1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static unsigned int defer_fw_devlink_count; 53 static LIST_HEAD(deferred_fw_devlink); 54 static DEFINE_MUTEX(defer_fw_devlink_lock); 55 static bool fw_devlink_is_permissive(void); 56 57 #ifdef CONFIG_SRCU 58 static DEFINE_MUTEX(device_links_lock); 59 DEFINE_STATIC_SRCU(device_links_srcu); 60 61 static inline void device_links_write_lock(void) 62 { 63 mutex_lock(&device_links_lock); 64 } 65 66 static inline void device_links_write_unlock(void) 67 { 68 mutex_unlock(&device_links_lock); 69 } 70 71 int device_links_read_lock(void) __acquires(&device_links_srcu) 72 { 73 return srcu_read_lock(&device_links_srcu); 74 } 75 76 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 77 { 78 srcu_read_unlock(&device_links_srcu, idx); 79 } 80 81 int device_links_read_lock_held(void) 82 { 83 return srcu_read_lock_held(&device_links_srcu); 84 } 85 #else /* !CONFIG_SRCU */ 86 static DECLARE_RWSEM(device_links_lock); 87 88 static inline void device_links_write_lock(void) 89 { 90 down_write(&device_links_lock); 91 } 92 93 static inline void device_links_write_unlock(void) 94 { 95 up_write(&device_links_lock); 96 } 97 98 int device_links_read_lock(void) 99 { 100 down_read(&device_links_lock); 101 return 0; 102 } 103 104 void device_links_read_unlock(int not_used) 105 { 106 up_read(&device_links_lock); 107 } 108 109 #ifdef CONFIG_DEBUG_LOCK_ALLOC 110 int device_links_read_lock_held(void) 111 { 112 return lockdep_is_held(&device_links_lock); 113 } 114 #endif 115 #endif /* !CONFIG_SRCU */ 116 117 /** 118 * device_is_dependent - Check if one device depends on another one 119 * @dev: Device to check dependencies for. 120 * @target: Device to check against. 121 * 122 * Check if @target depends on @dev or any device dependent on it (its child or 123 * its consumer etc). Return 1 if that is the case or 0 otherwise. 124 */ 125 int device_is_dependent(struct device *dev, void *target) 126 { 127 struct device_link *link; 128 int ret; 129 130 if (dev == target) 131 return 1; 132 133 ret = device_for_each_child(dev, target, device_is_dependent); 134 if (ret) 135 return ret; 136 137 list_for_each_entry(link, &dev->links.consumers, s_node) { 138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 139 continue; 140 141 if (link->consumer == target) 142 return 1; 143 144 ret = device_is_dependent(link->consumer, target); 145 if (ret) 146 break; 147 } 148 return ret; 149 } 150 151 static void device_link_init_status(struct device_link *link, 152 struct device *consumer, 153 struct device *supplier) 154 { 155 switch (supplier->links.status) { 156 case DL_DEV_PROBING: 157 switch (consumer->links.status) { 158 case DL_DEV_PROBING: 159 /* 160 * A consumer driver can create a link to a supplier 161 * that has not completed its probing yet as long as it 162 * knows that the supplier is already functional (for 163 * example, it has just acquired some resources from the 164 * supplier). 165 */ 166 link->status = DL_STATE_CONSUMER_PROBE; 167 break; 168 default: 169 link->status = DL_STATE_DORMANT; 170 break; 171 } 172 break; 173 case DL_DEV_DRIVER_BOUND: 174 switch (consumer->links.status) { 175 case DL_DEV_PROBING: 176 link->status = DL_STATE_CONSUMER_PROBE; 177 break; 178 case DL_DEV_DRIVER_BOUND: 179 link->status = DL_STATE_ACTIVE; 180 break; 181 default: 182 link->status = DL_STATE_AVAILABLE; 183 break; 184 } 185 break; 186 case DL_DEV_UNBINDING: 187 link->status = DL_STATE_SUPPLIER_UNBIND; 188 break; 189 default: 190 link->status = DL_STATE_DORMANT; 191 break; 192 } 193 } 194 195 static int device_reorder_to_tail(struct device *dev, void *not_used) 196 { 197 struct device_link *link; 198 199 /* 200 * Devices that have not been registered yet will be put to the ends 201 * of the lists during the registration, so skip them here. 202 */ 203 if (device_is_registered(dev)) 204 devices_kset_move_last(dev); 205 206 if (device_pm_initialized(dev)) 207 device_pm_move_last(dev); 208 209 device_for_each_child(dev, NULL, device_reorder_to_tail); 210 list_for_each_entry(link, &dev->links.consumers, s_node) { 211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 212 continue; 213 device_reorder_to_tail(link->consumer, NULL); 214 } 215 216 return 0; 217 } 218 219 /** 220 * device_pm_move_to_tail - Move set of devices to the end of device lists 221 * @dev: Device to move 222 * 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 224 * 225 * It moves the @dev along with all of its children and all of its consumers 226 * to the ends of the device_kset and dpm_list, recursively. 227 */ 228 void device_pm_move_to_tail(struct device *dev) 229 { 230 int idx; 231 232 idx = device_links_read_lock(); 233 device_pm_lock(); 234 device_reorder_to_tail(dev, NULL); 235 device_pm_unlock(); 236 device_links_read_unlock(idx); 237 } 238 239 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 240 241 static ssize_t status_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 char *status; 245 246 switch (to_devlink(dev)->status) { 247 case DL_STATE_NONE: 248 status = "not tracked"; break; 249 case DL_STATE_DORMANT: 250 status = "dormant"; break; 251 case DL_STATE_AVAILABLE: 252 status = "available"; break; 253 case DL_STATE_CONSUMER_PROBE: 254 status = "consumer probing"; break; 255 case DL_STATE_ACTIVE: 256 status = "active"; break; 257 case DL_STATE_SUPPLIER_UNBIND: 258 status = "supplier unbinding"; break; 259 default: 260 status = "unknown"; break; 261 } 262 return sprintf(buf, "%s\n", status); 263 } 264 static DEVICE_ATTR_RO(status); 265 266 static ssize_t auto_remove_on_show(struct device *dev, 267 struct device_attribute *attr, char *buf) 268 { 269 struct device_link *link = to_devlink(dev); 270 char *str; 271 272 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 273 str = "supplier unbind"; 274 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 275 str = "consumer unbind"; 276 else 277 str = "never"; 278 279 return sprintf(buf, "%s\n", str); 280 } 281 static DEVICE_ATTR_RO(auto_remove_on); 282 283 static ssize_t runtime_pm_show(struct device *dev, 284 struct device_attribute *attr, char *buf) 285 { 286 struct device_link *link = to_devlink(dev); 287 288 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 289 } 290 static DEVICE_ATTR_RO(runtime_pm); 291 292 static ssize_t sync_state_only_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct device_link *link = to_devlink(dev); 296 297 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 298 } 299 static DEVICE_ATTR_RO(sync_state_only); 300 301 static struct attribute *devlink_attrs[] = { 302 &dev_attr_status.attr, 303 &dev_attr_auto_remove_on.attr, 304 &dev_attr_runtime_pm.attr, 305 &dev_attr_sync_state_only.attr, 306 NULL, 307 }; 308 ATTRIBUTE_GROUPS(devlink); 309 310 static void device_link_free(struct device_link *link) 311 { 312 while (refcount_dec_not_one(&link->rpm_active)) 313 pm_runtime_put(link->supplier); 314 315 put_device(link->consumer); 316 put_device(link->supplier); 317 kfree(link); 318 } 319 320 #ifdef CONFIG_SRCU 321 static void __device_link_free_srcu(struct rcu_head *rhead) 322 { 323 device_link_free(container_of(rhead, struct device_link, rcu_head)); 324 } 325 326 static void devlink_dev_release(struct device *dev) 327 { 328 struct device_link *link = to_devlink(dev); 329 330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 331 } 332 #else 333 static void devlink_dev_release(struct device *dev) 334 { 335 device_link_free(to_devlink(dev)); 336 } 337 #endif 338 339 static struct class devlink_class = { 340 .name = "devlink", 341 .owner = THIS_MODULE, 342 .dev_groups = devlink_groups, 343 .dev_release = devlink_dev_release, 344 }; 345 346 static int devlink_add_symlinks(struct device *dev, 347 struct class_interface *class_intf) 348 { 349 int ret; 350 size_t len; 351 struct device_link *link = to_devlink(dev); 352 struct device *sup = link->supplier; 353 struct device *con = link->consumer; 354 char *buf; 355 356 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 357 len += strlen("supplier:") + 1; 358 buf = kzalloc(len, GFP_KERNEL); 359 if (!buf) 360 return -ENOMEM; 361 362 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 363 if (ret) 364 goto out; 365 366 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 367 if (ret) 368 goto err_con; 369 370 snprintf(buf, len, "consumer:%s", dev_name(con)); 371 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 372 if (ret) 373 goto err_con_dev; 374 375 snprintf(buf, len, "supplier:%s", dev_name(sup)); 376 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 377 if (ret) 378 goto err_sup_dev; 379 380 goto out; 381 382 err_sup_dev: 383 snprintf(buf, len, "consumer:%s", dev_name(con)); 384 sysfs_remove_link(&sup->kobj, buf); 385 err_con_dev: 386 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 387 err_con: 388 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 389 out: 390 kfree(buf); 391 return ret; 392 } 393 394 static void devlink_remove_symlinks(struct device *dev, 395 struct class_interface *class_intf) 396 { 397 struct device_link *link = to_devlink(dev); 398 size_t len; 399 struct device *sup = link->supplier; 400 struct device *con = link->consumer; 401 char *buf; 402 403 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 404 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 405 406 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 407 len += strlen("supplier:") + 1; 408 buf = kzalloc(len, GFP_KERNEL); 409 if (!buf) { 410 WARN(1, "Unable to properly free device link symlinks!\n"); 411 return; 412 } 413 414 snprintf(buf, len, "supplier:%s", dev_name(sup)); 415 sysfs_remove_link(&con->kobj, buf); 416 snprintf(buf, len, "consumer:%s", dev_name(con)); 417 sysfs_remove_link(&sup->kobj, buf); 418 kfree(buf); 419 } 420 421 static struct class_interface devlink_class_intf = { 422 .class = &devlink_class, 423 .add_dev = devlink_add_symlinks, 424 .remove_dev = devlink_remove_symlinks, 425 }; 426 427 static int __init devlink_class_init(void) 428 { 429 int ret; 430 431 ret = class_register(&devlink_class); 432 if (ret) 433 return ret; 434 435 ret = class_interface_register(&devlink_class_intf); 436 if (ret) 437 class_unregister(&devlink_class); 438 439 return ret; 440 } 441 postcore_initcall(devlink_class_init); 442 443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 444 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 445 DL_FLAG_AUTOPROBE_CONSUMER | \ 446 DL_FLAG_SYNC_STATE_ONLY) 447 448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 449 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 450 451 /** 452 * device_link_add - Create a link between two devices. 453 * @consumer: Consumer end of the link. 454 * @supplier: Supplier end of the link. 455 * @flags: Link flags. 456 * 457 * The caller is responsible for the proper synchronization of the link creation 458 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 459 * runtime PM framework to take the link into account. Second, if the 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 461 * be forced into the active metastate and reference-counted upon the creation 462 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 463 * ignored. 464 * 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 466 * expected to release the link returned by it directly with the help of either 467 * device_link_del() or device_link_remove(). 468 * 469 * If that flag is not set, however, the caller of this function is handing the 470 * management of the link over to the driver core entirely and its return value 471 * can only be used to check whether or not the link is present. In that case, 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 473 * flags can be used to indicate to the driver core when the link can be safely 474 * deleted. Namely, setting one of them in @flags indicates to the driver core 475 * that the link is not going to be used (by the given caller of this function) 476 * after unbinding the consumer or supplier driver, respectively, from its 477 * device, so the link can be deleted at that point. If none of them is set, 478 * the link will be maintained until one of the devices pointed to by it (either 479 * the consumer or the supplier) is unregistered. 480 * 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 484 * be used to request the driver core to automaticall probe for a consmer 485 * driver after successfully binding a driver to the supplier device. 486 * 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 489 * the same time is invalid and will cause NULL to be returned upfront. 490 * However, if a device link between the given @consumer and @supplier pair 491 * exists already when this function is called for them, the existing link will 492 * be returned regardless of its current type and status (the link's flags may 493 * be modified then). The caller of this function is then expected to treat 494 * the link as though it has just been created, so (in particular) if 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 496 * explicitly when not needed any more (as stated above). 497 * 498 * A side effect of the link creation is re-ordering of dpm_list and the 499 * devices_kset list by moving the consumer device and all devices depending 500 * on it to the ends of these lists (that does not happen to devices that have 501 * not been registered when this function is called). 502 * 503 * The supplier device is required to be registered when this function is called 504 * and NULL will be returned if that is not the case. The consumer device need 505 * not be registered, however. 506 */ 507 struct device_link *device_link_add(struct device *consumer, 508 struct device *supplier, u32 flags) 509 { 510 struct device_link *link; 511 512 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 513 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 514 (flags & DL_FLAG_SYNC_STATE_ONLY && 515 flags != DL_FLAG_SYNC_STATE_ONLY) || 516 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 517 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 518 DL_FLAG_AUTOREMOVE_SUPPLIER))) 519 return NULL; 520 521 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 522 if (pm_runtime_get_sync(supplier) < 0) { 523 pm_runtime_put_noidle(supplier); 524 return NULL; 525 } 526 } 527 528 if (!(flags & DL_FLAG_STATELESS)) 529 flags |= DL_FLAG_MANAGED; 530 531 device_links_write_lock(); 532 device_pm_lock(); 533 534 /* 535 * If the supplier has not been fully registered yet or there is a 536 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 537 * the supplier already in the graph, return NULL. If the link is a 538 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 539 * because it only affects sync_state() callbacks. 540 */ 541 if (!device_pm_initialized(supplier) 542 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 543 device_is_dependent(consumer, supplier))) { 544 link = NULL; 545 goto out; 546 } 547 548 /* 549 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 550 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 551 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 552 */ 553 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 554 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 555 556 list_for_each_entry(link, &supplier->links.consumers, s_node) { 557 if (link->consumer != consumer) 558 continue; 559 560 if (flags & DL_FLAG_PM_RUNTIME) { 561 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 562 pm_runtime_new_link(consumer); 563 link->flags |= DL_FLAG_PM_RUNTIME; 564 } 565 if (flags & DL_FLAG_RPM_ACTIVE) 566 refcount_inc(&link->rpm_active); 567 } 568 569 if (flags & DL_FLAG_STATELESS) { 570 kref_get(&link->kref); 571 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 572 !(link->flags & DL_FLAG_STATELESS)) { 573 link->flags |= DL_FLAG_STATELESS; 574 goto reorder; 575 } else { 576 link->flags |= DL_FLAG_STATELESS; 577 goto out; 578 } 579 } 580 581 /* 582 * If the life time of the link following from the new flags is 583 * longer than indicated by the flags of the existing link, 584 * update the existing link to stay around longer. 585 */ 586 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 587 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 588 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 589 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 590 } 591 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 592 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 593 DL_FLAG_AUTOREMOVE_SUPPLIER); 594 } 595 if (!(link->flags & DL_FLAG_MANAGED)) { 596 kref_get(&link->kref); 597 link->flags |= DL_FLAG_MANAGED; 598 device_link_init_status(link, consumer, supplier); 599 } 600 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 601 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 602 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 603 goto reorder; 604 } 605 606 goto out; 607 } 608 609 link = kzalloc(sizeof(*link), GFP_KERNEL); 610 if (!link) 611 goto out; 612 613 refcount_set(&link->rpm_active, 1); 614 615 get_device(supplier); 616 link->supplier = supplier; 617 INIT_LIST_HEAD(&link->s_node); 618 get_device(consumer); 619 link->consumer = consumer; 620 INIT_LIST_HEAD(&link->c_node); 621 link->flags = flags; 622 kref_init(&link->kref); 623 624 link->link_dev.class = &devlink_class; 625 device_set_pm_not_required(&link->link_dev); 626 dev_set_name(&link->link_dev, "%s--%s", 627 dev_name(supplier), dev_name(consumer)); 628 if (device_register(&link->link_dev)) { 629 put_device(consumer); 630 put_device(supplier); 631 kfree(link); 632 link = NULL; 633 goto out; 634 } 635 636 if (flags & DL_FLAG_PM_RUNTIME) { 637 if (flags & DL_FLAG_RPM_ACTIVE) 638 refcount_inc(&link->rpm_active); 639 640 pm_runtime_new_link(consumer); 641 } 642 643 /* Determine the initial link state. */ 644 if (flags & DL_FLAG_STATELESS) 645 link->status = DL_STATE_NONE; 646 else 647 device_link_init_status(link, consumer, supplier); 648 649 /* 650 * Some callers expect the link creation during consumer driver probe to 651 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 652 */ 653 if (link->status == DL_STATE_CONSUMER_PROBE && 654 flags & DL_FLAG_PM_RUNTIME) 655 pm_runtime_resume(supplier); 656 657 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 658 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 659 660 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 661 dev_dbg(consumer, 662 "Linked as a sync state only consumer to %s\n", 663 dev_name(supplier)); 664 goto out; 665 } 666 667 reorder: 668 /* 669 * Move the consumer and all of the devices depending on it to the end 670 * of dpm_list and the devices_kset list. 671 * 672 * It is necessary to hold dpm_list locked throughout all that or else 673 * we may end up suspending with a wrong ordering of it. 674 */ 675 device_reorder_to_tail(consumer, NULL); 676 677 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 678 679 out: 680 device_pm_unlock(); 681 device_links_write_unlock(); 682 683 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 684 pm_runtime_put(supplier); 685 686 return link; 687 } 688 EXPORT_SYMBOL_GPL(device_link_add); 689 690 /** 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 692 * @consumer: Consumer device 693 * 694 * Marks the @consumer device as waiting for suppliers to become available by 695 * adding it to the wait_for_suppliers list. The consumer device will never be 696 * probed until it's removed from the wait_for_suppliers list. 697 * 698 * The caller is responsible for adding the links to the supplier devices once 699 * they are available and removing the @consumer device from the 700 * wait_for_suppliers list once links to all the suppliers have been created. 701 * 702 * This function is NOT meant to be called from the probe function of the 703 * consumer but rather from code that creates/adds the consumer device. 704 */ 705 static void device_link_wait_for_supplier(struct device *consumer, 706 bool need_for_probe) 707 { 708 mutex_lock(&wfs_lock); 709 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 710 consumer->links.need_for_probe = need_for_probe; 711 mutex_unlock(&wfs_lock); 712 } 713 714 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 715 { 716 device_link_wait_for_supplier(consumer, true); 717 } 718 719 static void device_link_wait_for_optional_supplier(struct device *consumer) 720 { 721 device_link_wait_for_supplier(consumer, false); 722 } 723 724 /** 725 * device_link_add_missing_supplier_links - Add links from consumer devices to 726 * supplier devices, leaving any 727 * consumer with inactive suppliers on 728 * the wait_for_suppliers list 729 * 730 * Loops through all consumers waiting on suppliers and tries to add all their 731 * supplier links. If that succeeds, the consumer device is removed from 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 733 * list. Devices left on the wait_for_suppliers list will not be probed. 734 * 735 * The fwnode add_links callback is expected to return 0 if it has found and 736 * added all the supplier links for the consumer device. It should return an 737 * error if it isn't able to do so. 738 * 739 * The caller of device_link_wait_for_supplier() is expected to call this once 740 * it's aware of potential suppliers becoming available. 741 */ 742 static void device_link_add_missing_supplier_links(void) 743 { 744 struct device *dev, *tmp; 745 746 mutex_lock(&wfs_lock); 747 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 748 links.needs_suppliers) { 749 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 750 if (!ret) 751 list_del_init(&dev->links.needs_suppliers); 752 else if (ret != -ENODEV || fw_devlink_is_permissive()) 753 dev->links.need_for_probe = false; 754 } 755 mutex_unlock(&wfs_lock); 756 } 757 758 #ifdef CONFIG_SRCU 759 static void __device_link_del(struct kref *kref) 760 { 761 struct device_link *link = container_of(kref, struct device_link, kref); 762 763 dev_dbg(link->consumer, "Dropping the link to %s\n", 764 dev_name(link->supplier)); 765 766 if (link->flags & DL_FLAG_PM_RUNTIME) 767 pm_runtime_drop_link(link->consumer); 768 769 list_del_rcu(&link->s_node); 770 list_del_rcu(&link->c_node); 771 device_unregister(&link->link_dev); 772 } 773 #else /* !CONFIG_SRCU */ 774 static void __device_link_del(struct kref *kref) 775 { 776 struct device_link *link = container_of(kref, struct device_link, kref); 777 778 dev_info(link->consumer, "Dropping the link to %s\n", 779 dev_name(link->supplier)); 780 781 if (link->flags & DL_FLAG_PM_RUNTIME) 782 pm_runtime_drop_link(link->consumer); 783 784 list_del(&link->s_node); 785 list_del(&link->c_node); 786 device_unregister(&link->link_dev); 787 } 788 #endif /* !CONFIG_SRCU */ 789 790 static void device_link_put_kref(struct device_link *link) 791 { 792 if (link->flags & DL_FLAG_STATELESS) 793 kref_put(&link->kref, __device_link_del); 794 else 795 WARN(1, "Unable to drop a managed device link reference\n"); 796 } 797 798 /** 799 * device_link_del - Delete a stateless link between two devices. 800 * @link: Device link to delete. 801 * 802 * The caller must ensure proper synchronization of this function with runtime 803 * PM. If the link was added multiple times, it needs to be deleted as often. 804 * Care is required for hotplugged devices: Their links are purged on removal 805 * and calling device_link_del() is then no longer allowed. 806 */ 807 void device_link_del(struct device_link *link) 808 { 809 device_links_write_lock(); 810 device_link_put_kref(link); 811 device_links_write_unlock(); 812 } 813 EXPORT_SYMBOL_GPL(device_link_del); 814 815 /** 816 * device_link_remove - Delete a stateless link between two devices. 817 * @consumer: Consumer end of the link. 818 * @supplier: Supplier end of the link. 819 * 820 * The caller must ensure proper synchronization of this function with runtime 821 * PM. 822 */ 823 void device_link_remove(void *consumer, struct device *supplier) 824 { 825 struct device_link *link; 826 827 if (WARN_ON(consumer == supplier)) 828 return; 829 830 device_links_write_lock(); 831 832 list_for_each_entry(link, &supplier->links.consumers, s_node) { 833 if (link->consumer == consumer) { 834 device_link_put_kref(link); 835 break; 836 } 837 } 838 839 device_links_write_unlock(); 840 } 841 EXPORT_SYMBOL_GPL(device_link_remove); 842 843 static void device_links_missing_supplier(struct device *dev) 844 { 845 struct device_link *link; 846 847 list_for_each_entry(link, &dev->links.suppliers, c_node) { 848 if (link->status != DL_STATE_CONSUMER_PROBE) 849 continue; 850 851 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 852 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 853 } else { 854 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 855 WRITE_ONCE(link->status, DL_STATE_DORMANT); 856 } 857 } 858 } 859 860 /** 861 * device_links_check_suppliers - Check presence of supplier drivers. 862 * @dev: Consumer device. 863 * 864 * Check links from this device to any suppliers. Walk the list of the device's 865 * links to suppliers and see if all of them are available. If not, simply 866 * return -EPROBE_DEFER. 867 * 868 * We need to guarantee that the supplier will not go away after the check has 869 * been positive here. It only can go away in __device_release_driver() and 870 * that function checks the device's links to consumers. This means we need to 871 * mark the link as "consumer probe in progress" to make the supplier removal 872 * wait for us to complete (or bad things may happen). 873 * 874 * Links without the DL_FLAG_MANAGED flag set are ignored. 875 */ 876 int device_links_check_suppliers(struct device *dev) 877 { 878 struct device_link *link; 879 int ret = 0; 880 881 /* 882 * Device waiting for supplier to become available is not allowed to 883 * probe. 884 */ 885 mutex_lock(&wfs_lock); 886 if (!list_empty(&dev->links.needs_suppliers) && 887 dev->links.need_for_probe) { 888 mutex_unlock(&wfs_lock); 889 return -EPROBE_DEFER; 890 } 891 mutex_unlock(&wfs_lock); 892 893 device_links_write_lock(); 894 895 list_for_each_entry(link, &dev->links.suppliers, c_node) { 896 if (!(link->flags & DL_FLAG_MANAGED)) 897 continue; 898 899 if (link->status != DL_STATE_AVAILABLE && 900 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 901 device_links_missing_supplier(dev); 902 ret = -EPROBE_DEFER; 903 break; 904 } 905 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 906 } 907 dev->links.status = DL_DEV_PROBING; 908 909 device_links_write_unlock(); 910 return ret; 911 } 912 913 /** 914 * __device_links_queue_sync_state - Queue a device for sync_state() callback 915 * @dev: Device to call sync_state() on 916 * @list: List head to queue the @dev on 917 * 918 * Queues a device for a sync_state() callback when the device links write lock 919 * isn't held. This allows the sync_state() execution flow to use device links 920 * APIs. The caller must ensure this function is called with 921 * device_links_write_lock() held. 922 * 923 * This function does a get_device() to make sure the device is not freed while 924 * on this list. 925 * 926 * So the caller must also ensure that device_links_flush_sync_list() is called 927 * as soon as the caller releases device_links_write_lock(). This is necessary 928 * to make sure the sync_state() is called in a timely fashion and the 929 * put_device() is called on this device. 930 */ 931 static void __device_links_queue_sync_state(struct device *dev, 932 struct list_head *list) 933 { 934 struct device_link *link; 935 936 if (!dev_has_sync_state(dev)) 937 return; 938 if (dev->state_synced) 939 return; 940 941 list_for_each_entry(link, &dev->links.consumers, s_node) { 942 if (!(link->flags & DL_FLAG_MANAGED)) 943 continue; 944 if (link->status != DL_STATE_ACTIVE) 945 return; 946 } 947 948 /* 949 * Set the flag here to avoid adding the same device to a list more 950 * than once. This can happen if new consumers get added to the device 951 * and probed before the list is flushed. 952 */ 953 dev->state_synced = true; 954 955 if (WARN_ON(!list_empty(&dev->links.defer_hook))) 956 return; 957 958 get_device(dev); 959 list_add_tail(&dev->links.defer_hook, list); 960 } 961 962 /** 963 * device_links_flush_sync_list - Call sync_state() on a list of devices 964 * @list: List of devices to call sync_state() on 965 * @dont_lock_dev: Device for which lock is already held by the caller 966 * 967 * Calls sync_state() on all the devices that have been queued for it. This 968 * function is used in conjunction with __device_links_queue_sync_state(). The 969 * @dont_lock_dev parameter is useful when this function is called from a 970 * context where a device lock is already held. 971 */ 972 static void device_links_flush_sync_list(struct list_head *list, 973 struct device *dont_lock_dev) 974 { 975 struct device *dev, *tmp; 976 977 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) { 978 list_del_init(&dev->links.defer_hook); 979 980 if (dev != dont_lock_dev) 981 device_lock(dev); 982 983 if (dev->bus->sync_state) 984 dev->bus->sync_state(dev); 985 else if (dev->driver && dev->driver->sync_state) 986 dev->driver->sync_state(dev); 987 988 if (dev != dont_lock_dev) 989 device_unlock(dev); 990 991 put_device(dev); 992 } 993 } 994 995 void device_links_supplier_sync_state_pause(void) 996 { 997 device_links_write_lock(); 998 defer_sync_state_count++; 999 device_links_write_unlock(); 1000 } 1001 1002 void device_links_supplier_sync_state_resume(void) 1003 { 1004 struct device *dev, *tmp; 1005 LIST_HEAD(sync_list); 1006 1007 device_links_write_lock(); 1008 if (!defer_sync_state_count) { 1009 WARN(true, "Unmatched sync_state pause/resume!"); 1010 goto out; 1011 } 1012 defer_sync_state_count--; 1013 if (defer_sync_state_count) 1014 goto out; 1015 1016 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) { 1017 /* 1018 * Delete from deferred_sync list before queuing it to 1019 * sync_list because defer_hook is used for both lists. 1020 */ 1021 list_del_init(&dev->links.defer_hook); 1022 __device_links_queue_sync_state(dev, &sync_list); 1023 } 1024 out: 1025 device_links_write_unlock(); 1026 1027 device_links_flush_sync_list(&sync_list, NULL); 1028 } 1029 1030 static int sync_state_resume_initcall(void) 1031 { 1032 device_links_supplier_sync_state_resume(); 1033 return 0; 1034 } 1035 late_initcall(sync_state_resume_initcall); 1036 1037 static void __device_links_supplier_defer_sync(struct device *sup) 1038 { 1039 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup)) 1040 list_add_tail(&sup->links.defer_hook, &deferred_sync); 1041 } 1042 1043 static void device_link_drop_managed(struct device_link *link) 1044 { 1045 link->flags &= ~DL_FLAG_MANAGED; 1046 WRITE_ONCE(link->status, DL_STATE_NONE); 1047 kref_put(&link->kref, __device_link_del); 1048 } 1049 1050 static ssize_t waiting_for_supplier_show(struct device *dev, 1051 struct device_attribute *attr, 1052 char *buf) 1053 { 1054 bool val; 1055 1056 device_lock(dev); 1057 mutex_lock(&wfs_lock); 1058 val = !list_empty(&dev->links.needs_suppliers) 1059 && dev->links.need_for_probe; 1060 mutex_unlock(&wfs_lock); 1061 device_unlock(dev); 1062 return sprintf(buf, "%u\n", val); 1063 } 1064 static DEVICE_ATTR_RO(waiting_for_supplier); 1065 1066 /** 1067 * device_links_driver_bound - Update device links after probing its driver. 1068 * @dev: Device to update the links for. 1069 * 1070 * The probe has been successful, so update links from this device to any 1071 * consumers by changing their status to "available". 1072 * 1073 * Also change the status of @dev's links to suppliers to "active". 1074 * 1075 * Links without the DL_FLAG_MANAGED flag set are ignored. 1076 */ 1077 void device_links_driver_bound(struct device *dev) 1078 { 1079 struct device_link *link, *ln; 1080 LIST_HEAD(sync_list); 1081 1082 /* 1083 * If a device probes successfully, it's expected to have created all 1084 * the device links it needs to or make new device links as it needs 1085 * them. So, it no longer needs to wait on any suppliers. 1086 */ 1087 mutex_lock(&wfs_lock); 1088 list_del_init(&dev->links.needs_suppliers); 1089 mutex_unlock(&wfs_lock); 1090 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1091 1092 device_links_write_lock(); 1093 1094 list_for_each_entry(link, &dev->links.consumers, s_node) { 1095 if (!(link->flags & DL_FLAG_MANAGED)) 1096 continue; 1097 1098 /* 1099 * Links created during consumer probe may be in the "consumer 1100 * probe" state to start with if the supplier is still probing 1101 * when they are created and they may become "active" if the 1102 * consumer probe returns first. Skip them here. 1103 */ 1104 if (link->status == DL_STATE_CONSUMER_PROBE || 1105 link->status == DL_STATE_ACTIVE) 1106 continue; 1107 1108 WARN_ON(link->status != DL_STATE_DORMANT); 1109 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1110 1111 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1112 driver_deferred_probe_add(link->consumer); 1113 } 1114 1115 if (defer_sync_state_count) 1116 __device_links_supplier_defer_sync(dev); 1117 else 1118 __device_links_queue_sync_state(dev, &sync_list); 1119 1120 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1121 struct device *supplier; 1122 1123 if (!(link->flags & DL_FLAG_MANAGED)) 1124 continue; 1125 1126 supplier = link->supplier; 1127 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1128 /* 1129 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1130 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1131 * save to drop the managed link completely. 1132 */ 1133 device_link_drop_managed(link); 1134 } else { 1135 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1136 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1137 } 1138 1139 /* 1140 * This needs to be done even for the deleted 1141 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1142 * device link that was preventing the supplier from getting a 1143 * sync_state() call. 1144 */ 1145 if (defer_sync_state_count) 1146 __device_links_supplier_defer_sync(supplier); 1147 else 1148 __device_links_queue_sync_state(supplier, &sync_list); 1149 } 1150 1151 dev->links.status = DL_DEV_DRIVER_BOUND; 1152 1153 device_links_write_unlock(); 1154 1155 device_links_flush_sync_list(&sync_list, dev); 1156 } 1157 1158 /** 1159 * __device_links_no_driver - Update links of a device without a driver. 1160 * @dev: Device without a drvier. 1161 * 1162 * Delete all non-persistent links from this device to any suppliers. 1163 * 1164 * Persistent links stay around, but their status is changed to "available", 1165 * unless they already are in the "supplier unbind in progress" state in which 1166 * case they need not be updated. 1167 * 1168 * Links without the DL_FLAG_MANAGED flag set are ignored. 1169 */ 1170 static void __device_links_no_driver(struct device *dev) 1171 { 1172 struct device_link *link, *ln; 1173 1174 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1175 if (!(link->flags & DL_FLAG_MANAGED)) 1176 continue; 1177 1178 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1179 device_link_drop_managed(link); 1180 continue; 1181 } 1182 1183 if (link->status != DL_STATE_CONSUMER_PROBE && 1184 link->status != DL_STATE_ACTIVE) 1185 continue; 1186 1187 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1188 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1189 } else { 1190 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1191 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1192 } 1193 } 1194 1195 dev->links.status = DL_DEV_NO_DRIVER; 1196 } 1197 1198 /** 1199 * device_links_no_driver - Update links after failing driver probe. 1200 * @dev: Device whose driver has just failed to probe. 1201 * 1202 * Clean up leftover links to consumers for @dev and invoke 1203 * %__device_links_no_driver() to update links to suppliers for it as 1204 * appropriate. 1205 * 1206 * Links without the DL_FLAG_MANAGED flag set are ignored. 1207 */ 1208 void device_links_no_driver(struct device *dev) 1209 { 1210 struct device_link *link; 1211 1212 device_links_write_lock(); 1213 1214 list_for_each_entry(link, &dev->links.consumers, s_node) { 1215 if (!(link->flags & DL_FLAG_MANAGED)) 1216 continue; 1217 1218 /* 1219 * The probe has failed, so if the status of the link is 1220 * "consumer probe" or "active", it must have been added by 1221 * a probing consumer while this device was still probing. 1222 * Change its state to "dormant", as it represents a valid 1223 * relationship, but it is not functionally meaningful. 1224 */ 1225 if (link->status == DL_STATE_CONSUMER_PROBE || 1226 link->status == DL_STATE_ACTIVE) 1227 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1228 } 1229 1230 __device_links_no_driver(dev); 1231 1232 device_links_write_unlock(); 1233 } 1234 1235 /** 1236 * device_links_driver_cleanup - Update links after driver removal. 1237 * @dev: Device whose driver has just gone away. 1238 * 1239 * Update links to consumers for @dev by changing their status to "dormant" and 1240 * invoke %__device_links_no_driver() to update links to suppliers for it as 1241 * appropriate. 1242 * 1243 * Links without the DL_FLAG_MANAGED flag set are ignored. 1244 */ 1245 void device_links_driver_cleanup(struct device *dev) 1246 { 1247 struct device_link *link, *ln; 1248 1249 device_links_write_lock(); 1250 1251 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1252 if (!(link->flags & DL_FLAG_MANAGED)) 1253 continue; 1254 1255 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1256 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1257 1258 /* 1259 * autoremove the links between this @dev and its consumer 1260 * devices that are not active, i.e. where the link state 1261 * has moved to DL_STATE_SUPPLIER_UNBIND. 1262 */ 1263 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1264 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1265 device_link_drop_managed(link); 1266 1267 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1268 } 1269 1270 list_del_init(&dev->links.defer_hook); 1271 __device_links_no_driver(dev); 1272 1273 device_links_write_unlock(); 1274 } 1275 1276 /** 1277 * device_links_busy - Check if there are any busy links to consumers. 1278 * @dev: Device to check. 1279 * 1280 * Check each consumer of the device and return 'true' if its link's status 1281 * is one of "consumer probe" or "active" (meaning that the given consumer is 1282 * probing right now or its driver is present). Otherwise, change the link 1283 * state to "supplier unbind" to prevent the consumer from being probed 1284 * successfully going forward. 1285 * 1286 * Return 'false' if there are no probing or active consumers. 1287 * 1288 * Links without the DL_FLAG_MANAGED flag set are ignored. 1289 */ 1290 bool device_links_busy(struct device *dev) 1291 { 1292 struct device_link *link; 1293 bool ret = false; 1294 1295 device_links_write_lock(); 1296 1297 list_for_each_entry(link, &dev->links.consumers, s_node) { 1298 if (!(link->flags & DL_FLAG_MANAGED)) 1299 continue; 1300 1301 if (link->status == DL_STATE_CONSUMER_PROBE 1302 || link->status == DL_STATE_ACTIVE) { 1303 ret = true; 1304 break; 1305 } 1306 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1307 } 1308 1309 dev->links.status = DL_DEV_UNBINDING; 1310 1311 device_links_write_unlock(); 1312 return ret; 1313 } 1314 1315 /** 1316 * device_links_unbind_consumers - Force unbind consumers of the given device. 1317 * @dev: Device to unbind the consumers of. 1318 * 1319 * Walk the list of links to consumers for @dev and if any of them is in the 1320 * "consumer probe" state, wait for all device probes in progress to complete 1321 * and start over. 1322 * 1323 * If that's not the case, change the status of the link to "supplier unbind" 1324 * and check if the link was in the "active" state. If so, force the consumer 1325 * driver to unbind and start over (the consumer will not re-probe as we have 1326 * changed the state of the link already). 1327 * 1328 * Links without the DL_FLAG_MANAGED flag set are ignored. 1329 */ 1330 void device_links_unbind_consumers(struct device *dev) 1331 { 1332 struct device_link *link; 1333 1334 start: 1335 device_links_write_lock(); 1336 1337 list_for_each_entry(link, &dev->links.consumers, s_node) { 1338 enum device_link_state status; 1339 1340 if (!(link->flags & DL_FLAG_MANAGED) || 1341 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1342 continue; 1343 1344 status = link->status; 1345 if (status == DL_STATE_CONSUMER_PROBE) { 1346 device_links_write_unlock(); 1347 1348 wait_for_device_probe(); 1349 goto start; 1350 } 1351 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1352 if (status == DL_STATE_ACTIVE) { 1353 struct device *consumer = link->consumer; 1354 1355 get_device(consumer); 1356 1357 device_links_write_unlock(); 1358 1359 device_release_driver_internal(consumer, NULL, 1360 consumer->parent); 1361 put_device(consumer); 1362 goto start; 1363 } 1364 } 1365 1366 device_links_write_unlock(); 1367 } 1368 1369 /** 1370 * device_links_purge - Delete existing links to other devices. 1371 * @dev: Target device. 1372 */ 1373 static void device_links_purge(struct device *dev) 1374 { 1375 struct device_link *link, *ln; 1376 1377 if (dev->class == &devlink_class) 1378 return; 1379 1380 mutex_lock(&wfs_lock); 1381 list_del(&dev->links.needs_suppliers); 1382 mutex_unlock(&wfs_lock); 1383 1384 /* 1385 * Delete all of the remaining links from this device to any other 1386 * devices (either consumers or suppliers). 1387 */ 1388 device_links_write_lock(); 1389 1390 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1391 WARN_ON(link->status == DL_STATE_ACTIVE); 1392 __device_link_del(&link->kref); 1393 } 1394 1395 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1396 WARN_ON(link->status != DL_STATE_DORMANT && 1397 link->status != DL_STATE_NONE); 1398 __device_link_del(&link->kref); 1399 } 1400 1401 device_links_write_unlock(); 1402 } 1403 1404 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1405 static int __init fw_devlink_setup(char *arg) 1406 { 1407 if (!arg) 1408 return -EINVAL; 1409 1410 if (strcmp(arg, "off") == 0) { 1411 fw_devlink_flags = 0; 1412 } else if (strcmp(arg, "permissive") == 0) { 1413 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1414 } else if (strcmp(arg, "on") == 0) { 1415 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 1416 } else if (strcmp(arg, "rpm") == 0) { 1417 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 1418 DL_FLAG_PM_RUNTIME; 1419 } 1420 return 0; 1421 } 1422 early_param("fw_devlink", fw_devlink_setup); 1423 1424 u32 fw_devlink_get_flags(void) 1425 { 1426 return fw_devlink_flags; 1427 } 1428 1429 static bool fw_devlink_is_permissive(void) 1430 { 1431 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 1432 } 1433 1434 static void fw_devlink_link_device(struct device *dev) 1435 { 1436 int fw_ret; 1437 1438 if (!fw_devlink_flags) 1439 return; 1440 1441 mutex_lock(&defer_fw_devlink_lock); 1442 if (!defer_fw_devlink_count) 1443 device_link_add_missing_supplier_links(); 1444 1445 /* 1446 * The device's fwnode not having add_links() doesn't affect if other 1447 * consumers can find this device as a supplier. So, this check is 1448 * intentionally placed after device_link_add_missing_supplier_links(). 1449 */ 1450 if (!fwnode_has_op(dev->fwnode, add_links)) 1451 goto out; 1452 1453 /* 1454 * If fw_devlink is being deferred, assume all devices have mandatory 1455 * suppliers they need to link to later. Then, when the fw_devlink is 1456 * resumed, all these devices will get a chance to try and link to any 1457 * suppliers they have. 1458 */ 1459 if (!defer_fw_devlink_count) { 1460 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 1461 if (fw_ret == -ENODEV && fw_devlink_is_permissive()) 1462 fw_ret = -EAGAIN; 1463 } else { 1464 fw_ret = -ENODEV; 1465 /* 1466 * defer_hook is not used to add device to deferred_sync list 1467 * until device is bound. Since deferred fw devlink also blocks 1468 * probing, same list hook can be used for deferred_fw_devlink. 1469 */ 1470 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink); 1471 } 1472 1473 if (fw_ret == -ENODEV) 1474 device_link_wait_for_mandatory_supplier(dev); 1475 else if (fw_ret) 1476 device_link_wait_for_optional_supplier(dev); 1477 1478 out: 1479 mutex_unlock(&defer_fw_devlink_lock); 1480 } 1481 1482 /** 1483 * fw_devlink_pause - Pause parsing of fwnode to create device links 1484 * 1485 * Calling this function defers any fwnode parsing to create device links until 1486 * fw_devlink_resume() is called. Both these functions are ref counted and the 1487 * caller needs to match the calls. 1488 * 1489 * While fw_devlink is paused: 1490 * - Any device that is added won't have its fwnode parsed to create device 1491 * links. 1492 * - The probe of the device will also be deferred during this period. 1493 * - Any devices that were already added, but waiting for suppliers won't be 1494 * able to link to newly added devices. 1495 * 1496 * Once fw_devlink_resume(): 1497 * - All the fwnodes that was not parsed will be parsed. 1498 * - All the devices that were deferred probing will be reattempted if they 1499 * aren't waiting for any more suppliers. 1500 * 1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes 1502 * when a lot of devices that need to link to each other are added in a short 1503 * interval of time. For example, adding all the top level devices in a system. 1504 * 1505 * For example, if N devices are added and: 1506 * - All the consumers are added before their suppliers 1507 * - All the suppliers of the N devices are part of the N devices 1508 * 1509 * Then: 1510 * 1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device 1512 * will only need one parsing of its fwnode because it is guaranteed to find 1513 * all the supplier devices already registered and ready to link to. It won't 1514 * have to do another pass later to find one or more suppliers it couldn't 1515 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode 1516 * parses. 1517 * 1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would 1519 * end up doing O(N^2) parses of fwnodes because every device that's added is 1520 * guaranteed to trigger a parse of the fwnode of every device added before 1521 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a 1522 * device is parsed, all it descendant devices might need to have their 1523 * fwnodes parsed too (even if the devices themselves aren't added). 1524 */ 1525 void fw_devlink_pause(void) 1526 { 1527 mutex_lock(&defer_fw_devlink_lock); 1528 defer_fw_devlink_count++; 1529 mutex_unlock(&defer_fw_devlink_lock); 1530 } 1531 1532 /** fw_devlink_resume - Resume parsing of fwnode to create device links 1533 * 1534 * This function is used in conjunction with fw_devlink_pause() and is ref 1535 * counted. See documentation for fw_devlink_pause() for more details. 1536 */ 1537 void fw_devlink_resume(void) 1538 { 1539 struct device *dev, *tmp; 1540 LIST_HEAD(probe_list); 1541 1542 mutex_lock(&defer_fw_devlink_lock); 1543 if (!defer_fw_devlink_count) { 1544 WARN(true, "Unmatched fw_devlink pause/resume!"); 1545 goto out; 1546 } 1547 1548 defer_fw_devlink_count--; 1549 if (defer_fw_devlink_count) 1550 goto out; 1551 1552 device_link_add_missing_supplier_links(); 1553 list_splice_tail_init(&deferred_fw_devlink, &probe_list); 1554 out: 1555 mutex_unlock(&defer_fw_devlink_lock); 1556 1557 /* 1558 * bus_probe_device() can cause new devices to get added and they'll 1559 * try to grab defer_fw_devlink_lock. So, this needs to be done outside 1560 * the defer_fw_devlink_lock. 1561 */ 1562 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) { 1563 list_del_init(&dev->links.defer_hook); 1564 bus_probe_device(dev); 1565 } 1566 } 1567 /* Device links support end. */ 1568 1569 int (*platform_notify)(struct device *dev) = NULL; 1570 int (*platform_notify_remove)(struct device *dev) = NULL; 1571 static struct kobject *dev_kobj; 1572 struct kobject *sysfs_dev_char_kobj; 1573 struct kobject *sysfs_dev_block_kobj; 1574 1575 static DEFINE_MUTEX(device_hotplug_lock); 1576 1577 void lock_device_hotplug(void) 1578 { 1579 mutex_lock(&device_hotplug_lock); 1580 } 1581 1582 void unlock_device_hotplug(void) 1583 { 1584 mutex_unlock(&device_hotplug_lock); 1585 } 1586 1587 int lock_device_hotplug_sysfs(void) 1588 { 1589 if (mutex_trylock(&device_hotplug_lock)) 1590 return 0; 1591 1592 /* Avoid busy looping (5 ms of sleep should do). */ 1593 msleep(5); 1594 return restart_syscall(); 1595 } 1596 1597 #ifdef CONFIG_BLOCK 1598 static inline int device_is_not_partition(struct device *dev) 1599 { 1600 return !(dev->type == &part_type); 1601 } 1602 #else 1603 static inline int device_is_not_partition(struct device *dev) 1604 { 1605 return 1; 1606 } 1607 #endif 1608 1609 static int 1610 device_platform_notify(struct device *dev, enum kobject_action action) 1611 { 1612 int ret; 1613 1614 ret = acpi_platform_notify(dev, action); 1615 if (ret) 1616 return ret; 1617 1618 ret = software_node_notify(dev, action); 1619 if (ret) 1620 return ret; 1621 1622 if (platform_notify && action == KOBJ_ADD) 1623 platform_notify(dev); 1624 else if (platform_notify_remove && action == KOBJ_REMOVE) 1625 platform_notify_remove(dev); 1626 return 0; 1627 } 1628 1629 /** 1630 * dev_driver_string - Return a device's driver name, if at all possible 1631 * @dev: struct device to get the name of 1632 * 1633 * Will return the device's driver's name if it is bound to a device. If 1634 * the device is not bound to a driver, it will return the name of the bus 1635 * it is attached to. If it is not attached to a bus either, an empty 1636 * string will be returned. 1637 */ 1638 const char *dev_driver_string(const struct device *dev) 1639 { 1640 struct device_driver *drv; 1641 1642 /* dev->driver can change to NULL underneath us because of unbinding, 1643 * so be careful about accessing it. dev->bus and dev->class should 1644 * never change once they are set, so they don't need special care. 1645 */ 1646 drv = READ_ONCE(dev->driver); 1647 return drv ? drv->name : 1648 (dev->bus ? dev->bus->name : 1649 (dev->class ? dev->class->name : "")); 1650 } 1651 EXPORT_SYMBOL(dev_driver_string); 1652 1653 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1654 1655 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1656 char *buf) 1657 { 1658 struct device_attribute *dev_attr = to_dev_attr(attr); 1659 struct device *dev = kobj_to_dev(kobj); 1660 ssize_t ret = -EIO; 1661 1662 if (dev_attr->show) 1663 ret = dev_attr->show(dev, dev_attr, buf); 1664 if (ret >= (ssize_t)PAGE_SIZE) { 1665 printk("dev_attr_show: %pS returned bad count\n", 1666 dev_attr->show); 1667 } 1668 return ret; 1669 } 1670 1671 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1672 const char *buf, size_t count) 1673 { 1674 struct device_attribute *dev_attr = to_dev_attr(attr); 1675 struct device *dev = kobj_to_dev(kobj); 1676 ssize_t ret = -EIO; 1677 1678 if (dev_attr->store) 1679 ret = dev_attr->store(dev, dev_attr, buf, count); 1680 return ret; 1681 } 1682 1683 static const struct sysfs_ops dev_sysfs_ops = { 1684 .show = dev_attr_show, 1685 .store = dev_attr_store, 1686 }; 1687 1688 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1689 1690 ssize_t device_store_ulong(struct device *dev, 1691 struct device_attribute *attr, 1692 const char *buf, size_t size) 1693 { 1694 struct dev_ext_attribute *ea = to_ext_attr(attr); 1695 int ret; 1696 unsigned long new; 1697 1698 ret = kstrtoul(buf, 0, &new); 1699 if (ret) 1700 return ret; 1701 *(unsigned long *)(ea->var) = new; 1702 /* Always return full write size even if we didn't consume all */ 1703 return size; 1704 } 1705 EXPORT_SYMBOL_GPL(device_store_ulong); 1706 1707 ssize_t device_show_ulong(struct device *dev, 1708 struct device_attribute *attr, 1709 char *buf) 1710 { 1711 struct dev_ext_attribute *ea = to_ext_attr(attr); 1712 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1713 } 1714 EXPORT_SYMBOL_GPL(device_show_ulong); 1715 1716 ssize_t device_store_int(struct device *dev, 1717 struct device_attribute *attr, 1718 const char *buf, size_t size) 1719 { 1720 struct dev_ext_attribute *ea = to_ext_attr(attr); 1721 int ret; 1722 long new; 1723 1724 ret = kstrtol(buf, 0, &new); 1725 if (ret) 1726 return ret; 1727 1728 if (new > INT_MAX || new < INT_MIN) 1729 return -EINVAL; 1730 *(int *)(ea->var) = new; 1731 /* Always return full write size even if we didn't consume all */ 1732 return size; 1733 } 1734 EXPORT_SYMBOL_GPL(device_store_int); 1735 1736 ssize_t device_show_int(struct device *dev, 1737 struct device_attribute *attr, 1738 char *buf) 1739 { 1740 struct dev_ext_attribute *ea = to_ext_attr(attr); 1741 1742 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1743 } 1744 EXPORT_SYMBOL_GPL(device_show_int); 1745 1746 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1747 const char *buf, size_t size) 1748 { 1749 struct dev_ext_attribute *ea = to_ext_attr(attr); 1750 1751 if (strtobool(buf, ea->var) < 0) 1752 return -EINVAL; 1753 1754 return size; 1755 } 1756 EXPORT_SYMBOL_GPL(device_store_bool); 1757 1758 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1759 char *buf) 1760 { 1761 struct dev_ext_attribute *ea = to_ext_attr(attr); 1762 1763 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1764 } 1765 EXPORT_SYMBOL_GPL(device_show_bool); 1766 1767 /** 1768 * device_release - free device structure. 1769 * @kobj: device's kobject. 1770 * 1771 * This is called once the reference count for the object 1772 * reaches 0. We forward the call to the device's release 1773 * method, which should handle actually freeing the structure. 1774 */ 1775 static void device_release(struct kobject *kobj) 1776 { 1777 struct device *dev = kobj_to_dev(kobj); 1778 struct device_private *p = dev->p; 1779 1780 /* 1781 * Some platform devices are driven without driver attached 1782 * and managed resources may have been acquired. Make sure 1783 * all resources are released. 1784 * 1785 * Drivers still can add resources into device after device 1786 * is deleted but alive, so release devres here to avoid 1787 * possible memory leak. 1788 */ 1789 devres_release_all(dev); 1790 1791 kfree(dev->dma_range_map); 1792 1793 if (dev->release) 1794 dev->release(dev); 1795 else if (dev->type && dev->type->release) 1796 dev->type->release(dev); 1797 else if (dev->class && dev->class->dev_release) 1798 dev->class->dev_release(dev); 1799 else 1800 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1801 dev_name(dev)); 1802 kfree(p); 1803 } 1804 1805 static const void *device_namespace(struct kobject *kobj) 1806 { 1807 struct device *dev = kobj_to_dev(kobj); 1808 const void *ns = NULL; 1809 1810 if (dev->class && dev->class->ns_type) 1811 ns = dev->class->namespace(dev); 1812 1813 return ns; 1814 } 1815 1816 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1817 { 1818 struct device *dev = kobj_to_dev(kobj); 1819 1820 if (dev->class && dev->class->get_ownership) 1821 dev->class->get_ownership(dev, uid, gid); 1822 } 1823 1824 static struct kobj_type device_ktype = { 1825 .release = device_release, 1826 .sysfs_ops = &dev_sysfs_ops, 1827 .namespace = device_namespace, 1828 .get_ownership = device_get_ownership, 1829 }; 1830 1831 1832 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1833 { 1834 struct kobj_type *ktype = get_ktype(kobj); 1835 1836 if (ktype == &device_ktype) { 1837 struct device *dev = kobj_to_dev(kobj); 1838 if (dev->bus) 1839 return 1; 1840 if (dev->class) 1841 return 1; 1842 } 1843 return 0; 1844 } 1845 1846 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1847 { 1848 struct device *dev = kobj_to_dev(kobj); 1849 1850 if (dev->bus) 1851 return dev->bus->name; 1852 if (dev->class) 1853 return dev->class->name; 1854 return NULL; 1855 } 1856 1857 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1858 struct kobj_uevent_env *env) 1859 { 1860 struct device *dev = kobj_to_dev(kobj); 1861 int retval = 0; 1862 1863 /* add device node properties if present */ 1864 if (MAJOR(dev->devt)) { 1865 const char *tmp; 1866 const char *name; 1867 umode_t mode = 0; 1868 kuid_t uid = GLOBAL_ROOT_UID; 1869 kgid_t gid = GLOBAL_ROOT_GID; 1870 1871 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1872 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1873 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1874 if (name) { 1875 add_uevent_var(env, "DEVNAME=%s", name); 1876 if (mode) 1877 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1878 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1879 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1880 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1881 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1882 kfree(tmp); 1883 } 1884 } 1885 1886 if (dev->type && dev->type->name) 1887 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1888 1889 if (dev->driver) 1890 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1891 1892 /* Add common DT information about the device */ 1893 of_device_uevent(dev, env); 1894 1895 /* have the bus specific function add its stuff */ 1896 if (dev->bus && dev->bus->uevent) { 1897 retval = dev->bus->uevent(dev, env); 1898 if (retval) 1899 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1900 dev_name(dev), __func__, retval); 1901 } 1902 1903 /* have the class specific function add its stuff */ 1904 if (dev->class && dev->class->dev_uevent) { 1905 retval = dev->class->dev_uevent(dev, env); 1906 if (retval) 1907 pr_debug("device: '%s': %s: class uevent() " 1908 "returned %d\n", dev_name(dev), 1909 __func__, retval); 1910 } 1911 1912 /* have the device type specific function add its stuff */ 1913 if (dev->type && dev->type->uevent) { 1914 retval = dev->type->uevent(dev, env); 1915 if (retval) 1916 pr_debug("device: '%s': %s: dev_type uevent() " 1917 "returned %d\n", dev_name(dev), 1918 __func__, retval); 1919 } 1920 1921 return retval; 1922 } 1923 1924 static const struct kset_uevent_ops device_uevent_ops = { 1925 .filter = dev_uevent_filter, 1926 .name = dev_uevent_name, 1927 .uevent = dev_uevent, 1928 }; 1929 1930 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1931 char *buf) 1932 { 1933 struct kobject *top_kobj; 1934 struct kset *kset; 1935 struct kobj_uevent_env *env = NULL; 1936 int i; 1937 size_t count = 0; 1938 int retval; 1939 1940 /* search the kset, the device belongs to */ 1941 top_kobj = &dev->kobj; 1942 while (!top_kobj->kset && top_kobj->parent) 1943 top_kobj = top_kobj->parent; 1944 if (!top_kobj->kset) 1945 goto out; 1946 1947 kset = top_kobj->kset; 1948 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1949 goto out; 1950 1951 /* respect filter */ 1952 if (kset->uevent_ops && kset->uevent_ops->filter) 1953 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1954 goto out; 1955 1956 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1957 if (!env) 1958 return -ENOMEM; 1959 1960 /* let the kset specific function add its keys */ 1961 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1962 if (retval) 1963 goto out; 1964 1965 /* copy keys to file */ 1966 for (i = 0; i < env->envp_idx; i++) 1967 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1968 out: 1969 kfree(env); 1970 return count; 1971 } 1972 1973 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1974 const char *buf, size_t count) 1975 { 1976 int rc; 1977 1978 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1979 1980 if (rc) { 1981 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1982 return rc; 1983 } 1984 1985 return count; 1986 } 1987 static DEVICE_ATTR_RW(uevent); 1988 1989 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1990 char *buf) 1991 { 1992 bool val; 1993 1994 device_lock(dev); 1995 val = !dev->offline; 1996 device_unlock(dev); 1997 return sprintf(buf, "%u\n", val); 1998 } 1999 2000 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2001 const char *buf, size_t count) 2002 { 2003 bool val; 2004 int ret; 2005 2006 ret = strtobool(buf, &val); 2007 if (ret < 0) 2008 return ret; 2009 2010 ret = lock_device_hotplug_sysfs(); 2011 if (ret) 2012 return ret; 2013 2014 ret = val ? device_online(dev) : device_offline(dev); 2015 unlock_device_hotplug(); 2016 return ret < 0 ? ret : count; 2017 } 2018 static DEVICE_ATTR_RW(online); 2019 2020 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2021 { 2022 return sysfs_create_groups(&dev->kobj, groups); 2023 } 2024 EXPORT_SYMBOL_GPL(device_add_groups); 2025 2026 void device_remove_groups(struct device *dev, 2027 const struct attribute_group **groups) 2028 { 2029 sysfs_remove_groups(&dev->kobj, groups); 2030 } 2031 EXPORT_SYMBOL_GPL(device_remove_groups); 2032 2033 union device_attr_group_devres { 2034 const struct attribute_group *group; 2035 const struct attribute_group **groups; 2036 }; 2037 2038 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2039 { 2040 return ((union device_attr_group_devres *)res)->group == data; 2041 } 2042 2043 static void devm_attr_group_remove(struct device *dev, void *res) 2044 { 2045 union device_attr_group_devres *devres = res; 2046 const struct attribute_group *group = devres->group; 2047 2048 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2049 sysfs_remove_group(&dev->kobj, group); 2050 } 2051 2052 static void devm_attr_groups_remove(struct device *dev, void *res) 2053 { 2054 union device_attr_group_devres *devres = res; 2055 const struct attribute_group **groups = devres->groups; 2056 2057 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2058 sysfs_remove_groups(&dev->kobj, groups); 2059 } 2060 2061 /** 2062 * devm_device_add_group - given a device, create a managed attribute group 2063 * @dev: The device to create the group for 2064 * @grp: The attribute group to create 2065 * 2066 * This function creates a group for the first time. It will explicitly 2067 * warn and error if any of the attribute files being created already exist. 2068 * 2069 * Returns 0 on success or error code on failure. 2070 */ 2071 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2072 { 2073 union device_attr_group_devres *devres; 2074 int error; 2075 2076 devres = devres_alloc(devm_attr_group_remove, 2077 sizeof(*devres), GFP_KERNEL); 2078 if (!devres) 2079 return -ENOMEM; 2080 2081 error = sysfs_create_group(&dev->kobj, grp); 2082 if (error) { 2083 devres_free(devres); 2084 return error; 2085 } 2086 2087 devres->group = grp; 2088 devres_add(dev, devres); 2089 return 0; 2090 } 2091 EXPORT_SYMBOL_GPL(devm_device_add_group); 2092 2093 /** 2094 * devm_device_remove_group: remove a managed group from a device 2095 * @dev: device to remove the group from 2096 * @grp: group to remove 2097 * 2098 * This function removes a group of attributes from a device. The attributes 2099 * previously have to have been created for this group, otherwise it will fail. 2100 */ 2101 void devm_device_remove_group(struct device *dev, 2102 const struct attribute_group *grp) 2103 { 2104 WARN_ON(devres_release(dev, devm_attr_group_remove, 2105 devm_attr_group_match, 2106 /* cast away const */ (void *)grp)); 2107 } 2108 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2109 2110 /** 2111 * devm_device_add_groups - create a bunch of managed attribute groups 2112 * @dev: The device to create the group for 2113 * @groups: The attribute groups to create, NULL terminated 2114 * 2115 * This function creates a bunch of managed attribute groups. If an error 2116 * occurs when creating a group, all previously created groups will be 2117 * removed, unwinding everything back to the original state when this 2118 * function was called. It will explicitly warn and error if any of the 2119 * attribute files being created already exist. 2120 * 2121 * Returns 0 on success or error code from sysfs_create_group on failure. 2122 */ 2123 int devm_device_add_groups(struct device *dev, 2124 const struct attribute_group **groups) 2125 { 2126 union device_attr_group_devres *devres; 2127 int error; 2128 2129 devres = devres_alloc(devm_attr_groups_remove, 2130 sizeof(*devres), GFP_KERNEL); 2131 if (!devres) 2132 return -ENOMEM; 2133 2134 error = sysfs_create_groups(&dev->kobj, groups); 2135 if (error) { 2136 devres_free(devres); 2137 return error; 2138 } 2139 2140 devres->groups = groups; 2141 devres_add(dev, devres); 2142 return 0; 2143 } 2144 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2145 2146 /** 2147 * devm_device_remove_groups - remove a list of managed groups 2148 * 2149 * @dev: The device for the groups to be removed from 2150 * @groups: NULL terminated list of groups to be removed 2151 * 2152 * If groups is not NULL, remove the specified groups from the device. 2153 */ 2154 void devm_device_remove_groups(struct device *dev, 2155 const struct attribute_group **groups) 2156 { 2157 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2158 devm_attr_group_match, 2159 /* cast away const */ (void *)groups)); 2160 } 2161 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2162 2163 static int device_add_attrs(struct device *dev) 2164 { 2165 struct class *class = dev->class; 2166 const struct device_type *type = dev->type; 2167 int error; 2168 2169 if (class) { 2170 error = device_add_groups(dev, class->dev_groups); 2171 if (error) 2172 return error; 2173 } 2174 2175 if (type) { 2176 error = device_add_groups(dev, type->groups); 2177 if (error) 2178 goto err_remove_class_groups; 2179 } 2180 2181 error = device_add_groups(dev, dev->groups); 2182 if (error) 2183 goto err_remove_type_groups; 2184 2185 if (device_supports_offline(dev) && !dev->offline_disabled) { 2186 error = device_create_file(dev, &dev_attr_online); 2187 if (error) 2188 goto err_remove_dev_groups; 2189 } 2190 2191 if (fw_devlink_flags && !fw_devlink_is_permissive()) { 2192 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2193 if (error) 2194 goto err_remove_dev_online; 2195 } 2196 2197 return 0; 2198 2199 err_remove_dev_online: 2200 device_remove_file(dev, &dev_attr_online); 2201 err_remove_dev_groups: 2202 device_remove_groups(dev, dev->groups); 2203 err_remove_type_groups: 2204 if (type) 2205 device_remove_groups(dev, type->groups); 2206 err_remove_class_groups: 2207 if (class) 2208 device_remove_groups(dev, class->dev_groups); 2209 2210 return error; 2211 } 2212 2213 static void device_remove_attrs(struct device *dev) 2214 { 2215 struct class *class = dev->class; 2216 const struct device_type *type = dev->type; 2217 2218 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2219 device_remove_file(dev, &dev_attr_online); 2220 device_remove_groups(dev, dev->groups); 2221 2222 if (type) 2223 device_remove_groups(dev, type->groups); 2224 2225 if (class) 2226 device_remove_groups(dev, class->dev_groups); 2227 } 2228 2229 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2230 char *buf) 2231 { 2232 return print_dev_t(buf, dev->devt); 2233 } 2234 static DEVICE_ATTR_RO(dev); 2235 2236 /* /sys/devices/ */ 2237 struct kset *devices_kset; 2238 2239 /** 2240 * devices_kset_move_before - Move device in the devices_kset's list. 2241 * @deva: Device to move. 2242 * @devb: Device @deva should come before. 2243 */ 2244 static void devices_kset_move_before(struct device *deva, struct device *devb) 2245 { 2246 if (!devices_kset) 2247 return; 2248 pr_debug("devices_kset: Moving %s before %s\n", 2249 dev_name(deva), dev_name(devb)); 2250 spin_lock(&devices_kset->list_lock); 2251 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2252 spin_unlock(&devices_kset->list_lock); 2253 } 2254 2255 /** 2256 * devices_kset_move_after - Move device in the devices_kset's list. 2257 * @deva: Device to move 2258 * @devb: Device @deva should come after. 2259 */ 2260 static void devices_kset_move_after(struct device *deva, struct device *devb) 2261 { 2262 if (!devices_kset) 2263 return; 2264 pr_debug("devices_kset: Moving %s after %s\n", 2265 dev_name(deva), dev_name(devb)); 2266 spin_lock(&devices_kset->list_lock); 2267 list_move(&deva->kobj.entry, &devb->kobj.entry); 2268 spin_unlock(&devices_kset->list_lock); 2269 } 2270 2271 /** 2272 * devices_kset_move_last - move the device to the end of devices_kset's list. 2273 * @dev: device to move 2274 */ 2275 void devices_kset_move_last(struct device *dev) 2276 { 2277 if (!devices_kset) 2278 return; 2279 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2280 spin_lock(&devices_kset->list_lock); 2281 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2282 spin_unlock(&devices_kset->list_lock); 2283 } 2284 2285 /** 2286 * device_create_file - create sysfs attribute file for device. 2287 * @dev: device. 2288 * @attr: device attribute descriptor. 2289 */ 2290 int device_create_file(struct device *dev, 2291 const struct device_attribute *attr) 2292 { 2293 int error = 0; 2294 2295 if (dev) { 2296 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2297 "Attribute %s: write permission without 'store'\n", 2298 attr->attr.name); 2299 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2300 "Attribute %s: read permission without 'show'\n", 2301 attr->attr.name); 2302 error = sysfs_create_file(&dev->kobj, &attr->attr); 2303 } 2304 2305 return error; 2306 } 2307 EXPORT_SYMBOL_GPL(device_create_file); 2308 2309 /** 2310 * device_remove_file - remove sysfs attribute file. 2311 * @dev: device. 2312 * @attr: device attribute descriptor. 2313 */ 2314 void device_remove_file(struct device *dev, 2315 const struct device_attribute *attr) 2316 { 2317 if (dev) 2318 sysfs_remove_file(&dev->kobj, &attr->attr); 2319 } 2320 EXPORT_SYMBOL_GPL(device_remove_file); 2321 2322 /** 2323 * device_remove_file_self - remove sysfs attribute file from its own method. 2324 * @dev: device. 2325 * @attr: device attribute descriptor. 2326 * 2327 * See kernfs_remove_self() for details. 2328 */ 2329 bool device_remove_file_self(struct device *dev, 2330 const struct device_attribute *attr) 2331 { 2332 if (dev) 2333 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2334 else 2335 return false; 2336 } 2337 EXPORT_SYMBOL_GPL(device_remove_file_self); 2338 2339 /** 2340 * device_create_bin_file - create sysfs binary attribute file for device. 2341 * @dev: device. 2342 * @attr: device binary attribute descriptor. 2343 */ 2344 int device_create_bin_file(struct device *dev, 2345 const struct bin_attribute *attr) 2346 { 2347 int error = -EINVAL; 2348 if (dev) 2349 error = sysfs_create_bin_file(&dev->kobj, attr); 2350 return error; 2351 } 2352 EXPORT_SYMBOL_GPL(device_create_bin_file); 2353 2354 /** 2355 * device_remove_bin_file - remove sysfs binary attribute file 2356 * @dev: device. 2357 * @attr: device binary attribute descriptor. 2358 */ 2359 void device_remove_bin_file(struct device *dev, 2360 const struct bin_attribute *attr) 2361 { 2362 if (dev) 2363 sysfs_remove_bin_file(&dev->kobj, attr); 2364 } 2365 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2366 2367 static void klist_children_get(struct klist_node *n) 2368 { 2369 struct device_private *p = to_device_private_parent(n); 2370 struct device *dev = p->device; 2371 2372 get_device(dev); 2373 } 2374 2375 static void klist_children_put(struct klist_node *n) 2376 { 2377 struct device_private *p = to_device_private_parent(n); 2378 struct device *dev = p->device; 2379 2380 put_device(dev); 2381 } 2382 2383 /** 2384 * device_initialize - init device structure. 2385 * @dev: device. 2386 * 2387 * This prepares the device for use by other layers by initializing 2388 * its fields. 2389 * It is the first half of device_register(), if called by 2390 * that function, though it can also be called separately, so one 2391 * may use @dev's fields. In particular, get_device()/put_device() 2392 * may be used for reference counting of @dev after calling this 2393 * function. 2394 * 2395 * All fields in @dev must be initialized by the caller to 0, except 2396 * for those explicitly set to some other value. The simplest 2397 * approach is to use kzalloc() to allocate the structure containing 2398 * @dev. 2399 * 2400 * NOTE: Use put_device() to give up your reference instead of freeing 2401 * @dev directly once you have called this function. 2402 */ 2403 void device_initialize(struct device *dev) 2404 { 2405 dev->kobj.kset = devices_kset; 2406 kobject_init(&dev->kobj, &device_ktype); 2407 INIT_LIST_HEAD(&dev->dma_pools); 2408 mutex_init(&dev->mutex); 2409 #ifdef CONFIG_PROVE_LOCKING 2410 mutex_init(&dev->lockdep_mutex); 2411 #endif 2412 lockdep_set_novalidate_class(&dev->mutex); 2413 spin_lock_init(&dev->devres_lock); 2414 INIT_LIST_HEAD(&dev->devres_head); 2415 device_pm_init(dev); 2416 set_dev_node(dev, -1); 2417 #ifdef CONFIG_GENERIC_MSI_IRQ 2418 INIT_LIST_HEAD(&dev->msi_list); 2419 #endif 2420 INIT_LIST_HEAD(&dev->links.consumers); 2421 INIT_LIST_HEAD(&dev->links.suppliers); 2422 INIT_LIST_HEAD(&dev->links.needs_suppliers); 2423 INIT_LIST_HEAD(&dev->links.defer_hook); 2424 dev->links.status = DL_DEV_NO_DRIVER; 2425 } 2426 EXPORT_SYMBOL_GPL(device_initialize); 2427 2428 struct kobject *virtual_device_parent(struct device *dev) 2429 { 2430 static struct kobject *virtual_dir = NULL; 2431 2432 if (!virtual_dir) 2433 virtual_dir = kobject_create_and_add("virtual", 2434 &devices_kset->kobj); 2435 2436 return virtual_dir; 2437 } 2438 2439 struct class_dir { 2440 struct kobject kobj; 2441 struct class *class; 2442 }; 2443 2444 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2445 2446 static void class_dir_release(struct kobject *kobj) 2447 { 2448 struct class_dir *dir = to_class_dir(kobj); 2449 kfree(dir); 2450 } 2451 2452 static const 2453 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2454 { 2455 struct class_dir *dir = to_class_dir(kobj); 2456 return dir->class->ns_type; 2457 } 2458 2459 static struct kobj_type class_dir_ktype = { 2460 .release = class_dir_release, 2461 .sysfs_ops = &kobj_sysfs_ops, 2462 .child_ns_type = class_dir_child_ns_type 2463 }; 2464 2465 static struct kobject * 2466 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2467 { 2468 struct class_dir *dir; 2469 int retval; 2470 2471 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2472 if (!dir) 2473 return ERR_PTR(-ENOMEM); 2474 2475 dir->class = class; 2476 kobject_init(&dir->kobj, &class_dir_ktype); 2477 2478 dir->kobj.kset = &class->p->glue_dirs; 2479 2480 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2481 if (retval < 0) { 2482 kobject_put(&dir->kobj); 2483 return ERR_PTR(retval); 2484 } 2485 return &dir->kobj; 2486 } 2487 2488 static DEFINE_MUTEX(gdp_mutex); 2489 2490 static struct kobject *get_device_parent(struct device *dev, 2491 struct device *parent) 2492 { 2493 if (dev->class) { 2494 struct kobject *kobj = NULL; 2495 struct kobject *parent_kobj; 2496 struct kobject *k; 2497 2498 #ifdef CONFIG_BLOCK 2499 /* block disks show up in /sys/block */ 2500 if (sysfs_deprecated && dev->class == &block_class) { 2501 if (parent && parent->class == &block_class) 2502 return &parent->kobj; 2503 return &block_class.p->subsys.kobj; 2504 } 2505 #endif 2506 2507 /* 2508 * If we have no parent, we live in "virtual". 2509 * Class-devices with a non class-device as parent, live 2510 * in a "glue" directory to prevent namespace collisions. 2511 */ 2512 if (parent == NULL) 2513 parent_kobj = virtual_device_parent(dev); 2514 else if (parent->class && !dev->class->ns_type) 2515 return &parent->kobj; 2516 else 2517 parent_kobj = &parent->kobj; 2518 2519 mutex_lock(&gdp_mutex); 2520 2521 /* find our class-directory at the parent and reference it */ 2522 spin_lock(&dev->class->p->glue_dirs.list_lock); 2523 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2524 if (k->parent == parent_kobj) { 2525 kobj = kobject_get(k); 2526 break; 2527 } 2528 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2529 if (kobj) { 2530 mutex_unlock(&gdp_mutex); 2531 return kobj; 2532 } 2533 2534 /* or create a new class-directory at the parent device */ 2535 k = class_dir_create_and_add(dev->class, parent_kobj); 2536 /* do not emit an uevent for this simple "glue" directory */ 2537 mutex_unlock(&gdp_mutex); 2538 return k; 2539 } 2540 2541 /* subsystems can specify a default root directory for their devices */ 2542 if (!parent && dev->bus && dev->bus->dev_root) 2543 return &dev->bus->dev_root->kobj; 2544 2545 if (parent) 2546 return &parent->kobj; 2547 return NULL; 2548 } 2549 2550 static inline bool live_in_glue_dir(struct kobject *kobj, 2551 struct device *dev) 2552 { 2553 if (!kobj || !dev->class || 2554 kobj->kset != &dev->class->p->glue_dirs) 2555 return false; 2556 return true; 2557 } 2558 2559 static inline struct kobject *get_glue_dir(struct device *dev) 2560 { 2561 return dev->kobj.parent; 2562 } 2563 2564 /* 2565 * make sure cleaning up dir as the last step, we need to make 2566 * sure .release handler of kobject is run with holding the 2567 * global lock 2568 */ 2569 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2570 { 2571 unsigned int ref; 2572 2573 /* see if we live in a "glue" directory */ 2574 if (!live_in_glue_dir(glue_dir, dev)) 2575 return; 2576 2577 mutex_lock(&gdp_mutex); 2578 /** 2579 * There is a race condition between removing glue directory 2580 * and adding a new device under the glue directory. 2581 * 2582 * CPU1: CPU2: 2583 * 2584 * device_add() 2585 * get_device_parent() 2586 * class_dir_create_and_add() 2587 * kobject_add_internal() 2588 * create_dir() // create glue_dir 2589 * 2590 * device_add() 2591 * get_device_parent() 2592 * kobject_get() // get glue_dir 2593 * 2594 * device_del() 2595 * cleanup_glue_dir() 2596 * kobject_del(glue_dir) 2597 * 2598 * kobject_add() 2599 * kobject_add_internal() 2600 * create_dir() // in glue_dir 2601 * sysfs_create_dir_ns() 2602 * kernfs_create_dir_ns(sd) 2603 * 2604 * sysfs_remove_dir() // glue_dir->sd=NULL 2605 * sysfs_put() // free glue_dir->sd 2606 * 2607 * // sd is freed 2608 * kernfs_new_node(sd) 2609 * kernfs_get(glue_dir) 2610 * kernfs_add_one() 2611 * kernfs_put() 2612 * 2613 * Before CPU1 remove last child device under glue dir, if CPU2 add 2614 * a new device under glue dir, the glue_dir kobject reference count 2615 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2616 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2617 * and sysfs_put(). This result in glue_dir->sd is freed. 2618 * 2619 * Then the CPU2 will see a stale "empty" but still potentially used 2620 * glue dir around in kernfs_new_node(). 2621 * 2622 * In order to avoid this happening, we also should make sure that 2623 * kernfs_node for glue_dir is released in CPU1 only when refcount 2624 * for glue_dir kobj is 1. 2625 */ 2626 ref = kref_read(&glue_dir->kref); 2627 if (!kobject_has_children(glue_dir) && !--ref) 2628 kobject_del(glue_dir); 2629 kobject_put(glue_dir); 2630 mutex_unlock(&gdp_mutex); 2631 } 2632 2633 static int device_add_class_symlinks(struct device *dev) 2634 { 2635 struct device_node *of_node = dev_of_node(dev); 2636 int error; 2637 2638 if (of_node) { 2639 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2640 if (error) 2641 dev_warn(dev, "Error %d creating of_node link\n",error); 2642 /* An error here doesn't warrant bringing down the device */ 2643 } 2644 2645 if (!dev->class) 2646 return 0; 2647 2648 error = sysfs_create_link(&dev->kobj, 2649 &dev->class->p->subsys.kobj, 2650 "subsystem"); 2651 if (error) 2652 goto out_devnode; 2653 2654 if (dev->parent && device_is_not_partition(dev)) { 2655 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2656 "device"); 2657 if (error) 2658 goto out_subsys; 2659 } 2660 2661 #ifdef CONFIG_BLOCK 2662 /* /sys/block has directories and does not need symlinks */ 2663 if (sysfs_deprecated && dev->class == &block_class) 2664 return 0; 2665 #endif 2666 2667 /* link in the class directory pointing to the device */ 2668 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2669 &dev->kobj, dev_name(dev)); 2670 if (error) 2671 goto out_device; 2672 2673 return 0; 2674 2675 out_device: 2676 sysfs_remove_link(&dev->kobj, "device"); 2677 2678 out_subsys: 2679 sysfs_remove_link(&dev->kobj, "subsystem"); 2680 out_devnode: 2681 sysfs_remove_link(&dev->kobj, "of_node"); 2682 return error; 2683 } 2684 2685 static void device_remove_class_symlinks(struct device *dev) 2686 { 2687 if (dev_of_node(dev)) 2688 sysfs_remove_link(&dev->kobj, "of_node"); 2689 2690 if (!dev->class) 2691 return; 2692 2693 if (dev->parent && device_is_not_partition(dev)) 2694 sysfs_remove_link(&dev->kobj, "device"); 2695 sysfs_remove_link(&dev->kobj, "subsystem"); 2696 #ifdef CONFIG_BLOCK 2697 if (sysfs_deprecated && dev->class == &block_class) 2698 return; 2699 #endif 2700 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2701 } 2702 2703 /** 2704 * dev_set_name - set a device name 2705 * @dev: device 2706 * @fmt: format string for the device's name 2707 */ 2708 int dev_set_name(struct device *dev, const char *fmt, ...) 2709 { 2710 va_list vargs; 2711 int err; 2712 2713 va_start(vargs, fmt); 2714 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2715 va_end(vargs); 2716 return err; 2717 } 2718 EXPORT_SYMBOL_GPL(dev_set_name); 2719 2720 /** 2721 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2722 * @dev: device 2723 * 2724 * By default we select char/ for new entries. Setting class->dev_obj 2725 * to NULL prevents an entry from being created. class->dev_kobj must 2726 * be set (or cleared) before any devices are registered to the class 2727 * otherwise device_create_sys_dev_entry() and 2728 * device_remove_sys_dev_entry() will disagree about the presence of 2729 * the link. 2730 */ 2731 static struct kobject *device_to_dev_kobj(struct device *dev) 2732 { 2733 struct kobject *kobj; 2734 2735 if (dev->class) 2736 kobj = dev->class->dev_kobj; 2737 else 2738 kobj = sysfs_dev_char_kobj; 2739 2740 return kobj; 2741 } 2742 2743 static int device_create_sys_dev_entry(struct device *dev) 2744 { 2745 struct kobject *kobj = device_to_dev_kobj(dev); 2746 int error = 0; 2747 char devt_str[15]; 2748 2749 if (kobj) { 2750 format_dev_t(devt_str, dev->devt); 2751 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2752 } 2753 2754 return error; 2755 } 2756 2757 static void device_remove_sys_dev_entry(struct device *dev) 2758 { 2759 struct kobject *kobj = device_to_dev_kobj(dev); 2760 char devt_str[15]; 2761 2762 if (kobj) { 2763 format_dev_t(devt_str, dev->devt); 2764 sysfs_remove_link(kobj, devt_str); 2765 } 2766 } 2767 2768 static int device_private_init(struct device *dev) 2769 { 2770 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2771 if (!dev->p) 2772 return -ENOMEM; 2773 dev->p->device = dev; 2774 klist_init(&dev->p->klist_children, klist_children_get, 2775 klist_children_put); 2776 INIT_LIST_HEAD(&dev->p->deferred_probe); 2777 return 0; 2778 } 2779 2780 /** 2781 * device_add - add device to device hierarchy. 2782 * @dev: device. 2783 * 2784 * This is part 2 of device_register(), though may be called 2785 * separately _iff_ device_initialize() has been called separately. 2786 * 2787 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2788 * to the global and sibling lists for the device, then 2789 * adds it to the other relevant subsystems of the driver model. 2790 * 2791 * Do not call this routine or device_register() more than once for 2792 * any device structure. The driver model core is not designed to work 2793 * with devices that get unregistered and then spring back to life. 2794 * (Among other things, it's very hard to guarantee that all references 2795 * to the previous incarnation of @dev have been dropped.) Allocate 2796 * and register a fresh new struct device instead. 2797 * 2798 * NOTE: _Never_ directly free @dev after calling this function, even 2799 * if it returned an error! Always use put_device() to give up your 2800 * reference instead. 2801 * 2802 * Rule of thumb is: if device_add() succeeds, you should call 2803 * device_del() when you want to get rid of it. If device_add() has 2804 * *not* succeeded, use *only* put_device() to drop the reference 2805 * count. 2806 */ 2807 int device_add(struct device *dev) 2808 { 2809 struct device *parent; 2810 struct kobject *kobj; 2811 struct class_interface *class_intf; 2812 int error = -EINVAL; 2813 struct kobject *glue_dir = NULL; 2814 2815 dev = get_device(dev); 2816 if (!dev) 2817 goto done; 2818 2819 if (!dev->p) { 2820 error = device_private_init(dev); 2821 if (error) 2822 goto done; 2823 } 2824 2825 /* 2826 * for statically allocated devices, which should all be converted 2827 * some day, we need to initialize the name. We prevent reading back 2828 * the name, and force the use of dev_name() 2829 */ 2830 if (dev->init_name) { 2831 dev_set_name(dev, "%s", dev->init_name); 2832 dev->init_name = NULL; 2833 } 2834 2835 /* subsystems can specify simple device enumeration */ 2836 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2837 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2838 2839 if (!dev_name(dev)) { 2840 error = -EINVAL; 2841 goto name_error; 2842 } 2843 2844 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2845 2846 parent = get_device(dev->parent); 2847 kobj = get_device_parent(dev, parent); 2848 if (IS_ERR(kobj)) { 2849 error = PTR_ERR(kobj); 2850 goto parent_error; 2851 } 2852 if (kobj) 2853 dev->kobj.parent = kobj; 2854 2855 /* use parent numa_node */ 2856 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2857 set_dev_node(dev, dev_to_node(parent)); 2858 2859 /* first, register with generic layer. */ 2860 /* we require the name to be set before, and pass NULL */ 2861 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2862 if (error) { 2863 glue_dir = get_glue_dir(dev); 2864 goto Error; 2865 } 2866 2867 /* notify platform of device entry */ 2868 error = device_platform_notify(dev, KOBJ_ADD); 2869 if (error) 2870 goto platform_error; 2871 2872 error = device_create_file(dev, &dev_attr_uevent); 2873 if (error) 2874 goto attrError; 2875 2876 error = device_add_class_symlinks(dev); 2877 if (error) 2878 goto SymlinkError; 2879 error = device_add_attrs(dev); 2880 if (error) 2881 goto AttrsError; 2882 error = bus_add_device(dev); 2883 if (error) 2884 goto BusError; 2885 error = dpm_sysfs_add(dev); 2886 if (error) 2887 goto DPMError; 2888 device_pm_add(dev); 2889 2890 if (MAJOR(dev->devt)) { 2891 error = device_create_file(dev, &dev_attr_dev); 2892 if (error) 2893 goto DevAttrError; 2894 2895 error = device_create_sys_dev_entry(dev); 2896 if (error) 2897 goto SysEntryError; 2898 2899 devtmpfs_create_node(dev); 2900 } 2901 2902 /* Notify clients of device addition. This call must come 2903 * after dpm_sysfs_add() and before kobject_uevent(). 2904 */ 2905 if (dev->bus) 2906 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2907 BUS_NOTIFY_ADD_DEVICE, dev); 2908 2909 kobject_uevent(&dev->kobj, KOBJ_ADD); 2910 2911 /* 2912 * Check if any of the other devices (consumers) have been waiting for 2913 * this device (supplier) to be added so that they can create a device 2914 * link to it. 2915 * 2916 * This needs to happen after device_pm_add() because device_link_add() 2917 * requires the supplier be registered before it's called. 2918 * 2919 * But this also needs to happen before bus_probe_device() to make sure 2920 * waiting consumers can link to it before the driver is bound to the 2921 * device and the driver sync_state callback is called for this device. 2922 */ 2923 if (dev->fwnode && !dev->fwnode->dev) { 2924 dev->fwnode->dev = dev; 2925 fw_devlink_link_device(dev); 2926 } 2927 2928 bus_probe_device(dev); 2929 if (parent) 2930 klist_add_tail(&dev->p->knode_parent, 2931 &parent->p->klist_children); 2932 2933 if (dev->class) { 2934 mutex_lock(&dev->class->p->mutex); 2935 /* tie the class to the device */ 2936 klist_add_tail(&dev->p->knode_class, 2937 &dev->class->p->klist_devices); 2938 2939 /* notify any interfaces that the device is here */ 2940 list_for_each_entry(class_intf, 2941 &dev->class->p->interfaces, node) 2942 if (class_intf->add_dev) 2943 class_intf->add_dev(dev, class_intf); 2944 mutex_unlock(&dev->class->p->mutex); 2945 } 2946 done: 2947 put_device(dev); 2948 return error; 2949 SysEntryError: 2950 if (MAJOR(dev->devt)) 2951 device_remove_file(dev, &dev_attr_dev); 2952 DevAttrError: 2953 device_pm_remove(dev); 2954 dpm_sysfs_remove(dev); 2955 DPMError: 2956 bus_remove_device(dev); 2957 BusError: 2958 device_remove_attrs(dev); 2959 AttrsError: 2960 device_remove_class_symlinks(dev); 2961 SymlinkError: 2962 device_remove_file(dev, &dev_attr_uevent); 2963 attrError: 2964 device_platform_notify(dev, KOBJ_REMOVE); 2965 platform_error: 2966 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2967 glue_dir = get_glue_dir(dev); 2968 kobject_del(&dev->kobj); 2969 Error: 2970 cleanup_glue_dir(dev, glue_dir); 2971 parent_error: 2972 put_device(parent); 2973 name_error: 2974 kfree(dev->p); 2975 dev->p = NULL; 2976 goto done; 2977 } 2978 EXPORT_SYMBOL_GPL(device_add); 2979 2980 /** 2981 * device_register - register a device with the system. 2982 * @dev: pointer to the device structure 2983 * 2984 * This happens in two clean steps - initialize the device 2985 * and add it to the system. The two steps can be called 2986 * separately, but this is the easiest and most common. 2987 * I.e. you should only call the two helpers separately if 2988 * have a clearly defined need to use and refcount the device 2989 * before it is added to the hierarchy. 2990 * 2991 * For more information, see the kerneldoc for device_initialize() 2992 * and device_add(). 2993 * 2994 * NOTE: _Never_ directly free @dev after calling this function, even 2995 * if it returned an error! Always use put_device() to give up the 2996 * reference initialized in this function instead. 2997 */ 2998 int device_register(struct device *dev) 2999 { 3000 device_initialize(dev); 3001 return device_add(dev); 3002 } 3003 EXPORT_SYMBOL_GPL(device_register); 3004 3005 /** 3006 * get_device - increment reference count for device. 3007 * @dev: device. 3008 * 3009 * This simply forwards the call to kobject_get(), though 3010 * we do take care to provide for the case that we get a NULL 3011 * pointer passed in. 3012 */ 3013 struct device *get_device(struct device *dev) 3014 { 3015 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3016 } 3017 EXPORT_SYMBOL_GPL(get_device); 3018 3019 /** 3020 * put_device - decrement reference count. 3021 * @dev: device in question. 3022 */ 3023 void put_device(struct device *dev) 3024 { 3025 /* might_sleep(); */ 3026 if (dev) 3027 kobject_put(&dev->kobj); 3028 } 3029 EXPORT_SYMBOL_GPL(put_device); 3030 3031 bool kill_device(struct device *dev) 3032 { 3033 /* 3034 * Require the device lock and set the "dead" flag to guarantee that 3035 * the update behavior is consistent with the other bitfields near 3036 * it and that we cannot have an asynchronous probe routine trying 3037 * to run while we are tearing out the bus/class/sysfs from 3038 * underneath the device. 3039 */ 3040 lockdep_assert_held(&dev->mutex); 3041 3042 if (dev->p->dead) 3043 return false; 3044 dev->p->dead = true; 3045 return true; 3046 } 3047 EXPORT_SYMBOL_GPL(kill_device); 3048 3049 /** 3050 * device_del - delete device from system. 3051 * @dev: device. 3052 * 3053 * This is the first part of the device unregistration 3054 * sequence. This removes the device from the lists we control 3055 * from here, has it removed from the other driver model 3056 * subsystems it was added to in device_add(), and removes it 3057 * from the kobject hierarchy. 3058 * 3059 * NOTE: this should be called manually _iff_ device_add() was 3060 * also called manually. 3061 */ 3062 void device_del(struct device *dev) 3063 { 3064 struct device *parent = dev->parent; 3065 struct kobject *glue_dir = NULL; 3066 struct class_interface *class_intf; 3067 3068 device_lock(dev); 3069 kill_device(dev); 3070 device_unlock(dev); 3071 3072 if (dev->fwnode && dev->fwnode->dev == dev) 3073 dev->fwnode->dev = NULL; 3074 3075 /* Notify clients of device removal. This call must come 3076 * before dpm_sysfs_remove(). 3077 */ 3078 if (dev->bus) 3079 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3080 BUS_NOTIFY_DEL_DEVICE, dev); 3081 3082 dpm_sysfs_remove(dev); 3083 if (parent) 3084 klist_del(&dev->p->knode_parent); 3085 if (MAJOR(dev->devt)) { 3086 devtmpfs_delete_node(dev); 3087 device_remove_sys_dev_entry(dev); 3088 device_remove_file(dev, &dev_attr_dev); 3089 } 3090 if (dev->class) { 3091 device_remove_class_symlinks(dev); 3092 3093 mutex_lock(&dev->class->p->mutex); 3094 /* notify any interfaces that the device is now gone */ 3095 list_for_each_entry(class_intf, 3096 &dev->class->p->interfaces, node) 3097 if (class_intf->remove_dev) 3098 class_intf->remove_dev(dev, class_intf); 3099 /* remove the device from the class list */ 3100 klist_del(&dev->p->knode_class); 3101 mutex_unlock(&dev->class->p->mutex); 3102 } 3103 device_remove_file(dev, &dev_attr_uevent); 3104 device_remove_attrs(dev); 3105 bus_remove_device(dev); 3106 device_pm_remove(dev); 3107 driver_deferred_probe_del(dev); 3108 device_platform_notify(dev, KOBJ_REMOVE); 3109 device_remove_properties(dev); 3110 device_links_purge(dev); 3111 3112 if (dev->bus) 3113 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3114 BUS_NOTIFY_REMOVED_DEVICE, dev); 3115 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3116 glue_dir = get_glue_dir(dev); 3117 kobject_del(&dev->kobj); 3118 cleanup_glue_dir(dev, glue_dir); 3119 put_device(parent); 3120 } 3121 EXPORT_SYMBOL_GPL(device_del); 3122 3123 /** 3124 * device_unregister - unregister device from system. 3125 * @dev: device going away. 3126 * 3127 * We do this in two parts, like we do device_register(). First, 3128 * we remove it from all the subsystems with device_del(), then 3129 * we decrement the reference count via put_device(). If that 3130 * is the final reference count, the device will be cleaned up 3131 * via device_release() above. Otherwise, the structure will 3132 * stick around until the final reference to the device is dropped. 3133 */ 3134 void device_unregister(struct device *dev) 3135 { 3136 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3137 device_del(dev); 3138 put_device(dev); 3139 } 3140 EXPORT_SYMBOL_GPL(device_unregister); 3141 3142 static struct device *prev_device(struct klist_iter *i) 3143 { 3144 struct klist_node *n = klist_prev(i); 3145 struct device *dev = NULL; 3146 struct device_private *p; 3147 3148 if (n) { 3149 p = to_device_private_parent(n); 3150 dev = p->device; 3151 } 3152 return dev; 3153 } 3154 3155 static struct device *next_device(struct klist_iter *i) 3156 { 3157 struct klist_node *n = klist_next(i); 3158 struct device *dev = NULL; 3159 struct device_private *p; 3160 3161 if (n) { 3162 p = to_device_private_parent(n); 3163 dev = p->device; 3164 } 3165 return dev; 3166 } 3167 3168 /** 3169 * device_get_devnode - path of device node file 3170 * @dev: device 3171 * @mode: returned file access mode 3172 * @uid: returned file owner 3173 * @gid: returned file group 3174 * @tmp: possibly allocated string 3175 * 3176 * Return the relative path of a possible device node. 3177 * Non-default names may need to allocate a memory to compose 3178 * a name. This memory is returned in tmp and needs to be 3179 * freed by the caller. 3180 */ 3181 const char *device_get_devnode(struct device *dev, 3182 umode_t *mode, kuid_t *uid, kgid_t *gid, 3183 const char **tmp) 3184 { 3185 char *s; 3186 3187 *tmp = NULL; 3188 3189 /* the device type may provide a specific name */ 3190 if (dev->type && dev->type->devnode) 3191 *tmp = dev->type->devnode(dev, mode, uid, gid); 3192 if (*tmp) 3193 return *tmp; 3194 3195 /* the class may provide a specific name */ 3196 if (dev->class && dev->class->devnode) 3197 *tmp = dev->class->devnode(dev, mode); 3198 if (*tmp) 3199 return *tmp; 3200 3201 /* return name without allocation, tmp == NULL */ 3202 if (strchr(dev_name(dev), '!') == NULL) 3203 return dev_name(dev); 3204 3205 /* replace '!' in the name with '/' */ 3206 s = kstrdup(dev_name(dev), GFP_KERNEL); 3207 if (!s) 3208 return NULL; 3209 strreplace(s, '!', '/'); 3210 return *tmp = s; 3211 } 3212 3213 /** 3214 * device_for_each_child - device child iterator. 3215 * @parent: parent struct device. 3216 * @fn: function to be called for each device. 3217 * @data: data for the callback. 3218 * 3219 * Iterate over @parent's child devices, and call @fn for each, 3220 * passing it @data. 3221 * 3222 * We check the return of @fn each time. If it returns anything 3223 * other than 0, we break out and return that value. 3224 */ 3225 int device_for_each_child(struct device *parent, void *data, 3226 int (*fn)(struct device *dev, void *data)) 3227 { 3228 struct klist_iter i; 3229 struct device *child; 3230 int error = 0; 3231 3232 if (!parent->p) 3233 return 0; 3234 3235 klist_iter_init(&parent->p->klist_children, &i); 3236 while (!error && (child = next_device(&i))) 3237 error = fn(child, data); 3238 klist_iter_exit(&i); 3239 return error; 3240 } 3241 EXPORT_SYMBOL_GPL(device_for_each_child); 3242 3243 /** 3244 * device_for_each_child_reverse - device child iterator in reversed order. 3245 * @parent: parent struct device. 3246 * @fn: function to be called for each device. 3247 * @data: data for the callback. 3248 * 3249 * Iterate over @parent's child devices, and call @fn for each, 3250 * passing it @data. 3251 * 3252 * We check the return of @fn each time. If it returns anything 3253 * other than 0, we break out and return that value. 3254 */ 3255 int device_for_each_child_reverse(struct device *parent, void *data, 3256 int (*fn)(struct device *dev, void *data)) 3257 { 3258 struct klist_iter i; 3259 struct device *child; 3260 int error = 0; 3261 3262 if (!parent->p) 3263 return 0; 3264 3265 klist_iter_init(&parent->p->klist_children, &i); 3266 while ((child = prev_device(&i)) && !error) 3267 error = fn(child, data); 3268 klist_iter_exit(&i); 3269 return error; 3270 } 3271 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3272 3273 /** 3274 * device_find_child - device iterator for locating a particular device. 3275 * @parent: parent struct device 3276 * @match: Callback function to check device 3277 * @data: Data to pass to match function 3278 * 3279 * This is similar to the device_for_each_child() function above, but it 3280 * returns a reference to a device that is 'found' for later use, as 3281 * determined by the @match callback. 3282 * 3283 * The callback should return 0 if the device doesn't match and non-zero 3284 * if it does. If the callback returns non-zero and a reference to the 3285 * current device can be obtained, this function will return to the caller 3286 * and not iterate over any more devices. 3287 * 3288 * NOTE: you will need to drop the reference with put_device() after use. 3289 */ 3290 struct device *device_find_child(struct device *parent, void *data, 3291 int (*match)(struct device *dev, void *data)) 3292 { 3293 struct klist_iter i; 3294 struct device *child; 3295 3296 if (!parent) 3297 return NULL; 3298 3299 klist_iter_init(&parent->p->klist_children, &i); 3300 while ((child = next_device(&i))) 3301 if (match(child, data) && get_device(child)) 3302 break; 3303 klist_iter_exit(&i); 3304 return child; 3305 } 3306 EXPORT_SYMBOL_GPL(device_find_child); 3307 3308 /** 3309 * device_find_child_by_name - device iterator for locating a child device. 3310 * @parent: parent struct device 3311 * @name: name of the child device 3312 * 3313 * This is similar to the device_find_child() function above, but it 3314 * returns a reference to a device that has the name @name. 3315 * 3316 * NOTE: you will need to drop the reference with put_device() after use. 3317 */ 3318 struct device *device_find_child_by_name(struct device *parent, 3319 const char *name) 3320 { 3321 struct klist_iter i; 3322 struct device *child; 3323 3324 if (!parent) 3325 return NULL; 3326 3327 klist_iter_init(&parent->p->klist_children, &i); 3328 while ((child = next_device(&i))) 3329 if (!strcmp(dev_name(child), name) && get_device(child)) 3330 break; 3331 klist_iter_exit(&i); 3332 return child; 3333 } 3334 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3335 3336 int __init devices_init(void) 3337 { 3338 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3339 if (!devices_kset) 3340 return -ENOMEM; 3341 dev_kobj = kobject_create_and_add("dev", NULL); 3342 if (!dev_kobj) 3343 goto dev_kobj_err; 3344 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3345 if (!sysfs_dev_block_kobj) 3346 goto block_kobj_err; 3347 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3348 if (!sysfs_dev_char_kobj) 3349 goto char_kobj_err; 3350 3351 return 0; 3352 3353 char_kobj_err: 3354 kobject_put(sysfs_dev_block_kobj); 3355 block_kobj_err: 3356 kobject_put(dev_kobj); 3357 dev_kobj_err: 3358 kset_unregister(devices_kset); 3359 return -ENOMEM; 3360 } 3361 3362 static int device_check_offline(struct device *dev, void *not_used) 3363 { 3364 int ret; 3365 3366 ret = device_for_each_child(dev, NULL, device_check_offline); 3367 if (ret) 3368 return ret; 3369 3370 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3371 } 3372 3373 /** 3374 * device_offline - Prepare the device for hot-removal. 3375 * @dev: Device to be put offline. 3376 * 3377 * Execute the device bus type's .offline() callback, if present, to prepare 3378 * the device for a subsequent hot-removal. If that succeeds, the device must 3379 * not be used until either it is removed or its bus type's .online() callback 3380 * is executed. 3381 * 3382 * Call under device_hotplug_lock. 3383 */ 3384 int device_offline(struct device *dev) 3385 { 3386 int ret; 3387 3388 if (dev->offline_disabled) 3389 return -EPERM; 3390 3391 ret = device_for_each_child(dev, NULL, device_check_offline); 3392 if (ret) 3393 return ret; 3394 3395 device_lock(dev); 3396 if (device_supports_offline(dev)) { 3397 if (dev->offline) { 3398 ret = 1; 3399 } else { 3400 ret = dev->bus->offline(dev); 3401 if (!ret) { 3402 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3403 dev->offline = true; 3404 } 3405 } 3406 } 3407 device_unlock(dev); 3408 3409 return ret; 3410 } 3411 3412 /** 3413 * device_online - Put the device back online after successful device_offline(). 3414 * @dev: Device to be put back online. 3415 * 3416 * If device_offline() has been successfully executed for @dev, but the device 3417 * has not been removed subsequently, execute its bus type's .online() callback 3418 * to indicate that the device can be used again. 3419 * 3420 * Call under device_hotplug_lock. 3421 */ 3422 int device_online(struct device *dev) 3423 { 3424 int ret = 0; 3425 3426 device_lock(dev); 3427 if (device_supports_offline(dev)) { 3428 if (dev->offline) { 3429 ret = dev->bus->online(dev); 3430 if (!ret) { 3431 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3432 dev->offline = false; 3433 } 3434 } else { 3435 ret = 1; 3436 } 3437 } 3438 device_unlock(dev); 3439 3440 return ret; 3441 } 3442 3443 struct root_device { 3444 struct device dev; 3445 struct module *owner; 3446 }; 3447 3448 static inline struct root_device *to_root_device(struct device *d) 3449 { 3450 return container_of(d, struct root_device, dev); 3451 } 3452 3453 static void root_device_release(struct device *dev) 3454 { 3455 kfree(to_root_device(dev)); 3456 } 3457 3458 /** 3459 * __root_device_register - allocate and register a root device 3460 * @name: root device name 3461 * @owner: owner module of the root device, usually THIS_MODULE 3462 * 3463 * This function allocates a root device and registers it 3464 * using device_register(). In order to free the returned 3465 * device, use root_device_unregister(). 3466 * 3467 * Root devices are dummy devices which allow other devices 3468 * to be grouped under /sys/devices. Use this function to 3469 * allocate a root device and then use it as the parent of 3470 * any device which should appear under /sys/devices/{name} 3471 * 3472 * The /sys/devices/{name} directory will also contain a 3473 * 'module' symlink which points to the @owner directory 3474 * in sysfs. 3475 * 3476 * Returns &struct device pointer on success, or ERR_PTR() on error. 3477 * 3478 * Note: You probably want to use root_device_register(). 3479 */ 3480 struct device *__root_device_register(const char *name, struct module *owner) 3481 { 3482 struct root_device *root; 3483 int err = -ENOMEM; 3484 3485 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3486 if (!root) 3487 return ERR_PTR(err); 3488 3489 err = dev_set_name(&root->dev, "%s", name); 3490 if (err) { 3491 kfree(root); 3492 return ERR_PTR(err); 3493 } 3494 3495 root->dev.release = root_device_release; 3496 3497 err = device_register(&root->dev); 3498 if (err) { 3499 put_device(&root->dev); 3500 return ERR_PTR(err); 3501 } 3502 3503 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3504 if (owner) { 3505 struct module_kobject *mk = &owner->mkobj; 3506 3507 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3508 if (err) { 3509 device_unregister(&root->dev); 3510 return ERR_PTR(err); 3511 } 3512 root->owner = owner; 3513 } 3514 #endif 3515 3516 return &root->dev; 3517 } 3518 EXPORT_SYMBOL_GPL(__root_device_register); 3519 3520 /** 3521 * root_device_unregister - unregister and free a root device 3522 * @dev: device going away 3523 * 3524 * This function unregisters and cleans up a device that was created by 3525 * root_device_register(). 3526 */ 3527 void root_device_unregister(struct device *dev) 3528 { 3529 struct root_device *root = to_root_device(dev); 3530 3531 if (root->owner) 3532 sysfs_remove_link(&root->dev.kobj, "module"); 3533 3534 device_unregister(dev); 3535 } 3536 EXPORT_SYMBOL_GPL(root_device_unregister); 3537 3538 3539 static void device_create_release(struct device *dev) 3540 { 3541 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3542 kfree(dev); 3543 } 3544 3545 static __printf(6, 0) struct device * 3546 device_create_groups_vargs(struct class *class, struct device *parent, 3547 dev_t devt, void *drvdata, 3548 const struct attribute_group **groups, 3549 const char *fmt, va_list args) 3550 { 3551 struct device *dev = NULL; 3552 int retval = -ENODEV; 3553 3554 if (class == NULL || IS_ERR(class)) 3555 goto error; 3556 3557 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3558 if (!dev) { 3559 retval = -ENOMEM; 3560 goto error; 3561 } 3562 3563 device_initialize(dev); 3564 dev->devt = devt; 3565 dev->class = class; 3566 dev->parent = parent; 3567 dev->groups = groups; 3568 dev->release = device_create_release; 3569 dev_set_drvdata(dev, drvdata); 3570 3571 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3572 if (retval) 3573 goto error; 3574 3575 retval = device_add(dev); 3576 if (retval) 3577 goto error; 3578 3579 return dev; 3580 3581 error: 3582 put_device(dev); 3583 return ERR_PTR(retval); 3584 } 3585 3586 /** 3587 * device_create - creates a device and registers it with sysfs 3588 * @class: pointer to the struct class that this device should be registered to 3589 * @parent: pointer to the parent struct device of this new device, if any 3590 * @devt: the dev_t for the char device to be added 3591 * @drvdata: the data to be added to the device for callbacks 3592 * @fmt: string for the device's name 3593 * 3594 * This function can be used by char device classes. A struct device 3595 * will be created in sysfs, registered to the specified class. 3596 * 3597 * A "dev" file will be created, showing the dev_t for the device, if 3598 * the dev_t is not 0,0. 3599 * If a pointer to a parent struct device is passed in, the newly created 3600 * struct device will be a child of that device in sysfs. 3601 * The pointer to the struct device will be returned from the call. 3602 * Any further sysfs files that might be required can be created using this 3603 * pointer. 3604 * 3605 * Returns &struct device pointer on success, or ERR_PTR() on error. 3606 * 3607 * Note: the struct class passed to this function must have previously 3608 * been created with a call to class_create(). 3609 */ 3610 struct device *device_create(struct class *class, struct device *parent, 3611 dev_t devt, void *drvdata, const char *fmt, ...) 3612 { 3613 va_list vargs; 3614 struct device *dev; 3615 3616 va_start(vargs, fmt); 3617 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3618 fmt, vargs); 3619 va_end(vargs); 3620 return dev; 3621 } 3622 EXPORT_SYMBOL_GPL(device_create); 3623 3624 /** 3625 * device_create_with_groups - creates a device and registers it with sysfs 3626 * @class: pointer to the struct class that this device should be registered to 3627 * @parent: pointer to the parent struct device of this new device, if any 3628 * @devt: the dev_t for the char device to be added 3629 * @drvdata: the data to be added to the device for callbacks 3630 * @groups: NULL-terminated list of attribute groups to be created 3631 * @fmt: string for the device's name 3632 * 3633 * This function can be used by char device classes. A struct device 3634 * will be created in sysfs, registered to the specified class. 3635 * Additional attributes specified in the groups parameter will also 3636 * be created automatically. 3637 * 3638 * A "dev" file will be created, showing the dev_t for the device, if 3639 * the dev_t is not 0,0. 3640 * If a pointer to a parent struct device is passed in, the newly created 3641 * struct device will be a child of that device in sysfs. 3642 * The pointer to the struct device will be returned from the call. 3643 * Any further sysfs files that might be required can be created using this 3644 * pointer. 3645 * 3646 * Returns &struct device pointer on success, or ERR_PTR() on error. 3647 * 3648 * Note: the struct class passed to this function must have previously 3649 * been created with a call to class_create(). 3650 */ 3651 struct device *device_create_with_groups(struct class *class, 3652 struct device *parent, dev_t devt, 3653 void *drvdata, 3654 const struct attribute_group **groups, 3655 const char *fmt, ...) 3656 { 3657 va_list vargs; 3658 struct device *dev; 3659 3660 va_start(vargs, fmt); 3661 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3662 fmt, vargs); 3663 va_end(vargs); 3664 return dev; 3665 } 3666 EXPORT_SYMBOL_GPL(device_create_with_groups); 3667 3668 /** 3669 * device_destroy - removes a device that was created with device_create() 3670 * @class: pointer to the struct class that this device was registered with 3671 * @devt: the dev_t of the device that was previously registered 3672 * 3673 * This call unregisters and cleans up a device that was created with a 3674 * call to device_create(). 3675 */ 3676 void device_destroy(struct class *class, dev_t devt) 3677 { 3678 struct device *dev; 3679 3680 dev = class_find_device_by_devt(class, devt); 3681 if (dev) { 3682 put_device(dev); 3683 device_unregister(dev); 3684 } 3685 } 3686 EXPORT_SYMBOL_GPL(device_destroy); 3687 3688 /** 3689 * device_rename - renames a device 3690 * @dev: the pointer to the struct device to be renamed 3691 * @new_name: the new name of the device 3692 * 3693 * It is the responsibility of the caller to provide mutual 3694 * exclusion between two different calls of device_rename 3695 * on the same device to ensure that new_name is valid and 3696 * won't conflict with other devices. 3697 * 3698 * Note: Don't call this function. Currently, the networking layer calls this 3699 * function, but that will change. The following text from Kay Sievers offers 3700 * some insight: 3701 * 3702 * Renaming devices is racy at many levels, symlinks and other stuff are not 3703 * replaced atomically, and you get a "move" uevent, but it's not easy to 3704 * connect the event to the old and new device. Device nodes are not renamed at 3705 * all, there isn't even support for that in the kernel now. 3706 * 3707 * In the meantime, during renaming, your target name might be taken by another 3708 * driver, creating conflicts. Or the old name is taken directly after you 3709 * renamed it -- then you get events for the same DEVPATH, before you even see 3710 * the "move" event. It's just a mess, and nothing new should ever rely on 3711 * kernel device renaming. Besides that, it's not even implemented now for 3712 * other things than (driver-core wise very simple) network devices. 3713 * 3714 * We are currently about to change network renaming in udev to completely 3715 * disallow renaming of devices in the same namespace as the kernel uses, 3716 * because we can't solve the problems properly, that arise with swapping names 3717 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3718 * be allowed to some other name than eth[0-9]*, for the aforementioned 3719 * reasons. 3720 * 3721 * Make up a "real" name in the driver before you register anything, or add 3722 * some other attributes for userspace to find the device, or use udev to add 3723 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3724 * don't even want to get into that and try to implement the missing pieces in 3725 * the core. We really have other pieces to fix in the driver core mess. :) 3726 */ 3727 int device_rename(struct device *dev, const char *new_name) 3728 { 3729 struct kobject *kobj = &dev->kobj; 3730 char *old_device_name = NULL; 3731 int error; 3732 3733 dev = get_device(dev); 3734 if (!dev) 3735 return -EINVAL; 3736 3737 dev_dbg(dev, "renaming to %s\n", new_name); 3738 3739 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3740 if (!old_device_name) { 3741 error = -ENOMEM; 3742 goto out; 3743 } 3744 3745 if (dev->class) { 3746 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3747 kobj, old_device_name, 3748 new_name, kobject_namespace(kobj)); 3749 if (error) 3750 goto out; 3751 } 3752 3753 error = kobject_rename(kobj, new_name); 3754 if (error) 3755 goto out; 3756 3757 out: 3758 put_device(dev); 3759 3760 kfree(old_device_name); 3761 3762 return error; 3763 } 3764 EXPORT_SYMBOL_GPL(device_rename); 3765 3766 static int device_move_class_links(struct device *dev, 3767 struct device *old_parent, 3768 struct device *new_parent) 3769 { 3770 int error = 0; 3771 3772 if (old_parent) 3773 sysfs_remove_link(&dev->kobj, "device"); 3774 if (new_parent) 3775 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3776 "device"); 3777 return error; 3778 } 3779 3780 /** 3781 * device_move - moves a device to a new parent 3782 * @dev: the pointer to the struct device to be moved 3783 * @new_parent: the new parent of the device (can be NULL) 3784 * @dpm_order: how to reorder the dpm_list 3785 */ 3786 int device_move(struct device *dev, struct device *new_parent, 3787 enum dpm_order dpm_order) 3788 { 3789 int error; 3790 struct device *old_parent; 3791 struct kobject *new_parent_kobj; 3792 3793 dev = get_device(dev); 3794 if (!dev) 3795 return -EINVAL; 3796 3797 device_pm_lock(); 3798 new_parent = get_device(new_parent); 3799 new_parent_kobj = get_device_parent(dev, new_parent); 3800 if (IS_ERR(new_parent_kobj)) { 3801 error = PTR_ERR(new_parent_kobj); 3802 put_device(new_parent); 3803 goto out; 3804 } 3805 3806 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3807 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3808 error = kobject_move(&dev->kobj, new_parent_kobj); 3809 if (error) { 3810 cleanup_glue_dir(dev, new_parent_kobj); 3811 put_device(new_parent); 3812 goto out; 3813 } 3814 old_parent = dev->parent; 3815 dev->parent = new_parent; 3816 if (old_parent) 3817 klist_remove(&dev->p->knode_parent); 3818 if (new_parent) { 3819 klist_add_tail(&dev->p->knode_parent, 3820 &new_parent->p->klist_children); 3821 set_dev_node(dev, dev_to_node(new_parent)); 3822 } 3823 3824 if (dev->class) { 3825 error = device_move_class_links(dev, old_parent, new_parent); 3826 if (error) { 3827 /* We ignore errors on cleanup since we're hosed anyway... */ 3828 device_move_class_links(dev, new_parent, old_parent); 3829 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3830 if (new_parent) 3831 klist_remove(&dev->p->knode_parent); 3832 dev->parent = old_parent; 3833 if (old_parent) { 3834 klist_add_tail(&dev->p->knode_parent, 3835 &old_parent->p->klist_children); 3836 set_dev_node(dev, dev_to_node(old_parent)); 3837 } 3838 } 3839 cleanup_glue_dir(dev, new_parent_kobj); 3840 put_device(new_parent); 3841 goto out; 3842 } 3843 } 3844 switch (dpm_order) { 3845 case DPM_ORDER_NONE: 3846 break; 3847 case DPM_ORDER_DEV_AFTER_PARENT: 3848 device_pm_move_after(dev, new_parent); 3849 devices_kset_move_after(dev, new_parent); 3850 break; 3851 case DPM_ORDER_PARENT_BEFORE_DEV: 3852 device_pm_move_before(new_parent, dev); 3853 devices_kset_move_before(new_parent, dev); 3854 break; 3855 case DPM_ORDER_DEV_LAST: 3856 device_pm_move_last(dev); 3857 devices_kset_move_last(dev); 3858 break; 3859 } 3860 3861 put_device(old_parent); 3862 out: 3863 device_pm_unlock(); 3864 put_device(dev); 3865 return error; 3866 } 3867 EXPORT_SYMBOL_GPL(device_move); 3868 3869 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3870 kgid_t kgid) 3871 { 3872 struct kobject *kobj = &dev->kobj; 3873 struct class *class = dev->class; 3874 const struct device_type *type = dev->type; 3875 int error; 3876 3877 if (class) { 3878 /* 3879 * Change the device groups of the device class for @dev to 3880 * @kuid/@kgid. 3881 */ 3882 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3883 kgid); 3884 if (error) 3885 return error; 3886 } 3887 3888 if (type) { 3889 /* 3890 * Change the device groups of the device type for @dev to 3891 * @kuid/@kgid. 3892 */ 3893 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3894 kgid); 3895 if (error) 3896 return error; 3897 } 3898 3899 /* Change the device groups of @dev to @kuid/@kgid. */ 3900 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3901 if (error) 3902 return error; 3903 3904 if (device_supports_offline(dev) && !dev->offline_disabled) { 3905 /* Change online device attributes of @dev to @kuid/@kgid. */ 3906 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3907 kuid, kgid); 3908 if (error) 3909 return error; 3910 } 3911 3912 return 0; 3913 } 3914 3915 /** 3916 * device_change_owner - change the owner of an existing device. 3917 * @dev: device. 3918 * @kuid: new owner's kuid 3919 * @kgid: new owner's kgid 3920 * 3921 * This changes the owner of @dev and its corresponding sysfs entries to 3922 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3923 * core. 3924 * 3925 * Returns 0 on success or error code on failure. 3926 */ 3927 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3928 { 3929 int error; 3930 struct kobject *kobj = &dev->kobj; 3931 3932 dev = get_device(dev); 3933 if (!dev) 3934 return -EINVAL; 3935 3936 /* 3937 * Change the kobject and the default attributes and groups of the 3938 * ktype associated with it to @kuid/@kgid. 3939 */ 3940 error = sysfs_change_owner(kobj, kuid, kgid); 3941 if (error) 3942 goto out; 3943 3944 /* 3945 * Change the uevent file for @dev to the new owner. The uevent file 3946 * was created in a separate step when @dev got added and we mirror 3947 * that step here. 3948 */ 3949 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3950 kgid); 3951 if (error) 3952 goto out; 3953 3954 /* 3955 * Change the device groups, the device groups associated with the 3956 * device class, and the groups associated with the device type of @dev 3957 * to @kuid/@kgid. 3958 */ 3959 error = device_attrs_change_owner(dev, kuid, kgid); 3960 if (error) 3961 goto out; 3962 3963 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3964 if (error) 3965 goto out; 3966 3967 #ifdef CONFIG_BLOCK 3968 if (sysfs_deprecated && dev->class == &block_class) 3969 goto out; 3970 #endif 3971 3972 /* 3973 * Change the owner of the symlink located in the class directory of 3974 * the device class associated with @dev which points to the actual 3975 * directory entry for @dev to @kuid/@kgid. This ensures that the 3976 * symlink shows the same permissions as its target. 3977 */ 3978 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3979 dev_name(dev), kuid, kgid); 3980 if (error) 3981 goto out; 3982 3983 out: 3984 put_device(dev); 3985 return error; 3986 } 3987 EXPORT_SYMBOL_GPL(device_change_owner); 3988 3989 /** 3990 * device_shutdown - call ->shutdown() on each device to shutdown. 3991 */ 3992 void device_shutdown(void) 3993 { 3994 struct device *dev, *parent; 3995 3996 wait_for_device_probe(); 3997 device_block_probing(); 3998 3999 cpufreq_suspend(); 4000 4001 spin_lock(&devices_kset->list_lock); 4002 /* 4003 * Walk the devices list backward, shutting down each in turn. 4004 * Beware that device unplug events may also start pulling 4005 * devices offline, even as the system is shutting down. 4006 */ 4007 while (!list_empty(&devices_kset->list)) { 4008 dev = list_entry(devices_kset->list.prev, struct device, 4009 kobj.entry); 4010 4011 /* 4012 * hold reference count of device's parent to 4013 * prevent it from being freed because parent's 4014 * lock is to be held 4015 */ 4016 parent = get_device(dev->parent); 4017 get_device(dev); 4018 /* 4019 * Make sure the device is off the kset list, in the 4020 * event that dev->*->shutdown() doesn't remove it. 4021 */ 4022 list_del_init(&dev->kobj.entry); 4023 spin_unlock(&devices_kset->list_lock); 4024 4025 /* hold lock to avoid race with probe/release */ 4026 if (parent) 4027 device_lock(parent); 4028 device_lock(dev); 4029 4030 /* Don't allow any more runtime suspends */ 4031 pm_runtime_get_noresume(dev); 4032 pm_runtime_barrier(dev); 4033 4034 if (dev->class && dev->class->shutdown_pre) { 4035 if (initcall_debug) 4036 dev_info(dev, "shutdown_pre\n"); 4037 dev->class->shutdown_pre(dev); 4038 } 4039 if (dev->bus && dev->bus->shutdown) { 4040 if (initcall_debug) 4041 dev_info(dev, "shutdown\n"); 4042 dev->bus->shutdown(dev); 4043 } else if (dev->driver && dev->driver->shutdown) { 4044 if (initcall_debug) 4045 dev_info(dev, "shutdown\n"); 4046 dev->driver->shutdown(dev); 4047 } 4048 4049 device_unlock(dev); 4050 if (parent) 4051 device_unlock(parent); 4052 4053 put_device(dev); 4054 put_device(parent); 4055 4056 spin_lock(&devices_kset->list_lock); 4057 } 4058 spin_unlock(&devices_kset->list_lock); 4059 } 4060 4061 /* 4062 * Device logging functions 4063 */ 4064 4065 #ifdef CONFIG_PRINTK 4066 static int 4067 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 4068 { 4069 const char *subsys; 4070 size_t pos = 0; 4071 4072 if (dev->class) 4073 subsys = dev->class->name; 4074 else if (dev->bus) 4075 subsys = dev->bus->name; 4076 else 4077 return 0; 4078 4079 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 4080 if (pos >= hdrlen) 4081 goto overflow; 4082 4083 /* 4084 * Add device identifier DEVICE=: 4085 * b12:8 block dev_t 4086 * c127:3 char dev_t 4087 * n8 netdev ifindex 4088 * +sound:card0 subsystem:devname 4089 */ 4090 if (MAJOR(dev->devt)) { 4091 char c; 4092 4093 if (strcmp(subsys, "block") == 0) 4094 c = 'b'; 4095 else 4096 c = 'c'; 4097 pos++; 4098 pos += snprintf(hdr + pos, hdrlen - pos, 4099 "DEVICE=%c%u:%u", 4100 c, MAJOR(dev->devt), MINOR(dev->devt)); 4101 } else if (strcmp(subsys, "net") == 0) { 4102 struct net_device *net = to_net_dev(dev); 4103 4104 pos++; 4105 pos += snprintf(hdr + pos, hdrlen - pos, 4106 "DEVICE=n%u", net->ifindex); 4107 } else { 4108 pos++; 4109 pos += snprintf(hdr + pos, hdrlen - pos, 4110 "DEVICE=+%s:%s", subsys, dev_name(dev)); 4111 } 4112 4113 if (pos >= hdrlen) 4114 goto overflow; 4115 4116 return pos; 4117 4118 overflow: 4119 dev_WARN(dev, "device/subsystem name too long"); 4120 return 0; 4121 } 4122 4123 int dev_vprintk_emit(int level, const struct device *dev, 4124 const char *fmt, va_list args) 4125 { 4126 char hdr[128]; 4127 size_t hdrlen; 4128 4129 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 4130 4131 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 4132 } 4133 EXPORT_SYMBOL(dev_vprintk_emit); 4134 4135 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4136 { 4137 va_list args; 4138 int r; 4139 4140 va_start(args, fmt); 4141 4142 r = dev_vprintk_emit(level, dev, fmt, args); 4143 4144 va_end(args); 4145 4146 return r; 4147 } 4148 EXPORT_SYMBOL(dev_printk_emit); 4149 4150 static void __dev_printk(const char *level, const struct device *dev, 4151 struct va_format *vaf) 4152 { 4153 if (dev) 4154 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4155 dev_driver_string(dev), dev_name(dev), vaf); 4156 else 4157 printk("%s(NULL device *): %pV", level, vaf); 4158 } 4159 4160 void dev_printk(const char *level, const struct device *dev, 4161 const char *fmt, ...) 4162 { 4163 struct va_format vaf; 4164 va_list args; 4165 4166 va_start(args, fmt); 4167 4168 vaf.fmt = fmt; 4169 vaf.va = &args; 4170 4171 __dev_printk(level, dev, &vaf); 4172 4173 va_end(args); 4174 } 4175 EXPORT_SYMBOL(dev_printk); 4176 4177 #define define_dev_printk_level(func, kern_level) \ 4178 void func(const struct device *dev, const char *fmt, ...) \ 4179 { \ 4180 struct va_format vaf; \ 4181 va_list args; \ 4182 \ 4183 va_start(args, fmt); \ 4184 \ 4185 vaf.fmt = fmt; \ 4186 vaf.va = &args; \ 4187 \ 4188 __dev_printk(kern_level, dev, &vaf); \ 4189 \ 4190 va_end(args); \ 4191 } \ 4192 EXPORT_SYMBOL(func); 4193 4194 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4195 define_dev_printk_level(_dev_alert, KERN_ALERT); 4196 define_dev_printk_level(_dev_crit, KERN_CRIT); 4197 define_dev_printk_level(_dev_err, KERN_ERR); 4198 define_dev_printk_level(_dev_warn, KERN_WARNING); 4199 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4200 define_dev_printk_level(_dev_info, KERN_INFO); 4201 4202 #endif 4203 4204 /** 4205 * dev_err_probe - probe error check and log helper 4206 * @dev: the pointer to the struct device 4207 * @err: error value to test 4208 * @fmt: printf-style format string 4209 * @...: arguments as specified in the format string 4210 * 4211 * This helper implements common pattern present in probe functions for error 4212 * checking: print debug or error message depending if the error value is 4213 * -EPROBE_DEFER and propagate error upwards. 4214 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4215 * checked later by reading devices_deferred debugfs attribute. 4216 * It replaces code sequence: 4217 * if (err != -EPROBE_DEFER) 4218 * dev_err(dev, ...); 4219 * else 4220 * dev_dbg(dev, ...); 4221 * return err; 4222 * with 4223 * return dev_err_probe(dev, err, ...); 4224 * 4225 * Returns @err. 4226 * 4227 */ 4228 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4229 { 4230 struct va_format vaf; 4231 va_list args; 4232 4233 va_start(args, fmt); 4234 vaf.fmt = fmt; 4235 vaf.va = &args; 4236 4237 if (err != -EPROBE_DEFER) { 4238 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4239 } else { 4240 device_set_deferred_probe_reason(dev, &vaf); 4241 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4242 } 4243 4244 va_end(args); 4245 4246 return err; 4247 } 4248 EXPORT_SYMBOL_GPL(dev_err_probe); 4249 4250 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4251 { 4252 return fwnode && !IS_ERR(fwnode->secondary); 4253 } 4254 4255 /** 4256 * set_primary_fwnode - Change the primary firmware node of a given device. 4257 * @dev: Device to handle. 4258 * @fwnode: New primary firmware node of the device. 4259 * 4260 * Set the device's firmware node pointer to @fwnode, but if a secondary 4261 * firmware node of the device is present, preserve it. 4262 */ 4263 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4264 { 4265 struct fwnode_handle *fn = dev->fwnode; 4266 4267 if (fwnode) { 4268 if (fwnode_is_primary(fn)) 4269 fn = fn->secondary; 4270 4271 if (fn) { 4272 WARN_ON(fwnode->secondary); 4273 fwnode->secondary = fn; 4274 } 4275 dev->fwnode = fwnode; 4276 } else { 4277 if (fwnode_is_primary(fn)) { 4278 dev->fwnode = fn->secondary; 4279 fn->secondary = NULL; 4280 } else { 4281 dev->fwnode = NULL; 4282 } 4283 } 4284 } 4285 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4286 4287 /** 4288 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4289 * @dev: Device to handle. 4290 * @fwnode: New secondary firmware node of the device. 4291 * 4292 * If a primary firmware node of the device is present, set its secondary 4293 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4294 * @fwnode. 4295 */ 4296 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4297 { 4298 if (fwnode) 4299 fwnode->secondary = ERR_PTR(-ENODEV); 4300 4301 if (fwnode_is_primary(dev->fwnode)) 4302 dev->fwnode->secondary = fwnode; 4303 else 4304 dev->fwnode = fwnode; 4305 } 4306 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4307 4308 /** 4309 * device_set_of_node_from_dev - reuse device-tree node of another device 4310 * @dev: device whose device-tree node is being set 4311 * @dev2: device whose device-tree node is being reused 4312 * 4313 * Takes another reference to the new device-tree node after first dropping 4314 * any reference held to the old node. 4315 */ 4316 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4317 { 4318 of_node_put(dev->of_node); 4319 dev->of_node = of_node_get(dev2->of_node); 4320 dev->of_node_reused = true; 4321 } 4322 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4323 4324 int device_match_name(struct device *dev, const void *name) 4325 { 4326 return sysfs_streq(dev_name(dev), name); 4327 } 4328 EXPORT_SYMBOL_GPL(device_match_name); 4329 4330 int device_match_of_node(struct device *dev, const void *np) 4331 { 4332 return dev->of_node == np; 4333 } 4334 EXPORT_SYMBOL_GPL(device_match_of_node); 4335 4336 int device_match_fwnode(struct device *dev, const void *fwnode) 4337 { 4338 return dev_fwnode(dev) == fwnode; 4339 } 4340 EXPORT_SYMBOL_GPL(device_match_fwnode); 4341 4342 int device_match_devt(struct device *dev, const void *pdevt) 4343 { 4344 return dev->devt == *(dev_t *)pdevt; 4345 } 4346 EXPORT_SYMBOL_GPL(device_match_devt); 4347 4348 int device_match_acpi_dev(struct device *dev, const void *adev) 4349 { 4350 return ACPI_COMPANION(dev) == adev; 4351 } 4352 EXPORT_SYMBOL(device_match_acpi_dev); 4353 4354 int device_match_any(struct device *dev, const void *unused) 4355 { 4356 return 1; 4357 } 4358 EXPORT_SYMBOL_GPL(device_match_any); 4359