1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * @flags: Link flags. 53 * 54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 55 * represents the detail that the firmware lists @sup fwnode as supplying a 56 * resource to @con. 57 * 58 * The driver core will use the fwnode link to create a device link between the 59 * two device objects corresponding to @con and @sup when they are created. The 60 * driver core will automatically delete the fwnode link between @con and @sup 61 * after doing that. 62 * 63 * Attempts to create duplicate links between the same pair of fwnode handles 64 * are ignored and there is no reference counting. 65 */ 66 static int __fwnode_link_add(struct fwnode_handle *con, 67 struct fwnode_handle *sup, u8 flags) 68 { 69 struct fwnode_link *link; 70 71 list_for_each_entry(link, &sup->consumers, s_hook) 72 if (link->consumer == con) { 73 link->flags |= flags; 74 return 0; 75 } 76 77 link = kzalloc(sizeof(*link), GFP_KERNEL); 78 if (!link) 79 return -ENOMEM; 80 81 link->supplier = sup; 82 INIT_LIST_HEAD(&link->s_hook); 83 link->consumer = con; 84 INIT_LIST_HEAD(&link->c_hook); 85 link->flags = flags; 86 87 list_add(&link->s_hook, &sup->consumers); 88 list_add(&link->c_hook, &con->suppliers); 89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 90 con, sup); 91 92 return 0; 93 } 94 95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 96 { 97 int ret; 98 99 mutex_lock(&fwnode_link_lock); 100 ret = __fwnode_link_add(con, sup, 0); 101 mutex_unlock(&fwnode_link_lock); 102 return ret; 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 mutex_lock(&fwnode_link_lock); 144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 145 __fwnode_link_del(link); 146 mutex_unlock(&fwnode_link_lock); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 mutex_lock(&fwnode_link_lock); 160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 161 __fwnode_link_del(link); 162 mutex_unlock(&fwnode_link_lock); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the "long" 536 * workqueue. 537 */ 538 queue_work(system_long_wq, &link->rm_work); 539 } 540 541 static struct class devlink_class = { 542 .name = "devlink", 543 .dev_groups = devlink_groups, 544 .dev_release = devlink_dev_release, 545 }; 546 547 static int devlink_add_symlinks(struct device *dev) 548 { 549 int ret; 550 size_t len; 551 struct device_link *link = to_devlink(dev); 552 struct device *sup = link->supplier; 553 struct device *con = link->consumer; 554 char *buf; 555 556 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 557 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 558 len += strlen(":"); 559 len += strlen("supplier:") + 1; 560 buf = kzalloc(len, GFP_KERNEL); 561 if (!buf) 562 return -ENOMEM; 563 564 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 565 if (ret) 566 goto out; 567 568 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 569 if (ret) 570 goto err_con; 571 572 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 573 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 574 if (ret) 575 goto err_con_dev; 576 577 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 578 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 579 if (ret) 580 goto err_sup_dev; 581 582 goto out; 583 584 err_sup_dev: 585 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 586 sysfs_remove_link(&sup->kobj, buf); 587 err_con_dev: 588 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 589 err_con: 590 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 591 out: 592 kfree(buf); 593 return ret; 594 } 595 596 static void devlink_remove_symlinks(struct device *dev) 597 { 598 struct device_link *link = to_devlink(dev); 599 size_t len; 600 struct device *sup = link->supplier; 601 struct device *con = link->consumer; 602 char *buf; 603 604 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 605 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 606 607 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 608 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 609 len += strlen(":"); 610 len += strlen("supplier:") + 1; 611 buf = kzalloc(len, GFP_KERNEL); 612 if (!buf) { 613 WARN(1, "Unable to properly free device link symlinks!\n"); 614 return; 615 } 616 617 if (device_is_registered(con)) { 618 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 619 sysfs_remove_link(&con->kobj, buf); 620 } 621 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 622 sysfs_remove_link(&sup->kobj, buf); 623 kfree(buf); 624 } 625 626 static struct class_interface devlink_class_intf = { 627 .class = &devlink_class, 628 .add_dev = devlink_add_symlinks, 629 .remove_dev = devlink_remove_symlinks, 630 }; 631 632 static int __init devlink_class_init(void) 633 { 634 int ret; 635 636 ret = class_register(&devlink_class); 637 if (ret) 638 return ret; 639 640 ret = class_interface_register(&devlink_class_intf); 641 if (ret) 642 class_unregister(&devlink_class); 643 644 return ret; 645 } 646 postcore_initcall(devlink_class_init); 647 648 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 649 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 650 DL_FLAG_AUTOPROBE_CONSUMER | \ 651 DL_FLAG_SYNC_STATE_ONLY | \ 652 DL_FLAG_INFERRED | \ 653 DL_FLAG_CYCLE) 654 655 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 656 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 657 658 /** 659 * device_link_add - Create a link between two devices. 660 * @consumer: Consumer end of the link. 661 * @supplier: Supplier end of the link. 662 * @flags: Link flags. 663 * 664 * The caller is responsible for the proper synchronization of the link creation 665 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 666 * runtime PM framework to take the link into account. Second, if the 667 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 668 * be forced into the active meta state and reference-counted upon the creation 669 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 670 * ignored. 671 * 672 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 673 * expected to release the link returned by it directly with the help of either 674 * device_link_del() or device_link_remove(). 675 * 676 * If that flag is not set, however, the caller of this function is handing the 677 * management of the link over to the driver core entirely and its return value 678 * can only be used to check whether or not the link is present. In that case, 679 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 680 * flags can be used to indicate to the driver core when the link can be safely 681 * deleted. Namely, setting one of them in @flags indicates to the driver core 682 * that the link is not going to be used (by the given caller of this function) 683 * after unbinding the consumer or supplier driver, respectively, from its 684 * device, so the link can be deleted at that point. If none of them is set, 685 * the link will be maintained until one of the devices pointed to by it (either 686 * the consumer or the supplier) is unregistered. 687 * 688 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 689 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 690 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 691 * be used to request the driver core to automatically probe for a consumer 692 * driver after successfully binding a driver to the supplier device. 693 * 694 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 695 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 696 * the same time is invalid and will cause NULL to be returned upfront. 697 * However, if a device link between the given @consumer and @supplier pair 698 * exists already when this function is called for them, the existing link will 699 * be returned regardless of its current type and status (the link's flags may 700 * be modified then). The caller of this function is then expected to treat 701 * the link as though it has just been created, so (in particular) if 702 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 703 * explicitly when not needed any more (as stated above). 704 * 705 * A side effect of the link creation is re-ordering of dpm_list and the 706 * devices_kset list by moving the consumer device and all devices depending 707 * on it to the ends of these lists (that does not happen to devices that have 708 * not been registered when this function is called). 709 * 710 * The supplier device is required to be registered when this function is called 711 * and NULL will be returned if that is not the case. The consumer device need 712 * not be registered, however. 713 */ 714 struct device_link *device_link_add(struct device *consumer, 715 struct device *supplier, u32 flags) 716 { 717 struct device_link *link; 718 719 if (!consumer || !supplier || consumer == supplier || 720 flags & ~DL_ADD_VALID_FLAGS || 721 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 722 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 723 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 724 DL_FLAG_AUTOREMOVE_SUPPLIER))) 725 return NULL; 726 727 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 728 if (pm_runtime_get_sync(supplier) < 0) { 729 pm_runtime_put_noidle(supplier); 730 return NULL; 731 } 732 } 733 734 if (!(flags & DL_FLAG_STATELESS)) 735 flags |= DL_FLAG_MANAGED; 736 737 if (flags & DL_FLAG_SYNC_STATE_ONLY && 738 !device_link_flag_is_sync_state_only(flags)) 739 return NULL; 740 741 device_links_write_lock(); 742 device_pm_lock(); 743 744 /* 745 * If the supplier has not been fully registered yet or there is a 746 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 747 * the supplier already in the graph, return NULL. If the link is a 748 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 749 * because it only affects sync_state() callbacks. 750 */ 751 if (!device_pm_initialized(supplier) 752 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 753 device_is_dependent(consumer, supplier))) { 754 link = NULL; 755 goto out; 756 } 757 758 /* 759 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 760 * So, only create it if the consumer hasn't probed yet. 761 */ 762 if (flags & DL_FLAG_SYNC_STATE_ONLY && 763 consumer->links.status != DL_DEV_NO_DRIVER && 764 consumer->links.status != DL_DEV_PROBING) { 765 link = NULL; 766 goto out; 767 } 768 769 /* 770 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 771 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 772 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 773 */ 774 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 775 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 776 777 list_for_each_entry(link, &supplier->links.consumers, s_node) { 778 if (link->consumer != consumer) 779 continue; 780 781 if (link->flags & DL_FLAG_INFERRED && 782 !(flags & DL_FLAG_INFERRED)) 783 link->flags &= ~DL_FLAG_INFERRED; 784 785 if (flags & DL_FLAG_PM_RUNTIME) { 786 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 787 pm_runtime_new_link(consumer); 788 link->flags |= DL_FLAG_PM_RUNTIME; 789 } 790 if (flags & DL_FLAG_RPM_ACTIVE) 791 refcount_inc(&link->rpm_active); 792 } 793 794 if (flags & DL_FLAG_STATELESS) { 795 kref_get(&link->kref); 796 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 797 !(link->flags & DL_FLAG_STATELESS)) { 798 link->flags |= DL_FLAG_STATELESS; 799 goto reorder; 800 } else { 801 link->flags |= DL_FLAG_STATELESS; 802 goto out; 803 } 804 } 805 806 /* 807 * If the life time of the link following from the new flags is 808 * longer than indicated by the flags of the existing link, 809 * update the existing link to stay around longer. 810 */ 811 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 812 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 813 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 814 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 815 } 816 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 817 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 818 DL_FLAG_AUTOREMOVE_SUPPLIER); 819 } 820 if (!(link->flags & DL_FLAG_MANAGED)) { 821 kref_get(&link->kref); 822 link->flags |= DL_FLAG_MANAGED; 823 device_link_init_status(link, consumer, supplier); 824 } 825 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 826 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 827 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 828 goto reorder; 829 } 830 831 goto out; 832 } 833 834 link = kzalloc(sizeof(*link), GFP_KERNEL); 835 if (!link) 836 goto out; 837 838 refcount_set(&link->rpm_active, 1); 839 840 get_device(supplier); 841 link->supplier = supplier; 842 INIT_LIST_HEAD(&link->s_node); 843 get_device(consumer); 844 link->consumer = consumer; 845 INIT_LIST_HEAD(&link->c_node); 846 link->flags = flags; 847 kref_init(&link->kref); 848 849 link->link_dev.class = &devlink_class; 850 device_set_pm_not_required(&link->link_dev); 851 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 852 dev_bus_name(supplier), dev_name(supplier), 853 dev_bus_name(consumer), dev_name(consumer)); 854 if (device_register(&link->link_dev)) { 855 put_device(&link->link_dev); 856 link = NULL; 857 goto out; 858 } 859 860 if (flags & DL_FLAG_PM_RUNTIME) { 861 if (flags & DL_FLAG_RPM_ACTIVE) 862 refcount_inc(&link->rpm_active); 863 864 pm_runtime_new_link(consumer); 865 } 866 867 /* Determine the initial link state. */ 868 if (flags & DL_FLAG_STATELESS) 869 link->status = DL_STATE_NONE; 870 else 871 device_link_init_status(link, consumer, supplier); 872 873 /* 874 * Some callers expect the link creation during consumer driver probe to 875 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 876 */ 877 if (link->status == DL_STATE_CONSUMER_PROBE && 878 flags & DL_FLAG_PM_RUNTIME) 879 pm_runtime_resume(supplier); 880 881 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 882 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 883 884 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 885 dev_dbg(consumer, 886 "Linked as a sync state only consumer to %s\n", 887 dev_name(supplier)); 888 goto out; 889 } 890 891 reorder: 892 /* 893 * Move the consumer and all of the devices depending on it to the end 894 * of dpm_list and the devices_kset list. 895 * 896 * It is necessary to hold dpm_list locked throughout all that or else 897 * we may end up suspending with a wrong ordering of it. 898 */ 899 device_reorder_to_tail(consumer, NULL); 900 901 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 902 903 out: 904 device_pm_unlock(); 905 device_links_write_unlock(); 906 907 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 908 pm_runtime_put(supplier); 909 910 return link; 911 } 912 EXPORT_SYMBOL_GPL(device_link_add); 913 914 static void __device_link_del(struct kref *kref) 915 { 916 struct device_link *link = container_of(kref, struct device_link, kref); 917 918 dev_dbg(link->consumer, "Dropping the link to %s\n", 919 dev_name(link->supplier)); 920 921 pm_runtime_drop_link(link); 922 923 device_link_remove_from_lists(link); 924 device_unregister(&link->link_dev); 925 } 926 927 static void device_link_put_kref(struct device_link *link) 928 { 929 if (link->flags & DL_FLAG_STATELESS) 930 kref_put(&link->kref, __device_link_del); 931 else if (!device_is_registered(link->consumer)) 932 __device_link_del(&link->kref); 933 else 934 WARN(1, "Unable to drop a managed device link reference\n"); 935 } 936 937 /** 938 * device_link_del - Delete a stateless link between two devices. 939 * @link: Device link to delete. 940 * 941 * The caller must ensure proper synchronization of this function with runtime 942 * PM. If the link was added multiple times, it needs to be deleted as often. 943 * Care is required for hotplugged devices: Their links are purged on removal 944 * and calling device_link_del() is then no longer allowed. 945 */ 946 void device_link_del(struct device_link *link) 947 { 948 device_links_write_lock(); 949 device_link_put_kref(link); 950 device_links_write_unlock(); 951 } 952 EXPORT_SYMBOL_GPL(device_link_del); 953 954 /** 955 * device_link_remove - Delete a stateless link between two devices. 956 * @consumer: Consumer end of the link. 957 * @supplier: Supplier end of the link. 958 * 959 * The caller must ensure proper synchronization of this function with runtime 960 * PM. 961 */ 962 void device_link_remove(void *consumer, struct device *supplier) 963 { 964 struct device_link *link; 965 966 if (WARN_ON(consumer == supplier)) 967 return; 968 969 device_links_write_lock(); 970 971 list_for_each_entry(link, &supplier->links.consumers, s_node) { 972 if (link->consumer == consumer) { 973 device_link_put_kref(link); 974 break; 975 } 976 } 977 978 device_links_write_unlock(); 979 } 980 EXPORT_SYMBOL_GPL(device_link_remove); 981 982 static void device_links_missing_supplier(struct device *dev) 983 { 984 struct device_link *link; 985 986 list_for_each_entry(link, &dev->links.suppliers, c_node) { 987 if (link->status != DL_STATE_CONSUMER_PROBE) 988 continue; 989 990 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 991 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 992 } else { 993 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 994 WRITE_ONCE(link->status, DL_STATE_DORMANT); 995 } 996 } 997 } 998 999 static bool dev_is_best_effort(struct device *dev) 1000 { 1001 return (fw_devlink_best_effort && dev->can_match) || 1002 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1003 } 1004 1005 static struct fwnode_handle *fwnode_links_check_suppliers( 1006 struct fwnode_handle *fwnode) 1007 { 1008 struct fwnode_link *link; 1009 1010 if (!fwnode || fw_devlink_is_permissive()) 1011 return NULL; 1012 1013 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1014 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1015 return link->supplier; 1016 1017 return NULL; 1018 } 1019 1020 /** 1021 * device_links_check_suppliers - Check presence of supplier drivers. 1022 * @dev: Consumer device. 1023 * 1024 * Check links from this device to any suppliers. Walk the list of the device's 1025 * links to suppliers and see if all of them are available. If not, simply 1026 * return -EPROBE_DEFER. 1027 * 1028 * We need to guarantee that the supplier will not go away after the check has 1029 * been positive here. It only can go away in __device_release_driver() and 1030 * that function checks the device's links to consumers. This means we need to 1031 * mark the link as "consumer probe in progress" to make the supplier removal 1032 * wait for us to complete (or bad things may happen). 1033 * 1034 * Links without the DL_FLAG_MANAGED flag set are ignored. 1035 */ 1036 int device_links_check_suppliers(struct device *dev) 1037 { 1038 struct device_link *link; 1039 int ret = 0, fwnode_ret = 0; 1040 struct fwnode_handle *sup_fw; 1041 1042 /* 1043 * Device waiting for supplier to become available is not allowed to 1044 * probe. 1045 */ 1046 mutex_lock(&fwnode_link_lock); 1047 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1048 if (sup_fw) { 1049 if (!dev_is_best_effort(dev)) { 1050 fwnode_ret = -EPROBE_DEFER; 1051 dev_err_probe(dev, -EPROBE_DEFER, 1052 "wait for supplier %pfwf\n", sup_fw); 1053 } else { 1054 fwnode_ret = -EAGAIN; 1055 } 1056 } 1057 mutex_unlock(&fwnode_link_lock); 1058 if (fwnode_ret == -EPROBE_DEFER) 1059 return fwnode_ret; 1060 1061 device_links_write_lock(); 1062 1063 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1064 if (!(link->flags & DL_FLAG_MANAGED)) 1065 continue; 1066 1067 if (link->status != DL_STATE_AVAILABLE && 1068 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1069 1070 if (dev_is_best_effort(dev) && 1071 link->flags & DL_FLAG_INFERRED && 1072 !link->supplier->can_match) { 1073 ret = -EAGAIN; 1074 continue; 1075 } 1076 1077 device_links_missing_supplier(dev); 1078 dev_err_probe(dev, -EPROBE_DEFER, 1079 "supplier %s not ready\n", 1080 dev_name(link->supplier)); 1081 ret = -EPROBE_DEFER; 1082 break; 1083 } 1084 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1085 } 1086 dev->links.status = DL_DEV_PROBING; 1087 1088 device_links_write_unlock(); 1089 1090 return ret ? ret : fwnode_ret; 1091 } 1092 1093 /** 1094 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1095 * @dev: Device to call sync_state() on 1096 * @list: List head to queue the @dev on 1097 * 1098 * Queues a device for a sync_state() callback when the device links write lock 1099 * isn't held. This allows the sync_state() execution flow to use device links 1100 * APIs. The caller must ensure this function is called with 1101 * device_links_write_lock() held. 1102 * 1103 * This function does a get_device() to make sure the device is not freed while 1104 * on this list. 1105 * 1106 * So the caller must also ensure that device_links_flush_sync_list() is called 1107 * as soon as the caller releases device_links_write_lock(). This is necessary 1108 * to make sure the sync_state() is called in a timely fashion and the 1109 * put_device() is called on this device. 1110 */ 1111 static void __device_links_queue_sync_state(struct device *dev, 1112 struct list_head *list) 1113 { 1114 struct device_link *link; 1115 1116 if (!dev_has_sync_state(dev)) 1117 return; 1118 if (dev->state_synced) 1119 return; 1120 1121 list_for_each_entry(link, &dev->links.consumers, s_node) { 1122 if (!(link->flags & DL_FLAG_MANAGED)) 1123 continue; 1124 if (link->status != DL_STATE_ACTIVE) 1125 return; 1126 } 1127 1128 /* 1129 * Set the flag here to avoid adding the same device to a list more 1130 * than once. This can happen if new consumers get added to the device 1131 * and probed before the list is flushed. 1132 */ 1133 dev->state_synced = true; 1134 1135 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1136 return; 1137 1138 get_device(dev); 1139 list_add_tail(&dev->links.defer_sync, list); 1140 } 1141 1142 /** 1143 * device_links_flush_sync_list - Call sync_state() on a list of devices 1144 * @list: List of devices to call sync_state() on 1145 * @dont_lock_dev: Device for which lock is already held by the caller 1146 * 1147 * Calls sync_state() on all the devices that have been queued for it. This 1148 * function is used in conjunction with __device_links_queue_sync_state(). The 1149 * @dont_lock_dev parameter is useful when this function is called from a 1150 * context where a device lock is already held. 1151 */ 1152 static void device_links_flush_sync_list(struct list_head *list, 1153 struct device *dont_lock_dev) 1154 { 1155 struct device *dev, *tmp; 1156 1157 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1158 list_del_init(&dev->links.defer_sync); 1159 1160 if (dev != dont_lock_dev) 1161 device_lock(dev); 1162 1163 dev_sync_state(dev); 1164 1165 if (dev != dont_lock_dev) 1166 device_unlock(dev); 1167 1168 put_device(dev); 1169 } 1170 } 1171 1172 void device_links_supplier_sync_state_pause(void) 1173 { 1174 device_links_write_lock(); 1175 defer_sync_state_count++; 1176 device_links_write_unlock(); 1177 } 1178 1179 void device_links_supplier_sync_state_resume(void) 1180 { 1181 struct device *dev, *tmp; 1182 LIST_HEAD(sync_list); 1183 1184 device_links_write_lock(); 1185 if (!defer_sync_state_count) { 1186 WARN(true, "Unmatched sync_state pause/resume!"); 1187 goto out; 1188 } 1189 defer_sync_state_count--; 1190 if (defer_sync_state_count) 1191 goto out; 1192 1193 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1194 /* 1195 * Delete from deferred_sync list before queuing it to 1196 * sync_list because defer_sync is used for both lists. 1197 */ 1198 list_del_init(&dev->links.defer_sync); 1199 __device_links_queue_sync_state(dev, &sync_list); 1200 } 1201 out: 1202 device_links_write_unlock(); 1203 1204 device_links_flush_sync_list(&sync_list, NULL); 1205 } 1206 1207 static int sync_state_resume_initcall(void) 1208 { 1209 device_links_supplier_sync_state_resume(); 1210 return 0; 1211 } 1212 late_initcall(sync_state_resume_initcall); 1213 1214 static void __device_links_supplier_defer_sync(struct device *sup) 1215 { 1216 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1217 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1218 } 1219 1220 static void device_link_drop_managed(struct device_link *link) 1221 { 1222 link->flags &= ~DL_FLAG_MANAGED; 1223 WRITE_ONCE(link->status, DL_STATE_NONE); 1224 kref_put(&link->kref, __device_link_del); 1225 } 1226 1227 static ssize_t waiting_for_supplier_show(struct device *dev, 1228 struct device_attribute *attr, 1229 char *buf) 1230 { 1231 bool val; 1232 1233 device_lock(dev); 1234 mutex_lock(&fwnode_link_lock); 1235 val = !!fwnode_links_check_suppliers(dev->fwnode); 1236 mutex_unlock(&fwnode_link_lock); 1237 device_unlock(dev); 1238 return sysfs_emit(buf, "%u\n", val); 1239 } 1240 static DEVICE_ATTR_RO(waiting_for_supplier); 1241 1242 /** 1243 * device_links_force_bind - Prepares device to be force bound 1244 * @dev: Consumer device. 1245 * 1246 * device_bind_driver() force binds a device to a driver without calling any 1247 * driver probe functions. So the consumer really isn't going to wait for any 1248 * supplier before it's bound to the driver. We still want the device link 1249 * states to be sensible when this happens. 1250 * 1251 * In preparation for device_bind_driver(), this function goes through each 1252 * supplier device links and checks if the supplier is bound. If it is, then 1253 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1254 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1255 */ 1256 void device_links_force_bind(struct device *dev) 1257 { 1258 struct device_link *link, *ln; 1259 1260 device_links_write_lock(); 1261 1262 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1263 if (!(link->flags & DL_FLAG_MANAGED)) 1264 continue; 1265 1266 if (link->status != DL_STATE_AVAILABLE) { 1267 device_link_drop_managed(link); 1268 continue; 1269 } 1270 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1271 } 1272 dev->links.status = DL_DEV_PROBING; 1273 1274 device_links_write_unlock(); 1275 } 1276 1277 /** 1278 * device_links_driver_bound - Update device links after probing its driver. 1279 * @dev: Device to update the links for. 1280 * 1281 * The probe has been successful, so update links from this device to any 1282 * consumers by changing their status to "available". 1283 * 1284 * Also change the status of @dev's links to suppliers to "active". 1285 * 1286 * Links without the DL_FLAG_MANAGED flag set are ignored. 1287 */ 1288 void device_links_driver_bound(struct device *dev) 1289 { 1290 struct device_link *link, *ln; 1291 LIST_HEAD(sync_list); 1292 1293 /* 1294 * If a device binds successfully, it's expected to have created all 1295 * the device links it needs to or make new device links as it needs 1296 * them. So, fw_devlink no longer needs to create device links to any 1297 * of the device's suppliers. 1298 * 1299 * Also, if a child firmware node of this bound device is not added as a 1300 * device by now, assume it is never going to be added. Make this bound 1301 * device the fallback supplier to the dangling consumers of the child 1302 * firmware node because this bound device is probably implementing the 1303 * child firmware node functionality and we don't want the dangling 1304 * consumers to defer probe indefinitely waiting for a device for the 1305 * child firmware node. 1306 */ 1307 if (dev->fwnode && dev->fwnode->dev == dev) { 1308 struct fwnode_handle *child; 1309 fwnode_links_purge_suppliers(dev->fwnode); 1310 mutex_lock(&fwnode_link_lock); 1311 fwnode_for_each_available_child_node(dev->fwnode, child) 1312 __fw_devlink_pickup_dangling_consumers(child, 1313 dev->fwnode); 1314 __fw_devlink_link_to_consumers(dev); 1315 mutex_unlock(&fwnode_link_lock); 1316 } 1317 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1318 1319 device_links_write_lock(); 1320 1321 list_for_each_entry(link, &dev->links.consumers, s_node) { 1322 if (!(link->flags & DL_FLAG_MANAGED)) 1323 continue; 1324 1325 /* 1326 * Links created during consumer probe may be in the "consumer 1327 * probe" state to start with if the supplier is still probing 1328 * when they are created and they may become "active" if the 1329 * consumer probe returns first. Skip them here. 1330 */ 1331 if (link->status == DL_STATE_CONSUMER_PROBE || 1332 link->status == DL_STATE_ACTIVE) 1333 continue; 1334 1335 WARN_ON(link->status != DL_STATE_DORMANT); 1336 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1337 1338 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1339 driver_deferred_probe_add(link->consumer); 1340 } 1341 1342 if (defer_sync_state_count) 1343 __device_links_supplier_defer_sync(dev); 1344 else 1345 __device_links_queue_sync_state(dev, &sync_list); 1346 1347 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1348 struct device *supplier; 1349 1350 if (!(link->flags & DL_FLAG_MANAGED)) 1351 continue; 1352 1353 supplier = link->supplier; 1354 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1355 /* 1356 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1357 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1358 * save to drop the managed link completely. 1359 */ 1360 device_link_drop_managed(link); 1361 } else if (dev_is_best_effort(dev) && 1362 link->flags & DL_FLAG_INFERRED && 1363 link->status != DL_STATE_CONSUMER_PROBE && 1364 !link->supplier->can_match) { 1365 /* 1366 * When dev_is_best_effort() is true, we ignore device 1367 * links to suppliers that don't have a driver. If the 1368 * consumer device still managed to probe, there's no 1369 * point in maintaining a device link in a weird state 1370 * (consumer probed before supplier). So delete it. 1371 */ 1372 device_link_drop_managed(link); 1373 } else { 1374 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1375 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1376 } 1377 1378 /* 1379 * This needs to be done even for the deleted 1380 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1381 * device link that was preventing the supplier from getting a 1382 * sync_state() call. 1383 */ 1384 if (defer_sync_state_count) 1385 __device_links_supplier_defer_sync(supplier); 1386 else 1387 __device_links_queue_sync_state(supplier, &sync_list); 1388 } 1389 1390 dev->links.status = DL_DEV_DRIVER_BOUND; 1391 1392 device_links_write_unlock(); 1393 1394 device_links_flush_sync_list(&sync_list, dev); 1395 } 1396 1397 /** 1398 * __device_links_no_driver - Update links of a device without a driver. 1399 * @dev: Device without a drvier. 1400 * 1401 * Delete all non-persistent links from this device to any suppliers. 1402 * 1403 * Persistent links stay around, but their status is changed to "available", 1404 * unless they already are in the "supplier unbind in progress" state in which 1405 * case they need not be updated. 1406 * 1407 * Links without the DL_FLAG_MANAGED flag set are ignored. 1408 */ 1409 static void __device_links_no_driver(struct device *dev) 1410 { 1411 struct device_link *link, *ln; 1412 1413 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1414 if (!(link->flags & DL_FLAG_MANAGED)) 1415 continue; 1416 1417 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1418 device_link_drop_managed(link); 1419 continue; 1420 } 1421 1422 if (link->status != DL_STATE_CONSUMER_PROBE && 1423 link->status != DL_STATE_ACTIVE) 1424 continue; 1425 1426 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1427 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1428 } else { 1429 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1430 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1431 } 1432 } 1433 1434 dev->links.status = DL_DEV_NO_DRIVER; 1435 } 1436 1437 /** 1438 * device_links_no_driver - Update links after failing driver probe. 1439 * @dev: Device whose driver has just failed to probe. 1440 * 1441 * Clean up leftover links to consumers for @dev and invoke 1442 * %__device_links_no_driver() to update links to suppliers for it as 1443 * appropriate. 1444 * 1445 * Links without the DL_FLAG_MANAGED flag set are ignored. 1446 */ 1447 void device_links_no_driver(struct device *dev) 1448 { 1449 struct device_link *link; 1450 1451 device_links_write_lock(); 1452 1453 list_for_each_entry(link, &dev->links.consumers, s_node) { 1454 if (!(link->flags & DL_FLAG_MANAGED)) 1455 continue; 1456 1457 /* 1458 * The probe has failed, so if the status of the link is 1459 * "consumer probe" or "active", it must have been added by 1460 * a probing consumer while this device was still probing. 1461 * Change its state to "dormant", as it represents a valid 1462 * relationship, but it is not functionally meaningful. 1463 */ 1464 if (link->status == DL_STATE_CONSUMER_PROBE || 1465 link->status == DL_STATE_ACTIVE) 1466 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1467 } 1468 1469 __device_links_no_driver(dev); 1470 1471 device_links_write_unlock(); 1472 } 1473 1474 /** 1475 * device_links_driver_cleanup - Update links after driver removal. 1476 * @dev: Device whose driver has just gone away. 1477 * 1478 * Update links to consumers for @dev by changing their status to "dormant" and 1479 * invoke %__device_links_no_driver() to update links to suppliers for it as 1480 * appropriate. 1481 * 1482 * Links without the DL_FLAG_MANAGED flag set are ignored. 1483 */ 1484 void device_links_driver_cleanup(struct device *dev) 1485 { 1486 struct device_link *link, *ln; 1487 1488 device_links_write_lock(); 1489 1490 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1491 if (!(link->flags & DL_FLAG_MANAGED)) 1492 continue; 1493 1494 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1495 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1496 1497 /* 1498 * autoremove the links between this @dev and its consumer 1499 * devices that are not active, i.e. where the link state 1500 * has moved to DL_STATE_SUPPLIER_UNBIND. 1501 */ 1502 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1503 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1504 device_link_drop_managed(link); 1505 1506 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1507 } 1508 1509 list_del_init(&dev->links.defer_sync); 1510 __device_links_no_driver(dev); 1511 1512 device_links_write_unlock(); 1513 } 1514 1515 /** 1516 * device_links_busy - Check if there are any busy links to consumers. 1517 * @dev: Device to check. 1518 * 1519 * Check each consumer of the device and return 'true' if its link's status 1520 * is one of "consumer probe" or "active" (meaning that the given consumer is 1521 * probing right now or its driver is present). Otherwise, change the link 1522 * state to "supplier unbind" to prevent the consumer from being probed 1523 * successfully going forward. 1524 * 1525 * Return 'false' if there are no probing or active consumers. 1526 * 1527 * Links without the DL_FLAG_MANAGED flag set are ignored. 1528 */ 1529 bool device_links_busy(struct device *dev) 1530 { 1531 struct device_link *link; 1532 bool ret = false; 1533 1534 device_links_write_lock(); 1535 1536 list_for_each_entry(link, &dev->links.consumers, s_node) { 1537 if (!(link->flags & DL_FLAG_MANAGED)) 1538 continue; 1539 1540 if (link->status == DL_STATE_CONSUMER_PROBE 1541 || link->status == DL_STATE_ACTIVE) { 1542 ret = true; 1543 break; 1544 } 1545 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1546 } 1547 1548 dev->links.status = DL_DEV_UNBINDING; 1549 1550 device_links_write_unlock(); 1551 return ret; 1552 } 1553 1554 /** 1555 * device_links_unbind_consumers - Force unbind consumers of the given device. 1556 * @dev: Device to unbind the consumers of. 1557 * 1558 * Walk the list of links to consumers for @dev and if any of them is in the 1559 * "consumer probe" state, wait for all device probes in progress to complete 1560 * and start over. 1561 * 1562 * If that's not the case, change the status of the link to "supplier unbind" 1563 * and check if the link was in the "active" state. If so, force the consumer 1564 * driver to unbind and start over (the consumer will not re-probe as we have 1565 * changed the state of the link already). 1566 * 1567 * Links without the DL_FLAG_MANAGED flag set are ignored. 1568 */ 1569 void device_links_unbind_consumers(struct device *dev) 1570 { 1571 struct device_link *link; 1572 1573 start: 1574 device_links_write_lock(); 1575 1576 list_for_each_entry(link, &dev->links.consumers, s_node) { 1577 enum device_link_state status; 1578 1579 if (!(link->flags & DL_FLAG_MANAGED) || 1580 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1581 continue; 1582 1583 status = link->status; 1584 if (status == DL_STATE_CONSUMER_PROBE) { 1585 device_links_write_unlock(); 1586 1587 wait_for_device_probe(); 1588 goto start; 1589 } 1590 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1591 if (status == DL_STATE_ACTIVE) { 1592 struct device *consumer = link->consumer; 1593 1594 get_device(consumer); 1595 1596 device_links_write_unlock(); 1597 1598 device_release_driver_internal(consumer, NULL, 1599 consumer->parent); 1600 put_device(consumer); 1601 goto start; 1602 } 1603 } 1604 1605 device_links_write_unlock(); 1606 } 1607 1608 /** 1609 * device_links_purge - Delete existing links to other devices. 1610 * @dev: Target device. 1611 */ 1612 static void device_links_purge(struct device *dev) 1613 { 1614 struct device_link *link, *ln; 1615 1616 if (dev->class == &devlink_class) 1617 return; 1618 1619 /* 1620 * Delete all of the remaining links from this device to any other 1621 * devices (either consumers or suppliers). 1622 */ 1623 device_links_write_lock(); 1624 1625 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1626 WARN_ON(link->status == DL_STATE_ACTIVE); 1627 __device_link_del(&link->kref); 1628 } 1629 1630 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1631 WARN_ON(link->status != DL_STATE_DORMANT && 1632 link->status != DL_STATE_NONE); 1633 __device_link_del(&link->kref); 1634 } 1635 1636 device_links_write_unlock(); 1637 } 1638 1639 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1640 DL_FLAG_SYNC_STATE_ONLY) 1641 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1642 DL_FLAG_AUTOPROBE_CONSUMER) 1643 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1644 DL_FLAG_PM_RUNTIME) 1645 1646 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1647 static int __init fw_devlink_setup(char *arg) 1648 { 1649 if (!arg) 1650 return -EINVAL; 1651 1652 if (strcmp(arg, "off") == 0) { 1653 fw_devlink_flags = 0; 1654 } else if (strcmp(arg, "permissive") == 0) { 1655 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1656 } else if (strcmp(arg, "on") == 0) { 1657 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1658 } else if (strcmp(arg, "rpm") == 0) { 1659 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1660 } 1661 return 0; 1662 } 1663 early_param("fw_devlink", fw_devlink_setup); 1664 1665 static bool fw_devlink_strict; 1666 static int __init fw_devlink_strict_setup(char *arg) 1667 { 1668 return kstrtobool(arg, &fw_devlink_strict); 1669 } 1670 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1671 1672 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1673 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1674 1675 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1676 static int fw_devlink_sync_state; 1677 #else 1678 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1679 #endif 1680 1681 static int __init fw_devlink_sync_state_setup(char *arg) 1682 { 1683 if (!arg) 1684 return -EINVAL; 1685 1686 if (strcmp(arg, "strict") == 0) { 1687 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1688 return 0; 1689 } else if (strcmp(arg, "timeout") == 0) { 1690 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1691 return 0; 1692 } 1693 return -EINVAL; 1694 } 1695 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1696 1697 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1698 { 1699 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1700 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1701 1702 return fw_devlink_flags; 1703 } 1704 1705 static bool fw_devlink_is_permissive(void) 1706 { 1707 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1708 } 1709 1710 bool fw_devlink_is_strict(void) 1711 { 1712 return fw_devlink_strict && !fw_devlink_is_permissive(); 1713 } 1714 1715 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1716 { 1717 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1718 return; 1719 1720 fwnode_call_int_op(fwnode, add_links); 1721 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1722 } 1723 1724 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1725 { 1726 struct fwnode_handle *child = NULL; 1727 1728 fw_devlink_parse_fwnode(fwnode); 1729 1730 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1731 fw_devlink_parse_fwtree(child); 1732 } 1733 1734 static void fw_devlink_relax_link(struct device_link *link) 1735 { 1736 if (!(link->flags & DL_FLAG_INFERRED)) 1737 return; 1738 1739 if (device_link_flag_is_sync_state_only(link->flags)) 1740 return; 1741 1742 pm_runtime_drop_link(link); 1743 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1744 dev_dbg(link->consumer, "Relaxing link with %s\n", 1745 dev_name(link->supplier)); 1746 } 1747 1748 static int fw_devlink_no_driver(struct device *dev, void *data) 1749 { 1750 struct device_link *link = to_devlink(dev); 1751 1752 if (!link->supplier->can_match) 1753 fw_devlink_relax_link(link); 1754 1755 return 0; 1756 } 1757 1758 void fw_devlink_drivers_done(void) 1759 { 1760 fw_devlink_drv_reg_done = true; 1761 device_links_write_lock(); 1762 class_for_each_device(&devlink_class, NULL, NULL, 1763 fw_devlink_no_driver); 1764 device_links_write_unlock(); 1765 } 1766 1767 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1768 { 1769 struct device_link *link = to_devlink(dev); 1770 struct device *sup = link->supplier; 1771 1772 if (!(link->flags & DL_FLAG_MANAGED) || 1773 link->status == DL_STATE_ACTIVE || sup->state_synced || 1774 !dev_has_sync_state(sup)) 1775 return 0; 1776 1777 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1778 dev_warn(sup, "sync_state() pending due to %s\n", 1779 dev_name(link->consumer)); 1780 return 0; 1781 } 1782 1783 if (!list_empty(&sup->links.defer_sync)) 1784 return 0; 1785 1786 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1787 sup->state_synced = true; 1788 get_device(sup); 1789 list_add_tail(&sup->links.defer_sync, data); 1790 1791 return 0; 1792 } 1793 1794 void fw_devlink_probing_done(void) 1795 { 1796 LIST_HEAD(sync_list); 1797 1798 device_links_write_lock(); 1799 class_for_each_device(&devlink_class, NULL, &sync_list, 1800 fw_devlink_dev_sync_state); 1801 device_links_write_unlock(); 1802 device_links_flush_sync_list(&sync_list, NULL); 1803 } 1804 1805 /** 1806 * wait_for_init_devices_probe - Try to probe any device needed for init 1807 * 1808 * Some devices might need to be probed and bound successfully before the kernel 1809 * boot sequence can finish and move on to init/userspace. For example, a 1810 * network interface might need to be bound to be able to mount a NFS rootfs. 1811 * 1812 * With fw_devlink=on by default, some of these devices might be blocked from 1813 * probing because they are waiting on a optional supplier that doesn't have a 1814 * driver. While fw_devlink will eventually identify such devices and unblock 1815 * the probing automatically, it might be too late by the time it unblocks the 1816 * probing of devices. For example, the IP4 autoconfig might timeout before 1817 * fw_devlink unblocks probing of the network interface. 1818 * 1819 * This function is available to temporarily try and probe all devices that have 1820 * a driver even if some of their suppliers haven't been added or don't have 1821 * drivers. 1822 * 1823 * The drivers can then decide which of the suppliers are optional vs mandatory 1824 * and probe the device if possible. By the time this function returns, all such 1825 * "best effort" probes are guaranteed to be completed. If a device successfully 1826 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1827 * device where the supplier hasn't yet probed successfully because they have to 1828 * be optional dependencies. 1829 * 1830 * Any devices that didn't successfully probe go back to being treated as if 1831 * this function was never called. 1832 * 1833 * This also means that some devices that aren't needed for init and could have 1834 * waited for their optional supplier to probe (when the supplier's module is 1835 * loaded later on) would end up probing prematurely with limited functionality. 1836 * So call this function only when boot would fail without it. 1837 */ 1838 void __init wait_for_init_devices_probe(void) 1839 { 1840 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1841 return; 1842 1843 /* 1844 * Wait for all ongoing probes to finish so that the "best effort" is 1845 * only applied to devices that can't probe otherwise. 1846 */ 1847 wait_for_device_probe(); 1848 1849 pr_info("Trying to probe devices needed for running init ...\n"); 1850 fw_devlink_best_effort = true; 1851 driver_deferred_probe_trigger(); 1852 1853 /* 1854 * Wait for all "best effort" probes to finish before going back to 1855 * normal enforcement. 1856 */ 1857 wait_for_device_probe(); 1858 fw_devlink_best_effort = false; 1859 } 1860 1861 static void fw_devlink_unblock_consumers(struct device *dev) 1862 { 1863 struct device_link *link; 1864 1865 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1866 return; 1867 1868 device_links_write_lock(); 1869 list_for_each_entry(link, &dev->links.consumers, s_node) 1870 fw_devlink_relax_link(link); 1871 device_links_write_unlock(); 1872 } 1873 1874 1875 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1876 { 1877 struct device *dev; 1878 bool ret; 1879 1880 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1881 return false; 1882 1883 dev = get_dev_from_fwnode(fwnode); 1884 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1885 put_device(dev); 1886 1887 return ret; 1888 } 1889 1890 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1891 { 1892 struct fwnode_handle *parent; 1893 1894 fwnode_for_each_parent_node(fwnode, parent) { 1895 if (fwnode_init_without_drv(parent)) { 1896 fwnode_handle_put(parent); 1897 return true; 1898 } 1899 } 1900 1901 return false; 1902 } 1903 1904 /** 1905 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1906 * @con: Potential consumer device. 1907 * @sup_handle: Potential supplier's fwnode. 1908 * 1909 * Needs to be called with fwnode_lock and device link lock held. 1910 * 1911 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1912 * depend on @con. This function can detect multiple cyles between @sup_handle 1913 * and @con. When such dependency cycles are found, convert all device links 1914 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1915 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1916 * converted into a device link in the future, they are created as 1917 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1918 * fw_devlink=permissive just between the devices in the cycle. We need to do 1919 * this because, at this point, fw_devlink can't tell which of these 1920 * dependencies is not a real dependency. 1921 * 1922 * Return true if one or more cycles were found. Otherwise, return false. 1923 */ 1924 static bool __fw_devlink_relax_cycles(struct device *con, 1925 struct fwnode_handle *sup_handle) 1926 { 1927 struct device *sup_dev = NULL, *par_dev = NULL; 1928 struct fwnode_link *link; 1929 struct device_link *dev_link; 1930 bool ret = false; 1931 1932 if (!sup_handle) 1933 return false; 1934 1935 /* 1936 * We aren't trying to find all cycles. Just a cycle between con and 1937 * sup_handle. 1938 */ 1939 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1940 return false; 1941 1942 sup_handle->flags |= FWNODE_FLAG_VISITED; 1943 1944 sup_dev = get_dev_from_fwnode(sup_handle); 1945 1946 /* Termination condition. */ 1947 if (sup_dev == con) { 1948 pr_debug("----- cycle: start -----\n"); 1949 ret = true; 1950 goto out; 1951 } 1952 1953 /* 1954 * If sup_dev is bound to a driver and @con hasn't started binding to a 1955 * driver, sup_dev can't be a consumer of @con. So, no need to check 1956 * further. 1957 */ 1958 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1959 con->links.status == DL_DEV_NO_DRIVER) { 1960 ret = false; 1961 goto out; 1962 } 1963 1964 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1965 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1966 __fwnode_link_cycle(link); 1967 ret = true; 1968 } 1969 } 1970 1971 /* 1972 * Give priority to device parent over fwnode parent to account for any 1973 * quirks in how fwnodes are converted to devices. 1974 */ 1975 if (sup_dev) 1976 par_dev = get_device(sup_dev->parent); 1977 else 1978 par_dev = fwnode_get_next_parent_dev(sup_handle); 1979 1980 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 1981 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 1982 par_dev->fwnode); 1983 ret = true; 1984 } 1985 1986 if (!sup_dev) 1987 goto out; 1988 1989 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1990 /* 1991 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1992 * such due to a cycle. 1993 */ 1994 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1995 !(dev_link->flags & DL_FLAG_CYCLE)) 1996 continue; 1997 1998 if (__fw_devlink_relax_cycles(con, 1999 dev_link->supplier->fwnode)) { 2000 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2001 dev_link->supplier->fwnode); 2002 fw_devlink_relax_link(dev_link); 2003 dev_link->flags |= DL_FLAG_CYCLE; 2004 ret = true; 2005 } 2006 } 2007 2008 out: 2009 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2010 put_device(sup_dev); 2011 put_device(par_dev); 2012 return ret; 2013 } 2014 2015 /** 2016 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2017 * @con: consumer device for the device link 2018 * @sup_handle: fwnode handle of supplier 2019 * @link: fwnode link that's being converted to a device link 2020 * 2021 * This function will try to create a device link between the consumer device 2022 * @con and the supplier device represented by @sup_handle. 2023 * 2024 * The supplier has to be provided as a fwnode because incorrect cycles in 2025 * fwnode links can sometimes cause the supplier device to never be created. 2026 * This function detects such cases and returns an error if it cannot create a 2027 * device link from the consumer to a missing supplier. 2028 * 2029 * Returns, 2030 * 0 on successfully creating a device link 2031 * -EINVAL if the device link cannot be created as expected 2032 * -EAGAIN if the device link cannot be created right now, but it may be 2033 * possible to do that in the future 2034 */ 2035 static int fw_devlink_create_devlink(struct device *con, 2036 struct fwnode_handle *sup_handle, 2037 struct fwnode_link *link) 2038 { 2039 struct device *sup_dev; 2040 int ret = 0; 2041 u32 flags; 2042 2043 if (con->fwnode == link->consumer) 2044 flags = fw_devlink_get_flags(link->flags); 2045 else 2046 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2047 2048 /* 2049 * In some cases, a device P might also be a supplier to its child node 2050 * C. However, this would defer the probe of C until the probe of P 2051 * completes successfully. This is perfectly fine in the device driver 2052 * model. device_add() doesn't guarantee probe completion of the device 2053 * by the time it returns. 2054 * 2055 * However, there are a few drivers that assume C will finish probing 2056 * as soon as it's added and before P finishes probing. So, we provide 2057 * a flag to let fw_devlink know not to delay the probe of C until the 2058 * probe of P completes successfully. 2059 * 2060 * When such a flag is set, we can't create device links where P is the 2061 * supplier of C as that would delay the probe of C. 2062 */ 2063 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2064 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2065 return -EINVAL; 2066 2067 /* 2068 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2069 * So, one might expect that cycle detection isn't necessary for them. 2070 * However, if the device link was marked as SYNC_STATE_ONLY because 2071 * it's part of a cycle, then we still need to do cycle detection. This 2072 * is because the consumer and supplier might be part of multiple cycles 2073 * and we need to detect all those cycles. 2074 */ 2075 if (!device_link_flag_is_sync_state_only(flags) || 2076 flags & DL_FLAG_CYCLE) { 2077 device_links_write_lock(); 2078 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2079 __fwnode_link_cycle(link); 2080 flags = fw_devlink_get_flags(link->flags); 2081 pr_debug("----- cycle: end -----\n"); 2082 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2083 sup_handle); 2084 } 2085 device_links_write_unlock(); 2086 } 2087 2088 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2089 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2090 else 2091 sup_dev = get_dev_from_fwnode(sup_handle); 2092 2093 if (sup_dev) { 2094 /* 2095 * If it's one of those drivers that don't actually bind to 2096 * their device using driver core, then don't wait on this 2097 * supplier device indefinitely. 2098 */ 2099 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2100 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2101 dev_dbg(con, 2102 "Not linking %pfwf - dev might never probe\n", 2103 sup_handle); 2104 ret = -EINVAL; 2105 goto out; 2106 } 2107 2108 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2109 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2110 flags, dev_name(sup_dev)); 2111 ret = -EINVAL; 2112 } 2113 2114 goto out; 2115 } 2116 2117 /* 2118 * Supplier or supplier's ancestor already initialized without a struct 2119 * device or being probed by a driver. 2120 */ 2121 if (fwnode_init_without_drv(sup_handle) || 2122 fwnode_ancestor_init_without_drv(sup_handle)) { 2123 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2124 sup_handle); 2125 return -EINVAL; 2126 } 2127 2128 ret = -EAGAIN; 2129 out: 2130 put_device(sup_dev); 2131 return ret; 2132 } 2133 2134 /** 2135 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2136 * @dev: Device that needs to be linked to its consumers 2137 * 2138 * This function looks at all the consumer fwnodes of @dev and creates device 2139 * links between the consumer device and @dev (supplier). 2140 * 2141 * If the consumer device has not been added yet, then this function creates a 2142 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2143 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2144 * sync_state() callback before the real consumer device gets to be added and 2145 * then probed. 2146 * 2147 * Once device links are created from the real consumer to @dev (supplier), the 2148 * fwnode links are deleted. 2149 */ 2150 static void __fw_devlink_link_to_consumers(struct device *dev) 2151 { 2152 struct fwnode_handle *fwnode = dev->fwnode; 2153 struct fwnode_link *link, *tmp; 2154 2155 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2156 struct device *con_dev; 2157 bool own_link = true; 2158 int ret; 2159 2160 con_dev = get_dev_from_fwnode(link->consumer); 2161 /* 2162 * If consumer device is not available yet, make a "proxy" 2163 * SYNC_STATE_ONLY link from the consumer's parent device to 2164 * the supplier device. This is necessary to make sure the 2165 * supplier doesn't get a sync_state() callback before the real 2166 * consumer can create a device link to the supplier. 2167 * 2168 * This proxy link step is needed to handle the case where the 2169 * consumer's parent device is added before the supplier. 2170 */ 2171 if (!con_dev) { 2172 con_dev = fwnode_get_next_parent_dev(link->consumer); 2173 /* 2174 * However, if the consumer's parent device is also the 2175 * parent of the supplier, don't create a 2176 * consumer-supplier link from the parent to its child 2177 * device. Such a dependency is impossible. 2178 */ 2179 if (con_dev && 2180 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2181 put_device(con_dev); 2182 con_dev = NULL; 2183 } else { 2184 own_link = false; 2185 } 2186 } 2187 2188 if (!con_dev) 2189 continue; 2190 2191 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2192 put_device(con_dev); 2193 if (!own_link || ret == -EAGAIN) 2194 continue; 2195 2196 __fwnode_link_del(link); 2197 } 2198 } 2199 2200 /** 2201 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2202 * @dev: The consumer device that needs to be linked to its suppliers 2203 * @fwnode: Root of the fwnode tree that is used to create device links 2204 * 2205 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2206 * @fwnode and creates device links between @dev (consumer) and all the 2207 * supplier devices of the entire fwnode tree at @fwnode. 2208 * 2209 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2210 * and the real suppliers of @dev. Once these device links are created, the 2211 * fwnode links are deleted. 2212 * 2213 * In addition, it also looks at all the suppliers of the entire fwnode tree 2214 * because some of the child devices of @dev that have not been added yet 2215 * (because @dev hasn't probed) might already have their suppliers added to 2216 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2217 * @dev (consumer) and these suppliers to make sure they don't execute their 2218 * sync_state() callbacks before these child devices have a chance to create 2219 * their device links. The fwnode links that correspond to the child devices 2220 * aren't delete because they are needed later to create the device links 2221 * between the real consumer and supplier devices. 2222 */ 2223 static void __fw_devlink_link_to_suppliers(struct device *dev, 2224 struct fwnode_handle *fwnode) 2225 { 2226 bool own_link = (dev->fwnode == fwnode); 2227 struct fwnode_link *link, *tmp; 2228 struct fwnode_handle *child = NULL; 2229 2230 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2231 int ret; 2232 struct fwnode_handle *sup = link->supplier; 2233 2234 ret = fw_devlink_create_devlink(dev, sup, link); 2235 if (!own_link || ret == -EAGAIN) 2236 continue; 2237 2238 __fwnode_link_del(link); 2239 } 2240 2241 /* 2242 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2243 * all the descendants. This proxy link step is needed to handle the 2244 * case where the supplier is added before the consumer's parent device 2245 * (@dev). 2246 */ 2247 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2248 __fw_devlink_link_to_suppliers(dev, child); 2249 } 2250 2251 static void fw_devlink_link_device(struct device *dev) 2252 { 2253 struct fwnode_handle *fwnode = dev->fwnode; 2254 2255 if (!fw_devlink_flags) 2256 return; 2257 2258 fw_devlink_parse_fwtree(fwnode); 2259 2260 mutex_lock(&fwnode_link_lock); 2261 __fw_devlink_link_to_consumers(dev); 2262 __fw_devlink_link_to_suppliers(dev, fwnode); 2263 mutex_unlock(&fwnode_link_lock); 2264 } 2265 2266 /* Device links support end. */ 2267 2268 int (*platform_notify)(struct device *dev) = NULL; 2269 int (*platform_notify_remove)(struct device *dev) = NULL; 2270 static struct kobject *dev_kobj; 2271 2272 /* /sys/dev/char */ 2273 static struct kobject *sysfs_dev_char_kobj; 2274 2275 /* /sys/dev/block */ 2276 static struct kobject *sysfs_dev_block_kobj; 2277 2278 static DEFINE_MUTEX(device_hotplug_lock); 2279 2280 void lock_device_hotplug(void) 2281 { 2282 mutex_lock(&device_hotplug_lock); 2283 } 2284 2285 void unlock_device_hotplug(void) 2286 { 2287 mutex_unlock(&device_hotplug_lock); 2288 } 2289 2290 int lock_device_hotplug_sysfs(void) 2291 { 2292 if (mutex_trylock(&device_hotplug_lock)) 2293 return 0; 2294 2295 /* Avoid busy looping (5 ms of sleep should do). */ 2296 msleep(5); 2297 return restart_syscall(); 2298 } 2299 2300 #ifdef CONFIG_BLOCK 2301 static inline int device_is_not_partition(struct device *dev) 2302 { 2303 return !(dev->type == &part_type); 2304 } 2305 #else 2306 static inline int device_is_not_partition(struct device *dev) 2307 { 2308 return 1; 2309 } 2310 #endif 2311 2312 static void device_platform_notify(struct device *dev) 2313 { 2314 acpi_device_notify(dev); 2315 2316 software_node_notify(dev); 2317 2318 if (platform_notify) 2319 platform_notify(dev); 2320 } 2321 2322 static void device_platform_notify_remove(struct device *dev) 2323 { 2324 if (platform_notify_remove) 2325 platform_notify_remove(dev); 2326 2327 software_node_notify_remove(dev); 2328 2329 acpi_device_notify_remove(dev); 2330 } 2331 2332 /** 2333 * dev_driver_string - Return a device's driver name, if at all possible 2334 * @dev: struct device to get the name of 2335 * 2336 * Will return the device's driver's name if it is bound to a device. If 2337 * the device is not bound to a driver, it will return the name of the bus 2338 * it is attached to. If it is not attached to a bus either, an empty 2339 * string will be returned. 2340 */ 2341 const char *dev_driver_string(const struct device *dev) 2342 { 2343 struct device_driver *drv; 2344 2345 /* dev->driver can change to NULL underneath us because of unbinding, 2346 * so be careful about accessing it. dev->bus and dev->class should 2347 * never change once they are set, so they don't need special care. 2348 */ 2349 drv = READ_ONCE(dev->driver); 2350 return drv ? drv->name : dev_bus_name(dev); 2351 } 2352 EXPORT_SYMBOL(dev_driver_string); 2353 2354 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2355 2356 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2357 char *buf) 2358 { 2359 struct device_attribute *dev_attr = to_dev_attr(attr); 2360 struct device *dev = kobj_to_dev(kobj); 2361 ssize_t ret = -EIO; 2362 2363 if (dev_attr->show) 2364 ret = dev_attr->show(dev, dev_attr, buf); 2365 if (ret >= (ssize_t)PAGE_SIZE) { 2366 printk("dev_attr_show: %pS returned bad count\n", 2367 dev_attr->show); 2368 } 2369 return ret; 2370 } 2371 2372 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2373 const char *buf, size_t count) 2374 { 2375 struct device_attribute *dev_attr = to_dev_attr(attr); 2376 struct device *dev = kobj_to_dev(kobj); 2377 ssize_t ret = -EIO; 2378 2379 if (dev_attr->store) 2380 ret = dev_attr->store(dev, dev_attr, buf, count); 2381 return ret; 2382 } 2383 2384 static const struct sysfs_ops dev_sysfs_ops = { 2385 .show = dev_attr_show, 2386 .store = dev_attr_store, 2387 }; 2388 2389 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2390 2391 ssize_t device_store_ulong(struct device *dev, 2392 struct device_attribute *attr, 2393 const char *buf, size_t size) 2394 { 2395 struct dev_ext_attribute *ea = to_ext_attr(attr); 2396 int ret; 2397 unsigned long new; 2398 2399 ret = kstrtoul(buf, 0, &new); 2400 if (ret) 2401 return ret; 2402 *(unsigned long *)(ea->var) = new; 2403 /* Always return full write size even if we didn't consume all */ 2404 return size; 2405 } 2406 EXPORT_SYMBOL_GPL(device_store_ulong); 2407 2408 ssize_t device_show_ulong(struct device *dev, 2409 struct device_attribute *attr, 2410 char *buf) 2411 { 2412 struct dev_ext_attribute *ea = to_ext_attr(attr); 2413 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2414 } 2415 EXPORT_SYMBOL_GPL(device_show_ulong); 2416 2417 ssize_t device_store_int(struct device *dev, 2418 struct device_attribute *attr, 2419 const char *buf, size_t size) 2420 { 2421 struct dev_ext_attribute *ea = to_ext_attr(attr); 2422 int ret; 2423 long new; 2424 2425 ret = kstrtol(buf, 0, &new); 2426 if (ret) 2427 return ret; 2428 2429 if (new > INT_MAX || new < INT_MIN) 2430 return -EINVAL; 2431 *(int *)(ea->var) = new; 2432 /* Always return full write size even if we didn't consume all */ 2433 return size; 2434 } 2435 EXPORT_SYMBOL_GPL(device_store_int); 2436 2437 ssize_t device_show_int(struct device *dev, 2438 struct device_attribute *attr, 2439 char *buf) 2440 { 2441 struct dev_ext_attribute *ea = to_ext_attr(attr); 2442 2443 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2444 } 2445 EXPORT_SYMBOL_GPL(device_show_int); 2446 2447 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2448 const char *buf, size_t size) 2449 { 2450 struct dev_ext_attribute *ea = to_ext_attr(attr); 2451 2452 if (kstrtobool(buf, ea->var) < 0) 2453 return -EINVAL; 2454 2455 return size; 2456 } 2457 EXPORT_SYMBOL_GPL(device_store_bool); 2458 2459 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2460 char *buf) 2461 { 2462 struct dev_ext_attribute *ea = to_ext_attr(attr); 2463 2464 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2465 } 2466 EXPORT_SYMBOL_GPL(device_show_bool); 2467 2468 /** 2469 * device_release - free device structure. 2470 * @kobj: device's kobject. 2471 * 2472 * This is called once the reference count for the object 2473 * reaches 0. We forward the call to the device's release 2474 * method, which should handle actually freeing the structure. 2475 */ 2476 static void device_release(struct kobject *kobj) 2477 { 2478 struct device *dev = kobj_to_dev(kobj); 2479 struct device_private *p = dev->p; 2480 2481 /* 2482 * Some platform devices are driven without driver attached 2483 * and managed resources may have been acquired. Make sure 2484 * all resources are released. 2485 * 2486 * Drivers still can add resources into device after device 2487 * is deleted but alive, so release devres here to avoid 2488 * possible memory leak. 2489 */ 2490 devres_release_all(dev); 2491 2492 kfree(dev->dma_range_map); 2493 2494 if (dev->release) 2495 dev->release(dev); 2496 else if (dev->type && dev->type->release) 2497 dev->type->release(dev); 2498 else if (dev->class && dev->class->dev_release) 2499 dev->class->dev_release(dev); 2500 else 2501 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2502 dev_name(dev)); 2503 kfree(p); 2504 } 2505 2506 static const void *device_namespace(const struct kobject *kobj) 2507 { 2508 const struct device *dev = kobj_to_dev(kobj); 2509 const void *ns = NULL; 2510 2511 if (dev->class && dev->class->ns_type) 2512 ns = dev->class->namespace(dev); 2513 2514 return ns; 2515 } 2516 2517 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2518 { 2519 const struct device *dev = kobj_to_dev(kobj); 2520 2521 if (dev->class && dev->class->get_ownership) 2522 dev->class->get_ownership(dev, uid, gid); 2523 } 2524 2525 static const struct kobj_type device_ktype = { 2526 .release = device_release, 2527 .sysfs_ops = &dev_sysfs_ops, 2528 .namespace = device_namespace, 2529 .get_ownership = device_get_ownership, 2530 }; 2531 2532 2533 static int dev_uevent_filter(const struct kobject *kobj) 2534 { 2535 const struct kobj_type *ktype = get_ktype(kobj); 2536 2537 if (ktype == &device_ktype) { 2538 const struct device *dev = kobj_to_dev(kobj); 2539 if (dev->bus) 2540 return 1; 2541 if (dev->class) 2542 return 1; 2543 } 2544 return 0; 2545 } 2546 2547 static const char *dev_uevent_name(const struct kobject *kobj) 2548 { 2549 const struct device *dev = kobj_to_dev(kobj); 2550 2551 if (dev->bus) 2552 return dev->bus->name; 2553 if (dev->class) 2554 return dev->class->name; 2555 return NULL; 2556 } 2557 2558 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2559 { 2560 const struct device *dev = kobj_to_dev(kobj); 2561 int retval = 0; 2562 2563 /* add device node properties if present */ 2564 if (MAJOR(dev->devt)) { 2565 const char *tmp; 2566 const char *name; 2567 umode_t mode = 0; 2568 kuid_t uid = GLOBAL_ROOT_UID; 2569 kgid_t gid = GLOBAL_ROOT_GID; 2570 2571 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2572 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2573 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2574 if (name) { 2575 add_uevent_var(env, "DEVNAME=%s", name); 2576 if (mode) 2577 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2578 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2579 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2580 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2581 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2582 kfree(tmp); 2583 } 2584 } 2585 2586 if (dev->type && dev->type->name) 2587 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2588 2589 if (dev->driver) 2590 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2591 2592 /* Add common DT information about the device */ 2593 of_device_uevent(dev, env); 2594 2595 /* have the bus specific function add its stuff */ 2596 if (dev->bus && dev->bus->uevent) { 2597 retval = dev->bus->uevent(dev, env); 2598 if (retval) 2599 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2600 dev_name(dev), __func__, retval); 2601 } 2602 2603 /* have the class specific function add its stuff */ 2604 if (dev->class && dev->class->dev_uevent) { 2605 retval = dev->class->dev_uevent(dev, env); 2606 if (retval) 2607 pr_debug("device: '%s': %s: class uevent() " 2608 "returned %d\n", dev_name(dev), 2609 __func__, retval); 2610 } 2611 2612 /* have the device type specific function add its stuff */ 2613 if (dev->type && dev->type->uevent) { 2614 retval = dev->type->uevent(dev, env); 2615 if (retval) 2616 pr_debug("device: '%s': %s: dev_type uevent() " 2617 "returned %d\n", dev_name(dev), 2618 __func__, retval); 2619 } 2620 2621 return retval; 2622 } 2623 2624 static const struct kset_uevent_ops device_uevent_ops = { 2625 .filter = dev_uevent_filter, 2626 .name = dev_uevent_name, 2627 .uevent = dev_uevent, 2628 }; 2629 2630 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2631 char *buf) 2632 { 2633 struct kobject *top_kobj; 2634 struct kset *kset; 2635 struct kobj_uevent_env *env = NULL; 2636 int i; 2637 int len = 0; 2638 int retval; 2639 2640 /* search the kset, the device belongs to */ 2641 top_kobj = &dev->kobj; 2642 while (!top_kobj->kset && top_kobj->parent) 2643 top_kobj = top_kobj->parent; 2644 if (!top_kobj->kset) 2645 goto out; 2646 2647 kset = top_kobj->kset; 2648 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2649 goto out; 2650 2651 /* respect filter */ 2652 if (kset->uevent_ops && kset->uevent_ops->filter) 2653 if (!kset->uevent_ops->filter(&dev->kobj)) 2654 goto out; 2655 2656 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2657 if (!env) 2658 return -ENOMEM; 2659 2660 /* let the kset specific function add its keys */ 2661 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2662 if (retval) 2663 goto out; 2664 2665 /* copy keys to file */ 2666 for (i = 0; i < env->envp_idx; i++) 2667 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2668 out: 2669 kfree(env); 2670 return len; 2671 } 2672 2673 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2674 const char *buf, size_t count) 2675 { 2676 int rc; 2677 2678 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2679 2680 if (rc) { 2681 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2682 return rc; 2683 } 2684 2685 return count; 2686 } 2687 static DEVICE_ATTR_RW(uevent); 2688 2689 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2690 char *buf) 2691 { 2692 bool val; 2693 2694 device_lock(dev); 2695 val = !dev->offline; 2696 device_unlock(dev); 2697 return sysfs_emit(buf, "%u\n", val); 2698 } 2699 2700 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2701 const char *buf, size_t count) 2702 { 2703 bool val; 2704 int ret; 2705 2706 ret = kstrtobool(buf, &val); 2707 if (ret < 0) 2708 return ret; 2709 2710 ret = lock_device_hotplug_sysfs(); 2711 if (ret) 2712 return ret; 2713 2714 ret = val ? device_online(dev) : device_offline(dev); 2715 unlock_device_hotplug(); 2716 return ret < 0 ? ret : count; 2717 } 2718 static DEVICE_ATTR_RW(online); 2719 2720 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2721 char *buf) 2722 { 2723 const char *loc; 2724 2725 switch (dev->removable) { 2726 case DEVICE_REMOVABLE: 2727 loc = "removable"; 2728 break; 2729 case DEVICE_FIXED: 2730 loc = "fixed"; 2731 break; 2732 default: 2733 loc = "unknown"; 2734 } 2735 return sysfs_emit(buf, "%s\n", loc); 2736 } 2737 static DEVICE_ATTR_RO(removable); 2738 2739 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2740 { 2741 return sysfs_create_groups(&dev->kobj, groups); 2742 } 2743 EXPORT_SYMBOL_GPL(device_add_groups); 2744 2745 void device_remove_groups(struct device *dev, 2746 const struct attribute_group **groups) 2747 { 2748 sysfs_remove_groups(&dev->kobj, groups); 2749 } 2750 EXPORT_SYMBOL_GPL(device_remove_groups); 2751 2752 union device_attr_group_devres { 2753 const struct attribute_group *group; 2754 const struct attribute_group **groups; 2755 }; 2756 2757 static void devm_attr_group_remove(struct device *dev, void *res) 2758 { 2759 union device_attr_group_devres *devres = res; 2760 const struct attribute_group *group = devres->group; 2761 2762 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2763 sysfs_remove_group(&dev->kobj, group); 2764 } 2765 2766 static void devm_attr_groups_remove(struct device *dev, void *res) 2767 { 2768 union device_attr_group_devres *devres = res; 2769 const struct attribute_group **groups = devres->groups; 2770 2771 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2772 sysfs_remove_groups(&dev->kobj, groups); 2773 } 2774 2775 /** 2776 * devm_device_add_group - given a device, create a managed attribute group 2777 * @dev: The device to create the group for 2778 * @grp: The attribute group to create 2779 * 2780 * This function creates a group for the first time. It will explicitly 2781 * warn and error if any of the attribute files being created already exist. 2782 * 2783 * Returns 0 on success or error code on failure. 2784 */ 2785 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2786 { 2787 union device_attr_group_devres *devres; 2788 int error; 2789 2790 devres = devres_alloc(devm_attr_group_remove, 2791 sizeof(*devres), GFP_KERNEL); 2792 if (!devres) 2793 return -ENOMEM; 2794 2795 error = sysfs_create_group(&dev->kobj, grp); 2796 if (error) { 2797 devres_free(devres); 2798 return error; 2799 } 2800 2801 devres->group = grp; 2802 devres_add(dev, devres); 2803 return 0; 2804 } 2805 EXPORT_SYMBOL_GPL(devm_device_add_group); 2806 2807 /** 2808 * devm_device_add_groups - create a bunch of managed attribute groups 2809 * @dev: The device to create the group for 2810 * @groups: The attribute groups to create, NULL terminated 2811 * 2812 * This function creates a bunch of managed attribute groups. If an error 2813 * occurs when creating a group, all previously created groups will be 2814 * removed, unwinding everything back to the original state when this 2815 * function was called. It will explicitly warn and error if any of the 2816 * attribute files being created already exist. 2817 * 2818 * Returns 0 on success or error code from sysfs_create_group on failure. 2819 */ 2820 int devm_device_add_groups(struct device *dev, 2821 const struct attribute_group **groups) 2822 { 2823 union device_attr_group_devres *devres; 2824 int error; 2825 2826 devres = devres_alloc(devm_attr_groups_remove, 2827 sizeof(*devres), GFP_KERNEL); 2828 if (!devres) 2829 return -ENOMEM; 2830 2831 error = sysfs_create_groups(&dev->kobj, groups); 2832 if (error) { 2833 devres_free(devres); 2834 return error; 2835 } 2836 2837 devres->groups = groups; 2838 devres_add(dev, devres); 2839 return 0; 2840 } 2841 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2842 2843 static int device_add_attrs(struct device *dev) 2844 { 2845 const struct class *class = dev->class; 2846 const struct device_type *type = dev->type; 2847 int error; 2848 2849 if (class) { 2850 error = device_add_groups(dev, class->dev_groups); 2851 if (error) 2852 return error; 2853 } 2854 2855 if (type) { 2856 error = device_add_groups(dev, type->groups); 2857 if (error) 2858 goto err_remove_class_groups; 2859 } 2860 2861 error = device_add_groups(dev, dev->groups); 2862 if (error) 2863 goto err_remove_type_groups; 2864 2865 if (device_supports_offline(dev) && !dev->offline_disabled) { 2866 error = device_create_file(dev, &dev_attr_online); 2867 if (error) 2868 goto err_remove_dev_groups; 2869 } 2870 2871 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2872 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2873 if (error) 2874 goto err_remove_dev_online; 2875 } 2876 2877 if (dev_removable_is_valid(dev)) { 2878 error = device_create_file(dev, &dev_attr_removable); 2879 if (error) 2880 goto err_remove_dev_waiting_for_supplier; 2881 } 2882 2883 if (dev_add_physical_location(dev)) { 2884 error = device_add_group(dev, 2885 &dev_attr_physical_location_group); 2886 if (error) 2887 goto err_remove_dev_removable; 2888 } 2889 2890 return 0; 2891 2892 err_remove_dev_removable: 2893 device_remove_file(dev, &dev_attr_removable); 2894 err_remove_dev_waiting_for_supplier: 2895 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2896 err_remove_dev_online: 2897 device_remove_file(dev, &dev_attr_online); 2898 err_remove_dev_groups: 2899 device_remove_groups(dev, dev->groups); 2900 err_remove_type_groups: 2901 if (type) 2902 device_remove_groups(dev, type->groups); 2903 err_remove_class_groups: 2904 if (class) 2905 device_remove_groups(dev, class->dev_groups); 2906 2907 return error; 2908 } 2909 2910 static void device_remove_attrs(struct device *dev) 2911 { 2912 const struct class *class = dev->class; 2913 const struct device_type *type = dev->type; 2914 2915 if (dev->physical_location) { 2916 device_remove_group(dev, &dev_attr_physical_location_group); 2917 kfree(dev->physical_location); 2918 } 2919 2920 device_remove_file(dev, &dev_attr_removable); 2921 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2922 device_remove_file(dev, &dev_attr_online); 2923 device_remove_groups(dev, dev->groups); 2924 2925 if (type) 2926 device_remove_groups(dev, type->groups); 2927 2928 if (class) 2929 device_remove_groups(dev, class->dev_groups); 2930 } 2931 2932 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2933 char *buf) 2934 { 2935 return print_dev_t(buf, dev->devt); 2936 } 2937 static DEVICE_ATTR_RO(dev); 2938 2939 /* /sys/devices/ */ 2940 struct kset *devices_kset; 2941 2942 /** 2943 * devices_kset_move_before - Move device in the devices_kset's list. 2944 * @deva: Device to move. 2945 * @devb: Device @deva should come before. 2946 */ 2947 static void devices_kset_move_before(struct device *deva, struct device *devb) 2948 { 2949 if (!devices_kset) 2950 return; 2951 pr_debug("devices_kset: Moving %s before %s\n", 2952 dev_name(deva), dev_name(devb)); 2953 spin_lock(&devices_kset->list_lock); 2954 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2955 spin_unlock(&devices_kset->list_lock); 2956 } 2957 2958 /** 2959 * devices_kset_move_after - Move device in the devices_kset's list. 2960 * @deva: Device to move 2961 * @devb: Device @deva should come after. 2962 */ 2963 static void devices_kset_move_after(struct device *deva, struct device *devb) 2964 { 2965 if (!devices_kset) 2966 return; 2967 pr_debug("devices_kset: Moving %s after %s\n", 2968 dev_name(deva), dev_name(devb)); 2969 spin_lock(&devices_kset->list_lock); 2970 list_move(&deva->kobj.entry, &devb->kobj.entry); 2971 spin_unlock(&devices_kset->list_lock); 2972 } 2973 2974 /** 2975 * devices_kset_move_last - move the device to the end of devices_kset's list. 2976 * @dev: device to move 2977 */ 2978 void devices_kset_move_last(struct device *dev) 2979 { 2980 if (!devices_kset) 2981 return; 2982 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2983 spin_lock(&devices_kset->list_lock); 2984 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2985 spin_unlock(&devices_kset->list_lock); 2986 } 2987 2988 /** 2989 * device_create_file - create sysfs attribute file for device. 2990 * @dev: device. 2991 * @attr: device attribute descriptor. 2992 */ 2993 int device_create_file(struct device *dev, 2994 const struct device_attribute *attr) 2995 { 2996 int error = 0; 2997 2998 if (dev) { 2999 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3000 "Attribute %s: write permission without 'store'\n", 3001 attr->attr.name); 3002 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3003 "Attribute %s: read permission without 'show'\n", 3004 attr->attr.name); 3005 error = sysfs_create_file(&dev->kobj, &attr->attr); 3006 } 3007 3008 return error; 3009 } 3010 EXPORT_SYMBOL_GPL(device_create_file); 3011 3012 /** 3013 * device_remove_file - remove sysfs attribute file. 3014 * @dev: device. 3015 * @attr: device attribute descriptor. 3016 */ 3017 void device_remove_file(struct device *dev, 3018 const struct device_attribute *attr) 3019 { 3020 if (dev) 3021 sysfs_remove_file(&dev->kobj, &attr->attr); 3022 } 3023 EXPORT_SYMBOL_GPL(device_remove_file); 3024 3025 /** 3026 * device_remove_file_self - remove sysfs attribute file from its own method. 3027 * @dev: device. 3028 * @attr: device attribute descriptor. 3029 * 3030 * See kernfs_remove_self() for details. 3031 */ 3032 bool device_remove_file_self(struct device *dev, 3033 const struct device_attribute *attr) 3034 { 3035 if (dev) 3036 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3037 else 3038 return false; 3039 } 3040 EXPORT_SYMBOL_GPL(device_remove_file_self); 3041 3042 /** 3043 * device_create_bin_file - create sysfs binary attribute file for device. 3044 * @dev: device. 3045 * @attr: device binary attribute descriptor. 3046 */ 3047 int device_create_bin_file(struct device *dev, 3048 const struct bin_attribute *attr) 3049 { 3050 int error = -EINVAL; 3051 if (dev) 3052 error = sysfs_create_bin_file(&dev->kobj, attr); 3053 return error; 3054 } 3055 EXPORT_SYMBOL_GPL(device_create_bin_file); 3056 3057 /** 3058 * device_remove_bin_file - remove sysfs binary attribute file 3059 * @dev: device. 3060 * @attr: device binary attribute descriptor. 3061 */ 3062 void device_remove_bin_file(struct device *dev, 3063 const struct bin_attribute *attr) 3064 { 3065 if (dev) 3066 sysfs_remove_bin_file(&dev->kobj, attr); 3067 } 3068 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3069 3070 static void klist_children_get(struct klist_node *n) 3071 { 3072 struct device_private *p = to_device_private_parent(n); 3073 struct device *dev = p->device; 3074 3075 get_device(dev); 3076 } 3077 3078 static void klist_children_put(struct klist_node *n) 3079 { 3080 struct device_private *p = to_device_private_parent(n); 3081 struct device *dev = p->device; 3082 3083 put_device(dev); 3084 } 3085 3086 /** 3087 * device_initialize - init device structure. 3088 * @dev: device. 3089 * 3090 * This prepares the device for use by other layers by initializing 3091 * its fields. 3092 * It is the first half of device_register(), if called by 3093 * that function, though it can also be called separately, so one 3094 * may use @dev's fields. In particular, get_device()/put_device() 3095 * may be used for reference counting of @dev after calling this 3096 * function. 3097 * 3098 * All fields in @dev must be initialized by the caller to 0, except 3099 * for those explicitly set to some other value. The simplest 3100 * approach is to use kzalloc() to allocate the structure containing 3101 * @dev. 3102 * 3103 * NOTE: Use put_device() to give up your reference instead of freeing 3104 * @dev directly once you have called this function. 3105 */ 3106 void device_initialize(struct device *dev) 3107 { 3108 dev->kobj.kset = devices_kset; 3109 kobject_init(&dev->kobj, &device_ktype); 3110 INIT_LIST_HEAD(&dev->dma_pools); 3111 mutex_init(&dev->mutex); 3112 lockdep_set_novalidate_class(&dev->mutex); 3113 spin_lock_init(&dev->devres_lock); 3114 INIT_LIST_HEAD(&dev->devres_head); 3115 device_pm_init(dev); 3116 set_dev_node(dev, NUMA_NO_NODE); 3117 INIT_LIST_HEAD(&dev->links.consumers); 3118 INIT_LIST_HEAD(&dev->links.suppliers); 3119 INIT_LIST_HEAD(&dev->links.defer_sync); 3120 dev->links.status = DL_DEV_NO_DRIVER; 3121 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3122 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3123 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3124 dev->dma_coherent = dma_default_coherent; 3125 #endif 3126 swiotlb_dev_init(dev); 3127 } 3128 EXPORT_SYMBOL_GPL(device_initialize); 3129 3130 struct kobject *virtual_device_parent(struct device *dev) 3131 { 3132 static struct kobject *virtual_dir = NULL; 3133 3134 if (!virtual_dir) 3135 virtual_dir = kobject_create_and_add("virtual", 3136 &devices_kset->kobj); 3137 3138 return virtual_dir; 3139 } 3140 3141 struct class_dir { 3142 struct kobject kobj; 3143 const struct class *class; 3144 }; 3145 3146 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3147 3148 static void class_dir_release(struct kobject *kobj) 3149 { 3150 struct class_dir *dir = to_class_dir(kobj); 3151 kfree(dir); 3152 } 3153 3154 static const 3155 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3156 { 3157 const struct class_dir *dir = to_class_dir(kobj); 3158 return dir->class->ns_type; 3159 } 3160 3161 static const struct kobj_type class_dir_ktype = { 3162 .release = class_dir_release, 3163 .sysfs_ops = &kobj_sysfs_ops, 3164 .child_ns_type = class_dir_child_ns_type 3165 }; 3166 3167 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3168 struct kobject *parent_kobj) 3169 { 3170 struct class_dir *dir; 3171 int retval; 3172 3173 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3174 if (!dir) 3175 return ERR_PTR(-ENOMEM); 3176 3177 dir->class = sp->class; 3178 kobject_init(&dir->kobj, &class_dir_ktype); 3179 3180 dir->kobj.kset = &sp->glue_dirs; 3181 3182 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3183 if (retval < 0) { 3184 kobject_put(&dir->kobj); 3185 return ERR_PTR(retval); 3186 } 3187 return &dir->kobj; 3188 } 3189 3190 static DEFINE_MUTEX(gdp_mutex); 3191 3192 static struct kobject *get_device_parent(struct device *dev, 3193 struct device *parent) 3194 { 3195 struct subsys_private *sp = class_to_subsys(dev->class); 3196 struct kobject *kobj = NULL; 3197 3198 if (sp) { 3199 struct kobject *parent_kobj; 3200 struct kobject *k; 3201 3202 /* 3203 * If we have no parent, we live in "virtual". 3204 * Class-devices with a non class-device as parent, live 3205 * in a "glue" directory to prevent namespace collisions. 3206 */ 3207 if (parent == NULL) 3208 parent_kobj = virtual_device_parent(dev); 3209 else if (parent->class && !dev->class->ns_type) { 3210 subsys_put(sp); 3211 return &parent->kobj; 3212 } else { 3213 parent_kobj = &parent->kobj; 3214 } 3215 3216 mutex_lock(&gdp_mutex); 3217 3218 /* find our class-directory at the parent and reference it */ 3219 spin_lock(&sp->glue_dirs.list_lock); 3220 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3221 if (k->parent == parent_kobj) { 3222 kobj = kobject_get(k); 3223 break; 3224 } 3225 spin_unlock(&sp->glue_dirs.list_lock); 3226 if (kobj) { 3227 mutex_unlock(&gdp_mutex); 3228 subsys_put(sp); 3229 return kobj; 3230 } 3231 3232 /* or create a new class-directory at the parent device */ 3233 k = class_dir_create_and_add(sp, parent_kobj); 3234 /* do not emit an uevent for this simple "glue" directory */ 3235 mutex_unlock(&gdp_mutex); 3236 subsys_put(sp); 3237 return k; 3238 } 3239 3240 /* subsystems can specify a default root directory for their devices */ 3241 if (!parent && dev->bus) { 3242 struct device *dev_root = bus_get_dev_root(dev->bus); 3243 3244 if (dev_root) { 3245 kobj = &dev_root->kobj; 3246 put_device(dev_root); 3247 return kobj; 3248 } 3249 } 3250 3251 if (parent) 3252 return &parent->kobj; 3253 return NULL; 3254 } 3255 3256 static inline bool live_in_glue_dir(struct kobject *kobj, 3257 struct device *dev) 3258 { 3259 struct subsys_private *sp; 3260 bool retval; 3261 3262 if (!kobj || !dev->class) 3263 return false; 3264 3265 sp = class_to_subsys(dev->class); 3266 if (!sp) 3267 return false; 3268 3269 if (kobj->kset == &sp->glue_dirs) 3270 retval = true; 3271 else 3272 retval = false; 3273 3274 subsys_put(sp); 3275 return retval; 3276 } 3277 3278 static inline struct kobject *get_glue_dir(struct device *dev) 3279 { 3280 return dev->kobj.parent; 3281 } 3282 3283 /** 3284 * kobject_has_children - Returns whether a kobject has children. 3285 * @kobj: the object to test 3286 * 3287 * This will return whether a kobject has other kobjects as children. 3288 * 3289 * It does NOT account for the presence of attribute files, only sub 3290 * directories. It also assumes there is no concurrent addition or 3291 * removal of such children, and thus relies on external locking. 3292 */ 3293 static inline bool kobject_has_children(struct kobject *kobj) 3294 { 3295 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3296 3297 return kobj->sd && kobj->sd->dir.subdirs; 3298 } 3299 3300 /* 3301 * make sure cleaning up dir as the last step, we need to make 3302 * sure .release handler of kobject is run with holding the 3303 * global lock 3304 */ 3305 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3306 { 3307 unsigned int ref; 3308 3309 /* see if we live in a "glue" directory */ 3310 if (!live_in_glue_dir(glue_dir, dev)) 3311 return; 3312 3313 mutex_lock(&gdp_mutex); 3314 /** 3315 * There is a race condition between removing glue directory 3316 * and adding a new device under the glue directory. 3317 * 3318 * CPU1: CPU2: 3319 * 3320 * device_add() 3321 * get_device_parent() 3322 * class_dir_create_and_add() 3323 * kobject_add_internal() 3324 * create_dir() // create glue_dir 3325 * 3326 * device_add() 3327 * get_device_parent() 3328 * kobject_get() // get glue_dir 3329 * 3330 * device_del() 3331 * cleanup_glue_dir() 3332 * kobject_del(glue_dir) 3333 * 3334 * kobject_add() 3335 * kobject_add_internal() 3336 * create_dir() // in glue_dir 3337 * sysfs_create_dir_ns() 3338 * kernfs_create_dir_ns(sd) 3339 * 3340 * sysfs_remove_dir() // glue_dir->sd=NULL 3341 * sysfs_put() // free glue_dir->sd 3342 * 3343 * // sd is freed 3344 * kernfs_new_node(sd) 3345 * kernfs_get(glue_dir) 3346 * kernfs_add_one() 3347 * kernfs_put() 3348 * 3349 * Before CPU1 remove last child device under glue dir, if CPU2 add 3350 * a new device under glue dir, the glue_dir kobject reference count 3351 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3352 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3353 * and sysfs_put(). This result in glue_dir->sd is freed. 3354 * 3355 * Then the CPU2 will see a stale "empty" but still potentially used 3356 * glue dir around in kernfs_new_node(). 3357 * 3358 * In order to avoid this happening, we also should make sure that 3359 * kernfs_node for glue_dir is released in CPU1 only when refcount 3360 * for glue_dir kobj is 1. 3361 */ 3362 ref = kref_read(&glue_dir->kref); 3363 if (!kobject_has_children(glue_dir) && !--ref) 3364 kobject_del(glue_dir); 3365 kobject_put(glue_dir); 3366 mutex_unlock(&gdp_mutex); 3367 } 3368 3369 static int device_add_class_symlinks(struct device *dev) 3370 { 3371 struct device_node *of_node = dev_of_node(dev); 3372 struct subsys_private *sp; 3373 int error; 3374 3375 if (of_node) { 3376 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3377 if (error) 3378 dev_warn(dev, "Error %d creating of_node link\n",error); 3379 /* An error here doesn't warrant bringing down the device */ 3380 } 3381 3382 sp = class_to_subsys(dev->class); 3383 if (!sp) 3384 return 0; 3385 3386 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3387 if (error) 3388 goto out_devnode; 3389 3390 if (dev->parent && device_is_not_partition(dev)) { 3391 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3392 "device"); 3393 if (error) 3394 goto out_subsys; 3395 } 3396 3397 /* link in the class directory pointing to the device */ 3398 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3399 if (error) 3400 goto out_device; 3401 goto exit; 3402 3403 out_device: 3404 sysfs_remove_link(&dev->kobj, "device"); 3405 out_subsys: 3406 sysfs_remove_link(&dev->kobj, "subsystem"); 3407 out_devnode: 3408 sysfs_remove_link(&dev->kobj, "of_node"); 3409 exit: 3410 subsys_put(sp); 3411 return error; 3412 } 3413 3414 static void device_remove_class_symlinks(struct device *dev) 3415 { 3416 struct subsys_private *sp = class_to_subsys(dev->class); 3417 3418 if (dev_of_node(dev)) 3419 sysfs_remove_link(&dev->kobj, "of_node"); 3420 3421 if (!sp) 3422 return; 3423 3424 if (dev->parent && device_is_not_partition(dev)) 3425 sysfs_remove_link(&dev->kobj, "device"); 3426 sysfs_remove_link(&dev->kobj, "subsystem"); 3427 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3428 subsys_put(sp); 3429 } 3430 3431 /** 3432 * dev_set_name - set a device name 3433 * @dev: device 3434 * @fmt: format string for the device's name 3435 */ 3436 int dev_set_name(struct device *dev, const char *fmt, ...) 3437 { 3438 va_list vargs; 3439 int err; 3440 3441 va_start(vargs, fmt); 3442 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3443 va_end(vargs); 3444 return err; 3445 } 3446 EXPORT_SYMBOL_GPL(dev_set_name); 3447 3448 /* select a /sys/dev/ directory for the device */ 3449 static struct kobject *device_to_dev_kobj(struct device *dev) 3450 { 3451 if (is_blockdev(dev)) 3452 return sysfs_dev_block_kobj; 3453 else 3454 return sysfs_dev_char_kobj; 3455 } 3456 3457 static int device_create_sys_dev_entry(struct device *dev) 3458 { 3459 struct kobject *kobj = device_to_dev_kobj(dev); 3460 int error = 0; 3461 char devt_str[15]; 3462 3463 if (kobj) { 3464 format_dev_t(devt_str, dev->devt); 3465 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3466 } 3467 3468 return error; 3469 } 3470 3471 static void device_remove_sys_dev_entry(struct device *dev) 3472 { 3473 struct kobject *kobj = device_to_dev_kobj(dev); 3474 char devt_str[15]; 3475 3476 if (kobj) { 3477 format_dev_t(devt_str, dev->devt); 3478 sysfs_remove_link(kobj, devt_str); 3479 } 3480 } 3481 3482 static int device_private_init(struct device *dev) 3483 { 3484 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3485 if (!dev->p) 3486 return -ENOMEM; 3487 dev->p->device = dev; 3488 klist_init(&dev->p->klist_children, klist_children_get, 3489 klist_children_put); 3490 INIT_LIST_HEAD(&dev->p->deferred_probe); 3491 return 0; 3492 } 3493 3494 /** 3495 * device_add - add device to device hierarchy. 3496 * @dev: device. 3497 * 3498 * This is part 2 of device_register(), though may be called 3499 * separately _iff_ device_initialize() has been called separately. 3500 * 3501 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3502 * to the global and sibling lists for the device, then 3503 * adds it to the other relevant subsystems of the driver model. 3504 * 3505 * Do not call this routine or device_register() more than once for 3506 * any device structure. The driver model core is not designed to work 3507 * with devices that get unregistered and then spring back to life. 3508 * (Among other things, it's very hard to guarantee that all references 3509 * to the previous incarnation of @dev have been dropped.) Allocate 3510 * and register a fresh new struct device instead. 3511 * 3512 * NOTE: _Never_ directly free @dev after calling this function, even 3513 * if it returned an error! Always use put_device() to give up your 3514 * reference instead. 3515 * 3516 * Rule of thumb is: if device_add() succeeds, you should call 3517 * device_del() when you want to get rid of it. If device_add() has 3518 * *not* succeeded, use *only* put_device() to drop the reference 3519 * count. 3520 */ 3521 int device_add(struct device *dev) 3522 { 3523 struct subsys_private *sp; 3524 struct device *parent; 3525 struct kobject *kobj; 3526 struct class_interface *class_intf; 3527 int error = -EINVAL; 3528 struct kobject *glue_dir = NULL; 3529 3530 dev = get_device(dev); 3531 if (!dev) 3532 goto done; 3533 3534 if (!dev->p) { 3535 error = device_private_init(dev); 3536 if (error) 3537 goto done; 3538 } 3539 3540 /* 3541 * for statically allocated devices, which should all be converted 3542 * some day, we need to initialize the name. We prevent reading back 3543 * the name, and force the use of dev_name() 3544 */ 3545 if (dev->init_name) { 3546 error = dev_set_name(dev, "%s", dev->init_name); 3547 dev->init_name = NULL; 3548 } 3549 3550 if (dev_name(dev)) 3551 error = 0; 3552 /* subsystems can specify simple device enumeration */ 3553 else if (dev->bus && dev->bus->dev_name) 3554 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3555 else 3556 error = -EINVAL; 3557 if (error) 3558 goto name_error; 3559 3560 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3561 3562 parent = get_device(dev->parent); 3563 kobj = get_device_parent(dev, parent); 3564 if (IS_ERR(kobj)) { 3565 error = PTR_ERR(kobj); 3566 goto parent_error; 3567 } 3568 if (kobj) 3569 dev->kobj.parent = kobj; 3570 3571 /* use parent numa_node */ 3572 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3573 set_dev_node(dev, dev_to_node(parent)); 3574 3575 /* first, register with generic layer. */ 3576 /* we require the name to be set before, and pass NULL */ 3577 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3578 if (error) { 3579 glue_dir = kobj; 3580 goto Error; 3581 } 3582 3583 /* notify platform of device entry */ 3584 device_platform_notify(dev); 3585 3586 error = device_create_file(dev, &dev_attr_uevent); 3587 if (error) 3588 goto attrError; 3589 3590 error = device_add_class_symlinks(dev); 3591 if (error) 3592 goto SymlinkError; 3593 error = device_add_attrs(dev); 3594 if (error) 3595 goto AttrsError; 3596 error = bus_add_device(dev); 3597 if (error) 3598 goto BusError; 3599 error = dpm_sysfs_add(dev); 3600 if (error) 3601 goto DPMError; 3602 device_pm_add(dev); 3603 3604 if (MAJOR(dev->devt)) { 3605 error = device_create_file(dev, &dev_attr_dev); 3606 if (error) 3607 goto DevAttrError; 3608 3609 error = device_create_sys_dev_entry(dev); 3610 if (error) 3611 goto SysEntryError; 3612 3613 devtmpfs_create_node(dev); 3614 } 3615 3616 /* Notify clients of device addition. This call must come 3617 * after dpm_sysfs_add() and before kobject_uevent(). 3618 */ 3619 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3620 kobject_uevent(&dev->kobj, KOBJ_ADD); 3621 3622 /* 3623 * Check if any of the other devices (consumers) have been waiting for 3624 * this device (supplier) to be added so that they can create a device 3625 * link to it. 3626 * 3627 * This needs to happen after device_pm_add() because device_link_add() 3628 * requires the supplier be registered before it's called. 3629 * 3630 * But this also needs to happen before bus_probe_device() to make sure 3631 * waiting consumers can link to it before the driver is bound to the 3632 * device and the driver sync_state callback is called for this device. 3633 */ 3634 if (dev->fwnode && !dev->fwnode->dev) { 3635 dev->fwnode->dev = dev; 3636 fw_devlink_link_device(dev); 3637 } 3638 3639 bus_probe_device(dev); 3640 3641 /* 3642 * If all driver registration is done and a newly added device doesn't 3643 * match with any driver, don't block its consumers from probing in 3644 * case the consumer device is able to operate without this supplier. 3645 */ 3646 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3647 fw_devlink_unblock_consumers(dev); 3648 3649 if (parent) 3650 klist_add_tail(&dev->p->knode_parent, 3651 &parent->p->klist_children); 3652 3653 sp = class_to_subsys(dev->class); 3654 if (sp) { 3655 mutex_lock(&sp->mutex); 3656 /* tie the class to the device */ 3657 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3658 3659 /* notify any interfaces that the device is here */ 3660 list_for_each_entry(class_intf, &sp->interfaces, node) 3661 if (class_intf->add_dev) 3662 class_intf->add_dev(dev); 3663 mutex_unlock(&sp->mutex); 3664 subsys_put(sp); 3665 } 3666 done: 3667 put_device(dev); 3668 return error; 3669 SysEntryError: 3670 if (MAJOR(dev->devt)) 3671 device_remove_file(dev, &dev_attr_dev); 3672 DevAttrError: 3673 device_pm_remove(dev); 3674 dpm_sysfs_remove(dev); 3675 DPMError: 3676 dev->driver = NULL; 3677 bus_remove_device(dev); 3678 BusError: 3679 device_remove_attrs(dev); 3680 AttrsError: 3681 device_remove_class_symlinks(dev); 3682 SymlinkError: 3683 device_remove_file(dev, &dev_attr_uevent); 3684 attrError: 3685 device_platform_notify_remove(dev); 3686 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3687 glue_dir = get_glue_dir(dev); 3688 kobject_del(&dev->kobj); 3689 Error: 3690 cleanup_glue_dir(dev, glue_dir); 3691 parent_error: 3692 put_device(parent); 3693 name_error: 3694 kfree(dev->p); 3695 dev->p = NULL; 3696 goto done; 3697 } 3698 EXPORT_SYMBOL_GPL(device_add); 3699 3700 /** 3701 * device_register - register a device with the system. 3702 * @dev: pointer to the device structure 3703 * 3704 * This happens in two clean steps - initialize the device 3705 * and add it to the system. The two steps can be called 3706 * separately, but this is the easiest and most common. 3707 * I.e. you should only call the two helpers separately if 3708 * have a clearly defined need to use and refcount the device 3709 * before it is added to the hierarchy. 3710 * 3711 * For more information, see the kerneldoc for device_initialize() 3712 * and device_add(). 3713 * 3714 * NOTE: _Never_ directly free @dev after calling this function, even 3715 * if it returned an error! Always use put_device() to give up the 3716 * reference initialized in this function instead. 3717 */ 3718 int device_register(struct device *dev) 3719 { 3720 device_initialize(dev); 3721 return device_add(dev); 3722 } 3723 EXPORT_SYMBOL_GPL(device_register); 3724 3725 /** 3726 * get_device - increment reference count for device. 3727 * @dev: device. 3728 * 3729 * This simply forwards the call to kobject_get(), though 3730 * we do take care to provide for the case that we get a NULL 3731 * pointer passed in. 3732 */ 3733 struct device *get_device(struct device *dev) 3734 { 3735 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3736 } 3737 EXPORT_SYMBOL_GPL(get_device); 3738 3739 /** 3740 * put_device - decrement reference count. 3741 * @dev: device in question. 3742 */ 3743 void put_device(struct device *dev) 3744 { 3745 /* might_sleep(); */ 3746 if (dev) 3747 kobject_put(&dev->kobj); 3748 } 3749 EXPORT_SYMBOL_GPL(put_device); 3750 3751 bool kill_device(struct device *dev) 3752 { 3753 /* 3754 * Require the device lock and set the "dead" flag to guarantee that 3755 * the update behavior is consistent with the other bitfields near 3756 * it and that we cannot have an asynchronous probe routine trying 3757 * to run while we are tearing out the bus/class/sysfs from 3758 * underneath the device. 3759 */ 3760 device_lock_assert(dev); 3761 3762 if (dev->p->dead) 3763 return false; 3764 dev->p->dead = true; 3765 return true; 3766 } 3767 EXPORT_SYMBOL_GPL(kill_device); 3768 3769 /** 3770 * device_del - delete device from system. 3771 * @dev: device. 3772 * 3773 * This is the first part of the device unregistration 3774 * sequence. This removes the device from the lists we control 3775 * from here, has it removed from the other driver model 3776 * subsystems it was added to in device_add(), and removes it 3777 * from the kobject hierarchy. 3778 * 3779 * NOTE: this should be called manually _iff_ device_add() was 3780 * also called manually. 3781 */ 3782 void device_del(struct device *dev) 3783 { 3784 struct subsys_private *sp; 3785 struct device *parent = dev->parent; 3786 struct kobject *glue_dir = NULL; 3787 struct class_interface *class_intf; 3788 unsigned int noio_flag; 3789 3790 device_lock(dev); 3791 kill_device(dev); 3792 device_unlock(dev); 3793 3794 if (dev->fwnode && dev->fwnode->dev == dev) 3795 dev->fwnode->dev = NULL; 3796 3797 /* Notify clients of device removal. This call must come 3798 * before dpm_sysfs_remove(). 3799 */ 3800 noio_flag = memalloc_noio_save(); 3801 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3802 3803 dpm_sysfs_remove(dev); 3804 if (parent) 3805 klist_del(&dev->p->knode_parent); 3806 if (MAJOR(dev->devt)) { 3807 devtmpfs_delete_node(dev); 3808 device_remove_sys_dev_entry(dev); 3809 device_remove_file(dev, &dev_attr_dev); 3810 } 3811 3812 sp = class_to_subsys(dev->class); 3813 if (sp) { 3814 device_remove_class_symlinks(dev); 3815 3816 mutex_lock(&sp->mutex); 3817 /* notify any interfaces that the device is now gone */ 3818 list_for_each_entry(class_intf, &sp->interfaces, node) 3819 if (class_intf->remove_dev) 3820 class_intf->remove_dev(dev); 3821 /* remove the device from the class list */ 3822 klist_del(&dev->p->knode_class); 3823 mutex_unlock(&sp->mutex); 3824 subsys_put(sp); 3825 } 3826 device_remove_file(dev, &dev_attr_uevent); 3827 device_remove_attrs(dev); 3828 bus_remove_device(dev); 3829 device_pm_remove(dev); 3830 driver_deferred_probe_del(dev); 3831 device_platform_notify_remove(dev); 3832 device_links_purge(dev); 3833 3834 /* 3835 * If a device does not have a driver attached, we need to clean 3836 * up any managed resources. We do this in device_release(), but 3837 * it's never called (and we leak the device) if a managed 3838 * resource holds a reference to the device. So release all 3839 * managed resources here, like we do in driver_detach(). We 3840 * still need to do so again in device_release() in case someone 3841 * adds a new resource after this point, though. 3842 */ 3843 devres_release_all(dev); 3844 3845 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3846 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3847 glue_dir = get_glue_dir(dev); 3848 kobject_del(&dev->kobj); 3849 cleanup_glue_dir(dev, glue_dir); 3850 memalloc_noio_restore(noio_flag); 3851 put_device(parent); 3852 } 3853 EXPORT_SYMBOL_GPL(device_del); 3854 3855 /** 3856 * device_unregister - unregister device from system. 3857 * @dev: device going away. 3858 * 3859 * We do this in two parts, like we do device_register(). First, 3860 * we remove it from all the subsystems with device_del(), then 3861 * we decrement the reference count via put_device(). If that 3862 * is the final reference count, the device will be cleaned up 3863 * via device_release() above. Otherwise, the structure will 3864 * stick around until the final reference to the device is dropped. 3865 */ 3866 void device_unregister(struct device *dev) 3867 { 3868 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3869 device_del(dev); 3870 put_device(dev); 3871 } 3872 EXPORT_SYMBOL_GPL(device_unregister); 3873 3874 static struct device *prev_device(struct klist_iter *i) 3875 { 3876 struct klist_node *n = klist_prev(i); 3877 struct device *dev = NULL; 3878 struct device_private *p; 3879 3880 if (n) { 3881 p = to_device_private_parent(n); 3882 dev = p->device; 3883 } 3884 return dev; 3885 } 3886 3887 static struct device *next_device(struct klist_iter *i) 3888 { 3889 struct klist_node *n = klist_next(i); 3890 struct device *dev = NULL; 3891 struct device_private *p; 3892 3893 if (n) { 3894 p = to_device_private_parent(n); 3895 dev = p->device; 3896 } 3897 return dev; 3898 } 3899 3900 /** 3901 * device_get_devnode - path of device node file 3902 * @dev: device 3903 * @mode: returned file access mode 3904 * @uid: returned file owner 3905 * @gid: returned file group 3906 * @tmp: possibly allocated string 3907 * 3908 * Return the relative path of a possible device node. 3909 * Non-default names may need to allocate a memory to compose 3910 * a name. This memory is returned in tmp and needs to be 3911 * freed by the caller. 3912 */ 3913 const char *device_get_devnode(const struct device *dev, 3914 umode_t *mode, kuid_t *uid, kgid_t *gid, 3915 const char **tmp) 3916 { 3917 char *s; 3918 3919 *tmp = NULL; 3920 3921 /* the device type may provide a specific name */ 3922 if (dev->type && dev->type->devnode) 3923 *tmp = dev->type->devnode(dev, mode, uid, gid); 3924 if (*tmp) 3925 return *tmp; 3926 3927 /* the class may provide a specific name */ 3928 if (dev->class && dev->class->devnode) 3929 *tmp = dev->class->devnode(dev, mode); 3930 if (*tmp) 3931 return *tmp; 3932 3933 /* return name without allocation, tmp == NULL */ 3934 if (strchr(dev_name(dev), '!') == NULL) 3935 return dev_name(dev); 3936 3937 /* replace '!' in the name with '/' */ 3938 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3939 if (!s) 3940 return NULL; 3941 return *tmp = s; 3942 } 3943 3944 /** 3945 * device_for_each_child - device child iterator. 3946 * @parent: parent struct device. 3947 * @fn: function to be called for each device. 3948 * @data: data for the callback. 3949 * 3950 * Iterate over @parent's child devices, and call @fn for each, 3951 * passing it @data. 3952 * 3953 * We check the return of @fn each time. If it returns anything 3954 * other than 0, we break out and return that value. 3955 */ 3956 int device_for_each_child(struct device *parent, void *data, 3957 int (*fn)(struct device *dev, void *data)) 3958 { 3959 struct klist_iter i; 3960 struct device *child; 3961 int error = 0; 3962 3963 if (!parent->p) 3964 return 0; 3965 3966 klist_iter_init(&parent->p->klist_children, &i); 3967 while (!error && (child = next_device(&i))) 3968 error = fn(child, data); 3969 klist_iter_exit(&i); 3970 return error; 3971 } 3972 EXPORT_SYMBOL_GPL(device_for_each_child); 3973 3974 /** 3975 * device_for_each_child_reverse - device child iterator in reversed order. 3976 * @parent: parent struct device. 3977 * @fn: function to be called for each device. 3978 * @data: data for the callback. 3979 * 3980 * Iterate over @parent's child devices, and call @fn for each, 3981 * passing it @data. 3982 * 3983 * We check the return of @fn each time. If it returns anything 3984 * other than 0, we break out and return that value. 3985 */ 3986 int device_for_each_child_reverse(struct device *parent, void *data, 3987 int (*fn)(struct device *dev, void *data)) 3988 { 3989 struct klist_iter i; 3990 struct device *child; 3991 int error = 0; 3992 3993 if (!parent->p) 3994 return 0; 3995 3996 klist_iter_init(&parent->p->klist_children, &i); 3997 while ((child = prev_device(&i)) && !error) 3998 error = fn(child, data); 3999 klist_iter_exit(&i); 4000 return error; 4001 } 4002 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4003 4004 /** 4005 * device_find_child - device iterator for locating a particular device. 4006 * @parent: parent struct device 4007 * @match: Callback function to check device 4008 * @data: Data to pass to match function 4009 * 4010 * This is similar to the device_for_each_child() function above, but it 4011 * returns a reference to a device that is 'found' for later use, as 4012 * determined by the @match callback. 4013 * 4014 * The callback should return 0 if the device doesn't match and non-zero 4015 * if it does. If the callback returns non-zero and a reference to the 4016 * current device can be obtained, this function will return to the caller 4017 * and not iterate over any more devices. 4018 * 4019 * NOTE: you will need to drop the reference with put_device() after use. 4020 */ 4021 struct device *device_find_child(struct device *parent, void *data, 4022 int (*match)(struct device *dev, void *data)) 4023 { 4024 struct klist_iter i; 4025 struct device *child; 4026 4027 if (!parent) 4028 return NULL; 4029 4030 klist_iter_init(&parent->p->klist_children, &i); 4031 while ((child = next_device(&i))) 4032 if (match(child, data) && get_device(child)) 4033 break; 4034 klist_iter_exit(&i); 4035 return child; 4036 } 4037 EXPORT_SYMBOL_GPL(device_find_child); 4038 4039 /** 4040 * device_find_child_by_name - device iterator for locating a child device. 4041 * @parent: parent struct device 4042 * @name: name of the child device 4043 * 4044 * This is similar to the device_find_child() function above, but it 4045 * returns a reference to a device that has the name @name. 4046 * 4047 * NOTE: you will need to drop the reference with put_device() after use. 4048 */ 4049 struct device *device_find_child_by_name(struct device *parent, 4050 const char *name) 4051 { 4052 struct klist_iter i; 4053 struct device *child; 4054 4055 if (!parent) 4056 return NULL; 4057 4058 klist_iter_init(&parent->p->klist_children, &i); 4059 while ((child = next_device(&i))) 4060 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4061 break; 4062 klist_iter_exit(&i); 4063 return child; 4064 } 4065 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4066 4067 static int match_any(struct device *dev, void *unused) 4068 { 4069 return 1; 4070 } 4071 4072 /** 4073 * device_find_any_child - device iterator for locating a child device, if any. 4074 * @parent: parent struct device 4075 * 4076 * This is similar to the device_find_child() function above, but it 4077 * returns a reference to a child device, if any. 4078 * 4079 * NOTE: you will need to drop the reference with put_device() after use. 4080 */ 4081 struct device *device_find_any_child(struct device *parent) 4082 { 4083 return device_find_child(parent, NULL, match_any); 4084 } 4085 EXPORT_SYMBOL_GPL(device_find_any_child); 4086 4087 int __init devices_init(void) 4088 { 4089 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4090 if (!devices_kset) 4091 return -ENOMEM; 4092 dev_kobj = kobject_create_and_add("dev", NULL); 4093 if (!dev_kobj) 4094 goto dev_kobj_err; 4095 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4096 if (!sysfs_dev_block_kobj) 4097 goto block_kobj_err; 4098 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4099 if (!sysfs_dev_char_kobj) 4100 goto char_kobj_err; 4101 4102 return 0; 4103 4104 char_kobj_err: 4105 kobject_put(sysfs_dev_block_kobj); 4106 block_kobj_err: 4107 kobject_put(dev_kobj); 4108 dev_kobj_err: 4109 kset_unregister(devices_kset); 4110 return -ENOMEM; 4111 } 4112 4113 static int device_check_offline(struct device *dev, void *not_used) 4114 { 4115 int ret; 4116 4117 ret = device_for_each_child(dev, NULL, device_check_offline); 4118 if (ret) 4119 return ret; 4120 4121 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4122 } 4123 4124 /** 4125 * device_offline - Prepare the device for hot-removal. 4126 * @dev: Device to be put offline. 4127 * 4128 * Execute the device bus type's .offline() callback, if present, to prepare 4129 * the device for a subsequent hot-removal. If that succeeds, the device must 4130 * not be used until either it is removed or its bus type's .online() callback 4131 * is executed. 4132 * 4133 * Call under device_hotplug_lock. 4134 */ 4135 int device_offline(struct device *dev) 4136 { 4137 int ret; 4138 4139 if (dev->offline_disabled) 4140 return -EPERM; 4141 4142 ret = device_for_each_child(dev, NULL, device_check_offline); 4143 if (ret) 4144 return ret; 4145 4146 device_lock(dev); 4147 if (device_supports_offline(dev)) { 4148 if (dev->offline) { 4149 ret = 1; 4150 } else { 4151 ret = dev->bus->offline(dev); 4152 if (!ret) { 4153 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4154 dev->offline = true; 4155 } 4156 } 4157 } 4158 device_unlock(dev); 4159 4160 return ret; 4161 } 4162 4163 /** 4164 * device_online - Put the device back online after successful device_offline(). 4165 * @dev: Device to be put back online. 4166 * 4167 * If device_offline() has been successfully executed for @dev, but the device 4168 * has not been removed subsequently, execute its bus type's .online() callback 4169 * to indicate that the device can be used again. 4170 * 4171 * Call under device_hotplug_lock. 4172 */ 4173 int device_online(struct device *dev) 4174 { 4175 int ret = 0; 4176 4177 device_lock(dev); 4178 if (device_supports_offline(dev)) { 4179 if (dev->offline) { 4180 ret = dev->bus->online(dev); 4181 if (!ret) { 4182 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4183 dev->offline = false; 4184 } 4185 } else { 4186 ret = 1; 4187 } 4188 } 4189 device_unlock(dev); 4190 4191 return ret; 4192 } 4193 4194 struct root_device { 4195 struct device dev; 4196 struct module *owner; 4197 }; 4198 4199 static inline struct root_device *to_root_device(struct device *d) 4200 { 4201 return container_of(d, struct root_device, dev); 4202 } 4203 4204 static void root_device_release(struct device *dev) 4205 { 4206 kfree(to_root_device(dev)); 4207 } 4208 4209 /** 4210 * __root_device_register - allocate and register a root device 4211 * @name: root device name 4212 * @owner: owner module of the root device, usually THIS_MODULE 4213 * 4214 * This function allocates a root device and registers it 4215 * using device_register(). In order to free the returned 4216 * device, use root_device_unregister(). 4217 * 4218 * Root devices are dummy devices which allow other devices 4219 * to be grouped under /sys/devices. Use this function to 4220 * allocate a root device and then use it as the parent of 4221 * any device which should appear under /sys/devices/{name} 4222 * 4223 * The /sys/devices/{name} directory will also contain a 4224 * 'module' symlink which points to the @owner directory 4225 * in sysfs. 4226 * 4227 * Returns &struct device pointer on success, or ERR_PTR() on error. 4228 * 4229 * Note: You probably want to use root_device_register(). 4230 */ 4231 struct device *__root_device_register(const char *name, struct module *owner) 4232 { 4233 struct root_device *root; 4234 int err = -ENOMEM; 4235 4236 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4237 if (!root) 4238 return ERR_PTR(err); 4239 4240 err = dev_set_name(&root->dev, "%s", name); 4241 if (err) { 4242 kfree(root); 4243 return ERR_PTR(err); 4244 } 4245 4246 root->dev.release = root_device_release; 4247 4248 err = device_register(&root->dev); 4249 if (err) { 4250 put_device(&root->dev); 4251 return ERR_PTR(err); 4252 } 4253 4254 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4255 if (owner) { 4256 struct module_kobject *mk = &owner->mkobj; 4257 4258 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4259 if (err) { 4260 device_unregister(&root->dev); 4261 return ERR_PTR(err); 4262 } 4263 root->owner = owner; 4264 } 4265 #endif 4266 4267 return &root->dev; 4268 } 4269 EXPORT_SYMBOL_GPL(__root_device_register); 4270 4271 /** 4272 * root_device_unregister - unregister and free a root device 4273 * @dev: device going away 4274 * 4275 * This function unregisters and cleans up a device that was created by 4276 * root_device_register(). 4277 */ 4278 void root_device_unregister(struct device *dev) 4279 { 4280 struct root_device *root = to_root_device(dev); 4281 4282 if (root->owner) 4283 sysfs_remove_link(&root->dev.kobj, "module"); 4284 4285 device_unregister(dev); 4286 } 4287 EXPORT_SYMBOL_GPL(root_device_unregister); 4288 4289 4290 static void device_create_release(struct device *dev) 4291 { 4292 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4293 kfree(dev); 4294 } 4295 4296 static __printf(6, 0) struct device * 4297 device_create_groups_vargs(const struct class *class, struct device *parent, 4298 dev_t devt, void *drvdata, 4299 const struct attribute_group **groups, 4300 const char *fmt, va_list args) 4301 { 4302 struct device *dev = NULL; 4303 int retval = -ENODEV; 4304 4305 if (IS_ERR_OR_NULL(class)) 4306 goto error; 4307 4308 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4309 if (!dev) { 4310 retval = -ENOMEM; 4311 goto error; 4312 } 4313 4314 device_initialize(dev); 4315 dev->devt = devt; 4316 dev->class = class; 4317 dev->parent = parent; 4318 dev->groups = groups; 4319 dev->release = device_create_release; 4320 dev_set_drvdata(dev, drvdata); 4321 4322 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4323 if (retval) 4324 goto error; 4325 4326 retval = device_add(dev); 4327 if (retval) 4328 goto error; 4329 4330 return dev; 4331 4332 error: 4333 put_device(dev); 4334 return ERR_PTR(retval); 4335 } 4336 4337 /** 4338 * device_create - creates a device and registers it with sysfs 4339 * @class: pointer to the struct class that this device should be registered to 4340 * @parent: pointer to the parent struct device of this new device, if any 4341 * @devt: the dev_t for the char device to be added 4342 * @drvdata: the data to be added to the device for callbacks 4343 * @fmt: string for the device's name 4344 * 4345 * This function can be used by char device classes. A struct device 4346 * will be created in sysfs, registered to the specified class. 4347 * 4348 * A "dev" file will be created, showing the dev_t for the device, if 4349 * the dev_t is not 0,0. 4350 * If a pointer to a parent struct device is passed in, the newly created 4351 * struct device will be a child of that device in sysfs. 4352 * The pointer to the struct device will be returned from the call. 4353 * Any further sysfs files that might be required can be created using this 4354 * pointer. 4355 * 4356 * Returns &struct device pointer on success, or ERR_PTR() on error. 4357 */ 4358 struct device *device_create(const struct class *class, struct device *parent, 4359 dev_t devt, void *drvdata, const char *fmt, ...) 4360 { 4361 va_list vargs; 4362 struct device *dev; 4363 4364 va_start(vargs, fmt); 4365 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4366 fmt, vargs); 4367 va_end(vargs); 4368 return dev; 4369 } 4370 EXPORT_SYMBOL_GPL(device_create); 4371 4372 /** 4373 * device_create_with_groups - creates a device and registers it with sysfs 4374 * @class: pointer to the struct class that this device should be registered to 4375 * @parent: pointer to the parent struct device of this new device, if any 4376 * @devt: the dev_t for the char device to be added 4377 * @drvdata: the data to be added to the device for callbacks 4378 * @groups: NULL-terminated list of attribute groups to be created 4379 * @fmt: string for the device's name 4380 * 4381 * This function can be used by char device classes. A struct device 4382 * will be created in sysfs, registered to the specified class. 4383 * Additional attributes specified in the groups parameter will also 4384 * be created automatically. 4385 * 4386 * A "dev" file will be created, showing the dev_t for the device, if 4387 * the dev_t is not 0,0. 4388 * If a pointer to a parent struct device is passed in, the newly created 4389 * struct device will be a child of that device in sysfs. 4390 * The pointer to the struct device will be returned from the call. 4391 * Any further sysfs files that might be required can be created using this 4392 * pointer. 4393 * 4394 * Returns &struct device pointer on success, or ERR_PTR() on error. 4395 */ 4396 struct device *device_create_with_groups(const struct class *class, 4397 struct device *parent, dev_t devt, 4398 void *drvdata, 4399 const struct attribute_group **groups, 4400 const char *fmt, ...) 4401 { 4402 va_list vargs; 4403 struct device *dev; 4404 4405 va_start(vargs, fmt); 4406 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4407 fmt, vargs); 4408 va_end(vargs); 4409 return dev; 4410 } 4411 EXPORT_SYMBOL_GPL(device_create_with_groups); 4412 4413 /** 4414 * device_destroy - removes a device that was created with device_create() 4415 * @class: pointer to the struct class that this device was registered with 4416 * @devt: the dev_t of the device that was previously registered 4417 * 4418 * This call unregisters and cleans up a device that was created with a 4419 * call to device_create(). 4420 */ 4421 void device_destroy(const struct class *class, dev_t devt) 4422 { 4423 struct device *dev; 4424 4425 dev = class_find_device_by_devt(class, devt); 4426 if (dev) { 4427 put_device(dev); 4428 device_unregister(dev); 4429 } 4430 } 4431 EXPORT_SYMBOL_GPL(device_destroy); 4432 4433 /** 4434 * device_rename - renames a device 4435 * @dev: the pointer to the struct device to be renamed 4436 * @new_name: the new name of the device 4437 * 4438 * It is the responsibility of the caller to provide mutual 4439 * exclusion between two different calls of device_rename 4440 * on the same device to ensure that new_name is valid and 4441 * won't conflict with other devices. 4442 * 4443 * Note: given that some subsystems (networking and infiniband) use this 4444 * function, with no immediate plans for this to change, we cannot assume or 4445 * require that this function not be called at all. 4446 * 4447 * However, if you're writing new code, do not call this function. The following 4448 * text from Kay Sievers offers some insight: 4449 * 4450 * Renaming devices is racy at many levels, symlinks and other stuff are not 4451 * replaced atomically, and you get a "move" uevent, but it's not easy to 4452 * connect the event to the old and new device. Device nodes are not renamed at 4453 * all, there isn't even support for that in the kernel now. 4454 * 4455 * In the meantime, during renaming, your target name might be taken by another 4456 * driver, creating conflicts. Or the old name is taken directly after you 4457 * renamed it -- then you get events for the same DEVPATH, before you even see 4458 * the "move" event. It's just a mess, and nothing new should ever rely on 4459 * kernel device renaming. Besides that, it's not even implemented now for 4460 * other things than (driver-core wise very simple) network devices. 4461 * 4462 * Make up a "real" name in the driver before you register anything, or add 4463 * some other attributes for userspace to find the device, or use udev to add 4464 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4465 * don't even want to get into that and try to implement the missing pieces in 4466 * the core. We really have other pieces to fix in the driver core mess. :) 4467 */ 4468 int device_rename(struct device *dev, const char *new_name) 4469 { 4470 struct kobject *kobj = &dev->kobj; 4471 char *old_device_name = NULL; 4472 int error; 4473 4474 dev = get_device(dev); 4475 if (!dev) 4476 return -EINVAL; 4477 4478 dev_dbg(dev, "renaming to %s\n", new_name); 4479 4480 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4481 if (!old_device_name) { 4482 error = -ENOMEM; 4483 goto out; 4484 } 4485 4486 if (dev->class) { 4487 struct subsys_private *sp = class_to_subsys(dev->class); 4488 4489 if (!sp) { 4490 error = -EINVAL; 4491 goto out; 4492 } 4493 4494 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4495 new_name, kobject_namespace(kobj)); 4496 subsys_put(sp); 4497 if (error) 4498 goto out; 4499 } 4500 4501 error = kobject_rename(kobj, new_name); 4502 if (error) 4503 goto out; 4504 4505 out: 4506 put_device(dev); 4507 4508 kfree(old_device_name); 4509 4510 return error; 4511 } 4512 EXPORT_SYMBOL_GPL(device_rename); 4513 4514 static int device_move_class_links(struct device *dev, 4515 struct device *old_parent, 4516 struct device *new_parent) 4517 { 4518 int error = 0; 4519 4520 if (old_parent) 4521 sysfs_remove_link(&dev->kobj, "device"); 4522 if (new_parent) 4523 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4524 "device"); 4525 return error; 4526 } 4527 4528 /** 4529 * device_move - moves a device to a new parent 4530 * @dev: the pointer to the struct device to be moved 4531 * @new_parent: the new parent of the device (can be NULL) 4532 * @dpm_order: how to reorder the dpm_list 4533 */ 4534 int device_move(struct device *dev, struct device *new_parent, 4535 enum dpm_order dpm_order) 4536 { 4537 int error; 4538 struct device *old_parent; 4539 struct kobject *new_parent_kobj; 4540 4541 dev = get_device(dev); 4542 if (!dev) 4543 return -EINVAL; 4544 4545 device_pm_lock(); 4546 new_parent = get_device(new_parent); 4547 new_parent_kobj = get_device_parent(dev, new_parent); 4548 if (IS_ERR(new_parent_kobj)) { 4549 error = PTR_ERR(new_parent_kobj); 4550 put_device(new_parent); 4551 goto out; 4552 } 4553 4554 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4555 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4556 error = kobject_move(&dev->kobj, new_parent_kobj); 4557 if (error) { 4558 cleanup_glue_dir(dev, new_parent_kobj); 4559 put_device(new_parent); 4560 goto out; 4561 } 4562 old_parent = dev->parent; 4563 dev->parent = new_parent; 4564 if (old_parent) 4565 klist_remove(&dev->p->knode_parent); 4566 if (new_parent) { 4567 klist_add_tail(&dev->p->knode_parent, 4568 &new_parent->p->klist_children); 4569 set_dev_node(dev, dev_to_node(new_parent)); 4570 } 4571 4572 if (dev->class) { 4573 error = device_move_class_links(dev, old_parent, new_parent); 4574 if (error) { 4575 /* We ignore errors on cleanup since we're hosed anyway... */ 4576 device_move_class_links(dev, new_parent, old_parent); 4577 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4578 if (new_parent) 4579 klist_remove(&dev->p->knode_parent); 4580 dev->parent = old_parent; 4581 if (old_parent) { 4582 klist_add_tail(&dev->p->knode_parent, 4583 &old_parent->p->klist_children); 4584 set_dev_node(dev, dev_to_node(old_parent)); 4585 } 4586 } 4587 cleanup_glue_dir(dev, new_parent_kobj); 4588 put_device(new_parent); 4589 goto out; 4590 } 4591 } 4592 switch (dpm_order) { 4593 case DPM_ORDER_NONE: 4594 break; 4595 case DPM_ORDER_DEV_AFTER_PARENT: 4596 device_pm_move_after(dev, new_parent); 4597 devices_kset_move_after(dev, new_parent); 4598 break; 4599 case DPM_ORDER_PARENT_BEFORE_DEV: 4600 device_pm_move_before(new_parent, dev); 4601 devices_kset_move_before(new_parent, dev); 4602 break; 4603 case DPM_ORDER_DEV_LAST: 4604 device_pm_move_last(dev); 4605 devices_kset_move_last(dev); 4606 break; 4607 } 4608 4609 put_device(old_parent); 4610 out: 4611 device_pm_unlock(); 4612 put_device(dev); 4613 return error; 4614 } 4615 EXPORT_SYMBOL_GPL(device_move); 4616 4617 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4618 kgid_t kgid) 4619 { 4620 struct kobject *kobj = &dev->kobj; 4621 const struct class *class = dev->class; 4622 const struct device_type *type = dev->type; 4623 int error; 4624 4625 if (class) { 4626 /* 4627 * Change the device groups of the device class for @dev to 4628 * @kuid/@kgid. 4629 */ 4630 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4631 kgid); 4632 if (error) 4633 return error; 4634 } 4635 4636 if (type) { 4637 /* 4638 * Change the device groups of the device type for @dev to 4639 * @kuid/@kgid. 4640 */ 4641 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4642 kgid); 4643 if (error) 4644 return error; 4645 } 4646 4647 /* Change the device groups of @dev to @kuid/@kgid. */ 4648 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4649 if (error) 4650 return error; 4651 4652 if (device_supports_offline(dev) && !dev->offline_disabled) { 4653 /* Change online device attributes of @dev to @kuid/@kgid. */ 4654 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4655 kuid, kgid); 4656 if (error) 4657 return error; 4658 } 4659 4660 return 0; 4661 } 4662 4663 /** 4664 * device_change_owner - change the owner of an existing device. 4665 * @dev: device. 4666 * @kuid: new owner's kuid 4667 * @kgid: new owner's kgid 4668 * 4669 * This changes the owner of @dev and its corresponding sysfs entries to 4670 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4671 * core. 4672 * 4673 * Returns 0 on success or error code on failure. 4674 */ 4675 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4676 { 4677 int error; 4678 struct kobject *kobj = &dev->kobj; 4679 struct subsys_private *sp; 4680 4681 dev = get_device(dev); 4682 if (!dev) 4683 return -EINVAL; 4684 4685 /* 4686 * Change the kobject and the default attributes and groups of the 4687 * ktype associated with it to @kuid/@kgid. 4688 */ 4689 error = sysfs_change_owner(kobj, kuid, kgid); 4690 if (error) 4691 goto out; 4692 4693 /* 4694 * Change the uevent file for @dev to the new owner. The uevent file 4695 * was created in a separate step when @dev got added and we mirror 4696 * that step here. 4697 */ 4698 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4699 kgid); 4700 if (error) 4701 goto out; 4702 4703 /* 4704 * Change the device groups, the device groups associated with the 4705 * device class, and the groups associated with the device type of @dev 4706 * to @kuid/@kgid. 4707 */ 4708 error = device_attrs_change_owner(dev, kuid, kgid); 4709 if (error) 4710 goto out; 4711 4712 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4713 if (error) 4714 goto out; 4715 4716 /* 4717 * Change the owner of the symlink located in the class directory of 4718 * the device class associated with @dev which points to the actual 4719 * directory entry for @dev to @kuid/@kgid. This ensures that the 4720 * symlink shows the same permissions as its target. 4721 */ 4722 sp = class_to_subsys(dev->class); 4723 if (!sp) { 4724 error = -EINVAL; 4725 goto out; 4726 } 4727 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4728 subsys_put(sp); 4729 4730 out: 4731 put_device(dev); 4732 return error; 4733 } 4734 EXPORT_SYMBOL_GPL(device_change_owner); 4735 4736 /** 4737 * device_shutdown - call ->shutdown() on each device to shutdown. 4738 */ 4739 void device_shutdown(void) 4740 { 4741 struct device *dev, *parent; 4742 4743 wait_for_device_probe(); 4744 device_block_probing(); 4745 4746 cpufreq_suspend(); 4747 4748 spin_lock(&devices_kset->list_lock); 4749 /* 4750 * Walk the devices list backward, shutting down each in turn. 4751 * Beware that device unplug events may also start pulling 4752 * devices offline, even as the system is shutting down. 4753 */ 4754 while (!list_empty(&devices_kset->list)) { 4755 dev = list_entry(devices_kset->list.prev, struct device, 4756 kobj.entry); 4757 4758 /* 4759 * hold reference count of device's parent to 4760 * prevent it from being freed because parent's 4761 * lock is to be held 4762 */ 4763 parent = get_device(dev->parent); 4764 get_device(dev); 4765 /* 4766 * Make sure the device is off the kset list, in the 4767 * event that dev->*->shutdown() doesn't remove it. 4768 */ 4769 list_del_init(&dev->kobj.entry); 4770 spin_unlock(&devices_kset->list_lock); 4771 4772 /* hold lock to avoid race with probe/release */ 4773 if (parent) 4774 device_lock(parent); 4775 device_lock(dev); 4776 4777 /* Don't allow any more runtime suspends */ 4778 pm_runtime_get_noresume(dev); 4779 pm_runtime_barrier(dev); 4780 4781 if (dev->class && dev->class->shutdown_pre) { 4782 if (initcall_debug) 4783 dev_info(dev, "shutdown_pre\n"); 4784 dev->class->shutdown_pre(dev); 4785 } 4786 if (dev->bus && dev->bus->shutdown) { 4787 if (initcall_debug) 4788 dev_info(dev, "shutdown\n"); 4789 dev->bus->shutdown(dev); 4790 } else if (dev->driver && dev->driver->shutdown) { 4791 if (initcall_debug) 4792 dev_info(dev, "shutdown\n"); 4793 dev->driver->shutdown(dev); 4794 } 4795 4796 device_unlock(dev); 4797 if (parent) 4798 device_unlock(parent); 4799 4800 put_device(dev); 4801 put_device(parent); 4802 4803 spin_lock(&devices_kset->list_lock); 4804 } 4805 spin_unlock(&devices_kset->list_lock); 4806 } 4807 4808 /* 4809 * Device logging functions 4810 */ 4811 4812 #ifdef CONFIG_PRINTK 4813 static void 4814 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4815 { 4816 const char *subsys; 4817 4818 memset(dev_info, 0, sizeof(*dev_info)); 4819 4820 if (dev->class) 4821 subsys = dev->class->name; 4822 else if (dev->bus) 4823 subsys = dev->bus->name; 4824 else 4825 return; 4826 4827 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4828 4829 /* 4830 * Add device identifier DEVICE=: 4831 * b12:8 block dev_t 4832 * c127:3 char dev_t 4833 * n8 netdev ifindex 4834 * +sound:card0 subsystem:devname 4835 */ 4836 if (MAJOR(dev->devt)) { 4837 char c; 4838 4839 if (strcmp(subsys, "block") == 0) 4840 c = 'b'; 4841 else 4842 c = 'c'; 4843 4844 snprintf(dev_info->device, sizeof(dev_info->device), 4845 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4846 } else if (strcmp(subsys, "net") == 0) { 4847 struct net_device *net = to_net_dev(dev); 4848 4849 snprintf(dev_info->device, sizeof(dev_info->device), 4850 "n%u", net->ifindex); 4851 } else { 4852 snprintf(dev_info->device, sizeof(dev_info->device), 4853 "+%s:%s", subsys, dev_name(dev)); 4854 } 4855 } 4856 4857 int dev_vprintk_emit(int level, const struct device *dev, 4858 const char *fmt, va_list args) 4859 { 4860 struct dev_printk_info dev_info; 4861 4862 set_dev_info(dev, &dev_info); 4863 4864 return vprintk_emit(0, level, &dev_info, fmt, args); 4865 } 4866 EXPORT_SYMBOL(dev_vprintk_emit); 4867 4868 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4869 { 4870 va_list args; 4871 int r; 4872 4873 va_start(args, fmt); 4874 4875 r = dev_vprintk_emit(level, dev, fmt, args); 4876 4877 va_end(args); 4878 4879 return r; 4880 } 4881 EXPORT_SYMBOL(dev_printk_emit); 4882 4883 static void __dev_printk(const char *level, const struct device *dev, 4884 struct va_format *vaf) 4885 { 4886 if (dev) 4887 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4888 dev_driver_string(dev), dev_name(dev), vaf); 4889 else 4890 printk("%s(NULL device *): %pV", level, vaf); 4891 } 4892 4893 void _dev_printk(const char *level, const struct device *dev, 4894 const char *fmt, ...) 4895 { 4896 struct va_format vaf; 4897 va_list args; 4898 4899 va_start(args, fmt); 4900 4901 vaf.fmt = fmt; 4902 vaf.va = &args; 4903 4904 __dev_printk(level, dev, &vaf); 4905 4906 va_end(args); 4907 } 4908 EXPORT_SYMBOL(_dev_printk); 4909 4910 #define define_dev_printk_level(func, kern_level) \ 4911 void func(const struct device *dev, const char *fmt, ...) \ 4912 { \ 4913 struct va_format vaf; \ 4914 va_list args; \ 4915 \ 4916 va_start(args, fmt); \ 4917 \ 4918 vaf.fmt = fmt; \ 4919 vaf.va = &args; \ 4920 \ 4921 __dev_printk(kern_level, dev, &vaf); \ 4922 \ 4923 va_end(args); \ 4924 } \ 4925 EXPORT_SYMBOL(func); 4926 4927 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4928 define_dev_printk_level(_dev_alert, KERN_ALERT); 4929 define_dev_printk_level(_dev_crit, KERN_CRIT); 4930 define_dev_printk_level(_dev_err, KERN_ERR); 4931 define_dev_printk_level(_dev_warn, KERN_WARNING); 4932 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4933 define_dev_printk_level(_dev_info, KERN_INFO); 4934 4935 #endif 4936 4937 /** 4938 * dev_err_probe - probe error check and log helper 4939 * @dev: the pointer to the struct device 4940 * @err: error value to test 4941 * @fmt: printf-style format string 4942 * @...: arguments as specified in the format string 4943 * 4944 * This helper implements common pattern present in probe functions for error 4945 * checking: print debug or error message depending if the error value is 4946 * -EPROBE_DEFER and propagate error upwards. 4947 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4948 * checked later by reading devices_deferred debugfs attribute. 4949 * It replaces code sequence:: 4950 * 4951 * if (err != -EPROBE_DEFER) 4952 * dev_err(dev, ...); 4953 * else 4954 * dev_dbg(dev, ...); 4955 * return err; 4956 * 4957 * with:: 4958 * 4959 * return dev_err_probe(dev, err, ...); 4960 * 4961 * Using this helper in your probe function is totally fine even if @err is 4962 * known to never be -EPROBE_DEFER. 4963 * The benefit compared to a normal dev_err() is the standardized format 4964 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 4965 * instead of "-35") and the fact that the error code is returned which allows 4966 * more compact error paths. 4967 * 4968 * Returns @err. 4969 */ 4970 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4971 { 4972 struct va_format vaf; 4973 va_list args; 4974 4975 va_start(args, fmt); 4976 vaf.fmt = fmt; 4977 vaf.va = &args; 4978 4979 if (err != -EPROBE_DEFER) { 4980 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4981 } else { 4982 device_set_deferred_probe_reason(dev, &vaf); 4983 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4984 } 4985 4986 va_end(args); 4987 4988 return err; 4989 } 4990 EXPORT_SYMBOL_GPL(dev_err_probe); 4991 4992 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4993 { 4994 return fwnode && !IS_ERR(fwnode->secondary); 4995 } 4996 4997 /** 4998 * set_primary_fwnode - Change the primary firmware node of a given device. 4999 * @dev: Device to handle. 5000 * @fwnode: New primary firmware node of the device. 5001 * 5002 * Set the device's firmware node pointer to @fwnode, but if a secondary 5003 * firmware node of the device is present, preserve it. 5004 * 5005 * Valid fwnode cases are: 5006 * - primary --> secondary --> -ENODEV 5007 * - primary --> NULL 5008 * - secondary --> -ENODEV 5009 * - NULL 5010 */ 5011 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5012 { 5013 struct device *parent = dev->parent; 5014 struct fwnode_handle *fn = dev->fwnode; 5015 5016 if (fwnode) { 5017 if (fwnode_is_primary(fn)) 5018 fn = fn->secondary; 5019 5020 if (fn) { 5021 WARN_ON(fwnode->secondary); 5022 fwnode->secondary = fn; 5023 } 5024 dev->fwnode = fwnode; 5025 } else { 5026 if (fwnode_is_primary(fn)) { 5027 dev->fwnode = fn->secondary; 5028 5029 /* Skip nullifying fn->secondary if the primary is shared */ 5030 if (parent && fn == parent->fwnode) 5031 return; 5032 5033 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5034 fn->secondary = NULL; 5035 } else { 5036 dev->fwnode = NULL; 5037 } 5038 } 5039 } 5040 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5041 5042 /** 5043 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5044 * @dev: Device to handle. 5045 * @fwnode: New secondary firmware node of the device. 5046 * 5047 * If a primary firmware node of the device is present, set its secondary 5048 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5049 * @fwnode. 5050 */ 5051 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5052 { 5053 if (fwnode) 5054 fwnode->secondary = ERR_PTR(-ENODEV); 5055 5056 if (fwnode_is_primary(dev->fwnode)) 5057 dev->fwnode->secondary = fwnode; 5058 else 5059 dev->fwnode = fwnode; 5060 } 5061 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5062 5063 /** 5064 * device_set_of_node_from_dev - reuse device-tree node of another device 5065 * @dev: device whose device-tree node is being set 5066 * @dev2: device whose device-tree node is being reused 5067 * 5068 * Takes another reference to the new device-tree node after first dropping 5069 * any reference held to the old node. 5070 */ 5071 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5072 { 5073 of_node_put(dev->of_node); 5074 dev->of_node = of_node_get(dev2->of_node); 5075 dev->of_node_reused = true; 5076 } 5077 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5078 5079 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5080 { 5081 dev->fwnode = fwnode; 5082 dev->of_node = to_of_node(fwnode); 5083 } 5084 EXPORT_SYMBOL_GPL(device_set_node); 5085 5086 int device_match_name(struct device *dev, const void *name) 5087 { 5088 return sysfs_streq(dev_name(dev), name); 5089 } 5090 EXPORT_SYMBOL_GPL(device_match_name); 5091 5092 int device_match_of_node(struct device *dev, const void *np) 5093 { 5094 return dev->of_node == np; 5095 } 5096 EXPORT_SYMBOL_GPL(device_match_of_node); 5097 5098 int device_match_fwnode(struct device *dev, const void *fwnode) 5099 { 5100 return dev_fwnode(dev) == fwnode; 5101 } 5102 EXPORT_SYMBOL_GPL(device_match_fwnode); 5103 5104 int device_match_devt(struct device *dev, const void *pdevt) 5105 { 5106 return dev->devt == *(dev_t *)pdevt; 5107 } 5108 EXPORT_SYMBOL_GPL(device_match_devt); 5109 5110 int device_match_acpi_dev(struct device *dev, const void *adev) 5111 { 5112 return ACPI_COMPANION(dev) == adev; 5113 } 5114 EXPORT_SYMBOL(device_match_acpi_dev); 5115 5116 int device_match_acpi_handle(struct device *dev, const void *handle) 5117 { 5118 return ACPI_HANDLE(dev) == handle; 5119 } 5120 EXPORT_SYMBOL(device_match_acpi_handle); 5121 5122 int device_match_any(struct device *dev, const void *unused) 5123 { 5124 return 1; 5125 } 5126 EXPORT_SYMBOL_GPL(device_match_any); 5127