1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/device.h> 13 #include <linux/err.h> 14 #include <linux/fwnode.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include <linux/kdev_t.h> 20 #include <linux/notifier.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/genhd.h> 24 #include <linux/mutex.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/netdevice.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sysfs.h> 29 30 #include "base.h" 31 #include "power/power.h" 32 33 #ifdef CONFIG_SYSFS_DEPRECATED 34 #ifdef CONFIG_SYSFS_DEPRECATED_V2 35 long sysfs_deprecated = 1; 36 #else 37 long sysfs_deprecated = 0; 38 #endif 39 static int __init sysfs_deprecated_setup(char *arg) 40 { 41 return kstrtol(arg, 10, &sysfs_deprecated); 42 } 43 early_param("sysfs.deprecated", sysfs_deprecated_setup); 44 #endif 45 46 /* Device links support. */ 47 48 #ifdef CONFIG_SRCU 49 static DEFINE_MUTEX(device_links_lock); 50 DEFINE_STATIC_SRCU(device_links_srcu); 51 52 static inline void device_links_write_lock(void) 53 { 54 mutex_lock(&device_links_lock); 55 } 56 57 static inline void device_links_write_unlock(void) 58 { 59 mutex_unlock(&device_links_lock); 60 } 61 62 int device_links_read_lock(void) 63 { 64 return srcu_read_lock(&device_links_srcu); 65 } 66 67 void device_links_read_unlock(int idx) 68 { 69 srcu_read_unlock(&device_links_srcu, idx); 70 } 71 72 int device_links_read_lock_held(void) 73 { 74 return srcu_read_lock_held(&device_links_srcu); 75 } 76 #else /* !CONFIG_SRCU */ 77 static DECLARE_RWSEM(device_links_lock); 78 79 static inline void device_links_write_lock(void) 80 { 81 down_write(&device_links_lock); 82 } 83 84 static inline void device_links_write_unlock(void) 85 { 86 up_write(&device_links_lock); 87 } 88 89 int device_links_read_lock(void) 90 { 91 down_read(&device_links_lock); 92 return 0; 93 } 94 95 void device_links_read_unlock(int not_used) 96 { 97 up_read(&device_links_lock); 98 } 99 100 #ifdef CONFIG_DEBUG_LOCK_ALLOC 101 int device_links_read_lock_held(void) 102 { 103 return lockdep_is_held(&device_links_lock); 104 } 105 #endif 106 #endif /* !CONFIG_SRCU */ 107 108 /** 109 * device_is_dependent - Check if one device depends on another one 110 * @dev: Device to check dependencies for. 111 * @target: Device to check against. 112 * 113 * Check if @target depends on @dev or any device dependent on it (its child or 114 * its consumer etc). Return 1 if that is the case or 0 otherwise. 115 */ 116 static int device_is_dependent(struct device *dev, void *target) 117 { 118 struct device_link *link; 119 int ret; 120 121 if (dev == target) 122 return 1; 123 124 ret = device_for_each_child(dev, target, device_is_dependent); 125 if (ret) 126 return ret; 127 128 list_for_each_entry(link, &dev->links.consumers, s_node) { 129 if (link->consumer == target) 130 return 1; 131 132 ret = device_is_dependent(link->consumer, target); 133 if (ret) 134 break; 135 } 136 return ret; 137 } 138 139 static int device_reorder_to_tail(struct device *dev, void *not_used) 140 { 141 struct device_link *link; 142 143 /* 144 * Devices that have not been registered yet will be put to the ends 145 * of the lists during the registration, so skip them here. 146 */ 147 if (device_is_registered(dev)) 148 devices_kset_move_last(dev); 149 150 if (device_pm_initialized(dev)) 151 device_pm_move_last(dev); 152 153 device_for_each_child(dev, NULL, device_reorder_to_tail); 154 list_for_each_entry(link, &dev->links.consumers, s_node) 155 device_reorder_to_tail(link->consumer, NULL); 156 157 return 0; 158 } 159 160 /** 161 * device_pm_move_to_tail - Move set of devices to the end of device lists 162 * @dev: Device to move 163 * 164 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 165 * 166 * It moves the @dev along with all of its children and all of its consumers 167 * to the ends of the device_kset and dpm_list, recursively. 168 */ 169 void device_pm_move_to_tail(struct device *dev) 170 { 171 int idx; 172 173 idx = device_links_read_lock(); 174 device_pm_lock(); 175 device_reorder_to_tail(dev, NULL); 176 device_pm_unlock(); 177 device_links_read_unlock(idx); 178 } 179 180 /** 181 * device_link_add - Create a link between two devices. 182 * @consumer: Consumer end of the link. 183 * @supplier: Supplier end of the link. 184 * @flags: Link flags. 185 * 186 * The caller is responsible for the proper synchronization of the link creation 187 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 188 * runtime PM framework to take the link into account. Second, if the 189 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 190 * be forced into the active metastate and reference-counted upon the creation 191 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 192 * ignored. 193 * 194 * If DL_FLAG_STATELESS is set in @flags, the link is not going to be managed by 195 * the driver core and, in particular, the caller of this function is expected 196 * to drop the reference to the link acquired by it directly. 197 * 198 * If that flag is not set, however, the caller of this function is handing the 199 * management of the link over to the driver core entirely and its return value 200 * can only be used to check whether or not the link is present. In that case, 201 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 202 * flags can be used to indicate to the driver core when the link can be safely 203 * deleted. Namely, setting one of them in @flags indicates to the driver core 204 * that the link is not going to be used (by the given caller of this function) 205 * after unbinding the consumer or supplier driver, respectively, from its 206 * device, so the link can be deleted at that point. If none of them is set, 207 * the link will be maintained until one of the devices pointed to by it (either 208 * the consumer or the supplier) is unregistered. 209 * 210 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 211 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 212 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 213 * be used to request the driver core to automaticall probe for a consmer 214 * driver after successfully binding a driver to the supplier device. 215 * 216 * The combination of DL_FLAG_STATELESS and either DL_FLAG_AUTOREMOVE_CONSUMER 217 * or DL_FLAG_AUTOREMOVE_SUPPLIER set in @flags at the same time is invalid and 218 * will cause NULL to be returned upfront. 219 * 220 * A side effect of the link creation is re-ordering of dpm_list and the 221 * devices_kset list by moving the consumer device and all devices depending 222 * on it to the ends of these lists (that does not happen to devices that have 223 * not been registered when this function is called). 224 * 225 * The supplier device is required to be registered when this function is called 226 * and NULL will be returned if that is not the case. The consumer device need 227 * not be registered, however. 228 */ 229 struct device_link *device_link_add(struct device *consumer, 230 struct device *supplier, u32 flags) 231 { 232 struct device_link *link; 233 234 if (!consumer || !supplier || 235 (flags & DL_FLAG_STATELESS && 236 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 237 DL_FLAG_AUTOREMOVE_SUPPLIER | 238 DL_FLAG_AUTOPROBE_CONSUMER)) || 239 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 240 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 241 DL_FLAG_AUTOREMOVE_SUPPLIER))) 242 return NULL; 243 244 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 245 if (pm_runtime_get_sync(supplier) < 0) { 246 pm_runtime_put_noidle(supplier); 247 return NULL; 248 } 249 } 250 251 device_links_write_lock(); 252 device_pm_lock(); 253 254 /* 255 * If the supplier has not been fully registered yet or there is a 256 * reverse dependency between the consumer and the supplier already in 257 * the graph, return NULL. 258 */ 259 if (!device_pm_initialized(supplier) 260 || device_is_dependent(consumer, supplier)) { 261 link = NULL; 262 goto out; 263 } 264 265 /* 266 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 267 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 268 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 269 */ 270 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 271 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 272 273 list_for_each_entry(link, &supplier->links.consumers, s_node) { 274 if (link->consumer != consumer) 275 continue; 276 277 /* 278 * Don't return a stateless link if the caller wants a stateful 279 * one and vice versa. 280 */ 281 if (WARN_ON((flags & DL_FLAG_STATELESS) != (link->flags & DL_FLAG_STATELESS))) { 282 link = NULL; 283 goto out; 284 } 285 286 if (flags & DL_FLAG_PM_RUNTIME) { 287 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 288 pm_runtime_new_link(consumer); 289 link->flags |= DL_FLAG_PM_RUNTIME; 290 } 291 if (flags & DL_FLAG_RPM_ACTIVE) 292 refcount_inc(&link->rpm_active); 293 } 294 295 if (flags & DL_FLAG_STATELESS) { 296 kref_get(&link->kref); 297 goto out; 298 } 299 300 /* 301 * If the life time of the link following from the new flags is 302 * longer than indicated by the flags of the existing link, 303 * update the existing link to stay around longer. 304 */ 305 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 306 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 307 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 308 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 309 } 310 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 311 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 312 DL_FLAG_AUTOREMOVE_SUPPLIER); 313 } 314 goto out; 315 } 316 317 link = kzalloc(sizeof(*link), GFP_KERNEL); 318 if (!link) 319 goto out; 320 321 refcount_set(&link->rpm_active, 1); 322 323 if (flags & DL_FLAG_PM_RUNTIME) { 324 if (flags & DL_FLAG_RPM_ACTIVE) 325 refcount_inc(&link->rpm_active); 326 327 pm_runtime_new_link(consumer); 328 } 329 330 get_device(supplier); 331 link->supplier = supplier; 332 INIT_LIST_HEAD(&link->s_node); 333 get_device(consumer); 334 link->consumer = consumer; 335 INIT_LIST_HEAD(&link->c_node); 336 link->flags = flags; 337 kref_init(&link->kref); 338 339 /* Determine the initial link state. */ 340 if (flags & DL_FLAG_STATELESS) { 341 link->status = DL_STATE_NONE; 342 } else { 343 switch (supplier->links.status) { 344 case DL_DEV_PROBING: 345 switch (consumer->links.status) { 346 case DL_DEV_PROBING: 347 /* 348 * A consumer driver can create a link to a 349 * supplier that has not completed its probing 350 * yet as long as it knows that the supplier is 351 * already functional (for example, it has just 352 * acquired some resources from the supplier). 353 */ 354 link->status = DL_STATE_CONSUMER_PROBE; 355 break; 356 default: 357 link->status = DL_STATE_DORMANT; 358 break; 359 } 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 switch (consumer->links.status) { 363 case DL_DEV_PROBING: 364 link->status = DL_STATE_CONSUMER_PROBE; 365 break; 366 case DL_DEV_DRIVER_BOUND: 367 link->status = DL_STATE_ACTIVE; 368 break; 369 default: 370 link->status = DL_STATE_AVAILABLE; 371 break; 372 } 373 break; 374 case DL_DEV_UNBINDING: 375 link->status = DL_STATE_SUPPLIER_UNBIND; 376 break; 377 default: 378 link->status = DL_STATE_DORMANT; 379 break; 380 } 381 } 382 383 /* 384 * Some callers expect the link creation during consumer driver probe to 385 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 386 */ 387 if (link->status == DL_STATE_CONSUMER_PROBE && 388 flags & DL_FLAG_PM_RUNTIME) 389 pm_runtime_resume(supplier); 390 391 /* 392 * Move the consumer and all of the devices depending on it to the end 393 * of dpm_list and the devices_kset list. 394 * 395 * It is necessary to hold dpm_list locked throughout all that or else 396 * we may end up suspending with a wrong ordering of it. 397 */ 398 device_reorder_to_tail(consumer, NULL); 399 400 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 401 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 402 403 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 404 405 out: 406 device_pm_unlock(); 407 device_links_write_unlock(); 408 409 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 410 pm_runtime_put(supplier); 411 412 return link; 413 } 414 EXPORT_SYMBOL_GPL(device_link_add); 415 416 static void device_link_free(struct device_link *link) 417 { 418 while (refcount_dec_not_one(&link->rpm_active)) 419 pm_runtime_put(link->supplier); 420 421 put_device(link->consumer); 422 put_device(link->supplier); 423 kfree(link); 424 } 425 426 #ifdef CONFIG_SRCU 427 static void __device_link_free_srcu(struct rcu_head *rhead) 428 { 429 device_link_free(container_of(rhead, struct device_link, rcu_head)); 430 } 431 432 static void __device_link_del(struct kref *kref) 433 { 434 struct device_link *link = container_of(kref, struct device_link, kref); 435 436 dev_dbg(link->consumer, "Dropping the link to %s\n", 437 dev_name(link->supplier)); 438 439 if (link->flags & DL_FLAG_PM_RUNTIME) 440 pm_runtime_drop_link(link->consumer); 441 442 list_del_rcu(&link->s_node); 443 list_del_rcu(&link->c_node); 444 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 445 } 446 #else /* !CONFIG_SRCU */ 447 static void __device_link_del(struct kref *kref) 448 { 449 struct device_link *link = container_of(kref, struct device_link, kref); 450 451 dev_info(link->consumer, "Dropping the link to %s\n", 452 dev_name(link->supplier)); 453 454 if (link->flags & DL_FLAG_PM_RUNTIME) 455 pm_runtime_drop_link(link->consumer); 456 457 list_del(&link->s_node); 458 list_del(&link->c_node); 459 device_link_free(link); 460 } 461 #endif /* !CONFIG_SRCU */ 462 463 static void device_link_put_kref(struct device_link *link) 464 { 465 if (link->flags & DL_FLAG_STATELESS) 466 kref_put(&link->kref, __device_link_del); 467 else 468 WARN(1, "Unable to drop a managed device link reference\n"); 469 } 470 471 /** 472 * device_link_del - Delete a stateless link between two devices. 473 * @link: Device link to delete. 474 * 475 * The caller must ensure proper synchronization of this function with runtime 476 * PM. If the link was added multiple times, it needs to be deleted as often. 477 * Care is required for hotplugged devices: Their links are purged on removal 478 * and calling device_link_del() is then no longer allowed. 479 */ 480 void device_link_del(struct device_link *link) 481 { 482 device_links_write_lock(); 483 device_pm_lock(); 484 device_link_put_kref(link); 485 device_pm_unlock(); 486 device_links_write_unlock(); 487 } 488 EXPORT_SYMBOL_GPL(device_link_del); 489 490 /** 491 * device_link_remove - Delete a stateless link between two devices. 492 * @consumer: Consumer end of the link. 493 * @supplier: Supplier end of the link. 494 * 495 * The caller must ensure proper synchronization of this function with runtime 496 * PM. 497 */ 498 void device_link_remove(void *consumer, struct device *supplier) 499 { 500 struct device_link *link; 501 502 if (WARN_ON(consumer == supplier)) 503 return; 504 505 device_links_write_lock(); 506 device_pm_lock(); 507 508 list_for_each_entry(link, &supplier->links.consumers, s_node) { 509 if (link->consumer == consumer) { 510 device_link_put_kref(link); 511 break; 512 } 513 } 514 515 device_pm_unlock(); 516 device_links_write_unlock(); 517 } 518 EXPORT_SYMBOL_GPL(device_link_remove); 519 520 static void device_links_missing_supplier(struct device *dev) 521 { 522 struct device_link *link; 523 524 list_for_each_entry(link, &dev->links.suppliers, c_node) 525 if (link->status == DL_STATE_CONSUMER_PROBE) 526 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 527 } 528 529 /** 530 * device_links_check_suppliers - Check presence of supplier drivers. 531 * @dev: Consumer device. 532 * 533 * Check links from this device to any suppliers. Walk the list of the device's 534 * links to suppliers and see if all of them are available. If not, simply 535 * return -EPROBE_DEFER. 536 * 537 * We need to guarantee that the supplier will not go away after the check has 538 * been positive here. It only can go away in __device_release_driver() and 539 * that function checks the device's links to consumers. This means we need to 540 * mark the link as "consumer probe in progress" to make the supplier removal 541 * wait for us to complete (or bad things may happen). 542 * 543 * Links with the DL_FLAG_STATELESS flag set are ignored. 544 */ 545 int device_links_check_suppliers(struct device *dev) 546 { 547 struct device_link *link; 548 int ret = 0; 549 550 device_links_write_lock(); 551 552 list_for_each_entry(link, &dev->links.suppliers, c_node) { 553 if (link->flags & DL_FLAG_STATELESS) 554 continue; 555 556 if (link->status != DL_STATE_AVAILABLE) { 557 device_links_missing_supplier(dev); 558 ret = -EPROBE_DEFER; 559 break; 560 } 561 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 562 } 563 dev->links.status = DL_DEV_PROBING; 564 565 device_links_write_unlock(); 566 return ret; 567 } 568 569 /** 570 * device_links_driver_bound - Update device links after probing its driver. 571 * @dev: Device to update the links for. 572 * 573 * The probe has been successful, so update links from this device to any 574 * consumers by changing their status to "available". 575 * 576 * Also change the status of @dev's links to suppliers to "active". 577 * 578 * Links with the DL_FLAG_STATELESS flag set are ignored. 579 */ 580 void device_links_driver_bound(struct device *dev) 581 { 582 struct device_link *link; 583 584 device_links_write_lock(); 585 586 list_for_each_entry(link, &dev->links.consumers, s_node) { 587 if (link->flags & DL_FLAG_STATELESS) 588 continue; 589 590 /* 591 * Links created during consumer probe may be in the "consumer 592 * probe" state to start with if the supplier is still probing 593 * when they are created and they may become "active" if the 594 * consumer probe returns first. Skip them here. 595 */ 596 if (link->status == DL_STATE_CONSUMER_PROBE || 597 link->status == DL_STATE_ACTIVE) 598 continue; 599 600 WARN_ON(link->status != DL_STATE_DORMANT); 601 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 602 603 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 604 driver_deferred_probe_add(link->consumer); 605 } 606 607 list_for_each_entry(link, &dev->links.suppliers, c_node) { 608 if (link->flags & DL_FLAG_STATELESS) 609 continue; 610 611 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 612 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 613 } 614 615 dev->links.status = DL_DEV_DRIVER_BOUND; 616 617 device_links_write_unlock(); 618 } 619 620 /** 621 * __device_links_no_driver - Update links of a device without a driver. 622 * @dev: Device without a drvier. 623 * 624 * Delete all non-persistent links from this device to any suppliers. 625 * 626 * Persistent links stay around, but their status is changed to "available", 627 * unless they already are in the "supplier unbind in progress" state in which 628 * case they need not be updated. 629 * 630 * Links with the DL_FLAG_STATELESS flag set are ignored. 631 */ 632 static void __device_links_no_driver(struct device *dev) 633 { 634 struct device_link *link, *ln; 635 636 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 637 if (link->flags & DL_FLAG_STATELESS) 638 continue; 639 640 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 641 __device_link_del(&link->kref); 642 else if (link->status == DL_STATE_CONSUMER_PROBE || 643 link->status == DL_STATE_ACTIVE) 644 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 645 } 646 647 dev->links.status = DL_DEV_NO_DRIVER; 648 } 649 650 /** 651 * device_links_no_driver - Update links after failing driver probe. 652 * @dev: Device whose driver has just failed to probe. 653 * 654 * Clean up leftover links to consumers for @dev and invoke 655 * %__device_links_no_driver() to update links to suppliers for it as 656 * appropriate. 657 * 658 * Links with the DL_FLAG_STATELESS flag set are ignored. 659 */ 660 void device_links_no_driver(struct device *dev) 661 { 662 struct device_link *link; 663 664 device_links_write_lock(); 665 666 list_for_each_entry(link, &dev->links.consumers, s_node) { 667 if (link->flags & DL_FLAG_STATELESS) 668 continue; 669 670 /* 671 * The probe has failed, so if the status of the link is 672 * "consumer probe" or "active", it must have been added by 673 * a probing consumer while this device was still probing. 674 * Change its state to "dormant", as it represents a valid 675 * relationship, but it is not functionally meaningful. 676 */ 677 if (link->status == DL_STATE_CONSUMER_PROBE || 678 link->status == DL_STATE_ACTIVE) 679 WRITE_ONCE(link->status, DL_STATE_DORMANT); 680 } 681 682 __device_links_no_driver(dev); 683 684 device_links_write_unlock(); 685 } 686 687 /** 688 * device_links_driver_cleanup - Update links after driver removal. 689 * @dev: Device whose driver has just gone away. 690 * 691 * Update links to consumers for @dev by changing their status to "dormant" and 692 * invoke %__device_links_no_driver() to update links to suppliers for it as 693 * appropriate. 694 * 695 * Links with the DL_FLAG_STATELESS flag set are ignored. 696 */ 697 void device_links_driver_cleanup(struct device *dev) 698 { 699 struct device_link *link, *ln; 700 701 device_links_write_lock(); 702 703 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 704 if (link->flags & DL_FLAG_STATELESS) 705 continue; 706 707 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 708 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 709 710 /* 711 * autoremove the links between this @dev and its consumer 712 * devices that are not active, i.e. where the link state 713 * has moved to DL_STATE_SUPPLIER_UNBIND. 714 */ 715 if (link->status == DL_STATE_SUPPLIER_UNBIND && 716 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 717 __device_link_del(&link->kref); 718 719 WRITE_ONCE(link->status, DL_STATE_DORMANT); 720 } 721 722 __device_links_no_driver(dev); 723 724 device_links_write_unlock(); 725 } 726 727 /** 728 * device_links_busy - Check if there are any busy links to consumers. 729 * @dev: Device to check. 730 * 731 * Check each consumer of the device and return 'true' if its link's status 732 * is one of "consumer probe" or "active" (meaning that the given consumer is 733 * probing right now or its driver is present). Otherwise, change the link 734 * state to "supplier unbind" to prevent the consumer from being probed 735 * successfully going forward. 736 * 737 * Return 'false' if there are no probing or active consumers. 738 * 739 * Links with the DL_FLAG_STATELESS flag set are ignored. 740 */ 741 bool device_links_busy(struct device *dev) 742 { 743 struct device_link *link; 744 bool ret = false; 745 746 device_links_write_lock(); 747 748 list_for_each_entry(link, &dev->links.consumers, s_node) { 749 if (link->flags & DL_FLAG_STATELESS) 750 continue; 751 752 if (link->status == DL_STATE_CONSUMER_PROBE 753 || link->status == DL_STATE_ACTIVE) { 754 ret = true; 755 break; 756 } 757 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 758 } 759 760 dev->links.status = DL_DEV_UNBINDING; 761 762 device_links_write_unlock(); 763 return ret; 764 } 765 766 /** 767 * device_links_unbind_consumers - Force unbind consumers of the given device. 768 * @dev: Device to unbind the consumers of. 769 * 770 * Walk the list of links to consumers for @dev and if any of them is in the 771 * "consumer probe" state, wait for all device probes in progress to complete 772 * and start over. 773 * 774 * If that's not the case, change the status of the link to "supplier unbind" 775 * and check if the link was in the "active" state. If so, force the consumer 776 * driver to unbind and start over (the consumer will not re-probe as we have 777 * changed the state of the link already). 778 * 779 * Links with the DL_FLAG_STATELESS flag set are ignored. 780 */ 781 void device_links_unbind_consumers(struct device *dev) 782 { 783 struct device_link *link; 784 785 start: 786 device_links_write_lock(); 787 788 list_for_each_entry(link, &dev->links.consumers, s_node) { 789 enum device_link_state status; 790 791 if (link->flags & DL_FLAG_STATELESS) 792 continue; 793 794 status = link->status; 795 if (status == DL_STATE_CONSUMER_PROBE) { 796 device_links_write_unlock(); 797 798 wait_for_device_probe(); 799 goto start; 800 } 801 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 802 if (status == DL_STATE_ACTIVE) { 803 struct device *consumer = link->consumer; 804 805 get_device(consumer); 806 807 device_links_write_unlock(); 808 809 device_release_driver_internal(consumer, NULL, 810 consumer->parent); 811 put_device(consumer); 812 goto start; 813 } 814 } 815 816 device_links_write_unlock(); 817 } 818 819 /** 820 * device_links_purge - Delete existing links to other devices. 821 * @dev: Target device. 822 */ 823 static void device_links_purge(struct device *dev) 824 { 825 struct device_link *link, *ln; 826 827 /* 828 * Delete all of the remaining links from this device to any other 829 * devices (either consumers or suppliers). 830 */ 831 device_links_write_lock(); 832 833 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 834 WARN_ON(link->status == DL_STATE_ACTIVE); 835 __device_link_del(&link->kref); 836 } 837 838 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 839 WARN_ON(link->status != DL_STATE_DORMANT && 840 link->status != DL_STATE_NONE); 841 __device_link_del(&link->kref); 842 } 843 844 device_links_write_unlock(); 845 } 846 847 /* Device links support end. */ 848 849 int (*platform_notify)(struct device *dev) = NULL; 850 int (*platform_notify_remove)(struct device *dev) = NULL; 851 static struct kobject *dev_kobj; 852 struct kobject *sysfs_dev_char_kobj; 853 struct kobject *sysfs_dev_block_kobj; 854 855 static DEFINE_MUTEX(device_hotplug_lock); 856 857 void lock_device_hotplug(void) 858 { 859 mutex_lock(&device_hotplug_lock); 860 } 861 862 void unlock_device_hotplug(void) 863 { 864 mutex_unlock(&device_hotplug_lock); 865 } 866 867 int lock_device_hotplug_sysfs(void) 868 { 869 if (mutex_trylock(&device_hotplug_lock)) 870 return 0; 871 872 /* Avoid busy looping (5 ms of sleep should do). */ 873 msleep(5); 874 return restart_syscall(); 875 } 876 877 #ifdef CONFIG_BLOCK 878 static inline int device_is_not_partition(struct device *dev) 879 { 880 return !(dev->type == &part_type); 881 } 882 #else 883 static inline int device_is_not_partition(struct device *dev) 884 { 885 return 1; 886 } 887 #endif 888 889 static int 890 device_platform_notify(struct device *dev, enum kobject_action action) 891 { 892 int ret; 893 894 ret = acpi_platform_notify(dev, action); 895 if (ret) 896 return ret; 897 898 ret = software_node_notify(dev, action); 899 if (ret) 900 return ret; 901 902 if (platform_notify && action == KOBJ_ADD) 903 platform_notify(dev); 904 else if (platform_notify_remove && action == KOBJ_REMOVE) 905 platform_notify_remove(dev); 906 return 0; 907 } 908 909 /** 910 * dev_driver_string - Return a device's driver name, if at all possible 911 * @dev: struct device to get the name of 912 * 913 * Will return the device's driver's name if it is bound to a device. If 914 * the device is not bound to a driver, it will return the name of the bus 915 * it is attached to. If it is not attached to a bus either, an empty 916 * string will be returned. 917 */ 918 const char *dev_driver_string(const struct device *dev) 919 { 920 struct device_driver *drv; 921 922 /* dev->driver can change to NULL underneath us because of unbinding, 923 * so be careful about accessing it. dev->bus and dev->class should 924 * never change once they are set, so they don't need special care. 925 */ 926 drv = READ_ONCE(dev->driver); 927 return drv ? drv->name : 928 (dev->bus ? dev->bus->name : 929 (dev->class ? dev->class->name : "")); 930 } 931 EXPORT_SYMBOL(dev_driver_string); 932 933 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 934 935 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 936 char *buf) 937 { 938 struct device_attribute *dev_attr = to_dev_attr(attr); 939 struct device *dev = kobj_to_dev(kobj); 940 ssize_t ret = -EIO; 941 942 if (dev_attr->show) 943 ret = dev_attr->show(dev, dev_attr, buf); 944 if (ret >= (ssize_t)PAGE_SIZE) { 945 printk("dev_attr_show: %pS returned bad count\n", 946 dev_attr->show); 947 } 948 return ret; 949 } 950 951 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 952 const char *buf, size_t count) 953 { 954 struct device_attribute *dev_attr = to_dev_attr(attr); 955 struct device *dev = kobj_to_dev(kobj); 956 ssize_t ret = -EIO; 957 958 if (dev_attr->store) 959 ret = dev_attr->store(dev, dev_attr, buf, count); 960 return ret; 961 } 962 963 static const struct sysfs_ops dev_sysfs_ops = { 964 .show = dev_attr_show, 965 .store = dev_attr_store, 966 }; 967 968 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 969 970 ssize_t device_store_ulong(struct device *dev, 971 struct device_attribute *attr, 972 const char *buf, size_t size) 973 { 974 struct dev_ext_attribute *ea = to_ext_attr(attr); 975 int ret; 976 unsigned long new; 977 978 ret = kstrtoul(buf, 0, &new); 979 if (ret) 980 return ret; 981 *(unsigned long *)(ea->var) = new; 982 /* Always return full write size even if we didn't consume all */ 983 return size; 984 } 985 EXPORT_SYMBOL_GPL(device_store_ulong); 986 987 ssize_t device_show_ulong(struct device *dev, 988 struct device_attribute *attr, 989 char *buf) 990 { 991 struct dev_ext_attribute *ea = to_ext_attr(attr); 992 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 993 } 994 EXPORT_SYMBOL_GPL(device_show_ulong); 995 996 ssize_t device_store_int(struct device *dev, 997 struct device_attribute *attr, 998 const char *buf, size_t size) 999 { 1000 struct dev_ext_attribute *ea = to_ext_attr(attr); 1001 int ret; 1002 long new; 1003 1004 ret = kstrtol(buf, 0, &new); 1005 if (ret) 1006 return ret; 1007 1008 if (new > INT_MAX || new < INT_MIN) 1009 return -EINVAL; 1010 *(int *)(ea->var) = new; 1011 /* Always return full write size even if we didn't consume all */ 1012 return size; 1013 } 1014 EXPORT_SYMBOL_GPL(device_store_int); 1015 1016 ssize_t device_show_int(struct device *dev, 1017 struct device_attribute *attr, 1018 char *buf) 1019 { 1020 struct dev_ext_attribute *ea = to_ext_attr(attr); 1021 1022 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1023 } 1024 EXPORT_SYMBOL_GPL(device_show_int); 1025 1026 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1027 const char *buf, size_t size) 1028 { 1029 struct dev_ext_attribute *ea = to_ext_attr(attr); 1030 1031 if (strtobool(buf, ea->var) < 0) 1032 return -EINVAL; 1033 1034 return size; 1035 } 1036 EXPORT_SYMBOL_GPL(device_store_bool); 1037 1038 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1039 char *buf) 1040 { 1041 struct dev_ext_attribute *ea = to_ext_attr(attr); 1042 1043 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1044 } 1045 EXPORT_SYMBOL_GPL(device_show_bool); 1046 1047 /** 1048 * device_release - free device structure. 1049 * @kobj: device's kobject. 1050 * 1051 * This is called once the reference count for the object 1052 * reaches 0. We forward the call to the device's release 1053 * method, which should handle actually freeing the structure. 1054 */ 1055 static void device_release(struct kobject *kobj) 1056 { 1057 struct device *dev = kobj_to_dev(kobj); 1058 struct device_private *p = dev->p; 1059 1060 /* 1061 * Some platform devices are driven without driver attached 1062 * and managed resources may have been acquired. Make sure 1063 * all resources are released. 1064 * 1065 * Drivers still can add resources into device after device 1066 * is deleted but alive, so release devres here to avoid 1067 * possible memory leak. 1068 */ 1069 devres_release_all(dev); 1070 1071 if (dev->release) 1072 dev->release(dev); 1073 else if (dev->type && dev->type->release) 1074 dev->type->release(dev); 1075 else if (dev->class && dev->class->dev_release) 1076 dev->class->dev_release(dev); 1077 else 1078 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n", 1079 dev_name(dev)); 1080 kfree(p); 1081 } 1082 1083 static const void *device_namespace(struct kobject *kobj) 1084 { 1085 struct device *dev = kobj_to_dev(kobj); 1086 const void *ns = NULL; 1087 1088 if (dev->class && dev->class->ns_type) 1089 ns = dev->class->namespace(dev); 1090 1091 return ns; 1092 } 1093 1094 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1095 { 1096 struct device *dev = kobj_to_dev(kobj); 1097 1098 if (dev->class && dev->class->get_ownership) 1099 dev->class->get_ownership(dev, uid, gid); 1100 } 1101 1102 static struct kobj_type device_ktype = { 1103 .release = device_release, 1104 .sysfs_ops = &dev_sysfs_ops, 1105 .namespace = device_namespace, 1106 .get_ownership = device_get_ownership, 1107 }; 1108 1109 1110 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1111 { 1112 struct kobj_type *ktype = get_ktype(kobj); 1113 1114 if (ktype == &device_ktype) { 1115 struct device *dev = kobj_to_dev(kobj); 1116 if (dev->bus) 1117 return 1; 1118 if (dev->class) 1119 return 1; 1120 } 1121 return 0; 1122 } 1123 1124 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1125 { 1126 struct device *dev = kobj_to_dev(kobj); 1127 1128 if (dev->bus) 1129 return dev->bus->name; 1130 if (dev->class) 1131 return dev->class->name; 1132 return NULL; 1133 } 1134 1135 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1136 struct kobj_uevent_env *env) 1137 { 1138 struct device *dev = kobj_to_dev(kobj); 1139 int retval = 0; 1140 1141 /* add device node properties if present */ 1142 if (MAJOR(dev->devt)) { 1143 const char *tmp; 1144 const char *name; 1145 umode_t mode = 0; 1146 kuid_t uid = GLOBAL_ROOT_UID; 1147 kgid_t gid = GLOBAL_ROOT_GID; 1148 1149 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1150 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1151 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1152 if (name) { 1153 add_uevent_var(env, "DEVNAME=%s", name); 1154 if (mode) 1155 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1156 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1157 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1158 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1159 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1160 kfree(tmp); 1161 } 1162 } 1163 1164 if (dev->type && dev->type->name) 1165 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1166 1167 if (dev->driver) 1168 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1169 1170 /* Add common DT information about the device */ 1171 of_device_uevent(dev, env); 1172 1173 /* have the bus specific function add its stuff */ 1174 if (dev->bus && dev->bus->uevent) { 1175 retval = dev->bus->uevent(dev, env); 1176 if (retval) 1177 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1178 dev_name(dev), __func__, retval); 1179 } 1180 1181 /* have the class specific function add its stuff */ 1182 if (dev->class && dev->class->dev_uevent) { 1183 retval = dev->class->dev_uevent(dev, env); 1184 if (retval) 1185 pr_debug("device: '%s': %s: class uevent() " 1186 "returned %d\n", dev_name(dev), 1187 __func__, retval); 1188 } 1189 1190 /* have the device type specific function add its stuff */ 1191 if (dev->type && dev->type->uevent) { 1192 retval = dev->type->uevent(dev, env); 1193 if (retval) 1194 pr_debug("device: '%s': %s: dev_type uevent() " 1195 "returned %d\n", dev_name(dev), 1196 __func__, retval); 1197 } 1198 1199 return retval; 1200 } 1201 1202 static const struct kset_uevent_ops device_uevent_ops = { 1203 .filter = dev_uevent_filter, 1204 .name = dev_uevent_name, 1205 .uevent = dev_uevent, 1206 }; 1207 1208 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1209 char *buf) 1210 { 1211 struct kobject *top_kobj; 1212 struct kset *kset; 1213 struct kobj_uevent_env *env = NULL; 1214 int i; 1215 size_t count = 0; 1216 int retval; 1217 1218 /* search the kset, the device belongs to */ 1219 top_kobj = &dev->kobj; 1220 while (!top_kobj->kset && top_kobj->parent) 1221 top_kobj = top_kobj->parent; 1222 if (!top_kobj->kset) 1223 goto out; 1224 1225 kset = top_kobj->kset; 1226 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1227 goto out; 1228 1229 /* respect filter */ 1230 if (kset->uevent_ops && kset->uevent_ops->filter) 1231 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1232 goto out; 1233 1234 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1235 if (!env) 1236 return -ENOMEM; 1237 1238 /* let the kset specific function add its keys */ 1239 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1240 if (retval) 1241 goto out; 1242 1243 /* copy keys to file */ 1244 for (i = 0; i < env->envp_idx; i++) 1245 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1246 out: 1247 kfree(env); 1248 return count; 1249 } 1250 1251 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1252 const char *buf, size_t count) 1253 { 1254 int rc; 1255 1256 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1257 1258 if (rc) { 1259 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1260 return rc; 1261 } 1262 1263 return count; 1264 } 1265 static DEVICE_ATTR_RW(uevent); 1266 1267 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1268 char *buf) 1269 { 1270 bool val; 1271 1272 device_lock(dev); 1273 val = !dev->offline; 1274 device_unlock(dev); 1275 return sprintf(buf, "%u\n", val); 1276 } 1277 1278 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1279 const char *buf, size_t count) 1280 { 1281 bool val; 1282 int ret; 1283 1284 ret = strtobool(buf, &val); 1285 if (ret < 0) 1286 return ret; 1287 1288 ret = lock_device_hotplug_sysfs(); 1289 if (ret) 1290 return ret; 1291 1292 ret = val ? device_online(dev) : device_offline(dev); 1293 unlock_device_hotplug(); 1294 return ret < 0 ? ret : count; 1295 } 1296 static DEVICE_ATTR_RW(online); 1297 1298 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1299 { 1300 return sysfs_create_groups(&dev->kobj, groups); 1301 } 1302 EXPORT_SYMBOL_GPL(device_add_groups); 1303 1304 void device_remove_groups(struct device *dev, 1305 const struct attribute_group **groups) 1306 { 1307 sysfs_remove_groups(&dev->kobj, groups); 1308 } 1309 EXPORT_SYMBOL_GPL(device_remove_groups); 1310 1311 union device_attr_group_devres { 1312 const struct attribute_group *group; 1313 const struct attribute_group **groups; 1314 }; 1315 1316 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1317 { 1318 return ((union device_attr_group_devres *)res)->group == data; 1319 } 1320 1321 static void devm_attr_group_remove(struct device *dev, void *res) 1322 { 1323 union device_attr_group_devres *devres = res; 1324 const struct attribute_group *group = devres->group; 1325 1326 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1327 sysfs_remove_group(&dev->kobj, group); 1328 } 1329 1330 static void devm_attr_groups_remove(struct device *dev, void *res) 1331 { 1332 union device_attr_group_devres *devres = res; 1333 const struct attribute_group **groups = devres->groups; 1334 1335 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1336 sysfs_remove_groups(&dev->kobj, groups); 1337 } 1338 1339 /** 1340 * devm_device_add_group - given a device, create a managed attribute group 1341 * @dev: The device to create the group for 1342 * @grp: The attribute group to create 1343 * 1344 * This function creates a group for the first time. It will explicitly 1345 * warn and error if any of the attribute files being created already exist. 1346 * 1347 * Returns 0 on success or error code on failure. 1348 */ 1349 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1350 { 1351 union device_attr_group_devres *devres; 1352 int error; 1353 1354 devres = devres_alloc(devm_attr_group_remove, 1355 sizeof(*devres), GFP_KERNEL); 1356 if (!devres) 1357 return -ENOMEM; 1358 1359 error = sysfs_create_group(&dev->kobj, grp); 1360 if (error) { 1361 devres_free(devres); 1362 return error; 1363 } 1364 1365 devres->group = grp; 1366 devres_add(dev, devres); 1367 return 0; 1368 } 1369 EXPORT_SYMBOL_GPL(devm_device_add_group); 1370 1371 /** 1372 * devm_device_remove_group: remove a managed group from a device 1373 * @dev: device to remove the group from 1374 * @grp: group to remove 1375 * 1376 * This function removes a group of attributes from a device. The attributes 1377 * previously have to have been created for this group, otherwise it will fail. 1378 */ 1379 void devm_device_remove_group(struct device *dev, 1380 const struct attribute_group *grp) 1381 { 1382 WARN_ON(devres_release(dev, devm_attr_group_remove, 1383 devm_attr_group_match, 1384 /* cast away const */ (void *)grp)); 1385 } 1386 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1387 1388 /** 1389 * devm_device_add_groups - create a bunch of managed attribute groups 1390 * @dev: The device to create the group for 1391 * @groups: The attribute groups to create, NULL terminated 1392 * 1393 * This function creates a bunch of managed attribute groups. If an error 1394 * occurs when creating a group, all previously created groups will be 1395 * removed, unwinding everything back to the original state when this 1396 * function was called. It will explicitly warn and error if any of the 1397 * attribute files being created already exist. 1398 * 1399 * Returns 0 on success or error code from sysfs_create_group on failure. 1400 */ 1401 int devm_device_add_groups(struct device *dev, 1402 const struct attribute_group **groups) 1403 { 1404 union device_attr_group_devres *devres; 1405 int error; 1406 1407 devres = devres_alloc(devm_attr_groups_remove, 1408 sizeof(*devres), GFP_KERNEL); 1409 if (!devres) 1410 return -ENOMEM; 1411 1412 error = sysfs_create_groups(&dev->kobj, groups); 1413 if (error) { 1414 devres_free(devres); 1415 return error; 1416 } 1417 1418 devres->groups = groups; 1419 devres_add(dev, devres); 1420 return 0; 1421 } 1422 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1423 1424 /** 1425 * devm_device_remove_groups - remove a list of managed groups 1426 * 1427 * @dev: The device for the groups to be removed from 1428 * @groups: NULL terminated list of groups to be removed 1429 * 1430 * If groups is not NULL, remove the specified groups from the device. 1431 */ 1432 void devm_device_remove_groups(struct device *dev, 1433 const struct attribute_group **groups) 1434 { 1435 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1436 devm_attr_group_match, 1437 /* cast away const */ (void *)groups)); 1438 } 1439 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1440 1441 static int device_add_attrs(struct device *dev) 1442 { 1443 struct class *class = dev->class; 1444 const struct device_type *type = dev->type; 1445 int error; 1446 1447 if (class) { 1448 error = device_add_groups(dev, class->dev_groups); 1449 if (error) 1450 return error; 1451 } 1452 1453 if (type) { 1454 error = device_add_groups(dev, type->groups); 1455 if (error) 1456 goto err_remove_class_groups; 1457 } 1458 1459 error = device_add_groups(dev, dev->groups); 1460 if (error) 1461 goto err_remove_type_groups; 1462 1463 if (device_supports_offline(dev) && !dev->offline_disabled) { 1464 error = device_create_file(dev, &dev_attr_online); 1465 if (error) 1466 goto err_remove_dev_groups; 1467 } 1468 1469 return 0; 1470 1471 err_remove_dev_groups: 1472 device_remove_groups(dev, dev->groups); 1473 err_remove_type_groups: 1474 if (type) 1475 device_remove_groups(dev, type->groups); 1476 err_remove_class_groups: 1477 if (class) 1478 device_remove_groups(dev, class->dev_groups); 1479 1480 return error; 1481 } 1482 1483 static void device_remove_attrs(struct device *dev) 1484 { 1485 struct class *class = dev->class; 1486 const struct device_type *type = dev->type; 1487 1488 device_remove_file(dev, &dev_attr_online); 1489 device_remove_groups(dev, dev->groups); 1490 1491 if (type) 1492 device_remove_groups(dev, type->groups); 1493 1494 if (class) 1495 device_remove_groups(dev, class->dev_groups); 1496 } 1497 1498 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1499 char *buf) 1500 { 1501 return print_dev_t(buf, dev->devt); 1502 } 1503 static DEVICE_ATTR_RO(dev); 1504 1505 /* /sys/devices/ */ 1506 struct kset *devices_kset; 1507 1508 /** 1509 * devices_kset_move_before - Move device in the devices_kset's list. 1510 * @deva: Device to move. 1511 * @devb: Device @deva should come before. 1512 */ 1513 static void devices_kset_move_before(struct device *deva, struct device *devb) 1514 { 1515 if (!devices_kset) 1516 return; 1517 pr_debug("devices_kset: Moving %s before %s\n", 1518 dev_name(deva), dev_name(devb)); 1519 spin_lock(&devices_kset->list_lock); 1520 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1521 spin_unlock(&devices_kset->list_lock); 1522 } 1523 1524 /** 1525 * devices_kset_move_after - Move device in the devices_kset's list. 1526 * @deva: Device to move 1527 * @devb: Device @deva should come after. 1528 */ 1529 static void devices_kset_move_after(struct device *deva, struct device *devb) 1530 { 1531 if (!devices_kset) 1532 return; 1533 pr_debug("devices_kset: Moving %s after %s\n", 1534 dev_name(deva), dev_name(devb)); 1535 spin_lock(&devices_kset->list_lock); 1536 list_move(&deva->kobj.entry, &devb->kobj.entry); 1537 spin_unlock(&devices_kset->list_lock); 1538 } 1539 1540 /** 1541 * devices_kset_move_last - move the device to the end of devices_kset's list. 1542 * @dev: device to move 1543 */ 1544 void devices_kset_move_last(struct device *dev) 1545 { 1546 if (!devices_kset) 1547 return; 1548 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1549 spin_lock(&devices_kset->list_lock); 1550 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1551 spin_unlock(&devices_kset->list_lock); 1552 } 1553 1554 /** 1555 * device_create_file - create sysfs attribute file for device. 1556 * @dev: device. 1557 * @attr: device attribute descriptor. 1558 */ 1559 int device_create_file(struct device *dev, 1560 const struct device_attribute *attr) 1561 { 1562 int error = 0; 1563 1564 if (dev) { 1565 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1566 "Attribute %s: write permission without 'store'\n", 1567 attr->attr.name); 1568 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1569 "Attribute %s: read permission without 'show'\n", 1570 attr->attr.name); 1571 error = sysfs_create_file(&dev->kobj, &attr->attr); 1572 } 1573 1574 return error; 1575 } 1576 EXPORT_SYMBOL_GPL(device_create_file); 1577 1578 /** 1579 * device_remove_file - remove sysfs attribute file. 1580 * @dev: device. 1581 * @attr: device attribute descriptor. 1582 */ 1583 void device_remove_file(struct device *dev, 1584 const struct device_attribute *attr) 1585 { 1586 if (dev) 1587 sysfs_remove_file(&dev->kobj, &attr->attr); 1588 } 1589 EXPORT_SYMBOL_GPL(device_remove_file); 1590 1591 /** 1592 * device_remove_file_self - remove sysfs attribute file from its own method. 1593 * @dev: device. 1594 * @attr: device attribute descriptor. 1595 * 1596 * See kernfs_remove_self() for details. 1597 */ 1598 bool device_remove_file_self(struct device *dev, 1599 const struct device_attribute *attr) 1600 { 1601 if (dev) 1602 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1603 else 1604 return false; 1605 } 1606 EXPORT_SYMBOL_GPL(device_remove_file_self); 1607 1608 /** 1609 * device_create_bin_file - create sysfs binary attribute file for device. 1610 * @dev: device. 1611 * @attr: device binary attribute descriptor. 1612 */ 1613 int device_create_bin_file(struct device *dev, 1614 const struct bin_attribute *attr) 1615 { 1616 int error = -EINVAL; 1617 if (dev) 1618 error = sysfs_create_bin_file(&dev->kobj, attr); 1619 return error; 1620 } 1621 EXPORT_SYMBOL_GPL(device_create_bin_file); 1622 1623 /** 1624 * device_remove_bin_file - remove sysfs binary attribute file 1625 * @dev: device. 1626 * @attr: device binary attribute descriptor. 1627 */ 1628 void device_remove_bin_file(struct device *dev, 1629 const struct bin_attribute *attr) 1630 { 1631 if (dev) 1632 sysfs_remove_bin_file(&dev->kobj, attr); 1633 } 1634 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1635 1636 static void klist_children_get(struct klist_node *n) 1637 { 1638 struct device_private *p = to_device_private_parent(n); 1639 struct device *dev = p->device; 1640 1641 get_device(dev); 1642 } 1643 1644 static void klist_children_put(struct klist_node *n) 1645 { 1646 struct device_private *p = to_device_private_parent(n); 1647 struct device *dev = p->device; 1648 1649 put_device(dev); 1650 } 1651 1652 /** 1653 * device_initialize - init device structure. 1654 * @dev: device. 1655 * 1656 * This prepares the device for use by other layers by initializing 1657 * its fields. 1658 * It is the first half of device_register(), if called by 1659 * that function, though it can also be called separately, so one 1660 * may use @dev's fields. In particular, get_device()/put_device() 1661 * may be used for reference counting of @dev after calling this 1662 * function. 1663 * 1664 * All fields in @dev must be initialized by the caller to 0, except 1665 * for those explicitly set to some other value. The simplest 1666 * approach is to use kzalloc() to allocate the structure containing 1667 * @dev. 1668 * 1669 * NOTE: Use put_device() to give up your reference instead of freeing 1670 * @dev directly once you have called this function. 1671 */ 1672 void device_initialize(struct device *dev) 1673 { 1674 dev->kobj.kset = devices_kset; 1675 kobject_init(&dev->kobj, &device_ktype); 1676 INIT_LIST_HEAD(&dev->dma_pools); 1677 mutex_init(&dev->mutex); 1678 #ifdef CONFIG_PROVE_LOCKING 1679 mutex_init(&dev->lockdep_mutex); 1680 #endif 1681 lockdep_set_novalidate_class(&dev->mutex); 1682 spin_lock_init(&dev->devres_lock); 1683 INIT_LIST_HEAD(&dev->devres_head); 1684 device_pm_init(dev); 1685 set_dev_node(dev, -1); 1686 #ifdef CONFIG_GENERIC_MSI_IRQ 1687 INIT_LIST_HEAD(&dev->msi_list); 1688 #endif 1689 INIT_LIST_HEAD(&dev->links.consumers); 1690 INIT_LIST_HEAD(&dev->links.suppliers); 1691 dev->links.status = DL_DEV_NO_DRIVER; 1692 } 1693 EXPORT_SYMBOL_GPL(device_initialize); 1694 1695 struct kobject *virtual_device_parent(struct device *dev) 1696 { 1697 static struct kobject *virtual_dir = NULL; 1698 1699 if (!virtual_dir) 1700 virtual_dir = kobject_create_and_add("virtual", 1701 &devices_kset->kobj); 1702 1703 return virtual_dir; 1704 } 1705 1706 struct class_dir { 1707 struct kobject kobj; 1708 struct class *class; 1709 }; 1710 1711 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1712 1713 static void class_dir_release(struct kobject *kobj) 1714 { 1715 struct class_dir *dir = to_class_dir(kobj); 1716 kfree(dir); 1717 } 1718 1719 static const 1720 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1721 { 1722 struct class_dir *dir = to_class_dir(kobj); 1723 return dir->class->ns_type; 1724 } 1725 1726 static struct kobj_type class_dir_ktype = { 1727 .release = class_dir_release, 1728 .sysfs_ops = &kobj_sysfs_ops, 1729 .child_ns_type = class_dir_child_ns_type 1730 }; 1731 1732 static struct kobject * 1733 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1734 { 1735 struct class_dir *dir; 1736 int retval; 1737 1738 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1739 if (!dir) 1740 return ERR_PTR(-ENOMEM); 1741 1742 dir->class = class; 1743 kobject_init(&dir->kobj, &class_dir_ktype); 1744 1745 dir->kobj.kset = &class->p->glue_dirs; 1746 1747 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1748 if (retval < 0) { 1749 kobject_put(&dir->kobj); 1750 return ERR_PTR(retval); 1751 } 1752 return &dir->kobj; 1753 } 1754 1755 static DEFINE_MUTEX(gdp_mutex); 1756 1757 static struct kobject *get_device_parent(struct device *dev, 1758 struct device *parent) 1759 { 1760 if (dev->class) { 1761 struct kobject *kobj = NULL; 1762 struct kobject *parent_kobj; 1763 struct kobject *k; 1764 1765 #ifdef CONFIG_BLOCK 1766 /* block disks show up in /sys/block */ 1767 if (sysfs_deprecated && dev->class == &block_class) { 1768 if (parent && parent->class == &block_class) 1769 return &parent->kobj; 1770 return &block_class.p->subsys.kobj; 1771 } 1772 #endif 1773 1774 /* 1775 * If we have no parent, we live in "virtual". 1776 * Class-devices with a non class-device as parent, live 1777 * in a "glue" directory to prevent namespace collisions. 1778 */ 1779 if (parent == NULL) 1780 parent_kobj = virtual_device_parent(dev); 1781 else if (parent->class && !dev->class->ns_type) 1782 return &parent->kobj; 1783 else 1784 parent_kobj = &parent->kobj; 1785 1786 mutex_lock(&gdp_mutex); 1787 1788 /* find our class-directory at the parent and reference it */ 1789 spin_lock(&dev->class->p->glue_dirs.list_lock); 1790 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1791 if (k->parent == parent_kobj) { 1792 kobj = kobject_get(k); 1793 break; 1794 } 1795 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1796 if (kobj) { 1797 mutex_unlock(&gdp_mutex); 1798 return kobj; 1799 } 1800 1801 /* or create a new class-directory at the parent device */ 1802 k = class_dir_create_and_add(dev->class, parent_kobj); 1803 /* do not emit an uevent for this simple "glue" directory */ 1804 mutex_unlock(&gdp_mutex); 1805 return k; 1806 } 1807 1808 /* subsystems can specify a default root directory for their devices */ 1809 if (!parent && dev->bus && dev->bus->dev_root) 1810 return &dev->bus->dev_root->kobj; 1811 1812 if (parent) 1813 return &parent->kobj; 1814 return NULL; 1815 } 1816 1817 static inline bool live_in_glue_dir(struct kobject *kobj, 1818 struct device *dev) 1819 { 1820 if (!kobj || !dev->class || 1821 kobj->kset != &dev->class->p->glue_dirs) 1822 return false; 1823 return true; 1824 } 1825 1826 static inline struct kobject *get_glue_dir(struct device *dev) 1827 { 1828 return dev->kobj.parent; 1829 } 1830 1831 /* 1832 * make sure cleaning up dir as the last step, we need to make 1833 * sure .release handler of kobject is run with holding the 1834 * global lock 1835 */ 1836 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1837 { 1838 unsigned int ref; 1839 1840 /* see if we live in a "glue" directory */ 1841 if (!live_in_glue_dir(glue_dir, dev)) 1842 return; 1843 1844 mutex_lock(&gdp_mutex); 1845 /** 1846 * There is a race condition between removing glue directory 1847 * and adding a new device under the glue directory. 1848 * 1849 * CPU1: CPU2: 1850 * 1851 * device_add() 1852 * get_device_parent() 1853 * class_dir_create_and_add() 1854 * kobject_add_internal() 1855 * create_dir() // create glue_dir 1856 * 1857 * device_add() 1858 * get_device_parent() 1859 * kobject_get() // get glue_dir 1860 * 1861 * device_del() 1862 * cleanup_glue_dir() 1863 * kobject_del(glue_dir) 1864 * 1865 * kobject_add() 1866 * kobject_add_internal() 1867 * create_dir() // in glue_dir 1868 * sysfs_create_dir_ns() 1869 * kernfs_create_dir_ns(sd) 1870 * 1871 * sysfs_remove_dir() // glue_dir->sd=NULL 1872 * sysfs_put() // free glue_dir->sd 1873 * 1874 * // sd is freed 1875 * kernfs_new_node(sd) 1876 * kernfs_get(glue_dir) 1877 * kernfs_add_one() 1878 * kernfs_put() 1879 * 1880 * Before CPU1 remove last child device under glue dir, if CPU2 add 1881 * a new device under glue dir, the glue_dir kobject reference count 1882 * will be increase to 2 in kobject_get(k). And CPU2 has been called 1883 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 1884 * and sysfs_put(). This result in glue_dir->sd is freed. 1885 * 1886 * Then the CPU2 will see a stale "empty" but still potentially used 1887 * glue dir around in kernfs_new_node(). 1888 * 1889 * In order to avoid this happening, we also should make sure that 1890 * kernfs_node for glue_dir is released in CPU1 only when refcount 1891 * for glue_dir kobj is 1. 1892 */ 1893 ref = kref_read(&glue_dir->kref); 1894 if (!kobject_has_children(glue_dir) && !--ref) 1895 kobject_del(glue_dir); 1896 kobject_put(glue_dir); 1897 mutex_unlock(&gdp_mutex); 1898 } 1899 1900 static int device_add_class_symlinks(struct device *dev) 1901 { 1902 struct device_node *of_node = dev_of_node(dev); 1903 int error; 1904 1905 if (of_node) { 1906 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1907 if (error) 1908 dev_warn(dev, "Error %d creating of_node link\n",error); 1909 /* An error here doesn't warrant bringing down the device */ 1910 } 1911 1912 if (!dev->class) 1913 return 0; 1914 1915 error = sysfs_create_link(&dev->kobj, 1916 &dev->class->p->subsys.kobj, 1917 "subsystem"); 1918 if (error) 1919 goto out_devnode; 1920 1921 if (dev->parent && device_is_not_partition(dev)) { 1922 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1923 "device"); 1924 if (error) 1925 goto out_subsys; 1926 } 1927 1928 #ifdef CONFIG_BLOCK 1929 /* /sys/block has directories and does not need symlinks */ 1930 if (sysfs_deprecated && dev->class == &block_class) 1931 return 0; 1932 #endif 1933 1934 /* link in the class directory pointing to the device */ 1935 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1936 &dev->kobj, dev_name(dev)); 1937 if (error) 1938 goto out_device; 1939 1940 return 0; 1941 1942 out_device: 1943 sysfs_remove_link(&dev->kobj, "device"); 1944 1945 out_subsys: 1946 sysfs_remove_link(&dev->kobj, "subsystem"); 1947 out_devnode: 1948 sysfs_remove_link(&dev->kobj, "of_node"); 1949 return error; 1950 } 1951 1952 static void device_remove_class_symlinks(struct device *dev) 1953 { 1954 if (dev_of_node(dev)) 1955 sysfs_remove_link(&dev->kobj, "of_node"); 1956 1957 if (!dev->class) 1958 return; 1959 1960 if (dev->parent && device_is_not_partition(dev)) 1961 sysfs_remove_link(&dev->kobj, "device"); 1962 sysfs_remove_link(&dev->kobj, "subsystem"); 1963 #ifdef CONFIG_BLOCK 1964 if (sysfs_deprecated && dev->class == &block_class) 1965 return; 1966 #endif 1967 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1968 } 1969 1970 /** 1971 * dev_set_name - set a device name 1972 * @dev: device 1973 * @fmt: format string for the device's name 1974 */ 1975 int dev_set_name(struct device *dev, const char *fmt, ...) 1976 { 1977 va_list vargs; 1978 int err; 1979 1980 va_start(vargs, fmt); 1981 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1982 va_end(vargs); 1983 return err; 1984 } 1985 EXPORT_SYMBOL_GPL(dev_set_name); 1986 1987 /** 1988 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1989 * @dev: device 1990 * 1991 * By default we select char/ for new entries. Setting class->dev_obj 1992 * to NULL prevents an entry from being created. class->dev_kobj must 1993 * be set (or cleared) before any devices are registered to the class 1994 * otherwise device_create_sys_dev_entry() and 1995 * device_remove_sys_dev_entry() will disagree about the presence of 1996 * the link. 1997 */ 1998 static struct kobject *device_to_dev_kobj(struct device *dev) 1999 { 2000 struct kobject *kobj; 2001 2002 if (dev->class) 2003 kobj = dev->class->dev_kobj; 2004 else 2005 kobj = sysfs_dev_char_kobj; 2006 2007 return kobj; 2008 } 2009 2010 static int device_create_sys_dev_entry(struct device *dev) 2011 { 2012 struct kobject *kobj = device_to_dev_kobj(dev); 2013 int error = 0; 2014 char devt_str[15]; 2015 2016 if (kobj) { 2017 format_dev_t(devt_str, dev->devt); 2018 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2019 } 2020 2021 return error; 2022 } 2023 2024 static void device_remove_sys_dev_entry(struct device *dev) 2025 { 2026 struct kobject *kobj = device_to_dev_kobj(dev); 2027 char devt_str[15]; 2028 2029 if (kobj) { 2030 format_dev_t(devt_str, dev->devt); 2031 sysfs_remove_link(kobj, devt_str); 2032 } 2033 } 2034 2035 static int device_private_init(struct device *dev) 2036 { 2037 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2038 if (!dev->p) 2039 return -ENOMEM; 2040 dev->p->device = dev; 2041 klist_init(&dev->p->klist_children, klist_children_get, 2042 klist_children_put); 2043 INIT_LIST_HEAD(&dev->p->deferred_probe); 2044 return 0; 2045 } 2046 2047 /** 2048 * device_add - add device to device hierarchy. 2049 * @dev: device. 2050 * 2051 * This is part 2 of device_register(), though may be called 2052 * separately _iff_ device_initialize() has been called separately. 2053 * 2054 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2055 * to the global and sibling lists for the device, then 2056 * adds it to the other relevant subsystems of the driver model. 2057 * 2058 * Do not call this routine or device_register() more than once for 2059 * any device structure. The driver model core is not designed to work 2060 * with devices that get unregistered and then spring back to life. 2061 * (Among other things, it's very hard to guarantee that all references 2062 * to the previous incarnation of @dev have been dropped.) Allocate 2063 * and register a fresh new struct device instead. 2064 * 2065 * NOTE: _Never_ directly free @dev after calling this function, even 2066 * if it returned an error! Always use put_device() to give up your 2067 * reference instead. 2068 * 2069 * Rule of thumb is: if device_add() succeeds, you should call 2070 * device_del() when you want to get rid of it. If device_add() has 2071 * *not* succeeded, use *only* put_device() to drop the reference 2072 * count. 2073 */ 2074 int device_add(struct device *dev) 2075 { 2076 struct device *parent; 2077 struct kobject *kobj; 2078 struct class_interface *class_intf; 2079 int error = -EINVAL; 2080 struct kobject *glue_dir = NULL; 2081 2082 dev = get_device(dev); 2083 if (!dev) 2084 goto done; 2085 2086 if (!dev->p) { 2087 error = device_private_init(dev); 2088 if (error) 2089 goto done; 2090 } 2091 2092 /* 2093 * for statically allocated devices, which should all be converted 2094 * some day, we need to initialize the name. We prevent reading back 2095 * the name, and force the use of dev_name() 2096 */ 2097 if (dev->init_name) { 2098 dev_set_name(dev, "%s", dev->init_name); 2099 dev->init_name = NULL; 2100 } 2101 2102 /* subsystems can specify simple device enumeration */ 2103 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2104 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2105 2106 if (!dev_name(dev)) { 2107 error = -EINVAL; 2108 goto name_error; 2109 } 2110 2111 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2112 2113 parent = get_device(dev->parent); 2114 kobj = get_device_parent(dev, parent); 2115 if (IS_ERR(kobj)) { 2116 error = PTR_ERR(kobj); 2117 goto parent_error; 2118 } 2119 if (kobj) 2120 dev->kobj.parent = kobj; 2121 2122 /* use parent numa_node */ 2123 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2124 set_dev_node(dev, dev_to_node(parent)); 2125 2126 /* first, register with generic layer. */ 2127 /* we require the name to be set before, and pass NULL */ 2128 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2129 if (error) { 2130 glue_dir = get_glue_dir(dev); 2131 goto Error; 2132 } 2133 2134 /* notify platform of device entry */ 2135 error = device_platform_notify(dev, KOBJ_ADD); 2136 if (error) 2137 goto platform_error; 2138 2139 error = device_create_file(dev, &dev_attr_uevent); 2140 if (error) 2141 goto attrError; 2142 2143 error = device_add_class_symlinks(dev); 2144 if (error) 2145 goto SymlinkError; 2146 error = device_add_attrs(dev); 2147 if (error) 2148 goto AttrsError; 2149 error = bus_add_device(dev); 2150 if (error) 2151 goto BusError; 2152 error = dpm_sysfs_add(dev); 2153 if (error) 2154 goto DPMError; 2155 device_pm_add(dev); 2156 2157 if (MAJOR(dev->devt)) { 2158 error = device_create_file(dev, &dev_attr_dev); 2159 if (error) 2160 goto DevAttrError; 2161 2162 error = device_create_sys_dev_entry(dev); 2163 if (error) 2164 goto SysEntryError; 2165 2166 devtmpfs_create_node(dev); 2167 } 2168 2169 /* Notify clients of device addition. This call must come 2170 * after dpm_sysfs_add() and before kobject_uevent(). 2171 */ 2172 if (dev->bus) 2173 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2174 BUS_NOTIFY_ADD_DEVICE, dev); 2175 2176 kobject_uevent(&dev->kobj, KOBJ_ADD); 2177 bus_probe_device(dev); 2178 if (parent) 2179 klist_add_tail(&dev->p->knode_parent, 2180 &parent->p->klist_children); 2181 2182 if (dev->class) { 2183 mutex_lock(&dev->class->p->mutex); 2184 /* tie the class to the device */ 2185 klist_add_tail(&dev->p->knode_class, 2186 &dev->class->p->klist_devices); 2187 2188 /* notify any interfaces that the device is here */ 2189 list_for_each_entry(class_intf, 2190 &dev->class->p->interfaces, node) 2191 if (class_intf->add_dev) 2192 class_intf->add_dev(dev, class_intf); 2193 mutex_unlock(&dev->class->p->mutex); 2194 } 2195 done: 2196 put_device(dev); 2197 return error; 2198 SysEntryError: 2199 if (MAJOR(dev->devt)) 2200 device_remove_file(dev, &dev_attr_dev); 2201 DevAttrError: 2202 device_pm_remove(dev); 2203 dpm_sysfs_remove(dev); 2204 DPMError: 2205 bus_remove_device(dev); 2206 BusError: 2207 device_remove_attrs(dev); 2208 AttrsError: 2209 device_remove_class_symlinks(dev); 2210 SymlinkError: 2211 device_remove_file(dev, &dev_attr_uevent); 2212 attrError: 2213 device_platform_notify(dev, KOBJ_REMOVE); 2214 platform_error: 2215 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2216 glue_dir = get_glue_dir(dev); 2217 kobject_del(&dev->kobj); 2218 Error: 2219 cleanup_glue_dir(dev, glue_dir); 2220 parent_error: 2221 put_device(parent); 2222 name_error: 2223 kfree(dev->p); 2224 dev->p = NULL; 2225 goto done; 2226 } 2227 EXPORT_SYMBOL_GPL(device_add); 2228 2229 /** 2230 * device_register - register a device with the system. 2231 * @dev: pointer to the device structure 2232 * 2233 * This happens in two clean steps - initialize the device 2234 * and add it to the system. The two steps can be called 2235 * separately, but this is the easiest and most common. 2236 * I.e. you should only call the two helpers separately if 2237 * have a clearly defined need to use and refcount the device 2238 * before it is added to the hierarchy. 2239 * 2240 * For more information, see the kerneldoc for device_initialize() 2241 * and device_add(). 2242 * 2243 * NOTE: _Never_ directly free @dev after calling this function, even 2244 * if it returned an error! Always use put_device() to give up the 2245 * reference initialized in this function instead. 2246 */ 2247 int device_register(struct device *dev) 2248 { 2249 device_initialize(dev); 2250 return device_add(dev); 2251 } 2252 EXPORT_SYMBOL_GPL(device_register); 2253 2254 /** 2255 * get_device - increment reference count for device. 2256 * @dev: device. 2257 * 2258 * This simply forwards the call to kobject_get(), though 2259 * we do take care to provide for the case that we get a NULL 2260 * pointer passed in. 2261 */ 2262 struct device *get_device(struct device *dev) 2263 { 2264 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2265 } 2266 EXPORT_SYMBOL_GPL(get_device); 2267 2268 /** 2269 * put_device - decrement reference count. 2270 * @dev: device in question. 2271 */ 2272 void put_device(struct device *dev) 2273 { 2274 /* might_sleep(); */ 2275 if (dev) 2276 kobject_put(&dev->kobj); 2277 } 2278 EXPORT_SYMBOL_GPL(put_device); 2279 2280 bool kill_device(struct device *dev) 2281 { 2282 /* 2283 * Require the device lock and set the "dead" flag to guarantee that 2284 * the update behavior is consistent with the other bitfields near 2285 * it and that we cannot have an asynchronous probe routine trying 2286 * to run while we are tearing out the bus/class/sysfs from 2287 * underneath the device. 2288 */ 2289 lockdep_assert_held(&dev->mutex); 2290 2291 if (dev->p->dead) 2292 return false; 2293 dev->p->dead = true; 2294 return true; 2295 } 2296 EXPORT_SYMBOL_GPL(kill_device); 2297 2298 /** 2299 * device_del - delete device from system. 2300 * @dev: device. 2301 * 2302 * This is the first part of the device unregistration 2303 * sequence. This removes the device from the lists we control 2304 * from here, has it removed from the other driver model 2305 * subsystems it was added to in device_add(), and removes it 2306 * from the kobject hierarchy. 2307 * 2308 * NOTE: this should be called manually _iff_ device_add() was 2309 * also called manually. 2310 */ 2311 void device_del(struct device *dev) 2312 { 2313 struct device *parent = dev->parent; 2314 struct kobject *glue_dir = NULL; 2315 struct class_interface *class_intf; 2316 2317 device_lock(dev); 2318 kill_device(dev); 2319 device_unlock(dev); 2320 2321 /* Notify clients of device removal. This call must come 2322 * before dpm_sysfs_remove(). 2323 */ 2324 if (dev->bus) 2325 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2326 BUS_NOTIFY_DEL_DEVICE, dev); 2327 2328 dpm_sysfs_remove(dev); 2329 if (parent) 2330 klist_del(&dev->p->knode_parent); 2331 if (MAJOR(dev->devt)) { 2332 devtmpfs_delete_node(dev); 2333 device_remove_sys_dev_entry(dev); 2334 device_remove_file(dev, &dev_attr_dev); 2335 } 2336 if (dev->class) { 2337 device_remove_class_symlinks(dev); 2338 2339 mutex_lock(&dev->class->p->mutex); 2340 /* notify any interfaces that the device is now gone */ 2341 list_for_each_entry(class_intf, 2342 &dev->class->p->interfaces, node) 2343 if (class_intf->remove_dev) 2344 class_intf->remove_dev(dev, class_intf); 2345 /* remove the device from the class list */ 2346 klist_del(&dev->p->knode_class); 2347 mutex_unlock(&dev->class->p->mutex); 2348 } 2349 device_remove_file(dev, &dev_attr_uevent); 2350 device_remove_attrs(dev); 2351 bus_remove_device(dev); 2352 device_pm_remove(dev); 2353 driver_deferred_probe_del(dev); 2354 device_platform_notify(dev, KOBJ_REMOVE); 2355 device_remove_properties(dev); 2356 device_links_purge(dev); 2357 2358 if (dev->bus) 2359 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2360 BUS_NOTIFY_REMOVED_DEVICE, dev); 2361 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2362 glue_dir = get_glue_dir(dev); 2363 kobject_del(&dev->kobj); 2364 cleanup_glue_dir(dev, glue_dir); 2365 put_device(parent); 2366 } 2367 EXPORT_SYMBOL_GPL(device_del); 2368 2369 /** 2370 * device_unregister - unregister device from system. 2371 * @dev: device going away. 2372 * 2373 * We do this in two parts, like we do device_register(). First, 2374 * we remove it from all the subsystems with device_del(), then 2375 * we decrement the reference count via put_device(). If that 2376 * is the final reference count, the device will be cleaned up 2377 * via device_release() above. Otherwise, the structure will 2378 * stick around until the final reference to the device is dropped. 2379 */ 2380 void device_unregister(struct device *dev) 2381 { 2382 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2383 device_del(dev); 2384 put_device(dev); 2385 } 2386 EXPORT_SYMBOL_GPL(device_unregister); 2387 2388 static struct device *prev_device(struct klist_iter *i) 2389 { 2390 struct klist_node *n = klist_prev(i); 2391 struct device *dev = NULL; 2392 struct device_private *p; 2393 2394 if (n) { 2395 p = to_device_private_parent(n); 2396 dev = p->device; 2397 } 2398 return dev; 2399 } 2400 2401 static struct device *next_device(struct klist_iter *i) 2402 { 2403 struct klist_node *n = klist_next(i); 2404 struct device *dev = NULL; 2405 struct device_private *p; 2406 2407 if (n) { 2408 p = to_device_private_parent(n); 2409 dev = p->device; 2410 } 2411 return dev; 2412 } 2413 2414 /** 2415 * device_get_devnode - path of device node file 2416 * @dev: device 2417 * @mode: returned file access mode 2418 * @uid: returned file owner 2419 * @gid: returned file group 2420 * @tmp: possibly allocated string 2421 * 2422 * Return the relative path of a possible device node. 2423 * Non-default names may need to allocate a memory to compose 2424 * a name. This memory is returned in tmp and needs to be 2425 * freed by the caller. 2426 */ 2427 const char *device_get_devnode(struct device *dev, 2428 umode_t *mode, kuid_t *uid, kgid_t *gid, 2429 const char **tmp) 2430 { 2431 char *s; 2432 2433 *tmp = NULL; 2434 2435 /* the device type may provide a specific name */ 2436 if (dev->type && dev->type->devnode) 2437 *tmp = dev->type->devnode(dev, mode, uid, gid); 2438 if (*tmp) 2439 return *tmp; 2440 2441 /* the class may provide a specific name */ 2442 if (dev->class && dev->class->devnode) 2443 *tmp = dev->class->devnode(dev, mode); 2444 if (*tmp) 2445 return *tmp; 2446 2447 /* return name without allocation, tmp == NULL */ 2448 if (strchr(dev_name(dev), '!') == NULL) 2449 return dev_name(dev); 2450 2451 /* replace '!' in the name with '/' */ 2452 s = kstrdup(dev_name(dev), GFP_KERNEL); 2453 if (!s) 2454 return NULL; 2455 strreplace(s, '!', '/'); 2456 return *tmp = s; 2457 } 2458 2459 /** 2460 * device_for_each_child - device child iterator. 2461 * @parent: parent struct device. 2462 * @fn: function to be called for each device. 2463 * @data: data for the callback. 2464 * 2465 * Iterate over @parent's child devices, and call @fn for each, 2466 * passing it @data. 2467 * 2468 * We check the return of @fn each time. If it returns anything 2469 * other than 0, we break out and return that value. 2470 */ 2471 int device_for_each_child(struct device *parent, void *data, 2472 int (*fn)(struct device *dev, void *data)) 2473 { 2474 struct klist_iter i; 2475 struct device *child; 2476 int error = 0; 2477 2478 if (!parent->p) 2479 return 0; 2480 2481 klist_iter_init(&parent->p->klist_children, &i); 2482 while (!error && (child = next_device(&i))) 2483 error = fn(child, data); 2484 klist_iter_exit(&i); 2485 return error; 2486 } 2487 EXPORT_SYMBOL_GPL(device_for_each_child); 2488 2489 /** 2490 * device_for_each_child_reverse - device child iterator in reversed order. 2491 * @parent: parent struct device. 2492 * @fn: function to be called for each device. 2493 * @data: data for the callback. 2494 * 2495 * Iterate over @parent's child devices, and call @fn for each, 2496 * passing it @data. 2497 * 2498 * We check the return of @fn each time. If it returns anything 2499 * other than 0, we break out and return that value. 2500 */ 2501 int device_for_each_child_reverse(struct device *parent, void *data, 2502 int (*fn)(struct device *dev, void *data)) 2503 { 2504 struct klist_iter i; 2505 struct device *child; 2506 int error = 0; 2507 2508 if (!parent->p) 2509 return 0; 2510 2511 klist_iter_init(&parent->p->klist_children, &i); 2512 while ((child = prev_device(&i)) && !error) 2513 error = fn(child, data); 2514 klist_iter_exit(&i); 2515 return error; 2516 } 2517 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2518 2519 /** 2520 * device_find_child - device iterator for locating a particular device. 2521 * @parent: parent struct device 2522 * @match: Callback function to check device 2523 * @data: Data to pass to match function 2524 * 2525 * This is similar to the device_for_each_child() function above, but it 2526 * returns a reference to a device that is 'found' for later use, as 2527 * determined by the @match callback. 2528 * 2529 * The callback should return 0 if the device doesn't match and non-zero 2530 * if it does. If the callback returns non-zero and a reference to the 2531 * current device can be obtained, this function will return to the caller 2532 * and not iterate over any more devices. 2533 * 2534 * NOTE: you will need to drop the reference with put_device() after use. 2535 */ 2536 struct device *device_find_child(struct device *parent, void *data, 2537 int (*match)(struct device *dev, void *data)) 2538 { 2539 struct klist_iter i; 2540 struct device *child; 2541 2542 if (!parent) 2543 return NULL; 2544 2545 klist_iter_init(&parent->p->klist_children, &i); 2546 while ((child = next_device(&i))) 2547 if (match(child, data) && get_device(child)) 2548 break; 2549 klist_iter_exit(&i); 2550 return child; 2551 } 2552 EXPORT_SYMBOL_GPL(device_find_child); 2553 2554 /** 2555 * device_find_child_by_name - device iterator for locating a child device. 2556 * @parent: parent struct device 2557 * @name: name of the child device 2558 * 2559 * This is similar to the device_find_child() function above, but it 2560 * returns a reference to a device that has the name @name. 2561 * 2562 * NOTE: you will need to drop the reference with put_device() after use. 2563 */ 2564 struct device *device_find_child_by_name(struct device *parent, 2565 const char *name) 2566 { 2567 struct klist_iter i; 2568 struct device *child; 2569 2570 if (!parent) 2571 return NULL; 2572 2573 klist_iter_init(&parent->p->klist_children, &i); 2574 while ((child = next_device(&i))) 2575 if (!strcmp(dev_name(child), name) && get_device(child)) 2576 break; 2577 klist_iter_exit(&i); 2578 return child; 2579 } 2580 EXPORT_SYMBOL_GPL(device_find_child_by_name); 2581 2582 int __init devices_init(void) 2583 { 2584 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2585 if (!devices_kset) 2586 return -ENOMEM; 2587 dev_kobj = kobject_create_and_add("dev", NULL); 2588 if (!dev_kobj) 2589 goto dev_kobj_err; 2590 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2591 if (!sysfs_dev_block_kobj) 2592 goto block_kobj_err; 2593 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2594 if (!sysfs_dev_char_kobj) 2595 goto char_kobj_err; 2596 2597 return 0; 2598 2599 char_kobj_err: 2600 kobject_put(sysfs_dev_block_kobj); 2601 block_kobj_err: 2602 kobject_put(dev_kobj); 2603 dev_kobj_err: 2604 kset_unregister(devices_kset); 2605 return -ENOMEM; 2606 } 2607 2608 static int device_check_offline(struct device *dev, void *not_used) 2609 { 2610 int ret; 2611 2612 ret = device_for_each_child(dev, NULL, device_check_offline); 2613 if (ret) 2614 return ret; 2615 2616 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2617 } 2618 2619 /** 2620 * device_offline - Prepare the device for hot-removal. 2621 * @dev: Device to be put offline. 2622 * 2623 * Execute the device bus type's .offline() callback, if present, to prepare 2624 * the device for a subsequent hot-removal. If that succeeds, the device must 2625 * not be used until either it is removed or its bus type's .online() callback 2626 * is executed. 2627 * 2628 * Call under device_hotplug_lock. 2629 */ 2630 int device_offline(struct device *dev) 2631 { 2632 int ret; 2633 2634 if (dev->offline_disabled) 2635 return -EPERM; 2636 2637 ret = device_for_each_child(dev, NULL, device_check_offline); 2638 if (ret) 2639 return ret; 2640 2641 device_lock(dev); 2642 if (device_supports_offline(dev)) { 2643 if (dev->offline) { 2644 ret = 1; 2645 } else { 2646 ret = dev->bus->offline(dev); 2647 if (!ret) { 2648 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2649 dev->offline = true; 2650 } 2651 } 2652 } 2653 device_unlock(dev); 2654 2655 return ret; 2656 } 2657 2658 /** 2659 * device_online - Put the device back online after successful device_offline(). 2660 * @dev: Device to be put back online. 2661 * 2662 * If device_offline() has been successfully executed for @dev, but the device 2663 * has not been removed subsequently, execute its bus type's .online() callback 2664 * to indicate that the device can be used again. 2665 * 2666 * Call under device_hotplug_lock. 2667 */ 2668 int device_online(struct device *dev) 2669 { 2670 int ret = 0; 2671 2672 device_lock(dev); 2673 if (device_supports_offline(dev)) { 2674 if (dev->offline) { 2675 ret = dev->bus->online(dev); 2676 if (!ret) { 2677 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2678 dev->offline = false; 2679 } 2680 } else { 2681 ret = 1; 2682 } 2683 } 2684 device_unlock(dev); 2685 2686 return ret; 2687 } 2688 2689 struct root_device { 2690 struct device dev; 2691 struct module *owner; 2692 }; 2693 2694 static inline struct root_device *to_root_device(struct device *d) 2695 { 2696 return container_of(d, struct root_device, dev); 2697 } 2698 2699 static void root_device_release(struct device *dev) 2700 { 2701 kfree(to_root_device(dev)); 2702 } 2703 2704 /** 2705 * __root_device_register - allocate and register a root device 2706 * @name: root device name 2707 * @owner: owner module of the root device, usually THIS_MODULE 2708 * 2709 * This function allocates a root device and registers it 2710 * using device_register(). In order to free the returned 2711 * device, use root_device_unregister(). 2712 * 2713 * Root devices are dummy devices which allow other devices 2714 * to be grouped under /sys/devices. Use this function to 2715 * allocate a root device and then use it as the parent of 2716 * any device which should appear under /sys/devices/{name} 2717 * 2718 * The /sys/devices/{name} directory will also contain a 2719 * 'module' symlink which points to the @owner directory 2720 * in sysfs. 2721 * 2722 * Returns &struct device pointer on success, or ERR_PTR() on error. 2723 * 2724 * Note: You probably want to use root_device_register(). 2725 */ 2726 struct device *__root_device_register(const char *name, struct module *owner) 2727 { 2728 struct root_device *root; 2729 int err = -ENOMEM; 2730 2731 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2732 if (!root) 2733 return ERR_PTR(err); 2734 2735 err = dev_set_name(&root->dev, "%s", name); 2736 if (err) { 2737 kfree(root); 2738 return ERR_PTR(err); 2739 } 2740 2741 root->dev.release = root_device_release; 2742 2743 err = device_register(&root->dev); 2744 if (err) { 2745 put_device(&root->dev); 2746 return ERR_PTR(err); 2747 } 2748 2749 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2750 if (owner) { 2751 struct module_kobject *mk = &owner->mkobj; 2752 2753 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2754 if (err) { 2755 device_unregister(&root->dev); 2756 return ERR_PTR(err); 2757 } 2758 root->owner = owner; 2759 } 2760 #endif 2761 2762 return &root->dev; 2763 } 2764 EXPORT_SYMBOL_GPL(__root_device_register); 2765 2766 /** 2767 * root_device_unregister - unregister and free a root device 2768 * @dev: device going away 2769 * 2770 * This function unregisters and cleans up a device that was created by 2771 * root_device_register(). 2772 */ 2773 void root_device_unregister(struct device *dev) 2774 { 2775 struct root_device *root = to_root_device(dev); 2776 2777 if (root->owner) 2778 sysfs_remove_link(&root->dev.kobj, "module"); 2779 2780 device_unregister(dev); 2781 } 2782 EXPORT_SYMBOL_GPL(root_device_unregister); 2783 2784 2785 static void device_create_release(struct device *dev) 2786 { 2787 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2788 kfree(dev); 2789 } 2790 2791 static __printf(6, 0) struct device * 2792 device_create_groups_vargs(struct class *class, struct device *parent, 2793 dev_t devt, void *drvdata, 2794 const struct attribute_group **groups, 2795 const char *fmt, va_list args) 2796 { 2797 struct device *dev = NULL; 2798 int retval = -ENODEV; 2799 2800 if (class == NULL || IS_ERR(class)) 2801 goto error; 2802 2803 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2804 if (!dev) { 2805 retval = -ENOMEM; 2806 goto error; 2807 } 2808 2809 device_initialize(dev); 2810 dev->devt = devt; 2811 dev->class = class; 2812 dev->parent = parent; 2813 dev->groups = groups; 2814 dev->release = device_create_release; 2815 dev_set_drvdata(dev, drvdata); 2816 2817 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2818 if (retval) 2819 goto error; 2820 2821 retval = device_add(dev); 2822 if (retval) 2823 goto error; 2824 2825 return dev; 2826 2827 error: 2828 put_device(dev); 2829 return ERR_PTR(retval); 2830 } 2831 2832 /** 2833 * device_create_vargs - creates a device and registers it with sysfs 2834 * @class: pointer to the struct class that this device should be registered to 2835 * @parent: pointer to the parent struct device of this new device, if any 2836 * @devt: the dev_t for the char device to be added 2837 * @drvdata: the data to be added to the device for callbacks 2838 * @fmt: string for the device's name 2839 * @args: va_list for the device's name 2840 * 2841 * This function can be used by char device classes. A struct device 2842 * will be created in sysfs, registered to the specified class. 2843 * 2844 * A "dev" file will be created, showing the dev_t for the device, if 2845 * the dev_t is not 0,0. 2846 * If a pointer to a parent struct device is passed in, the newly created 2847 * struct device will be a child of that device in sysfs. 2848 * The pointer to the struct device will be returned from the call. 2849 * Any further sysfs files that might be required can be created using this 2850 * pointer. 2851 * 2852 * Returns &struct device pointer on success, or ERR_PTR() on error. 2853 * 2854 * Note: the struct class passed to this function must have previously 2855 * been created with a call to class_create(). 2856 */ 2857 struct device *device_create_vargs(struct class *class, struct device *parent, 2858 dev_t devt, void *drvdata, const char *fmt, 2859 va_list args) 2860 { 2861 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2862 fmt, args); 2863 } 2864 EXPORT_SYMBOL_GPL(device_create_vargs); 2865 2866 /** 2867 * device_create - creates a device and registers it with sysfs 2868 * @class: pointer to the struct class that this device should be registered to 2869 * @parent: pointer to the parent struct device of this new device, if any 2870 * @devt: the dev_t for the char device to be added 2871 * @drvdata: the data to be added to the device for callbacks 2872 * @fmt: string for the device's name 2873 * 2874 * This function can be used by char device classes. A struct device 2875 * will be created in sysfs, registered to the specified class. 2876 * 2877 * A "dev" file will be created, showing the dev_t for the device, if 2878 * the dev_t is not 0,0. 2879 * If a pointer to a parent struct device is passed in, the newly created 2880 * struct device will be a child of that device in sysfs. 2881 * The pointer to the struct device will be returned from the call. 2882 * Any further sysfs files that might be required can be created using this 2883 * pointer. 2884 * 2885 * Returns &struct device pointer on success, or ERR_PTR() on error. 2886 * 2887 * Note: the struct class passed to this function must have previously 2888 * been created with a call to class_create(). 2889 */ 2890 struct device *device_create(struct class *class, struct device *parent, 2891 dev_t devt, void *drvdata, const char *fmt, ...) 2892 { 2893 va_list vargs; 2894 struct device *dev; 2895 2896 va_start(vargs, fmt); 2897 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2898 va_end(vargs); 2899 return dev; 2900 } 2901 EXPORT_SYMBOL_GPL(device_create); 2902 2903 /** 2904 * device_create_with_groups - creates a device and registers it with sysfs 2905 * @class: pointer to the struct class that this device should be registered to 2906 * @parent: pointer to the parent struct device of this new device, if any 2907 * @devt: the dev_t for the char device to be added 2908 * @drvdata: the data to be added to the device for callbacks 2909 * @groups: NULL-terminated list of attribute groups to be created 2910 * @fmt: string for the device's name 2911 * 2912 * This function can be used by char device classes. A struct device 2913 * will be created in sysfs, registered to the specified class. 2914 * Additional attributes specified in the groups parameter will also 2915 * be created automatically. 2916 * 2917 * A "dev" file will be created, showing the dev_t for the device, if 2918 * the dev_t is not 0,0. 2919 * If a pointer to a parent struct device is passed in, the newly created 2920 * struct device will be a child of that device in sysfs. 2921 * The pointer to the struct device will be returned from the call. 2922 * Any further sysfs files that might be required can be created using this 2923 * pointer. 2924 * 2925 * Returns &struct device pointer on success, or ERR_PTR() on error. 2926 * 2927 * Note: the struct class passed to this function must have previously 2928 * been created with a call to class_create(). 2929 */ 2930 struct device *device_create_with_groups(struct class *class, 2931 struct device *parent, dev_t devt, 2932 void *drvdata, 2933 const struct attribute_group **groups, 2934 const char *fmt, ...) 2935 { 2936 va_list vargs; 2937 struct device *dev; 2938 2939 va_start(vargs, fmt); 2940 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2941 fmt, vargs); 2942 va_end(vargs); 2943 return dev; 2944 } 2945 EXPORT_SYMBOL_GPL(device_create_with_groups); 2946 2947 static int __match_devt(struct device *dev, const void *data) 2948 { 2949 const dev_t *devt = data; 2950 2951 return dev->devt == *devt; 2952 } 2953 2954 /** 2955 * device_destroy - removes a device that was created with device_create() 2956 * @class: pointer to the struct class that this device was registered with 2957 * @devt: the dev_t of the device that was previously registered 2958 * 2959 * This call unregisters and cleans up a device that was created with a 2960 * call to device_create(). 2961 */ 2962 void device_destroy(struct class *class, dev_t devt) 2963 { 2964 struct device *dev; 2965 2966 dev = class_find_device(class, NULL, &devt, __match_devt); 2967 if (dev) { 2968 put_device(dev); 2969 device_unregister(dev); 2970 } 2971 } 2972 EXPORT_SYMBOL_GPL(device_destroy); 2973 2974 /** 2975 * device_rename - renames a device 2976 * @dev: the pointer to the struct device to be renamed 2977 * @new_name: the new name of the device 2978 * 2979 * It is the responsibility of the caller to provide mutual 2980 * exclusion between two different calls of device_rename 2981 * on the same device to ensure that new_name is valid and 2982 * won't conflict with other devices. 2983 * 2984 * Note: Don't call this function. Currently, the networking layer calls this 2985 * function, but that will change. The following text from Kay Sievers offers 2986 * some insight: 2987 * 2988 * Renaming devices is racy at many levels, symlinks and other stuff are not 2989 * replaced atomically, and you get a "move" uevent, but it's not easy to 2990 * connect the event to the old and new device. Device nodes are not renamed at 2991 * all, there isn't even support for that in the kernel now. 2992 * 2993 * In the meantime, during renaming, your target name might be taken by another 2994 * driver, creating conflicts. Or the old name is taken directly after you 2995 * renamed it -- then you get events for the same DEVPATH, before you even see 2996 * the "move" event. It's just a mess, and nothing new should ever rely on 2997 * kernel device renaming. Besides that, it's not even implemented now for 2998 * other things than (driver-core wise very simple) network devices. 2999 * 3000 * We are currently about to change network renaming in udev to completely 3001 * disallow renaming of devices in the same namespace as the kernel uses, 3002 * because we can't solve the problems properly, that arise with swapping names 3003 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3004 * be allowed to some other name than eth[0-9]*, for the aforementioned 3005 * reasons. 3006 * 3007 * Make up a "real" name in the driver before you register anything, or add 3008 * some other attributes for userspace to find the device, or use udev to add 3009 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3010 * don't even want to get into that and try to implement the missing pieces in 3011 * the core. We really have other pieces to fix in the driver core mess. :) 3012 */ 3013 int device_rename(struct device *dev, const char *new_name) 3014 { 3015 struct kobject *kobj = &dev->kobj; 3016 char *old_device_name = NULL; 3017 int error; 3018 3019 dev = get_device(dev); 3020 if (!dev) 3021 return -EINVAL; 3022 3023 dev_dbg(dev, "renaming to %s\n", new_name); 3024 3025 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3026 if (!old_device_name) { 3027 error = -ENOMEM; 3028 goto out; 3029 } 3030 3031 if (dev->class) { 3032 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3033 kobj, old_device_name, 3034 new_name, kobject_namespace(kobj)); 3035 if (error) 3036 goto out; 3037 } 3038 3039 error = kobject_rename(kobj, new_name); 3040 if (error) 3041 goto out; 3042 3043 out: 3044 put_device(dev); 3045 3046 kfree(old_device_name); 3047 3048 return error; 3049 } 3050 EXPORT_SYMBOL_GPL(device_rename); 3051 3052 static int device_move_class_links(struct device *dev, 3053 struct device *old_parent, 3054 struct device *new_parent) 3055 { 3056 int error = 0; 3057 3058 if (old_parent) 3059 sysfs_remove_link(&dev->kobj, "device"); 3060 if (new_parent) 3061 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3062 "device"); 3063 return error; 3064 } 3065 3066 /** 3067 * device_move - moves a device to a new parent 3068 * @dev: the pointer to the struct device to be moved 3069 * @new_parent: the new parent of the device (can be NULL) 3070 * @dpm_order: how to reorder the dpm_list 3071 */ 3072 int device_move(struct device *dev, struct device *new_parent, 3073 enum dpm_order dpm_order) 3074 { 3075 int error; 3076 struct device *old_parent; 3077 struct kobject *new_parent_kobj; 3078 3079 dev = get_device(dev); 3080 if (!dev) 3081 return -EINVAL; 3082 3083 device_pm_lock(); 3084 new_parent = get_device(new_parent); 3085 new_parent_kobj = get_device_parent(dev, new_parent); 3086 if (IS_ERR(new_parent_kobj)) { 3087 error = PTR_ERR(new_parent_kobj); 3088 put_device(new_parent); 3089 goto out; 3090 } 3091 3092 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3093 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3094 error = kobject_move(&dev->kobj, new_parent_kobj); 3095 if (error) { 3096 cleanup_glue_dir(dev, new_parent_kobj); 3097 put_device(new_parent); 3098 goto out; 3099 } 3100 old_parent = dev->parent; 3101 dev->parent = new_parent; 3102 if (old_parent) 3103 klist_remove(&dev->p->knode_parent); 3104 if (new_parent) { 3105 klist_add_tail(&dev->p->knode_parent, 3106 &new_parent->p->klist_children); 3107 set_dev_node(dev, dev_to_node(new_parent)); 3108 } 3109 3110 if (dev->class) { 3111 error = device_move_class_links(dev, old_parent, new_parent); 3112 if (error) { 3113 /* We ignore errors on cleanup since we're hosed anyway... */ 3114 device_move_class_links(dev, new_parent, old_parent); 3115 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3116 if (new_parent) 3117 klist_remove(&dev->p->knode_parent); 3118 dev->parent = old_parent; 3119 if (old_parent) { 3120 klist_add_tail(&dev->p->knode_parent, 3121 &old_parent->p->klist_children); 3122 set_dev_node(dev, dev_to_node(old_parent)); 3123 } 3124 } 3125 cleanup_glue_dir(dev, new_parent_kobj); 3126 put_device(new_parent); 3127 goto out; 3128 } 3129 } 3130 switch (dpm_order) { 3131 case DPM_ORDER_NONE: 3132 break; 3133 case DPM_ORDER_DEV_AFTER_PARENT: 3134 device_pm_move_after(dev, new_parent); 3135 devices_kset_move_after(dev, new_parent); 3136 break; 3137 case DPM_ORDER_PARENT_BEFORE_DEV: 3138 device_pm_move_before(new_parent, dev); 3139 devices_kset_move_before(new_parent, dev); 3140 break; 3141 case DPM_ORDER_DEV_LAST: 3142 device_pm_move_last(dev); 3143 devices_kset_move_last(dev); 3144 break; 3145 } 3146 3147 put_device(old_parent); 3148 out: 3149 device_pm_unlock(); 3150 put_device(dev); 3151 return error; 3152 } 3153 EXPORT_SYMBOL_GPL(device_move); 3154 3155 /** 3156 * device_shutdown - call ->shutdown() on each device to shutdown. 3157 */ 3158 void device_shutdown(void) 3159 { 3160 struct device *dev, *parent; 3161 3162 wait_for_device_probe(); 3163 device_block_probing(); 3164 3165 spin_lock(&devices_kset->list_lock); 3166 /* 3167 * Walk the devices list backward, shutting down each in turn. 3168 * Beware that device unplug events may also start pulling 3169 * devices offline, even as the system is shutting down. 3170 */ 3171 while (!list_empty(&devices_kset->list)) { 3172 dev = list_entry(devices_kset->list.prev, struct device, 3173 kobj.entry); 3174 3175 /* 3176 * hold reference count of device's parent to 3177 * prevent it from being freed because parent's 3178 * lock is to be held 3179 */ 3180 parent = get_device(dev->parent); 3181 get_device(dev); 3182 /* 3183 * Make sure the device is off the kset list, in the 3184 * event that dev->*->shutdown() doesn't remove it. 3185 */ 3186 list_del_init(&dev->kobj.entry); 3187 spin_unlock(&devices_kset->list_lock); 3188 3189 /* hold lock to avoid race with probe/release */ 3190 if (parent) 3191 device_lock(parent); 3192 device_lock(dev); 3193 3194 /* Don't allow any more runtime suspends */ 3195 pm_runtime_get_noresume(dev); 3196 pm_runtime_barrier(dev); 3197 3198 if (dev->class && dev->class->shutdown_pre) { 3199 if (initcall_debug) 3200 dev_info(dev, "shutdown_pre\n"); 3201 dev->class->shutdown_pre(dev); 3202 } 3203 if (dev->bus && dev->bus->shutdown) { 3204 if (initcall_debug) 3205 dev_info(dev, "shutdown\n"); 3206 dev->bus->shutdown(dev); 3207 } else if (dev->driver && dev->driver->shutdown) { 3208 if (initcall_debug) 3209 dev_info(dev, "shutdown\n"); 3210 dev->driver->shutdown(dev); 3211 } 3212 3213 device_unlock(dev); 3214 if (parent) 3215 device_unlock(parent); 3216 3217 put_device(dev); 3218 put_device(parent); 3219 3220 spin_lock(&devices_kset->list_lock); 3221 } 3222 spin_unlock(&devices_kset->list_lock); 3223 } 3224 3225 /* 3226 * Device logging functions 3227 */ 3228 3229 #ifdef CONFIG_PRINTK 3230 static int 3231 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3232 { 3233 const char *subsys; 3234 size_t pos = 0; 3235 3236 if (dev->class) 3237 subsys = dev->class->name; 3238 else if (dev->bus) 3239 subsys = dev->bus->name; 3240 else 3241 return 0; 3242 3243 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3244 if (pos >= hdrlen) 3245 goto overflow; 3246 3247 /* 3248 * Add device identifier DEVICE=: 3249 * b12:8 block dev_t 3250 * c127:3 char dev_t 3251 * n8 netdev ifindex 3252 * +sound:card0 subsystem:devname 3253 */ 3254 if (MAJOR(dev->devt)) { 3255 char c; 3256 3257 if (strcmp(subsys, "block") == 0) 3258 c = 'b'; 3259 else 3260 c = 'c'; 3261 pos++; 3262 pos += snprintf(hdr + pos, hdrlen - pos, 3263 "DEVICE=%c%u:%u", 3264 c, MAJOR(dev->devt), MINOR(dev->devt)); 3265 } else if (strcmp(subsys, "net") == 0) { 3266 struct net_device *net = to_net_dev(dev); 3267 3268 pos++; 3269 pos += snprintf(hdr + pos, hdrlen - pos, 3270 "DEVICE=n%u", net->ifindex); 3271 } else { 3272 pos++; 3273 pos += snprintf(hdr + pos, hdrlen - pos, 3274 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3275 } 3276 3277 if (pos >= hdrlen) 3278 goto overflow; 3279 3280 return pos; 3281 3282 overflow: 3283 dev_WARN(dev, "device/subsystem name too long"); 3284 return 0; 3285 } 3286 3287 int dev_vprintk_emit(int level, const struct device *dev, 3288 const char *fmt, va_list args) 3289 { 3290 char hdr[128]; 3291 size_t hdrlen; 3292 3293 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3294 3295 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3296 } 3297 EXPORT_SYMBOL(dev_vprintk_emit); 3298 3299 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3300 { 3301 va_list args; 3302 int r; 3303 3304 va_start(args, fmt); 3305 3306 r = dev_vprintk_emit(level, dev, fmt, args); 3307 3308 va_end(args); 3309 3310 return r; 3311 } 3312 EXPORT_SYMBOL(dev_printk_emit); 3313 3314 static void __dev_printk(const char *level, const struct device *dev, 3315 struct va_format *vaf) 3316 { 3317 if (dev) 3318 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3319 dev_driver_string(dev), dev_name(dev), vaf); 3320 else 3321 printk("%s(NULL device *): %pV", level, vaf); 3322 } 3323 3324 void dev_printk(const char *level, const struct device *dev, 3325 const char *fmt, ...) 3326 { 3327 struct va_format vaf; 3328 va_list args; 3329 3330 va_start(args, fmt); 3331 3332 vaf.fmt = fmt; 3333 vaf.va = &args; 3334 3335 __dev_printk(level, dev, &vaf); 3336 3337 va_end(args); 3338 } 3339 EXPORT_SYMBOL(dev_printk); 3340 3341 #define define_dev_printk_level(func, kern_level) \ 3342 void func(const struct device *dev, const char *fmt, ...) \ 3343 { \ 3344 struct va_format vaf; \ 3345 va_list args; \ 3346 \ 3347 va_start(args, fmt); \ 3348 \ 3349 vaf.fmt = fmt; \ 3350 vaf.va = &args; \ 3351 \ 3352 __dev_printk(kern_level, dev, &vaf); \ 3353 \ 3354 va_end(args); \ 3355 } \ 3356 EXPORT_SYMBOL(func); 3357 3358 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3359 define_dev_printk_level(_dev_alert, KERN_ALERT); 3360 define_dev_printk_level(_dev_crit, KERN_CRIT); 3361 define_dev_printk_level(_dev_err, KERN_ERR); 3362 define_dev_printk_level(_dev_warn, KERN_WARNING); 3363 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3364 define_dev_printk_level(_dev_info, KERN_INFO); 3365 3366 #endif 3367 3368 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3369 { 3370 return fwnode && !IS_ERR(fwnode->secondary); 3371 } 3372 3373 /** 3374 * set_primary_fwnode - Change the primary firmware node of a given device. 3375 * @dev: Device to handle. 3376 * @fwnode: New primary firmware node of the device. 3377 * 3378 * Set the device's firmware node pointer to @fwnode, but if a secondary 3379 * firmware node of the device is present, preserve it. 3380 */ 3381 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3382 { 3383 if (fwnode) { 3384 struct fwnode_handle *fn = dev->fwnode; 3385 3386 if (fwnode_is_primary(fn)) 3387 fn = fn->secondary; 3388 3389 if (fn) { 3390 WARN_ON(fwnode->secondary); 3391 fwnode->secondary = fn; 3392 } 3393 dev->fwnode = fwnode; 3394 } else { 3395 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3396 dev->fwnode->secondary : NULL; 3397 } 3398 } 3399 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3400 3401 /** 3402 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3403 * @dev: Device to handle. 3404 * @fwnode: New secondary firmware node of the device. 3405 * 3406 * If a primary firmware node of the device is present, set its secondary 3407 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3408 * @fwnode. 3409 */ 3410 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3411 { 3412 if (fwnode) 3413 fwnode->secondary = ERR_PTR(-ENODEV); 3414 3415 if (fwnode_is_primary(dev->fwnode)) 3416 dev->fwnode->secondary = fwnode; 3417 else 3418 dev->fwnode = fwnode; 3419 } 3420 3421 /** 3422 * device_set_of_node_from_dev - reuse device-tree node of another device 3423 * @dev: device whose device-tree node is being set 3424 * @dev2: device whose device-tree node is being reused 3425 * 3426 * Takes another reference to the new device-tree node after first dropping 3427 * any reference held to the old node. 3428 */ 3429 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3430 { 3431 of_node_put(dev->of_node); 3432 dev->of_node = of_node_get(dev2->of_node); 3433 dev->of_node_reused = true; 3434 } 3435 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3436 3437 int device_match_of_node(struct device *dev, const void *np) 3438 { 3439 return dev->of_node == np; 3440 } 3441 EXPORT_SYMBOL_GPL(device_match_of_node); 3442