlink removal jobs are queued in the dedicated work queue.
550  	 * To be sure that all removal jobs are terminated, ensure that any
551  	 * scheduled work has run to completion.
552  	 */
553  	flush_workqueue(device_link_wq);
554  }
555  EXPORT_SYMBOL_GPL(device_link_wait_removal);
556  
557  static struct class devlink_class = {
558  	.name = "devlink",
559  	.dev_groups = devlink_groups,
560  	.dev_release = devlink_dev_release,
561  };
562  
563  static int devlink_add_symlinks(struct device *dev)
564  {
565  	int ret;
566  	size_t len;
567  	struct device_link *link = to_devlink(dev);
568  	struct device *sup = link->supplier;
569  	struct device *con = link->consumer;
570  	char *buf;
571  
572  	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
573  		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
574  	len += strlen(":");
575  	len += strlen("supplier:") + 1;
576  	buf = kzalloc(len, GFP_KERNEL);
577  	if (!buf)
578  		return -ENOMEM;
579  
580  	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
581  	if (ret)
582  		goto out;
583  
584  	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
585  	if (ret)
586  		goto err_con;
587  
588  	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
589  	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
590  	if (ret)
591  		goto err_con_dev;
592  
593  	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
594  	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
595  	if (ret)
596  		goto err_sup_dev;
597  
598  	goto out;
599  
600  err_sup_dev:
601  	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
602  	sysfs_remove_link(&sup->kobj, buf);
603  err_con_dev:
604  	sysfs_remove_link(&link->link_dev.kobj, "consumer");
605  err_con:
606  	sysfs_remove_link(&link->link_dev.kobj, "supplier");
607  out:
608  	kfree(buf);
609  	return ret;
610  }
611  
612  static void devlink_remove_symlinks(struct device *dev)
613  {
614  	struct device_link *link = to_devlink(dev);
615  	size_t len;
616  	struct device *sup = link->supplier;
617  	struct device *con = link->consumer;
618  	char *buf;
619  
620  	sysfs_remove_link(&link->link_dev.kobj, "consumer");
621  	sysfs_remove_link(&link->link_dev.kobj, "supplier");
622  
623  	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
624  		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
625  	len += strlen(":");
626  	len += strlen("supplier:") + 1;
627  	buf = kzalloc(len, GFP_KERNEL);
628  	if (!buf) {
629  		WARN(1, "Unable to properly free device link symlinks!\n");
630  		return;
631  	}
632  
633  	if (device_is_registered(con)) {
634  		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
635  		sysfs_remove_link(&con->kobj, buf);
636  	}
637  	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
638  	sysfs_remove_link(&sup->kobj, buf);
639  	kfree(buf);
640  }
641  
642  static struct class_interface devlink_class_intf = {
643  	.class = &devlink_class,
644  	.add_dev = devlink_add_symlinks,
645  	.remove_dev = devlink_remove_symlinks,
646  };
647  
648  static int __init devlink_class_init(void)
649  {
650  	int ret;
651  
652  	ret = class_register(&devlink_class);
653  	if (ret)
654  		return ret;
655  
656  	ret = class_interface_register(&devlink_class_intf);
657  	if (ret)
658  		class_unregister(&devlink_class);
659  
660  	return ret;
661  }
662  postcore_initcall(devlink_class_init);
663  
664  #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
665  			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
666  			       DL_FLAG_AUTOPROBE_CONSUMER  | \
667  			       DL_FLAG_SYNC_STATE_ONLY | \
668  			       DL_FLAG_INFERRED | \
669  			       DL_FLAG_CYCLE)
670  
671  #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
672  			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
673  
674  /**
675   * device_link_add - Create a link between two devices.
676   * @consumer: Consumer end of the link.
677   * @supplier: Supplier end of the link.
678   * @flags: Link flags.
679   *
680   * The caller is responsible for the proper synchronization of the link creation
681   * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
682   * runtime PM framework to take the link into account.  Second, if the
683   * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
684   * be forced into the active meta state and reference-counted upon the creation
685   * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
686   * ignored.
687   *
688   * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
689   * expected to release the link returned by it directly with the help of either
690   * device_link_del() or device_link_remove().
691   *
692   * If that flag is not set, however, the caller of this function is handing the
693   * management of the link over to the driver core entirely and its return value
694   * can only be used to check whether or not the link is present.  In that case,
695   * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
696   * flags can be used to indicate to the driver core when the link can be safely
697   * deleted.  Namely, setting one of them in @flags indicates to the driver core
698   * that the link is not going to be used (by the given caller of this function)
699   * after unbinding the consumer or supplier driver, respectively, from its
700   * device, so the link can be deleted at that point.  If none of them is set,
701   * the link will be maintained until one of the devices pointed to by it (either
702   * the consumer or the supplier) is unregistered.
703   *
704   * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
705   * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
706   * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
707   * be used to request the driver core to automatically probe for a consumer
708   * driver after successfully binding a driver to the supplier device.
709   *
710   * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
711   * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
712   * the same time is invalid and will cause NULL to be returned upfront.
713   * However, if a device link between the given @consumer and @supplier pair
714   * exists already when this function is called for them, the existing link will
715   * be returned regardless of its current type and status (the link's flags may
716   * be modified then).  The caller of this function is then expected to treat
717   * the link as though it has just been created, so (in particular) if
718   * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
719   * explicitly when not needed any more (as stated above).
720   *
721   * A side effect of the link creation is re-ordering of dpm_list and the
722   * devices_kset list by moving the consumer device and all devices depending
723   * on it to the ends of these lists (that does not happen to devices that have
724   * not been registered when this function is called).
725   *
726   * The supplier device is required to be registered when this function is called
727   * and NULL will be returned if that is not the case.  The consumer device need
728   * not be registered, however.
729   */
730  struct device_link *device_link_add(struct device *consumer,
731  				    struct device *supplier, u32 flags)
732  {
733  	struct device_link *link;
734  
735  	if (!consumer || !supplier || consumer == supplier ||
736  	    flags & ~DL_ADD_VALID_FLAGS ||
737  	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
738  	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
739  	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
740  		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
741  		return NULL;
742  
743  	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
744  		if (pm_runtime_get_sync(supplier) < 0) {
745  			pm_runtime_put_noidle(supplier);
746  			return NULL;
747  		}
748  	}
749  
750  	if (!(flags & DL_FLAG_STATELESS))
751  		flags |= DL_FLAG_MANAGED;
752  
753  	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
754  	    !device_link_flag_is_sync_state_only(flags))
755  		return NULL;
756  
757  	device_links_write_lock();
758  	device_pm_lock();
759  
760  	/*
761  	 * If the supplier has not been fully registered yet or there is a
762  	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
763  	 * the supplier already in the graph, return NULL. If the link is a
764  	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
765  	 * because it only affects sync_state() callbacks.
766  	 */
767  	if (!device_pm_initialized(supplier)
768  	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
769  		  device_is_dependent(consumer, supplier))) {
770  		link = NULL;
771  		goto out;
772  	}
773  
774  	/*
775  	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
776  	 * So, only create it if the consumer hasn't probed yet.
777  	 */
778  	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
779  	    consumer->links.status != DL_DEV_NO_DRIVER &&
780  	    consumer->links.status != DL_DEV_PROBING) {
781  		link = NULL;
782  		goto out;
783  	}
784  
785  	/*
786  	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
787  	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
788  	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
789  	 */
790  	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
791  		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
792  
793  	list_for_each_entry(link, &supplier->links.consumers, s_node) {
794  		if (link->consumer != consumer)
795  			continue;
796  
797  		if (link->flags & DL_FLAG_INFERRED &&
798  		    !(flags & DL_FLAG_INFERRED))
799  			link->flags &= ~DL_FLAG_INFERRED;
800  
801  		if (flags & DL_FLAG_PM_RUNTIME) {
802  			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
803  				pm_runtime_new_link(consumer);
804  				link->flags |= DL_FLAG_PM_RUNTIME;
805  			}
806  			if (flags & DL_FLAG_RPM_ACTIVE)
807  				refcount_inc(&link->rpm_active);
808  		}
809  
810  		if (flags & DL_FLAG_STATELESS) {
811  			kref_get(&link->kref);
812  			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
813  			    !(link->flags & DL_FLAG_STATELESS)) {
814  				link->flags |= DL_FLAG_STATELESS;
815  				goto reorder;
816  			} else {
817  				link->flags |= DL_FLAG_STATELESS;
818  				goto out;
819  			}
820  		}
821  
822  		/*
823  		 * If the life time of the link following from the new flags is
824  		 * longer than indicated by the flags of the existing link,
825  		 * update the existing link to stay around longer.
826  		 */
827  		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
828  			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
829  				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
830  				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
831  			}
832  		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
833  			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
834  					 DL_FLAG_AUTOREMOVE_SUPPLIER);
835  		}
836  		if (!(link->flags & DL_FLAG_MANAGED)) {
837  			kref_get(&link->kref);
838  			link->flags |= DL_FLAG_MANAGED;
839  			device_link_init_status(link, consumer, supplier);
840  		}
841  		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
842  		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
843  			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
844  			goto reorder;
845  		}
846  
847  		goto out;
848  	}
849  
850  	link = kzalloc(sizeof(*link), GFP_KERNEL);
851  	if (!link)
852  		goto out;
853  
854  	refcount_set(&link->rpm_active, 1);
855  
856  	get_device(supplier);
857  	link->supplier = supplier;
858  	INIT_LIST_HEAD(&link->s_node);
859  	get_device(consumer);
860  	link->consumer = consumer;
861  	INIT_LIST_HEAD(&link->c_node);
862  	link->flags = flags;
863  	kref_init(&link->kref);
864  
865  	link->link_dev.class = &devlink_class;
866  	device_set_pm_not_required(&link->link_dev);
867  	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
868  		     dev_bus_name(supplier), dev_name(supplier),
869  		     dev_bus_name(consumer), dev_name(consumer));
870  	if (device_register(&link->link_dev)) {
871  		put_device(&link->link_dev);
872  		link = NULL;
873  		goto out;
874  	}
875  
876  	if (flags & DL_FLAG_PM_RUNTIME) {
877  		if (flags & DL_FLAG_RPM_ACTIVE)
878  			refcount_inc(&link->rpm_active);
879  
880  		pm_runtime_new_link(consumer);
881  	}
882  
883  	/* Determine the initial link state. */
884  	if (flags & DL_FLAG_STATELESS)
885  		link->status = DL_STATE_NONE;
886  	else
887  		device_link_init_status(link, consumer, supplier);
888  
889  	/*
890  	 * Some callers expect the link creation during consumer driver probe to
891  	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
892  	 */
893  	if (link->status == DL_STATE_CONSUMER_PROBE &&
894  	    flags & DL_FLAG_PM_RUNTIME)
895  		pm_runtime_resume(supplier);
896  
897  	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
898  	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
899  
900  	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
901  		dev_dbg(consumer,
902  			"Linked as a sync state only consumer to %s\n",
903  			dev_name(supplier));
904  		goto out;
905  	}
906  
907  reorder:
908  	/*
909  	 * Move the consumer and all of the devices depending on it to the end
910  	 * of dpm_list and the devices_kset list.
911  	 *
912  	 * It is necessary to hold dpm_list locked throughout all that or else
913  	 * we may end up suspending with a wrong ordering of it.
914  	 */
915  	device_reorder_to_tail(consumer, NULL);
916  
917  	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
918  
919  out:
920  	device_pm_unlock();
921  	device_links_write_unlock();
922  
923  	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
924  		pm_runtime_put(supplier);
925  
926  	return link;
927  }
928  EXPORT_SYMBOL_GPL(device_link_add);
929  
930  static void __device_link_del(struct kref *kref)
931  {
932  	struct device_link *link = container_of(kref, struct device_link, kref);
933  
934  	dev_dbg(link->consumer, "Dropping the link to %s\n",
935  		dev_name(link->supplier));
936  
937  	pm_runtime_drop_link(link);
938  
939  	device_link_remove_from_lists(link);
940  	device_unregister(&link->link_dev);
941  }
942  
943  static void device_link_put_kref(struct device_link *link)
944  {
945  	if (link->flags & DL_FLAG_STATELESS)
946  		kref_put(&link->kref, __device_link_del);
947  	else if (!device_is_registered(link->consumer))
948  		__device_link_del(&link->kref);
949  	else
950  		WARN(1, "Unable to drop a managed device link reference\n");
951  }
952  
953  /**
954   * device_link_del - Delete a stateless link between two devices.
955   * @link: Device link to delete.
956   *
957   * The caller must ensure proper synchronization of this function with runtime
958   * PM.  If the link was added multiple times, it needs to be deleted as often.
959   * Care is required for hotplugged devices:  Their links are purged on removal
960   * and calling device_link_del() is then no longer allowed.
961   */
962  void device_link_del(struct device_link *link)
963  {
964  	device_links_write_lock();
965  	device_link_put_kref(link);
966  	device_links_write_unlock();
967  }
968  EXPORT_SYMBOL_GPL(device_link_del);
969  
970  /**
971   * device_link_remove - Delete a stateless link between two devices.
972   * @consumer: Consumer end of the link.
973   * @supplier: Supplier end of the link.
974   *
975   * The caller must ensure proper synchronization of this function with runtime
976   * PM.
977   */
978  void device_link_remove(void *consumer, struct device *supplier)
979  {
980  	struct device_link *link;
981  
982  	if (WARN_ON(consumer == supplier))
983  		return;
984  
985  	device_links_write_lock();
986  
987  	list_for_each_entry(link, &supplier->links.consumers, s_node) {
988  		if (link->consumer == consumer) {
989  			device_link_put_kref(link);
990  			break;
991  		}
992  	}
993  
994  	device_links_write_unlock();
995  }
996  EXPORT_SYMBOL_GPL(device_link_remove);
997  
998  static void device_links_missing_supplier(struct device *dev)
999  {
1000  	struct device_link *link;
1001  
1002  	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1003  		if (link->status != DL_STATE_CONSUMER_PROBE)
1004  			continue;
1005  
1006  		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1007  			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1008  		} else {
1009  			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1010  			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1011  		}
1012  	}
1013  }
1014  
1015  static bool dev_is_best_effort(struct device *dev)
1016  {
1017  	return (fw_devlink_best_effort && dev->can_match) ||
1018  		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1019  }
1020  
1021  static struct fwnode_handle *fwnode_links_check_suppliers(
1022  						struct fwnode_handle *fwnode)
1023  {
1024  	struct fwnode_link *link;
1025  
1026  	if (!fwnode || fw_devlink_is_permissive())
1027  		return NULL;
1028  
1029  	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1030  		if (!(link->flags &
1031  		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1032  			return link->supplier;
1033  
1034  	return NULL;
1035  }
1036  
1037  /**
1038   * device_links_check_suppliers - Check presence of supplier drivers.
1039   * @dev: Consumer device.
1040   *
1041   * Check links from this device to any suppliers.  Walk the list of the device's
1042   * links to suppliers and see if all of them are available.  If not, simply
1043   * return -EPROBE_DEFER.
1044   *
1045   * We need to guarantee that the supplier will not go away after the check has
1046   * been positive here.  It only can go away in __device_release_driver() and
1047   * that function  checks the device's links to consumers.  This means we need to
1048   * mark the link as "consumer probe in progress" to make the supplier removal
1049   * wait for us to complete (or bad things may happen).
1050   *
1051   * Links without the DL_FLAG_MANAGED flag set are ignored.
1052   */
1053  int device_links_check_suppliers(struct device *dev)
1054  {
1055  	struct device_link *link;
1056  	int ret = 0, fwnode_ret = 0;
1057  	struct fwnode_handle *sup_fw;
1058  
1059  	/*
1060  	 * Device waiting for supplier to become available is not allowed to
1061  	 * probe.
1062  	 */
1063  	mutex_lock(&fwnode_link_lock);
1064  	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1065  	if (sup_fw) {
1066  		if (!dev_is_best_effort(dev)) {
1067  			fwnode_ret = -EPROBE_DEFER;
1068  			dev_err_probe(dev, -EPROBE_DEFER,
1069  				    "wait for supplier %pfwf\n", sup_fw);
1070  		} else {
1071  			fwnode_ret = -EAGAIN;
1072  		}
1073  	}
1074  	mutex_unlock(&fwnode_link_lock);
1075  	if (fwnode_ret == -EPROBE_DEFER)
1076  		return fwnode_ret;
1077  
1078  	device_links_write_lock();
1079  
1080  	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1081  		if (!(link->flags & DL_FLAG_MANAGED))
1082  			continue;
1083  
1084  		if (link->status != DL_STATE_AVAILABLE &&
1085  		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1086  
1087  			if (dev_is_best_effort(dev) &&
1088  			    link->flags & DL_FLAG_INFERRED &&
1089  			    !link->supplier->can_match) {
1090  				ret = -EAGAIN;
1091  				continue;
1092  			}
1093  
1094  			device_links_missing_supplier(dev);
1095  			dev_err_probe(dev, -EPROBE_DEFER,
1096  				      "supplier %s not ready\n",
1097  				      dev_name(link->supplier));
1098  			ret = -EPROBE_DEFER;
1099  			break;
1100  		}
1101  		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1102  	}
1103  	dev->links.status = DL_DEV_PROBING;
1104  
1105  	device_links_write_unlock();
1106  
1107  	return ret ? ret : fwnode_ret;
1108  }
1109  
1110  /**
1111   * __device_links_queue_sync_state - Queue a device for sync_state() callback
1112   * @dev: Device to call sync_state() on
1113   * @list: List head to queue the @dev on
1114   *
1115   * Queues a device for a sync_state() callback when the device links write lock
1116   * isn't held. This allows the sync_state() execution flow to use device links
1117   * APIs.  The caller must ensure this function is called with
1118   * device_links_write_lock() held.
1119   *
1120   * This function does a get_device() to make sure the device is not freed while
1121   * on this list.
1122   *
1123   * So the caller must also ensure that device_links_flush_sync_list() is called
1124   * as soon as the caller releases device_links_write_lock().  This is necessary
1125   * to make sure the sync_state() is called in a timely fashion and the
1126   * put_device() is called on this device.
1127   */
1128  static void __device_links_queue_sync_state(struct device *dev,
1129  					    struct list_head *list)
1130  {
1131  	struct device_link *link;
1132  
1133  	if (!dev_has_sync_state(dev))
1134  		return;
1135  	if (dev->state_synced)
1136  		return;
1137  
1138  	list_for_each_entry(link, &dev->links.consumers, s_node) {
1139  		if (!(link->flags & DL_FLAG_MANAGED))
1140  			continue;
1141  		if (link->status != DL_STATE_ACTIVE)
1142  			return;
1143  	}
1144  
1145  	/*
1146  	 * Set the flag here to avoid adding the same device to a list more
1147  	 * than once. This can happen if new consumers get added to the device
1148  	 * and probed before the list is flushed.
1149  	 */
1150  	dev->state_synced = true;
1151  
1152  	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1153  		return;
1154  
1155  	get_device(dev);
1156  	list_add_tail(&dev->links.defer_sync, list);
1157  }
1158  
1159  /**
1160   * device_links_flush_sync_list - Call sync_state() on a list of devices
1161   * @list: List of devices to call sync_state() on
1162   * @dont_lock_dev: Device for which lock is already held by the caller
1163   *
1164   * Calls sync_state() on all the devices that have been queued for it. This
1165   * function is used in conjunction with __device_links_queue_sync_state(). The
1166   * @dont_lock_dev parameter is useful when this function is called from a
1167   * context where a device lock is already held.
1168   */
1169  static void device_links_flush_sync_list(struct list_head *list,
1170  					 struct device *dont_lock_dev)
1171  {
1172  	struct device *dev, *tmp;
1173  
1174  	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1175  		list_del_init(&dev->links.defer_sync);
1176  
1177  		if (dev != dont_lock_dev)
1178  			device_lock(dev);
1179  
1180  		dev_sync_state(dev);
1181  
1182  		if (dev != dont_lock_dev)
1183  			device_unlock(dev);
1184  
1185  		put_device(dev);
1186  	}
1187  }
1188  
1189  void device_links_supplier_sync_state_pause(void)
1190  {
1191  	device_links_write_lock();
1192  	defer_sync_state_count++;
1193  	device_links_write_unlock();
1194  }
1195  
1196  void device_links_supplier_sync_state_resume(void)
1197  {
1198  	struct device *dev, *tmp;
1199  	LIST_HEAD(sync_list);
1200  
1201  	device_links_write_lock();
1202  	if (!defer_sync_state_count) {
1203  		WARN(true, "Unmatched sync_state pause/resume!");
1204  		goto out;
1205  	}
1206  	defer_sync_state_count--;
1207  	if (defer_sync_state_count)
1208  		goto out;
1209  
1210  	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1211  		/*
1212  		 * Delete from deferred_sync list before queuing it to
1213  		 * sync_list because defer_sync is used for both lists.
1214  		 */
1215  		list_del_init(&dev->links.defer_sync);
1216  		__device_links_queue_sync_state(dev, &sync_list);
1217  	}
1218  out:
1219  	device_links_write_unlock();
1220  
1221  	device_links_flush_sync_list(&sync_list, NULL);
1222  }
1223  
1224  static int sync_state_resume_initcall(void)
1225  {
1226  	device_links_supplier_sync_state_resume();
1227  	return 0;
1228  }
1229  late_initcall(sync_state_resume_initcall);
1230  
1231  static void __device_links_supplier_defer_sync(struct device *sup)
1232  {
1233  	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1234  		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1235  }
1236  
1237  static void device_link_drop_managed(struct device_link *link)
1238  {
1239  	link->flags &= ~DL_FLAG_MANAGED;
1240  	WRITE_ONCE(link->status, DL_STATE_NONE);
1241  	kref_put(&link->kref, __device_link_del);
1242  }
1243  
1244  static ssize_t waiting_for_supplier_show(struct device *dev,
1245  					 struct device_attribute *attr,
1246  					 char *buf)
1247  {
1248  	bool val;
1249  
1250  	device_lock(dev);
1251  	mutex_lock(&fwnode_link_lock);
1252  	val = !!fwnode_links_check_suppliers(dev->fwnode);
1253  	mutex_unlock(&fwnode_link_lock);
1254  	device_unlock(dev);
1255  	return sysfs_emit(buf, "%u\n", val);
1256  }
1257  static DEVICE_ATTR_RO(waiting_for_supplier);
1258  
1259  /**
1260   * device_links_force_bind - Prepares device to be force bound
1261   * @dev: Consumer device.
1262   *
1263   * device_bind_driver() force binds a device to a driver without calling any
1264   * driver probe functions. So the consumer really isn't going to wait for any
1265   * supplier before it's bound to the driver. We still want the device link
1266   * states to be sensible when this happens.
1267   *
1268   * In preparation for device_bind_driver(), this function goes through each
1269   * supplier device links and checks if the supplier is bound. If it is, then
1270   * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1271   * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1272   */
1273  void device_links_force_bind(struct device *dev)
1274  {
1275  	struct device_link *link, *ln;
1276  
1277  	device_links_write_lock();
1278  
1279  	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1280  		if (!(link->flags & DL_FLAG_MANAGED))
1281  			continue;
1282  
1283  		if (link->status != DL_STATE_AVAILABLE) {
1284  			device_link_drop_managed(link);
1285  			continue;
1286  		}
1287  		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1288  	}
1289  	dev->links.status = DL_DEV_PROBING;
1290  
1291  	device_links_write_unlock();
1292  }
1293  
1294  /**
1295   * device_links_driver_bound - Update device links after probing its driver.
1296   * @dev: Device to update the links for.
1297   *
1298   * The probe has been successful, so update links from this device to any
1299   * consumers by changing their status to "available".
1300   *
1301   * Also change the status of @dev's links to suppliers to "active".
1302   *
1303   * Links without the DL_FLAG_MANAGED flag set are ignored.
1304   */
1305  void device_links_driver_bound(struct device *dev)
1306  {
1307  	struct device_link *link, *ln;
1308  	LIST_HEAD(sync_list);
1309  
1310  	/*
1311  	 * If a device binds successfully, it's expected to have created all
1312  	 * the device links it needs to or make new device links as it needs
1313  	 * them. So, fw_devlink no longer needs to create device links to any
1314  	 * of the device's suppliers.
1315  	 *
1316  	 * Also, if a child firmware node of this bound device is not added as a
1317  	 * device by now, assume it is never going to be added. Make this bound
1318  	 * device the fallback supplier to the dangling consumers of the child
1319  	 * firmware node because this bound device is probably implementing the
1320  	 * child firmware node functionality and we don't want the dangling
1321  	 * consumers to defer probe indefinitely waiting for a device for the
1322  	 * child firmware node.
1323  	 */
1324  	if (dev->fwnode && dev->fwnode->dev == dev) {
1325  		struct fwnode_handle *child;
1326  		fwnode_links_purge_suppliers(dev->fwnode);
1327  		mutex_lock(&fwnode_link_lock);
1328  		fwnode_for_each_available_child_node(dev->fwnode, child)
1329  			__fw_devlink_pickup_dangling_consumers(child,
1330  							       dev->fwnode);
1331  		__fw_devlink_link_to_consumers(dev);
1332  		mutex_unlock(&fwnode_link_lock);
1333  	}
1334  	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1335  
1336  	device_links_write_lock();
1337  
1338  	list_for_each_entry(link, &dev->links.consumers, s_node) {
1339  		if (!(link->flags & DL_FLAG_MANAGED))
1340  			continue;
1341  
1342  		/*
1343  		 * Links created during consumer probe may be in the "consumer
1344  		 * probe" state to start with if the supplier is still probing
1345  		 * when they are created and they may become "active" if the
1346  		 * consumer probe returns first.  Skip them here.
1347  		 */
1348  		if (link->status == DL_STATE_CONSUMER_PROBE ||
1349  		    link->status == DL_STATE_ACTIVE)
1350  			continue;
1351  
1352  		WARN_ON(link->status != DL_STATE_DORMANT);
1353  		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1354  
1355  		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1356  			driver_deferred_probe_add(link->consumer);
1357  	}
1358  
1359  	if (defer_sync_state_count)
1360  		__device_links_supplier_defer_sync(dev);
1361  	else
1362  		__device_links_queue_sync_state(dev, &sync_list);
1363  
1364  	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1365  		struct device *supplier;
1366  
1367  		if (!(link->flags & DL_FLAG_MANAGED))
1368  			continue;
1369  
1370  		supplier = link->supplier;
1371  		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1372  			/*
1373  			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1374  			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1375  			 * save to drop the managed link completely.
1376  			 */
1377  			device_link_drop_managed(link);
1378  		} else if (dev_is_best_effort(dev) &&
1379  			   link->flags & DL_FLAG_INFERRED &&
1380  			   link->status != DL_STATE_CONSUMER_PROBE &&
1381  			   !link->supplier->can_match) {
1382  			/*
1383  			 * When dev_is_best_effort() is true, we ignore device
1384  			 * links to suppliers that don't have a driver.  If the
1385  			 * consumer device still managed to probe, there's no
1386  			 * point in maintaining a device link in a weird state
1387  			 * (consumer probed before supplier). So delete it.
1388  			 */
1389  			device_link_drop_managed(link);
1390  		} else {
1391  			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1392  			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1393  		}
1394  
1395  		/*
1396  		 * This needs to be done even for the deleted
1397  		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1398  		 * device link that was preventing the supplier from getting a
1399  		 * sync_state() call.
1400  		 */
1401  		if (defer_sync_state_count)
1402  			__device_links_supplier_defer_sync(supplier);
1403  		else
1404  			__device_links_queue_sync_state(supplier, &sync_list);
1405  	}
1406  
1407  	dev->links.status = DL_DEV_DRIVER_BOUND;
1408  
1409  	device_links_write_unlock();
1410  
1411  	device_links_flush_sync_list(&sync_list, dev);
1412  }
1413  
1414  /**
1415   * __device_links_no_driver - Update links of a device without a driver.
1416   * @dev: Device without a drvier.
1417   *
1418   * Delete all non-persistent links from this device to any suppliers.
1419   *
1420   * Persistent links stay around, but their status is changed to "available",
1421   * unless they already are in the "supplier unbind in progress" state in which
1422   * case they need not be updated.
1423   *
1424   * Links without the DL_FLAG_MANAGED flag set are ignored.
1425   */
1426  static void __device_links_no_driver(struct device *dev)
1427  {
1428  	struct device_link *link, *ln;
1429  
1430  	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1431  		if (!(link->flags & DL_FLAG_MANAGED))
1432  			continue;
1433  
1434  		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1435  			device_link_drop_managed(link);
1436  			continue;
1437  		}
1438  
1439  		if (link->status != DL_STATE_CONSUMER_PROBE &&
1440  		    link->status != DL_STATE_ACTIVE)
1441  			continue;
1442  
1443  		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1444  			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1445  		} else {
1446  			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1447  			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1448  		}
1449  	}
1450  
1451  	dev->links.status = DL_DEV_NO_DRIVER;
1452  }
1453  
1454  /**
1455   * device_links_no_driver - Update links after failing driver probe.
1456   * @dev: Device whose driver has just failed to probe.
1457   *
1458   * Clean up leftover links to consumers for @dev and invoke
1459   * %__device_links_no_driver() to update links to suppliers for it as
1460   * appropriate.
1461   *
1462   * Links without the DL_FLAG_MANAGED flag set are ignored.
1463   */
1464  void device_links_no_driver(struct device *dev)
1465  {
1466  	struct device_link *link;
1467  
1468  	device_links_write_lock();
1469  
1470  	list_for_each_entry(link, &dev->links.consumers, s_node) {
1471  		if (!(link->flags & DL_FLAG_MANAGED))
1472  			continue;
1473  
1474  		/*
1475  		 * The probe has failed, so if the status of the link is
1476  		 * "consumer probe" or "active", it must have been added by
1477  		 * a probing consumer while this device was still probing.
1478  		 * Change its state to "dormant", as it represents a valid
1479  		 * relationship, but it is not functionally meaningful.
1480  		 */
1481  		if (link->status == DL_STATE_CONSUMER_PROBE ||
1482  		    link->status == DL_STATE_ACTIVE)
1483  			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1484  	}
1485  
1486  	__device_links_no_driver(dev);
1487  
1488  	device_links_write_unlock();
1489  }
1490  
1491  /**
1492   * device_links_driver_cleanup - Update links after driver removal.
1493   * @dev: Device whose driver has just gone away.
1494   *
1495   * Update links to consumers for @dev by changing their status to "dormant" and
1496   * invoke %__device_links_no_driver() to update links to suppliers for it as
1497   * appropriate.
1498   *
1499   * Links without the DL_FLAG_MANAGED flag set are ignored.
1500   */
1501  void device_links_driver_cleanup(struct device *dev)
1502  {
1503  	struct device_link *link, *ln;
1504  
1505  	device_links_write_lock();
1506  
1507  	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1508  		if (!(link->flags & DL_FLAG_MANAGED))
1509  			continue;
1510  
1511  		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1512  		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1513  
1514  		/*
1515  		 * autoremove the links between this @dev and its consumer
1516  		 * devices that are not active, i.e. where the link state
1517  		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1518  		 */
1519  		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1520  		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1521  			device_link_drop_managed(link);
1522  
1523  		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1524  	}
1525  
1526  	list_del_init(&dev->links.defer_sync);
1527  	__device_links_no_driver(dev);
1528  
1529  	device_links_write_unlock();
1530  }
1531  
1532  /**
1533   * device_links_busy - Check if there are any busy links to consumers.
1534   * @dev: Device to check.
1535   *
1536   * Check each consumer of the device and return 'true' if its link's status
1537   * is one of "consumer probe" or "active" (meaning that the given consumer is
1538   * probing right now or its driver is present).  Otherwise, change the link
1539   * state to "supplier unbind" to prevent the consumer from being probed
1540   * successfully going forward.
1541   *
1542   * Return 'false' if there are no probing or active consumers.
1543   *
1544   * Links without the DL_FLAG_MANAGED flag set are ignored.
1545   */
1546  bool device_links_busy(struct device *dev)
1547  {
1548  	struct device_link *link;
1549  	bool ret = false;
1550  
1551  	device_links_write_lock();
1552  
1553  	list_for_each_entry(link, &dev->links.consumers, s_node) {
1554  		if (!(link->flags & DL_FLAG_MANAGED))
1555  			continue;
1556  
1557  		if (link->status == DL_STATE_CONSUMER_PROBE
1558  		    || link->status == DL_STATE_ACTIVE) {
1559  			ret = true;
1560  			break;
1561  		}
1562  		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1563  	}
1564  
1565  	dev->links.status = DL_DEV_UNBINDING;
1566  
1567  	device_links_write_unlock();
1568  	return ret;
1569  }
1570  
1571  /**
1572   * device_links_unbind_consumers - Force unbind consumers of the given device.
1573   * @dev: Device to unbind the consumers of.
1574   *
1575   * Walk the list of links to consumers for @dev and if any of them is in the
1576   * "consumer probe" state, wait for all device probes in progress to complete
1577   * and start over.
1578   *
1579   * If that's not the case, change the status of the link to "supplier unbind"
1580   * and check if the link was in the "active" state.  If so, force the consumer
1581   * driver to unbind and start over (the consumer will not re-probe as we have
1582   * changed the state of the link already).
1583   *
1584   * Links without the DL_FLAG_MANAGED flag set are ignored.
1585   */
1586  void device_links_unbind_consumers(struct device *dev)
1587  {
1588  	struct device_link *link;
1589  
1590   start:
1591  	device_links_write_lock();
1592  
1593  	list_for_each_entry(link, &dev->links.consumers, s_node) {
1594  		enum device_link_state status;
1595  
1596  		if (!(link->flags & DL_FLAG_MANAGED) ||
1597  		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1598  			continue;
1599  
1600  		status = link->status;
1601  		if (status == DL_STATE_CONSUMER_PROBE) {
1602  			device_links_write_unlock();
1603  
1604  			wait_for_device_probe();
1605  			goto start;
1606  		}
1607  		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1608  		if (status == DL_STATE_ACTIVE) {
1609  			struct device *consumer = link->consumer;
1610  
1611  			get_device(consumer);
1612  
1613  			device_links_write_unlock();
1614  
1615  			device_release_driver_internal(consumer, NULL,
1616  						       consumer->parent);
1617  			put_device(consumer);
1618  			goto start;
1619  		}
1620  	}
1621  
1622  	device_links_write_unlock();
1623  }
1624  
1625  /**
1626   * device_links_purge - Delete existing links to other devices.
1627   * @dev: Target device.
1628   */
1629  static void device_links_purge(struct device *dev)
1630  {
1631  	struct device_link *link, *ln;
1632  
1633  	if (dev->class == &devlink_class)
1634  		return;
1635  
1636  	/*
1637  	 * Delete all of the remaining links from this device to any other
1638  	 * devices (either consumers or suppliers).
1639  	 */
1640  	device_links_write_lock();
1641  
1642  	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1643  		WARN_ON(link->status == DL_STATE_ACTIVE);
1644  		__device_link_del(&link->kref);
1645  	}
1646  
1647  	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1648  		WARN_ON(link->status != DL_STATE_DORMANT &&
1649  			link->status != DL_STATE_NONE);
1650  		__device_link_del(&link->kref);
1651  	}
1652  
1653  	device_links_write_unlock();
1654  }
1655  
1656  #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1657  					 DL_FLAG_SYNC_STATE_ONLY)
1658  #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1659  					 DL_FLAG_AUTOPROBE_CONSUMER)
1660  #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1661  					 DL_FLAG_PM_RUNTIME)
1662  
1663  static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1664  static int __init fw_devlink_setup(char *arg)
1665  {
1666  	if (!arg)
1667  		return -EINVAL;
1668  
1669  	if (strcmp(arg, "off") == 0) {
1670  		fw_devlink_flags = 0;
1671  	} else if (strcmp(arg, "permissive") == 0) {
1672  		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1673  	} else if (strcmp(arg, "on") == 0) {
1674  		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1675  	} else if (strcmp(arg, "rpm") == 0) {
1676  		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1677  	}
1678  	return 0;
1679  }
1680  early_param("fw_devlink", fw_devlink_setup);
1681  
1682  static bool fw_devlink_strict;
1683  static int __init fw_devlink_strict_setup(char *arg)
1684  {
1685  	return kstrtobool(arg, &fw_devlink_strict);
1686  }
1687  early_param("fw_devlink.strict", fw_devlink_strict_setup);
1688  
1689  #define FW_DEVLINK_SYNC_STATE_STRICT	0
1690  #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1691  
1692  #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1693  static int fw_devlink_sync_state;
1694  #else
1695  static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1696  #endif
1697  
1698  static int __init fw_devlink_sync_state_setup(char *arg)
1699  {
1700  	if (!arg)
1701  		return -EINVAL;
1702  
1703  	if (strcmp(arg, "strict") == 0) {
1704  		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1705  		return 0;
1706  	} else if (strcmp(arg, "timeout") == 0) {
1707  		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1708  		return 0;
1709  	}
1710  	return -EINVAL;
1711  }
1712  early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1713  
1714  static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1715  {
1716  	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1717  		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1718  
1719  	return fw_devlink_flags;
1720  }
1721  
1722  static bool fw_devlink_is_permissive(void)
1723  {
1724  	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1725  }
1726  
1727  bool fw_devlink_is_strict(void)
1728  {
1729  	return fw_devlink_strict && !fw_devlink_is_permissive();
1730  }
1731  
1732  static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1733  {
1734  	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1735  		return;
1736  
1737  	fwnode_call_int_op(fwnode, add_links);
1738  	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1739  }
1740  
1741  static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1742  {
1743  	struct fwnode_handle *child = NULL;
1744  
1745  	fw_devlink_parse_fwnode(fwnode);
1746  
1747  	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1748  		fw_devlink_parse_fwtree(child);
1749  }
1750  
1751  static void fw_devlink_relax_link(struct device_link *link)
1752  {
1753  	if (!(link->flags & DL_FLAG_INFERRED))
1754  		return;
1755  
1756  	if (device_link_flag_is_sync_state_only(link->flags))
1757  		return;
1758  
1759  	pm_runtime_drop_link(link);
1760  	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1761  	dev_dbg(link->consumer, "Relaxing link with %s\n",
1762  		dev_name(link->supplier));
1763  }
1764  
1765  static int fw_devlink_no_driver(struct device *dev, void *data)
1766  {
1767  	struct device_link *link = to_devlink(dev);
1768  
1769  	if (!link->supplier->can_match)
1770  		fw_devlink_relax_link(link);
1771  
1772  	return 0;
1773  }
1774  
1775  void fw_devlink_drivers_done(void)
1776  {
1777  	fw_devlink_drv_reg_done = true;
1778  	device_links_write_lock();
1779  	class_for_each_device(&devlink_class, NULL, NULL,
1780  			      fw_devlink_no_driver);
1781  	device_links_write_unlock();
1782  }
1783  
1784  static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1785  {
1786  	struct device_link *link = to_devlink(dev);
1787  	struct device *sup = link->supplier;
1788  
1789  	if (!(link->flags & DL_FLAG_MANAGED) ||
1790  	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1791  	    !dev_has_sync_state(sup))
1792  		return 0;
1793  
1794  	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1795  		dev_warn(sup, "sync_state() pending due to %s\n",
1796  			 dev_name(link->consumer));
1797  		return 0;
1798  	}
1799  
1800  	if (!list_empty(&sup->links.defer_sync))
1801  		return 0;
1802  
1803  	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1804  	sup->state_synced = true;
1805  	get_device(sup);
1806  	list_add_tail(&sup->links.defer_sync, data);
1807  
1808  	return 0;
1809  }
1810  
1811  void fw_devlink_probing_done(void)
1812  {
1813  	LIST_HEAD(sync_list);
1814  
1815  	device_links_write_lock();
1816  	class_for_each_device(&devlink_class, NULL, &sync_list,
1817  			      fw_devlink_dev_sync_state);
1818  	device_links_write_unlock();
1819  	device_links_flush_sync_list(&sync_list, NULL);
1820  }
1821  
1822  /**
1823   * wait_for_init_devices_probe - Try to probe any device needed for init
1824   *
1825   * Some devices might need to be probed and bound successfully before the kernel
1826   * boot sequence can finish and move on to init/userspace. For example, a
1827   * network interface might need to be bound to be able to mount a NFS rootfs.
1828   *
1829   * With fw_devlink=on by default, some of these devices might be blocked from
1830   * probing because they are waiting on a optional supplier that doesn't have a
1831   * driver. While fw_devlink will eventually identify such devices and unblock
1832   * the probing automatically, it might be too late by the time it unblocks the
1833   * probing of devices. For example, the IP4 autoconfig might timeout before
1834   * fw_devlink unblocks probing of the network interface.
1835   *
1836   * This function is available to temporarily try and probe all devices that have
1837   * a driver even if some of their suppliers haven't been added or don't have
1838   * drivers.
1839   *
1840   * The drivers can then decide which of the suppliers are optional vs mandatory
1841   * and probe the device if possible. By the time this function returns, all such
1842   * "best effort" probes are guaranteed to be completed. If a device successfully
1843   * probes in this mode, we delete all fw_devlink discovered dependencies of that
1844   * device where the supplier hasn't yet probed successfully because they have to
1845   * be optional dependencies.
1846   *
1847   * Any devices that didn't successfully probe go back to being treated as if
1848   * this function was never called.
1849   *
1850   * This also means that some devices that aren't needed for init and could have
1851   * waited for their optional supplier to probe (when the supplier's module is
1852   * loaded later on) would end up probing prematurely with limited functionality.
1853   * So call this function only when boot would fail without it.
1854   */
1855  void __init wait_for_init_devices_probe(void)
1856  {
1857  	if (!fw_devlink_flags || fw_devlink_is_permissive())
1858  		return;
1859  
1860  	/*
1861  	 * Wait for all ongoing probes to finish so that the "best effort" is
1862  	 * only applied to devices that can't probe otherwise.
1863  	 */
1864  	wait_for_device_probe();
1865  
1866  	pr_info("Trying to probe devices needed for running init ...\n");
1867  	fw_devlink_best_effort = true;
1868  	driver_deferred_probe_trigger();
1869  
1870  	/*
1871  	 * Wait for all "best effort" probes to finish before going back to
1872  	 * normal enforcement.
1873  	 */
1874  	wait_for_device_probe();
1875  	fw_devlink_best_effort = false;
1876  }
1877  
1878  static void fw_devlink_unblock_consumers(struct device *dev)
1879  {
1880  	struct device_link *link;
1881  
1882  	if (!fw_devlink_flags || fw_devlink_is_permissive())
1883  		return;
1884  
1885  	device_links_write_lock();
1886  	list_for_each_entry(link, &dev->links.consumers, s_node)
1887  		fw_devlink_relax_link(link);
1888  	device_links_write_unlock();
1889  }
1890  
1891  #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1892  
1893  static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1894  {
1895  	struct device *dev;
1896  	bool ret;
1897  
1898  	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1899  		return false;
1900  
1901  	dev = get_dev_from_fwnode(fwnode);
1902  	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1903  	put_device(dev);
1904  
1905  	return ret;
1906  }
1907  
1908  static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1909  {
1910  	struct fwnode_handle *parent;
1911  
1912  	fwnode_for_each_parent_node(fwnode, parent) {
1913  		if (fwnode_init_without_drv(parent)) {
1914  			fwnode_handle_put(parent);
1915  			return true;
1916  		}
1917  	}
1918  
1919  	return false;
1920  }
1921  
1922  /**
1923   * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1924   * @ancestor: Firmware which is tested for being an ancestor
1925   * @child: Firmware which is tested for being the child
1926   *
1927   * A node is considered an ancestor of itself too.
1928   *
1929   * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1930   */
1931  static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1932  				  const struct fwnode_handle *child)
1933  {
1934  	struct fwnode_handle *parent;
1935  
1936  	if (IS_ERR_OR_NULL(ancestor))
1937  		return false;
1938  
1939  	if (child == ancestor)
1940  		return true;
1941  
1942  	fwnode_for_each_parent_node(child, parent) {
1943  		if (parent == ancestor) {
1944  			fwnode_handle_put(parent);
1945  			return true;
1946  		}
1947  	}
1948  	return false;
1949  }
1950  
1951  /**
1952   * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1953   * @fwnode: firmware node
1954   *
1955   * Given a firmware node (@fwnode), this function finds its closest ancestor
1956   * firmware node that has a corresponding struct device and returns that struct
1957   * device.
1958   *
1959   * The caller is responsible for calling put_device() on the returned device
1960   * pointer.
1961   *
1962   * Return: a pointer to the device of the @fwnode's closest ancestor.
1963   */
1964  static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1965  {
1966  	struct fwnode_handle *parent;
1967  	struct device *dev;
1968  
1969  	fwnode_for_each_parent_node(fwnode, parent) {
1970  		dev = get_dev_from_fwnode(parent);
1971  		if (dev) {
1972  			fwnode_handle_put(parent);
1973  			return dev;
1974  		}
1975  	}
1976  	return NULL;
1977  }
1978  
1979  /**
1980   * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1981   * @con: Potential consumer device.
1982   * @sup_handle: Potential supplier's fwnode.
1983   *
1984   * Needs to be called with fwnode_lock and device link lock held.
1985   *
1986   * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1987   * depend on @con. This function can detect multiple cyles between @sup_handle
1988   * and @con. When such dependency cycles are found, convert all device links
1989   * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1990   * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1991   * converted into a device link in the future, they are created as
1992   * SYNC_STATE_ONLY device links. This is the equivalent of doing
1993   * fw_devlink=permissive just between the devices in the cycle. We need to do
1994   * this because, at this point, fw_devlink can't tell which of these
1995   * dependencies is not a real dependency.
1996   *
1997   * Return true if one or more cycles were found. Otherwise, return false.
1998   */
1999  static bool __fw_devlink_relax_cycles(struct device *con,
2000  				 struct fwnode_handle *sup_handle)
2001  {
2002  	struct device *sup_dev = NULL, *par_dev = NULL;
2003  	struct fwnode_link *link;
2004  	struct device_link *dev_link;
2005  	bool ret = false;
2006  
2007  	if (!sup_handle)
2008  		return false;
2009  
2010  	/*
2011  	 * We aren't trying to find all cycles. Just a cycle between con and
2012  	 * sup_handle.
2013  	 */
2014  	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2015  		return false;
2016  
2017  	sup_handle->flags |= FWNODE_FLAG_VISITED;
2018  
2019  	sup_dev = get_dev_from_fwnode(sup_handle);
2020  
2021  	/* Termination condition. */
2022  	if (sup_dev == con) {
2023  		pr_debug("----- cycle: start -----\n");
2024  		ret = true;
2025  		goto out;
2026  	}
2027  
2028  	/*
2029  	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2030  	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2031  	 * further.
2032  	 */
2033  	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2034  	    con->links.status == DL_DEV_NO_DRIVER) {
2035  		ret = false;
2036  		goto out;
2037  	}
2038  
2039  	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2040  		if (link->flags & FWLINK_FLAG_IGNORE)
2041  			continue;
2042  
2043  		if (__fw_devlink_relax_cycles(con, link->supplier)) {
2044  			__fwnode_link_cycle(link);
2045  			ret = true;
2046  		}
2047  	}
2048  
2049  	/*
2050  	 * Give priority to device parent over fwnode parent to account for any
2051  	 * quirks in how fwnodes are converted to devices.
2052  	 */
2053  	if (sup_dev)
2054  		par_dev = get_device(sup_dev->parent);
2055  	else
2056  		par_dev = fwnode_get_next_parent_dev(sup_handle);
2057  
2058  	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2059  		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2060  			 par_dev->fwnode);
2061  		ret = true;
2062  	}
2063  
2064  	if (!sup_dev)
2065  		goto out;
2066  
2067  	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2068  		/*
2069  		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2070  		 * such due to a cycle.
2071  		 */
2072  		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2073  		    !(dev_link->flags & DL_FLAG_CYCLE))
2074  			continue;
2075  
2076  		if (__fw_devlink_relax_cycles(con,
2077  					      dev_link->supplier->fwnode)) {
2078  			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2079  				 dev_link->supplier->fwnode);
2080  			fw_devlink_relax_link(dev_link);
2081  			dev_link->flags |= DL_FLAG_CYCLE;
2082  			ret = true;
2083  		}
2084  	}
2085  
2086  out:
2087  	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2088  	put_device(sup_dev);
2089  	put_device(par_dev);
2090  	return ret;
2091  }
2092  
2093  /**
2094   * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2095   * @con: consumer device for the device link
2096   * @sup_handle: fwnode handle of supplier
2097   * @link: fwnode link that's being converted to a device link
2098   *
2099   * This function will try to create a device link between the consumer device
2100   * @con and the supplier device represented by @sup_handle.
2101   *
2102   * The supplier has to be provided as a fwnode because incorrect cycles in
2103   * fwnode links can sometimes cause the supplier device to never be created.
2104   * This function detects such cases and returns an error if it cannot create a
2105   * device link from the consumer to a missing supplier.
2106   *
2107   * Returns,
2108   * 0 on successfully creating a device link
2109   * -EINVAL if the device link cannot be created as expected
2110   * -EAGAIN if the device link cannot be created right now, but it may be
2111   *  possible to do that in the future
2112   */
2113  static int fw_devlink_create_devlink(struct device *con,
2114  				     struct fwnode_handle *sup_handle,
2115  				     struct fwnode_link *link)
2116  {
2117  	struct device *sup_dev;
2118  	int ret = 0;
2119  	u32 flags;
2120  
2121  	if (link->flags & FWLINK_FLAG_IGNORE)
2122  		return 0;
2123  
2124  	if (con->fwnode == link->consumer)
2125  		flags = fw_devlink_get_flags(link->flags);
2126  	else
2127  		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2128  
2129  	/*
2130  	 * In some cases, a device P might also be a supplier to its child node
2131  	 * C. However, this would defer the probe of C until the probe of P
2132  	 * completes successfully. This is perfectly fine in the device driver
2133  	 * model. device_add() doesn't guarantee probe completion of the device
2134  	 * by the time it returns.
2135  	 *
2136  	 * However, there are a few drivers that assume C will finish probing
2137  	 * as soon as it's added and before P finishes probing. So, we provide
2138  	 * a flag to let fw_devlink know not to delay the probe of C until the
2139  	 * probe of P completes successfully.
2140  	 *
2141  	 * When such a flag is set, we can't create device links where P is the
2142  	 * supplier of C as that would delay the probe of C.
2143  	 */
2144  	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2145  	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2146  		return -EINVAL;
2147  
2148  	/*
2149  	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2150  	 * So, one might expect that cycle detection isn't necessary for them.
2151  	 * However, if the device link was marked as SYNC_STATE_ONLY because
2152  	 * it's part of a cycle, then we still need to do cycle detection. This
2153  	 * is because the consumer and supplier might be part of multiple cycles
2154  	 * and we need to detect all those cycles.
2155  	 */
2156  	if (!device_link_flag_is_sync_state_only(flags) ||
2157  	    flags & DL_FLAG_CYCLE) {
2158  		device_links_write_lock();
2159  		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2160  			__fwnode_link_cycle(link);
2161  			flags = fw_devlink_get_flags(link->flags);
2162  			pr_debug("----- cycle: end -----\n");
2163  			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2164  				 sup_handle);
2165  		}
2166  		device_links_write_unlock();
2167  	}
2168  
2169  	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2170  		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2171  	else
2172  		sup_dev = get_dev_from_fwnode(sup_handle);
2173  
2174  	if (sup_dev) {
2175  		/*
2176  		 * If it's one of those drivers that don't actually bind to
2177  		 * their device using driver core, then don't wait on this
2178  		 * supplier device indefinitely.
2179  		 */
2180  		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2181  		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2182  			dev_dbg(con,
2183  				"Not linking %pfwf - dev might never probe\n",
2184  				sup_handle);
2185  			ret = -EINVAL;
2186  			goto out;
2187  		}
2188  
2189  		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2190  			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2191  				flags, dev_name(sup_dev));
2192  			ret = -EINVAL;
2193  		}
2194  
2195  		goto out;
2196  	}
2197  
2198  	/*
2199  	 * Supplier or supplier's ancestor already initialized without a struct
2200  	 * device or being probed by a driver.
2201  	 */
2202  	if (fwnode_init_without_drv(sup_handle) ||
2203  	    fwnode_ancestor_init_without_drv(sup_handle)) {
2204  		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2205  			sup_handle);
2206  		return -EINVAL;
2207  	}
2208  
2209  	ret = -EAGAIN;
2210  out:
2211  	put_device(sup_dev);
2212  	return ret;
2213  }
2214  
2215  /**
2216   * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2217   * @dev: Device that needs to be linked to its consumers
2218   *
2219   * This function looks at all the consumer fwnodes of @dev and creates device
2220   * links between the consumer device and @dev (supplier).
2221   *
2222   * If the consumer device has not been added yet, then this function creates a
2223   * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2224   * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2225   * sync_state() callback before the real consumer device gets to be added and
2226   * then probed.
2227   *
2228   * Once device links are created from the real consumer to @dev (supplier), the
2229   * fwnode links are deleted.
2230   */
2231  static void __fw_devlink_link_to_consumers(struct device *dev)
2232  {
2233  	struct fwnode_handle *fwnode = dev->fwnode;
2234  	struct fwnode_link *link, *tmp;
2235  
2236  	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2237  		struct device *con_dev;
2238  		bool own_link = true;
2239  		int ret;
2240  
2241  		con_dev = get_dev_from_fwnode(link->consumer);
2242  		/*
2243  		 * If consumer device is not available yet, make a "proxy"
2244  		 * SYNC_STATE_ONLY link from the consumer's parent device to
2245  		 * the supplier device. This is necessary to make sure the
2246  		 * supplier doesn't get a sync_state() callback before the real
2247  		 * consumer can create a device link to the supplier.
2248  		 *
2249  		 * This proxy link step is needed to handle the case where the
2250  		 * consumer's parent device is added before the supplier.
2251  		 */
2252  		if (!con_dev) {
2253  			con_dev = fwnode_get_next_parent_dev(link->consumer);
2254  			/*
2255  			 * However, if the consumer's parent device is also the
2256  			 * parent of the supplier, don't create a
2257  			 * consumer-supplier link from the parent to its child
2258  			 * device. Such a dependency is impossible.
2259  			 */
2260  			if (con_dev &&
2261  			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2262  				put_device(con_dev);
2263  				con_dev = NULL;
2264  			} else {
2265  				own_link = false;
2266  			}
2267  		}
2268  
2269  		if (!con_dev)
2270  			continue;
2271  
2272  		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2273  		put_device(con_dev);
2274  		if (!own_link || ret == -EAGAIN)
2275  			continue;
2276  
2277  		__fwnode_link_del(link);
2278  	}
2279  }
2280  
2281  /**
2282   * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2283   * @dev: The consumer device that needs to be linked to its suppliers
2284   * @fwnode: Root of the fwnode tree that is used to create device links
2285   *
2286   * This function looks at all the supplier fwnodes of fwnode tree rooted at
2287   * @fwnode and creates device links between @dev (consumer) and all the
2288   * supplier devices of the entire fwnode tree at @fwnode.
2289   *
2290   * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2291   * and the real suppliers of @dev. Once these device links are created, the
2292   * fwnode links are deleted.
2293   *
2294   * In addition, it also looks at all the suppliers of the entire fwnode tree
2295   * because some of the child devices of @dev that have not been added yet
2296   * (because @dev hasn't probed) might already have their suppliers added to
2297   * driver core. So, this function creates SYNC_STATE_ONLY device links between
2298   * @dev (consumer) and these suppliers to make sure they don't execute their
2299   * sync_state() callbacks before these child devices have a chance to create
2300   * their device links. The fwnode links that correspond to the child devices
2301   * aren't delete because they are needed later to create the device links
2302   * between the real consumer and supplier devices.
2303   */
2304  static void __fw_devlink_link_to_suppliers(struct device *dev,
2305  					   struct fwnode_handle *fwnode)
2306  {
2307  	bool own_link = (dev->fwnode == fwnode);
2308  	struct fwnode_link *link, *tmp;
2309  	struct fwnode_handle *child = NULL;
2310  
2311  	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2312  		int ret;
2313  		struct fwnode_handle *sup = link->supplier;
2314  
2315  		ret = fw_devlink_create_devlink(dev, sup, link);
2316  		if (!own_link || ret == -EAGAIN)
2317  			continue;
2318  
2319  		__fwnode_link_del(link);
2320  	}
2321  
2322  	/*
2323  	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2324  	 * all the descendants. This proxy link step is needed to handle the
2325  	 * case where the supplier is added before the consumer's parent device
2326  	 * (@dev).
2327  	 */
2328  	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2329  		__fw_devlink_link_to_suppliers(dev, child);
2330  }
2331  
2332  static void fw_devlink_link_device(struct device *dev)
2333  {
2334  	struct fwnode_handle *fwnode = dev->fwnode;
2335  
2336  	if (!fw_devlink_flags)
2337  		return;
2338  
2339  	fw_devlink_parse_fwtree(fwnode);
2340  
2341  	mutex_lock(&fwnode_link_lock);
2342  	__fw_devlink_link_to_consumers(dev);
2343  	__fw_devlink_link_to_suppliers(dev, fwnode);
2344  	mutex_unlock(&fwnode_link_lock);
2345  }
2346  
2347  /* Device links support end. */
2348  
2349  static struct kobject *dev_kobj;
2350  
2351  /* /sys/dev/char */
2352  static struct kobject *sysfs_dev_char_kobj;
2353  
2354  /* /sys/dev/block */
2355  static struct kobject *sysfs_dev_block_kobj;
2356  
2357  static DEFINE_MUTEX(device_hotplug_lock);
2358  
2359  void lock_device_hotplug(void)
2360  {
2361  	mutex_lock(&device_hotplug_lock);
2362  }
2363  
2364  void unlock_device_hotplug(void)
2365  {
2366  	mutex_unlock(&device_hotplug_lock);
2367  }
2368  
2369  int lock_device_hotplug_sysfs(void)
2370  {
2371  	if (mutex_trylock(&device_hotplug_lock))
2372  		return 0;
2373  
2374  	/* Avoid busy looping (5 ms of sleep should do). */
2375  	msleep(5);
2376  	return restart_syscall();
2377  }
2378  
2379  #ifdef CONFIG_BLOCK
2380  static inline int device_is_not_partition(struct device *dev)
2381  {
2382  	return !(dev->type == &part_type);
2383  }
2384  #else
2385  static inline int device_is_not_partition(struct device *dev)
2386  {
2387  	return 1;
2388  }
2389  #endif
2390  
2391  static void device_platform_notify(struct device *dev)
2392  {
2393  	acpi_device_notify(dev);
2394  
2395  	software_node_notify(dev);
2396  }
2397  
2398  static void device_platform_notify_remove(struct device *dev)
2399  {
2400  	software_node_notify_remove(dev);
2401  
2402  	acpi_device_notify_remove(dev);
2403  }
2404  
2405  /**
2406   * dev_driver_string - Return a device's driver name, if at all possible
2407   * @dev: struct device to get the name of
2408   *
2409   * Will return the device's driver's name if it is bound to a device.  If
2410   * the device is not bound to a driver, it will return the name of the bus
2411   * it is attached to.  If it is not attached to a bus either, an empty
2412   * string will be returned.
2413   */
2414  const char *dev_driver_string(const struct device *dev)
2415  {
2416  	struct device_driver *drv;
2417  
2418  	/* dev->driver can change to NULL underneath us because of unbinding,
2419  	 * so be careful about accessing it.  dev->bus and dev->class should
2420  	 * never change once they are set, so they don't need special care.
2421  	 */
2422  	drv = READ_ONCE(dev->driver);
2423  	return drv ? drv->name : dev_bus_name(dev);
2424  }
2425  EXPORT_SYMBOL(dev_driver_string);
2426  
2427  #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2428  
2429  static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2430  			     char *buf)
2431  {
2432  	struct device_attribute *dev_attr = to_dev_attr(attr);
2433  	struct device *dev = kobj_to_dev(kobj);
2434  	ssize_t ret = -EIO;
2435  
2436  	if (dev_attr->show)
2437  		ret = dev_attr->show(dev, dev_attr, buf);
2438  	if (ret >= (ssize_t)PAGE_SIZE) {
2439  		printk("dev_attr_show: %pS returned bad count\n",
2440  				dev_attr->show);
2441  	}
2442  	return ret;
2443  }
2444  
2445  static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2446  			      const char *buf, size_t count)
2447  {
2448  	struct device_attribute *dev_attr = to_dev_attr(attr);
2449  	struct device *dev = kobj_to_dev(kobj);
2450  	ssize_t ret = -EIO;
2451  
2452  	if (dev_attr->store)
2453  		ret = dev_attr->store(dev, dev_attr, buf, count);
2454  	return ret;
2455  }
2456  
2457  static const struct sysfs_ops dev_sysfs_ops = {
2458  	.show	= dev_attr_show,
2459  	.store	= dev_attr_store,
2460  };
2461  
2462  #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2463  
2464  ssize_t device_store_ulong(struct device *dev,
2465  			   struct device_attribute *attr,
2466  			   const char *buf, size_t size)
2467  {
2468  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2469  	int ret;
2470  	unsigned long new;
2471  
2472  	ret = kstrtoul(buf, 0, &new);
2473  	if (ret)
2474  		return ret;
2475  	*(unsigned long *)(ea->var) = new;
2476  	/* Always return full write size even if we didn't consume all */
2477  	return size;
2478  }
2479  EXPORT_SYMBOL_GPL(device_store_ulong);
2480  
2481  ssize_t device_show_ulong(struct device *dev,
2482  			  struct device_attribute *attr,
2483  			  char *buf)
2484  {
2485  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2486  	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2487  }
2488  EXPORT_SYMBOL_GPL(device_show_ulong);
2489  
2490  ssize_t device_store_int(struct device *dev,
2491  			 struct device_attribute *attr,
2492  			 const char *buf, size_t size)
2493  {
2494  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2495  	int ret;
2496  	long new;
2497  
2498  	ret = kstrtol(buf, 0, &new);
2499  	if (ret)
2500  		return ret;
2501  
2502  	if (new > INT_MAX || new < INT_MIN)
2503  		return -EINVAL;
2504  	*(int *)(ea->var) = new;
2505  	/* Always return full write size even if we didn't consume all */
2506  	return size;
2507  }
2508  EXPORT_SYMBOL_GPL(device_store_int);
2509  
2510  ssize_t device_show_int(struct device *dev,
2511  			struct device_attribute *attr,
2512  			char *buf)
2513  {
2514  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2515  
2516  	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2517  }
2518  EXPORT_SYMBOL_GPL(device_show_int);
2519  
2520  ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2521  			  const char *buf, size_t size)
2522  {
2523  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2524  
2525  	if (kstrtobool(buf, ea->var) < 0)
2526  		return -EINVAL;
2527  
2528  	return size;
2529  }
2530  EXPORT_SYMBOL_GPL(device_store_bool);
2531  
2532  ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2533  			 char *buf)
2534  {
2535  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2536  
2537  	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2538  }
2539  EXPORT_SYMBOL_GPL(device_show_bool);
2540  
2541  ssize_t device_show_string(struct device *dev,
2542  			   struct device_attribute *attr, char *buf)
2543  {
2544  	struct dev_ext_attribute *ea = to_ext_attr(attr);
2545  
2546  	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2547  }
2548  EXPORT_SYMBOL_GPL(device_show_string);
2549  
2550  /**
2551   * device_release - free device structure.
2552   * @kobj: device's kobject.
2553   *
2554   * This is called once the reference count for the object
2555   * reaches 0. We forward the call to the device's release
2556   * method, which should handle actually freeing the structure.
2557   */
2558  static void device_release(struct kobject *kobj)
2559  {
2560  	struct device *dev = kobj_to_dev(kobj);
2561  	struct device_private *p = dev->p;
2562  
2563  	/*
2564  	 * Some platform devices are driven without driver attached
2565  	 * and managed resources may have been acquired.  Make sure
2566  	 * all resources are released.
2567  	 *
2568  	 * Drivers still can add resources into device after device
2569  	 * is deleted but alive, so release devres here to avoid
2570  	 * possible memory leak.
2571  	 */
2572  	devres_release_all(dev);
2573  
2574  	kfree(dev->dma_range_map);
2575  
2576  	if (dev->release)
2577  		dev->release(dev);
2578  	else if (dev->type && dev->type->release)
2579  		dev->type->release(dev);
2580  	else if (dev->class && dev->class->dev_release)
2581  		dev->class->dev_release(dev);
2582  	else
2583  		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2584  			dev_name(dev));
2585  	kfree(p);
2586  }
2587  
2588  static const void *device_namespace(const struct kobject *kobj)
2589  {
2590  	const struct device *dev = kobj_to_dev(kobj);
2591  	const void *ns = NULL;
2592  
2593  	if (dev->class && dev->class->ns_type)
2594  		ns = dev->class->namespace(dev);
2595  
2596  	return ns;
2597  }
2598  
2599  static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2600  {
2601  	const struct device *dev = kobj_to_dev(kobj);
2602  
2603  	if (dev->class && dev->class->get_ownership)
2604  		dev->class->get_ownership(dev, uid, gid);
2605  }
2606  
2607  static const struct kobj_type device_ktype = {
2608  	.release	= device_release,
2609  	.sysfs_ops	= &dev_sysfs_ops,
2610  	.namespace	= device_namespace,
2611  	.get_ownership	= device_get_ownership,
2612  };
2613  
2614  
2615  static int dev_uevent_filter(const struct kobject *kobj)
2616  {
2617  	const struct kobj_type *ktype = get_ktype(kobj);
2618  
2619  	if (ktype == &device_ktype) {
2620  		const struct device *dev = kobj_to_dev(kobj);
2621  		if (dev->bus)
2622  			return 1;
2623  		if (dev->class)
2624  			return 1;
2625  	}
2626  	return 0;
2627  }
2628  
2629  static const char *dev_uevent_name(const struct kobject *kobj)
2630  {
2631  	const struct device *dev = kobj_to_dev(kobj);
2632  
2633  	if (dev->bus)
2634  		return dev->bus->name;
2635  	if (dev->class)
2636  		return dev->class->name;
2637  	return NULL;
2638  }
2639  
2640  static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2641  {
2642  	const struct device *dev = kobj_to_dev(kobj);
2643  	int retval = 0;
2644  
2645  	/* add device node properties if present */
2646  	if (MAJOR(dev->devt)) {
2647  		const char *tmp;
2648  		const char *name;
2649  		umode_t mode = 0;
2650  		kuid_t uid = GLOBAL_ROOT_UID;
2651  		kgid_t gid = GLOBAL_ROOT_GID;
2652  
2653  		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2654  		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2655  		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2656  		if (name) {
2657  			add_uevent_var(env, "DEVNAME=%s", name);
2658  			if (mode)
2659  				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2660  			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2661  				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2662  			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2663  				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2664  			kfree(tmp);
2665  		}
2666  	}
2667  
2668  	if (dev->type && dev->type->name)
2669  		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2670  
2671  	if (dev->driver)
2672  		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2673  
2674  	/* Add common DT information about the device */
2675  	of_device_uevent(dev, env);
2676  
2677  	/* have the bus specific function add its stuff */
2678  	if (dev->bus && dev->bus->uevent) {
2679  		retval = dev->bus->uevent(dev, env);
2680  		if (retval)
2681  			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2682  				 dev_name(dev), __func__, retval);
2683  	}
2684  
2685  	/* have the class specific function add its stuff */
2686  	if (dev->class && dev->class->dev_uevent) {
2687  		retval = dev->class->dev_uevent(dev, env);
2688  		if (retval)
2689  			pr_debug("device: '%s': %s: class uevent() "
2690  				 "returned %d\n", dev_name(dev),
2691  				 __func__, retval);
2692  	}
2693  
2694  	/* have the device type specific function add its stuff */
2695  	if (dev->type && dev->type->uevent) {
2696  		retval = dev->type->uevent(dev, env);
2697  		if (retval)
2698  			pr_debug("device: '%s': %s: dev_type uevent() "
2699  				 "returned %d\n", dev_name(dev),
2700  				 __func__, retval);
2701  	}
2702  
2703  	return retval;
2704  }
2705  
2706  static const struct kset_uevent_ops device_uevent_ops = {
2707  	.filter =	dev_uevent_filter,
2708  	.name =		dev_uevent_name,
2709  	.uevent =	dev_uevent,
2710  };
2711  
2712  static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2713  			   char *buf)
2714  {
2715  	struct kobject *top_kobj;
2716  	struct kset *kset;
2717  	struct kobj_uevent_env *env = NULL;
2718  	int i;
2719  	int len = 0;
2720  	int retval;
2721  
2722  	/* search the kset, the device belongs to */
2723  	top_kobj = &dev->kobj;
2724  	while (!top_kobj->kset && top_kobj->parent)
2725  		top_kobj = top_kobj->parent;
2726  	if (!top_kobj->kset)
2727  		goto out;
2728  
2729  	kset = top_kobj->kset;
2730  	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2731  		goto out;
2732  
2733  	/* respect filter */
2734  	if (kset->uevent_ops && kset->uevent_ops->filter)
2735  		if (!kset->uevent_ops->filter(&dev->kobj))
2736  			goto out;
2737  
2738  	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2739  	if (!env)
2740  		return -ENOMEM;
2741  
2742  	/* Synchronize with really_probe() */
2743  	device_lock(dev);
2744  	/* let the kset specific function add its keys */
2745  	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2746  	device_unlock(dev);
2747  	if (retval)
2748  		goto out;
2749  
2750  	/* copy keys to file */
2751  	for (i = 0; i < env->envp_idx; i++)
2752  		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2753  out:
2754  	kfree(env);
2755  	return len;
2756  }
2757  
2758  static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2759  			    const char *buf, size_t count)
2760  {
2761  	int rc;
2762  
2763  	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2764  
2765  	if (rc) {
2766  		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2767  		return rc;
2768  	}
2769  
2770  	return count;
2771  }
2772  static DEVICE_ATTR_RW(uevent);
2773  
2774  static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2775  			   char *buf)
2776  {
2777  	bool val;
2778  
2779  	device_lock(dev);
2780  	val = !dev->offline;
2781  	device_unlock(dev);
2782  	return sysfs_emit(buf, "%u\n", val);
2783  }
2784  
2785  static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2786  			    const char *buf, size_t count)
2787  {
2788  	bool val;
2789  	int ret;
2790  
2791  	ret = kstrtobool(buf, &val);
2792  	if (ret < 0)
2793  		return ret;
2794  
2795  	ret = lock_device_hotplug_sysfs();
2796  	if (ret)
2797  		return ret;
2798  
2799  	ret = val ? device_online(dev) : device_offline(dev);
2800  	unlock_device_hotplug();
2801  	return ret < 0 ? ret : count;
2802  }
2803  static DEVICE_ATTR_RW(online);
2804  
2805  static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2806  			      char *buf)
2807  {
2808  	const char *loc;
2809  
2810  	switch (dev->removable) {
2811  	case DEVICE_REMOVABLE:
2812  		loc = "removable";
2813  		break;
2814  	case DEVICE_FIXED:
2815  		loc = "fixed";
2816  		break;
2817  	default:
2818  		loc = "unknown";
2819  	}
2820  	return sysfs_emit(buf, "%s\n", loc);
2821  }
2822  static DEVICE_ATTR_RO(removable);
2823  
2824  int device_add_groups(struct device *dev, const struct attribute_group **groups)
2825  {
2826  	return sysfs_create_groups(&dev->kobj, groups);
2827  }
2828  EXPORT_SYMBOL_GPL(device_add_groups);
2829  
2830  void device_remove_groups(struct device *dev,
2831  			  const struct attribute_group **groups)
2832  {
2833  	sysfs_remove_groups(&dev->kobj, groups);
2834  }
2835  EXPORT_SYMBOL_GPL(device_remove_groups);
2836  
2837  union device_attr_group_devres {
2838  	const struct attribute_group *group;
2839  	const struct attribute_group **groups;
2840  };
2841  
2842  static void devm_attr_group_remove(struct device *dev, void *res)
2843  {
2844  	union device_attr_group_devres *devres = res;
2845  	const struct attribute_group *group = devres->group;
2846  
2847  	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2848  	sysfs_remove_group(&dev->kobj, group);
2849  }
2850  
2851  /**
2852   * devm_device_add_group - given a device, create a managed attribute group
2853   * @dev:	The device to create the group for
2854   * @grp:	The attribute group to create
2855   *
2856   * This function creates a group for the first time.  It will explicitly
2857   * warn and error if any of the attribute files being created already exist.
2858   *
2859   * Returns 0 on success or error code on failure.
2860   */
2861  int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2862  {
2863  	union device_attr_group_devres *devres;
2864  	int error;
2865  
2866  	devres = devres_alloc(devm_attr_group_remove,
2867  			      sizeof(*devres), GFP_KERNEL);
2868  	if (!devres)
2869  		return -ENOMEM;
2870  
2871  	error = sysfs_create_group(&dev->kobj, grp);
2872  	if (error) {
2873  		devres_free(devres);
2874  		return error;
2875  	}
2876  
2877  	devres->group = grp;
2878  	devres_add(dev, devres);
2879  	return 0;
2880  }
2881  EXPORT_SYMBOL_GPL(devm_device_add_group);
2882  
2883  static int device_add_attrs(struct device *dev)
2884  {
2885  	const struct class *class = dev->class;
2886  	const struct device_type *type = dev->type;
2887  	int error;
2888  
2889  	if (class) {
2890  		error = device_add_groups(dev, class->dev_groups);
2891  		if (error)
2892  			return error;
2893  	}
2894  
2895  	if (type) {
2896  		error = device_add_groups(dev, type->groups);
2897  		if (error)
2898  			goto err_remove_class_groups;
2899  	}
2900  
2901  	error = device_add_groups(dev, dev->groups);
2902  	if (error)
2903  		goto err_remove_type_groups;
2904  
2905  	if (device_supports_offline(dev) && !dev->offline_disabled) {
2906  		error = device_create_file(dev, &dev_attr_online);
2907  		if (error)
2908  			goto err_remove_dev_groups;
2909  	}
2910  
2911  	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2912  		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2913  		if (error)
2914  			goto err_remove_dev_online;
2915  	}
2916  
2917  	if (dev_removable_is_valid(dev)) {
2918  		error = device_create_file(dev, &dev_attr_removable);
2919  		if (error)
2920  			goto err_remove_dev_waiting_for_supplier;
2921  	}
2922  
2923  	if (dev_add_physical_location(dev)) {
2924  		error = device_add_group(dev,
2925  			&dev_attr_physical_location_group);
2926  		if (error)
2927  			goto err_remove_dev_removable;
2928  	}
2929  
2930  	return 0;
2931  
2932   err_remove_dev_removable:
2933  	device_remove_file(dev, &dev_attr_removable);
2934   err_remove_dev_waiting_for_supplier:
2935  	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2936   err_remove_dev_online:
2937  	device_remove_file(dev, &dev_attr_online);
2938   err_remove_dev_groups:
2939  	device_remove_groups(dev, dev->groups);
2940   err_remove_type_groups:
2941  	if (type)
2942  		device_remove_groups(dev, type->groups);
2943   err_remove_class_groups:
2944  	if (class)
2945  		device_remove_groups(dev, class->dev_groups);
2946  
2947  	return error;
2948  }
2949  
2950  static void device_remove_attrs(struct device *dev)
2951  {
2952  	const struct class *class = dev->class;
2953  	const struct device_type *type = dev->type;
2954  
2955  	if (dev->physical_location) {
2956  		device_remove_group(dev, &dev_attr_physical_location_group);
2957  		kfree(dev->physical_location);
2958  	}
2959  
2960  	device_remove_file(dev, &dev_attr_removable);
2961  	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2962  	device_remove_file(dev, &dev_attr_online);
2963  	device_remove_groups(dev, dev->groups);
2964  
2965  	if (type)
2966  		device_remove_groups(dev, type->groups);
2967  
2968  	if (class)
2969  		device_remove_groups(dev, class->dev_groups);
2970  }
2971  
2972  static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2973  			char *buf)
2974  {
2975  	return print_dev_t(buf, dev->devt);
2976  }
2977  static DEVICE_ATTR_RO(dev);
2978  
2979  /* /sys/devices/ */
2980  struct kset *devices_kset;
2981  
2982  /**
2983   * devices_kset_move_before - Move device in the devices_kset's list.
2984   * @deva: Device to move.
2985   * @devb: Device @deva should come before.
2986   */
2987  static void devices_kset_move_before(struct device *deva, struct device *devb)
2988  {
2989  	if (!devices_kset)
2990  		return;
2991  	pr_debug("devices_kset: Moving %s before %s\n",
2992  		 dev_name(deva), dev_name(devb));
2993  	spin_lock(&devices_kset->list_lock);
2994  	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2995  	spin_unlock(&devices_kset->list_lock);
2996  }
2997  
2998  /**
2999   * devices_kset_move_after - Move device in the devices_kset's list.
3000   * @deva: Device to move
3001   * @devb: Device @deva should come after.
3002   */
3003  static void devices_kset_move_after(struct device *deva, struct device *devb)
3004  {
3005  	if (!devices_kset)
3006  		return;
3007  	pr_debug("devices_kset: Moving %s after %s\n",
3008  		 dev_name(deva), dev_name(devb));
3009  	spin_lock(&devices_kset->list_lock);
3010  	list_move(&deva->kobj.entry, &devb->kobj.entry);
3011  	spin_unlock(&devices_kset->list_lock);
3012  }
3013  
3014  /**
3015   * devices_kset_move_last - move the device to the end of devices_kset's list.
3016   * @dev: device to move
3017   */
3018  void devices_kset_move_last(struct device *dev)
3019  {
3020  	if (!devices_kset)
3021  		return;
3022  	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3023  	spin_lock(&devices_kset->list_lock);
3024  	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3025  	spin_unlock(&devices_kset->list_lock);
3026  }
3027  
3028  /**
3029   * device_create_file - create sysfs attribute file for device.
3030   * @dev: device.
3031   * @attr: device attribute descriptor.
3032   */
3033  int device_create_file(struct device *dev,
3034  		       const struct device_attribute *attr)
3035  {
3036  	int error = 0;
3037  
3038  	if (dev) {
3039  		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3040  			"Attribute %s: write permission without 'store'\n",
3041  			attr->attr.name);
3042  		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3043  			"Attribute %s: read permission without 'show'\n",
3044  			attr->attr.name);
3045  		error = sysfs_create_file(&dev->kobj, &attr->attr);
3046  	}
3047  
3048  	return error;
3049  }
3050  EXPORT_SYMBOL_GPL(device_create_file);
3051  
3052  /**
3053   * device_remove_file - remove sysfs attribute file.
3054   * @dev: device.
3055   * @attr: device attribute descriptor.
3056   */
3057  void device_remove_file(struct device *dev,
3058  			const struct device_attribute *attr)
3059  {
3060  	if (dev)
3061  		sysfs_remove_file(&dev->kobj, &attr->attr);
3062  }
3063  EXPORT_SYMBOL_GPL(device_remove_file);
3064  
3065  /**
3066   * device_remove_file_self - remove sysfs attribute file from its own method.
3067   * @dev: device.
3068   * @attr: device attribute descriptor.
3069   *
3070   * See kernfs_remove_self() for details.
3071   */
3072  bool device_remove_file_self(struct device *dev,
3073  			     const struct device_attribute *attr)
3074  {
3075  	if (dev)
3076  		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3077  	else
3078  		return false;
3079  }
3080  EXPORT_SYMBOL_GPL(device_remove_file_self);
3081  
3082  /**
3083   * device_create_bin_file - create sysfs binary attribute file for device.
3084   * @dev: device.
3085   * @attr: device binary attribute descriptor.
3086   */
3087  int device_create_bin_file(struct device *dev,
3088  			   const struct bin_attribute *attr)
3089  {
3090  	int error = -EINVAL;
3091  	if (dev)
3092  		error = sysfs_create_bin_file(&dev->kobj, attr);
3093  	return error;
3094  }
3095  EXPORT_SYMBOL_GPL(device_create_bin_file);
3096  
3097  /**
3098   * device_remove_bin_file - remove sysfs binary attribute file
3099   * @dev: device.
3100   * @attr: device binary attribute descriptor.
3101   */
3102  void device_remove_bin_file(struct device *dev,
3103  			    const struct bin_attribute *attr)
3104  {
3105  	if (dev)
3106  		sysfs_remove_bin_file(&dev->kobj, attr);
3107  }
3108  EXPORT_SYMBOL_GPL(device_remove_bin_file);
3109  
3110  static void klist_children_get(struct klist_node *n)
3111  {
3112  	struct device_private *p = to_device_private_parent(n);
3113  	struct device *dev = p->device;
3114  
3115  	get_device(dev);
3116  }
3117  
3118  static void klist_children_put(struct klist_node *n)
3119  {
3120  	struct device_private *p = to_device_private_parent(n);
3121  	struct device *dev = p->device;
3122  
3123  	put_device(dev);
3124  }
3125  
3126  /**
3127   * device_initialize - init device structure.
3128   * @dev: device.
3129   *
3130   * This prepares the device for use by other layers by initializing
3131   * its fields.
3132   * It is the first half of device_register(), if called by
3133   * that function, though it can also be called separately, so one
3134   * may use @dev's fields. In particular, get_device()/put_device()
3135   * may be used for reference counting of @dev after calling this
3136   * function.
3137   *
3138   * All fields in @dev must be initialized by the caller to 0, except
3139   * for those explicitly set to some other value.  The simplest
3140   * approach is to use kzalloc() to allocate the structure containing
3141   * @dev.
3142   *
3143   * NOTE: Use put_device() to give up your reference instead of freeing
3144   * @dev directly once you have called this function.
3145   */
3146  void device_initialize(struct device *dev)
3147  {
3148  	dev->kobj.kset = devices_kset;
3149  	kobject_init(&dev->kobj, &device_ktype);
3150  	INIT_LIST_HEAD(&dev->dma_pools);
3151  	mutex_init(&dev->mutex);
3152  	lockdep_set_novalidate_class(&dev->mutex);
3153  	spin_lock_init(&dev->devres_lock);
3154  	INIT_LIST_HEAD(&dev->devres_head);
3155  	device_pm_init(dev);
3156  	set_dev_node(dev, NUMA_NO_NODE);
3157  	INIT_LIST_HEAD(&dev->links.consumers);
3158  	INIT_LIST_HEAD(&dev->links.suppliers);
3159  	INIT_LIST_HEAD(&dev->links.defer_sync);
3160  	dev->links.status = DL_DEV_NO_DRIVER;
3161  #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3162      defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3163      defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3164  	dev->dma_coherent = dma_default_coherent;
3165  #endif
3166  	swiotlb_dev_init(dev);
3167  }
3168  EXPORT_SYMBOL_GPL(device_initialize);
3169  
3170  struct kobject *virtual_device_parent(struct device *dev)
3171  {
3172  	static struct kobject *virtual_dir = NULL;
3173  
3174  	if (!virtual_dir)
3175  		virtual_dir = kobject_create_and_add("virtual",
3176  						     &devices_kset->kobj);
3177  
3178  	return virtual_dir;
3179  }
3180  
3181  struct class_dir {
3182  	struct kobject kobj;
3183  	const struct class *class;
3184  };
3185  
3186  #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3187  
3188  static void class_dir_release(struct kobject *kobj)
3189  {
3190  	struct class_dir *dir = to_class_dir(kobj);
3191  	kfree(dir);
3192  }
3193  
3194  static const
3195  struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3196  {
3197  	const struct class_dir *dir = to_class_dir(kobj);
3198  	return dir->class->ns_type;
3199  }
3200  
3201  static const struct kobj_type class_dir_ktype = {
3202  	.release	= class_dir_release,
3203  	.sysfs_ops	= &kobj_sysfs_ops,
3204  	.child_ns_type	= class_dir_child_ns_type
3205  };
3206  
3207  static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3208  						struct kobject *parent_kobj)
3209  {
3210  	struct class_dir *dir;
3211  	int retval;
3212  
3213  	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3214  	if (!dir)
3215  		return ERR_PTR(-ENOMEM);
3216  
3217  	dir->class = sp->class;
3218  	kobject_init(&dir->kobj, &class_dir_ktype);
3219  
3220  	dir->kobj.kset = &sp->glue_dirs;
3221  
3222  	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3223  	if (retval < 0) {
3224  		kobject_put(&dir->kobj);
3225  		return ERR_PTR(retval);
3226  	}
3227  	return &dir->kobj;
3228  }
3229  
3230  static DEFINE_MUTEX(gdp_mutex);
3231  
3232  static struct kobject *get_device_parent(struct device *dev,
3233  					 struct device *parent)
3234  {
3235  	struct subsys_private *sp = class_to_subsys(dev->class);
3236  	struct kobject *kobj = NULL;
3237  
3238  	if (sp) {
3239  		struct kobject *parent_kobj;
3240  		struct kobject *k;
3241  
3242  		/*
3243  		 * If we have no parent, we live in "virtual".
3244  		 * Class-devices with a non class-device as parent, live
3245  		 * in a "glue" directory to prevent namespace collisions.
3246  		 */
3247  		if (parent == NULL)
3248  			parent_kobj = virtual_device_parent(dev);
3249  		else if (parent->class && !dev->class->ns_type) {
3250  			subsys_put(sp);
3251  			return &parent->kobj;
3252  		} else {
3253  			parent_kobj = &parent->kobj;
3254  		}
3255  
3256  		mutex_lock(&gdp_mutex);
3257  
3258  		/* find our class-directory at the parent and reference it */
3259  		spin_lock(&sp->glue_dirs.list_lock);
3260  		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3261  			if (k->parent == parent_kobj) {
3262  				kobj = kobject_get(k);
3263  				break;
3264  			}
3265  		spin_unlock(&sp->glue_dirs.list_lock);
3266  		if (kobj) {
3267  			mutex_unlock(&gdp_mutex);
3268  			subsys_put(sp);
3269  			return kobj;
3270  		}
3271  
3272  		/* or create a new class-directory at the parent device */
3273  		k = class_dir_create_and_add(sp, parent_kobj);
3274  		/* do not emit an uevent for this simple "glue" directory */
3275  		mutex_unlock(&gdp_mutex);
3276  		subsys_put(sp);
3277  		return k;
3278  	}
3279  
3280  	/* subsystems can specify a default root directory for their devices */
3281  	if (!parent && dev->bus) {
3282  		struct device *dev_root = bus_get_dev_root(dev->bus);
3283  
3284  		if (dev_root) {
3285  			kobj = &dev_root->kobj;
3286  			put_device(dev_root);
3287  			return kobj;
3288  		}
3289  	}
3290  
3291  	if (parent)
3292  		return &parent->kobj;
3293  	return NULL;
3294  }
3295  
3296  static inline bool live_in_glue_dir(struct kobject *kobj,
3297  				    struct device *dev)
3298  {
3299  	struct subsys_private *sp;
3300  	bool retval;
3301  
3302  	if (!kobj || !dev->class)
3303  		return false;
3304  
3305  	sp = class_to_subsys(dev->class);
3306  	if (!sp)
3307  		return false;
3308  
3309  	if (kobj->kset == &sp->glue_dirs)
3310  		retval = true;
3311  	else
3312  		retval = false;
3313  
3314  	subsys_put(sp);
3315  	return retval;
3316  }
3317  
3318  static inline struct kobject *get_glue_dir(struct device *dev)
3319  {
3320  	return dev->kobj.parent;
3321  }
3322  
3323  /**
3324   * kobject_has_children - Returns whether a kobject has children.
3325   * @kobj: the object to test
3326   *
3327   * This will return whether a kobject has other kobjects as children.
3328   *
3329   * It does NOT account for the presence of attribute files, only sub
3330   * directories. It also assumes there is no concurrent addition or
3331   * removal of such children, and thus relies on external locking.
3332   */
3333  static inline bool kobject_has_children(struct kobject *kobj)
3334  {
3335  	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3336  
3337  	return kobj->sd && kobj->sd->dir.subdirs;
3338  }
3339  
3340  /*
3341   * make sure cleaning up dir as the last step, we need to make
3342   * sure .release handler of kobject is run with holding the
3343   * global lock
3344   */
3345  static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3346  {
3347  	unsigned int ref;
3348  
3349  	/* see if we live in a "glue" directory */
3350  	if (!live_in_glue_dir(glue_dir, dev))
3351  		return;
3352  
3353  	mutex_lock(&gdp_mutex);
3354  	/**
3355  	 * There is a race condition between removing glue directory
3356  	 * and adding a new device under the glue directory.
3357  	 *
3358  	 * CPU1:                                         CPU2:
3359  	 *
3360  	 * device_add()
3361  	 *   get_device_parent()
3362  	 *     class_dir_create_and_add()
3363  	 *       kobject_add_internal()
3364  	 *         create_dir()    // create glue_dir
3365  	 *
3366  	 *                                               device_add()
3367  	 *                                                 get_device_parent()
3368  	 *                                                   kobject_get() // get glue_dir
3369  	 *
3370  	 * device_del()
3371  	 *   cleanup_glue_dir()
3372  	 *     kobject_del(glue_dir)
3373  	 *
3374  	 *                                               kobject_add()
3375  	 *                                                 kobject_add_internal()
3376  	 *                                                   create_dir() // in glue_dir
3377  	 *                                                     sysfs_create_dir_ns()
3378  	 *                                                       kernfs_create_dir_ns(sd)
3379  	 *
3380  	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3381  	 *       sysfs_put()        // free glue_dir->sd
3382  	 *
3383  	 *                                                         // sd is freed
3384  	 *                                                         kernfs_new_node(sd)
3385  	 *                                                           kernfs_get(glue_dir)
3386  	 *                                                           kernfs_add_one()
3387  	 *                                                           kernfs_put()
3388  	 *
3389  	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3390  	 * a new device under glue dir, the glue_dir kobject reference count
3391  	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3392  	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3393  	 * and sysfs_put(). This result in glue_dir->sd is freed.
3394  	 *
3395  	 * Then the CPU2 will see a stale "empty" but still potentially used
3396  	 * glue dir around in kernfs_new_node().
3397  	 *
3398  	 * In order to avoid this happening, we also should make sure that
3399  	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3400  	 * for glue_dir kobj is 1.
3401  	 */
3402  	ref = kref_read(&glue_dir->kref);
3403  	if (!kobject_has_children(glue_dir) && !--ref)
3404  		kobject_del(glue_dir);
3405  	kobject_put(glue_dir);
3406  	mutex_unlock(&gdp_mutex);
3407  }
3408  
3409  static int device_add_class_symlinks(struct device *dev)
3410  {
3411  	struct device_node *of_node = dev_of_node(dev);
3412  	struct subsys_private *sp;
3413  	int error;
3414  
3415  	if (of_node) {
3416  		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3417  		if (error)
3418  			dev_warn(dev, "Error %d creating of_node link\n",error);
3419  		/* An error here doesn't warrant bringing down the device */
3420  	}
3421  
3422  	sp = class_to_subsys(dev->class);
3423  	if (!sp)
3424  		return 0;
3425  
3426  	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3427  	if (error)
3428  		goto out_devnode;
3429  
3430  	if (dev->parent && device_is_not_partition(dev)) {
3431  		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3432  					  "device");
3433  		if (error)
3434  			goto out_subsys;
3435  	}
3436  
3437  	/* link in the class directory pointing to the device */
3438  	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3439  	if (error)
3440  		goto out_device;
3441  	goto exit;
3442  
3443  out_device:
3444  	sysfs_remove_link(&dev->kobj, "device");
3445  out_subsys:
3446  	sysfs_remove_link(&dev->kobj, "subsystem");
3447  out_devnode:
3448  	sysfs_remove_link(&dev->kobj, "of_node");
3449  exit:
3450  	subsys_put(sp);
3451  	return error;
3452  }
3453  
3454  static void device_remove_class_symlinks(struct device *dev)
3455  {
3456  	struct subsys_private *sp = class_to_subsys(dev->class);
3457  
3458  	if (dev_of_node(dev))
3459  		sysfs_remove_link(&dev->kobj, "of_node");
3460  
3461  	if (!sp)
3462  		return;
3463  
3464  	if (dev->parent && device_is_not_partition(dev))
3465  		sysfs_remove_link(&dev->kobj, "device");
3466  	sysfs_remove_link(&dev->kobj, "subsystem");
3467  	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3468  	subsys_put(sp);
3469  }
3470  
3471  /**
3472   * dev_set_name - set a device name
3473   * @dev: device
3474   * @fmt: format string for the device's name
3475   */
3476  int dev_set_name(struct device *dev, const char *fmt, ...)
3477  {
3478  	va_list vargs;
3479  	int err;
3480  
3481  	va_start(vargs, fmt);
3482  	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3483  	va_end(vargs);
3484  	return err;
3485  }
3486  EXPORT_SYMBOL_GPL(dev_set_name);
3487  
3488  /* select a /sys/dev/ directory for the device */
3489  static struct kobject *device_to_dev_kobj(struct device *dev)
3490  {
3491  	if (is_blockdev(dev))
3492  		return sysfs_dev_block_kobj;
3493  	else
3494  		return sysfs_dev_char_kobj;
3495  }
3496  
3497  static int device_create_sys_dev_entry(struct device *dev)
3498  {
3499  	struct kobject *kobj = device_to_dev_kobj(dev);
3500  	int error = 0;
3501  	char devt_str[15];
3502  
3503  	if (kobj) {
3504  		format_dev_t(devt_str, dev->devt);
3505  		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3506  	}
3507  
3508  	return error;
3509  }
3510  
3511  static void device_remove_sys_dev_entry(struct device *dev)
3512  {
3513  	struct kobject *kobj = device_to_dev_kobj(dev);
3514  	char devt_str[15];
3515  
3516  	if (kobj) {
3517  		format_dev_t(devt_str, dev->devt);
3518  		sysfs_remove_link(kobj, devt_str);
3519  	}
3520  }
3521  
3522  static int device_private_init(struct device *dev)
3523  {
3524  	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3525  	if (!dev->p)
3526  		return -ENOMEM;
3527  	dev->p->device = dev;
3528  	klist_init(&dev->p->klist_children, klist_children_get,
3529  		   klist_children_put);
3530  	INIT_LIST_HEAD(&dev->p->deferred_probe);
3531  	return 0;
3532  }
3533  
3534  /**
3535   * device_add - add device to device hierarchy.
3536   * @dev: device.
3537   *
3538   * This is part 2 of device_register(), though may be called
3539   * separately _iff_ device_initialize() has been called separately.
3540   *
3541   * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3542   * to the global and sibling lists for the device, then
3543   * adds it to the other relevant subsystems of the driver model.
3544   *
3545   * Do not call this routine or device_register() more than once for
3546   * any device structure.  The driver model core is not designed to work
3547   * with devices that get unregistered and then spring back to life.
3548   * (Among other things, it's very hard to guarantee that all references
3549   * to the previous incarnation of @dev have been dropped.)  Allocate
3550   * and register a fresh new struct device instead.
3551   *
3552   * NOTE: _Never_ directly free @dev after calling this function, even
3553   * if it returned an error! Always use put_device() to give up your
3554   * reference instead.
3555   *
3556   * Rule of thumb is: if device_add() succeeds, you should call
3557   * device_del() when you want to get rid of it. If device_add() has
3558   * *not* succeeded, use *only* put_device() to drop the reference
3559   * count.
3560   */
3561  int device_add(struct device *dev)
3562  {
3563  	struct subsys_private *sp;
3564  	struct device *parent;
3565  	struct kobject *kobj;
3566  	struct class_interface *class_intf;
3567  	int error = -EINVAL;
3568  	struct kobject *glue_dir = NULL;
3569  
3570  	dev = get_device(dev);
3571  	if (!dev)
3572  		goto done;
3573  
3574  	if (!dev->p) {
3575  		error = device_private_init(dev);
3576  		if (error)
3577  			goto done;
3578  	}
3579  
3580  	/*
3581  	 * for statically allocated devices, which should all be converted
3582  	 * some day, we need to initialize the name. We prevent reading back
3583  	 * the name, and force the use of dev_name()
3584  	 */
3585  	if (dev->init_name) {
3586  		error = dev_set_name(dev, "%s", dev->init_name);
3587  		dev->init_name = NULL;
3588  	}
3589  
3590  	if (dev_name(dev))
3591  		error = 0;
3592  	/* subsystems can specify simple device enumeration */
3593  	else if (dev->bus && dev->bus->dev_name)
3594  		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3595  	else
3596  		error = -EINVAL;
3597  	if (error)
3598  		goto name_error;
3599  
3600  	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3601  
3602  	parent = get_device(dev->parent);
3603  	kobj = get_device_parent(dev, parent);
3604  	if (IS_ERR(kobj)) {
3605  		error = PTR_ERR(kobj);
3606  		goto parent_error;
3607  	}
3608  	if (kobj)
3609  		dev->kobj.parent = kobj;
3610  
3611  	/* use parent numa_node */
3612  	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3613  		set_dev_node(dev, dev_to_node(parent));
3614  
3615  	/* first, register with generic layer. */
3616  	/* we require the name to be set before, and pass NULL */
3617  	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3618  	if (error) {
3619  		glue_dir = kobj;
3620  		goto Error;
3621  	}
3622  
3623  	/* notify platform of device entry */
3624  	device_platform_notify(dev);
3625  
3626  	error = device_create_file(dev, &dev_attr_uevent);
3627  	if (error)
3628  		goto attrError;
3629  
3630  	error = device_add_class_symlinks(dev);
3631  	if (error)
3632  		goto SymlinkError;
3633  	error = device_add_attrs(dev);
3634  	if (error)
3635  		goto AttrsError;
3636  	error = bus_add_device(dev);
3637  	if (error)
3638  		goto BusError;
3639  	error = dpm_sysfs_add(dev);
3640  	if (error)
3641  		goto DPMError;
3642  	device_pm_add(dev);
3643  
3644  	if (MAJOR(dev->devt)) {
3645  		error = device_create_file(dev, &dev_attr_dev);
3646  		if (error)
3647  			goto DevAttrError;
3648  
3649  		error = device_create_sys_dev_entry(dev);
3650  		if (error)
3651  			goto SysEntryError;
3652  
3653  		devtmpfs_create_node(dev);
3654  	}
3655  
3656  	/* Notify clients of device addition.  This call must come
3657  	 * after dpm_sysfs_add() and before kobject_uevent().
3658  	 */
3659  	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3660  	kobject_uevent(&dev->kobj, KOBJ_ADD);
3661  
3662  	/*
3663  	 * Check if any of the other devices (consumers) have been waiting for
3664  	 * this device (supplier) to be added so that they can create a device
3665  	 * link to it.
3666  	 *
3667  	 * This needs to happen after device_pm_add() because device_link_add()
3668  	 * requires the supplier be registered before it's called.
3669  	 *
3670  	 * But this also needs to happen before bus_probe_device() to make sure
3671  	 * waiting consumers can link to it before the driver is bound to the
3672  	 * device and the driver sync_state callback is called for this device.
3673  	 */
3674  	if (dev->fwnode && !dev->fwnode->dev) {
3675  		dev->fwnode->dev = dev;
3676  		fw_devlink_link_device(dev);
3677  	}
3678  
3679  	bus_probe_device(dev);
3680  
3681  	/*
3682  	 * If all driver registration is done and a newly added device doesn't
3683  	 * match with any driver, don't block its consumers from probing in
3684  	 * case the consumer device is able to operate without this supplier.
3685  	 */
3686  	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3687  		fw_devlink_unblock_consumers(dev);
3688  
3689  	if (parent)
3690  		klist_add_tail(&dev->p->knode_parent,
3691  			       &parent->p->klist_children);
3692  
3693  	sp = class_to_subsys(dev->class);
3694  	if (sp) {
3695  		mutex_lock(&sp->mutex);
3696  		/* tie the class to the device */
3697  		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3698  
3699  		/* notify any interfaces that the device is here */
3700  		list_for_each_entry(class_intf, &sp->interfaces, node)
3701  			if (class_intf->add_dev)
3702  				class_intf->add_dev(dev);
3703  		mutex_unlock(&sp->mutex);
3704  		subsys_put(sp);
3705  	}
3706  done:
3707  	put_device(dev);
3708  	return error;
3709   SysEntryError:
3710  	if (MAJOR(dev->devt))
3711  		device_remove_file(dev, &dev_attr_dev);
3712   DevAttrError:
3713  	device_pm_remove(dev);
3714  	dpm_sysfs_remove(dev);
3715   DPMError:
3716  	dev->driver = NULL;
3717  	bus_remove_device(dev);
3718   BusError:
3719  	device_remove_attrs(dev);
3720   AttrsError:
3721  	device_remove_class_symlinks(dev);
3722   SymlinkError:
3723  	device_remove_file(dev, &dev_attr_uevent);
3724   attrError:
3725  	device_platform_notify_remove(dev);
3726  	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3727  	glue_dir = get_glue_dir(dev);
3728  	kobject_del(&dev->kobj);
3729   Error:
3730  	cleanup_glue_dir(dev, glue_dir);
3731  parent_error:
3732  	put_device(parent);
3733  name_error:
3734  	kfree(dev->p);
3735  	dev->p = NULL;
3736  	goto done;
3737  }
3738  EXPORT_SYMBOL_GPL(device_add);
3739  
3740  /**
3741   * device_register - register a device with the system.
3742   * @dev: pointer to the device structure
3743   *
3744   * This happens in two clean steps - initialize the device
3745   * and add it to the system. The two steps can be called
3746   * separately, but this is the easiest and most common.
3747   * I.e. you should only call the two helpers separately if
3748   * have a clearly defined need to use and refcount the device
3749   * before it is added to the hierarchy.
3750   *
3751   * For more information, see the kerneldoc for device_initialize()
3752   * and device_add().
3753   *
3754   * NOTE: _Never_ directly free @dev after calling this function, even
3755   * if it returned an error! Always use put_device() to give up the
3756   * reference initialized in this function instead.
3757   */
3758  int device_register(struct device *dev)
3759  {
3760  	device_initialize(dev);
3761  	return device_add(dev);
3762  }
3763  EXPORT_SYMBOL_GPL(device_register);
3764  
3765  /**
3766   * get_device - increment reference count for device.
3767   * @dev: device.
3768   *
3769   * This simply forwards the call to kobject_get(), though
3770   * we do take care to provide for the case that we get a NULL
3771   * pointer passed in.
3772   */
3773  struct device *get_device(struct device *dev)
3774  {
3775  	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3776  }
3777  EXPORT_SYMBOL_GPL(get_device);
3778  
3779  /**
3780   * put_device - decrement reference count.
3781   * @dev: device in question.
3782   */
3783  void put_device(struct device *dev)
3784  {
3785  	/* might_sleep(); */
3786  	if (dev)
3787  		kobject_put(&dev->kobj);
3788  }
3789  EXPORT_SYMBOL_GPL(put_device);
3790  
3791  bool kill_device(struct device *dev)
3792  {
3793  	/*
3794  	 * Require the device lock and set the "dead" flag to guarantee that
3795  	 * the update behavior is consistent with the other bitfields near
3796  	 * it and that we cannot have an asynchronous probe routine trying
3797  	 * to run while we are tearing out the bus/class/sysfs from
3798  	 * underneath the device.
3799  	 */
3800  	device_lock_assert(dev);
3801  
3802  	if (dev->p->dead)
3803  		return false;
3804  	dev->p->dead = true;
3805  	return true;
3806  }
3807  EXPORT_SYMBOL_GPL(kill_device);
3808  
3809  /**
3810   * device_del - delete device from system.
3811   * @dev: device.
3812   *
3813   * This is the first part of the device unregistration
3814   * sequence. This removes the device from the lists we control
3815   * from here, has it removed from the other driver model
3816   * subsystems it was added to in device_add(), and removes it
3817   * from the kobject hierarchy.
3818   *
3819   * NOTE: this should be called manually _iff_ device_add() was
3820   * also called manually.
3821   */
3822  void device_del(struct device *dev)
3823  {
3824  	struct subsys_private *sp;
3825  	struct device *parent = dev->parent;
3826  	struct kobject *glue_dir = NULL;
3827  	struct class_interface *class_intf;
3828  	unsigned int noio_flag;
3829  
3830  	device_lock(dev);
3831  	kill_device(dev);
3832  	device_unlock(dev);
3833  
3834  	if (dev->fwnode && dev->fwnode->dev == dev)
3835  		dev->fwnode->dev = NULL;
3836  
3837  	/* Notify clients of device removal.  This call must come
3838  	 * before dpm_sysfs_remove().
3839  	 */
3840  	noio_flag = memalloc_noio_save();
3841  	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3842  
3843  	dpm_sysfs_remove(dev);
3844  	if (parent)
3845  		klist_del(&dev->p->knode_parent);
3846  	if (MAJOR(dev->devt)) {
3847  		devtmpfs_delete_node(dev);
3848  		device_remove_sys_dev_entry(dev);
3849  		device_remove_file(dev, &dev_attr_dev);
3850  	}
3851  
3852  	sp = class_to_subsys(dev->class);
3853  	if (sp) {
3854  		device_remove_class_symlinks(dev);
3855  
3856  		mutex_lock(&sp->mutex);
3857  		/* notify any interfaces that the device is now gone */
3858  		list_for_each_entry(class_intf, &sp->interfaces, node)
3859  			if (class_intf->remove_dev)
3860  				class_intf->remove_dev(dev);
3861  		/* remove the device from the class list */
3862  		klist_del(&dev->p->knode_class);
3863  		mutex_unlock(&sp->mutex);
3864  		subsys_put(sp);
3865  	}
3866  	device_remove_file(dev, &dev_attr_uevent);
3867  	device_remove_attrs(dev);
3868  	bus_remove_device(dev);
3869  	device_pm_remove(dev);
3870  	driver_deferred_probe_del(dev);
3871  	device_platform_notify_remove(dev);
3872  	device_links_purge(dev);
3873  
3874  	/*
3875  	 * If a device does not have a driver attached, we need to clean
3876  	 * up any managed resources. We do this in device_release(), but
3877  	 * it's never called (and we leak the device) if a managed
3878  	 * resource holds a reference to the device. So release all
3879  	 * managed resources here, like we do in driver_detach(). We
3880  	 * still need to do so again in device_release() in case someone
3881  	 * adds a new resource after this point, though.
3882  	 */
3883  	devres_release_all(dev);
3884  
3885  	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3886  	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3887  	glue_dir = get_glue_dir(dev);
3888  	kobject_del(&dev->kobj);
3889  	cleanup_glue_dir(dev, glue_dir);
3890  	memalloc_noio_restore(noio_flag);
3891  	put_device(parent);
3892  }
3893  EXPORT_SYMBOL_GPL(device_del);
3894  
3895  /**
3896   * device_unregister - unregister device from system.
3897   * @dev: device going away.
3898   *
3899   * We do this in two parts, like we do device_register(). First,
3900   * we remove it from all the subsystems with device_del(), then
3901   * we decrement the reference count via put_device(). If that
3902   * is the final reference count, the device will be cleaned up
3903   * via device_release() above. Otherwise, the structure will
3904   * stick around until the final reference to the device is dropped.
3905   */
3906  void device_unregister(struct device *dev)
3907  {
3908  	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3909  	device_del(dev);
3910  	put_device(dev);
3911  }
3912  EXPORT_SYMBOL_GPL(device_unregister);
3913  
3914  static struct device *prev_device(struct klist_iter *i)
3915  {
3916  	struct klist_node *n = klist_prev(i);
3917  	struct device *dev = NULL;
3918  	struct device_private *p;
3919  
3920  	if (n) {
3921  		p = to_device_private_parent(n);
3922  		dev = p->device;
3923  	}
3924  	return dev;
3925  }
3926  
3927  static struct device *next_device(struct klist_iter *i)
3928  {
3929  	struct klist_node *n = klist_next(i);
3930  	struct device *dev = NULL;
3931  	struct device_private *p;
3932  
3933  	if (n) {
3934  		p = to_device_private_parent(n);
3935  		dev = p->device;
3936  	}
3937  	return dev;
3938  }
3939  
3940  /**
3941   * device_get_devnode - path of device node file
3942   * @dev: device
3943   * @mode: returned file access mode
3944   * @uid: returned file owner
3945   * @gid: returned file group
3946   * @tmp: possibly allocated string
3947   *
3948   * Return the relative path of a possible device node.
3949   * Non-default names may need to allocate a memory to compose
3950   * a name. This memory is returned in tmp and needs to be
3951   * freed by the caller.
3952   */
3953  const char *device_get_devnode(const struct device *dev,
3954  			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3955  			       const char **tmp)
3956  {
3957  	char *s;
3958  
3959  	*tmp = NULL;
3960  
3961  	/* the device type may provide a specific name */
3962  	if (dev->type && dev->type->devnode)
3963  		*tmp = dev->type->devnode(dev, mode, uid, gid);
3964  	if (*tmp)
3965  		return *tmp;
3966  
3967  	/* the class may provide a specific name */
3968  	if (dev->class && dev->class->devnode)
3969  		*tmp = dev->class->devnode(dev, mode);
3970  	if (*tmp)
3971  		return *tmp;
3972  
3973  	/* return name without allocation, tmp == NULL */
3974  	if (strchr(dev_name(dev), '!') == NULL)
3975  		return dev_name(dev);
3976  
3977  	/* replace '!' in the name with '/' */
3978  	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3979  	if (!s)
3980  		return NULL;
3981  	return *tmp = s;
3982  }
3983  
3984  /**
3985   * device_for_each_child - device child iterator.
3986   * @parent: parent struct device.
3987   * @fn: function to be called for each device.
3988   * @data: data for the callback.
3989   *
3990   * Iterate over @parent's child devices, and call @fn for each,
3991   * passing it @data.
3992   *
3993   * We check the return of @fn each time. If it returns anything
3994   * other than 0, we break out and return that value.
3995   */
3996  int device_for_each_child(struct device *parent, void *data,
3997  			  int (*fn)(struct device *dev, void *data))
3998  {
3999  	struct klist_iter i;
4000  	struct device *child;
4001  	int error = 0;
4002  
4003  	if (!parent->p)
4004  		return 0;
4005  
4006  	klist_iter_init(&parent->p->klist_children, &i);
4007  	while (!error && (child = next_device(&i)))
4008  		error = fn(child, data);
4009  	klist_iter_exit(&i);
4010  	return error;
4011  }
4012  EXPORT_SYMBOL_GPL(device_for_each_child);
4013  
4014  /**
4015   * device_for_each_child_reverse - device child iterator in reversed order.
4016   * @parent: parent struct device.
4017   * @fn: function to be called for each device.
4018   * @data: data for the callback.
4019   *
4020   * Iterate over @parent's child devices, and call @fn for each,
4021   * passing it @data.
4022   *
4023   * We check the return of @fn each time. If it returns anything
4024   * other than 0, we break out and return that value.
4025   */
4026  int device_for_each_child_reverse(struct device *parent, void *data,
4027  				  int (*fn)(struct device *dev, void *data))
4028  {
4029  	struct klist_iter i;
4030  	struct device *child;
4031  	int error = 0;
4032  
4033  	if (!parent->p)
4034  		return 0;
4035  
4036  	klist_iter_init(&parent->p->klist_children, &i);
4037  	while ((child = prev_device(&i)) && !error)
4038  		error = fn(child, data);
4039  	klist_iter_exit(&i);
4040  	return error;
4041  }
4042  EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4043  
4044  /**
4045   * device_find_child - device iterator for locating a particular device.
4046   * @parent: parent struct device
4047   * @match: Callback function to check device
4048   * @data: Data to pass to match function
4049   *
4050   * This is similar to the device_for_each_child() function above, but it
4051   * returns a reference to a device that is 'found' for later use, as
4052   * determined by the @match callback.
4053   *
4054   * The callback should return 0 if the device doesn't match and non-zero
4055   * if it does.  If the callback returns non-zero and a reference to the
4056   * current device can be obtained, this function will return to the caller
4057   * and not iterate over any more devices.
4058   *
4059   * NOTE: you will need to drop the reference with put_device() after use.
4060   */
4061  struct device *device_find_child(struct device *parent, void *data,
4062  				 int (*match)(struct device *dev, void *data))
4063  {
4064  	struct klist_iter i;
4065  	struct device *child;
4066  
4067  	if (!parent)
4068  		return NULL;
4069  
4070  	klist_iter_init(&parent->p->klist_children, &i);
4071  	while ((child = next_device(&i)))
4072  		if (match(child, data) && get_device(child))
4073  			break;
4074  	klist_iter_exit(&i);
4075  	return child;
4076  }
4077  EXPORT_SYMBOL_GPL(device_find_child);
4078  
4079  /**
4080   * device_find_child_by_name - device iterator for locating a child device.
4081   * @parent: parent struct device
4082   * @name: name of the child device
4083   *
4084   * This is similar to the device_find_child() function above, but it
4085   * returns a reference to a device that has the name @name.
4086   *
4087   * NOTE: you will need to drop the reference with put_device() after use.
4088   */
4089  struct device *device_find_child_by_name(struct device *parent,
4090  					 const char *name)
4091  {
4092  	struct klist_iter i;
4093  	struct device *child;
4094  
4095  	if (!parent)
4096  		return NULL;
4097  
4098  	klist_iter_init(&parent->p->klist_children, &i);
4099  	while ((child = next_device(&i)))
4100  		if (sysfs_streq(dev_name(child), name) && get_device(child))
4101  			break;
4102  	klist_iter_exit(&i);
4103  	return child;
4104  }
4105  EXPORT_SYMBOL_GPL(device_find_child_by_name);
4106  
4107  static int match_any(struct device *dev, void *unused)
4108  {
4109  	return 1;
4110  }
4111  
4112  /**
4113   * device_find_any_child - device iterator for locating a child device, if any.
4114   * @parent: parent struct device
4115   *
4116   * This is similar to the device_find_child() function above, but it
4117   * returns a reference to a child device, if any.
4118   *
4119   * NOTE: you will need to drop the reference with put_device() after use.
4120   */
4121  struct device *device_find_any_child(struct device *parent)
4122  {
4123  	return device_find_child(parent, NULL, match_any);
4124  }
4125  EXPORT_SYMBOL_GPL(device_find_any_child);
4126  
4127  int __init devices_init(void)
4128  {
4129  	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4130  	if (!devices_kset)
4131  		return -ENOMEM;
4132  	dev_kobj = kobject_create_and_add("dev", NULL);
4133  	if (!dev_kobj)
4134  		goto dev_kobj_err;
4135  	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4136  	if (!sysfs_dev_block_kobj)
4137  		goto block_kobj_err;
4138  	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4139  	if (!sysfs_dev_char_kobj)
4140  		goto char_kobj_err;
4141  	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4142  	if (!device_link_wq)
4143  		goto wq_err;
4144  
4145  	return 0;
4146  
4147   wq_err:
4148  	kobject_put(sysfs_dev_char_kobj);
4149   char_kobj_err:
4150  	kobject_put(sysfs_dev_block_kobj);
4151   block_kobj_err:
4152  	kobject_put(dev_kobj);
4153   dev_kobj_err:
4154  	kset_unregister(devices_kset);
4155  	return -ENOMEM;
4156  }
4157  
4158  static int device_check_offline(struct device *dev, void *not_used)
4159  {
4160  	int ret;
4161  
4162  	ret = device_for_each_child(dev, NULL, device_check_offline);
4163  	if (ret)
4164  		return ret;
4165  
4166  	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4167  }
4168  
4169  /**
4170   * device_offline - Prepare the device for hot-removal.
4171   * @dev: Device to be put offline.
4172   *
4173   * Execute the device bus type's .offline() callback, if present, to prepare
4174   * the device for a subsequent hot-removal.  If that succeeds, the device must
4175   * not be used until either it is removed or its bus type's .online() callback
4176   * is executed.
4177   *
4178   * Call under device_hotplug_lock.
4179   */
4180  int device_offline(struct device *dev)
4181  {
4182  	int ret;
4183  
4184  	if (dev->offline_disabled)
4185  		return -EPERM;
4186  
4187  	ret = device_for_each_child(dev, NULL, device_check_offline);
4188  	if (ret)
4189  		return ret;
4190  
4191  	device_lock(dev);
4192  	if (device_supports_offline(dev)) {
4193  		if (dev->offline) {
4194  			ret = 1;
4195  		} else {
4196  			ret = dev->bus->offline(dev);
4197  			if (!ret) {
4198  				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4199  				dev->offline = true;
4200  			}
4201  		}
4202  	}
4203  	device_unlock(dev);
4204  
4205  	return ret;
4206  }
4207  
4208  /**
4209   * device_online - Put the device back online after successful device_offline().
4210   * @dev: Device to be put back online.
4211   *
4212   * If device_offline() has been successfully executed for @dev, but the device
4213   * has not been removed subsequently, execute its bus type's .online() callback
4214   * to indicate that the device can be used again.
4215   *
4216   * Call under device_hotplug_lock.
4217   */
4218  int device_online(struct device *dev)
4219  {
4220  	int ret = 0;
4221  
4222  	device_lock(dev);
4223  	if (device_supports_offline(dev)) {
4224  		if (dev->offline) {
4225  			ret = dev->bus->online(dev);
4226  			if (!ret) {
4227  				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4228  				dev->offline = false;
4229  			}
4230  		} else {
4231  			ret = 1;
4232  		}
4233  	}
4234  	device_unlock(dev);
4235  
4236  	return ret;
4237  }
4238  
4239  struct root_device {
4240  	struct device dev;
4241  	struct module *owner;
4242  };
4243  
4244  static inline struct root_device *to_root_device(struct device *d)
4245  {
4246  	return container_of(d, struct root_device, dev);
4247  }
4248  
4249  static void root_device_release(struct device *dev)
4250  {
4251  	kfree(to_root_device(dev));
4252  }
4253  
4254  /**
4255   * __root_device_register - allocate and register a root device
4256   * @name: root device name
4257   * @owner: owner module of the root device, usually THIS_MODULE
4258   *
4259   * This function allocates a root device and registers it
4260   * using device_register(). In order to free the returned
4261   * device, use root_device_unregister().
4262   *
4263   * Root devices are dummy devices which allow other devices
4264   * to be grouped under /sys/devices. Use this function to
4265   * allocate a root device and then use it as the parent of
4266   * any device which should appear under /sys/devices/{name}
4267   *
4268   * The /sys/devices/{name} directory will also contain a
4269   * 'module' symlink which points to the @owner directory
4270   * in sysfs.
4271   *
4272   * Returns &struct device pointer on success, or ERR_PTR() on error.
4273   *
4274   * Note: You probably want to use root_device_register().
4275   */
4276  struct device *__root_device_register(const char *name, struct module *owner)
4277  {
4278  	struct root_device *root;
4279  	int err = -ENOMEM;
4280  
4281  	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4282  	if (!root)
4283  		return ERR_PTR(err);
4284  
4285  	err = dev_set_name(&root->dev, "%s", name);
4286  	if (err) {
4287  		kfree(root);
4288  		return ERR_PTR(err);
4289  	}
4290  
4291  	root->dev.release = root_device_release;
4292  
4293  	err = device_register(&root->dev);
4294  	if (err) {
4295  		put_device(&root->dev);
4296  		return ERR_PTR(err);
4297  	}
4298  
4299  #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4300  	if (owner) {
4301  		struct module_kobject *mk = &owner->mkobj;
4302  
4303  		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4304  		if (err) {
4305  			device_unregister(&root->dev);
4306  			return ERR_PTR(err);
4307  		}
4308  		root->owner = owner;
4309  	}
4310  #endif
4311  
4312  	return &root->dev;
4313  }
4314  EXPORT_SYMBOL_GPL(__root_device_register);
4315  
4316  /**
4317   * root_device_unregister - unregister and free a root device
4318   * @dev: device going away
4319   *
4320   * This function unregisters and cleans up a device that was created by
4321   * root_device_register().
4322   */
4323  void root_device_unregister(struct device *dev)
4324  {
4325  	struct root_device *root = to_root_device(dev);
4326  
4327  	if (root->owner)
4328  		sysfs_remove_link(&root->dev.kobj, "module");
4329  
4330  	device_unregister(dev);
4331  }
4332  EXPORT_SYMBOL_GPL(root_device_unregister);
4333  
4334  
4335  static void device_create_release(struct device *dev)
4336  {
4337  	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4338  	kfree(dev);
4339  }
4340  
4341  static __printf(6, 0) struct device *
4342  device_create_groups_vargs(const struct class *class, struct device *parent,
4343  			   dev_t devt, void *drvdata,
4344  			   const struct attribute_group **groups,
4345  			   const char *fmt, va_list args)
4346  {
4347  	struct device *dev = NULL;
4348  	int retval = -ENODEV;
4349  
4350  	if (IS_ERR_OR_NULL(class))
4351  		goto error;
4352  
4353  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4354  	if (!dev) {
4355  		retval = -ENOMEM;
4356  		goto error;
4357  	}
4358  
4359  	device_initialize(dev);
4360  	dev->devt = devt;
4361  	dev->class = class;
4362  	dev->parent = parent;
4363  	dev->groups = groups;
4364  	dev->release = device_create_release;
4365  	dev_set_drvdata(dev, drvdata);
4366  
4367  	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4368  	if (retval)
4369  		goto error;
4370  
4371  	retval = device_add(dev);
4372  	if (retval)
4373  		goto error;
4374  
4375  	return dev;
4376  
4377  error:
4378  	put_device(dev);
4379  	return ERR_PTR(retval);
4380  }
4381  
4382  /**
4383   * device_create - creates a device and registers it with sysfs
4384   * @class: pointer to the struct class that this device should be registered to
4385   * @parent: pointer to the parent struct device of this new device, if any
4386   * @devt: the dev_t for the char device to be added
4387   * @drvdata: the data to be added to the device for callbacks
4388   * @fmt: string for the device's name
4389   *
4390   * This function can be used by char device classes.  A struct device
4391   * will be created in sysfs, registered to the specified class.
4392   *
4393   * A "dev" file will be created, showing the dev_t for the device, if
4394   * the dev_t is not 0,0.
4395   * If a pointer to a parent struct device is passed in, the newly created
4396   * struct device will be a child of that device in sysfs.
4397   * The pointer to the struct device will be returned from the call.
4398   * Any further sysfs files that might be required can be created using this
4399   * pointer.
4400   *
4401   * Returns &struct device pointer on success, or ERR_PTR() on error.
4402   */
4403  struct device *device_create(const struct class *class, struct device *parent,
4404  			     dev_t devt, void *drvdata, const char *fmt, ...)
4405  {
4406  	va_list vargs;
4407  	struct device *dev;
4408  
4409  	va_start(vargs, fmt);
4410  	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4411  					  fmt, vargs);
4412  	va_end(vargs);
4413  	return dev;
4414  }
4415  EXPORT_SYMBOL_GPL(device_create);
4416  
4417  /**
4418   * device_create_with_groups - creates a device and registers it with sysfs
4419   * @class: pointer to the struct class that this device should be registered to
4420   * @parent: pointer to the parent struct device of this new device, if any
4421   * @devt: the dev_t for the char device to be added
4422   * @drvdata: the data to be added to the device for callbacks
4423   * @groups: NULL-terminated list of attribute groups to be created
4424   * @fmt: string for the device's name
4425   *
4426   * This function can be used by char device classes.  A struct device
4427   * will be created in sysfs, registered to the specified class.
4428   * Additional attributes specified in the groups parameter will also
4429   * be created automatically.
4430   *
4431   * A "dev" file will be created, showing the dev_t for the device, if
4432   * the dev_t is not 0,0.
4433   * If a pointer to a parent struct device is passed in, the newly created
4434   * struct device will be a child of that device in sysfs.
4435   * The pointer to the struct device will be returned from the call.
4436   * Any further sysfs files that might be required can be created using this
4437   * pointer.
4438   *
4439   * Returns &struct device pointer on success, or ERR_PTR() on error.
4440   */
4441  struct device *device_create_with_groups(const struct class *class,
4442  					 struct device *parent, dev_t devt,
4443  					 void *drvdata,
4444  					 const struct attribute_group **groups,
4445  					 const char *fmt, ...)
4446  {
4447  	va_list vargs;
4448  	struct device *dev;
4449  
4450  	va_start(vargs, fmt);
4451  	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4452  					 fmt, vargs);
4453  	va_end(vargs);
4454  	return dev;
4455  }
4456  EXPORT_SYMBOL_GPL(device_create_with_groups);
4457  
4458  /**
4459   * device_destroy - removes a device that was created with device_create()
4460   * @class: pointer to the struct class that this device was registered with
4461   * @devt: the dev_t of the device that was previously registered
4462   *
4463   * This call unregisters and cleans up a device that was created with a
4464   * call to device_create().
4465   */
4466  void device_destroy(const struct class *class, dev_t devt)
4467  {
4468  	struct device *dev;
4469  
4470  	dev = class_find_device_by_devt(class, devt);
4471  	if (dev) {
4472  		put_device(dev);
4473  		device_unregister(dev);
4474  	}
4475  }
4476  EXPORT_SYMBOL_GPL(device_destroy);
4477  
4478  /**
4479   * device_rename - renames a device
4480   * @dev: the pointer to the struct device to be renamed
4481   * @new_name: the new name of the device
4482   *
4483   * It is the responsibility of the caller to provide mutual
4484   * exclusion between two different calls of device_rename
4485   * on the same device to ensure that new_name is valid and
4486   * won't conflict with other devices.
4487   *
4488   * Note: given that some subsystems (networking and infiniband) use this
4489   * function, with no immediate plans for this to change, we cannot assume or
4490   * require that this function not be called at all.
4491   *
4492   * However, if you're writing new code, do not call this function. The following
4493   * text from Kay Sievers offers some insight:
4494   *
4495   * Renaming devices is racy at many levels, symlinks and other stuff are not
4496   * replaced atomically, and you get a "move" uevent, but it's not easy to
4497   * connect the event to the old and new device. Device nodes are not renamed at
4498   * all, there isn't even support for that in the kernel now.
4499   *
4500   * In the meantime, during renaming, your target name might be taken by another
4501   * driver, creating conflicts. Or the old name is taken directly after you
4502   * renamed it -- then you get events for the same DEVPATH, before you even see
4503   * the "move" event. It's just a mess, and nothing new should ever rely on
4504   * kernel device renaming. Besides that, it's not even implemented now for
4505   * other things than (driver-core wise very simple) network devices.
4506   *
4507   * Make up a "real" name in the driver before you register anything, or add
4508   * some other attributes for userspace to find the device, or use udev to add
4509   * symlinks -- but never rename kernel devices later, it's a complete mess. We
4510   * don't even want to get into that and try to implement the missing pieces in
4511   * the core. We really have other pieces to fix in the driver core mess. :)
4512   */
4513  int device_rename(struct device *dev, const char *new_name)
4514  {
4515  	struct kobject *kobj = &dev->kobj;
4516  	char *old_device_name = NULL;
4517  	int error;
4518  
4519  	dev = get_device(dev);
4520  	if (!dev)
4521  		return -EINVAL;
4522  
4523  	dev_dbg(dev, "renaming to %s\n", new_name);
4524  
4525  	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4526  	if (!old_device_name) {
4527  		error = -ENOMEM;
4528  		goto out;
4529  	}
4530  
4531  	if (dev->class) {
4532  		struct subsys_private *sp = class_to_subsys(dev->class);
4533  
4534  		if (!sp) {
4535  			error = -EINVAL;
4536  			goto out;
4537  		}
4538  
4539  		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4540  					     new_name, kobject_namespace(kobj));
4541  		subsys_put(sp);
4542  		if (error)
4543  			goto out;
4544  	}
4545  
4546  	error = kobject_rename(kobj, new_name);
4547  	if (error)
4548  		goto out;
4549  
4550  out:
4551  	put_device(dev);
4552  
4553  	kfree(old_device_name);
4554  
4555  	return error;
4556  }
4557  EXPORT_SYMBOL_GPL(device_rename);
4558  
4559  static int device_move_class_links(struct device *dev,
4560  				   struct device *old_parent,
4561  				   struct device *new_parent)
4562  {
4563  	int error = 0;
4564  
4565  	if (old_parent)
4566  		sysfs_remove_link(&dev->kobj, "device");
4567  	if (new_parent)
4568  		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4569  					  "device");
4570  	return error;
4571  }
4572  
4573  /**
4574   * device_move - moves a device to a new parent
4575   * @dev: the pointer to the struct device to be moved
4576   * @new_parent: the new parent of the device (can be NULL)
4577   * @dpm_order: how to reorder the dpm_list
4578   */
4579  int device_move(struct device *dev, struct device *new_parent,
4580  		enum dpm_order dpm_order)
4581  {
4582  	int error;
4583  	struct device *old_parent;
4584  	struct kobject *new_parent_kobj;
4585  
4586  	dev = get_device(dev);
4587  	if (!dev)
4588  		return -EINVAL;
4589  
4590  	device_pm_lock();
4591  	new_parent = get_device(new_parent);
4592  	new_parent_kobj = get_device_parent(dev, new_parent);
4593  	if (IS_ERR(new_parent_kobj)) {
4594  		error = PTR_ERR(new_parent_kobj);
4595  		put_device(new_parent);
4596  		goto out;
4597  	}
4598  
4599  	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4600  		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4601  	error = kobject_move(&dev->kobj, new_parent_kobj);
4602  	if (error) {
4603  		cleanup_glue_dir(dev, new_parent_kobj);
4604  		put_device(new_parent);
4605  		goto out;
4606  	}
4607  	old_parent = dev->parent;
4608  	dev->parent = new_parent;
4609  	if (old_parent)
4610  		klist_remove(&dev->p->knode_parent);
4611  	if (new_parent) {
4612  		klist_add_tail(&dev->p->knode_parent,
4613  			       &new_parent->p->klist_children);
4614  		set_dev_node(dev, dev_to_node(new_parent));
4615  	}
4616  
4617  	if (dev->class) {
4618  		error = device_move_class_links(dev, old_parent, new_parent);
4619  		if (error) {
4620  			/* We ignore errors on cleanup since we're hosed anyway... */
4621  			device_move_class_links(dev, new_parent, old_parent);
4622  			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4623  				if (new_parent)
4624  					klist_remove(&dev->p->knode_parent);
4625  				dev->parent = old_parent;
4626  				if (old_parent) {
4627  					klist_add_tail(&dev->p->knode_parent,
4628  						       &old_parent->p->klist_children);
4629  					set_dev_node(dev, dev_to_node(old_parent));
4630  				}
4631  			}
4632  			cleanup_glue_dir(dev, new_parent_kobj);
4633  			put_device(new_parent);
4634  			goto out;
4635  		}
4636  	}
4637  	switch (dpm_order) {
4638  	case DPM_ORDER_NONE:
4639  		break;
4640  	case DPM_ORDER_DEV_AFTER_PARENT:
4641  		device_pm_move_after(dev, new_parent);
4642  		devices_kset_move_after(dev, new_parent);
4643  		break;
4644  	case DPM_ORDER_PARENT_BEFORE_DEV:
4645  		device_pm_move_before(new_parent, dev);
4646  		devices_kset_move_before(new_parent, dev);
4647  		break;
4648  	case DPM_ORDER_DEV_LAST:
4649  		device_pm_move_last(dev);
4650  		devices_kset_move_last(dev);
4651  		break;
4652  	}
4653  
4654  	put_device(old_parent);
4655  out:
4656  	device_pm_unlock();
4657  	put_device(dev);
4658  	return error;
4659  }
4660  EXPORT_SYMBOL_GPL(device_move);
4661  
4662  static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4663  				     kgid_t kgid)
4664  {
4665  	struct kobject *kobj = &dev->kobj;
4666  	const struct class *class = dev->class;
4667  	const struct device_type *type = dev->type;
4668  	int error;
4669  
4670  	if (class) {
4671  		/*
4672  		 * Change the device groups of the device class for @dev to
4673  		 * @kuid/@kgid.
4674  		 */
4675  		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4676  						  kgid);
4677  		if (error)
4678  			return error;
4679  	}
4680  
4681  	if (type) {
4682  		/*
4683  		 * Change the device groups of the device type for @dev to
4684  		 * @kuid/@kgid.
4685  		 */
4686  		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4687  						  kgid);
4688  		if (error)
4689  			return error;
4690  	}
4691  
4692  	/* Change the device groups of @dev to @kuid/@kgid. */
4693  	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4694  	if (error)
4695  		return error;
4696  
4697  	if (device_supports_offline(dev) && !dev->offline_disabled) {
4698  		/* Change online device attributes of @dev to @kuid/@kgid. */
4699  		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4700  						kuid, kgid);
4701  		if (error)
4702  			return error;
4703  	}
4704  
4705  	return 0;
4706  }
4707  
4708  /**
4709   * device_change_owner - change the owner of an existing device.
4710   * @dev: device.
4711   * @kuid: new owner's kuid
4712   * @kgid: new owner's kgid
4713   *
4714   * This changes the owner of @dev and its corresponding sysfs entries to
4715   * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4716   * core.
4717   *
4718   * Returns 0 on success or error code on failure.
4719   */
4720  int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4721  {
4722  	int error;
4723  	struct kobject *kobj = &dev->kobj;
4724  	struct subsys_private *sp;
4725  
4726  	dev = get_device(dev);
4727  	if (!dev)
4728  		return -EINVAL;
4729  
4730  	/*
4731  	 * Change the kobject and the default attributes and groups of the
4732  	 * ktype associated with it to @kuid/@kgid.
4733  	 */
4734  	error = sysfs_change_owner(kobj, kuid, kgid);
4735  	if (error)
4736  		goto out;
4737  
4738  	/*
4739  	 * Change the uevent file for @dev to the new owner. The uevent file
4740  	 * was created in a separate step when @dev got added and we mirror
4741  	 * that step here.
4742  	 */
4743  	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4744  					kgid);
4745  	if (error)
4746  		goto out;
4747  
4748  	/*
4749  	 * Change the device groups, the device groups associated with the
4750  	 * device class, and the groups associated with the device type of @dev
4751  	 * to @kuid/@kgid.
4752  	 */
4753  	error = device_attrs_change_owner(dev, kuid, kgid);
4754  	if (error)
4755  		goto out;
4756  
4757  	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4758  	if (error)
4759  		goto out;
4760  
4761  	/*
4762  	 * Change the owner of the symlink located in the class directory of
4763  	 * the device class associated with @dev which points to the actual
4764  	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4765  	 * symlink shows the same permissions as its target.
4766  	 */
4767  	sp = class_to_subsys(dev->class);
4768  	if (!sp) {
4769  		error = -EINVAL;
4770  		goto out;
4771  	}
4772  	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4773  	subsys_put(sp);
4774  
4775  out:
4776  	put_device(dev);
4777  	return error;
4778  }
4779  EXPORT_SYMBOL_GPL(device_change_owner);
4780  
4781  /**
4782   * device_shutdown - call ->shutdown() on each device to shutdown.
4783   */
4784  void device_shutdown(void)
4785  {
4786  	struct device *dev, *parent;
4787  
4788  	wait_for_device_probe();
4789  	device_block_probing();
4790  
4791  	cpufreq_suspend();
4792  
4793  	spin_lock(&devices_kset->list_lock);
4794  	/*
4795  	 * Walk the devices list backward, shutting down each in turn.
4796  	 * Beware that device unplug events may also start pulling
4797  	 * devices offline, even as the system is shutting down.
4798  	 */
4799  	while (!list_empty(&devices_kset->list)) {
4800  		dev = list_entry(devices_kset->list.prev, struct device,
4801  				kobj.entry);
4802  
4803  		/*
4804  		 * hold reference count of device's parent to
4805  		 * prevent it from being freed because parent's
4806  		 * lock is to be held
4807  		 */
4808  		parent = get_device(dev->parent);
4809  		get_device(dev);
4810  		/*
4811  		 * Make sure the device is off the kset list, in the
4812  		 * event that dev->*->shutdown() doesn't remove it.
4813  		 */
4814  		list_del_init(&dev->kobj.entry);
4815  		spin_unlock(&devices_kset->list_lock);
4816  
4817  		/* hold lock to avoid race with probe/release */
4818  		if (parent)
4819  			device_lock(parent);
4820  		device_lock(dev);
4821  
4822  		/* Don't allow any more runtime suspends */
4823  		pm_runtime_get_noresume(dev);
4824  		pm_runtime_barrier(dev);
4825  
4826  		if (dev->class && dev->class->shutdown_pre) {
4827  			if (initcall_debug)
4828  				dev_info(dev, "shutdown_pre\n");
4829  			dev->class->shutdown_pre(dev);
4830  		}
4831  		if (dev->bus && dev->bus->shutdown) {
4832  			if (initcall_debug)
4833  				dev_info(dev, "shutdown\n");
4834  			dev->bus->shutdown(dev);
4835  		} else if (dev->driver && dev->driver->shutdown) {
4836  			if (initcall_debug)
4837  				dev_info(dev, "shutdown\n");
4838  			dev->driver->shutdown(dev);
4839  		}
4840  
4841  		device_unlock(dev);
4842  		if (parent)
4843  			device_unlock(parent);
4844  
4845  		put_device(dev);
4846  		put_device(parent);
4847  
4848  		spin_lock(&devices_kset->list_lock);
4849  	}
4850  	spin_unlock(&devices_kset->list_lock);
4851  }
4852  
4853  /*
4854   * Device logging functions
4855   */
4856  
4857  #ifdef CONFIG_PRINTK
4858  static void
4859  set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4860  {
4861  	const char *subsys;
4862  
4863  	memset(dev_info, 0, sizeof(*dev_info));
4864  
4865  	if (dev->class)
4866  		subsys = dev->class->name;
4867  	else if (dev->bus)
4868  		subsys = dev->bus->name;
4869  	else
4870  		return;
4871  
4872  	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4873  
4874  	/*
4875  	 * Add device identifier DEVICE=:
4876  	 *   b12:8         block dev_t
4877  	 *   c127:3        char dev_t
4878  	 *   n8            netdev ifindex
4879  	 *   +sound:card0  subsystem:devname
4880  	 */
4881  	if (MAJOR(dev->devt)) {
4882  		char c;
4883  
4884  		if (strcmp(subsys, "block") == 0)
4885  			c = 'b';
4886  		else
4887  			c = 'c';
4888  
4889  		snprintf(dev_info->device, sizeof(dev_info->device),
4890  			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4891  	} else if (strcmp(subsys, "net") == 0) {
4892  		struct net_device *net = to_net_dev(dev);
4893  
4894  		snprintf(dev_info->device, sizeof(dev_info->device),
4895  			 "n%u", net->ifindex);
4896  	} else {
4897  		snprintf(dev_info->device, sizeof(dev_info->device),
4898  			 "+%s:%s", subsys, dev_name(dev));
4899  	}
4900  }
4901  
4902  int dev_vprintk_emit(int level, const struct device *dev,
4903  		     const char *fmt, va_list args)
4904  {
4905  	struct dev_printk_info dev_info;
4906  
4907  	set_dev_info(dev, &dev_info);
4908  
4909  	return vprintk_emit(0, level, &dev_info, fmt, args);
4910  }
4911  EXPORT_SYMBOL(dev_vprintk_emit);
4912  
4913  int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4914  {
4915  	va_list args;
4916  	int r;
4917  
4918  	va_start(args, fmt);
4919  
4920  	r = dev_vprintk_emit(level, dev, fmt, args);
4921  
4922  	va_end(args);
4923  
4924  	return r;
4925  }
4926  EXPORT_SYMBOL(dev_printk_emit);
4927  
4928  static void __dev_printk(const char *level, const struct device *dev,
4929  			struct va_format *vaf)
4930  {
4931  	if (dev)
4932  		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4933  				dev_driver_string(dev), dev_name(dev), vaf);
4934  	else
4935  		printk("%s(NULL device *): %pV", level, vaf);
4936  }
4937  
4938  void _dev_printk(const char *level, const struct device *dev,
4939  		 const char *fmt, ...)
4940  {
4941  	struct va_format vaf;
4942  	va_list args;
4943  
4944  	va_start(args, fmt);
4945  
4946  	vaf.fmt = fmt;
4947  	vaf.va = &args;
4948  
4949  	__dev_printk(level, dev, &vaf);
4950  
4951  	va_end(args);
4952  }
4953  EXPORT_SYMBOL(_dev_printk);
4954  
4955  #define define_dev_printk_level(func, kern_level)		\
4956  void func(const struct device *dev, const char *fmt, ...)	\
4957  {								\
4958  	struct va_format vaf;					\
4959  	va_list args;						\
4960  								\
4961  	va_start(args, fmt);					\
4962  								\
4963  	vaf.fmt = fmt;						\
4964  	vaf.va = &args;						\
4965  								\
4966  	__dev_printk(kern_level, dev, &vaf);			\
4967  								\
4968  	va_end(args);						\
4969  }								\
4970  EXPORT_SYMBOL(func);
4971  
4972  define_dev_printk_level(_dev_emerg, KERN_EMERG);
4973  define_dev_printk_level(_dev_alert, KERN_ALERT);
4974  define_dev_printk_level(_dev_crit, KERN_CRIT);
4975  define_dev_printk_level(_dev_err, KERN_ERR);
4976  define_dev_printk_level(_dev_warn, KERN_WARNING);
4977  define_dev_printk_level(_dev_notice, KERN_NOTICE);
4978  define_dev_printk_level(_dev_info, KERN_INFO);
4979  
4980  #endif
4981  
4982  /**
4983   * dev_err_probe - probe error check and log helper
4984   * @dev: the pointer to the struct device
4985   * @err: error value to test
4986   * @fmt: printf-style format string
4987   * @...: arguments as specified in the format string
4988   *
4989   * This helper implements common pattern present in probe functions for error
4990   * checking: print debug or error message depending if the error value is
4991   * -EPROBE_DEFER and propagate error upwards.
4992   * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4993   * checked later by reading devices_deferred debugfs attribute.
4994   * It replaces code sequence::
4995   *
4996   * 	if (err != -EPROBE_DEFER)
4997   * 		dev_err(dev, ...);
4998   * 	else
4999   * 		dev_dbg(dev, ...);
5000   * 	return err;
5001   *
5002   * with::
5003   *
5004   * 	return dev_err_probe(dev, err, ...);
5005   *
5006   * Using this helper in your probe function is totally fine even if @err is
5007   * known to never be -EPROBE_DEFER.
5008   * The benefit compared to a normal dev_err() is the standardized format
5009   * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5010   * instead of "-35") and the fact that the error code is returned which allows
5011   * more compact error paths.
5012   *
5013   * Returns @err.
5014   */
5015  int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5016  {
5017  	struct va_format vaf;
5018  	va_list args;
5019  
5020  	va_start(args, fmt);
5021  	vaf.fmt = fmt;
5022  	vaf.va = &args;
5023  
5024  	if (err != -EPROBE_DEFER) {
5025  		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5026  	} else {
5027  		device_set_deferred_probe_reason(dev, &vaf);
5028  		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5029  	}
5030  
5031  	va_end(args);
5032  
5033  	return err;
5034  }
5035  EXPORT_SYMBOL_GPL(dev_err_probe);
5036  
5037  static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5038  {
5039  	return fwnode && !IS_ERR(fwnode->secondary);
5040  }
5041  
5042  /**
5043   * set_primary_fwnode - Change the primary firmware node of a given device.
5044   * @dev: Device to handle.
5045   * @fwnode: New primary firmware node of the device.
5046   *
5047   * Set the device's firmware node pointer to @fwnode, but if a secondary
5048   * firmware node of the device is present, preserve it.
5049   *
5050   * Valid fwnode cases are:
5051   *  - primary --> secondary --> -ENODEV
5052   *  - primary --> NULL
5053   *  - secondary --> -ENODEV
5054   *  - NULL
5055   */
5056  void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5057  {
5058  	struct device *parent = dev->parent;
5059  	struct fwnode_handle *fn = dev->fwnode;
5060  
5061  	if (fwnode) {
5062  		if (fwnode_is_primary(fn))
5063  			fn = fn->secondary;
5064  
5065  		if (fn) {
5066  			WARN_ON(fwnode->secondary);
5067  			fwnode->secondary = fn;
5068  		}
5069  		dev->fwnode = fwnode;
5070  	} else {
5071  		if (fwnode_is_primary(fn)) {
5072  			dev->fwnode = fn->secondary;
5073  
5074  			/* Skip nullifying fn->secondary if the primary is shared */
5075  			if (parent && fn == parent->fwnode)
5076  				return;
5077  
5078  			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5079  			fn->secondary = NULL;
5080  		} else {
5081  			dev->fwnode = NULL;
5082  		}
5083  	}
5084  }
5085  EXPORT_SYMBOL_GPL(set_primary_fwnode);
5086  
5087  /**
5088   * set_secondary_fwnode - Change the secondary firmware node of a given device.
5089   * @dev: Device to handle.
5090   * @fwnode: New secondary firmware node of the device.
5091   *
5092   * If a primary firmware node of the device is present, set its secondary
5093   * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5094   * @fwnode.
5095   */
5096  void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5097  {
5098  	if (fwnode)
5099  		fwnode->secondary = ERR_PTR(-ENODEV);
5100  
5101  	if (fwnode_is_primary(dev->fwnode))
5102  		dev->fwnode->secondary = fwnode;
5103  	else
5104  		dev->fwnode = fwnode;
5105  }
5106  EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5107  
5108  /**
5109   * device_set_of_node_from_dev - reuse device-tree node of another device
5110   * @dev: device whose device-tree node is being set
5111   * @dev2: device whose device-tree node is being reused
5112   *
5113   * Takes another reference to the new device-tree node after first dropping
5114   * any reference held to the old node.
5115   */
5116  void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5117  {
5118  	of_node_put(dev->of_node);
5119  	dev->of_node = of_node_get(dev2->of_node);
5120  	dev->of_node_reused = true;
5121  }
5122  EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5123  
5124  void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5125  {
5126  	dev->fwnode = fwnode;
5127  	dev->of_node = to_of_node(fwnode);
5128  }
5129  EXPORT_SYMBOL_GPL(device_set_node);
5130  
5131  int device_match_name(struct device *dev, const void *name)
5132  {
5133  	return sysfs_streq(dev_name(dev), name);
5134  }
5135  EXPORT_SYMBOL_GPL(device_match_name);
5136  
5137  int device_match_of_node(struct device *dev, const void *np)
5138  {
5139  	return dev->of_node == np;
5140  }
5141  EXPORT_SYMBOL_GPL(device_match_of_node);
5142  
5143  int device_match_fwnode(struct device *dev, const void *fwnode)
5144  {
5145  	return dev_fwnode(dev) == fwnode;
5146  }
5147  EXPORT_SYMBOL_GPL(device_match_fwnode);
5148  
5149  int device_match_devt(struct device *dev, const void *pdevt)
5150  {
5151  	return dev->devt == *(dev_t *)pdevt;
5152  }
5153  EXPORT_SYMBOL_GPL(device_match_devt);
5154  
5155  int device_match_acpi_dev(struct device *dev, const void *adev)
5156  {
5157  	return ACPI_COMPANION(dev) == adev;
5158  }
5159  EXPORT_SYMBOL(device_match_acpi_dev);
5160  
5161  int device_match_acpi_handle(struct device *dev, const void *handle)
5162  {
5163  	return ACPI_HANDLE(dev) == handle;
5164  }
5165  EXPORT_SYMBOL(device_match_acpi_handle);
5166  
5167  int device_match_any(struct device *dev, const void *unused)
5168  {
5169  	return 1;
5170  }
5171  EXPORT_SYMBOL_GPL(device_match_any);
5172