xref: /linux/drivers/base/core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 
48 /**
49  * __fwnode_link_add - Create a link between two fwnode_handles.
50  * @con: Consumer end of the link.
51  * @sup: Supplier end of the link.
52  * @flags: Link flags.
53  *
54  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55  * represents the detail that the firmware lists @sup fwnode as supplying a
56  * resource to @con.
57  *
58  * The driver core will use the fwnode link to create a device link between the
59  * two device objects corresponding to @con and @sup when they are created. The
60  * driver core will automatically delete the fwnode link between @con and @sup
61  * after doing that.
62  *
63  * Attempts to create duplicate links between the same pair of fwnode handles
64  * are ignored and there is no reference counting.
65  */
66 static int __fwnode_link_add(struct fwnode_handle *con,
67 			     struct fwnode_handle *sup, u8 flags)
68 {
69 	struct fwnode_link *link;
70 
71 	list_for_each_entry(link, &sup->consumers, s_hook)
72 		if (link->consumer == con) {
73 			link->flags |= flags;
74 			return 0;
75 		}
76 
77 	link = kzalloc(sizeof(*link), GFP_KERNEL);
78 	if (!link)
79 		return -ENOMEM;
80 
81 	link->supplier = sup;
82 	INIT_LIST_HEAD(&link->s_hook);
83 	link->consumer = con;
84 	INIT_LIST_HEAD(&link->c_hook);
85 	link->flags = flags;
86 
87 	list_add(&link->s_hook, &sup->consumers);
88 	list_add(&link->c_hook, &con->suppliers);
89 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 		 con, sup);
91 
92 	return 0;
93 }
94 
95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
96 {
97 	int ret;
98 
99 	mutex_lock(&fwnode_link_lock);
100 	ret = __fwnode_link_add(con, sup, 0);
101 	mutex_unlock(&fwnode_link_lock);
102 	return ret;
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	mutex_lock(&fwnode_link_lock);
144 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
145 		__fwnode_link_del(link);
146 	mutex_unlock(&fwnode_link_lock);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	mutex_lock(&fwnode_link_lock);
160 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
161 		__fwnode_link_del(link);
162 	mutex_unlock(&fwnode_link_lock);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 		output = "supplier unbind";
465 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n",
489 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492 
493 static struct attribute *devlink_attrs[] = {
494 	&dev_attr_status.attr,
495 	&dev_attr_auto_remove_on.attr,
496 	&dev_attr_runtime_pm.attr,
497 	&dev_attr_sync_state_only.attr,
498 	NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501 
502 static void device_link_release_fn(struct work_struct *work)
503 {
504 	struct device_link *link = container_of(work, struct device_link, rm_work);
505 
506 	/* Ensure that all references to the link object have been dropped. */
507 	device_link_synchronize_removal();
508 
509 	pm_runtime_release_supplier(link);
510 	/*
511 	 * If supplier_preactivated is set, the link has been dropped between
512 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 	 * in __driver_probe_device().  In that case, drop the supplier's
514 	 * PM-runtime usage counter to remove the reference taken by
515 	 * pm_runtime_get_suppliers().
516 	 */
517 	if (link->supplier_preactivated)
518 		pm_runtime_put_noidle(link->supplier);
519 
520 	pm_request_idle(link->supplier);
521 
522 	put_device(link->consumer);
523 	put_device(link->supplier);
524 	kfree(link);
525 }
526 
527 static void devlink_dev_release(struct device *dev)
528 {
529 	struct device_link *link = to_devlink(dev);
530 
531 	INIT_WORK(&link->rm_work, device_link_release_fn);
532 	/*
533 	 * It may take a while to complete this work because of the SRCU
534 	 * synchronization in device_link_release_fn() and if the consumer or
535 	 * supplier devices get deleted when it runs, so put it into the "long"
536 	 * workqueue.
537 	 */
538 	queue_work(system_long_wq, &link->rm_work);
539 }
540 
541 static struct class devlink_class = {
542 	.name = "devlink",
543 	.dev_groups = devlink_groups,
544 	.dev_release = devlink_dev_release,
545 };
546 
547 static int devlink_add_symlinks(struct device *dev)
548 {
549 	int ret;
550 	size_t len;
551 	struct device_link *link = to_devlink(dev);
552 	struct device *sup = link->supplier;
553 	struct device *con = link->consumer;
554 	char *buf;
555 
556 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
557 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
558 	len += strlen(":");
559 	len += strlen("supplier:") + 1;
560 	buf = kzalloc(len, GFP_KERNEL);
561 	if (!buf)
562 		return -ENOMEM;
563 
564 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
565 	if (ret)
566 		goto out;
567 
568 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
569 	if (ret)
570 		goto err_con;
571 
572 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
573 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
574 	if (ret)
575 		goto err_con_dev;
576 
577 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
578 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
579 	if (ret)
580 		goto err_sup_dev;
581 
582 	goto out;
583 
584 err_sup_dev:
585 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
586 	sysfs_remove_link(&sup->kobj, buf);
587 err_con_dev:
588 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
589 err_con:
590 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
591 out:
592 	kfree(buf);
593 	return ret;
594 }
595 
596 static void devlink_remove_symlinks(struct device *dev)
597 {
598 	struct device_link *link = to_devlink(dev);
599 	size_t len;
600 	struct device *sup = link->supplier;
601 	struct device *con = link->consumer;
602 	char *buf;
603 
604 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
605 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
606 
607 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
608 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
609 	len += strlen(":");
610 	len += strlen("supplier:") + 1;
611 	buf = kzalloc(len, GFP_KERNEL);
612 	if (!buf) {
613 		WARN(1, "Unable to properly free device link symlinks!\n");
614 		return;
615 	}
616 
617 	if (device_is_registered(con)) {
618 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
619 		sysfs_remove_link(&con->kobj, buf);
620 	}
621 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
622 	sysfs_remove_link(&sup->kobj, buf);
623 	kfree(buf);
624 }
625 
626 static struct class_interface devlink_class_intf = {
627 	.class = &devlink_class,
628 	.add_dev = devlink_add_symlinks,
629 	.remove_dev = devlink_remove_symlinks,
630 };
631 
632 static int __init devlink_class_init(void)
633 {
634 	int ret;
635 
636 	ret = class_register(&devlink_class);
637 	if (ret)
638 		return ret;
639 
640 	ret = class_interface_register(&devlink_class_intf);
641 	if (ret)
642 		class_unregister(&devlink_class);
643 
644 	return ret;
645 }
646 postcore_initcall(devlink_class_init);
647 
648 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
649 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
650 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
651 			       DL_FLAG_SYNC_STATE_ONLY | \
652 			       DL_FLAG_INFERRED | \
653 			       DL_FLAG_CYCLE)
654 
655 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
656 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
657 
658 /**
659  * device_link_add - Create a link between two devices.
660  * @consumer: Consumer end of the link.
661  * @supplier: Supplier end of the link.
662  * @flags: Link flags.
663  *
664  * The caller is responsible for the proper synchronization of the link creation
665  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
666  * runtime PM framework to take the link into account.  Second, if the
667  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
668  * be forced into the active meta state and reference-counted upon the creation
669  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
670  * ignored.
671  *
672  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
673  * expected to release the link returned by it directly with the help of either
674  * device_link_del() or device_link_remove().
675  *
676  * If that flag is not set, however, the caller of this function is handing the
677  * management of the link over to the driver core entirely and its return value
678  * can only be used to check whether or not the link is present.  In that case,
679  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
680  * flags can be used to indicate to the driver core when the link can be safely
681  * deleted.  Namely, setting one of them in @flags indicates to the driver core
682  * that the link is not going to be used (by the given caller of this function)
683  * after unbinding the consumer or supplier driver, respectively, from its
684  * device, so the link can be deleted at that point.  If none of them is set,
685  * the link will be maintained until one of the devices pointed to by it (either
686  * the consumer or the supplier) is unregistered.
687  *
688  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
689  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
690  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
691  * be used to request the driver core to automatically probe for a consumer
692  * driver after successfully binding a driver to the supplier device.
693  *
694  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
695  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
696  * the same time is invalid and will cause NULL to be returned upfront.
697  * However, if a device link between the given @consumer and @supplier pair
698  * exists already when this function is called for them, the existing link will
699  * be returned regardless of its current type and status (the link's flags may
700  * be modified then).  The caller of this function is then expected to treat
701  * the link as though it has just been created, so (in particular) if
702  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
703  * explicitly when not needed any more (as stated above).
704  *
705  * A side effect of the link creation is re-ordering of dpm_list and the
706  * devices_kset list by moving the consumer device and all devices depending
707  * on it to the ends of these lists (that does not happen to devices that have
708  * not been registered when this function is called).
709  *
710  * The supplier device is required to be registered when this function is called
711  * and NULL will be returned if that is not the case.  The consumer device need
712  * not be registered, however.
713  */
714 struct device_link *device_link_add(struct device *consumer,
715 				    struct device *supplier, u32 flags)
716 {
717 	struct device_link *link;
718 
719 	if (!consumer || !supplier || consumer == supplier ||
720 	    flags & ~DL_ADD_VALID_FLAGS ||
721 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
722 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
723 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
724 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
725 		return NULL;
726 
727 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
728 		if (pm_runtime_get_sync(supplier) < 0) {
729 			pm_runtime_put_noidle(supplier);
730 			return NULL;
731 		}
732 	}
733 
734 	if (!(flags & DL_FLAG_STATELESS))
735 		flags |= DL_FLAG_MANAGED;
736 
737 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
738 	    !device_link_flag_is_sync_state_only(flags))
739 		return NULL;
740 
741 	device_links_write_lock();
742 	device_pm_lock();
743 
744 	/*
745 	 * If the supplier has not been fully registered yet or there is a
746 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
747 	 * the supplier already in the graph, return NULL. If the link is a
748 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
749 	 * because it only affects sync_state() callbacks.
750 	 */
751 	if (!device_pm_initialized(supplier)
752 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
753 		  device_is_dependent(consumer, supplier))) {
754 		link = NULL;
755 		goto out;
756 	}
757 
758 	/*
759 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
760 	 * So, only create it if the consumer hasn't probed yet.
761 	 */
762 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
763 	    consumer->links.status != DL_DEV_NO_DRIVER &&
764 	    consumer->links.status != DL_DEV_PROBING) {
765 		link = NULL;
766 		goto out;
767 	}
768 
769 	/*
770 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
771 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
772 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
773 	 */
774 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
775 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
776 
777 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
778 		if (link->consumer != consumer)
779 			continue;
780 
781 		if (link->flags & DL_FLAG_INFERRED &&
782 		    !(flags & DL_FLAG_INFERRED))
783 			link->flags &= ~DL_FLAG_INFERRED;
784 
785 		if (flags & DL_FLAG_PM_RUNTIME) {
786 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
787 				pm_runtime_new_link(consumer);
788 				link->flags |= DL_FLAG_PM_RUNTIME;
789 			}
790 			if (flags & DL_FLAG_RPM_ACTIVE)
791 				refcount_inc(&link->rpm_active);
792 		}
793 
794 		if (flags & DL_FLAG_STATELESS) {
795 			kref_get(&link->kref);
796 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
797 			    !(link->flags & DL_FLAG_STATELESS)) {
798 				link->flags |= DL_FLAG_STATELESS;
799 				goto reorder;
800 			} else {
801 				link->flags |= DL_FLAG_STATELESS;
802 				goto out;
803 			}
804 		}
805 
806 		/*
807 		 * If the life time of the link following from the new flags is
808 		 * longer than indicated by the flags of the existing link,
809 		 * update the existing link to stay around longer.
810 		 */
811 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
812 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
813 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
814 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
815 			}
816 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
817 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
818 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
819 		}
820 		if (!(link->flags & DL_FLAG_MANAGED)) {
821 			kref_get(&link->kref);
822 			link->flags |= DL_FLAG_MANAGED;
823 			device_link_init_status(link, consumer, supplier);
824 		}
825 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
826 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
827 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
828 			goto reorder;
829 		}
830 
831 		goto out;
832 	}
833 
834 	link = kzalloc(sizeof(*link), GFP_KERNEL);
835 	if (!link)
836 		goto out;
837 
838 	refcount_set(&link->rpm_active, 1);
839 
840 	get_device(supplier);
841 	link->supplier = supplier;
842 	INIT_LIST_HEAD(&link->s_node);
843 	get_device(consumer);
844 	link->consumer = consumer;
845 	INIT_LIST_HEAD(&link->c_node);
846 	link->flags = flags;
847 	kref_init(&link->kref);
848 
849 	link->link_dev.class = &devlink_class;
850 	device_set_pm_not_required(&link->link_dev);
851 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
852 		     dev_bus_name(supplier), dev_name(supplier),
853 		     dev_bus_name(consumer), dev_name(consumer));
854 	if (device_register(&link->link_dev)) {
855 		put_device(&link->link_dev);
856 		link = NULL;
857 		goto out;
858 	}
859 
860 	if (flags & DL_FLAG_PM_RUNTIME) {
861 		if (flags & DL_FLAG_RPM_ACTIVE)
862 			refcount_inc(&link->rpm_active);
863 
864 		pm_runtime_new_link(consumer);
865 	}
866 
867 	/* Determine the initial link state. */
868 	if (flags & DL_FLAG_STATELESS)
869 		link->status = DL_STATE_NONE;
870 	else
871 		device_link_init_status(link, consumer, supplier);
872 
873 	/*
874 	 * Some callers expect the link creation during consumer driver probe to
875 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
876 	 */
877 	if (link->status == DL_STATE_CONSUMER_PROBE &&
878 	    flags & DL_FLAG_PM_RUNTIME)
879 		pm_runtime_resume(supplier);
880 
881 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
882 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
883 
884 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
885 		dev_dbg(consumer,
886 			"Linked as a sync state only consumer to %s\n",
887 			dev_name(supplier));
888 		goto out;
889 	}
890 
891 reorder:
892 	/*
893 	 * Move the consumer and all of the devices depending on it to the end
894 	 * of dpm_list and the devices_kset list.
895 	 *
896 	 * It is necessary to hold dpm_list locked throughout all that or else
897 	 * we may end up suspending with a wrong ordering of it.
898 	 */
899 	device_reorder_to_tail(consumer, NULL);
900 
901 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
902 
903 out:
904 	device_pm_unlock();
905 	device_links_write_unlock();
906 
907 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
908 		pm_runtime_put(supplier);
909 
910 	return link;
911 }
912 EXPORT_SYMBOL_GPL(device_link_add);
913 
914 static void __device_link_del(struct kref *kref)
915 {
916 	struct device_link *link = container_of(kref, struct device_link, kref);
917 
918 	dev_dbg(link->consumer, "Dropping the link to %s\n",
919 		dev_name(link->supplier));
920 
921 	pm_runtime_drop_link(link);
922 
923 	device_link_remove_from_lists(link);
924 	device_unregister(&link->link_dev);
925 }
926 
927 static void device_link_put_kref(struct device_link *link)
928 {
929 	if (link->flags & DL_FLAG_STATELESS)
930 		kref_put(&link->kref, __device_link_del);
931 	else if (!device_is_registered(link->consumer))
932 		__device_link_del(&link->kref);
933 	else
934 		WARN(1, "Unable to drop a managed device link reference\n");
935 }
936 
937 /**
938  * device_link_del - Delete a stateless link between two devices.
939  * @link: Device link to delete.
940  *
941  * The caller must ensure proper synchronization of this function with runtime
942  * PM.  If the link was added multiple times, it needs to be deleted as often.
943  * Care is required for hotplugged devices:  Their links are purged on removal
944  * and calling device_link_del() is then no longer allowed.
945  */
946 void device_link_del(struct device_link *link)
947 {
948 	device_links_write_lock();
949 	device_link_put_kref(link);
950 	device_links_write_unlock();
951 }
952 EXPORT_SYMBOL_GPL(device_link_del);
953 
954 /**
955  * device_link_remove - Delete a stateless link between two devices.
956  * @consumer: Consumer end of the link.
957  * @supplier: Supplier end of the link.
958  *
959  * The caller must ensure proper synchronization of this function with runtime
960  * PM.
961  */
962 void device_link_remove(void *consumer, struct device *supplier)
963 {
964 	struct device_link *link;
965 
966 	if (WARN_ON(consumer == supplier))
967 		return;
968 
969 	device_links_write_lock();
970 
971 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
972 		if (link->consumer == consumer) {
973 			device_link_put_kref(link);
974 			break;
975 		}
976 	}
977 
978 	device_links_write_unlock();
979 }
980 EXPORT_SYMBOL_GPL(device_link_remove);
981 
982 static void device_links_missing_supplier(struct device *dev)
983 {
984 	struct device_link *link;
985 
986 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
987 		if (link->status != DL_STATE_CONSUMER_PROBE)
988 			continue;
989 
990 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
991 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
992 		} else {
993 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
994 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
995 		}
996 	}
997 }
998 
999 static bool dev_is_best_effort(struct device *dev)
1000 {
1001 	return (fw_devlink_best_effort && dev->can_match) ||
1002 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1003 }
1004 
1005 static struct fwnode_handle *fwnode_links_check_suppliers(
1006 						struct fwnode_handle *fwnode)
1007 {
1008 	struct fwnode_link *link;
1009 
1010 	if (!fwnode || fw_devlink_is_permissive())
1011 		return NULL;
1012 
1013 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1014 		if (!(link->flags & FWLINK_FLAG_CYCLE))
1015 			return link->supplier;
1016 
1017 	return NULL;
1018 }
1019 
1020 /**
1021  * device_links_check_suppliers - Check presence of supplier drivers.
1022  * @dev: Consumer device.
1023  *
1024  * Check links from this device to any suppliers.  Walk the list of the device's
1025  * links to suppliers and see if all of them are available.  If not, simply
1026  * return -EPROBE_DEFER.
1027  *
1028  * We need to guarantee that the supplier will not go away after the check has
1029  * been positive here.  It only can go away in __device_release_driver() and
1030  * that function  checks the device's links to consumers.  This means we need to
1031  * mark the link as "consumer probe in progress" to make the supplier removal
1032  * wait for us to complete (or bad things may happen).
1033  *
1034  * Links without the DL_FLAG_MANAGED flag set are ignored.
1035  */
1036 int device_links_check_suppliers(struct device *dev)
1037 {
1038 	struct device_link *link;
1039 	int ret = 0, fwnode_ret = 0;
1040 	struct fwnode_handle *sup_fw;
1041 
1042 	/*
1043 	 * Device waiting for supplier to become available is not allowed to
1044 	 * probe.
1045 	 */
1046 	mutex_lock(&fwnode_link_lock);
1047 	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1048 	if (sup_fw) {
1049 		if (!dev_is_best_effort(dev)) {
1050 			fwnode_ret = -EPROBE_DEFER;
1051 			dev_err_probe(dev, -EPROBE_DEFER,
1052 				    "wait for supplier %pfwf\n", sup_fw);
1053 		} else {
1054 			fwnode_ret = -EAGAIN;
1055 		}
1056 	}
1057 	mutex_unlock(&fwnode_link_lock);
1058 	if (fwnode_ret == -EPROBE_DEFER)
1059 		return fwnode_ret;
1060 
1061 	device_links_write_lock();
1062 
1063 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1064 		if (!(link->flags & DL_FLAG_MANAGED))
1065 			continue;
1066 
1067 		if (link->status != DL_STATE_AVAILABLE &&
1068 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1069 
1070 			if (dev_is_best_effort(dev) &&
1071 			    link->flags & DL_FLAG_INFERRED &&
1072 			    !link->supplier->can_match) {
1073 				ret = -EAGAIN;
1074 				continue;
1075 			}
1076 
1077 			device_links_missing_supplier(dev);
1078 			dev_err_probe(dev, -EPROBE_DEFER,
1079 				      "supplier %s not ready\n",
1080 				      dev_name(link->supplier));
1081 			ret = -EPROBE_DEFER;
1082 			break;
1083 		}
1084 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1085 	}
1086 	dev->links.status = DL_DEV_PROBING;
1087 
1088 	device_links_write_unlock();
1089 
1090 	return ret ? ret : fwnode_ret;
1091 }
1092 
1093 /**
1094  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1095  * @dev: Device to call sync_state() on
1096  * @list: List head to queue the @dev on
1097  *
1098  * Queues a device for a sync_state() callback when the device links write lock
1099  * isn't held. This allows the sync_state() execution flow to use device links
1100  * APIs.  The caller must ensure this function is called with
1101  * device_links_write_lock() held.
1102  *
1103  * This function does a get_device() to make sure the device is not freed while
1104  * on this list.
1105  *
1106  * So the caller must also ensure that device_links_flush_sync_list() is called
1107  * as soon as the caller releases device_links_write_lock().  This is necessary
1108  * to make sure the sync_state() is called in a timely fashion and the
1109  * put_device() is called on this device.
1110  */
1111 static void __device_links_queue_sync_state(struct device *dev,
1112 					    struct list_head *list)
1113 {
1114 	struct device_link *link;
1115 
1116 	if (!dev_has_sync_state(dev))
1117 		return;
1118 	if (dev->state_synced)
1119 		return;
1120 
1121 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1122 		if (!(link->flags & DL_FLAG_MANAGED))
1123 			continue;
1124 		if (link->status != DL_STATE_ACTIVE)
1125 			return;
1126 	}
1127 
1128 	/*
1129 	 * Set the flag here to avoid adding the same device to a list more
1130 	 * than once. This can happen if new consumers get added to the device
1131 	 * and probed before the list is flushed.
1132 	 */
1133 	dev->state_synced = true;
1134 
1135 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1136 		return;
1137 
1138 	get_device(dev);
1139 	list_add_tail(&dev->links.defer_sync, list);
1140 }
1141 
1142 /**
1143  * device_links_flush_sync_list - Call sync_state() on a list of devices
1144  * @list: List of devices to call sync_state() on
1145  * @dont_lock_dev: Device for which lock is already held by the caller
1146  *
1147  * Calls sync_state() on all the devices that have been queued for it. This
1148  * function is used in conjunction with __device_links_queue_sync_state(). The
1149  * @dont_lock_dev parameter is useful when this function is called from a
1150  * context where a device lock is already held.
1151  */
1152 static void device_links_flush_sync_list(struct list_head *list,
1153 					 struct device *dont_lock_dev)
1154 {
1155 	struct device *dev, *tmp;
1156 
1157 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1158 		list_del_init(&dev->links.defer_sync);
1159 
1160 		if (dev != dont_lock_dev)
1161 			device_lock(dev);
1162 
1163 		dev_sync_state(dev);
1164 
1165 		if (dev != dont_lock_dev)
1166 			device_unlock(dev);
1167 
1168 		put_device(dev);
1169 	}
1170 }
1171 
1172 void device_links_supplier_sync_state_pause(void)
1173 {
1174 	device_links_write_lock();
1175 	defer_sync_state_count++;
1176 	device_links_write_unlock();
1177 }
1178 
1179 void device_links_supplier_sync_state_resume(void)
1180 {
1181 	struct device *dev, *tmp;
1182 	LIST_HEAD(sync_list);
1183 
1184 	device_links_write_lock();
1185 	if (!defer_sync_state_count) {
1186 		WARN(true, "Unmatched sync_state pause/resume!");
1187 		goto out;
1188 	}
1189 	defer_sync_state_count--;
1190 	if (defer_sync_state_count)
1191 		goto out;
1192 
1193 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1194 		/*
1195 		 * Delete from deferred_sync list before queuing it to
1196 		 * sync_list because defer_sync is used for both lists.
1197 		 */
1198 		list_del_init(&dev->links.defer_sync);
1199 		__device_links_queue_sync_state(dev, &sync_list);
1200 	}
1201 out:
1202 	device_links_write_unlock();
1203 
1204 	device_links_flush_sync_list(&sync_list, NULL);
1205 }
1206 
1207 static int sync_state_resume_initcall(void)
1208 {
1209 	device_links_supplier_sync_state_resume();
1210 	return 0;
1211 }
1212 late_initcall(sync_state_resume_initcall);
1213 
1214 static void __device_links_supplier_defer_sync(struct device *sup)
1215 {
1216 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1217 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1218 }
1219 
1220 static void device_link_drop_managed(struct device_link *link)
1221 {
1222 	link->flags &= ~DL_FLAG_MANAGED;
1223 	WRITE_ONCE(link->status, DL_STATE_NONE);
1224 	kref_put(&link->kref, __device_link_del);
1225 }
1226 
1227 static ssize_t waiting_for_supplier_show(struct device *dev,
1228 					 struct device_attribute *attr,
1229 					 char *buf)
1230 {
1231 	bool val;
1232 
1233 	device_lock(dev);
1234 	mutex_lock(&fwnode_link_lock);
1235 	val = !!fwnode_links_check_suppliers(dev->fwnode);
1236 	mutex_unlock(&fwnode_link_lock);
1237 	device_unlock(dev);
1238 	return sysfs_emit(buf, "%u\n", val);
1239 }
1240 static DEVICE_ATTR_RO(waiting_for_supplier);
1241 
1242 /**
1243  * device_links_force_bind - Prepares device to be force bound
1244  * @dev: Consumer device.
1245  *
1246  * device_bind_driver() force binds a device to a driver without calling any
1247  * driver probe functions. So the consumer really isn't going to wait for any
1248  * supplier before it's bound to the driver. We still want the device link
1249  * states to be sensible when this happens.
1250  *
1251  * In preparation for device_bind_driver(), this function goes through each
1252  * supplier device links and checks if the supplier is bound. If it is, then
1253  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1254  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1255  */
1256 void device_links_force_bind(struct device *dev)
1257 {
1258 	struct device_link *link, *ln;
1259 
1260 	device_links_write_lock();
1261 
1262 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1263 		if (!(link->flags & DL_FLAG_MANAGED))
1264 			continue;
1265 
1266 		if (link->status != DL_STATE_AVAILABLE) {
1267 			device_link_drop_managed(link);
1268 			continue;
1269 		}
1270 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1271 	}
1272 	dev->links.status = DL_DEV_PROBING;
1273 
1274 	device_links_write_unlock();
1275 }
1276 
1277 /**
1278  * device_links_driver_bound - Update device links after probing its driver.
1279  * @dev: Device to update the links for.
1280  *
1281  * The probe has been successful, so update links from this device to any
1282  * consumers by changing their status to "available".
1283  *
1284  * Also change the status of @dev's links to suppliers to "active".
1285  *
1286  * Links without the DL_FLAG_MANAGED flag set are ignored.
1287  */
1288 void device_links_driver_bound(struct device *dev)
1289 {
1290 	struct device_link *link, *ln;
1291 	LIST_HEAD(sync_list);
1292 
1293 	/*
1294 	 * If a device binds successfully, it's expected to have created all
1295 	 * the device links it needs to or make new device links as it needs
1296 	 * them. So, fw_devlink no longer needs to create device links to any
1297 	 * of the device's suppliers.
1298 	 *
1299 	 * Also, if a child firmware node of this bound device is not added as a
1300 	 * device by now, assume it is never going to be added. Make this bound
1301 	 * device the fallback supplier to the dangling consumers of the child
1302 	 * firmware node because this bound device is probably implementing the
1303 	 * child firmware node functionality and we don't want the dangling
1304 	 * consumers to defer probe indefinitely waiting for a device for the
1305 	 * child firmware node.
1306 	 */
1307 	if (dev->fwnode && dev->fwnode->dev == dev) {
1308 		struct fwnode_handle *child;
1309 		fwnode_links_purge_suppliers(dev->fwnode);
1310 		mutex_lock(&fwnode_link_lock);
1311 		fwnode_for_each_available_child_node(dev->fwnode, child)
1312 			__fw_devlink_pickup_dangling_consumers(child,
1313 							       dev->fwnode);
1314 		__fw_devlink_link_to_consumers(dev);
1315 		mutex_unlock(&fwnode_link_lock);
1316 	}
1317 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1318 
1319 	device_links_write_lock();
1320 
1321 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1322 		if (!(link->flags & DL_FLAG_MANAGED))
1323 			continue;
1324 
1325 		/*
1326 		 * Links created during consumer probe may be in the "consumer
1327 		 * probe" state to start with if the supplier is still probing
1328 		 * when they are created and they may become "active" if the
1329 		 * consumer probe returns first.  Skip them here.
1330 		 */
1331 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1332 		    link->status == DL_STATE_ACTIVE)
1333 			continue;
1334 
1335 		WARN_ON(link->status != DL_STATE_DORMANT);
1336 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1337 
1338 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1339 			driver_deferred_probe_add(link->consumer);
1340 	}
1341 
1342 	if (defer_sync_state_count)
1343 		__device_links_supplier_defer_sync(dev);
1344 	else
1345 		__device_links_queue_sync_state(dev, &sync_list);
1346 
1347 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1348 		struct device *supplier;
1349 
1350 		if (!(link->flags & DL_FLAG_MANAGED))
1351 			continue;
1352 
1353 		supplier = link->supplier;
1354 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1355 			/*
1356 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1357 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1358 			 * save to drop the managed link completely.
1359 			 */
1360 			device_link_drop_managed(link);
1361 		} else if (dev_is_best_effort(dev) &&
1362 			   link->flags & DL_FLAG_INFERRED &&
1363 			   link->status != DL_STATE_CONSUMER_PROBE &&
1364 			   !link->supplier->can_match) {
1365 			/*
1366 			 * When dev_is_best_effort() is true, we ignore device
1367 			 * links to suppliers that don't have a driver.  If the
1368 			 * consumer device still managed to probe, there's no
1369 			 * point in maintaining a device link in a weird state
1370 			 * (consumer probed before supplier). So delete it.
1371 			 */
1372 			device_link_drop_managed(link);
1373 		} else {
1374 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1375 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1376 		}
1377 
1378 		/*
1379 		 * This needs to be done even for the deleted
1380 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1381 		 * device link that was preventing the supplier from getting a
1382 		 * sync_state() call.
1383 		 */
1384 		if (defer_sync_state_count)
1385 			__device_links_supplier_defer_sync(supplier);
1386 		else
1387 			__device_links_queue_sync_state(supplier, &sync_list);
1388 	}
1389 
1390 	dev->links.status = DL_DEV_DRIVER_BOUND;
1391 
1392 	device_links_write_unlock();
1393 
1394 	device_links_flush_sync_list(&sync_list, dev);
1395 }
1396 
1397 /**
1398  * __device_links_no_driver - Update links of a device without a driver.
1399  * @dev: Device without a drvier.
1400  *
1401  * Delete all non-persistent links from this device to any suppliers.
1402  *
1403  * Persistent links stay around, but their status is changed to "available",
1404  * unless they already are in the "supplier unbind in progress" state in which
1405  * case they need not be updated.
1406  *
1407  * Links without the DL_FLAG_MANAGED flag set are ignored.
1408  */
1409 static void __device_links_no_driver(struct device *dev)
1410 {
1411 	struct device_link *link, *ln;
1412 
1413 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1414 		if (!(link->flags & DL_FLAG_MANAGED))
1415 			continue;
1416 
1417 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1418 			device_link_drop_managed(link);
1419 			continue;
1420 		}
1421 
1422 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1423 		    link->status != DL_STATE_ACTIVE)
1424 			continue;
1425 
1426 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1427 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1428 		} else {
1429 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1430 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431 		}
1432 	}
1433 
1434 	dev->links.status = DL_DEV_NO_DRIVER;
1435 }
1436 
1437 /**
1438  * device_links_no_driver - Update links after failing driver probe.
1439  * @dev: Device whose driver has just failed to probe.
1440  *
1441  * Clean up leftover links to consumers for @dev and invoke
1442  * %__device_links_no_driver() to update links to suppliers for it as
1443  * appropriate.
1444  *
1445  * Links without the DL_FLAG_MANAGED flag set are ignored.
1446  */
1447 void device_links_no_driver(struct device *dev)
1448 {
1449 	struct device_link *link;
1450 
1451 	device_links_write_lock();
1452 
1453 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1454 		if (!(link->flags & DL_FLAG_MANAGED))
1455 			continue;
1456 
1457 		/*
1458 		 * The probe has failed, so if the status of the link is
1459 		 * "consumer probe" or "active", it must have been added by
1460 		 * a probing consumer while this device was still probing.
1461 		 * Change its state to "dormant", as it represents a valid
1462 		 * relationship, but it is not functionally meaningful.
1463 		 */
1464 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1465 		    link->status == DL_STATE_ACTIVE)
1466 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1467 	}
1468 
1469 	__device_links_no_driver(dev);
1470 
1471 	device_links_write_unlock();
1472 }
1473 
1474 /**
1475  * device_links_driver_cleanup - Update links after driver removal.
1476  * @dev: Device whose driver has just gone away.
1477  *
1478  * Update links to consumers for @dev by changing their status to "dormant" and
1479  * invoke %__device_links_no_driver() to update links to suppliers for it as
1480  * appropriate.
1481  *
1482  * Links without the DL_FLAG_MANAGED flag set are ignored.
1483  */
1484 void device_links_driver_cleanup(struct device *dev)
1485 {
1486 	struct device_link *link, *ln;
1487 
1488 	device_links_write_lock();
1489 
1490 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1491 		if (!(link->flags & DL_FLAG_MANAGED))
1492 			continue;
1493 
1494 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1495 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1496 
1497 		/*
1498 		 * autoremove the links between this @dev and its consumer
1499 		 * devices that are not active, i.e. where the link state
1500 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1501 		 */
1502 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1503 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1504 			device_link_drop_managed(link);
1505 
1506 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1507 	}
1508 
1509 	list_del_init(&dev->links.defer_sync);
1510 	__device_links_no_driver(dev);
1511 
1512 	device_links_write_unlock();
1513 }
1514 
1515 /**
1516  * device_links_busy - Check if there are any busy links to consumers.
1517  * @dev: Device to check.
1518  *
1519  * Check each consumer of the device and return 'true' if its link's status
1520  * is one of "consumer probe" or "active" (meaning that the given consumer is
1521  * probing right now or its driver is present).  Otherwise, change the link
1522  * state to "supplier unbind" to prevent the consumer from being probed
1523  * successfully going forward.
1524  *
1525  * Return 'false' if there are no probing or active consumers.
1526  *
1527  * Links without the DL_FLAG_MANAGED flag set are ignored.
1528  */
1529 bool device_links_busy(struct device *dev)
1530 {
1531 	struct device_link *link;
1532 	bool ret = false;
1533 
1534 	device_links_write_lock();
1535 
1536 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1537 		if (!(link->flags & DL_FLAG_MANAGED))
1538 			continue;
1539 
1540 		if (link->status == DL_STATE_CONSUMER_PROBE
1541 		    || link->status == DL_STATE_ACTIVE) {
1542 			ret = true;
1543 			break;
1544 		}
1545 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1546 	}
1547 
1548 	dev->links.status = DL_DEV_UNBINDING;
1549 
1550 	device_links_write_unlock();
1551 	return ret;
1552 }
1553 
1554 /**
1555  * device_links_unbind_consumers - Force unbind consumers of the given device.
1556  * @dev: Device to unbind the consumers of.
1557  *
1558  * Walk the list of links to consumers for @dev and if any of them is in the
1559  * "consumer probe" state, wait for all device probes in progress to complete
1560  * and start over.
1561  *
1562  * If that's not the case, change the status of the link to "supplier unbind"
1563  * and check if the link was in the "active" state.  If so, force the consumer
1564  * driver to unbind and start over (the consumer will not re-probe as we have
1565  * changed the state of the link already).
1566  *
1567  * Links without the DL_FLAG_MANAGED flag set are ignored.
1568  */
1569 void device_links_unbind_consumers(struct device *dev)
1570 {
1571 	struct device_link *link;
1572 
1573  start:
1574 	device_links_write_lock();
1575 
1576 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1577 		enum device_link_state status;
1578 
1579 		if (!(link->flags & DL_FLAG_MANAGED) ||
1580 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1581 			continue;
1582 
1583 		status = link->status;
1584 		if (status == DL_STATE_CONSUMER_PROBE) {
1585 			device_links_write_unlock();
1586 
1587 			wait_for_device_probe();
1588 			goto start;
1589 		}
1590 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1591 		if (status == DL_STATE_ACTIVE) {
1592 			struct device *consumer = link->consumer;
1593 
1594 			get_device(consumer);
1595 
1596 			device_links_write_unlock();
1597 
1598 			device_release_driver_internal(consumer, NULL,
1599 						       consumer->parent);
1600 			put_device(consumer);
1601 			goto start;
1602 		}
1603 	}
1604 
1605 	device_links_write_unlock();
1606 }
1607 
1608 /**
1609  * device_links_purge - Delete existing links to other devices.
1610  * @dev: Target device.
1611  */
1612 static void device_links_purge(struct device *dev)
1613 {
1614 	struct device_link *link, *ln;
1615 
1616 	if (dev->class == &devlink_class)
1617 		return;
1618 
1619 	/*
1620 	 * Delete all of the remaining links from this device to any other
1621 	 * devices (either consumers or suppliers).
1622 	 */
1623 	device_links_write_lock();
1624 
1625 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1626 		WARN_ON(link->status == DL_STATE_ACTIVE);
1627 		__device_link_del(&link->kref);
1628 	}
1629 
1630 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1631 		WARN_ON(link->status != DL_STATE_DORMANT &&
1632 			link->status != DL_STATE_NONE);
1633 		__device_link_del(&link->kref);
1634 	}
1635 
1636 	device_links_write_unlock();
1637 }
1638 
1639 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1640 					 DL_FLAG_SYNC_STATE_ONLY)
1641 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1642 					 DL_FLAG_AUTOPROBE_CONSUMER)
1643 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1644 					 DL_FLAG_PM_RUNTIME)
1645 
1646 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1647 static int __init fw_devlink_setup(char *arg)
1648 {
1649 	if (!arg)
1650 		return -EINVAL;
1651 
1652 	if (strcmp(arg, "off") == 0) {
1653 		fw_devlink_flags = 0;
1654 	} else if (strcmp(arg, "permissive") == 0) {
1655 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1656 	} else if (strcmp(arg, "on") == 0) {
1657 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1658 	} else if (strcmp(arg, "rpm") == 0) {
1659 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1660 	}
1661 	return 0;
1662 }
1663 early_param("fw_devlink", fw_devlink_setup);
1664 
1665 static bool fw_devlink_strict;
1666 static int __init fw_devlink_strict_setup(char *arg)
1667 {
1668 	return kstrtobool(arg, &fw_devlink_strict);
1669 }
1670 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1671 
1672 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1673 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1674 
1675 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1676 static int fw_devlink_sync_state;
1677 #else
1678 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1679 #endif
1680 
1681 static int __init fw_devlink_sync_state_setup(char *arg)
1682 {
1683 	if (!arg)
1684 		return -EINVAL;
1685 
1686 	if (strcmp(arg, "strict") == 0) {
1687 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1688 		return 0;
1689 	} else if (strcmp(arg, "timeout") == 0) {
1690 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1691 		return 0;
1692 	}
1693 	return -EINVAL;
1694 }
1695 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1696 
1697 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1698 {
1699 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1700 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1701 
1702 	return fw_devlink_flags;
1703 }
1704 
1705 static bool fw_devlink_is_permissive(void)
1706 {
1707 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1708 }
1709 
1710 bool fw_devlink_is_strict(void)
1711 {
1712 	return fw_devlink_strict && !fw_devlink_is_permissive();
1713 }
1714 
1715 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1716 {
1717 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1718 		return;
1719 
1720 	fwnode_call_int_op(fwnode, add_links);
1721 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1722 }
1723 
1724 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1725 {
1726 	struct fwnode_handle *child = NULL;
1727 
1728 	fw_devlink_parse_fwnode(fwnode);
1729 
1730 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1731 		fw_devlink_parse_fwtree(child);
1732 }
1733 
1734 static void fw_devlink_relax_link(struct device_link *link)
1735 {
1736 	if (!(link->flags & DL_FLAG_INFERRED))
1737 		return;
1738 
1739 	if (device_link_flag_is_sync_state_only(link->flags))
1740 		return;
1741 
1742 	pm_runtime_drop_link(link);
1743 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1744 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1745 		dev_name(link->supplier));
1746 }
1747 
1748 static int fw_devlink_no_driver(struct device *dev, void *data)
1749 {
1750 	struct device_link *link = to_devlink(dev);
1751 
1752 	if (!link->supplier->can_match)
1753 		fw_devlink_relax_link(link);
1754 
1755 	return 0;
1756 }
1757 
1758 void fw_devlink_drivers_done(void)
1759 {
1760 	fw_devlink_drv_reg_done = true;
1761 	device_links_write_lock();
1762 	class_for_each_device(&devlink_class, NULL, NULL,
1763 			      fw_devlink_no_driver);
1764 	device_links_write_unlock();
1765 }
1766 
1767 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1768 {
1769 	struct device_link *link = to_devlink(dev);
1770 	struct device *sup = link->supplier;
1771 
1772 	if (!(link->flags & DL_FLAG_MANAGED) ||
1773 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1774 	    !dev_has_sync_state(sup))
1775 		return 0;
1776 
1777 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1778 		dev_warn(sup, "sync_state() pending due to %s\n",
1779 			 dev_name(link->consumer));
1780 		return 0;
1781 	}
1782 
1783 	if (!list_empty(&sup->links.defer_sync))
1784 		return 0;
1785 
1786 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1787 	sup->state_synced = true;
1788 	get_device(sup);
1789 	list_add_tail(&sup->links.defer_sync, data);
1790 
1791 	return 0;
1792 }
1793 
1794 void fw_devlink_probing_done(void)
1795 {
1796 	LIST_HEAD(sync_list);
1797 
1798 	device_links_write_lock();
1799 	class_for_each_device(&devlink_class, NULL, &sync_list,
1800 			      fw_devlink_dev_sync_state);
1801 	device_links_write_unlock();
1802 	device_links_flush_sync_list(&sync_list, NULL);
1803 }
1804 
1805 /**
1806  * wait_for_init_devices_probe - Try to probe any device needed for init
1807  *
1808  * Some devices might need to be probed and bound successfully before the kernel
1809  * boot sequence can finish and move on to init/userspace. For example, a
1810  * network interface might need to be bound to be able to mount a NFS rootfs.
1811  *
1812  * With fw_devlink=on by default, some of these devices might be blocked from
1813  * probing because they are waiting on a optional supplier that doesn't have a
1814  * driver. While fw_devlink will eventually identify such devices and unblock
1815  * the probing automatically, it might be too late by the time it unblocks the
1816  * probing of devices. For example, the IP4 autoconfig might timeout before
1817  * fw_devlink unblocks probing of the network interface.
1818  *
1819  * This function is available to temporarily try and probe all devices that have
1820  * a driver even if some of their suppliers haven't been added or don't have
1821  * drivers.
1822  *
1823  * The drivers can then decide which of the suppliers are optional vs mandatory
1824  * and probe the device if possible. By the time this function returns, all such
1825  * "best effort" probes are guaranteed to be completed. If a device successfully
1826  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1827  * device where the supplier hasn't yet probed successfully because they have to
1828  * be optional dependencies.
1829  *
1830  * Any devices that didn't successfully probe go back to being treated as if
1831  * this function was never called.
1832  *
1833  * This also means that some devices that aren't needed for init and could have
1834  * waited for their optional supplier to probe (when the supplier's module is
1835  * loaded later on) would end up probing prematurely with limited functionality.
1836  * So call this function only when boot would fail without it.
1837  */
1838 void __init wait_for_init_devices_probe(void)
1839 {
1840 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1841 		return;
1842 
1843 	/*
1844 	 * Wait for all ongoing probes to finish so that the "best effort" is
1845 	 * only applied to devices that can't probe otherwise.
1846 	 */
1847 	wait_for_device_probe();
1848 
1849 	pr_info("Trying to probe devices needed for running init ...\n");
1850 	fw_devlink_best_effort = true;
1851 	driver_deferred_probe_trigger();
1852 
1853 	/*
1854 	 * Wait for all "best effort" probes to finish before going back to
1855 	 * normal enforcement.
1856 	 */
1857 	wait_for_device_probe();
1858 	fw_devlink_best_effort = false;
1859 }
1860 
1861 static void fw_devlink_unblock_consumers(struct device *dev)
1862 {
1863 	struct device_link *link;
1864 
1865 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1866 		return;
1867 
1868 	device_links_write_lock();
1869 	list_for_each_entry(link, &dev->links.consumers, s_node)
1870 		fw_devlink_relax_link(link);
1871 	device_links_write_unlock();
1872 }
1873 
1874 
1875 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1876 {
1877 	struct device *dev;
1878 	bool ret;
1879 
1880 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1881 		return false;
1882 
1883 	dev = get_dev_from_fwnode(fwnode);
1884 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1885 	put_device(dev);
1886 
1887 	return ret;
1888 }
1889 
1890 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1891 {
1892 	struct fwnode_handle *parent;
1893 
1894 	fwnode_for_each_parent_node(fwnode, parent) {
1895 		if (fwnode_init_without_drv(parent)) {
1896 			fwnode_handle_put(parent);
1897 			return true;
1898 		}
1899 	}
1900 
1901 	return false;
1902 }
1903 
1904 /**
1905  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1906  * @con: Potential consumer device.
1907  * @sup_handle: Potential supplier's fwnode.
1908  *
1909  * Needs to be called with fwnode_lock and device link lock held.
1910  *
1911  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1912  * depend on @con. This function can detect multiple cyles between @sup_handle
1913  * and @con. When such dependency cycles are found, convert all device links
1914  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1915  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1916  * converted into a device link in the future, they are created as
1917  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1918  * fw_devlink=permissive just between the devices in the cycle. We need to do
1919  * this because, at this point, fw_devlink can't tell which of these
1920  * dependencies is not a real dependency.
1921  *
1922  * Return true if one or more cycles were found. Otherwise, return false.
1923  */
1924 static bool __fw_devlink_relax_cycles(struct device *con,
1925 				 struct fwnode_handle *sup_handle)
1926 {
1927 	struct device *sup_dev = NULL, *par_dev = NULL;
1928 	struct fwnode_link *link;
1929 	struct device_link *dev_link;
1930 	bool ret = false;
1931 
1932 	if (!sup_handle)
1933 		return false;
1934 
1935 	/*
1936 	 * We aren't trying to find all cycles. Just a cycle between con and
1937 	 * sup_handle.
1938 	 */
1939 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
1940 		return false;
1941 
1942 	sup_handle->flags |= FWNODE_FLAG_VISITED;
1943 
1944 	sup_dev = get_dev_from_fwnode(sup_handle);
1945 
1946 	/* Termination condition. */
1947 	if (sup_dev == con) {
1948 		pr_debug("----- cycle: start -----\n");
1949 		ret = true;
1950 		goto out;
1951 	}
1952 
1953 	/*
1954 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
1955 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
1956 	 * further.
1957 	 */
1958 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
1959 	    con->links.status == DL_DEV_NO_DRIVER) {
1960 		ret = false;
1961 		goto out;
1962 	}
1963 
1964 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1965 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
1966 			__fwnode_link_cycle(link);
1967 			ret = true;
1968 		}
1969 	}
1970 
1971 	/*
1972 	 * Give priority to device parent over fwnode parent to account for any
1973 	 * quirks in how fwnodes are converted to devices.
1974 	 */
1975 	if (sup_dev)
1976 		par_dev = get_device(sup_dev->parent);
1977 	else
1978 		par_dev = fwnode_get_next_parent_dev(sup_handle);
1979 
1980 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
1981 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
1982 			 par_dev->fwnode);
1983 		ret = true;
1984 	}
1985 
1986 	if (!sup_dev)
1987 		goto out;
1988 
1989 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1990 		/*
1991 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1992 		 * such due to a cycle.
1993 		 */
1994 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1995 		    !(dev_link->flags & DL_FLAG_CYCLE))
1996 			continue;
1997 
1998 		if (__fw_devlink_relax_cycles(con,
1999 					      dev_link->supplier->fwnode)) {
2000 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2001 				 dev_link->supplier->fwnode);
2002 			fw_devlink_relax_link(dev_link);
2003 			dev_link->flags |= DL_FLAG_CYCLE;
2004 			ret = true;
2005 		}
2006 	}
2007 
2008 out:
2009 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2010 	put_device(sup_dev);
2011 	put_device(par_dev);
2012 	return ret;
2013 }
2014 
2015 /**
2016  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2017  * @con: consumer device for the device link
2018  * @sup_handle: fwnode handle of supplier
2019  * @link: fwnode link that's being converted to a device link
2020  *
2021  * This function will try to create a device link between the consumer device
2022  * @con and the supplier device represented by @sup_handle.
2023  *
2024  * The supplier has to be provided as a fwnode because incorrect cycles in
2025  * fwnode links can sometimes cause the supplier device to never be created.
2026  * This function detects such cases and returns an error if it cannot create a
2027  * device link from the consumer to a missing supplier.
2028  *
2029  * Returns,
2030  * 0 on successfully creating a device link
2031  * -EINVAL if the device link cannot be created as expected
2032  * -EAGAIN if the device link cannot be created right now, but it may be
2033  *  possible to do that in the future
2034  */
2035 static int fw_devlink_create_devlink(struct device *con,
2036 				     struct fwnode_handle *sup_handle,
2037 				     struct fwnode_link *link)
2038 {
2039 	struct device *sup_dev;
2040 	int ret = 0;
2041 	u32 flags;
2042 
2043 	if (con->fwnode == link->consumer)
2044 		flags = fw_devlink_get_flags(link->flags);
2045 	else
2046 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2047 
2048 	/*
2049 	 * In some cases, a device P might also be a supplier to its child node
2050 	 * C. However, this would defer the probe of C until the probe of P
2051 	 * completes successfully. This is perfectly fine in the device driver
2052 	 * model. device_add() doesn't guarantee probe completion of the device
2053 	 * by the time it returns.
2054 	 *
2055 	 * However, there are a few drivers that assume C will finish probing
2056 	 * as soon as it's added and before P finishes probing. So, we provide
2057 	 * a flag to let fw_devlink know not to delay the probe of C until the
2058 	 * probe of P completes successfully.
2059 	 *
2060 	 * When such a flag is set, we can't create device links where P is the
2061 	 * supplier of C as that would delay the probe of C.
2062 	 */
2063 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2064 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2065 		return -EINVAL;
2066 
2067 	/*
2068 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2069 	 * So, one might expect that cycle detection isn't necessary for them.
2070 	 * However, if the device link was marked as SYNC_STATE_ONLY because
2071 	 * it's part of a cycle, then we still need to do cycle detection. This
2072 	 * is because the consumer and supplier might be part of multiple cycles
2073 	 * and we need to detect all those cycles.
2074 	 */
2075 	if (!device_link_flag_is_sync_state_only(flags) ||
2076 	    flags & DL_FLAG_CYCLE) {
2077 		device_links_write_lock();
2078 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2079 			__fwnode_link_cycle(link);
2080 			flags = fw_devlink_get_flags(link->flags);
2081 			pr_debug("----- cycle: end -----\n");
2082 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2083 				 sup_handle);
2084 		}
2085 		device_links_write_unlock();
2086 	}
2087 
2088 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2089 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2090 	else
2091 		sup_dev = get_dev_from_fwnode(sup_handle);
2092 
2093 	if (sup_dev) {
2094 		/*
2095 		 * If it's one of those drivers that don't actually bind to
2096 		 * their device using driver core, then don't wait on this
2097 		 * supplier device indefinitely.
2098 		 */
2099 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2100 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2101 			dev_dbg(con,
2102 				"Not linking %pfwf - dev might never probe\n",
2103 				sup_handle);
2104 			ret = -EINVAL;
2105 			goto out;
2106 		}
2107 
2108 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2109 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2110 				flags, dev_name(sup_dev));
2111 			ret = -EINVAL;
2112 		}
2113 
2114 		goto out;
2115 	}
2116 
2117 	/*
2118 	 * Supplier or supplier's ancestor already initialized without a struct
2119 	 * device or being probed by a driver.
2120 	 */
2121 	if (fwnode_init_without_drv(sup_handle) ||
2122 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2123 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2124 			sup_handle);
2125 		return -EINVAL;
2126 	}
2127 
2128 	ret = -EAGAIN;
2129 out:
2130 	put_device(sup_dev);
2131 	return ret;
2132 }
2133 
2134 /**
2135  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2136  * @dev: Device that needs to be linked to its consumers
2137  *
2138  * This function looks at all the consumer fwnodes of @dev and creates device
2139  * links between the consumer device and @dev (supplier).
2140  *
2141  * If the consumer device has not been added yet, then this function creates a
2142  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2143  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2144  * sync_state() callback before the real consumer device gets to be added and
2145  * then probed.
2146  *
2147  * Once device links are created from the real consumer to @dev (supplier), the
2148  * fwnode links are deleted.
2149  */
2150 static void __fw_devlink_link_to_consumers(struct device *dev)
2151 {
2152 	struct fwnode_handle *fwnode = dev->fwnode;
2153 	struct fwnode_link *link, *tmp;
2154 
2155 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2156 		struct device *con_dev;
2157 		bool own_link = true;
2158 		int ret;
2159 
2160 		con_dev = get_dev_from_fwnode(link->consumer);
2161 		/*
2162 		 * If consumer device is not available yet, make a "proxy"
2163 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2164 		 * the supplier device. This is necessary to make sure the
2165 		 * supplier doesn't get a sync_state() callback before the real
2166 		 * consumer can create a device link to the supplier.
2167 		 *
2168 		 * This proxy link step is needed to handle the case where the
2169 		 * consumer's parent device is added before the supplier.
2170 		 */
2171 		if (!con_dev) {
2172 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2173 			/*
2174 			 * However, if the consumer's parent device is also the
2175 			 * parent of the supplier, don't create a
2176 			 * consumer-supplier link from the parent to its child
2177 			 * device. Such a dependency is impossible.
2178 			 */
2179 			if (con_dev &&
2180 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2181 				put_device(con_dev);
2182 				con_dev = NULL;
2183 			} else {
2184 				own_link = false;
2185 			}
2186 		}
2187 
2188 		if (!con_dev)
2189 			continue;
2190 
2191 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2192 		put_device(con_dev);
2193 		if (!own_link || ret == -EAGAIN)
2194 			continue;
2195 
2196 		__fwnode_link_del(link);
2197 	}
2198 }
2199 
2200 /**
2201  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2202  * @dev: The consumer device that needs to be linked to its suppliers
2203  * @fwnode: Root of the fwnode tree that is used to create device links
2204  *
2205  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2206  * @fwnode and creates device links between @dev (consumer) and all the
2207  * supplier devices of the entire fwnode tree at @fwnode.
2208  *
2209  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2210  * and the real suppliers of @dev. Once these device links are created, the
2211  * fwnode links are deleted.
2212  *
2213  * In addition, it also looks at all the suppliers of the entire fwnode tree
2214  * because some of the child devices of @dev that have not been added yet
2215  * (because @dev hasn't probed) might already have their suppliers added to
2216  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2217  * @dev (consumer) and these suppliers to make sure they don't execute their
2218  * sync_state() callbacks before these child devices have a chance to create
2219  * their device links. The fwnode links that correspond to the child devices
2220  * aren't delete because they are needed later to create the device links
2221  * between the real consumer and supplier devices.
2222  */
2223 static void __fw_devlink_link_to_suppliers(struct device *dev,
2224 					   struct fwnode_handle *fwnode)
2225 {
2226 	bool own_link = (dev->fwnode == fwnode);
2227 	struct fwnode_link *link, *tmp;
2228 	struct fwnode_handle *child = NULL;
2229 
2230 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2231 		int ret;
2232 		struct fwnode_handle *sup = link->supplier;
2233 
2234 		ret = fw_devlink_create_devlink(dev, sup, link);
2235 		if (!own_link || ret == -EAGAIN)
2236 			continue;
2237 
2238 		__fwnode_link_del(link);
2239 	}
2240 
2241 	/*
2242 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2243 	 * all the descendants. This proxy link step is needed to handle the
2244 	 * case where the supplier is added before the consumer's parent device
2245 	 * (@dev).
2246 	 */
2247 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2248 		__fw_devlink_link_to_suppliers(dev, child);
2249 }
2250 
2251 static void fw_devlink_link_device(struct device *dev)
2252 {
2253 	struct fwnode_handle *fwnode = dev->fwnode;
2254 
2255 	if (!fw_devlink_flags)
2256 		return;
2257 
2258 	fw_devlink_parse_fwtree(fwnode);
2259 
2260 	mutex_lock(&fwnode_link_lock);
2261 	__fw_devlink_link_to_consumers(dev);
2262 	__fw_devlink_link_to_suppliers(dev, fwnode);
2263 	mutex_unlock(&fwnode_link_lock);
2264 }
2265 
2266 /* Device links support end. */
2267 
2268 int (*platform_notify)(struct device *dev) = NULL;
2269 int (*platform_notify_remove)(struct device *dev) = NULL;
2270 static struct kobject *dev_kobj;
2271 
2272 /* /sys/dev/char */
2273 static struct kobject *sysfs_dev_char_kobj;
2274 
2275 /* /sys/dev/block */
2276 static struct kobject *sysfs_dev_block_kobj;
2277 
2278 static DEFINE_MUTEX(device_hotplug_lock);
2279 
2280 void lock_device_hotplug(void)
2281 {
2282 	mutex_lock(&device_hotplug_lock);
2283 }
2284 
2285 void unlock_device_hotplug(void)
2286 {
2287 	mutex_unlock(&device_hotplug_lock);
2288 }
2289 
2290 int lock_device_hotplug_sysfs(void)
2291 {
2292 	if (mutex_trylock(&device_hotplug_lock))
2293 		return 0;
2294 
2295 	/* Avoid busy looping (5 ms of sleep should do). */
2296 	msleep(5);
2297 	return restart_syscall();
2298 }
2299 
2300 #ifdef CONFIG_BLOCK
2301 static inline int device_is_not_partition(struct device *dev)
2302 {
2303 	return !(dev->type == &part_type);
2304 }
2305 #else
2306 static inline int device_is_not_partition(struct device *dev)
2307 {
2308 	return 1;
2309 }
2310 #endif
2311 
2312 static void device_platform_notify(struct device *dev)
2313 {
2314 	acpi_device_notify(dev);
2315 
2316 	software_node_notify(dev);
2317 
2318 	if (platform_notify)
2319 		platform_notify(dev);
2320 }
2321 
2322 static void device_platform_notify_remove(struct device *dev)
2323 {
2324 	if (platform_notify_remove)
2325 		platform_notify_remove(dev);
2326 
2327 	software_node_notify_remove(dev);
2328 
2329 	acpi_device_notify_remove(dev);
2330 }
2331 
2332 /**
2333  * dev_driver_string - Return a device's driver name, if at all possible
2334  * @dev: struct device to get the name of
2335  *
2336  * Will return the device's driver's name if it is bound to a device.  If
2337  * the device is not bound to a driver, it will return the name of the bus
2338  * it is attached to.  If it is not attached to a bus either, an empty
2339  * string will be returned.
2340  */
2341 const char *dev_driver_string(const struct device *dev)
2342 {
2343 	struct device_driver *drv;
2344 
2345 	/* dev->driver can change to NULL underneath us because of unbinding,
2346 	 * so be careful about accessing it.  dev->bus and dev->class should
2347 	 * never change once they are set, so they don't need special care.
2348 	 */
2349 	drv = READ_ONCE(dev->driver);
2350 	return drv ? drv->name : dev_bus_name(dev);
2351 }
2352 EXPORT_SYMBOL(dev_driver_string);
2353 
2354 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2355 
2356 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2357 			     char *buf)
2358 {
2359 	struct device_attribute *dev_attr = to_dev_attr(attr);
2360 	struct device *dev = kobj_to_dev(kobj);
2361 	ssize_t ret = -EIO;
2362 
2363 	if (dev_attr->show)
2364 		ret = dev_attr->show(dev, dev_attr, buf);
2365 	if (ret >= (ssize_t)PAGE_SIZE) {
2366 		printk("dev_attr_show: %pS returned bad count\n",
2367 				dev_attr->show);
2368 	}
2369 	return ret;
2370 }
2371 
2372 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2373 			      const char *buf, size_t count)
2374 {
2375 	struct device_attribute *dev_attr = to_dev_attr(attr);
2376 	struct device *dev = kobj_to_dev(kobj);
2377 	ssize_t ret = -EIO;
2378 
2379 	if (dev_attr->store)
2380 		ret = dev_attr->store(dev, dev_attr, buf, count);
2381 	return ret;
2382 }
2383 
2384 static const struct sysfs_ops dev_sysfs_ops = {
2385 	.show	= dev_attr_show,
2386 	.store	= dev_attr_store,
2387 };
2388 
2389 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2390 
2391 ssize_t device_store_ulong(struct device *dev,
2392 			   struct device_attribute *attr,
2393 			   const char *buf, size_t size)
2394 {
2395 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2396 	int ret;
2397 	unsigned long new;
2398 
2399 	ret = kstrtoul(buf, 0, &new);
2400 	if (ret)
2401 		return ret;
2402 	*(unsigned long *)(ea->var) = new;
2403 	/* Always return full write size even if we didn't consume all */
2404 	return size;
2405 }
2406 EXPORT_SYMBOL_GPL(device_store_ulong);
2407 
2408 ssize_t device_show_ulong(struct device *dev,
2409 			  struct device_attribute *attr,
2410 			  char *buf)
2411 {
2412 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2413 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2414 }
2415 EXPORT_SYMBOL_GPL(device_show_ulong);
2416 
2417 ssize_t device_store_int(struct device *dev,
2418 			 struct device_attribute *attr,
2419 			 const char *buf, size_t size)
2420 {
2421 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2422 	int ret;
2423 	long new;
2424 
2425 	ret = kstrtol(buf, 0, &new);
2426 	if (ret)
2427 		return ret;
2428 
2429 	if (new > INT_MAX || new < INT_MIN)
2430 		return -EINVAL;
2431 	*(int *)(ea->var) = new;
2432 	/* Always return full write size even if we didn't consume all */
2433 	return size;
2434 }
2435 EXPORT_SYMBOL_GPL(device_store_int);
2436 
2437 ssize_t device_show_int(struct device *dev,
2438 			struct device_attribute *attr,
2439 			char *buf)
2440 {
2441 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2442 
2443 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2444 }
2445 EXPORT_SYMBOL_GPL(device_show_int);
2446 
2447 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2448 			  const char *buf, size_t size)
2449 {
2450 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2451 
2452 	if (kstrtobool(buf, ea->var) < 0)
2453 		return -EINVAL;
2454 
2455 	return size;
2456 }
2457 EXPORT_SYMBOL_GPL(device_store_bool);
2458 
2459 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2460 			 char *buf)
2461 {
2462 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2463 
2464 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2465 }
2466 EXPORT_SYMBOL_GPL(device_show_bool);
2467 
2468 /**
2469  * device_release - free device structure.
2470  * @kobj: device's kobject.
2471  *
2472  * This is called once the reference count for the object
2473  * reaches 0. We forward the call to the device's release
2474  * method, which should handle actually freeing the structure.
2475  */
2476 static void device_release(struct kobject *kobj)
2477 {
2478 	struct device *dev = kobj_to_dev(kobj);
2479 	struct device_private *p = dev->p;
2480 
2481 	/*
2482 	 * Some platform devices are driven without driver attached
2483 	 * and managed resources may have been acquired.  Make sure
2484 	 * all resources are released.
2485 	 *
2486 	 * Drivers still can add resources into device after device
2487 	 * is deleted but alive, so release devres here to avoid
2488 	 * possible memory leak.
2489 	 */
2490 	devres_release_all(dev);
2491 
2492 	kfree(dev->dma_range_map);
2493 
2494 	if (dev->release)
2495 		dev->release(dev);
2496 	else if (dev->type && dev->type->release)
2497 		dev->type->release(dev);
2498 	else if (dev->class && dev->class->dev_release)
2499 		dev->class->dev_release(dev);
2500 	else
2501 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2502 			dev_name(dev));
2503 	kfree(p);
2504 }
2505 
2506 static const void *device_namespace(const struct kobject *kobj)
2507 {
2508 	const struct device *dev = kobj_to_dev(kobj);
2509 	const void *ns = NULL;
2510 
2511 	if (dev->class && dev->class->ns_type)
2512 		ns = dev->class->namespace(dev);
2513 
2514 	return ns;
2515 }
2516 
2517 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2518 {
2519 	const struct device *dev = kobj_to_dev(kobj);
2520 
2521 	if (dev->class && dev->class->get_ownership)
2522 		dev->class->get_ownership(dev, uid, gid);
2523 }
2524 
2525 static const struct kobj_type device_ktype = {
2526 	.release	= device_release,
2527 	.sysfs_ops	= &dev_sysfs_ops,
2528 	.namespace	= device_namespace,
2529 	.get_ownership	= device_get_ownership,
2530 };
2531 
2532 
2533 static int dev_uevent_filter(const struct kobject *kobj)
2534 {
2535 	const struct kobj_type *ktype = get_ktype(kobj);
2536 
2537 	if (ktype == &device_ktype) {
2538 		const struct device *dev = kobj_to_dev(kobj);
2539 		if (dev->bus)
2540 			return 1;
2541 		if (dev->class)
2542 			return 1;
2543 	}
2544 	return 0;
2545 }
2546 
2547 static const char *dev_uevent_name(const struct kobject *kobj)
2548 {
2549 	const struct device *dev = kobj_to_dev(kobj);
2550 
2551 	if (dev->bus)
2552 		return dev->bus->name;
2553 	if (dev->class)
2554 		return dev->class->name;
2555 	return NULL;
2556 }
2557 
2558 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2559 {
2560 	const struct device *dev = kobj_to_dev(kobj);
2561 	int retval = 0;
2562 
2563 	/* add device node properties if present */
2564 	if (MAJOR(dev->devt)) {
2565 		const char *tmp;
2566 		const char *name;
2567 		umode_t mode = 0;
2568 		kuid_t uid = GLOBAL_ROOT_UID;
2569 		kgid_t gid = GLOBAL_ROOT_GID;
2570 
2571 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2572 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2573 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2574 		if (name) {
2575 			add_uevent_var(env, "DEVNAME=%s", name);
2576 			if (mode)
2577 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2578 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2579 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2580 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2581 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2582 			kfree(tmp);
2583 		}
2584 	}
2585 
2586 	if (dev->type && dev->type->name)
2587 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2588 
2589 	if (dev->driver)
2590 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2591 
2592 	/* Add common DT information about the device */
2593 	of_device_uevent(dev, env);
2594 
2595 	/* have the bus specific function add its stuff */
2596 	if (dev->bus && dev->bus->uevent) {
2597 		retval = dev->bus->uevent(dev, env);
2598 		if (retval)
2599 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2600 				 dev_name(dev), __func__, retval);
2601 	}
2602 
2603 	/* have the class specific function add its stuff */
2604 	if (dev->class && dev->class->dev_uevent) {
2605 		retval = dev->class->dev_uevent(dev, env);
2606 		if (retval)
2607 			pr_debug("device: '%s': %s: class uevent() "
2608 				 "returned %d\n", dev_name(dev),
2609 				 __func__, retval);
2610 	}
2611 
2612 	/* have the device type specific function add its stuff */
2613 	if (dev->type && dev->type->uevent) {
2614 		retval = dev->type->uevent(dev, env);
2615 		if (retval)
2616 			pr_debug("device: '%s': %s: dev_type uevent() "
2617 				 "returned %d\n", dev_name(dev),
2618 				 __func__, retval);
2619 	}
2620 
2621 	return retval;
2622 }
2623 
2624 static const struct kset_uevent_ops device_uevent_ops = {
2625 	.filter =	dev_uevent_filter,
2626 	.name =		dev_uevent_name,
2627 	.uevent =	dev_uevent,
2628 };
2629 
2630 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2631 			   char *buf)
2632 {
2633 	struct kobject *top_kobj;
2634 	struct kset *kset;
2635 	struct kobj_uevent_env *env = NULL;
2636 	int i;
2637 	int len = 0;
2638 	int retval;
2639 
2640 	/* search the kset, the device belongs to */
2641 	top_kobj = &dev->kobj;
2642 	while (!top_kobj->kset && top_kobj->parent)
2643 		top_kobj = top_kobj->parent;
2644 	if (!top_kobj->kset)
2645 		goto out;
2646 
2647 	kset = top_kobj->kset;
2648 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2649 		goto out;
2650 
2651 	/* respect filter */
2652 	if (kset->uevent_ops && kset->uevent_ops->filter)
2653 		if (!kset->uevent_ops->filter(&dev->kobj))
2654 			goto out;
2655 
2656 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2657 	if (!env)
2658 		return -ENOMEM;
2659 
2660 	/* let the kset specific function add its keys */
2661 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2662 	if (retval)
2663 		goto out;
2664 
2665 	/* copy keys to file */
2666 	for (i = 0; i < env->envp_idx; i++)
2667 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2668 out:
2669 	kfree(env);
2670 	return len;
2671 }
2672 
2673 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2674 			    const char *buf, size_t count)
2675 {
2676 	int rc;
2677 
2678 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2679 
2680 	if (rc) {
2681 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2682 		return rc;
2683 	}
2684 
2685 	return count;
2686 }
2687 static DEVICE_ATTR_RW(uevent);
2688 
2689 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2690 			   char *buf)
2691 {
2692 	bool val;
2693 
2694 	device_lock(dev);
2695 	val = !dev->offline;
2696 	device_unlock(dev);
2697 	return sysfs_emit(buf, "%u\n", val);
2698 }
2699 
2700 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2701 			    const char *buf, size_t count)
2702 {
2703 	bool val;
2704 	int ret;
2705 
2706 	ret = kstrtobool(buf, &val);
2707 	if (ret < 0)
2708 		return ret;
2709 
2710 	ret = lock_device_hotplug_sysfs();
2711 	if (ret)
2712 		return ret;
2713 
2714 	ret = val ? device_online(dev) : device_offline(dev);
2715 	unlock_device_hotplug();
2716 	return ret < 0 ? ret : count;
2717 }
2718 static DEVICE_ATTR_RW(online);
2719 
2720 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2721 			      char *buf)
2722 {
2723 	const char *loc;
2724 
2725 	switch (dev->removable) {
2726 	case DEVICE_REMOVABLE:
2727 		loc = "removable";
2728 		break;
2729 	case DEVICE_FIXED:
2730 		loc = "fixed";
2731 		break;
2732 	default:
2733 		loc = "unknown";
2734 	}
2735 	return sysfs_emit(buf, "%s\n", loc);
2736 }
2737 static DEVICE_ATTR_RO(removable);
2738 
2739 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2740 {
2741 	return sysfs_create_groups(&dev->kobj, groups);
2742 }
2743 EXPORT_SYMBOL_GPL(device_add_groups);
2744 
2745 void device_remove_groups(struct device *dev,
2746 			  const struct attribute_group **groups)
2747 {
2748 	sysfs_remove_groups(&dev->kobj, groups);
2749 }
2750 EXPORT_SYMBOL_GPL(device_remove_groups);
2751 
2752 union device_attr_group_devres {
2753 	const struct attribute_group *group;
2754 	const struct attribute_group **groups;
2755 };
2756 
2757 static void devm_attr_group_remove(struct device *dev, void *res)
2758 {
2759 	union device_attr_group_devres *devres = res;
2760 	const struct attribute_group *group = devres->group;
2761 
2762 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2763 	sysfs_remove_group(&dev->kobj, group);
2764 }
2765 
2766 static void devm_attr_groups_remove(struct device *dev, void *res)
2767 {
2768 	union device_attr_group_devres *devres = res;
2769 	const struct attribute_group **groups = devres->groups;
2770 
2771 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2772 	sysfs_remove_groups(&dev->kobj, groups);
2773 }
2774 
2775 /**
2776  * devm_device_add_group - given a device, create a managed attribute group
2777  * @dev:	The device to create the group for
2778  * @grp:	The attribute group to create
2779  *
2780  * This function creates a group for the first time.  It will explicitly
2781  * warn and error if any of the attribute files being created already exist.
2782  *
2783  * Returns 0 on success or error code on failure.
2784  */
2785 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2786 {
2787 	union device_attr_group_devres *devres;
2788 	int error;
2789 
2790 	devres = devres_alloc(devm_attr_group_remove,
2791 			      sizeof(*devres), GFP_KERNEL);
2792 	if (!devres)
2793 		return -ENOMEM;
2794 
2795 	error = sysfs_create_group(&dev->kobj, grp);
2796 	if (error) {
2797 		devres_free(devres);
2798 		return error;
2799 	}
2800 
2801 	devres->group = grp;
2802 	devres_add(dev, devres);
2803 	return 0;
2804 }
2805 EXPORT_SYMBOL_GPL(devm_device_add_group);
2806 
2807 /**
2808  * devm_device_add_groups - create a bunch of managed attribute groups
2809  * @dev:	The device to create the group for
2810  * @groups:	The attribute groups to create, NULL terminated
2811  *
2812  * This function creates a bunch of managed attribute groups.  If an error
2813  * occurs when creating a group, all previously created groups will be
2814  * removed, unwinding everything back to the original state when this
2815  * function was called.  It will explicitly warn and error if any of the
2816  * attribute files being created already exist.
2817  *
2818  * Returns 0 on success or error code from sysfs_create_group on failure.
2819  */
2820 int devm_device_add_groups(struct device *dev,
2821 			   const struct attribute_group **groups)
2822 {
2823 	union device_attr_group_devres *devres;
2824 	int error;
2825 
2826 	devres = devres_alloc(devm_attr_groups_remove,
2827 			      sizeof(*devres), GFP_KERNEL);
2828 	if (!devres)
2829 		return -ENOMEM;
2830 
2831 	error = sysfs_create_groups(&dev->kobj, groups);
2832 	if (error) {
2833 		devres_free(devres);
2834 		return error;
2835 	}
2836 
2837 	devres->groups = groups;
2838 	devres_add(dev, devres);
2839 	return 0;
2840 }
2841 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2842 
2843 static int device_add_attrs(struct device *dev)
2844 {
2845 	const struct class *class = dev->class;
2846 	const struct device_type *type = dev->type;
2847 	int error;
2848 
2849 	if (class) {
2850 		error = device_add_groups(dev, class->dev_groups);
2851 		if (error)
2852 			return error;
2853 	}
2854 
2855 	if (type) {
2856 		error = device_add_groups(dev, type->groups);
2857 		if (error)
2858 			goto err_remove_class_groups;
2859 	}
2860 
2861 	error = device_add_groups(dev, dev->groups);
2862 	if (error)
2863 		goto err_remove_type_groups;
2864 
2865 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2866 		error = device_create_file(dev, &dev_attr_online);
2867 		if (error)
2868 			goto err_remove_dev_groups;
2869 	}
2870 
2871 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2872 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2873 		if (error)
2874 			goto err_remove_dev_online;
2875 	}
2876 
2877 	if (dev_removable_is_valid(dev)) {
2878 		error = device_create_file(dev, &dev_attr_removable);
2879 		if (error)
2880 			goto err_remove_dev_waiting_for_supplier;
2881 	}
2882 
2883 	if (dev_add_physical_location(dev)) {
2884 		error = device_add_group(dev,
2885 			&dev_attr_physical_location_group);
2886 		if (error)
2887 			goto err_remove_dev_removable;
2888 	}
2889 
2890 	return 0;
2891 
2892  err_remove_dev_removable:
2893 	device_remove_file(dev, &dev_attr_removable);
2894  err_remove_dev_waiting_for_supplier:
2895 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2896  err_remove_dev_online:
2897 	device_remove_file(dev, &dev_attr_online);
2898  err_remove_dev_groups:
2899 	device_remove_groups(dev, dev->groups);
2900  err_remove_type_groups:
2901 	if (type)
2902 		device_remove_groups(dev, type->groups);
2903  err_remove_class_groups:
2904 	if (class)
2905 		device_remove_groups(dev, class->dev_groups);
2906 
2907 	return error;
2908 }
2909 
2910 static void device_remove_attrs(struct device *dev)
2911 {
2912 	const struct class *class = dev->class;
2913 	const struct device_type *type = dev->type;
2914 
2915 	if (dev->physical_location) {
2916 		device_remove_group(dev, &dev_attr_physical_location_group);
2917 		kfree(dev->physical_location);
2918 	}
2919 
2920 	device_remove_file(dev, &dev_attr_removable);
2921 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2922 	device_remove_file(dev, &dev_attr_online);
2923 	device_remove_groups(dev, dev->groups);
2924 
2925 	if (type)
2926 		device_remove_groups(dev, type->groups);
2927 
2928 	if (class)
2929 		device_remove_groups(dev, class->dev_groups);
2930 }
2931 
2932 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2933 			char *buf)
2934 {
2935 	return print_dev_t(buf, dev->devt);
2936 }
2937 static DEVICE_ATTR_RO(dev);
2938 
2939 /* /sys/devices/ */
2940 struct kset *devices_kset;
2941 
2942 /**
2943  * devices_kset_move_before - Move device in the devices_kset's list.
2944  * @deva: Device to move.
2945  * @devb: Device @deva should come before.
2946  */
2947 static void devices_kset_move_before(struct device *deva, struct device *devb)
2948 {
2949 	if (!devices_kset)
2950 		return;
2951 	pr_debug("devices_kset: Moving %s before %s\n",
2952 		 dev_name(deva), dev_name(devb));
2953 	spin_lock(&devices_kset->list_lock);
2954 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2955 	spin_unlock(&devices_kset->list_lock);
2956 }
2957 
2958 /**
2959  * devices_kset_move_after - Move device in the devices_kset's list.
2960  * @deva: Device to move
2961  * @devb: Device @deva should come after.
2962  */
2963 static void devices_kset_move_after(struct device *deva, struct device *devb)
2964 {
2965 	if (!devices_kset)
2966 		return;
2967 	pr_debug("devices_kset: Moving %s after %s\n",
2968 		 dev_name(deva), dev_name(devb));
2969 	spin_lock(&devices_kset->list_lock);
2970 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2971 	spin_unlock(&devices_kset->list_lock);
2972 }
2973 
2974 /**
2975  * devices_kset_move_last - move the device to the end of devices_kset's list.
2976  * @dev: device to move
2977  */
2978 void devices_kset_move_last(struct device *dev)
2979 {
2980 	if (!devices_kset)
2981 		return;
2982 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2983 	spin_lock(&devices_kset->list_lock);
2984 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2985 	spin_unlock(&devices_kset->list_lock);
2986 }
2987 
2988 /**
2989  * device_create_file - create sysfs attribute file for device.
2990  * @dev: device.
2991  * @attr: device attribute descriptor.
2992  */
2993 int device_create_file(struct device *dev,
2994 		       const struct device_attribute *attr)
2995 {
2996 	int error = 0;
2997 
2998 	if (dev) {
2999 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3000 			"Attribute %s: write permission without 'store'\n",
3001 			attr->attr.name);
3002 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3003 			"Attribute %s: read permission without 'show'\n",
3004 			attr->attr.name);
3005 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3006 	}
3007 
3008 	return error;
3009 }
3010 EXPORT_SYMBOL_GPL(device_create_file);
3011 
3012 /**
3013  * device_remove_file - remove sysfs attribute file.
3014  * @dev: device.
3015  * @attr: device attribute descriptor.
3016  */
3017 void device_remove_file(struct device *dev,
3018 			const struct device_attribute *attr)
3019 {
3020 	if (dev)
3021 		sysfs_remove_file(&dev->kobj, &attr->attr);
3022 }
3023 EXPORT_SYMBOL_GPL(device_remove_file);
3024 
3025 /**
3026  * device_remove_file_self - remove sysfs attribute file from its own method.
3027  * @dev: device.
3028  * @attr: device attribute descriptor.
3029  *
3030  * See kernfs_remove_self() for details.
3031  */
3032 bool device_remove_file_self(struct device *dev,
3033 			     const struct device_attribute *attr)
3034 {
3035 	if (dev)
3036 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3037 	else
3038 		return false;
3039 }
3040 EXPORT_SYMBOL_GPL(device_remove_file_self);
3041 
3042 /**
3043  * device_create_bin_file - create sysfs binary attribute file for device.
3044  * @dev: device.
3045  * @attr: device binary attribute descriptor.
3046  */
3047 int device_create_bin_file(struct device *dev,
3048 			   const struct bin_attribute *attr)
3049 {
3050 	int error = -EINVAL;
3051 	if (dev)
3052 		error = sysfs_create_bin_file(&dev->kobj, attr);
3053 	return error;
3054 }
3055 EXPORT_SYMBOL_GPL(device_create_bin_file);
3056 
3057 /**
3058  * device_remove_bin_file - remove sysfs binary attribute file
3059  * @dev: device.
3060  * @attr: device binary attribute descriptor.
3061  */
3062 void device_remove_bin_file(struct device *dev,
3063 			    const struct bin_attribute *attr)
3064 {
3065 	if (dev)
3066 		sysfs_remove_bin_file(&dev->kobj, attr);
3067 }
3068 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3069 
3070 static void klist_children_get(struct klist_node *n)
3071 {
3072 	struct device_private *p = to_device_private_parent(n);
3073 	struct device *dev = p->device;
3074 
3075 	get_device(dev);
3076 }
3077 
3078 static void klist_children_put(struct klist_node *n)
3079 {
3080 	struct device_private *p = to_device_private_parent(n);
3081 	struct device *dev = p->device;
3082 
3083 	put_device(dev);
3084 }
3085 
3086 /**
3087  * device_initialize - init device structure.
3088  * @dev: device.
3089  *
3090  * This prepares the device for use by other layers by initializing
3091  * its fields.
3092  * It is the first half of device_register(), if called by
3093  * that function, though it can also be called separately, so one
3094  * may use @dev's fields. In particular, get_device()/put_device()
3095  * may be used for reference counting of @dev after calling this
3096  * function.
3097  *
3098  * All fields in @dev must be initialized by the caller to 0, except
3099  * for those explicitly set to some other value.  The simplest
3100  * approach is to use kzalloc() to allocate the structure containing
3101  * @dev.
3102  *
3103  * NOTE: Use put_device() to give up your reference instead of freeing
3104  * @dev directly once you have called this function.
3105  */
3106 void device_initialize(struct device *dev)
3107 {
3108 	dev->kobj.kset = devices_kset;
3109 	kobject_init(&dev->kobj, &device_ktype);
3110 	INIT_LIST_HEAD(&dev->dma_pools);
3111 	mutex_init(&dev->mutex);
3112 	lockdep_set_novalidate_class(&dev->mutex);
3113 	spin_lock_init(&dev->devres_lock);
3114 	INIT_LIST_HEAD(&dev->devres_head);
3115 	device_pm_init(dev);
3116 	set_dev_node(dev, NUMA_NO_NODE);
3117 	INIT_LIST_HEAD(&dev->links.consumers);
3118 	INIT_LIST_HEAD(&dev->links.suppliers);
3119 	INIT_LIST_HEAD(&dev->links.defer_sync);
3120 	dev->links.status = DL_DEV_NO_DRIVER;
3121 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3122     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3123     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3124 	dev->dma_coherent = dma_default_coherent;
3125 #endif
3126 	swiotlb_dev_init(dev);
3127 }
3128 EXPORT_SYMBOL_GPL(device_initialize);
3129 
3130 struct kobject *virtual_device_parent(struct device *dev)
3131 {
3132 	static struct kobject *virtual_dir = NULL;
3133 
3134 	if (!virtual_dir)
3135 		virtual_dir = kobject_create_and_add("virtual",
3136 						     &devices_kset->kobj);
3137 
3138 	return virtual_dir;
3139 }
3140 
3141 struct class_dir {
3142 	struct kobject kobj;
3143 	const struct class *class;
3144 };
3145 
3146 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3147 
3148 static void class_dir_release(struct kobject *kobj)
3149 {
3150 	struct class_dir *dir = to_class_dir(kobj);
3151 	kfree(dir);
3152 }
3153 
3154 static const
3155 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3156 {
3157 	const struct class_dir *dir = to_class_dir(kobj);
3158 	return dir->class->ns_type;
3159 }
3160 
3161 static const struct kobj_type class_dir_ktype = {
3162 	.release	= class_dir_release,
3163 	.sysfs_ops	= &kobj_sysfs_ops,
3164 	.child_ns_type	= class_dir_child_ns_type
3165 };
3166 
3167 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3168 						struct kobject *parent_kobj)
3169 {
3170 	struct class_dir *dir;
3171 	int retval;
3172 
3173 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3174 	if (!dir)
3175 		return ERR_PTR(-ENOMEM);
3176 
3177 	dir->class = sp->class;
3178 	kobject_init(&dir->kobj, &class_dir_ktype);
3179 
3180 	dir->kobj.kset = &sp->glue_dirs;
3181 
3182 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3183 	if (retval < 0) {
3184 		kobject_put(&dir->kobj);
3185 		return ERR_PTR(retval);
3186 	}
3187 	return &dir->kobj;
3188 }
3189 
3190 static DEFINE_MUTEX(gdp_mutex);
3191 
3192 static struct kobject *get_device_parent(struct device *dev,
3193 					 struct device *parent)
3194 {
3195 	struct subsys_private *sp = class_to_subsys(dev->class);
3196 	struct kobject *kobj = NULL;
3197 
3198 	if (sp) {
3199 		struct kobject *parent_kobj;
3200 		struct kobject *k;
3201 
3202 		/*
3203 		 * If we have no parent, we live in "virtual".
3204 		 * Class-devices with a non class-device as parent, live
3205 		 * in a "glue" directory to prevent namespace collisions.
3206 		 */
3207 		if (parent == NULL)
3208 			parent_kobj = virtual_device_parent(dev);
3209 		else if (parent->class && !dev->class->ns_type) {
3210 			subsys_put(sp);
3211 			return &parent->kobj;
3212 		} else {
3213 			parent_kobj = &parent->kobj;
3214 		}
3215 
3216 		mutex_lock(&gdp_mutex);
3217 
3218 		/* find our class-directory at the parent and reference it */
3219 		spin_lock(&sp->glue_dirs.list_lock);
3220 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3221 			if (k->parent == parent_kobj) {
3222 				kobj = kobject_get(k);
3223 				break;
3224 			}
3225 		spin_unlock(&sp->glue_dirs.list_lock);
3226 		if (kobj) {
3227 			mutex_unlock(&gdp_mutex);
3228 			subsys_put(sp);
3229 			return kobj;
3230 		}
3231 
3232 		/* or create a new class-directory at the parent device */
3233 		k = class_dir_create_and_add(sp, parent_kobj);
3234 		/* do not emit an uevent for this simple "glue" directory */
3235 		mutex_unlock(&gdp_mutex);
3236 		subsys_put(sp);
3237 		return k;
3238 	}
3239 
3240 	/* subsystems can specify a default root directory for their devices */
3241 	if (!parent && dev->bus) {
3242 		struct device *dev_root = bus_get_dev_root(dev->bus);
3243 
3244 		if (dev_root) {
3245 			kobj = &dev_root->kobj;
3246 			put_device(dev_root);
3247 			return kobj;
3248 		}
3249 	}
3250 
3251 	if (parent)
3252 		return &parent->kobj;
3253 	return NULL;
3254 }
3255 
3256 static inline bool live_in_glue_dir(struct kobject *kobj,
3257 				    struct device *dev)
3258 {
3259 	struct subsys_private *sp;
3260 	bool retval;
3261 
3262 	if (!kobj || !dev->class)
3263 		return false;
3264 
3265 	sp = class_to_subsys(dev->class);
3266 	if (!sp)
3267 		return false;
3268 
3269 	if (kobj->kset == &sp->glue_dirs)
3270 		retval = true;
3271 	else
3272 		retval = false;
3273 
3274 	subsys_put(sp);
3275 	return retval;
3276 }
3277 
3278 static inline struct kobject *get_glue_dir(struct device *dev)
3279 {
3280 	return dev->kobj.parent;
3281 }
3282 
3283 /**
3284  * kobject_has_children - Returns whether a kobject has children.
3285  * @kobj: the object to test
3286  *
3287  * This will return whether a kobject has other kobjects as children.
3288  *
3289  * It does NOT account for the presence of attribute files, only sub
3290  * directories. It also assumes there is no concurrent addition or
3291  * removal of such children, and thus relies on external locking.
3292  */
3293 static inline bool kobject_has_children(struct kobject *kobj)
3294 {
3295 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3296 
3297 	return kobj->sd && kobj->sd->dir.subdirs;
3298 }
3299 
3300 /*
3301  * make sure cleaning up dir as the last step, we need to make
3302  * sure .release handler of kobject is run with holding the
3303  * global lock
3304  */
3305 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3306 {
3307 	unsigned int ref;
3308 
3309 	/* see if we live in a "glue" directory */
3310 	if (!live_in_glue_dir(glue_dir, dev))
3311 		return;
3312 
3313 	mutex_lock(&gdp_mutex);
3314 	/**
3315 	 * There is a race condition between removing glue directory
3316 	 * and adding a new device under the glue directory.
3317 	 *
3318 	 * CPU1:                                         CPU2:
3319 	 *
3320 	 * device_add()
3321 	 *   get_device_parent()
3322 	 *     class_dir_create_and_add()
3323 	 *       kobject_add_internal()
3324 	 *         create_dir()    // create glue_dir
3325 	 *
3326 	 *                                               device_add()
3327 	 *                                                 get_device_parent()
3328 	 *                                                   kobject_get() // get glue_dir
3329 	 *
3330 	 * device_del()
3331 	 *   cleanup_glue_dir()
3332 	 *     kobject_del(glue_dir)
3333 	 *
3334 	 *                                               kobject_add()
3335 	 *                                                 kobject_add_internal()
3336 	 *                                                   create_dir() // in glue_dir
3337 	 *                                                     sysfs_create_dir_ns()
3338 	 *                                                       kernfs_create_dir_ns(sd)
3339 	 *
3340 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3341 	 *       sysfs_put()        // free glue_dir->sd
3342 	 *
3343 	 *                                                         // sd is freed
3344 	 *                                                         kernfs_new_node(sd)
3345 	 *                                                           kernfs_get(glue_dir)
3346 	 *                                                           kernfs_add_one()
3347 	 *                                                           kernfs_put()
3348 	 *
3349 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3350 	 * a new device under glue dir, the glue_dir kobject reference count
3351 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3352 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3353 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3354 	 *
3355 	 * Then the CPU2 will see a stale "empty" but still potentially used
3356 	 * glue dir around in kernfs_new_node().
3357 	 *
3358 	 * In order to avoid this happening, we also should make sure that
3359 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3360 	 * for glue_dir kobj is 1.
3361 	 */
3362 	ref = kref_read(&glue_dir->kref);
3363 	if (!kobject_has_children(glue_dir) && !--ref)
3364 		kobject_del(glue_dir);
3365 	kobject_put(glue_dir);
3366 	mutex_unlock(&gdp_mutex);
3367 }
3368 
3369 static int device_add_class_symlinks(struct device *dev)
3370 {
3371 	struct device_node *of_node = dev_of_node(dev);
3372 	struct subsys_private *sp;
3373 	int error;
3374 
3375 	if (of_node) {
3376 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3377 		if (error)
3378 			dev_warn(dev, "Error %d creating of_node link\n",error);
3379 		/* An error here doesn't warrant bringing down the device */
3380 	}
3381 
3382 	sp = class_to_subsys(dev->class);
3383 	if (!sp)
3384 		return 0;
3385 
3386 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3387 	if (error)
3388 		goto out_devnode;
3389 
3390 	if (dev->parent && device_is_not_partition(dev)) {
3391 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3392 					  "device");
3393 		if (error)
3394 			goto out_subsys;
3395 	}
3396 
3397 	/* link in the class directory pointing to the device */
3398 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3399 	if (error)
3400 		goto out_device;
3401 	goto exit;
3402 
3403 out_device:
3404 	sysfs_remove_link(&dev->kobj, "device");
3405 out_subsys:
3406 	sysfs_remove_link(&dev->kobj, "subsystem");
3407 out_devnode:
3408 	sysfs_remove_link(&dev->kobj, "of_node");
3409 exit:
3410 	subsys_put(sp);
3411 	return error;
3412 }
3413 
3414 static void device_remove_class_symlinks(struct device *dev)
3415 {
3416 	struct subsys_private *sp = class_to_subsys(dev->class);
3417 
3418 	if (dev_of_node(dev))
3419 		sysfs_remove_link(&dev->kobj, "of_node");
3420 
3421 	if (!sp)
3422 		return;
3423 
3424 	if (dev->parent && device_is_not_partition(dev))
3425 		sysfs_remove_link(&dev->kobj, "device");
3426 	sysfs_remove_link(&dev->kobj, "subsystem");
3427 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3428 	subsys_put(sp);
3429 }
3430 
3431 /**
3432  * dev_set_name - set a device name
3433  * @dev: device
3434  * @fmt: format string for the device's name
3435  */
3436 int dev_set_name(struct device *dev, const char *fmt, ...)
3437 {
3438 	va_list vargs;
3439 	int err;
3440 
3441 	va_start(vargs, fmt);
3442 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3443 	va_end(vargs);
3444 	return err;
3445 }
3446 EXPORT_SYMBOL_GPL(dev_set_name);
3447 
3448 /* select a /sys/dev/ directory for the device */
3449 static struct kobject *device_to_dev_kobj(struct device *dev)
3450 {
3451 	if (is_blockdev(dev))
3452 		return sysfs_dev_block_kobj;
3453 	else
3454 		return sysfs_dev_char_kobj;
3455 }
3456 
3457 static int device_create_sys_dev_entry(struct device *dev)
3458 {
3459 	struct kobject *kobj = device_to_dev_kobj(dev);
3460 	int error = 0;
3461 	char devt_str[15];
3462 
3463 	if (kobj) {
3464 		format_dev_t(devt_str, dev->devt);
3465 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3466 	}
3467 
3468 	return error;
3469 }
3470 
3471 static void device_remove_sys_dev_entry(struct device *dev)
3472 {
3473 	struct kobject *kobj = device_to_dev_kobj(dev);
3474 	char devt_str[15];
3475 
3476 	if (kobj) {
3477 		format_dev_t(devt_str, dev->devt);
3478 		sysfs_remove_link(kobj, devt_str);
3479 	}
3480 }
3481 
3482 static int device_private_init(struct device *dev)
3483 {
3484 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3485 	if (!dev->p)
3486 		return -ENOMEM;
3487 	dev->p->device = dev;
3488 	klist_init(&dev->p->klist_children, klist_children_get,
3489 		   klist_children_put);
3490 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3491 	return 0;
3492 }
3493 
3494 /**
3495  * device_add - add device to device hierarchy.
3496  * @dev: device.
3497  *
3498  * This is part 2 of device_register(), though may be called
3499  * separately _iff_ device_initialize() has been called separately.
3500  *
3501  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3502  * to the global and sibling lists for the device, then
3503  * adds it to the other relevant subsystems of the driver model.
3504  *
3505  * Do not call this routine or device_register() more than once for
3506  * any device structure.  The driver model core is not designed to work
3507  * with devices that get unregistered and then spring back to life.
3508  * (Among other things, it's very hard to guarantee that all references
3509  * to the previous incarnation of @dev have been dropped.)  Allocate
3510  * and register a fresh new struct device instead.
3511  *
3512  * NOTE: _Never_ directly free @dev after calling this function, even
3513  * if it returned an error! Always use put_device() to give up your
3514  * reference instead.
3515  *
3516  * Rule of thumb is: if device_add() succeeds, you should call
3517  * device_del() when you want to get rid of it. If device_add() has
3518  * *not* succeeded, use *only* put_device() to drop the reference
3519  * count.
3520  */
3521 int device_add(struct device *dev)
3522 {
3523 	struct subsys_private *sp;
3524 	struct device *parent;
3525 	struct kobject *kobj;
3526 	struct class_interface *class_intf;
3527 	int error = -EINVAL;
3528 	struct kobject *glue_dir = NULL;
3529 
3530 	dev = get_device(dev);
3531 	if (!dev)
3532 		goto done;
3533 
3534 	if (!dev->p) {
3535 		error = device_private_init(dev);
3536 		if (error)
3537 			goto done;
3538 	}
3539 
3540 	/*
3541 	 * for statically allocated devices, which should all be converted
3542 	 * some day, we need to initialize the name. We prevent reading back
3543 	 * the name, and force the use of dev_name()
3544 	 */
3545 	if (dev->init_name) {
3546 		error = dev_set_name(dev, "%s", dev->init_name);
3547 		dev->init_name = NULL;
3548 	}
3549 
3550 	if (dev_name(dev))
3551 		error = 0;
3552 	/* subsystems can specify simple device enumeration */
3553 	else if (dev->bus && dev->bus->dev_name)
3554 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3555 	else
3556 		error = -EINVAL;
3557 	if (error)
3558 		goto name_error;
3559 
3560 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3561 
3562 	parent = get_device(dev->parent);
3563 	kobj = get_device_parent(dev, parent);
3564 	if (IS_ERR(kobj)) {
3565 		error = PTR_ERR(kobj);
3566 		goto parent_error;
3567 	}
3568 	if (kobj)
3569 		dev->kobj.parent = kobj;
3570 
3571 	/* use parent numa_node */
3572 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3573 		set_dev_node(dev, dev_to_node(parent));
3574 
3575 	/* first, register with generic layer. */
3576 	/* we require the name to be set before, and pass NULL */
3577 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3578 	if (error) {
3579 		glue_dir = kobj;
3580 		goto Error;
3581 	}
3582 
3583 	/* notify platform of device entry */
3584 	device_platform_notify(dev);
3585 
3586 	error = device_create_file(dev, &dev_attr_uevent);
3587 	if (error)
3588 		goto attrError;
3589 
3590 	error = device_add_class_symlinks(dev);
3591 	if (error)
3592 		goto SymlinkError;
3593 	error = device_add_attrs(dev);
3594 	if (error)
3595 		goto AttrsError;
3596 	error = bus_add_device(dev);
3597 	if (error)
3598 		goto BusError;
3599 	error = dpm_sysfs_add(dev);
3600 	if (error)
3601 		goto DPMError;
3602 	device_pm_add(dev);
3603 
3604 	if (MAJOR(dev->devt)) {
3605 		error = device_create_file(dev, &dev_attr_dev);
3606 		if (error)
3607 			goto DevAttrError;
3608 
3609 		error = device_create_sys_dev_entry(dev);
3610 		if (error)
3611 			goto SysEntryError;
3612 
3613 		devtmpfs_create_node(dev);
3614 	}
3615 
3616 	/* Notify clients of device addition.  This call must come
3617 	 * after dpm_sysfs_add() and before kobject_uevent().
3618 	 */
3619 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3620 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3621 
3622 	/*
3623 	 * Check if any of the other devices (consumers) have been waiting for
3624 	 * this device (supplier) to be added so that they can create a device
3625 	 * link to it.
3626 	 *
3627 	 * This needs to happen after device_pm_add() because device_link_add()
3628 	 * requires the supplier be registered before it's called.
3629 	 *
3630 	 * But this also needs to happen before bus_probe_device() to make sure
3631 	 * waiting consumers can link to it before the driver is bound to the
3632 	 * device and the driver sync_state callback is called for this device.
3633 	 */
3634 	if (dev->fwnode && !dev->fwnode->dev) {
3635 		dev->fwnode->dev = dev;
3636 		fw_devlink_link_device(dev);
3637 	}
3638 
3639 	bus_probe_device(dev);
3640 
3641 	/*
3642 	 * If all driver registration is done and a newly added device doesn't
3643 	 * match with any driver, don't block its consumers from probing in
3644 	 * case the consumer device is able to operate without this supplier.
3645 	 */
3646 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3647 		fw_devlink_unblock_consumers(dev);
3648 
3649 	if (parent)
3650 		klist_add_tail(&dev->p->knode_parent,
3651 			       &parent->p->klist_children);
3652 
3653 	sp = class_to_subsys(dev->class);
3654 	if (sp) {
3655 		mutex_lock(&sp->mutex);
3656 		/* tie the class to the device */
3657 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3658 
3659 		/* notify any interfaces that the device is here */
3660 		list_for_each_entry(class_intf, &sp->interfaces, node)
3661 			if (class_intf->add_dev)
3662 				class_intf->add_dev(dev);
3663 		mutex_unlock(&sp->mutex);
3664 		subsys_put(sp);
3665 	}
3666 done:
3667 	put_device(dev);
3668 	return error;
3669  SysEntryError:
3670 	if (MAJOR(dev->devt))
3671 		device_remove_file(dev, &dev_attr_dev);
3672  DevAttrError:
3673 	device_pm_remove(dev);
3674 	dpm_sysfs_remove(dev);
3675  DPMError:
3676 	dev->driver = NULL;
3677 	bus_remove_device(dev);
3678  BusError:
3679 	device_remove_attrs(dev);
3680  AttrsError:
3681 	device_remove_class_symlinks(dev);
3682  SymlinkError:
3683 	device_remove_file(dev, &dev_attr_uevent);
3684  attrError:
3685 	device_platform_notify_remove(dev);
3686 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3687 	glue_dir = get_glue_dir(dev);
3688 	kobject_del(&dev->kobj);
3689  Error:
3690 	cleanup_glue_dir(dev, glue_dir);
3691 parent_error:
3692 	put_device(parent);
3693 name_error:
3694 	kfree(dev->p);
3695 	dev->p = NULL;
3696 	goto done;
3697 }
3698 EXPORT_SYMBOL_GPL(device_add);
3699 
3700 /**
3701  * device_register - register a device with the system.
3702  * @dev: pointer to the device structure
3703  *
3704  * This happens in two clean steps - initialize the device
3705  * and add it to the system. The two steps can be called
3706  * separately, but this is the easiest and most common.
3707  * I.e. you should only call the two helpers separately if
3708  * have a clearly defined need to use and refcount the device
3709  * before it is added to the hierarchy.
3710  *
3711  * For more information, see the kerneldoc for device_initialize()
3712  * and device_add().
3713  *
3714  * NOTE: _Never_ directly free @dev after calling this function, even
3715  * if it returned an error! Always use put_device() to give up the
3716  * reference initialized in this function instead.
3717  */
3718 int device_register(struct device *dev)
3719 {
3720 	device_initialize(dev);
3721 	return device_add(dev);
3722 }
3723 EXPORT_SYMBOL_GPL(device_register);
3724 
3725 /**
3726  * get_device - increment reference count for device.
3727  * @dev: device.
3728  *
3729  * This simply forwards the call to kobject_get(), though
3730  * we do take care to provide for the case that we get a NULL
3731  * pointer passed in.
3732  */
3733 struct device *get_device(struct device *dev)
3734 {
3735 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3736 }
3737 EXPORT_SYMBOL_GPL(get_device);
3738 
3739 /**
3740  * put_device - decrement reference count.
3741  * @dev: device in question.
3742  */
3743 void put_device(struct device *dev)
3744 {
3745 	/* might_sleep(); */
3746 	if (dev)
3747 		kobject_put(&dev->kobj);
3748 }
3749 EXPORT_SYMBOL_GPL(put_device);
3750 
3751 bool kill_device(struct device *dev)
3752 {
3753 	/*
3754 	 * Require the device lock and set the "dead" flag to guarantee that
3755 	 * the update behavior is consistent with the other bitfields near
3756 	 * it and that we cannot have an asynchronous probe routine trying
3757 	 * to run while we are tearing out the bus/class/sysfs from
3758 	 * underneath the device.
3759 	 */
3760 	device_lock_assert(dev);
3761 
3762 	if (dev->p->dead)
3763 		return false;
3764 	dev->p->dead = true;
3765 	return true;
3766 }
3767 EXPORT_SYMBOL_GPL(kill_device);
3768 
3769 /**
3770  * device_del - delete device from system.
3771  * @dev: device.
3772  *
3773  * This is the first part of the device unregistration
3774  * sequence. This removes the device from the lists we control
3775  * from here, has it removed from the other driver model
3776  * subsystems it was added to in device_add(), and removes it
3777  * from the kobject hierarchy.
3778  *
3779  * NOTE: this should be called manually _iff_ device_add() was
3780  * also called manually.
3781  */
3782 void device_del(struct device *dev)
3783 {
3784 	struct subsys_private *sp;
3785 	struct device *parent = dev->parent;
3786 	struct kobject *glue_dir = NULL;
3787 	struct class_interface *class_intf;
3788 	unsigned int noio_flag;
3789 
3790 	device_lock(dev);
3791 	kill_device(dev);
3792 	device_unlock(dev);
3793 
3794 	if (dev->fwnode && dev->fwnode->dev == dev)
3795 		dev->fwnode->dev = NULL;
3796 
3797 	/* Notify clients of device removal.  This call must come
3798 	 * before dpm_sysfs_remove().
3799 	 */
3800 	noio_flag = memalloc_noio_save();
3801 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3802 
3803 	dpm_sysfs_remove(dev);
3804 	if (parent)
3805 		klist_del(&dev->p->knode_parent);
3806 	if (MAJOR(dev->devt)) {
3807 		devtmpfs_delete_node(dev);
3808 		device_remove_sys_dev_entry(dev);
3809 		device_remove_file(dev, &dev_attr_dev);
3810 	}
3811 
3812 	sp = class_to_subsys(dev->class);
3813 	if (sp) {
3814 		device_remove_class_symlinks(dev);
3815 
3816 		mutex_lock(&sp->mutex);
3817 		/* notify any interfaces that the device is now gone */
3818 		list_for_each_entry(class_intf, &sp->interfaces, node)
3819 			if (class_intf->remove_dev)
3820 				class_intf->remove_dev(dev);
3821 		/* remove the device from the class list */
3822 		klist_del(&dev->p->knode_class);
3823 		mutex_unlock(&sp->mutex);
3824 		subsys_put(sp);
3825 	}
3826 	device_remove_file(dev, &dev_attr_uevent);
3827 	device_remove_attrs(dev);
3828 	bus_remove_device(dev);
3829 	device_pm_remove(dev);
3830 	driver_deferred_probe_del(dev);
3831 	device_platform_notify_remove(dev);
3832 	device_links_purge(dev);
3833 
3834 	/*
3835 	 * If a device does not have a driver attached, we need to clean
3836 	 * up any managed resources. We do this in device_release(), but
3837 	 * it's never called (and we leak the device) if a managed
3838 	 * resource holds a reference to the device. So release all
3839 	 * managed resources here, like we do in driver_detach(). We
3840 	 * still need to do so again in device_release() in case someone
3841 	 * adds a new resource after this point, though.
3842 	 */
3843 	devres_release_all(dev);
3844 
3845 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3846 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3847 	glue_dir = get_glue_dir(dev);
3848 	kobject_del(&dev->kobj);
3849 	cleanup_glue_dir(dev, glue_dir);
3850 	memalloc_noio_restore(noio_flag);
3851 	put_device(parent);
3852 }
3853 EXPORT_SYMBOL_GPL(device_del);
3854 
3855 /**
3856  * device_unregister - unregister device from system.
3857  * @dev: device going away.
3858  *
3859  * We do this in two parts, like we do device_register(). First,
3860  * we remove it from all the subsystems with device_del(), then
3861  * we decrement the reference count via put_device(). If that
3862  * is the final reference count, the device will be cleaned up
3863  * via device_release() above. Otherwise, the structure will
3864  * stick around until the final reference to the device is dropped.
3865  */
3866 void device_unregister(struct device *dev)
3867 {
3868 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3869 	device_del(dev);
3870 	put_device(dev);
3871 }
3872 EXPORT_SYMBOL_GPL(device_unregister);
3873 
3874 static struct device *prev_device(struct klist_iter *i)
3875 {
3876 	struct klist_node *n = klist_prev(i);
3877 	struct device *dev = NULL;
3878 	struct device_private *p;
3879 
3880 	if (n) {
3881 		p = to_device_private_parent(n);
3882 		dev = p->device;
3883 	}
3884 	return dev;
3885 }
3886 
3887 static struct device *next_device(struct klist_iter *i)
3888 {
3889 	struct klist_node *n = klist_next(i);
3890 	struct device *dev = NULL;
3891 	struct device_private *p;
3892 
3893 	if (n) {
3894 		p = to_device_private_parent(n);
3895 		dev = p->device;
3896 	}
3897 	return dev;
3898 }
3899 
3900 /**
3901  * device_get_devnode - path of device node file
3902  * @dev: device
3903  * @mode: returned file access mode
3904  * @uid: returned file owner
3905  * @gid: returned file group
3906  * @tmp: possibly allocated string
3907  *
3908  * Return the relative path of a possible device node.
3909  * Non-default names may need to allocate a memory to compose
3910  * a name. This memory is returned in tmp and needs to be
3911  * freed by the caller.
3912  */
3913 const char *device_get_devnode(const struct device *dev,
3914 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3915 			       const char **tmp)
3916 {
3917 	char *s;
3918 
3919 	*tmp = NULL;
3920 
3921 	/* the device type may provide a specific name */
3922 	if (dev->type && dev->type->devnode)
3923 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3924 	if (*tmp)
3925 		return *tmp;
3926 
3927 	/* the class may provide a specific name */
3928 	if (dev->class && dev->class->devnode)
3929 		*tmp = dev->class->devnode(dev, mode);
3930 	if (*tmp)
3931 		return *tmp;
3932 
3933 	/* return name without allocation, tmp == NULL */
3934 	if (strchr(dev_name(dev), '!') == NULL)
3935 		return dev_name(dev);
3936 
3937 	/* replace '!' in the name with '/' */
3938 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3939 	if (!s)
3940 		return NULL;
3941 	return *tmp = s;
3942 }
3943 
3944 /**
3945  * device_for_each_child - device child iterator.
3946  * @parent: parent struct device.
3947  * @fn: function to be called for each device.
3948  * @data: data for the callback.
3949  *
3950  * Iterate over @parent's child devices, and call @fn for each,
3951  * passing it @data.
3952  *
3953  * We check the return of @fn each time. If it returns anything
3954  * other than 0, we break out and return that value.
3955  */
3956 int device_for_each_child(struct device *parent, void *data,
3957 			  int (*fn)(struct device *dev, void *data))
3958 {
3959 	struct klist_iter i;
3960 	struct device *child;
3961 	int error = 0;
3962 
3963 	if (!parent->p)
3964 		return 0;
3965 
3966 	klist_iter_init(&parent->p->klist_children, &i);
3967 	while (!error && (child = next_device(&i)))
3968 		error = fn(child, data);
3969 	klist_iter_exit(&i);
3970 	return error;
3971 }
3972 EXPORT_SYMBOL_GPL(device_for_each_child);
3973 
3974 /**
3975  * device_for_each_child_reverse - device child iterator in reversed order.
3976  * @parent: parent struct device.
3977  * @fn: function to be called for each device.
3978  * @data: data for the callback.
3979  *
3980  * Iterate over @parent's child devices, and call @fn for each,
3981  * passing it @data.
3982  *
3983  * We check the return of @fn each time. If it returns anything
3984  * other than 0, we break out and return that value.
3985  */
3986 int device_for_each_child_reverse(struct device *parent, void *data,
3987 				  int (*fn)(struct device *dev, void *data))
3988 {
3989 	struct klist_iter i;
3990 	struct device *child;
3991 	int error = 0;
3992 
3993 	if (!parent->p)
3994 		return 0;
3995 
3996 	klist_iter_init(&parent->p->klist_children, &i);
3997 	while ((child = prev_device(&i)) && !error)
3998 		error = fn(child, data);
3999 	klist_iter_exit(&i);
4000 	return error;
4001 }
4002 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4003 
4004 /**
4005  * device_find_child - device iterator for locating a particular device.
4006  * @parent: parent struct device
4007  * @match: Callback function to check device
4008  * @data: Data to pass to match function
4009  *
4010  * This is similar to the device_for_each_child() function above, but it
4011  * returns a reference to a device that is 'found' for later use, as
4012  * determined by the @match callback.
4013  *
4014  * The callback should return 0 if the device doesn't match and non-zero
4015  * if it does.  If the callback returns non-zero and a reference to the
4016  * current device can be obtained, this function will return to the caller
4017  * and not iterate over any more devices.
4018  *
4019  * NOTE: you will need to drop the reference with put_device() after use.
4020  */
4021 struct device *device_find_child(struct device *parent, void *data,
4022 				 int (*match)(struct device *dev, void *data))
4023 {
4024 	struct klist_iter i;
4025 	struct device *child;
4026 
4027 	if (!parent)
4028 		return NULL;
4029 
4030 	klist_iter_init(&parent->p->klist_children, &i);
4031 	while ((child = next_device(&i)))
4032 		if (match(child, data) && get_device(child))
4033 			break;
4034 	klist_iter_exit(&i);
4035 	return child;
4036 }
4037 EXPORT_SYMBOL_GPL(device_find_child);
4038 
4039 /**
4040  * device_find_child_by_name - device iterator for locating a child device.
4041  * @parent: parent struct device
4042  * @name: name of the child device
4043  *
4044  * This is similar to the device_find_child() function above, but it
4045  * returns a reference to a device that has the name @name.
4046  *
4047  * NOTE: you will need to drop the reference with put_device() after use.
4048  */
4049 struct device *device_find_child_by_name(struct device *parent,
4050 					 const char *name)
4051 {
4052 	struct klist_iter i;
4053 	struct device *child;
4054 
4055 	if (!parent)
4056 		return NULL;
4057 
4058 	klist_iter_init(&parent->p->klist_children, &i);
4059 	while ((child = next_device(&i)))
4060 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4061 			break;
4062 	klist_iter_exit(&i);
4063 	return child;
4064 }
4065 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4066 
4067 static int match_any(struct device *dev, void *unused)
4068 {
4069 	return 1;
4070 }
4071 
4072 /**
4073  * device_find_any_child - device iterator for locating a child device, if any.
4074  * @parent: parent struct device
4075  *
4076  * This is similar to the device_find_child() function above, but it
4077  * returns a reference to a child device, if any.
4078  *
4079  * NOTE: you will need to drop the reference with put_device() after use.
4080  */
4081 struct device *device_find_any_child(struct device *parent)
4082 {
4083 	return device_find_child(parent, NULL, match_any);
4084 }
4085 EXPORT_SYMBOL_GPL(device_find_any_child);
4086 
4087 int __init devices_init(void)
4088 {
4089 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4090 	if (!devices_kset)
4091 		return -ENOMEM;
4092 	dev_kobj = kobject_create_and_add("dev", NULL);
4093 	if (!dev_kobj)
4094 		goto dev_kobj_err;
4095 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4096 	if (!sysfs_dev_block_kobj)
4097 		goto block_kobj_err;
4098 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4099 	if (!sysfs_dev_char_kobj)
4100 		goto char_kobj_err;
4101 
4102 	return 0;
4103 
4104  char_kobj_err:
4105 	kobject_put(sysfs_dev_block_kobj);
4106  block_kobj_err:
4107 	kobject_put(dev_kobj);
4108  dev_kobj_err:
4109 	kset_unregister(devices_kset);
4110 	return -ENOMEM;
4111 }
4112 
4113 static int device_check_offline(struct device *dev, void *not_used)
4114 {
4115 	int ret;
4116 
4117 	ret = device_for_each_child(dev, NULL, device_check_offline);
4118 	if (ret)
4119 		return ret;
4120 
4121 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4122 }
4123 
4124 /**
4125  * device_offline - Prepare the device for hot-removal.
4126  * @dev: Device to be put offline.
4127  *
4128  * Execute the device bus type's .offline() callback, if present, to prepare
4129  * the device for a subsequent hot-removal.  If that succeeds, the device must
4130  * not be used until either it is removed or its bus type's .online() callback
4131  * is executed.
4132  *
4133  * Call under device_hotplug_lock.
4134  */
4135 int device_offline(struct device *dev)
4136 {
4137 	int ret;
4138 
4139 	if (dev->offline_disabled)
4140 		return -EPERM;
4141 
4142 	ret = device_for_each_child(dev, NULL, device_check_offline);
4143 	if (ret)
4144 		return ret;
4145 
4146 	device_lock(dev);
4147 	if (device_supports_offline(dev)) {
4148 		if (dev->offline) {
4149 			ret = 1;
4150 		} else {
4151 			ret = dev->bus->offline(dev);
4152 			if (!ret) {
4153 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4154 				dev->offline = true;
4155 			}
4156 		}
4157 	}
4158 	device_unlock(dev);
4159 
4160 	return ret;
4161 }
4162 
4163 /**
4164  * device_online - Put the device back online after successful device_offline().
4165  * @dev: Device to be put back online.
4166  *
4167  * If device_offline() has been successfully executed for @dev, but the device
4168  * has not been removed subsequently, execute its bus type's .online() callback
4169  * to indicate that the device can be used again.
4170  *
4171  * Call under device_hotplug_lock.
4172  */
4173 int device_online(struct device *dev)
4174 {
4175 	int ret = 0;
4176 
4177 	device_lock(dev);
4178 	if (device_supports_offline(dev)) {
4179 		if (dev->offline) {
4180 			ret = dev->bus->online(dev);
4181 			if (!ret) {
4182 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4183 				dev->offline = false;
4184 			}
4185 		} else {
4186 			ret = 1;
4187 		}
4188 	}
4189 	device_unlock(dev);
4190 
4191 	return ret;
4192 }
4193 
4194 struct root_device {
4195 	struct device dev;
4196 	struct module *owner;
4197 };
4198 
4199 static inline struct root_device *to_root_device(struct device *d)
4200 {
4201 	return container_of(d, struct root_device, dev);
4202 }
4203 
4204 static void root_device_release(struct device *dev)
4205 {
4206 	kfree(to_root_device(dev));
4207 }
4208 
4209 /**
4210  * __root_device_register - allocate and register a root device
4211  * @name: root device name
4212  * @owner: owner module of the root device, usually THIS_MODULE
4213  *
4214  * This function allocates a root device and registers it
4215  * using device_register(). In order to free the returned
4216  * device, use root_device_unregister().
4217  *
4218  * Root devices are dummy devices which allow other devices
4219  * to be grouped under /sys/devices. Use this function to
4220  * allocate a root device and then use it as the parent of
4221  * any device which should appear under /sys/devices/{name}
4222  *
4223  * The /sys/devices/{name} directory will also contain a
4224  * 'module' symlink which points to the @owner directory
4225  * in sysfs.
4226  *
4227  * Returns &struct device pointer on success, or ERR_PTR() on error.
4228  *
4229  * Note: You probably want to use root_device_register().
4230  */
4231 struct device *__root_device_register(const char *name, struct module *owner)
4232 {
4233 	struct root_device *root;
4234 	int err = -ENOMEM;
4235 
4236 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4237 	if (!root)
4238 		return ERR_PTR(err);
4239 
4240 	err = dev_set_name(&root->dev, "%s", name);
4241 	if (err) {
4242 		kfree(root);
4243 		return ERR_PTR(err);
4244 	}
4245 
4246 	root->dev.release = root_device_release;
4247 
4248 	err = device_register(&root->dev);
4249 	if (err) {
4250 		put_device(&root->dev);
4251 		return ERR_PTR(err);
4252 	}
4253 
4254 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4255 	if (owner) {
4256 		struct module_kobject *mk = &owner->mkobj;
4257 
4258 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4259 		if (err) {
4260 			device_unregister(&root->dev);
4261 			return ERR_PTR(err);
4262 		}
4263 		root->owner = owner;
4264 	}
4265 #endif
4266 
4267 	return &root->dev;
4268 }
4269 EXPORT_SYMBOL_GPL(__root_device_register);
4270 
4271 /**
4272  * root_device_unregister - unregister and free a root device
4273  * @dev: device going away
4274  *
4275  * This function unregisters and cleans up a device that was created by
4276  * root_device_register().
4277  */
4278 void root_device_unregister(struct device *dev)
4279 {
4280 	struct root_device *root = to_root_device(dev);
4281 
4282 	if (root->owner)
4283 		sysfs_remove_link(&root->dev.kobj, "module");
4284 
4285 	device_unregister(dev);
4286 }
4287 EXPORT_SYMBOL_GPL(root_device_unregister);
4288 
4289 
4290 static void device_create_release(struct device *dev)
4291 {
4292 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4293 	kfree(dev);
4294 }
4295 
4296 static __printf(6, 0) struct device *
4297 device_create_groups_vargs(const struct class *class, struct device *parent,
4298 			   dev_t devt, void *drvdata,
4299 			   const struct attribute_group **groups,
4300 			   const char *fmt, va_list args)
4301 {
4302 	struct device *dev = NULL;
4303 	int retval = -ENODEV;
4304 
4305 	if (IS_ERR_OR_NULL(class))
4306 		goto error;
4307 
4308 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4309 	if (!dev) {
4310 		retval = -ENOMEM;
4311 		goto error;
4312 	}
4313 
4314 	device_initialize(dev);
4315 	dev->devt = devt;
4316 	dev->class = class;
4317 	dev->parent = parent;
4318 	dev->groups = groups;
4319 	dev->release = device_create_release;
4320 	dev_set_drvdata(dev, drvdata);
4321 
4322 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4323 	if (retval)
4324 		goto error;
4325 
4326 	retval = device_add(dev);
4327 	if (retval)
4328 		goto error;
4329 
4330 	return dev;
4331 
4332 error:
4333 	put_device(dev);
4334 	return ERR_PTR(retval);
4335 }
4336 
4337 /**
4338  * device_create - creates a device and registers it with sysfs
4339  * @class: pointer to the struct class that this device should be registered to
4340  * @parent: pointer to the parent struct device of this new device, if any
4341  * @devt: the dev_t for the char device to be added
4342  * @drvdata: the data to be added to the device for callbacks
4343  * @fmt: string for the device's name
4344  *
4345  * This function can be used by char device classes.  A struct device
4346  * will be created in sysfs, registered to the specified class.
4347  *
4348  * A "dev" file will be created, showing the dev_t for the device, if
4349  * the dev_t is not 0,0.
4350  * If a pointer to a parent struct device is passed in, the newly created
4351  * struct device will be a child of that device in sysfs.
4352  * The pointer to the struct device will be returned from the call.
4353  * Any further sysfs files that might be required can be created using this
4354  * pointer.
4355  *
4356  * Returns &struct device pointer on success, or ERR_PTR() on error.
4357  */
4358 struct device *device_create(const struct class *class, struct device *parent,
4359 			     dev_t devt, void *drvdata, const char *fmt, ...)
4360 {
4361 	va_list vargs;
4362 	struct device *dev;
4363 
4364 	va_start(vargs, fmt);
4365 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4366 					  fmt, vargs);
4367 	va_end(vargs);
4368 	return dev;
4369 }
4370 EXPORT_SYMBOL_GPL(device_create);
4371 
4372 /**
4373  * device_create_with_groups - creates a device and registers it with sysfs
4374  * @class: pointer to the struct class that this device should be registered to
4375  * @parent: pointer to the parent struct device of this new device, if any
4376  * @devt: the dev_t for the char device to be added
4377  * @drvdata: the data to be added to the device for callbacks
4378  * @groups: NULL-terminated list of attribute groups to be created
4379  * @fmt: string for the device's name
4380  *
4381  * This function can be used by char device classes.  A struct device
4382  * will be created in sysfs, registered to the specified class.
4383  * Additional attributes specified in the groups parameter will also
4384  * be created automatically.
4385  *
4386  * A "dev" file will be created, showing the dev_t for the device, if
4387  * the dev_t is not 0,0.
4388  * If a pointer to a parent struct device is passed in, the newly created
4389  * struct device will be a child of that device in sysfs.
4390  * The pointer to the struct device will be returned from the call.
4391  * Any further sysfs files that might be required can be created using this
4392  * pointer.
4393  *
4394  * Returns &struct device pointer on success, or ERR_PTR() on error.
4395  */
4396 struct device *device_create_with_groups(const struct class *class,
4397 					 struct device *parent, dev_t devt,
4398 					 void *drvdata,
4399 					 const struct attribute_group **groups,
4400 					 const char *fmt, ...)
4401 {
4402 	va_list vargs;
4403 	struct device *dev;
4404 
4405 	va_start(vargs, fmt);
4406 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4407 					 fmt, vargs);
4408 	va_end(vargs);
4409 	return dev;
4410 }
4411 EXPORT_SYMBOL_GPL(device_create_with_groups);
4412 
4413 /**
4414  * device_destroy - removes a device that was created with device_create()
4415  * @class: pointer to the struct class that this device was registered with
4416  * @devt: the dev_t of the device that was previously registered
4417  *
4418  * This call unregisters and cleans up a device that was created with a
4419  * call to device_create().
4420  */
4421 void device_destroy(const struct class *class, dev_t devt)
4422 {
4423 	struct device *dev;
4424 
4425 	dev = class_find_device_by_devt(class, devt);
4426 	if (dev) {
4427 		put_device(dev);
4428 		device_unregister(dev);
4429 	}
4430 }
4431 EXPORT_SYMBOL_GPL(device_destroy);
4432 
4433 /**
4434  * device_rename - renames a device
4435  * @dev: the pointer to the struct device to be renamed
4436  * @new_name: the new name of the device
4437  *
4438  * It is the responsibility of the caller to provide mutual
4439  * exclusion between two different calls of device_rename
4440  * on the same device to ensure that new_name is valid and
4441  * won't conflict with other devices.
4442  *
4443  * Note: given that some subsystems (networking and infiniband) use this
4444  * function, with no immediate plans for this to change, we cannot assume or
4445  * require that this function not be called at all.
4446  *
4447  * However, if you're writing new code, do not call this function. The following
4448  * text from Kay Sievers offers some insight:
4449  *
4450  * Renaming devices is racy at many levels, symlinks and other stuff are not
4451  * replaced atomically, and you get a "move" uevent, but it's not easy to
4452  * connect the event to the old and new device. Device nodes are not renamed at
4453  * all, there isn't even support for that in the kernel now.
4454  *
4455  * In the meantime, during renaming, your target name might be taken by another
4456  * driver, creating conflicts. Or the old name is taken directly after you
4457  * renamed it -- then you get events for the same DEVPATH, before you even see
4458  * the "move" event. It's just a mess, and nothing new should ever rely on
4459  * kernel device renaming. Besides that, it's not even implemented now for
4460  * other things than (driver-core wise very simple) network devices.
4461  *
4462  * Make up a "real" name in the driver before you register anything, or add
4463  * some other attributes for userspace to find the device, or use udev to add
4464  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4465  * don't even want to get into that and try to implement the missing pieces in
4466  * the core. We really have other pieces to fix in the driver core mess. :)
4467  */
4468 int device_rename(struct device *dev, const char *new_name)
4469 {
4470 	struct kobject *kobj = &dev->kobj;
4471 	char *old_device_name = NULL;
4472 	int error;
4473 
4474 	dev = get_device(dev);
4475 	if (!dev)
4476 		return -EINVAL;
4477 
4478 	dev_dbg(dev, "renaming to %s\n", new_name);
4479 
4480 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4481 	if (!old_device_name) {
4482 		error = -ENOMEM;
4483 		goto out;
4484 	}
4485 
4486 	if (dev->class) {
4487 		struct subsys_private *sp = class_to_subsys(dev->class);
4488 
4489 		if (!sp) {
4490 			error = -EINVAL;
4491 			goto out;
4492 		}
4493 
4494 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4495 					     new_name, kobject_namespace(kobj));
4496 		subsys_put(sp);
4497 		if (error)
4498 			goto out;
4499 	}
4500 
4501 	error = kobject_rename(kobj, new_name);
4502 	if (error)
4503 		goto out;
4504 
4505 out:
4506 	put_device(dev);
4507 
4508 	kfree(old_device_name);
4509 
4510 	return error;
4511 }
4512 EXPORT_SYMBOL_GPL(device_rename);
4513 
4514 static int device_move_class_links(struct device *dev,
4515 				   struct device *old_parent,
4516 				   struct device *new_parent)
4517 {
4518 	int error = 0;
4519 
4520 	if (old_parent)
4521 		sysfs_remove_link(&dev->kobj, "device");
4522 	if (new_parent)
4523 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4524 					  "device");
4525 	return error;
4526 }
4527 
4528 /**
4529  * device_move - moves a device to a new parent
4530  * @dev: the pointer to the struct device to be moved
4531  * @new_parent: the new parent of the device (can be NULL)
4532  * @dpm_order: how to reorder the dpm_list
4533  */
4534 int device_move(struct device *dev, struct device *new_parent,
4535 		enum dpm_order dpm_order)
4536 {
4537 	int error;
4538 	struct device *old_parent;
4539 	struct kobject *new_parent_kobj;
4540 
4541 	dev = get_device(dev);
4542 	if (!dev)
4543 		return -EINVAL;
4544 
4545 	device_pm_lock();
4546 	new_parent = get_device(new_parent);
4547 	new_parent_kobj = get_device_parent(dev, new_parent);
4548 	if (IS_ERR(new_parent_kobj)) {
4549 		error = PTR_ERR(new_parent_kobj);
4550 		put_device(new_parent);
4551 		goto out;
4552 	}
4553 
4554 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4555 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4556 	error = kobject_move(&dev->kobj, new_parent_kobj);
4557 	if (error) {
4558 		cleanup_glue_dir(dev, new_parent_kobj);
4559 		put_device(new_parent);
4560 		goto out;
4561 	}
4562 	old_parent = dev->parent;
4563 	dev->parent = new_parent;
4564 	if (old_parent)
4565 		klist_remove(&dev->p->knode_parent);
4566 	if (new_parent) {
4567 		klist_add_tail(&dev->p->knode_parent,
4568 			       &new_parent->p->klist_children);
4569 		set_dev_node(dev, dev_to_node(new_parent));
4570 	}
4571 
4572 	if (dev->class) {
4573 		error = device_move_class_links(dev, old_parent, new_parent);
4574 		if (error) {
4575 			/* We ignore errors on cleanup since we're hosed anyway... */
4576 			device_move_class_links(dev, new_parent, old_parent);
4577 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4578 				if (new_parent)
4579 					klist_remove(&dev->p->knode_parent);
4580 				dev->parent = old_parent;
4581 				if (old_parent) {
4582 					klist_add_tail(&dev->p->knode_parent,
4583 						       &old_parent->p->klist_children);
4584 					set_dev_node(dev, dev_to_node(old_parent));
4585 				}
4586 			}
4587 			cleanup_glue_dir(dev, new_parent_kobj);
4588 			put_device(new_parent);
4589 			goto out;
4590 		}
4591 	}
4592 	switch (dpm_order) {
4593 	case DPM_ORDER_NONE:
4594 		break;
4595 	case DPM_ORDER_DEV_AFTER_PARENT:
4596 		device_pm_move_after(dev, new_parent);
4597 		devices_kset_move_after(dev, new_parent);
4598 		break;
4599 	case DPM_ORDER_PARENT_BEFORE_DEV:
4600 		device_pm_move_before(new_parent, dev);
4601 		devices_kset_move_before(new_parent, dev);
4602 		break;
4603 	case DPM_ORDER_DEV_LAST:
4604 		device_pm_move_last(dev);
4605 		devices_kset_move_last(dev);
4606 		break;
4607 	}
4608 
4609 	put_device(old_parent);
4610 out:
4611 	device_pm_unlock();
4612 	put_device(dev);
4613 	return error;
4614 }
4615 EXPORT_SYMBOL_GPL(device_move);
4616 
4617 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4618 				     kgid_t kgid)
4619 {
4620 	struct kobject *kobj = &dev->kobj;
4621 	const struct class *class = dev->class;
4622 	const struct device_type *type = dev->type;
4623 	int error;
4624 
4625 	if (class) {
4626 		/*
4627 		 * Change the device groups of the device class for @dev to
4628 		 * @kuid/@kgid.
4629 		 */
4630 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4631 						  kgid);
4632 		if (error)
4633 			return error;
4634 	}
4635 
4636 	if (type) {
4637 		/*
4638 		 * Change the device groups of the device type for @dev to
4639 		 * @kuid/@kgid.
4640 		 */
4641 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4642 						  kgid);
4643 		if (error)
4644 			return error;
4645 	}
4646 
4647 	/* Change the device groups of @dev to @kuid/@kgid. */
4648 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4649 	if (error)
4650 		return error;
4651 
4652 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4653 		/* Change online device attributes of @dev to @kuid/@kgid. */
4654 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4655 						kuid, kgid);
4656 		if (error)
4657 			return error;
4658 	}
4659 
4660 	return 0;
4661 }
4662 
4663 /**
4664  * device_change_owner - change the owner of an existing device.
4665  * @dev: device.
4666  * @kuid: new owner's kuid
4667  * @kgid: new owner's kgid
4668  *
4669  * This changes the owner of @dev and its corresponding sysfs entries to
4670  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4671  * core.
4672  *
4673  * Returns 0 on success or error code on failure.
4674  */
4675 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4676 {
4677 	int error;
4678 	struct kobject *kobj = &dev->kobj;
4679 	struct subsys_private *sp;
4680 
4681 	dev = get_device(dev);
4682 	if (!dev)
4683 		return -EINVAL;
4684 
4685 	/*
4686 	 * Change the kobject and the default attributes and groups of the
4687 	 * ktype associated with it to @kuid/@kgid.
4688 	 */
4689 	error = sysfs_change_owner(kobj, kuid, kgid);
4690 	if (error)
4691 		goto out;
4692 
4693 	/*
4694 	 * Change the uevent file for @dev to the new owner. The uevent file
4695 	 * was created in a separate step when @dev got added and we mirror
4696 	 * that step here.
4697 	 */
4698 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4699 					kgid);
4700 	if (error)
4701 		goto out;
4702 
4703 	/*
4704 	 * Change the device groups, the device groups associated with the
4705 	 * device class, and the groups associated with the device type of @dev
4706 	 * to @kuid/@kgid.
4707 	 */
4708 	error = device_attrs_change_owner(dev, kuid, kgid);
4709 	if (error)
4710 		goto out;
4711 
4712 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4713 	if (error)
4714 		goto out;
4715 
4716 	/*
4717 	 * Change the owner of the symlink located in the class directory of
4718 	 * the device class associated with @dev which points to the actual
4719 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4720 	 * symlink shows the same permissions as its target.
4721 	 */
4722 	sp = class_to_subsys(dev->class);
4723 	if (!sp) {
4724 		error = -EINVAL;
4725 		goto out;
4726 	}
4727 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4728 	subsys_put(sp);
4729 
4730 out:
4731 	put_device(dev);
4732 	return error;
4733 }
4734 EXPORT_SYMBOL_GPL(device_change_owner);
4735 
4736 /**
4737  * device_shutdown - call ->shutdown() on each device to shutdown.
4738  */
4739 void device_shutdown(void)
4740 {
4741 	struct device *dev, *parent;
4742 
4743 	wait_for_device_probe();
4744 	device_block_probing();
4745 
4746 	cpufreq_suspend();
4747 
4748 	spin_lock(&devices_kset->list_lock);
4749 	/*
4750 	 * Walk the devices list backward, shutting down each in turn.
4751 	 * Beware that device unplug events may also start pulling
4752 	 * devices offline, even as the system is shutting down.
4753 	 */
4754 	while (!list_empty(&devices_kset->list)) {
4755 		dev = list_entry(devices_kset->list.prev, struct device,
4756 				kobj.entry);
4757 
4758 		/*
4759 		 * hold reference count of device's parent to
4760 		 * prevent it from being freed because parent's
4761 		 * lock is to be held
4762 		 */
4763 		parent = get_device(dev->parent);
4764 		get_device(dev);
4765 		/*
4766 		 * Make sure the device is off the kset list, in the
4767 		 * event that dev->*->shutdown() doesn't remove it.
4768 		 */
4769 		list_del_init(&dev->kobj.entry);
4770 		spin_unlock(&devices_kset->list_lock);
4771 
4772 		/* hold lock to avoid race with probe/release */
4773 		if (parent)
4774 			device_lock(parent);
4775 		device_lock(dev);
4776 
4777 		/* Don't allow any more runtime suspends */
4778 		pm_runtime_get_noresume(dev);
4779 		pm_runtime_barrier(dev);
4780 
4781 		if (dev->class && dev->class->shutdown_pre) {
4782 			if (initcall_debug)
4783 				dev_info(dev, "shutdown_pre\n");
4784 			dev->class->shutdown_pre(dev);
4785 		}
4786 		if (dev->bus && dev->bus->shutdown) {
4787 			if (initcall_debug)
4788 				dev_info(dev, "shutdown\n");
4789 			dev->bus->shutdown(dev);
4790 		} else if (dev->driver && dev->driver->shutdown) {
4791 			if (initcall_debug)
4792 				dev_info(dev, "shutdown\n");
4793 			dev->driver->shutdown(dev);
4794 		}
4795 
4796 		device_unlock(dev);
4797 		if (parent)
4798 			device_unlock(parent);
4799 
4800 		put_device(dev);
4801 		put_device(parent);
4802 
4803 		spin_lock(&devices_kset->list_lock);
4804 	}
4805 	spin_unlock(&devices_kset->list_lock);
4806 }
4807 
4808 /*
4809  * Device logging functions
4810  */
4811 
4812 #ifdef CONFIG_PRINTK
4813 static void
4814 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4815 {
4816 	const char *subsys;
4817 
4818 	memset(dev_info, 0, sizeof(*dev_info));
4819 
4820 	if (dev->class)
4821 		subsys = dev->class->name;
4822 	else if (dev->bus)
4823 		subsys = dev->bus->name;
4824 	else
4825 		return;
4826 
4827 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4828 
4829 	/*
4830 	 * Add device identifier DEVICE=:
4831 	 *   b12:8         block dev_t
4832 	 *   c127:3        char dev_t
4833 	 *   n8            netdev ifindex
4834 	 *   +sound:card0  subsystem:devname
4835 	 */
4836 	if (MAJOR(dev->devt)) {
4837 		char c;
4838 
4839 		if (strcmp(subsys, "block") == 0)
4840 			c = 'b';
4841 		else
4842 			c = 'c';
4843 
4844 		snprintf(dev_info->device, sizeof(dev_info->device),
4845 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4846 	} else if (strcmp(subsys, "net") == 0) {
4847 		struct net_device *net = to_net_dev(dev);
4848 
4849 		snprintf(dev_info->device, sizeof(dev_info->device),
4850 			 "n%u", net->ifindex);
4851 	} else {
4852 		snprintf(dev_info->device, sizeof(dev_info->device),
4853 			 "+%s:%s", subsys, dev_name(dev));
4854 	}
4855 }
4856 
4857 int dev_vprintk_emit(int level, const struct device *dev,
4858 		     const char *fmt, va_list args)
4859 {
4860 	struct dev_printk_info dev_info;
4861 
4862 	set_dev_info(dev, &dev_info);
4863 
4864 	return vprintk_emit(0, level, &dev_info, fmt, args);
4865 }
4866 EXPORT_SYMBOL(dev_vprintk_emit);
4867 
4868 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4869 {
4870 	va_list args;
4871 	int r;
4872 
4873 	va_start(args, fmt);
4874 
4875 	r = dev_vprintk_emit(level, dev, fmt, args);
4876 
4877 	va_end(args);
4878 
4879 	return r;
4880 }
4881 EXPORT_SYMBOL(dev_printk_emit);
4882 
4883 static void __dev_printk(const char *level, const struct device *dev,
4884 			struct va_format *vaf)
4885 {
4886 	if (dev)
4887 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4888 				dev_driver_string(dev), dev_name(dev), vaf);
4889 	else
4890 		printk("%s(NULL device *): %pV", level, vaf);
4891 }
4892 
4893 void _dev_printk(const char *level, const struct device *dev,
4894 		 const char *fmt, ...)
4895 {
4896 	struct va_format vaf;
4897 	va_list args;
4898 
4899 	va_start(args, fmt);
4900 
4901 	vaf.fmt = fmt;
4902 	vaf.va = &args;
4903 
4904 	__dev_printk(level, dev, &vaf);
4905 
4906 	va_end(args);
4907 }
4908 EXPORT_SYMBOL(_dev_printk);
4909 
4910 #define define_dev_printk_level(func, kern_level)		\
4911 void func(const struct device *dev, const char *fmt, ...)	\
4912 {								\
4913 	struct va_format vaf;					\
4914 	va_list args;						\
4915 								\
4916 	va_start(args, fmt);					\
4917 								\
4918 	vaf.fmt = fmt;						\
4919 	vaf.va = &args;						\
4920 								\
4921 	__dev_printk(kern_level, dev, &vaf);			\
4922 								\
4923 	va_end(args);						\
4924 }								\
4925 EXPORT_SYMBOL(func);
4926 
4927 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4928 define_dev_printk_level(_dev_alert, KERN_ALERT);
4929 define_dev_printk_level(_dev_crit, KERN_CRIT);
4930 define_dev_printk_level(_dev_err, KERN_ERR);
4931 define_dev_printk_level(_dev_warn, KERN_WARNING);
4932 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4933 define_dev_printk_level(_dev_info, KERN_INFO);
4934 
4935 #endif
4936 
4937 /**
4938  * dev_err_probe - probe error check and log helper
4939  * @dev: the pointer to the struct device
4940  * @err: error value to test
4941  * @fmt: printf-style format string
4942  * @...: arguments as specified in the format string
4943  *
4944  * This helper implements common pattern present in probe functions for error
4945  * checking: print debug or error message depending if the error value is
4946  * -EPROBE_DEFER and propagate error upwards.
4947  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4948  * checked later by reading devices_deferred debugfs attribute.
4949  * It replaces code sequence::
4950  *
4951  * 	if (err != -EPROBE_DEFER)
4952  * 		dev_err(dev, ...);
4953  * 	else
4954  * 		dev_dbg(dev, ...);
4955  * 	return err;
4956  *
4957  * with::
4958  *
4959  * 	return dev_err_probe(dev, err, ...);
4960  *
4961  * Using this helper in your probe function is totally fine even if @err is
4962  * known to never be -EPROBE_DEFER.
4963  * The benefit compared to a normal dev_err() is the standardized format
4964  * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
4965  * instead of "-35") and the fact that the error code is returned which allows
4966  * more compact error paths.
4967  *
4968  * Returns @err.
4969  */
4970 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4971 {
4972 	struct va_format vaf;
4973 	va_list args;
4974 
4975 	va_start(args, fmt);
4976 	vaf.fmt = fmt;
4977 	vaf.va = &args;
4978 
4979 	if (err != -EPROBE_DEFER) {
4980 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4981 	} else {
4982 		device_set_deferred_probe_reason(dev, &vaf);
4983 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4984 	}
4985 
4986 	va_end(args);
4987 
4988 	return err;
4989 }
4990 EXPORT_SYMBOL_GPL(dev_err_probe);
4991 
4992 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4993 {
4994 	return fwnode && !IS_ERR(fwnode->secondary);
4995 }
4996 
4997 /**
4998  * set_primary_fwnode - Change the primary firmware node of a given device.
4999  * @dev: Device to handle.
5000  * @fwnode: New primary firmware node of the device.
5001  *
5002  * Set the device's firmware node pointer to @fwnode, but if a secondary
5003  * firmware node of the device is present, preserve it.
5004  *
5005  * Valid fwnode cases are:
5006  *  - primary --> secondary --> -ENODEV
5007  *  - primary --> NULL
5008  *  - secondary --> -ENODEV
5009  *  - NULL
5010  */
5011 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5012 {
5013 	struct device *parent = dev->parent;
5014 	struct fwnode_handle *fn = dev->fwnode;
5015 
5016 	if (fwnode) {
5017 		if (fwnode_is_primary(fn))
5018 			fn = fn->secondary;
5019 
5020 		if (fn) {
5021 			WARN_ON(fwnode->secondary);
5022 			fwnode->secondary = fn;
5023 		}
5024 		dev->fwnode = fwnode;
5025 	} else {
5026 		if (fwnode_is_primary(fn)) {
5027 			dev->fwnode = fn->secondary;
5028 
5029 			/* Skip nullifying fn->secondary if the primary is shared */
5030 			if (parent && fn == parent->fwnode)
5031 				return;
5032 
5033 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5034 			fn->secondary = NULL;
5035 		} else {
5036 			dev->fwnode = NULL;
5037 		}
5038 	}
5039 }
5040 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5041 
5042 /**
5043  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5044  * @dev: Device to handle.
5045  * @fwnode: New secondary firmware node of the device.
5046  *
5047  * If a primary firmware node of the device is present, set its secondary
5048  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5049  * @fwnode.
5050  */
5051 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5052 {
5053 	if (fwnode)
5054 		fwnode->secondary = ERR_PTR(-ENODEV);
5055 
5056 	if (fwnode_is_primary(dev->fwnode))
5057 		dev->fwnode->secondary = fwnode;
5058 	else
5059 		dev->fwnode = fwnode;
5060 }
5061 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5062 
5063 /**
5064  * device_set_of_node_from_dev - reuse device-tree node of another device
5065  * @dev: device whose device-tree node is being set
5066  * @dev2: device whose device-tree node is being reused
5067  *
5068  * Takes another reference to the new device-tree node after first dropping
5069  * any reference held to the old node.
5070  */
5071 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5072 {
5073 	of_node_put(dev->of_node);
5074 	dev->of_node = of_node_get(dev2->of_node);
5075 	dev->of_node_reused = true;
5076 }
5077 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5078 
5079 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5080 {
5081 	dev->fwnode = fwnode;
5082 	dev->of_node = to_of_node(fwnode);
5083 }
5084 EXPORT_SYMBOL_GPL(device_set_node);
5085 
5086 int device_match_name(struct device *dev, const void *name)
5087 {
5088 	return sysfs_streq(dev_name(dev), name);
5089 }
5090 EXPORT_SYMBOL_GPL(device_match_name);
5091 
5092 int device_match_of_node(struct device *dev, const void *np)
5093 {
5094 	return dev->of_node == np;
5095 }
5096 EXPORT_SYMBOL_GPL(device_match_of_node);
5097 
5098 int device_match_fwnode(struct device *dev, const void *fwnode)
5099 {
5100 	return dev_fwnode(dev) == fwnode;
5101 }
5102 EXPORT_SYMBOL_GPL(device_match_fwnode);
5103 
5104 int device_match_devt(struct device *dev, const void *pdevt)
5105 {
5106 	return dev->devt == *(dev_t *)pdevt;
5107 }
5108 EXPORT_SYMBOL_GPL(device_match_devt);
5109 
5110 int device_match_acpi_dev(struct device *dev, const void *adev)
5111 {
5112 	return ACPI_COMPANION(dev) == adev;
5113 }
5114 EXPORT_SYMBOL(device_match_acpi_dev);
5115 
5116 int device_match_acpi_handle(struct device *dev, const void *handle)
5117 {
5118 	return ACPI_HANDLE(dev) == handle;
5119 }
5120 EXPORT_SYMBOL(device_match_acpi_handle);
5121 
5122 int device_match_any(struct device *dev, const void *unused)
5123 {
5124 	return 1;
5125 }
5126 EXPORT_SYMBOL_GPL(device_match_any);
5127