xref: /linux/drivers/base/core.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static LIST_HEAD(deferred_fw_devlink);
54 static DEFINE_MUTEX(defer_fw_devlink_lock);
55 static bool fw_devlink_is_permissive(void);
56 
57 #ifdef CONFIG_SRCU
58 static DEFINE_MUTEX(device_links_lock);
59 DEFINE_STATIC_SRCU(device_links_srcu);
60 
61 static inline void device_links_write_lock(void)
62 {
63 	mutex_lock(&device_links_lock);
64 }
65 
66 static inline void device_links_write_unlock(void)
67 {
68 	mutex_unlock(&device_links_lock);
69 }
70 
71 int device_links_read_lock(void) __acquires(&device_links_srcu)
72 {
73 	return srcu_read_lock(&device_links_srcu);
74 }
75 
76 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
77 {
78 	srcu_read_unlock(&device_links_srcu, idx);
79 }
80 
81 int device_links_read_lock_held(void)
82 {
83 	return srcu_read_lock_held(&device_links_srcu);
84 }
85 #else /* !CONFIG_SRCU */
86 static DECLARE_RWSEM(device_links_lock);
87 
88 static inline void device_links_write_lock(void)
89 {
90 	down_write(&device_links_lock);
91 }
92 
93 static inline void device_links_write_unlock(void)
94 {
95 	up_write(&device_links_lock);
96 }
97 
98 int device_links_read_lock(void)
99 {
100 	down_read(&device_links_lock);
101 	return 0;
102 }
103 
104 void device_links_read_unlock(int not_used)
105 {
106 	up_read(&device_links_lock);
107 }
108 
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 int device_links_read_lock_held(void)
111 {
112 	return lockdep_is_held(&device_links_lock);
113 }
114 #endif
115 #endif /* !CONFIG_SRCU */
116 
117 /**
118  * device_is_dependent - Check if one device depends on another one
119  * @dev: Device to check dependencies for.
120  * @target: Device to check against.
121  *
122  * Check if @target depends on @dev or any device dependent on it (its child or
123  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
124  */
125 int device_is_dependent(struct device *dev, void *target)
126 {
127 	struct device_link *link;
128 	int ret;
129 
130 	if (dev == target)
131 		return 1;
132 
133 	ret = device_for_each_child(dev, target, device_is_dependent);
134 	if (ret)
135 		return ret;
136 
137 	list_for_each_entry(link, &dev->links.consumers, s_node) {
138 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 			continue;
140 
141 		if (link->consumer == target)
142 			return 1;
143 
144 		ret = device_is_dependent(link->consumer, target);
145 		if (ret)
146 			break;
147 	}
148 	return ret;
149 }
150 
151 static void device_link_init_status(struct device_link *link,
152 				    struct device *consumer,
153 				    struct device *supplier)
154 {
155 	switch (supplier->links.status) {
156 	case DL_DEV_PROBING:
157 		switch (consumer->links.status) {
158 		case DL_DEV_PROBING:
159 			/*
160 			 * A consumer driver can create a link to a supplier
161 			 * that has not completed its probing yet as long as it
162 			 * knows that the supplier is already functional (for
163 			 * example, it has just acquired some resources from the
164 			 * supplier).
165 			 */
166 			link->status = DL_STATE_CONSUMER_PROBE;
167 			break;
168 		default:
169 			link->status = DL_STATE_DORMANT;
170 			break;
171 		}
172 		break;
173 	case DL_DEV_DRIVER_BOUND:
174 		switch (consumer->links.status) {
175 		case DL_DEV_PROBING:
176 			link->status = DL_STATE_CONSUMER_PROBE;
177 			break;
178 		case DL_DEV_DRIVER_BOUND:
179 			link->status = DL_STATE_ACTIVE;
180 			break;
181 		default:
182 			link->status = DL_STATE_AVAILABLE;
183 			break;
184 		}
185 		break;
186 	case DL_DEV_UNBINDING:
187 		link->status = DL_STATE_SUPPLIER_UNBIND;
188 		break;
189 	default:
190 		link->status = DL_STATE_DORMANT;
191 		break;
192 	}
193 }
194 
195 static int device_reorder_to_tail(struct device *dev, void *not_used)
196 {
197 	struct device_link *link;
198 
199 	/*
200 	 * Devices that have not been registered yet will be put to the ends
201 	 * of the lists during the registration, so skip them here.
202 	 */
203 	if (device_is_registered(dev))
204 		devices_kset_move_last(dev);
205 
206 	if (device_pm_initialized(dev))
207 		device_pm_move_last(dev);
208 
209 	device_for_each_child(dev, NULL, device_reorder_to_tail);
210 	list_for_each_entry(link, &dev->links.consumers, s_node) {
211 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 			continue;
213 		device_reorder_to_tail(link->consumer, NULL);
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * device_pm_move_to_tail - Move set of devices to the end of device lists
221  * @dev: Device to move
222  *
223  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
224  *
225  * It moves the @dev along with all of its children and all of its consumers
226  * to the ends of the device_kset and dpm_list, recursively.
227  */
228 void device_pm_move_to_tail(struct device *dev)
229 {
230 	int idx;
231 
232 	idx = device_links_read_lock();
233 	device_pm_lock();
234 	device_reorder_to_tail(dev, NULL);
235 	device_pm_unlock();
236 	device_links_read_unlock(idx);
237 }
238 
239 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
240 
241 static ssize_t status_show(struct device *dev,
242 			  struct device_attribute *attr, char *buf)
243 {
244 	char *status;
245 
246 	switch (to_devlink(dev)->status) {
247 	case DL_STATE_NONE:
248 		status = "not tracked"; break;
249 	case DL_STATE_DORMANT:
250 		status = "dormant"; break;
251 	case DL_STATE_AVAILABLE:
252 		status = "available"; break;
253 	case DL_STATE_CONSUMER_PROBE:
254 		status = "consumer probing"; break;
255 	case DL_STATE_ACTIVE:
256 		status = "active"; break;
257 	case DL_STATE_SUPPLIER_UNBIND:
258 		status = "supplier unbinding"; break;
259 	default:
260 		status = "unknown"; break;
261 	}
262 	return sprintf(buf, "%s\n", status);
263 }
264 static DEVICE_ATTR_RO(status);
265 
266 static ssize_t auto_remove_on_show(struct device *dev,
267 				   struct device_attribute *attr, char *buf)
268 {
269 	struct device_link *link = to_devlink(dev);
270 	char *str;
271 
272 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
273 		str = "supplier unbind";
274 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
275 		str = "consumer unbind";
276 	else
277 		str = "never";
278 
279 	return sprintf(buf, "%s\n", str);
280 }
281 static DEVICE_ATTR_RO(auto_remove_on);
282 
283 static ssize_t runtime_pm_show(struct device *dev,
284 			       struct device_attribute *attr, char *buf)
285 {
286 	struct device_link *link = to_devlink(dev);
287 
288 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
289 }
290 static DEVICE_ATTR_RO(runtime_pm);
291 
292 static ssize_t sync_state_only_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct device_link *link = to_devlink(dev);
296 
297 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
298 }
299 static DEVICE_ATTR_RO(sync_state_only);
300 
301 static struct attribute *devlink_attrs[] = {
302 	&dev_attr_status.attr,
303 	&dev_attr_auto_remove_on.attr,
304 	&dev_attr_runtime_pm.attr,
305 	&dev_attr_sync_state_only.attr,
306 	NULL,
307 };
308 ATTRIBUTE_GROUPS(devlink);
309 
310 static void device_link_free(struct device_link *link)
311 {
312 	while (refcount_dec_not_one(&link->rpm_active))
313 		pm_runtime_put(link->supplier);
314 
315 	put_device(link->consumer);
316 	put_device(link->supplier);
317 	kfree(link);
318 }
319 
320 #ifdef CONFIG_SRCU
321 static void __device_link_free_srcu(struct rcu_head *rhead)
322 {
323 	device_link_free(container_of(rhead, struct device_link, rcu_head));
324 }
325 
326 static void devlink_dev_release(struct device *dev)
327 {
328 	struct device_link *link = to_devlink(dev);
329 
330 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
331 }
332 #else
333 static void devlink_dev_release(struct device *dev)
334 {
335 	device_link_free(to_devlink(dev));
336 }
337 #endif
338 
339 static struct class devlink_class = {
340 	.name = "devlink",
341 	.owner = THIS_MODULE,
342 	.dev_groups = devlink_groups,
343 	.dev_release = devlink_dev_release,
344 };
345 
346 static int devlink_add_symlinks(struct device *dev,
347 				struct class_interface *class_intf)
348 {
349 	int ret;
350 	size_t len;
351 	struct device_link *link = to_devlink(dev);
352 	struct device *sup = link->supplier;
353 	struct device *con = link->consumer;
354 	char *buf;
355 
356 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
357 	len += strlen("supplier:") + 1;
358 	buf = kzalloc(len, GFP_KERNEL);
359 	if (!buf)
360 		return -ENOMEM;
361 
362 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
363 	if (ret)
364 		goto out;
365 
366 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
367 	if (ret)
368 		goto err_con;
369 
370 	snprintf(buf, len, "consumer:%s", dev_name(con));
371 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
372 	if (ret)
373 		goto err_con_dev;
374 
375 	snprintf(buf, len, "supplier:%s", dev_name(sup));
376 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
377 	if (ret)
378 		goto err_sup_dev;
379 
380 	goto out;
381 
382 err_sup_dev:
383 	snprintf(buf, len, "consumer:%s", dev_name(con));
384 	sysfs_remove_link(&sup->kobj, buf);
385 err_con_dev:
386 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
387 err_con:
388 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
389 out:
390 	kfree(buf);
391 	return ret;
392 }
393 
394 static void devlink_remove_symlinks(struct device *dev,
395 				   struct class_interface *class_intf)
396 {
397 	struct device_link *link = to_devlink(dev);
398 	size_t len;
399 	struct device *sup = link->supplier;
400 	struct device *con = link->consumer;
401 	char *buf;
402 
403 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
404 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
405 
406 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
407 	len += strlen("supplier:") + 1;
408 	buf = kzalloc(len, GFP_KERNEL);
409 	if (!buf) {
410 		WARN(1, "Unable to properly free device link symlinks!\n");
411 		return;
412 	}
413 
414 	snprintf(buf, len, "supplier:%s", dev_name(sup));
415 	sysfs_remove_link(&con->kobj, buf);
416 	snprintf(buf, len, "consumer:%s", dev_name(con));
417 	sysfs_remove_link(&sup->kobj, buf);
418 	kfree(buf);
419 }
420 
421 static struct class_interface devlink_class_intf = {
422 	.class = &devlink_class,
423 	.add_dev = devlink_add_symlinks,
424 	.remove_dev = devlink_remove_symlinks,
425 };
426 
427 static int __init devlink_class_init(void)
428 {
429 	int ret;
430 
431 	ret = class_register(&devlink_class);
432 	if (ret)
433 		return ret;
434 
435 	ret = class_interface_register(&devlink_class_intf);
436 	if (ret)
437 		class_unregister(&devlink_class);
438 
439 	return ret;
440 }
441 postcore_initcall(devlink_class_init);
442 
443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
444 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
445 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
446 			       DL_FLAG_SYNC_STATE_ONLY)
447 
448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
449 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
450 
451 /**
452  * device_link_add - Create a link between two devices.
453  * @consumer: Consumer end of the link.
454  * @supplier: Supplier end of the link.
455  * @flags: Link flags.
456  *
457  * The caller is responsible for the proper synchronization of the link creation
458  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
459  * runtime PM framework to take the link into account.  Second, if the
460  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
461  * be forced into the active metastate and reference-counted upon the creation
462  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
463  * ignored.
464  *
465  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
466  * expected to release the link returned by it directly with the help of either
467  * device_link_del() or device_link_remove().
468  *
469  * If that flag is not set, however, the caller of this function is handing the
470  * management of the link over to the driver core entirely and its return value
471  * can only be used to check whether or not the link is present.  In that case,
472  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
473  * flags can be used to indicate to the driver core when the link can be safely
474  * deleted.  Namely, setting one of them in @flags indicates to the driver core
475  * that the link is not going to be used (by the given caller of this function)
476  * after unbinding the consumer or supplier driver, respectively, from its
477  * device, so the link can be deleted at that point.  If none of them is set,
478  * the link will be maintained until one of the devices pointed to by it (either
479  * the consumer or the supplier) is unregistered.
480  *
481  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
482  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
483  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
484  * be used to request the driver core to automaticall probe for a consmer
485  * driver after successfully binding a driver to the supplier device.
486  *
487  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
488  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
489  * the same time is invalid and will cause NULL to be returned upfront.
490  * However, if a device link between the given @consumer and @supplier pair
491  * exists already when this function is called for them, the existing link will
492  * be returned regardless of its current type and status (the link's flags may
493  * be modified then).  The caller of this function is then expected to treat
494  * the link as though it has just been created, so (in particular) if
495  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
496  * explicitly when not needed any more (as stated above).
497  *
498  * A side effect of the link creation is re-ordering of dpm_list and the
499  * devices_kset list by moving the consumer device and all devices depending
500  * on it to the ends of these lists (that does not happen to devices that have
501  * not been registered when this function is called).
502  *
503  * The supplier device is required to be registered when this function is called
504  * and NULL will be returned if that is not the case.  The consumer device need
505  * not be registered, however.
506  */
507 struct device_link *device_link_add(struct device *consumer,
508 				    struct device *supplier, u32 flags)
509 {
510 	struct device_link *link;
511 
512 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
513 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
514 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
515 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
516 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
517 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
518 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
519 		return NULL;
520 
521 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
522 		if (pm_runtime_get_sync(supplier) < 0) {
523 			pm_runtime_put_noidle(supplier);
524 			return NULL;
525 		}
526 	}
527 
528 	if (!(flags & DL_FLAG_STATELESS))
529 		flags |= DL_FLAG_MANAGED;
530 
531 	device_links_write_lock();
532 	device_pm_lock();
533 
534 	/*
535 	 * If the supplier has not been fully registered yet or there is a
536 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
537 	 * the supplier already in the graph, return NULL. If the link is a
538 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
539 	 * because it only affects sync_state() callbacks.
540 	 */
541 	if (!device_pm_initialized(supplier)
542 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
543 		  device_is_dependent(consumer, supplier))) {
544 		link = NULL;
545 		goto out;
546 	}
547 
548 	/*
549 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
550 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
551 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
552 	 */
553 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
554 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
555 
556 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
557 		if (link->consumer != consumer)
558 			continue;
559 
560 		if (flags & DL_FLAG_PM_RUNTIME) {
561 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
562 				pm_runtime_new_link(consumer);
563 				link->flags |= DL_FLAG_PM_RUNTIME;
564 			}
565 			if (flags & DL_FLAG_RPM_ACTIVE)
566 				refcount_inc(&link->rpm_active);
567 		}
568 
569 		if (flags & DL_FLAG_STATELESS) {
570 			kref_get(&link->kref);
571 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
572 			    !(link->flags & DL_FLAG_STATELESS)) {
573 				link->flags |= DL_FLAG_STATELESS;
574 				goto reorder;
575 			} else {
576 				link->flags |= DL_FLAG_STATELESS;
577 				goto out;
578 			}
579 		}
580 
581 		/*
582 		 * If the life time of the link following from the new flags is
583 		 * longer than indicated by the flags of the existing link,
584 		 * update the existing link to stay around longer.
585 		 */
586 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
587 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
588 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
589 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
590 			}
591 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
592 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
593 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
594 		}
595 		if (!(link->flags & DL_FLAG_MANAGED)) {
596 			kref_get(&link->kref);
597 			link->flags |= DL_FLAG_MANAGED;
598 			device_link_init_status(link, consumer, supplier);
599 		}
600 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
601 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
602 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
603 			goto reorder;
604 		}
605 
606 		goto out;
607 	}
608 
609 	link = kzalloc(sizeof(*link), GFP_KERNEL);
610 	if (!link)
611 		goto out;
612 
613 	refcount_set(&link->rpm_active, 1);
614 
615 	get_device(supplier);
616 	link->supplier = supplier;
617 	INIT_LIST_HEAD(&link->s_node);
618 	get_device(consumer);
619 	link->consumer = consumer;
620 	INIT_LIST_HEAD(&link->c_node);
621 	link->flags = flags;
622 	kref_init(&link->kref);
623 
624 	link->link_dev.class = &devlink_class;
625 	device_set_pm_not_required(&link->link_dev);
626 	dev_set_name(&link->link_dev, "%s--%s",
627 		     dev_name(supplier), dev_name(consumer));
628 	if (device_register(&link->link_dev)) {
629 		put_device(consumer);
630 		put_device(supplier);
631 		kfree(link);
632 		link = NULL;
633 		goto out;
634 	}
635 
636 	if (flags & DL_FLAG_PM_RUNTIME) {
637 		if (flags & DL_FLAG_RPM_ACTIVE)
638 			refcount_inc(&link->rpm_active);
639 
640 		pm_runtime_new_link(consumer);
641 	}
642 
643 	/* Determine the initial link state. */
644 	if (flags & DL_FLAG_STATELESS)
645 		link->status = DL_STATE_NONE;
646 	else
647 		device_link_init_status(link, consumer, supplier);
648 
649 	/*
650 	 * Some callers expect the link creation during consumer driver probe to
651 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
652 	 */
653 	if (link->status == DL_STATE_CONSUMER_PROBE &&
654 	    flags & DL_FLAG_PM_RUNTIME)
655 		pm_runtime_resume(supplier);
656 
657 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
658 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
659 
660 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
661 		dev_dbg(consumer,
662 			"Linked as a sync state only consumer to %s\n",
663 			dev_name(supplier));
664 		goto out;
665 	}
666 
667 reorder:
668 	/*
669 	 * Move the consumer and all of the devices depending on it to the end
670 	 * of dpm_list and the devices_kset list.
671 	 *
672 	 * It is necessary to hold dpm_list locked throughout all that or else
673 	 * we may end up suspending with a wrong ordering of it.
674 	 */
675 	device_reorder_to_tail(consumer, NULL);
676 
677 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
678 
679 out:
680 	device_pm_unlock();
681 	device_links_write_unlock();
682 
683 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
684 		pm_runtime_put(supplier);
685 
686 	return link;
687 }
688 EXPORT_SYMBOL_GPL(device_link_add);
689 
690 /**
691  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
692  * @consumer: Consumer device
693  *
694  * Marks the @consumer device as waiting for suppliers to become available by
695  * adding it to the wait_for_suppliers list. The consumer device will never be
696  * probed until it's removed from the wait_for_suppliers list.
697  *
698  * The caller is responsible for adding the links to the supplier devices once
699  * they are available and removing the @consumer device from the
700  * wait_for_suppliers list once links to all the suppliers have been created.
701  *
702  * This function is NOT meant to be called from the probe function of the
703  * consumer but rather from code that creates/adds the consumer device.
704  */
705 static void device_link_wait_for_supplier(struct device *consumer,
706 					  bool need_for_probe)
707 {
708 	mutex_lock(&wfs_lock);
709 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
710 	consumer->links.need_for_probe = need_for_probe;
711 	mutex_unlock(&wfs_lock);
712 }
713 
714 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
715 {
716 	device_link_wait_for_supplier(consumer, true);
717 }
718 
719 static void device_link_wait_for_optional_supplier(struct device *consumer)
720 {
721 	device_link_wait_for_supplier(consumer, false);
722 }
723 
724 /**
725  * device_link_add_missing_supplier_links - Add links from consumer devices to
726  *					    supplier devices, leaving any
727  *					    consumer with inactive suppliers on
728  *					    the wait_for_suppliers list
729  *
730  * Loops through all consumers waiting on suppliers and tries to add all their
731  * supplier links. If that succeeds, the consumer device is removed from
732  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
733  * list.  Devices left on the wait_for_suppliers list will not be probed.
734  *
735  * The fwnode add_links callback is expected to return 0 if it has found and
736  * added all the supplier links for the consumer device. It should return an
737  * error if it isn't able to do so.
738  *
739  * The caller of device_link_wait_for_supplier() is expected to call this once
740  * it's aware of potential suppliers becoming available.
741  */
742 static void device_link_add_missing_supplier_links(void)
743 {
744 	struct device *dev, *tmp;
745 
746 	mutex_lock(&wfs_lock);
747 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
748 				 links.needs_suppliers) {
749 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
750 		if (!ret)
751 			list_del_init(&dev->links.needs_suppliers);
752 		else if (ret != -ENODEV || fw_devlink_is_permissive())
753 			dev->links.need_for_probe = false;
754 	}
755 	mutex_unlock(&wfs_lock);
756 }
757 
758 #ifdef CONFIG_SRCU
759 static void __device_link_del(struct kref *kref)
760 {
761 	struct device_link *link = container_of(kref, struct device_link, kref);
762 
763 	dev_dbg(link->consumer, "Dropping the link to %s\n",
764 		dev_name(link->supplier));
765 
766 	if (link->flags & DL_FLAG_PM_RUNTIME)
767 		pm_runtime_drop_link(link->consumer);
768 
769 	list_del_rcu(&link->s_node);
770 	list_del_rcu(&link->c_node);
771 	device_unregister(&link->link_dev);
772 }
773 #else /* !CONFIG_SRCU */
774 static void __device_link_del(struct kref *kref)
775 {
776 	struct device_link *link = container_of(kref, struct device_link, kref);
777 
778 	dev_info(link->consumer, "Dropping the link to %s\n",
779 		 dev_name(link->supplier));
780 
781 	if (link->flags & DL_FLAG_PM_RUNTIME)
782 		pm_runtime_drop_link(link->consumer);
783 
784 	list_del(&link->s_node);
785 	list_del(&link->c_node);
786 	device_unregister(&link->link_dev);
787 }
788 #endif /* !CONFIG_SRCU */
789 
790 static void device_link_put_kref(struct device_link *link)
791 {
792 	if (link->flags & DL_FLAG_STATELESS)
793 		kref_put(&link->kref, __device_link_del);
794 	else
795 		WARN(1, "Unable to drop a managed device link reference\n");
796 }
797 
798 /**
799  * device_link_del - Delete a stateless link between two devices.
800  * @link: Device link to delete.
801  *
802  * The caller must ensure proper synchronization of this function with runtime
803  * PM.  If the link was added multiple times, it needs to be deleted as often.
804  * Care is required for hotplugged devices:  Their links are purged on removal
805  * and calling device_link_del() is then no longer allowed.
806  */
807 void device_link_del(struct device_link *link)
808 {
809 	device_links_write_lock();
810 	device_link_put_kref(link);
811 	device_links_write_unlock();
812 }
813 EXPORT_SYMBOL_GPL(device_link_del);
814 
815 /**
816  * device_link_remove - Delete a stateless link between two devices.
817  * @consumer: Consumer end of the link.
818  * @supplier: Supplier end of the link.
819  *
820  * The caller must ensure proper synchronization of this function with runtime
821  * PM.
822  */
823 void device_link_remove(void *consumer, struct device *supplier)
824 {
825 	struct device_link *link;
826 
827 	if (WARN_ON(consumer == supplier))
828 		return;
829 
830 	device_links_write_lock();
831 
832 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
833 		if (link->consumer == consumer) {
834 			device_link_put_kref(link);
835 			break;
836 		}
837 	}
838 
839 	device_links_write_unlock();
840 }
841 EXPORT_SYMBOL_GPL(device_link_remove);
842 
843 static void device_links_missing_supplier(struct device *dev)
844 {
845 	struct device_link *link;
846 
847 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
848 		if (link->status != DL_STATE_CONSUMER_PROBE)
849 			continue;
850 
851 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
852 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
853 		} else {
854 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
855 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
856 		}
857 	}
858 }
859 
860 /**
861  * device_links_check_suppliers - Check presence of supplier drivers.
862  * @dev: Consumer device.
863  *
864  * Check links from this device to any suppliers.  Walk the list of the device's
865  * links to suppliers and see if all of them are available.  If not, simply
866  * return -EPROBE_DEFER.
867  *
868  * We need to guarantee that the supplier will not go away after the check has
869  * been positive here.  It only can go away in __device_release_driver() and
870  * that function  checks the device's links to consumers.  This means we need to
871  * mark the link as "consumer probe in progress" to make the supplier removal
872  * wait for us to complete (or bad things may happen).
873  *
874  * Links without the DL_FLAG_MANAGED flag set are ignored.
875  */
876 int device_links_check_suppliers(struct device *dev)
877 {
878 	struct device_link *link;
879 	int ret = 0;
880 
881 	/*
882 	 * Device waiting for supplier to become available is not allowed to
883 	 * probe.
884 	 */
885 	mutex_lock(&wfs_lock);
886 	if (!list_empty(&dev->links.needs_suppliers) &&
887 	    dev->links.need_for_probe) {
888 		mutex_unlock(&wfs_lock);
889 		return -EPROBE_DEFER;
890 	}
891 	mutex_unlock(&wfs_lock);
892 
893 	device_links_write_lock();
894 
895 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
896 		if (!(link->flags & DL_FLAG_MANAGED))
897 			continue;
898 
899 		if (link->status != DL_STATE_AVAILABLE &&
900 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
901 			device_links_missing_supplier(dev);
902 			ret = -EPROBE_DEFER;
903 			break;
904 		}
905 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
906 	}
907 	dev->links.status = DL_DEV_PROBING;
908 
909 	device_links_write_unlock();
910 	return ret;
911 }
912 
913 /**
914  * __device_links_queue_sync_state - Queue a device for sync_state() callback
915  * @dev: Device to call sync_state() on
916  * @list: List head to queue the @dev on
917  *
918  * Queues a device for a sync_state() callback when the device links write lock
919  * isn't held. This allows the sync_state() execution flow to use device links
920  * APIs.  The caller must ensure this function is called with
921  * device_links_write_lock() held.
922  *
923  * This function does a get_device() to make sure the device is not freed while
924  * on this list.
925  *
926  * So the caller must also ensure that device_links_flush_sync_list() is called
927  * as soon as the caller releases device_links_write_lock().  This is necessary
928  * to make sure the sync_state() is called in a timely fashion and the
929  * put_device() is called on this device.
930  */
931 static void __device_links_queue_sync_state(struct device *dev,
932 					    struct list_head *list)
933 {
934 	struct device_link *link;
935 
936 	if (!dev_has_sync_state(dev))
937 		return;
938 	if (dev->state_synced)
939 		return;
940 
941 	list_for_each_entry(link, &dev->links.consumers, s_node) {
942 		if (!(link->flags & DL_FLAG_MANAGED))
943 			continue;
944 		if (link->status != DL_STATE_ACTIVE)
945 			return;
946 	}
947 
948 	/*
949 	 * Set the flag here to avoid adding the same device to a list more
950 	 * than once. This can happen if new consumers get added to the device
951 	 * and probed before the list is flushed.
952 	 */
953 	dev->state_synced = true;
954 
955 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
956 		return;
957 
958 	get_device(dev);
959 	list_add_tail(&dev->links.defer_hook, list);
960 }
961 
962 /**
963  * device_links_flush_sync_list - Call sync_state() on a list of devices
964  * @list: List of devices to call sync_state() on
965  * @dont_lock_dev: Device for which lock is already held by the caller
966  *
967  * Calls sync_state() on all the devices that have been queued for it. This
968  * function is used in conjunction with __device_links_queue_sync_state(). The
969  * @dont_lock_dev parameter is useful when this function is called from a
970  * context where a device lock is already held.
971  */
972 static void device_links_flush_sync_list(struct list_head *list,
973 					 struct device *dont_lock_dev)
974 {
975 	struct device *dev, *tmp;
976 
977 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
978 		list_del_init(&dev->links.defer_hook);
979 
980 		if (dev != dont_lock_dev)
981 			device_lock(dev);
982 
983 		if (dev->bus->sync_state)
984 			dev->bus->sync_state(dev);
985 		else if (dev->driver && dev->driver->sync_state)
986 			dev->driver->sync_state(dev);
987 
988 		if (dev != dont_lock_dev)
989 			device_unlock(dev);
990 
991 		put_device(dev);
992 	}
993 }
994 
995 void device_links_supplier_sync_state_pause(void)
996 {
997 	device_links_write_lock();
998 	defer_sync_state_count++;
999 	device_links_write_unlock();
1000 }
1001 
1002 void device_links_supplier_sync_state_resume(void)
1003 {
1004 	struct device *dev, *tmp;
1005 	LIST_HEAD(sync_list);
1006 
1007 	device_links_write_lock();
1008 	if (!defer_sync_state_count) {
1009 		WARN(true, "Unmatched sync_state pause/resume!");
1010 		goto out;
1011 	}
1012 	defer_sync_state_count--;
1013 	if (defer_sync_state_count)
1014 		goto out;
1015 
1016 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017 		/*
1018 		 * Delete from deferred_sync list before queuing it to
1019 		 * sync_list because defer_hook is used for both lists.
1020 		 */
1021 		list_del_init(&dev->links.defer_hook);
1022 		__device_links_queue_sync_state(dev, &sync_list);
1023 	}
1024 out:
1025 	device_links_write_unlock();
1026 
1027 	device_links_flush_sync_list(&sync_list, NULL);
1028 }
1029 
1030 static int sync_state_resume_initcall(void)
1031 {
1032 	device_links_supplier_sync_state_resume();
1033 	return 0;
1034 }
1035 late_initcall(sync_state_resume_initcall);
1036 
1037 static void __device_links_supplier_defer_sync(struct device *sup)
1038 {
1039 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041 }
1042 
1043 static void device_link_drop_managed(struct device_link *link)
1044 {
1045 	link->flags &= ~DL_FLAG_MANAGED;
1046 	WRITE_ONCE(link->status, DL_STATE_NONE);
1047 	kref_put(&link->kref, __device_link_del);
1048 }
1049 
1050 static ssize_t waiting_for_supplier_show(struct device *dev,
1051 					 struct device_attribute *attr,
1052 					 char *buf)
1053 {
1054 	bool val;
1055 
1056 	device_lock(dev);
1057 	mutex_lock(&wfs_lock);
1058 	val = !list_empty(&dev->links.needs_suppliers)
1059 	      && dev->links.need_for_probe;
1060 	mutex_unlock(&wfs_lock);
1061 	device_unlock(dev);
1062 	return sprintf(buf, "%u\n", val);
1063 }
1064 static DEVICE_ATTR_RO(waiting_for_supplier);
1065 
1066 /**
1067  * device_links_driver_bound - Update device links after probing its driver.
1068  * @dev: Device to update the links for.
1069  *
1070  * The probe has been successful, so update links from this device to any
1071  * consumers by changing their status to "available".
1072  *
1073  * Also change the status of @dev's links to suppliers to "active".
1074  *
1075  * Links without the DL_FLAG_MANAGED flag set are ignored.
1076  */
1077 void device_links_driver_bound(struct device *dev)
1078 {
1079 	struct device_link *link, *ln;
1080 	LIST_HEAD(sync_list);
1081 
1082 	/*
1083 	 * If a device probes successfully, it's expected to have created all
1084 	 * the device links it needs to or make new device links as it needs
1085 	 * them. So, it no longer needs to wait on any suppliers.
1086 	 */
1087 	mutex_lock(&wfs_lock);
1088 	list_del_init(&dev->links.needs_suppliers);
1089 	mutex_unlock(&wfs_lock);
1090 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091 
1092 	device_links_write_lock();
1093 
1094 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1095 		if (!(link->flags & DL_FLAG_MANAGED))
1096 			continue;
1097 
1098 		/*
1099 		 * Links created during consumer probe may be in the "consumer
1100 		 * probe" state to start with if the supplier is still probing
1101 		 * when they are created and they may become "active" if the
1102 		 * consumer probe returns first.  Skip them here.
1103 		 */
1104 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1105 		    link->status == DL_STATE_ACTIVE)
1106 			continue;
1107 
1108 		WARN_ON(link->status != DL_STATE_DORMANT);
1109 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110 
1111 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112 			driver_deferred_probe_add(link->consumer);
1113 	}
1114 
1115 	if (defer_sync_state_count)
1116 		__device_links_supplier_defer_sync(dev);
1117 	else
1118 		__device_links_queue_sync_state(dev, &sync_list);
1119 
1120 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121 		struct device *supplier;
1122 
1123 		if (!(link->flags & DL_FLAG_MANAGED))
1124 			continue;
1125 
1126 		supplier = link->supplier;
1127 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128 			/*
1129 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131 			 * save to drop the managed link completely.
1132 			 */
1133 			device_link_drop_managed(link);
1134 		} else {
1135 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137 		}
1138 
1139 		/*
1140 		 * This needs to be done even for the deleted
1141 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142 		 * device link that was preventing the supplier from getting a
1143 		 * sync_state() call.
1144 		 */
1145 		if (defer_sync_state_count)
1146 			__device_links_supplier_defer_sync(supplier);
1147 		else
1148 			__device_links_queue_sync_state(supplier, &sync_list);
1149 	}
1150 
1151 	dev->links.status = DL_DEV_DRIVER_BOUND;
1152 
1153 	device_links_write_unlock();
1154 
1155 	device_links_flush_sync_list(&sync_list, dev);
1156 }
1157 
1158 /**
1159  * __device_links_no_driver - Update links of a device without a driver.
1160  * @dev: Device without a drvier.
1161  *
1162  * Delete all non-persistent links from this device to any suppliers.
1163  *
1164  * Persistent links stay around, but their status is changed to "available",
1165  * unless they already are in the "supplier unbind in progress" state in which
1166  * case they need not be updated.
1167  *
1168  * Links without the DL_FLAG_MANAGED flag set are ignored.
1169  */
1170 static void __device_links_no_driver(struct device *dev)
1171 {
1172 	struct device_link *link, *ln;
1173 
1174 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175 		if (!(link->flags & DL_FLAG_MANAGED))
1176 			continue;
1177 
1178 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179 			device_link_drop_managed(link);
1180 			continue;
1181 		}
1182 
1183 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1184 		    link->status != DL_STATE_ACTIVE)
1185 			continue;
1186 
1187 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189 		} else {
1190 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192 		}
1193 	}
1194 
1195 	dev->links.status = DL_DEV_NO_DRIVER;
1196 }
1197 
1198 /**
1199  * device_links_no_driver - Update links after failing driver probe.
1200  * @dev: Device whose driver has just failed to probe.
1201  *
1202  * Clean up leftover links to consumers for @dev and invoke
1203  * %__device_links_no_driver() to update links to suppliers for it as
1204  * appropriate.
1205  *
1206  * Links without the DL_FLAG_MANAGED flag set are ignored.
1207  */
1208 void device_links_no_driver(struct device *dev)
1209 {
1210 	struct device_link *link;
1211 
1212 	device_links_write_lock();
1213 
1214 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1215 		if (!(link->flags & DL_FLAG_MANAGED))
1216 			continue;
1217 
1218 		/*
1219 		 * The probe has failed, so if the status of the link is
1220 		 * "consumer probe" or "active", it must have been added by
1221 		 * a probing consumer while this device was still probing.
1222 		 * Change its state to "dormant", as it represents a valid
1223 		 * relationship, but it is not functionally meaningful.
1224 		 */
1225 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1226 		    link->status == DL_STATE_ACTIVE)
1227 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228 	}
1229 
1230 	__device_links_no_driver(dev);
1231 
1232 	device_links_write_unlock();
1233 }
1234 
1235 /**
1236  * device_links_driver_cleanup - Update links after driver removal.
1237  * @dev: Device whose driver has just gone away.
1238  *
1239  * Update links to consumers for @dev by changing their status to "dormant" and
1240  * invoke %__device_links_no_driver() to update links to suppliers for it as
1241  * appropriate.
1242  *
1243  * Links without the DL_FLAG_MANAGED flag set are ignored.
1244  */
1245 void device_links_driver_cleanup(struct device *dev)
1246 {
1247 	struct device_link *link, *ln;
1248 
1249 	device_links_write_lock();
1250 
1251 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252 		if (!(link->flags & DL_FLAG_MANAGED))
1253 			continue;
1254 
1255 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257 
1258 		/*
1259 		 * autoremove the links between this @dev and its consumer
1260 		 * devices that are not active, i.e. where the link state
1261 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262 		 */
1263 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265 			device_link_drop_managed(link);
1266 
1267 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 	}
1269 
1270 	list_del_init(&dev->links.defer_hook);
1271 	__device_links_no_driver(dev);
1272 
1273 	device_links_write_unlock();
1274 }
1275 
1276 /**
1277  * device_links_busy - Check if there are any busy links to consumers.
1278  * @dev: Device to check.
1279  *
1280  * Check each consumer of the device and return 'true' if its link's status
1281  * is one of "consumer probe" or "active" (meaning that the given consumer is
1282  * probing right now or its driver is present).  Otherwise, change the link
1283  * state to "supplier unbind" to prevent the consumer from being probed
1284  * successfully going forward.
1285  *
1286  * Return 'false' if there are no probing or active consumers.
1287  *
1288  * Links without the DL_FLAG_MANAGED flag set are ignored.
1289  */
1290 bool device_links_busy(struct device *dev)
1291 {
1292 	struct device_link *link;
1293 	bool ret = false;
1294 
1295 	device_links_write_lock();
1296 
1297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1298 		if (!(link->flags & DL_FLAG_MANAGED))
1299 			continue;
1300 
1301 		if (link->status == DL_STATE_CONSUMER_PROBE
1302 		    || link->status == DL_STATE_ACTIVE) {
1303 			ret = true;
1304 			break;
1305 		}
1306 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307 	}
1308 
1309 	dev->links.status = DL_DEV_UNBINDING;
1310 
1311 	device_links_write_unlock();
1312 	return ret;
1313 }
1314 
1315 /**
1316  * device_links_unbind_consumers - Force unbind consumers of the given device.
1317  * @dev: Device to unbind the consumers of.
1318  *
1319  * Walk the list of links to consumers for @dev and if any of them is in the
1320  * "consumer probe" state, wait for all device probes in progress to complete
1321  * and start over.
1322  *
1323  * If that's not the case, change the status of the link to "supplier unbind"
1324  * and check if the link was in the "active" state.  If so, force the consumer
1325  * driver to unbind and start over (the consumer will not re-probe as we have
1326  * changed the state of the link already).
1327  *
1328  * Links without the DL_FLAG_MANAGED flag set are ignored.
1329  */
1330 void device_links_unbind_consumers(struct device *dev)
1331 {
1332 	struct device_link *link;
1333 
1334  start:
1335 	device_links_write_lock();
1336 
1337 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 		enum device_link_state status;
1339 
1340 		if (!(link->flags & DL_FLAG_MANAGED) ||
1341 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342 			continue;
1343 
1344 		status = link->status;
1345 		if (status == DL_STATE_CONSUMER_PROBE) {
1346 			device_links_write_unlock();
1347 
1348 			wait_for_device_probe();
1349 			goto start;
1350 		}
1351 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352 		if (status == DL_STATE_ACTIVE) {
1353 			struct device *consumer = link->consumer;
1354 
1355 			get_device(consumer);
1356 
1357 			device_links_write_unlock();
1358 
1359 			device_release_driver_internal(consumer, NULL,
1360 						       consumer->parent);
1361 			put_device(consumer);
1362 			goto start;
1363 		}
1364 	}
1365 
1366 	device_links_write_unlock();
1367 }
1368 
1369 /**
1370  * device_links_purge - Delete existing links to other devices.
1371  * @dev: Target device.
1372  */
1373 static void device_links_purge(struct device *dev)
1374 {
1375 	struct device_link *link, *ln;
1376 
1377 	if (dev->class == &devlink_class)
1378 		return;
1379 
1380 	mutex_lock(&wfs_lock);
1381 	list_del(&dev->links.needs_suppliers);
1382 	mutex_unlock(&wfs_lock);
1383 
1384 	/*
1385 	 * Delete all of the remaining links from this device to any other
1386 	 * devices (either consumers or suppliers).
1387 	 */
1388 	device_links_write_lock();
1389 
1390 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391 		WARN_ON(link->status == DL_STATE_ACTIVE);
1392 		__device_link_del(&link->kref);
1393 	}
1394 
1395 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396 		WARN_ON(link->status != DL_STATE_DORMANT &&
1397 			link->status != DL_STATE_NONE);
1398 		__device_link_del(&link->kref);
1399 	}
1400 
1401 	device_links_write_unlock();
1402 }
1403 
1404 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1405 static int __init fw_devlink_setup(char *arg)
1406 {
1407 	if (!arg)
1408 		return -EINVAL;
1409 
1410 	if (strcmp(arg, "off") == 0) {
1411 		fw_devlink_flags = 0;
1412 	} else if (strcmp(arg, "permissive") == 0) {
1413 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414 	} else if (strcmp(arg, "on") == 0) {
1415 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416 	} else if (strcmp(arg, "rpm") == 0) {
1417 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418 				   DL_FLAG_PM_RUNTIME;
1419 	}
1420 	return 0;
1421 }
1422 early_param("fw_devlink", fw_devlink_setup);
1423 
1424 u32 fw_devlink_get_flags(void)
1425 {
1426 	return fw_devlink_flags;
1427 }
1428 
1429 static bool fw_devlink_is_permissive(void)
1430 {
1431 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432 }
1433 
1434 static void fw_devlink_link_device(struct device *dev)
1435 {
1436 	int fw_ret;
1437 
1438 	if (!fw_devlink_flags)
1439 		return;
1440 
1441 	mutex_lock(&defer_fw_devlink_lock);
1442 	if (!defer_fw_devlink_count)
1443 		device_link_add_missing_supplier_links();
1444 
1445 	/*
1446 	 * The device's fwnode not having add_links() doesn't affect if other
1447 	 * consumers can find this device as a supplier.  So, this check is
1448 	 * intentionally placed after device_link_add_missing_supplier_links().
1449 	 */
1450 	if (!fwnode_has_op(dev->fwnode, add_links))
1451 		goto out;
1452 
1453 	/*
1454 	 * If fw_devlink is being deferred, assume all devices have mandatory
1455 	 * suppliers they need to link to later. Then, when the fw_devlink is
1456 	 * resumed, all these devices will get a chance to try and link to any
1457 	 * suppliers they have.
1458 	 */
1459 	if (!defer_fw_devlink_count) {
1460 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462 			fw_ret = -EAGAIN;
1463 	} else {
1464 		fw_ret = -ENODEV;
1465 		/*
1466 		 * defer_hook is not used to add device to deferred_sync list
1467 		 * until device is bound. Since deferred fw devlink also blocks
1468 		 * probing, same list hook can be used for deferred_fw_devlink.
1469 		 */
1470 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471 	}
1472 
1473 	if (fw_ret == -ENODEV)
1474 		device_link_wait_for_mandatory_supplier(dev);
1475 	else if (fw_ret)
1476 		device_link_wait_for_optional_supplier(dev);
1477 
1478 out:
1479 	mutex_unlock(&defer_fw_devlink_lock);
1480 }
1481 
1482 /**
1483  * fw_devlink_pause - Pause parsing of fwnode to create device links
1484  *
1485  * Calling this function defers any fwnode parsing to create device links until
1486  * fw_devlink_resume() is called. Both these functions are ref counted and the
1487  * caller needs to match the calls.
1488  *
1489  * While fw_devlink is paused:
1490  * - Any device that is added won't have its fwnode parsed to create device
1491  *   links.
1492  * - The probe of the device will also be deferred during this period.
1493  * - Any devices that were already added, but waiting for suppliers won't be
1494  *   able to link to newly added devices.
1495  *
1496  * Once fw_devlink_resume():
1497  * - All the fwnodes that was not parsed will be parsed.
1498  * - All the devices that were deferred probing will be reattempted if they
1499  *   aren't waiting for any more suppliers.
1500  *
1501  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502  * when a lot of devices that need to link to each other are added in a short
1503  * interval of time. For example, adding all the top level devices in a system.
1504  *
1505  * For example, if N devices are added and:
1506  * - All the consumers are added before their suppliers
1507  * - All the suppliers of the N devices are part of the N devices
1508  *
1509  * Then:
1510  *
1511  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512  *   will only need one parsing of its fwnode because it is guaranteed to find
1513  *   all the supplier devices already registered and ready to link to. It won't
1514  *   have to do another pass later to find one or more suppliers it couldn't
1515  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516  *   parses.
1517  *
1518  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1520  *   guaranteed to trigger a parse of the fwnode of every device added before
1521  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522  *   device is parsed, all it descendant devices might need to have their
1523  *   fwnodes parsed too (even if the devices themselves aren't added).
1524  */
1525 void fw_devlink_pause(void)
1526 {
1527 	mutex_lock(&defer_fw_devlink_lock);
1528 	defer_fw_devlink_count++;
1529 	mutex_unlock(&defer_fw_devlink_lock);
1530 }
1531 
1532 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1533  *
1534  * This function is used in conjunction with fw_devlink_pause() and is ref
1535  * counted. See documentation for fw_devlink_pause() for more details.
1536  */
1537 void fw_devlink_resume(void)
1538 {
1539 	struct device *dev, *tmp;
1540 	LIST_HEAD(probe_list);
1541 
1542 	mutex_lock(&defer_fw_devlink_lock);
1543 	if (!defer_fw_devlink_count) {
1544 		WARN(true, "Unmatched fw_devlink pause/resume!");
1545 		goto out;
1546 	}
1547 
1548 	defer_fw_devlink_count--;
1549 	if (defer_fw_devlink_count)
1550 		goto out;
1551 
1552 	device_link_add_missing_supplier_links();
1553 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554 out:
1555 	mutex_unlock(&defer_fw_devlink_lock);
1556 
1557 	/*
1558 	 * bus_probe_device() can cause new devices to get added and they'll
1559 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560 	 * the defer_fw_devlink_lock.
1561 	 */
1562 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563 		list_del_init(&dev->links.defer_hook);
1564 		bus_probe_device(dev);
1565 	}
1566 }
1567 /* Device links support end. */
1568 
1569 int (*platform_notify)(struct device *dev) = NULL;
1570 int (*platform_notify_remove)(struct device *dev) = NULL;
1571 static struct kobject *dev_kobj;
1572 struct kobject *sysfs_dev_char_kobj;
1573 struct kobject *sysfs_dev_block_kobj;
1574 
1575 static DEFINE_MUTEX(device_hotplug_lock);
1576 
1577 void lock_device_hotplug(void)
1578 {
1579 	mutex_lock(&device_hotplug_lock);
1580 }
1581 
1582 void unlock_device_hotplug(void)
1583 {
1584 	mutex_unlock(&device_hotplug_lock);
1585 }
1586 
1587 int lock_device_hotplug_sysfs(void)
1588 {
1589 	if (mutex_trylock(&device_hotplug_lock))
1590 		return 0;
1591 
1592 	/* Avoid busy looping (5 ms of sleep should do). */
1593 	msleep(5);
1594 	return restart_syscall();
1595 }
1596 
1597 #ifdef CONFIG_BLOCK
1598 static inline int device_is_not_partition(struct device *dev)
1599 {
1600 	return !(dev->type == &part_type);
1601 }
1602 #else
1603 static inline int device_is_not_partition(struct device *dev)
1604 {
1605 	return 1;
1606 }
1607 #endif
1608 
1609 static int
1610 device_platform_notify(struct device *dev, enum kobject_action action)
1611 {
1612 	int ret;
1613 
1614 	ret = acpi_platform_notify(dev, action);
1615 	if (ret)
1616 		return ret;
1617 
1618 	ret = software_node_notify(dev, action);
1619 	if (ret)
1620 		return ret;
1621 
1622 	if (platform_notify && action == KOBJ_ADD)
1623 		platform_notify(dev);
1624 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1625 		platform_notify_remove(dev);
1626 	return 0;
1627 }
1628 
1629 /**
1630  * dev_driver_string - Return a device's driver name, if at all possible
1631  * @dev: struct device to get the name of
1632  *
1633  * Will return the device's driver's name if it is bound to a device.  If
1634  * the device is not bound to a driver, it will return the name of the bus
1635  * it is attached to.  If it is not attached to a bus either, an empty
1636  * string will be returned.
1637  */
1638 const char *dev_driver_string(const struct device *dev)
1639 {
1640 	struct device_driver *drv;
1641 
1642 	/* dev->driver can change to NULL underneath us because of unbinding,
1643 	 * so be careful about accessing it.  dev->bus and dev->class should
1644 	 * never change once they are set, so they don't need special care.
1645 	 */
1646 	drv = READ_ONCE(dev->driver);
1647 	return drv ? drv->name :
1648 			(dev->bus ? dev->bus->name :
1649 			(dev->class ? dev->class->name : ""));
1650 }
1651 EXPORT_SYMBOL(dev_driver_string);
1652 
1653 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654 
1655 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656 			     char *buf)
1657 {
1658 	struct device_attribute *dev_attr = to_dev_attr(attr);
1659 	struct device *dev = kobj_to_dev(kobj);
1660 	ssize_t ret = -EIO;
1661 
1662 	if (dev_attr->show)
1663 		ret = dev_attr->show(dev, dev_attr, buf);
1664 	if (ret >= (ssize_t)PAGE_SIZE) {
1665 		printk("dev_attr_show: %pS returned bad count\n",
1666 				dev_attr->show);
1667 	}
1668 	return ret;
1669 }
1670 
1671 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672 			      const char *buf, size_t count)
1673 {
1674 	struct device_attribute *dev_attr = to_dev_attr(attr);
1675 	struct device *dev = kobj_to_dev(kobj);
1676 	ssize_t ret = -EIO;
1677 
1678 	if (dev_attr->store)
1679 		ret = dev_attr->store(dev, dev_attr, buf, count);
1680 	return ret;
1681 }
1682 
1683 static const struct sysfs_ops dev_sysfs_ops = {
1684 	.show	= dev_attr_show,
1685 	.store	= dev_attr_store,
1686 };
1687 
1688 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689 
1690 ssize_t device_store_ulong(struct device *dev,
1691 			   struct device_attribute *attr,
1692 			   const char *buf, size_t size)
1693 {
1694 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1695 	int ret;
1696 	unsigned long new;
1697 
1698 	ret = kstrtoul(buf, 0, &new);
1699 	if (ret)
1700 		return ret;
1701 	*(unsigned long *)(ea->var) = new;
1702 	/* Always return full write size even if we didn't consume all */
1703 	return size;
1704 }
1705 EXPORT_SYMBOL_GPL(device_store_ulong);
1706 
1707 ssize_t device_show_ulong(struct device *dev,
1708 			  struct device_attribute *attr,
1709 			  char *buf)
1710 {
1711 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1712 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713 }
1714 EXPORT_SYMBOL_GPL(device_show_ulong);
1715 
1716 ssize_t device_store_int(struct device *dev,
1717 			 struct device_attribute *attr,
1718 			 const char *buf, size_t size)
1719 {
1720 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1721 	int ret;
1722 	long new;
1723 
1724 	ret = kstrtol(buf, 0, &new);
1725 	if (ret)
1726 		return ret;
1727 
1728 	if (new > INT_MAX || new < INT_MIN)
1729 		return -EINVAL;
1730 	*(int *)(ea->var) = new;
1731 	/* Always return full write size even if we didn't consume all */
1732 	return size;
1733 }
1734 EXPORT_SYMBOL_GPL(device_store_int);
1735 
1736 ssize_t device_show_int(struct device *dev,
1737 			struct device_attribute *attr,
1738 			char *buf)
1739 {
1740 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1741 
1742 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743 }
1744 EXPORT_SYMBOL_GPL(device_show_int);
1745 
1746 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747 			  const char *buf, size_t size)
1748 {
1749 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1750 
1751 	if (strtobool(buf, ea->var) < 0)
1752 		return -EINVAL;
1753 
1754 	return size;
1755 }
1756 EXPORT_SYMBOL_GPL(device_store_bool);
1757 
1758 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759 			 char *buf)
1760 {
1761 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1762 
1763 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764 }
1765 EXPORT_SYMBOL_GPL(device_show_bool);
1766 
1767 /**
1768  * device_release - free device structure.
1769  * @kobj: device's kobject.
1770  *
1771  * This is called once the reference count for the object
1772  * reaches 0. We forward the call to the device's release
1773  * method, which should handle actually freeing the structure.
1774  */
1775 static void device_release(struct kobject *kobj)
1776 {
1777 	struct device *dev = kobj_to_dev(kobj);
1778 	struct device_private *p = dev->p;
1779 
1780 	/*
1781 	 * Some platform devices are driven without driver attached
1782 	 * and managed resources may have been acquired.  Make sure
1783 	 * all resources are released.
1784 	 *
1785 	 * Drivers still can add resources into device after device
1786 	 * is deleted but alive, so release devres here to avoid
1787 	 * possible memory leak.
1788 	 */
1789 	devres_release_all(dev);
1790 
1791 	kfree(dev->dma_range_map);
1792 
1793 	if (dev->release)
1794 		dev->release(dev);
1795 	else if (dev->type && dev->type->release)
1796 		dev->type->release(dev);
1797 	else if (dev->class && dev->class->dev_release)
1798 		dev->class->dev_release(dev);
1799 	else
1800 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1801 			dev_name(dev));
1802 	kfree(p);
1803 }
1804 
1805 static const void *device_namespace(struct kobject *kobj)
1806 {
1807 	struct device *dev = kobj_to_dev(kobj);
1808 	const void *ns = NULL;
1809 
1810 	if (dev->class && dev->class->ns_type)
1811 		ns = dev->class->namespace(dev);
1812 
1813 	return ns;
1814 }
1815 
1816 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1817 {
1818 	struct device *dev = kobj_to_dev(kobj);
1819 
1820 	if (dev->class && dev->class->get_ownership)
1821 		dev->class->get_ownership(dev, uid, gid);
1822 }
1823 
1824 static struct kobj_type device_ktype = {
1825 	.release	= device_release,
1826 	.sysfs_ops	= &dev_sysfs_ops,
1827 	.namespace	= device_namespace,
1828 	.get_ownership	= device_get_ownership,
1829 };
1830 
1831 
1832 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1833 {
1834 	struct kobj_type *ktype = get_ktype(kobj);
1835 
1836 	if (ktype == &device_ktype) {
1837 		struct device *dev = kobj_to_dev(kobj);
1838 		if (dev->bus)
1839 			return 1;
1840 		if (dev->class)
1841 			return 1;
1842 	}
1843 	return 0;
1844 }
1845 
1846 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1847 {
1848 	struct device *dev = kobj_to_dev(kobj);
1849 
1850 	if (dev->bus)
1851 		return dev->bus->name;
1852 	if (dev->class)
1853 		return dev->class->name;
1854 	return NULL;
1855 }
1856 
1857 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1858 		      struct kobj_uevent_env *env)
1859 {
1860 	struct device *dev = kobj_to_dev(kobj);
1861 	int retval = 0;
1862 
1863 	/* add device node properties if present */
1864 	if (MAJOR(dev->devt)) {
1865 		const char *tmp;
1866 		const char *name;
1867 		umode_t mode = 0;
1868 		kuid_t uid = GLOBAL_ROOT_UID;
1869 		kgid_t gid = GLOBAL_ROOT_GID;
1870 
1871 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1872 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1873 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1874 		if (name) {
1875 			add_uevent_var(env, "DEVNAME=%s", name);
1876 			if (mode)
1877 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1878 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1879 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1880 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1881 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1882 			kfree(tmp);
1883 		}
1884 	}
1885 
1886 	if (dev->type && dev->type->name)
1887 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1888 
1889 	if (dev->driver)
1890 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1891 
1892 	/* Add common DT information about the device */
1893 	of_device_uevent(dev, env);
1894 
1895 	/* have the bus specific function add its stuff */
1896 	if (dev->bus && dev->bus->uevent) {
1897 		retval = dev->bus->uevent(dev, env);
1898 		if (retval)
1899 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1900 				 dev_name(dev), __func__, retval);
1901 	}
1902 
1903 	/* have the class specific function add its stuff */
1904 	if (dev->class && dev->class->dev_uevent) {
1905 		retval = dev->class->dev_uevent(dev, env);
1906 		if (retval)
1907 			pr_debug("device: '%s': %s: class uevent() "
1908 				 "returned %d\n", dev_name(dev),
1909 				 __func__, retval);
1910 	}
1911 
1912 	/* have the device type specific function add its stuff */
1913 	if (dev->type && dev->type->uevent) {
1914 		retval = dev->type->uevent(dev, env);
1915 		if (retval)
1916 			pr_debug("device: '%s': %s: dev_type uevent() "
1917 				 "returned %d\n", dev_name(dev),
1918 				 __func__, retval);
1919 	}
1920 
1921 	return retval;
1922 }
1923 
1924 static const struct kset_uevent_ops device_uevent_ops = {
1925 	.filter =	dev_uevent_filter,
1926 	.name =		dev_uevent_name,
1927 	.uevent =	dev_uevent,
1928 };
1929 
1930 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1931 			   char *buf)
1932 {
1933 	struct kobject *top_kobj;
1934 	struct kset *kset;
1935 	struct kobj_uevent_env *env = NULL;
1936 	int i;
1937 	size_t count = 0;
1938 	int retval;
1939 
1940 	/* search the kset, the device belongs to */
1941 	top_kobj = &dev->kobj;
1942 	while (!top_kobj->kset && top_kobj->parent)
1943 		top_kobj = top_kobj->parent;
1944 	if (!top_kobj->kset)
1945 		goto out;
1946 
1947 	kset = top_kobj->kset;
1948 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1949 		goto out;
1950 
1951 	/* respect filter */
1952 	if (kset->uevent_ops && kset->uevent_ops->filter)
1953 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1954 			goto out;
1955 
1956 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1957 	if (!env)
1958 		return -ENOMEM;
1959 
1960 	/* let the kset specific function add its keys */
1961 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1962 	if (retval)
1963 		goto out;
1964 
1965 	/* copy keys to file */
1966 	for (i = 0; i < env->envp_idx; i++)
1967 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1968 out:
1969 	kfree(env);
1970 	return count;
1971 }
1972 
1973 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1974 			    const char *buf, size_t count)
1975 {
1976 	int rc;
1977 
1978 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1979 
1980 	if (rc) {
1981 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1982 		return rc;
1983 	}
1984 
1985 	return count;
1986 }
1987 static DEVICE_ATTR_RW(uevent);
1988 
1989 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1990 			   char *buf)
1991 {
1992 	bool val;
1993 
1994 	device_lock(dev);
1995 	val = !dev->offline;
1996 	device_unlock(dev);
1997 	return sprintf(buf, "%u\n", val);
1998 }
1999 
2000 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2001 			    const char *buf, size_t count)
2002 {
2003 	bool val;
2004 	int ret;
2005 
2006 	ret = strtobool(buf, &val);
2007 	if (ret < 0)
2008 		return ret;
2009 
2010 	ret = lock_device_hotplug_sysfs();
2011 	if (ret)
2012 		return ret;
2013 
2014 	ret = val ? device_online(dev) : device_offline(dev);
2015 	unlock_device_hotplug();
2016 	return ret < 0 ? ret : count;
2017 }
2018 static DEVICE_ATTR_RW(online);
2019 
2020 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2021 {
2022 	return sysfs_create_groups(&dev->kobj, groups);
2023 }
2024 EXPORT_SYMBOL_GPL(device_add_groups);
2025 
2026 void device_remove_groups(struct device *dev,
2027 			  const struct attribute_group **groups)
2028 {
2029 	sysfs_remove_groups(&dev->kobj, groups);
2030 }
2031 EXPORT_SYMBOL_GPL(device_remove_groups);
2032 
2033 union device_attr_group_devres {
2034 	const struct attribute_group *group;
2035 	const struct attribute_group **groups;
2036 };
2037 
2038 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2039 {
2040 	return ((union device_attr_group_devres *)res)->group == data;
2041 }
2042 
2043 static void devm_attr_group_remove(struct device *dev, void *res)
2044 {
2045 	union device_attr_group_devres *devres = res;
2046 	const struct attribute_group *group = devres->group;
2047 
2048 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2049 	sysfs_remove_group(&dev->kobj, group);
2050 }
2051 
2052 static void devm_attr_groups_remove(struct device *dev, void *res)
2053 {
2054 	union device_attr_group_devres *devres = res;
2055 	const struct attribute_group **groups = devres->groups;
2056 
2057 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2058 	sysfs_remove_groups(&dev->kobj, groups);
2059 }
2060 
2061 /**
2062  * devm_device_add_group - given a device, create a managed attribute group
2063  * @dev:	The device to create the group for
2064  * @grp:	The attribute group to create
2065  *
2066  * This function creates a group for the first time.  It will explicitly
2067  * warn and error if any of the attribute files being created already exist.
2068  *
2069  * Returns 0 on success or error code on failure.
2070  */
2071 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2072 {
2073 	union device_attr_group_devres *devres;
2074 	int error;
2075 
2076 	devres = devres_alloc(devm_attr_group_remove,
2077 			      sizeof(*devres), GFP_KERNEL);
2078 	if (!devres)
2079 		return -ENOMEM;
2080 
2081 	error = sysfs_create_group(&dev->kobj, grp);
2082 	if (error) {
2083 		devres_free(devres);
2084 		return error;
2085 	}
2086 
2087 	devres->group = grp;
2088 	devres_add(dev, devres);
2089 	return 0;
2090 }
2091 EXPORT_SYMBOL_GPL(devm_device_add_group);
2092 
2093 /**
2094  * devm_device_remove_group: remove a managed group from a device
2095  * @dev:	device to remove the group from
2096  * @grp:	group to remove
2097  *
2098  * This function removes a group of attributes from a device. The attributes
2099  * previously have to have been created for this group, otherwise it will fail.
2100  */
2101 void devm_device_remove_group(struct device *dev,
2102 			      const struct attribute_group *grp)
2103 {
2104 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2105 			       devm_attr_group_match,
2106 			       /* cast away const */ (void *)grp));
2107 }
2108 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2109 
2110 /**
2111  * devm_device_add_groups - create a bunch of managed attribute groups
2112  * @dev:	The device to create the group for
2113  * @groups:	The attribute groups to create, NULL terminated
2114  *
2115  * This function creates a bunch of managed attribute groups.  If an error
2116  * occurs when creating a group, all previously created groups will be
2117  * removed, unwinding everything back to the original state when this
2118  * function was called.  It will explicitly warn and error if any of the
2119  * attribute files being created already exist.
2120  *
2121  * Returns 0 on success or error code from sysfs_create_group on failure.
2122  */
2123 int devm_device_add_groups(struct device *dev,
2124 			   const struct attribute_group **groups)
2125 {
2126 	union device_attr_group_devres *devres;
2127 	int error;
2128 
2129 	devres = devres_alloc(devm_attr_groups_remove,
2130 			      sizeof(*devres), GFP_KERNEL);
2131 	if (!devres)
2132 		return -ENOMEM;
2133 
2134 	error = sysfs_create_groups(&dev->kobj, groups);
2135 	if (error) {
2136 		devres_free(devres);
2137 		return error;
2138 	}
2139 
2140 	devres->groups = groups;
2141 	devres_add(dev, devres);
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2145 
2146 /**
2147  * devm_device_remove_groups - remove a list of managed groups
2148  *
2149  * @dev:	The device for the groups to be removed from
2150  * @groups:	NULL terminated list of groups to be removed
2151  *
2152  * If groups is not NULL, remove the specified groups from the device.
2153  */
2154 void devm_device_remove_groups(struct device *dev,
2155 			       const struct attribute_group **groups)
2156 {
2157 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2158 			       devm_attr_group_match,
2159 			       /* cast away const */ (void *)groups));
2160 }
2161 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2162 
2163 static int device_add_attrs(struct device *dev)
2164 {
2165 	struct class *class = dev->class;
2166 	const struct device_type *type = dev->type;
2167 	int error;
2168 
2169 	if (class) {
2170 		error = device_add_groups(dev, class->dev_groups);
2171 		if (error)
2172 			return error;
2173 	}
2174 
2175 	if (type) {
2176 		error = device_add_groups(dev, type->groups);
2177 		if (error)
2178 			goto err_remove_class_groups;
2179 	}
2180 
2181 	error = device_add_groups(dev, dev->groups);
2182 	if (error)
2183 		goto err_remove_type_groups;
2184 
2185 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2186 		error = device_create_file(dev, &dev_attr_online);
2187 		if (error)
2188 			goto err_remove_dev_groups;
2189 	}
2190 
2191 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2192 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2193 		if (error)
2194 			goto err_remove_dev_online;
2195 	}
2196 
2197 	return 0;
2198 
2199  err_remove_dev_online:
2200 	device_remove_file(dev, &dev_attr_online);
2201  err_remove_dev_groups:
2202 	device_remove_groups(dev, dev->groups);
2203  err_remove_type_groups:
2204 	if (type)
2205 		device_remove_groups(dev, type->groups);
2206  err_remove_class_groups:
2207 	if (class)
2208 		device_remove_groups(dev, class->dev_groups);
2209 
2210 	return error;
2211 }
2212 
2213 static void device_remove_attrs(struct device *dev)
2214 {
2215 	struct class *class = dev->class;
2216 	const struct device_type *type = dev->type;
2217 
2218 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2219 	device_remove_file(dev, &dev_attr_online);
2220 	device_remove_groups(dev, dev->groups);
2221 
2222 	if (type)
2223 		device_remove_groups(dev, type->groups);
2224 
2225 	if (class)
2226 		device_remove_groups(dev, class->dev_groups);
2227 }
2228 
2229 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2230 			char *buf)
2231 {
2232 	return print_dev_t(buf, dev->devt);
2233 }
2234 static DEVICE_ATTR_RO(dev);
2235 
2236 /* /sys/devices/ */
2237 struct kset *devices_kset;
2238 
2239 /**
2240  * devices_kset_move_before - Move device in the devices_kset's list.
2241  * @deva: Device to move.
2242  * @devb: Device @deva should come before.
2243  */
2244 static void devices_kset_move_before(struct device *deva, struct device *devb)
2245 {
2246 	if (!devices_kset)
2247 		return;
2248 	pr_debug("devices_kset: Moving %s before %s\n",
2249 		 dev_name(deva), dev_name(devb));
2250 	spin_lock(&devices_kset->list_lock);
2251 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2252 	spin_unlock(&devices_kset->list_lock);
2253 }
2254 
2255 /**
2256  * devices_kset_move_after - Move device in the devices_kset's list.
2257  * @deva: Device to move
2258  * @devb: Device @deva should come after.
2259  */
2260 static void devices_kset_move_after(struct device *deva, struct device *devb)
2261 {
2262 	if (!devices_kset)
2263 		return;
2264 	pr_debug("devices_kset: Moving %s after %s\n",
2265 		 dev_name(deva), dev_name(devb));
2266 	spin_lock(&devices_kset->list_lock);
2267 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2268 	spin_unlock(&devices_kset->list_lock);
2269 }
2270 
2271 /**
2272  * devices_kset_move_last - move the device to the end of devices_kset's list.
2273  * @dev: device to move
2274  */
2275 void devices_kset_move_last(struct device *dev)
2276 {
2277 	if (!devices_kset)
2278 		return;
2279 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2280 	spin_lock(&devices_kset->list_lock);
2281 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2282 	spin_unlock(&devices_kset->list_lock);
2283 }
2284 
2285 /**
2286  * device_create_file - create sysfs attribute file for device.
2287  * @dev: device.
2288  * @attr: device attribute descriptor.
2289  */
2290 int device_create_file(struct device *dev,
2291 		       const struct device_attribute *attr)
2292 {
2293 	int error = 0;
2294 
2295 	if (dev) {
2296 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2297 			"Attribute %s: write permission without 'store'\n",
2298 			attr->attr.name);
2299 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2300 			"Attribute %s: read permission without 'show'\n",
2301 			attr->attr.name);
2302 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2303 	}
2304 
2305 	return error;
2306 }
2307 EXPORT_SYMBOL_GPL(device_create_file);
2308 
2309 /**
2310  * device_remove_file - remove sysfs attribute file.
2311  * @dev: device.
2312  * @attr: device attribute descriptor.
2313  */
2314 void device_remove_file(struct device *dev,
2315 			const struct device_attribute *attr)
2316 {
2317 	if (dev)
2318 		sysfs_remove_file(&dev->kobj, &attr->attr);
2319 }
2320 EXPORT_SYMBOL_GPL(device_remove_file);
2321 
2322 /**
2323  * device_remove_file_self - remove sysfs attribute file from its own method.
2324  * @dev: device.
2325  * @attr: device attribute descriptor.
2326  *
2327  * See kernfs_remove_self() for details.
2328  */
2329 bool device_remove_file_self(struct device *dev,
2330 			     const struct device_attribute *attr)
2331 {
2332 	if (dev)
2333 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2334 	else
2335 		return false;
2336 }
2337 EXPORT_SYMBOL_GPL(device_remove_file_self);
2338 
2339 /**
2340  * device_create_bin_file - create sysfs binary attribute file for device.
2341  * @dev: device.
2342  * @attr: device binary attribute descriptor.
2343  */
2344 int device_create_bin_file(struct device *dev,
2345 			   const struct bin_attribute *attr)
2346 {
2347 	int error = -EINVAL;
2348 	if (dev)
2349 		error = sysfs_create_bin_file(&dev->kobj, attr);
2350 	return error;
2351 }
2352 EXPORT_SYMBOL_GPL(device_create_bin_file);
2353 
2354 /**
2355  * device_remove_bin_file - remove sysfs binary attribute file
2356  * @dev: device.
2357  * @attr: device binary attribute descriptor.
2358  */
2359 void device_remove_bin_file(struct device *dev,
2360 			    const struct bin_attribute *attr)
2361 {
2362 	if (dev)
2363 		sysfs_remove_bin_file(&dev->kobj, attr);
2364 }
2365 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2366 
2367 static void klist_children_get(struct klist_node *n)
2368 {
2369 	struct device_private *p = to_device_private_parent(n);
2370 	struct device *dev = p->device;
2371 
2372 	get_device(dev);
2373 }
2374 
2375 static void klist_children_put(struct klist_node *n)
2376 {
2377 	struct device_private *p = to_device_private_parent(n);
2378 	struct device *dev = p->device;
2379 
2380 	put_device(dev);
2381 }
2382 
2383 /**
2384  * device_initialize - init device structure.
2385  * @dev: device.
2386  *
2387  * This prepares the device for use by other layers by initializing
2388  * its fields.
2389  * It is the first half of device_register(), if called by
2390  * that function, though it can also be called separately, so one
2391  * may use @dev's fields. In particular, get_device()/put_device()
2392  * may be used for reference counting of @dev after calling this
2393  * function.
2394  *
2395  * All fields in @dev must be initialized by the caller to 0, except
2396  * for those explicitly set to some other value.  The simplest
2397  * approach is to use kzalloc() to allocate the structure containing
2398  * @dev.
2399  *
2400  * NOTE: Use put_device() to give up your reference instead of freeing
2401  * @dev directly once you have called this function.
2402  */
2403 void device_initialize(struct device *dev)
2404 {
2405 	dev->kobj.kset = devices_kset;
2406 	kobject_init(&dev->kobj, &device_ktype);
2407 	INIT_LIST_HEAD(&dev->dma_pools);
2408 	mutex_init(&dev->mutex);
2409 #ifdef CONFIG_PROVE_LOCKING
2410 	mutex_init(&dev->lockdep_mutex);
2411 #endif
2412 	lockdep_set_novalidate_class(&dev->mutex);
2413 	spin_lock_init(&dev->devres_lock);
2414 	INIT_LIST_HEAD(&dev->devres_head);
2415 	device_pm_init(dev);
2416 	set_dev_node(dev, -1);
2417 #ifdef CONFIG_GENERIC_MSI_IRQ
2418 	INIT_LIST_HEAD(&dev->msi_list);
2419 #endif
2420 	INIT_LIST_HEAD(&dev->links.consumers);
2421 	INIT_LIST_HEAD(&dev->links.suppliers);
2422 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2423 	INIT_LIST_HEAD(&dev->links.defer_hook);
2424 	dev->links.status = DL_DEV_NO_DRIVER;
2425 }
2426 EXPORT_SYMBOL_GPL(device_initialize);
2427 
2428 struct kobject *virtual_device_parent(struct device *dev)
2429 {
2430 	static struct kobject *virtual_dir = NULL;
2431 
2432 	if (!virtual_dir)
2433 		virtual_dir = kobject_create_and_add("virtual",
2434 						     &devices_kset->kobj);
2435 
2436 	return virtual_dir;
2437 }
2438 
2439 struct class_dir {
2440 	struct kobject kobj;
2441 	struct class *class;
2442 };
2443 
2444 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2445 
2446 static void class_dir_release(struct kobject *kobj)
2447 {
2448 	struct class_dir *dir = to_class_dir(kobj);
2449 	kfree(dir);
2450 }
2451 
2452 static const
2453 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2454 {
2455 	struct class_dir *dir = to_class_dir(kobj);
2456 	return dir->class->ns_type;
2457 }
2458 
2459 static struct kobj_type class_dir_ktype = {
2460 	.release	= class_dir_release,
2461 	.sysfs_ops	= &kobj_sysfs_ops,
2462 	.child_ns_type	= class_dir_child_ns_type
2463 };
2464 
2465 static struct kobject *
2466 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2467 {
2468 	struct class_dir *dir;
2469 	int retval;
2470 
2471 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2472 	if (!dir)
2473 		return ERR_PTR(-ENOMEM);
2474 
2475 	dir->class = class;
2476 	kobject_init(&dir->kobj, &class_dir_ktype);
2477 
2478 	dir->kobj.kset = &class->p->glue_dirs;
2479 
2480 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2481 	if (retval < 0) {
2482 		kobject_put(&dir->kobj);
2483 		return ERR_PTR(retval);
2484 	}
2485 	return &dir->kobj;
2486 }
2487 
2488 static DEFINE_MUTEX(gdp_mutex);
2489 
2490 static struct kobject *get_device_parent(struct device *dev,
2491 					 struct device *parent)
2492 {
2493 	if (dev->class) {
2494 		struct kobject *kobj = NULL;
2495 		struct kobject *parent_kobj;
2496 		struct kobject *k;
2497 
2498 #ifdef CONFIG_BLOCK
2499 		/* block disks show up in /sys/block */
2500 		if (sysfs_deprecated && dev->class == &block_class) {
2501 			if (parent && parent->class == &block_class)
2502 				return &parent->kobj;
2503 			return &block_class.p->subsys.kobj;
2504 		}
2505 #endif
2506 
2507 		/*
2508 		 * If we have no parent, we live in "virtual".
2509 		 * Class-devices with a non class-device as parent, live
2510 		 * in a "glue" directory to prevent namespace collisions.
2511 		 */
2512 		if (parent == NULL)
2513 			parent_kobj = virtual_device_parent(dev);
2514 		else if (parent->class && !dev->class->ns_type)
2515 			return &parent->kobj;
2516 		else
2517 			parent_kobj = &parent->kobj;
2518 
2519 		mutex_lock(&gdp_mutex);
2520 
2521 		/* find our class-directory at the parent and reference it */
2522 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2523 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2524 			if (k->parent == parent_kobj) {
2525 				kobj = kobject_get(k);
2526 				break;
2527 			}
2528 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2529 		if (kobj) {
2530 			mutex_unlock(&gdp_mutex);
2531 			return kobj;
2532 		}
2533 
2534 		/* or create a new class-directory at the parent device */
2535 		k = class_dir_create_and_add(dev->class, parent_kobj);
2536 		/* do not emit an uevent for this simple "glue" directory */
2537 		mutex_unlock(&gdp_mutex);
2538 		return k;
2539 	}
2540 
2541 	/* subsystems can specify a default root directory for their devices */
2542 	if (!parent && dev->bus && dev->bus->dev_root)
2543 		return &dev->bus->dev_root->kobj;
2544 
2545 	if (parent)
2546 		return &parent->kobj;
2547 	return NULL;
2548 }
2549 
2550 static inline bool live_in_glue_dir(struct kobject *kobj,
2551 				    struct device *dev)
2552 {
2553 	if (!kobj || !dev->class ||
2554 	    kobj->kset != &dev->class->p->glue_dirs)
2555 		return false;
2556 	return true;
2557 }
2558 
2559 static inline struct kobject *get_glue_dir(struct device *dev)
2560 {
2561 	return dev->kobj.parent;
2562 }
2563 
2564 /*
2565  * make sure cleaning up dir as the last step, we need to make
2566  * sure .release handler of kobject is run with holding the
2567  * global lock
2568  */
2569 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2570 {
2571 	unsigned int ref;
2572 
2573 	/* see if we live in a "glue" directory */
2574 	if (!live_in_glue_dir(glue_dir, dev))
2575 		return;
2576 
2577 	mutex_lock(&gdp_mutex);
2578 	/**
2579 	 * There is a race condition between removing glue directory
2580 	 * and adding a new device under the glue directory.
2581 	 *
2582 	 * CPU1:                                         CPU2:
2583 	 *
2584 	 * device_add()
2585 	 *   get_device_parent()
2586 	 *     class_dir_create_and_add()
2587 	 *       kobject_add_internal()
2588 	 *         create_dir()    // create glue_dir
2589 	 *
2590 	 *                                               device_add()
2591 	 *                                                 get_device_parent()
2592 	 *                                                   kobject_get() // get glue_dir
2593 	 *
2594 	 * device_del()
2595 	 *   cleanup_glue_dir()
2596 	 *     kobject_del(glue_dir)
2597 	 *
2598 	 *                                               kobject_add()
2599 	 *                                                 kobject_add_internal()
2600 	 *                                                   create_dir() // in glue_dir
2601 	 *                                                     sysfs_create_dir_ns()
2602 	 *                                                       kernfs_create_dir_ns(sd)
2603 	 *
2604 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2605 	 *       sysfs_put()        // free glue_dir->sd
2606 	 *
2607 	 *                                                         // sd is freed
2608 	 *                                                         kernfs_new_node(sd)
2609 	 *                                                           kernfs_get(glue_dir)
2610 	 *                                                           kernfs_add_one()
2611 	 *                                                           kernfs_put()
2612 	 *
2613 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2614 	 * a new device under glue dir, the glue_dir kobject reference count
2615 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2616 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2617 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2618 	 *
2619 	 * Then the CPU2 will see a stale "empty" but still potentially used
2620 	 * glue dir around in kernfs_new_node().
2621 	 *
2622 	 * In order to avoid this happening, we also should make sure that
2623 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2624 	 * for glue_dir kobj is 1.
2625 	 */
2626 	ref = kref_read(&glue_dir->kref);
2627 	if (!kobject_has_children(glue_dir) && !--ref)
2628 		kobject_del(glue_dir);
2629 	kobject_put(glue_dir);
2630 	mutex_unlock(&gdp_mutex);
2631 }
2632 
2633 static int device_add_class_symlinks(struct device *dev)
2634 {
2635 	struct device_node *of_node = dev_of_node(dev);
2636 	int error;
2637 
2638 	if (of_node) {
2639 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2640 		if (error)
2641 			dev_warn(dev, "Error %d creating of_node link\n",error);
2642 		/* An error here doesn't warrant bringing down the device */
2643 	}
2644 
2645 	if (!dev->class)
2646 		return 0;
2647 
2648 	error = sysfs_create_link(&dev->kobj,
2649 				  &dev->class->p->subsys.kobj,
2650 				  "subsystem");
2651 	if (error)
2652 		goto out_devnode;
2653 
2654 	if (dev->parent && device_is_not_partition(dev)) {
2655 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2656 					  "device");
2657 		if (error)
2658 			goto out_subsys;
2659 	}
2660 
2661 #ifdef CONFIG_BLOCK
2662 	/* /sys/block has directories and does not need symlinks */
2663 	if (sysfs_deprecated && dev->class == &block_class)
2664 		return 0;
2665 #endif
2666 
2667 	/* link in the class directory pointing to the device */
2668 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2669 				  &dev->kobj, dev_name(dev));
2670 	if (error)
2671 		goto out_device;
2672 
2673 	return 0;
2674 
2675 out_device:
2676 	sysfs_remove_link(&dev->kobj, "device");
2677 
2678 out_subsys:
2679 	sysfs_remove_link(&dev->kobj, "subsystem");
2680 out_devnode:
2681 	sysfs_remove_link(&dev->kobj, "of_node");
2682 	return error;
2683 }
2684 
2685 static void device_remove_class_symlinks(struct device *dev)
2686 {
2687 	if (dev_of_node(dev))
2688 		sysfs_remove_link(&dev->kobj, "of_node");
2689 
2690 	if (!dev->class)
2691 		return;
2692 
2693 	if (dev->parent && device_is_not_partition(dev))
2694 		sysfs_remove_link(&dev->kobj, "device");
2695 	sysfs_remove_link(&dev->kobj, "subsystem");
2696 #ifdef CONFIG_BLOCK
2697 	if (sysfs_deprecated && dev->class == &block_class)
2698 		return;
2699 #endif
2700 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2701 }
2702 
2703 /**
2704  * dev_set_name - set a device name
2705  * @dev: device
2706  * @fmt: format string for the device's name
2707  */
2708 int dev_set_name(struct device *dev, const char *fmt, ...)
2709 {
2710 	va_list vargs;
2711 	int err;
2712 
2713 	va_start(vargs, fmt);
2714 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2715 	va_end(vargs);
2716 	return err;
2717 }
2718 EXPORT_SYMBOL_GPL(dev_set_name);
2719 
2720 /**
2721  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2722  * @dev: device
2723  *
2724  * By default we select char/ for new entries.  Setting class->dev_obj
2725  * to NULL prevents an entry from being created.  class->dev_kobj must
2726  * be set (or cleared) before any devices are registered to the class
2727  * otherwise device_create_sys_dev_entry() and
2728  * device_remove_sys_dev_entry() will disagree about the presence of
2729  * the link.
2730  */
2731 static struct kobject *device_to_dev_kobj(struct device *dev)
2732 {
2733 	struct kobject *kobj;
2734 
2735 	if (dev->class)
2736 		kobj = dev->class->dev_kobj;
2737 	else
2738 		kobj = sysfs_dev_char_kobj;
2739 
2740 	return kobj;
2741 }
2742 
2743 static int device_create_sys_dev_entry(struct device *dev)
2744 {
2745 	struct kobject *kobj = device_to_dev_kobj(dev);
2746 	int error = 0;
2747 	char devt_str[15];
2748 
2749 	if (kobj) {
2750 		format_dev_t(devt_str, dev->devt);
2751 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2752 	}
2753 
2754 	return error;
2755 }
2756 
2757 static void device_remove_sys_dev_entry(struct device *dev)
2758 {
2759 	struct kobject *kobj = device_to_dev_kobj(dev);
2760 	char devt_str[15];
2761 
2762 	if (kobj) {
2763 		format_dev_t(devt_str, dev->devt);
2764 		sysfs_remove_link(kobj, devt_str);
2765 	}
2766 }
2767 
2768 static int device_private_init(struct device *dev)
2769 {
2770 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2771 	if (!dev->p)
2772 		return -ENOMEM;
2773 	dev->p->device = dev;
2774 	klist_init(&dev->p->klist_children, klist_children_get,
2775 		   klist_children_put);
2776 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2777 	return 0;
2778 }
2779 
2780 /**
2781  * device_add - add device to device hierarchy.
2782  * @dev: device.
2783  *
2784  * This is part 2 of device_register(), though may be called
2785  * separately _iff_ device_initialize() has been called separately.
2786  *
2787  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2788  * to the global and sibling lists for the device, then
2789  * adds it to the other relevant subsystems of the driver model.
2790  *
2791  * Do not call this routine or device_register() more than once for
2792  * any device structure.  The driver model core is not designed to work
2793  * with devices that get unregistered and then spring back to life.
2794  * (Among other things, it's very hard to guarantee that all references
2795  * to the previous incarnation of @dev have been dropped.)  Allocate
2796  * and register a fresh new struct device instead.
2797  *
2798  * NOTE: _Never_ directly free @dev after calling this function, even
2799  * if it returned an error! Always use put_device() to give up your
2800  * reference instead.
2801  *
2802  * Rule of thumb is: if device_add() succeeds, you should call
2803  * device_del() when you want to get rid of it. If device_add() has
2804  * *not* succeeded, use *only* put_device() to drop the reference
2805  * count.
2806  */
2807 int device_add(struct device *dev)
2808 {
2809 	struct device *parent;
2810 	struct kobject *kobj;
2811 	struct class_interface *class_intf;
2812 	int error = -EINVAL;
2813 	struct kobject *glue_dir = NULL;
2814 
2815 	dev = get_device(dev);
2816 	if (!dev)
2817 		goto done;
2818 
2819 	if (!dev->p) {
2820 		error = device_private_init(dev);
2821 		if (error)
2822 			goto done;
2823 	}
2824 
2825 	/*
2826 	 * for statically allocated devices, which should all be converted
2827 	 * some day, we need to initialize the name. We prevent reading back
2828 	 * the name, and force the use of dev_name()
2829 	 */
2830 	if (dev->init_name) {
2831 		dev_set_name(dev, "%s", dev->init_name);
2832 		dev->init_name = NULL;
2833 	}
2834 
2835 	/* subsystems can specify simple device enumeration */
2836 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2837 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2838 
2839 	if (!dev_name(dev)) {
2840 		error = -EINVAL;
2841 		goto name_error;
2842 	}
2843 
2844 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2845 
2846 	parent = get_device(dev->parent);
2847 	kobj = get_device_parent(dev, parent);
2848 	if (IS_ERR(kobj)) {
2849 		error = PTR_ERR(kobj);
2850 		goto parent_error;
2851 	}
2852 	if (kobj)
2853 		dev->kobj.parent = kobj;
2854 
2855 	/* use parent numa_node */
2856 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2857 		set_dev_node(dev, dev_to_node(parent));
2858 
2859 	/* first, register with generic layer. */
2860 	/* we require the name to be set before, and pass NULL */
2861 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2862 	if (error) {
2863 		glue_dir = get_glue_dir(dev);
2864 		goto Error;
2865 	}
2866 
2867 	/* notify platform of device entry */
2868 	error = device_platform_notify(dev, KOBJ_ADD);
2869 	if (error)
2870 		goto platform_error;
2871 
2872 	error = device_create_file(dev, &dev_attr_uevent);
2873 	if (error)
2874 		goto attrError;
2875 
2876 	error = device_add_class_symlinks(dev);
2877 	if (error)
2878 		goto SymlinkError;
2879 	error = device_add_attrs(dev);
2880 	if (error)
2881 		goto AttrsError;
2882 	error = bus_add_device(dev);
2883 	if (error)
2884 		goto BusError;
2885 	error = dpm_sysfs_add(dev);
2886 	if (error)
2887 		goto DPMError;
2888 	device_pm_add(dev);
2889 
2890 	if (MAJOR(dev->devt)) {
2891 		error = device_create_file(dev, &dev_attr_dev);
2892 		if (error)
2893 			goto DevAttrError;
2894 
2895 		error = device_create_sys_dev_entry(dev);
2896 		if (error)
2897 			goto SysEntryError;
2898 
2899 		devtmpfs_create_node(dev);
2900 	}
2901 
2902 	/* Notify clients of device addition.  This call must come
2903 	 * after dpm_sysfs_add() and before kobject_uevent().
2904 	 */
2905 	if (dev->bus)
2906 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2907 					     BUS_NOTIFY_ADD_DEVICE, dev);
2908 
2909 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2910 
2911 	/*
2912 	 * Check if any of the other devices (consumers) have been waiting for
2913 	 * this device (supplier) to be added so that they can create a device
2914 	 * link to it.
2915 	 *
2916 	 * This needs to happen after device_pm_add() because device_link_add()
2917 	 * requires the supplier be registered before it's called.
2918 	 *
2919 	 * But this also needs to happen before bus_probe_device() to make sure
2920 	 * waiting consumers can link to it before the driver is bound to the
2921 	 * device and the driver sync_state callback is called for this device.
2922 	 */
2923 	if (dev->fwnode && !dev->fwnode->dev) {
2924 		dev->fwnode->dev = dev;
2925 		fw_devlink_link_device(dev);
2926 	}
2927 
2928 	bus_probe_device(dev);
2929 	if (parent)
2930 		klist_add_tail(&dev->p->knode_parent,
2931 			       &parent->p->klist_children);
2932 
2933 	if (dev->class) {
2934 		mutex_lock(&dev->class->p->mutex);
2935 		/* tie the class to the device */
2936 		klist_add_tail(&dev->p->knode_class,
2937 			       &dev->class->p->klist_devices);
2938 
2939 		/* notify any interfaces that the device is here */
2940 		list_for_each_entry(class_intf,
2941 				    &dev->class->p->interfaces, node)
2942 			if (class_intf->add_dev)
2943 				class_intf->add_dev(dev, class_intf);
2944 		mutex_unlock(&dev->class->p->mutex);
2945 	}
2946 done:
2947 	put_device(dev);
2948 	return error;
2949  SysEntryError:
2950 	if (MAJOR(dev->devt))
2951 		device_remove_file(dev, &dev_attr_dev);
2952  DevAttrError:
2953 	device_pm_remove(dev);
2954 	dpm_sysfs_remove(dev);
2955  DPMError:
2956 	bus_remove_device(dev);
2957  BusError:
2958 	device_remove_attrs(dev);
2959  AttrsError:
2960 	device_remove_class_symlinks(dev);
2961  SymlinkError:
2962 	device_remove_file(dev, &dev_attr_uevent);
2963  attrError:
2964 	device_platform_notify(dev, KOBJ_REMOVE);
2965 platform_error:
2966 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2967 	glue_dir = get_glue_dir(dev);
2968 	kobject_del(&dev->kobj);
2969  Error:
2970 	cleanup_glue_dir(dev, glue_dir);
2971 parent_error:
2972 	put_device(parent);
2973 name_error:
2974 	kfree(dev->p);
2975 	dev->p = NULL;
2976 	goto done;
2977 }
2978 EXPORT_SYMBOL_GPL(device_add);
2979 
2980 /**
2981  * device_register - register a device with the system.
2982  * @dev: pointer to the device structure
2983  *
2984  * This happens in two clean steps - initialize the device
2985  * and add it to the system. The two steps can be called
2986  * separately, but this is the easiest and most common.
2987  * I.e. you should only call the two helpers separately if
2988  * have a clearly defined need to use and refcount the device
2989  * before it is added to the hierarchy.
2990  *
2991  * For more information, see the kerneldoc for device_initialize()
2992  * and device_add().
2993  *
2994  * NOTE: _Never_ directly free @dev after calling this function, even
2995  * if it returned an error! Always use put_device() to give up the
2996  * reference initialized in this function instead.
2997  */
2998 int device_register(struct device *dev)
2999 {
3000 	device_initialize(dev);
3001 	return device_add(dev);
3002 }
3003 EXPORT_SYMBOL_GPL(device_register);
3004 
3005 /**
3006  * get_device - increment reference count for device.
3007  * @dev: device.
3008  *
3009  * This simply forwards the call to kobject_get(), though
3010  * we do take care to provide for the case that we get a NULL
3011  * pointer passed in.
3012  */
3013 struct device *get_device(struct device *dev)
3014 {
3015 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3016 }
3017 EXPORT_SYMBOL_GPL(get_device);
3018 
3019 /**
3020  * put_device - decrement reference count.
3021  * @dev: device in question.
3022  */
3023 void put_device(struct device *dev)
3024 {
3025 	/* might_sleep(); */
3026 	if (dev)
3027 		kobject_put(&dev->kobj);
3028 }
3029 EXPORT_SYMBOL_GPL(put_device);
3030 
3031 bool kill_device(struct device *dev)
3032 {
3033 	/*
3034 	 * Require the device lock and set the "dead" flag to guarantee that
3035 	 * the update behavior is consistent with the other bitfields near
3036 	 * it and that we cannot have an asynchronous probe routine trying
3037 	 * to run while we are tearing out the bus/class/sysfs from
3038 	 * underneath the device.
3039 	 */
3040 	lockdep_assert_held(&dev->mutex);
3041 
3042 	if (dev->p->dead)
3043 		return false;
3044 	dev->p->dead = true;
3045 	return true;
3046 }
3047 EXPORT_SYMBOL_GPL(kill_device);
3048 
3049 /**
3050  * device_del - delete device from system.
3051  * @dev: device.
3052  *
3053  * This is the first part of the device unregistration
3054  * sequence. This removes the device from the lists we control
3055  * from here, has it removed from the other driver model
3056  * subsystems it was added to in device_add(), and removes it
3057  * from the kobject hierarchy.
3058  *
3059  * NOTE: this should be called manually _iff_ device_add() was
3060  * also called manually.
3061  */
3062 void device_del(struct device *dev)
3063 {
3064 	struct device *parent = dev->parent;
3065 	struct kobject *glue_dir = NULL;
3066 	struct class_interface *class_intf;
3067 
3068 	device_lock(dev);
3069 	kill_device(dev);
3070 	device_unlock(dev);
3071 
3072 	if (dev->fwnode && dev->fwnode->dev == dev)
3073 		dev->fwnode->dev = NULL;
3074 
3075 	/* Notify clients of device removal.  This call must come
3076 	 * before dpm_sysfs_remove().
3077 	 */
3078 	if (dev->bus)
3079 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3080 					     BUS_NOTIFY_DEL_DEVICE, dev);
3081 
3082 	dpm_sysfs_remove(dev);
3083 	if (parent)
3084 		klist_del(&dev->p->knode_parent);
3085 	if (MAJOR(dev->devt)) {
3086 		devtmpfs_delete_node(dev);
3087 		device_remove_sys_dev_entry(dev);
3088 		device_remove_file(dev, &dev_attr_dev);
3089 	}
3090 	if (dev->class) {
3091 		device_remove_class_symlinks(dev);
3092 
3093 		mutex_lock(&dev->class->p->mutex);
3094 		/* notify any interfaces that the device is now gone */
3095 		list_for_each_entry(class_intf,
3096 				    &dev->class->p->interfaces, node)
3097 			if (class_intf->remove_dev)
3098 				class_intf->remove_dev(dev, class_intf);
3099 		/* remove the device from the class list */
3100 		klist_del(&dev->p->knode_class);
3101 		mutex_unlock(&dev->class->p->mutex);
3102 	}
3103 	device_remove_file(dev, &dev_attr_uevent);
3104 	device_remove_attrs(dev);
3105 	bus_remove_device(dev);
3106 	device_pm_remove(dev);
3107 	driver_deferred_probe_del(dev);
3108 	device_platform_notify(dev, KOBJ_REMOVE);
3109 	device_remove_properties(dev);
3110 	device_links_purge(dev);
3111 
3112 	if (dev->bus)
3113 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3114 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3115 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3116 	glue_dir = get_glue_dir(dev);
3117 	kobject_del(&dev->kobj);
3118 	cleanup_glue_dir(dev, glue_dir);
3119 	put_device(parent);
3120 }
3121 EXPORT_SYMBOL_GPL(device_del);
3122 
3123 /**
3124  * device_unregister - unregister device from system.
3125  * @dev: device going away.
3126  *
3127  * We do this in two parts, like we do device_register(). First,
3128  * we remove it from all the subsystems with device_del(), then
3129  * we decrement the reference count via put_device(). If that
3130  * is the final reference count, the device will be cleaned up
3131  * via device_release() above. Otherwise, the structure will
3132  * stick around until the final reference to the device is dropped.
3133  */
3134 void device_unregister(struct device *dev)
3135 {
3136 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3137 	device_del(dev);
3138 	put_device(dev);
3139 }
3140 EXPORT_SYMBOL_GPL(device_unregister);
3141 
3142 static struct device *prev_device(struct klist_iter *i)
3143 {
3144 	struct klist_node *n = klist_prev(i);
3145 	struct device *dev = NULL;
3146 	struct device_private *p;
3147 
3148 	if (n) {
3149 		p = to_device_private_parent(n);
3150 		dev = p->device;
3151 	}
3152 	return dev;
3153 }
3154 
3155 static struct device *next_device(struct klist_iter *i)
3156 {
3157 	struct klist_node *n = klist_next(i);
3158 	struct device *dev = NULL;
3159 	struct device_private *p;
3160 
3161 	if (n) {
3162 		p = to_device_private_parent(n);
3163 		dev = p->device;
3164 	}
3165 	return dev;
3166 }
3167 
3168 /**
3169  * device_get_devnode - path of device node file
3170  * @dev: device
3171  * @mode: returned file access mode
3172  * @uid: returned file owner
3173  * @gid: returned file group
3174  * @tmp: possibly allocated string
3175  *
3176  * Return the relative path of a possible device node.
3177  * Non-default names may need to allocate a memory to compose
3178  * a name. This memory is returned in tmp and needs to be
3179  * freed by the caller.
3180  */
3181 const char *device_get_devnode(struct device *dev,
3182 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3183 			       const char **tmp)
3184 {
3185 	char *s;
3186 
3187 	*tmp = NULL;
3188 
3189 	/* the device type may provide a specific name */
3190 	if (dev->type && dev->type->devnode)
3191 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3192 	if (*tmp)
3193 		return *tmp;
3194 
3195 	/* the class may provide a specific name */
3196 	if (dev->class && dev->class->devnode)
3197 		*tmp = dev->class->devnode(dev, mode);
3198 	if (*tmp)
3199 		return *tmp;
3200 
3201 	/* return name without allocation, tmp == NULL */
3202 	if (strchr(dev_name(dev), '!') == NULL)
3203 		return dev_name(dev);
3204 
3205 	/* replace '!' in the name with '/' */
3206 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3207 	if (!s)
3208 		return NULL;
3209 	strreplace(s, '!', '/');
3210 	return *tmp = s;
3211 }
3212 
3213 /**
3214  * device_for_each_child - device child iterator.
3215  * @parent: parent struct device.
3216  * @fn: function to be called for each device.
3217  * @data: data for the callback.
3218  *
3219  * Iterate over @parent's child devices, and call @fn for each,
3220  * passing it @data.
3221  *
3222  * We check the return of @fn each time. If it returns anything
3223  * other than 0, we break out and return that value.
3224  */
3225 int device_for_each_child(struct device *parent, void *data,
3226 			  int (*fn)(struct device *dev, void *data))
3227 {
3228 	struct klist_iter i;
3229 	struct device *child;
3230 	int error = 0;
3231 
3232 	if (!parent->p)
3233 		return 0;
3234 
3235 	klist_iter_init(&parent->p->klist_children, &i);
3236 	while (!error && (child = next_device(&i)))
3237 		error = fn(child, data);
3238 	klist_iter_exit(&i);
3239 	return error;
3240 }
3241 EXPORT_SYMBOL_GPL(device_for_each_child);
3242 
3243 /**
3244  * device_for_each_child_reverse - device child iterator in reversed order.
3245  * @parent: parent struct device.
3246  * @fn: function to be called for each device.
3247  * @data: data for the callback.
3248  *
3249  * Iterate over @parent's child devices, and call @fn for each,
3250  * passing it @data.
3251  *
3252  * We check the return of @fn each time. If it returns anything
3253  * other than 0, we break out and return that value.
3254  */
3255 int device_for_each_child_reverse(struct device *parent, void *data,
3256 				  int (*fn)(struct device *dev, void *data))
3257 {
3258 	struct klist_iter i;
3259 	struct device *child;
3260 	int error = 0;
3261 
3262 	if (!parent->p)
3263 		return 0;
3264 
3265 	klist_iter_init(&parent->p->klist_children, &i);
3266 	while ((child = prev_device(&i)) && !error)
3267 		error = fn(child, data);
3268 	klist_iter_exit(&i);
3269 	return error;
3270 }
3271 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3272 
3273 /**
3274  * device_find_child - device iterator for locating a particular device.
3275  * @parent: parent struct device
3276  * @match: Callback function to check device
3277  * @data: Data to pass to match function
3278  *
3279  * This is similar to the device_for_each_child() function above, but it
3280  * returns a reference to a device that is 'found' for later use, as
3281  * determined by the @match callback.
3282  *
3283  * The callback should return 0 if the device doesn't match and non-zero
3284  * if it does.  If the callback returns non-zero and a reference to the
3285  * current device can be obtained, this function will return to the caller
3286  * and not iterate over any more devices.
3287  *
3288  * NOTE: you will need to drop the reference with put_device() after use.
3289  */
3290 struct device *device_find_child(struct device *parent, void *data,
3291 				 int (*match)(struct device *dev, void *data))
3292 {
3293 	struct klist_iter i;
3294 	struct device *child;
3295 
3296 	if (!parent)
3297 		return NULL;
3298 
3299 	klist_iter_init(&parent->p->klist_children, &i);
3300 	while ((child = next_device(&i)))
3301 		if (match(child, data) && get_device(child))
3302 			break;
3303 	klist_iter_exit(&i);
3304 	return child;
3305 }
3306 EXPORT_SYMBOL_GPL(device_find_child);
3307 
3308 /**
3309  * device_find_child_by_name - device iterator for locating a child device.
3310  * @parent: parent struct device
3311  * @name: name of the child device
3312  *
3313  * This is similar to the device_find_child() function above, but it
3314  * returns a reference to a device that has the name @name.
3315  *
3316  * NOTE: you will need to drop the reference with put_device() after use.
3317  */
3318 struct device *device_find_child_by_name(struct device *parent,
3319 					 const char *name)
3320 {
3321 	struct klist_iter i;
3322 	struct device *child;
3323 
3324 	if (!parent)
3325 		return NULL;
3326 
3327 	klist_iter_init(&parent->p->klist_children, &i);
3328 	while ((child = next_device(&i)))
3329 		if (!strcmp(dev_name(child), name) && get_device(child))
3330 			break;
3331 	klist_iter_exit(&i);
3332 	return child;
3333 }
3334 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3335 
3336 int __init devices_init(void)
3337 {
3338 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3339 	if (!devices_kset)
3340 		return -ENOMEM;
3341 	dev_kobj = kobject_create_and_add("dev", NULL);
3342 	if (!dev_kobj)
3343 		goto dev_kobj_err;
3344 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3345 	if (!sysfs_dev_block_kobj)
3346 		goto block_kobj_err;
3347 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3348 	if (!sysfs_dev_char_kobj)
3349 		goto char_kobj_err;
3350 
3351 	return 0;
3352 
3353  char_kobj_err:
3354 	kobject_put(sysfs_dev_block_kobj);
3355  block_kobj_err:
3356 	kobject_put(dev_kobj);
3357  dev_kobj_err:
3358 	kset_unregister(devices_kset);
3359 	return -ENOMEM;
3360 }
3361 
3362 static int device_check_offline(struct device *dev, void *not_used)
3363 {
3364 	int ret;
3365 
3366 	ret = device_for_each_child(dev, NULL, device_check_offline);
3367 	if (ret)
3368 		return ret;
3369 
3370 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3371 }
3372 
3373 /**
3374  * device_offline - Prepare the device for hot-removal.
3375  * @dev: Device to be put offline.
3376  *
3377  * Execute the device bus type's .offline() callback, if present, to prepare
3378  * the device for a subsequent hot-removal.  If that succeeds, the device must
3379  * not be used until either it is removed or its bus type's .online() callback
3380  * is executed.
3381  *
3382  * Call under device_hotplug_lock.
3383  */
3384 int device_offline(struct device *dev)
3385 {
3386 	int ret;
3387 
3388 	if (dev->offline_disabled)
3389 		return -EPERM;
3390 
3391 	ret = device_for_each_child(dev, NULL, device_check_offline);
3392 	if (ret)
3393 		return ret;
3394 
3395 	device_lock(dev);
3396 	if (device_supports_offline(dev)) {
3397 		if (dev->offline) {
3398 			ret = 1;
3399 		} else {
3400 			ret = dev->bus->offline(dev);
3401 			if (!ret) {
3402 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3403 				dev->offline = true;
3404 			}
3405 		}
3406 	}
3407 	device_unlock(dev);
3408 
3409 	return ret;
3410 }
3411 
3412 /**
3413  * device_online - Put the device back online after successful device_offline().
3414  * @dev: Device to be put back online.
3415  *
3416  * If device_offline() has been successfully executed for @dev, but the device
3417  * has not been removed subsequently, execute its bus type's .online() callback
3418  * to indicate that the device can be used again.
3419  *
3420  * Call under device_hotplug_lock.
3421  */
3422 int device_online(struct device *dev)
3423 {
3424 	int ret = 0;
3425 
3426 	device_lock(dev);
3427 	if (device_supports_offline(dev)) {
3428 		if (dev->offline) {
3429 			ret = dev->bus->online(dev);
3430 			if (!ret) {
3431 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3432 				dev->offline = false;
3433 			}
3434 		} else {
3435 			ret = 1;
3436 		}
3437 	}
3438 	device_unlock(dev);
3439 
3440 	return ret;
3441 }
3442 
3443 struct root_device {
3444 	struct device dev;
3445 	struct module *owner;
3446 };
3447 
3448 static inline struct root_device *to_root_device(struct device *d)
3449 {
3450 	return container_of(d, struct root_device, dev);
3451 }
3452 
3453 static void root_device_release(struct device *dev)
3454 {
3455 	kfree(to_root_device(dev));
3456 }
3457 
3458 /**
3459  * __root_device_register - allocate and register a root device
3460  * @name: root device name
3461  * @owner: owner module of the root device, usually THIS_MODULE
3462  *
3463  * This function allocates a root device and registers it
3464  * using device_register(). In order to free the returned
3465  * device, use root_device_unregister().
3466  *
3467  * Root devices are dummy devices which allow other devices
3468  * to be grouped under /sys/devices. Use this function to
3469  * allocate a root device and then use it as the parent of
3470  * any device which should appear under /sys/devices/{name}
3471  *
3472  * The /sys/devices/{name} directory will also contain a
3473  * 'module' symlink which points to the @owner directory
3474  * in sysfs.
3475  *
3476  * Returns &struct device pointer on success, or ERR_PTR() on error.
3477  *
3478  * Note: You probably want to use root_device_register().
3479  */
3480 struct device *__root_device_register(const char *name, struct module *owner)
3481 {
3482 	struct root_device *root;
3483 	int err = -ENOMEM;
3484 
3485 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3486 	if (!root)
3487 		return ERR_PTR(err);
3488 
3489 	err = dev_set_name(&root->dev, "%s", name);
3490 	if (err) {
3491 		kfree(root);
3492 		return ERR_PTR(err);
3493 	}
3494 
3495 	root->dev.release = root_device_release;
3496 
3497 	err = device_register(&root->dev);
3498 	if (err) {
3499 		put_device(&root->dev);
3500 		return ERR_PTR(err);
3501 	}
3502 
3503 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3504 	if (owner) {
3505 		struct module_kobject *mk = &owner->mkobj;
3506 
3507 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3508 		if (err) {
3509 			device_unregister(&root->dev);
3510 			return ERR_PTR(err);
3511 		}
3512 		root->owner = owner;
3513 	}
3514 #endif
3515 
3516 	return &root->dev;
3517 }
3518 EXPORT_SYMBOL_GPL(__root_device_register);
3519 
3520 /**
3521  * root_device_unregister - unregister and free a root device
3522  * @dev: device going away
3523  *
3524  * This function unregisters and cleans up a device that was created by
3525  * root_device_register().
3526  */
3527 void root_device_unregister(struct device *dev)
3528 {
3529 	struct root_device *root = to_root_device(dev);
3530 
3531 	if (root->owner)
3532 		sysfs_remove_link(&root->dev.kobj, "module");
3533 
3534 	device_unregister(dev);
3535 }
3536 EXPORT_SYMBOL_GPL(root_device_unregister);
3537 
3538 
3539 static void device_create_release(struct device *dev)
3540 {
3541 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3542 	kfree(dev);
3543 }
3544 
3545 static __printf(6, 0) struct device *
3546 device_create_groups_vargs(struct class *class, struct device *parent,
3547 			   dev_t devt, void *drvdata,
3548 			   const struct attribute_group **groups,
3549 			   const char *fmt, va_list args)
3550 {
3551 	struct device *dev = NULL;
3552 	int retval = -ENODEV;
3553 
3554 	if (class == NULL || IS_ERR(class))
3555 		goto error;
3556 
3557 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3558 	if (!dev) {
3559 		retval = -ENOMEM;
3560 		goto error;
3561 	}
3562 
3563 	device_initialize(dev);
3564 	dev->devt = devt;
3565 	dev->class = class;
3566 	dev->parent = parent;
3567 	dev->groups = groups;
3568 	dev->release = device_create_release;
3569 	dev_set_drvdata(dev, drvdata);
3570 
3571 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3572 	if (retval)
3573 		goto error;
3574 
3575 	retval = device_add(dev);
3576 	if (retval)
3577 		goto error;
3578 
3579 	return dev;
3580 
3581 error:
3582 	put_device(dev);
3583 	return ERR_PTR(retval);
3584 }
3585 
3586 /**
3587  * device_create - creates a device and registers it with sysfs
3588  * @class: pointer to the struct class that this device should be registered to
3589  * @parent: pointer to the parent struct device of this new device, if any
3590  * @devt: the dev_t for the char device to be added
3591  * @drvdata: the data to be added to the device for callbacks
3592  * @fmt: string for the device's name
3593  *
3594  * This function can be used by char device classes.  A struct device
3595  * will be created in sysfs, registered to the specified class.
3596  *
3597  * A "dev" file will be created, showing the dev_t for the device, if
3598  * the dev_t is not 0,0.
3599  * If a pointer to a parent struct device is passed in, the newly created
3600  * struct device will be a child of that device in sysfs.
3601  * The pointer to the struct device will be returned from the call.
3602  * Any further sysfs files that might be required can be created using this
3603  * pointer.
3604  *
3605  * Returns &struct device pointer on success, or ERR_PTR() on error.
3606  *
3607  * Note: the struct class passed to this function must have previously
3608  * been created with a call to class_create().
3609  */
3610 struct device *device_create(struct class *class, struct device *parent,
3611 			     dev_t devt, void *drvdata, const char *fmt, ...)
3612 {
3613 	va_list vargs;
3614 	struct device *dev;
3615 
3616 	va_start(vargs, fmt);
3617 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3618 					  fmt, vargs);
3619 	va_end(vargs);
3620 	return dev;
3621 }
3622 EXPORT_SYMBOL_GPL(device_create);
3623 
3624 /**
3625  * device_create_with_groups - creates a device and registers it with sysfs
3626  * @class: pointer to the struct class that this device should be registered to
3627  * @parent: pointer to the parent struct device of this new device, if any
3628  * @devt: the dev_t for the char device to be added
3629  * @drvdata: the data to be added to the device for callbacks
3630  * @groups: NULL-terminated list of attribute groups to be created
3631  * @fmt: string for the device's name
3632  *
3633  * This function can be used by char device classes.  A struct device
3634  * will be created in sysfs, registered to the specified class.
3635  * Additional attributes specified in the groups parameter will also
3636  * be created automatically.
3637  *
3638  * A "dev" file will be created, showing the dev_t for the device, if
3639  * the dev_t is not 0,0.
3640  * If a pointer to a parent struct device is passed in, the newly created
3641  * struct device will be a child of that device in sysfs.
3642  * The pointer to the struct device will be returned from the call.
3643  * Any further sysfs files that might be required can be created using this
3644  * pointer.
3645  *
3646  * Returns &struct device pointer on success, or ERR_PTR() on error.
3647  *
3648  * Note: the struct class passed to this function must have previously
3649  * been created with a call to class_create().
3650  */
3651 struct device *device_create_with_groups(struct class *class,
3652 					 struct device *parent, dev_t devt,
3653 					 void *drvdata,
3654 					 const struct attribute_group **groups,
3655 					 const char *fmt, ...)
3656 {
3657 	va_list vargs;
3658 	struct device *dev;
3659 
3660 	va_start(vargs, fmt);
3661 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3662 					 fmt, vargs);
3663 	va_end(vargs);
3664 	return dev;
3665 }
3666 EXPORT_SYMBOL_GPL(device_create_with_groups);
3667 
3668 /**
3669  * device_destroy - removes a device that was created with device_create()
3670  * @class: pointer to the struct class that this device was registered with
3671  * @devt: the dev_t of the device that was previously registered
3672  *
3673  * This call unregisters and cleans up a device that was created with a
3674  * call to device_create().
3675  */
3676 void device_destroy(struct class *class, dev_t devt)
3677 {
3678 	struct device *dev;
3679 
3680 	dev = class_find_device_by_devt(class, devt);
3681 	if (dev) {
3682 		put_device(dev);
3683 		device_unregister(dev);
3684 	}
3685 }
3686 EXPORT_SYMBOL_GPL(device_destroy);
3687 
3688 /**
3689  * device_rename - renames a device
3690  * @dev: the pointer to the struct device to be renamed
3691  * @new_name: the new name of the device
3692  *
3693  * It is the responsibility of the caller to provide mutual
3694  * exclusion between two different calls of device_rename
3695  * on the same device to ensure that new_name is valid and
3696  * won't conflict with other devices.
3697  *
3698  * Note: Don't call this function.  Currently, the networking layer calls this
3699  * function, but that will change.  The following text from Kay Sievers offers
3700  * some insight:
3701  *
3702  * Renaming devices is racy at many levels, symlinks and other stuff are not
3703  * replaced atomically, and you get a "move" uevent, but it's not easy to
3704  * connect the event to the old and new device. Device nodes are not renamed at
3705  * all, there isn't even support for that in the kernel now.
3706  *
3707  * In the meantime, during renaming, your target name might be taken by another
3708  * driver, creating conflicts. Or the old name is taken directly after you
3709  * renamed it -- then you get events for the same DEVPATH, before you even see
3710  * the "move" event. It's just a mess, and nothing new should ever rely on
3711  * kernel device renaming. Besides that, it's not even implemented now for
3712  * other things than (driver-core wise very simple) network devices.
3713  *
3714  * We are currently about to change network renaming in udev to completely
3715  * disallow renaming of devices in the same namespace as the kernel uses,
3716  * because we can't solve the problems properly, that arise with swapping names
3717  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3718  * be allowed to some other name than eth[0-9]*, for the aforementioned
3719  * reasons.
3720  *
3721  * Make up a "real" name in the driver before you register anything, or add
3722  * some other attributes for userspace to find the device, or use udev to add
3723  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3724  * don't even want to get into that and try to implement the missing pieces in
3725  * the core. We really have other pieces to fix in the driver core mess. :)
3726  */
3727 int device_rename(struct device *dev, const char *new_name)
3728 {
3729 	struct kobject *kobj = &dev->kobj;
3730 	char *old_device_name = NULL;
3731 	int error;
3732 
3733 	dev = get_device(dev);
3734 	if (!dev)
3735 		return -EINVAL;
3736 
3737 	dev_dbg(dev, "renaming to %s\n", new_name);
3738 
3739 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3740 	if (!old_device_name) {
3741 		error = -ENOMEM;
3742 		goto out;
3743 	}
3744 
3745 	if (dev->class) {
3746 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3747 					     kobj, old_device_name,
3748 					     new_name, kobject_namespace(kobj));
3749 		if (error)
3750 			goto out;
3751 	}
3752 
3753 	error = kobject_rename(kobj, new_name);
3754 	if (error)
3755 		goto out;
3756 
3757 out:
3758 	put_device(dev);
3759 
3760 	kfree(old_device_name);
3761 
3762 	return error;
3763 }
3764 EXPORT_SYMBOL_GPL(device_rename);
3765 
3766 static int device_move_class_links(struct device *dev,
3767 				   struct device *old_parent,
3768 				   struct device *new_parent)
3769 {
3770 	int error = 0;
3771 
3772 	if (old_parent)
3773 		sysfs_remove_link(&dev->kobj, "device");
3774 	if (new_parent)
3775 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3776 					  "device");
3777 	return error;
3778 }
3779 
3780 /**
3781  * device_move - moves a device to a new parent
3782  * @dev: the pointer to the struct device to be moved
3783  * @new_parent: the new parent of the device (can be NULL)
3784  * @dpm_order: how to reorder the dpm_list
3785  */
3786 int device_move(struct device *dev, struct device *new_parent,
3787 		enum dpm_order dpm_order)
3788 {
3789 	int error;
3790 	struct device *old_parent;
3791 	struct kobject *new_parent_kobj;
3792 
3793 	dev = get_device(dev);
3794 	if (!dev)
3795 		return -EINVAL;
3796 
3797 	device_pm_lock();
3798 	new_parent = get_device(new_parent);
3799 	new_parent_kobj = get_device_parent(dev, new_parent);
3800 	if (IS_ERR(new_parent_kobj)) {
3801 		error = PTR_ERR(new_parent_kobj);
3802 		put_device(new_parent);
3803 		goto out;
3804 	}
3805 
3806 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3807 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3808 	error = kobject_move(&dev->kobj, new_parent_kobj);
3809 	if (error) {
3810 		cleanup_glue_dir(dev, new_parent_kobj);
3811 		put_device(new_parent);
3812 		goto out;
3813 	}
3814 	old_parent = dev->parent;
3815 	dev->parent = new_parent;
3816 	if (old_parent)
3817 		klist_remove(&dev->p->knode_parent);
3818 	if (new_parent) {
3819 		klist_add_tail(&dev->p->knode_parent,
3820 			       &new_parent->p->klist_children);
3821 		set_dev_node(dev, dev_to_node(new_parent));
3822 	}
3823 
3824 	if (dev->class) {
3825 		error = device_move_class_links(dev, old_parent, new_parent);
3826 		if (error) {
3827 			/* We ignore errors on cleanup since we're hosed anyway... */
3828 			device_move_class_links(dev, new_parent, old_parent);
3829 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3830 				if (new_parent)
3831 					klist_remove(&dev->p->knode_parent);
3832 				dev->parent = old_parent;
3833 				if (old_parent) {
3834 					klist_add_tail(&dev->p->knode_parent,
3835 						       &old_parent->p->klist_children);
3836 					set_dev_node(dev, dev_to_node(old_parent));
3837 				}
3838 			}
3839 			cleanup_glue_dir(dev, new_parent_kobj);
3840 			put_device(new_parent);
3841 			goto out;
3842 		}
3843 	}
3844 	switch (dpm_order) {
3845 	case DPM_ORDER_NONE:
3846 		break;
3847 	case DPM_ORDER_DEV_AFTER_PARENT:
3848 		device_pm_move_after(dev, new_parent);
3849 		devices_kset_move_after(dev, new_parent);
3850 		break;
3851 	case DPM_ORDER_PARENT_BEFORE_DEV:
3852 		device_pm_move_before(new_parent, dev);
3853 		devices_kset_move_before(new_parent, dev);
3854 		break;
3855 	case DPM_ORDER_DEV_LAST:
3856 		device_pm_move_last(dev);
3857 		devices_kset_move_last(dev);
3858 		break;
3859 	}
3860 
3861 	put_device(old_parent);
3862 out:
3863 	device_pm_unlock();
3864 	put_device(dev);
3865 	return error;
3866 }
3867 EXPORT_SYMBOL_GPL(device_move);
3868 
3869 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3870 				     kgid_t kgid)
3871 {
3872 	struct kobject *kobj = &dev->kobj;
3873 	struct class *class = dev->class;
3874 	const struct device_type *type = dev->type;
3875 	int error;
3876 
3877 	if (class) {
3878 		/*
3879 		 * Change the device groups of the device class for @dev to
3880 		 * @kuid/@kgid.
3881 		 */
3882 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3883 						  kgid);
3884 		if (error)
3885 			return error;
3886 	}
3887 
3888 	if (type) {
3889 		/*
3890 		 * Change the device groups of the device type for @dev to
3891 		 * @kuid/@kgid.
3892 		 */
3893 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3894 						  kgid);
3895 		if (error)
3896 			return error;
3897 	}
3898 
3899 	/* Change the device groups of @dev to @kuid/@kgid. */
3900 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3901 	if (error)
3902 		return error;
3903 
3904 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3905 		/* Change online device attributes of @dev to @kuid/@kgid. */
3906 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3907 						kuid, kgid);
3908 		if (error)
3909 			return error;
3910 	}
3911 
3912 	return 0;
3913 }
3914 
3915 /**
3916  * device_change_owner - change the owner of an existing device.
3917  * @dev: device.
3918  * @kuid: new owner's kuid
3919  * @kgid: new owner's kgid
3920  *
3921  * This changes the owner of @dev and its corresponding sysfs entries to
3922  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3923  * core.
3924  *
3925  * Returns 0 on success or error code on failure.
3926  */
3927 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3928 {
3929 	int error;
3930 	struct kobject *kobj = &dev->kobj;
3931 
3932 	dev = get_device(dev);
3933 	if (!dev)
3934 		return -EINVAL;
3935 
3936 	/*
3937 	 * Change the kobject and the default attributes and groups of the
3938 	 * ktype associated with it to @kuid/@kgid.
3939 	 */
3940 	error = sysfs_change_owner(kobj, kuid, kgid);
3941 	if (error)
3942 		goto out;
3943 
3944 	/*
3945 	 * Change the uevent file for @dev to the new owner. The uevent file
3946 	 * was created in a separate step when @dev got added and we mirror
3947 	 * that step here.
3948 	 */
3949 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3950 					kgid);
3951 	if (error)
3952 		goto out;
3953 
3954 	/*
3955 	 * Change the device groups, the device groups associated with the
3956 	 * device class, and the groups associated with the device type of @dev
3957 	 * to @kuid/@kgid.
3958 	 */
3959 	error = device_attrs_change_owner(dev, kuid, kgid);
3960 	if (error)
3961 		goto out;
3962 
3963 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3964 	if (error)
3965 		goto out;
3966 
3967 #ifdef CONFIG_BLOCK
3968 	if (sysfs_deprecated && dev->class == &block_class)
3969 		goto out;
3970 #endif
3971 
3972 	/*
3973 	 * Change the owner of the symlink located in the class directory of
3974 	 * the device class associated with @dev which points to the actual
3975 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3976 	 * symlink shows the same permissions as its target.
3977 	 */
3978 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3979 					dev_name(dev), kuid, kgid);
3980 	if (error)
3981 		goto out;
3982 
3983 out:
3984 	put_device(dev);
3985 	return error;
3986 }
3987 EXPORT_SYMBOL_GPL(device_change_owner);
3988 
3989 /**
3990  * device_shutdown - call ->shutdown() on each device to shutdown.
3991  */
3992 void device_shutdown(void)
3993 {
3994 	struct device *dev, *parent;
3995 
3996 	wait_for_device_probe();
3997 	device_block_probing();
3998 
3999 	cpufreq_suspend();
4000 
4001 	spin_lock(&devices_kset->list_lock);
4002 	/*
4003 	 * Walk the devices list backward, shutting down each in turn.
4004 	 * Beware that device unplug events may also start pulling
4005 	 * devices offline, even as the system is shutting down.
4006 	 */
4007 	while (!list_empty(&devices_kset->list)) {
4008 		dev = list_entry(devices_kset->list.prev, struct device,
4009 				kobj.entry);
4010 
4011 		/*
4012 		 * hold reference count of device's parent to
4013 		 * prevent it from being freed because parent's
4014 		 * lock is to be held
4015 		 */
4016 		parent = get_device(dev->parent);
4017 		get_device(dev);
4018 		/*
4019 		 * Make sure the device is off the kset list, in the
4020 		 * event that dev->*->shutdown() doesn't remove it.
4021 		 */
4022 		list_del_init(&dev->kobj.entry);
4023 		spin_unlock(&devices_kset->list_lock);
4024 
4025 		/* hold lock to avoid race with probe/release */
4026 		if (parent)
4027 			device_lock(parent);
4028 		device_lock(dev);
4029 
4030 		/* Don't allow any more runtime suspends */
4031 		pm_runtime_get_noresume(dev);
4032 		pm_runtime_barrier(dev);
4033 
4034 		if (dev->class && dev->class->shutdown_pre) {
4035 			if (initcall_debug)
4036 				dev_info(dev, "shutdown_pre\n");
4037 			dev->class->shutdown_pre(dev);
4038 		}
4039 		if (dev->bus && dev->bus->shutdown) {
4040 			if (initcall_debug)
4041 				dev_info(dev, "shutdown\n");
4042 			dev->bus->shutdown(dev);
4043 		} else if (dev->driver && dev->driver->shutdown) {
4044 			if (initcall_debug)
4045 				dev_info(dev, "shutdown\n");
4046 			dev->driver->shutdown(dev);
4047 		}
4048 
4049 		device_unlock(dev);
4050 		if (parent)
4051 			device_unlock(parent);
4052 
4053 		put_device(dev);
4054 		put_device(parent);
4055 
4056 		spin_lock(&devices_kset->list_lock);
4057 	}
4058 	spin_unlock(&devices_kset->list_lock);
4059 }
4060 
4061 /*
4062  * Device logging functions
4063  */
4064 
4065 #ifdef CONFIG_PRINTK
4066 static int
4067 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4068 {
4069 	const char *subsys;
4070 	size_t pos = 0;
4071 
4072 	if (dev->class)
4073 		subsys = dev->class->name;
4074 	else if (dev->bus)
4075 		subsys = dev->bus->name;
4076 	else
4077 		return 0;
4078 
4079 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4080 	if (pos >= hdrlen)
4081 		goto overflow;
4082 
4083 	/*
4084 	 * Add device identifier DEVICE=:
4085 	 *   b12:8         block dev_t
4086 	 *   c127:3        char dev_t
4087 	 *   n8            netdev ifindex
4088 	 *   +sound:card0  subsystem:devname
4089 	 */
4090 	if (MAJOR(dev->devt)) {
4091 		char c;
4092 
4093 		if (strcmp(subsys, "block") == 0)
4094 			c = 'b';
4095 		else
4096 			c = 'c';
4097 		pos++;
4098 		pos += snprintf(hdr + pos, hdrlen - pos,
4099 				"DEVICE=%c%u:%u",
4100 				c, MAJOR(dev->devt), MINOR(dev->devt));
4101 	} else if (strcmp(subsys, "net") == 0) {
4102 		struct net_device *net = to_net_dev(dev);
4103 
4104 		pos++;
4105 		pos += snprintf(hdr + pos, hdrlen - pos,
4106 				"DEVICE=n%u", net->ifindex);
4107 	} else {
4108 		pos++;
4109 		pos += snprintf(hdr + pos, hdrlen - pos,
4110 				"DEVICE=+%s:%s", subsys, dev_name(dev));
4111 	}
4112 
4113 	if (pos >= hdrlen)
4114 		goto overflow;
4115 
4116 	return pos;
4117 
4118 overflow:
4119 	dev_WARN(dev, "device/subsystem name too long");
4120 	return 0;
4121 }
4122 
4123 int dev_vprintk_emit(int level, const struct device *dev,
4124 		     const char *fmt, va_list args)
4125 {
4126 	char hdr[128];
4127 	size_t hdrlen;
4128 
4129 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4130 
4131 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4132 }
4133 EXPORT_SYMBOL(dev_vprintk_emit);
4134 
4135 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4136 {
4137 	va_list args;
4138 	int r;
4139 
4140 	va_start(args, fmt);
4141 
4142 	r = dev_vprintk_emit(level, dev, fmt, args);
4143 
4144 	va_end(args);
4145 
4146 	return r;
4147 }
4148 EXPORT_SYMBOL(dev_printk_emit);
4149 
4150 static void __dev_printk(const char *level, const struct device *dev,
4151 			struct va_format *vaf)
4152 {
4153 	if (dev)
4154 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4155 				dev_driver_string(dev), dev_name(dev), vaf);
4156 	else
4157 		printk("%s(NULL device *): %pV", level, vaf);
4158 }
4159 
4160 void dev_printk(const char *level, const struct device *dev,
4161 		const char *fmt, ...)
4162 {
4163 	struct va_format vaf;
4164 	va_list args;
4165 
4166 	va_start(args, fmt);
4167 
4168 	vaf.fmt = fmt;
4169 	vaf.va = &args;
4170 
4171 	__dev_printk(level, dev, &vaf);
4172 
4173 	va_end(args);
4174 }
4175 EXPORT_SYMBOL(dev_printk);
4176 
4177 #define define_dev_printk_level(func, kern_level)		\
4178 void func(const struct device *dev, const char *fmt, ...)	\
4179 {								\
4180 	struct va_format vaf;					\
4181 	va_list args;						\
4182 								\
4183 	va_start(args, fmt);					\
4184 								\
4185 	vaf.fmt = fmt;						\
4186 	vaf.va = &args;						\
4187 								\
4188 	__dev_printk(kern_level, dev, &vaf);			\
4189 								\
4190 	va_end(args);						\
4191 }								\
4192 EXPORT_SYMBOL(func);
4193 
4194 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4195 define_dev_printk_level(_dev_alert, KERN_ALERT);
4196 define_dev_printk_level(_dev_crit, KERN_CRIT);
4197 define_dev_printk_level(_dev_err, KERN_ERR);
4198 define_dev_printk_level(_dev_warn, KERN_WARNING);
4199 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4200 define_dev_printk_level(_dev_info, KERN_INFO);
4201 
4202 #endif
4203 
4204 /**
4205  * dev_err_probe - probe error check and log helper
4206  * @dev: the pointer to the struct device
4207  * @err: error value to test
4208  * @fmt: printf-style format string
4209  * @...: arguments as specified in the format string
4210  *
4211  * This helper implements common pattern present in probe functions for error
4212  * checking: print debug or error message depending if the error value is
4213  * -EPROBE_DEFER and propagate error upwards.
4214  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4215  * checked later by reading devices_deferred debugfs attribute.
4216  * It replaces code sequence:
4217  * 	if (err != -EPROBE_DEFER)
4218  * 		dev_err(dev, ...);
4219  * 	else
4220  * 		dev_dbg(dev, ...);
4221  * 	return err;
4222  * with
4223  * 	return dev_err_probe(dev, err, ...);
4224  *
4225  * Returns @err.
4226  *
4227  */
4228 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4229 {
4230 	struct va_format vaf;
4231 	va_list args;
4232 
4233 	va_start(args, fmt);
4234 	vaf.fmt = fmt;
4235 	vaf.va = &args;
4236 
4237 	if (err != -EPROBE_DEFER) {
4238 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4239 	} else {
4240 		device_set_deferred_probe_reason(dev, &vaf);
4241 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4242 	}
4243 
4244 	va_end(args);
4245 
4246 	return err;
4247 }
4248 EXPORT_SYMBOL_GPL(dev_err_probe);
4249 
4250 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4251 {
4252 	return fwnode && !IS_ERR(fwnode->secondary);
4253 }
4254 
4255 /**
4256  * set_primary_fwnode - Change the primary firmware node of a given device.
4257  * @dev: Device to handle.
4258  * @fwnode: New primary firmware node of the device.
4259  *
4260  * Set the device's firmware node pointer to @fwnode, but if a secondary
4261  * firmware node of the device is present, preserve it.
4262  */
4263 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4264 {
4265 	struct fwnode_handle *fn = dev->fwnode;
4266 
4267 	if (fwnode) {
4268 		if (fwnode_is_primary(fn))
4269 			fn = fn->secondary;
4270 
4271 		if (fn) {
4272 			WARN_ON(fwnode->secondary);
4273 			fwnode->secondary = fn;
4274 		}
4275 		dev->fwnode = fwnode;
4276 	} else {
4277 		if (fwnode_is_primary(fn)) {
4278 			dev->fwnode = fn->secondary;
4279 			fn->secondary = NULL;
4280 		} else {
4281 			dev->fwnode = NULL;
4282 		}
4283 	}
4284 }
4285 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4286 
4287 /**
4288  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4289  * @dev: Device to handle.
4290  * @fwnode: New secondary firmware node of the device.
4291  *
4292  * If a primary firmware node of the device is present, set its secondary
4293  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4294  * @fwnode.
4295  */
4296 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4297 {
4298 	if (fwnode)
4299 		fwnode->secondary = ERR_PTR(-ENODEV);
4300 
4301 	if (fwnode_is_primary(dev->fwnode))
4302 		dev->fwnode->secondary = fwnode;
4303 	else
4304 		dev->fwnode = fwnode;
4305 }
4306 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4307 
4308 /**
4309  * device_set_of_node_from_dev - reuse device-tree node of another device
4310  * @dev: device whose device-tree node is being set
4311  * @dev2: device whose device-tree node is being reused
4312  *
4313  * Takes another reference to the new device-tree node after first dropping
4314  * any reference held to the old node.
4315  */
4316 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4317 {
4318 	of_node_put(dev->of_node);
4319 	dev->of_node = of_node_get(dev2->of_node);
4320 	dev->of_node_reused = true;
4321 }
4322 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4323 
4324 int device_match_name(struct device *dev, const void *name)
4325 {
4326 	return sysfs_streq(dev_name(dev), name);
4327 }
4328 EXPORT_SYMBOL_GPL(device_match_name);
4329 
4330 int device_match_of_node(struct device *dev, const void *np)
4331 {
4332 	return dev->of_node == np;
4333 }
4334 EXPORT_SYMBOL_GPL(device_match_of_node);
4335 
4336 int device_match_fwnode(struct device *dev, const void *fwnode)
4337 {
4338 	return dev_fwnode(dev) == fwnode;
4339 }
4340 EXPORT_SYMBOL_GPL(device_match_fwnode);
4341 
4342 int device_match_devt(struct device *dev, const void *pdevt)
4343 {
4344 	return dev->devt == *(dev_t *)pdevt;
4345 }
4346 EXPORT_SYMBOL_GPL(device_match_devt);
4347 
4348 int device_match_acpi_dev(struct device *dev, const void *adev)
4349 {
4350 	return ACPI_COMPANION(dev) == adev;
4351 }
4352 EXPORT_SYMBOL(device_match_acpi_dev);
4353 
4354 int device_match_any(struct device *dev, const void *unused)
4355 {
4356 	return 1;
4357 }
4358 EXPORT_SYMBOL_GPL(device_match_any);
4359