xref: /linux/drivers/base/core.c (revision e0fcfb086fbbb6233de1062d4b2f05e9afedab3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 
72 int device_links_read_lock_held(void)
73 {
74 	return srcu_read_lock_held(&device_links_srcu);
75 }
76 #else /* !CONFIG_SRCU */
77 static DECLARE_RWSEM(device_links_lock);
78 
79 static inline void device_links_write_lock(void)
80 {
81 	down_write(&device_links_lock);
82 }
83 
84 static inline void device_links_write_unlock(void)
85 {
86 	up_write(&device_links_lock);
87 }
88 
89 int device_links_read_lock(void)
90 {
91 	down_read(&device_links_lock);
92 	return 0;
93 }
94 
95 void device_links_read_unlock(int not_used)
96 {
97 	up_read(&device_links_lock);
98 }
99 
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 int device_links_read_lock_held(void)
102 {
103 	return lockdep_is_held(&device_links_lock);
104 }
105 #endif
106 #endif /* !CONFIG_SRCU */
107 
108 /**
109  * device_is_dependent - Check if one device depends on another one
110  * @dev: Device to check dependencies for.
111  * @target: Device to check against.
112  *
113  * Check if @target depends on @dev or any device dependent on it (its child or
114  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
115  */
116 static int device_is_dependent(struct device *dev, void *target)
117 {
118 	struct device_link *link;
119 	int ret;
120 
121 	if (dev == target)
122 		return 1;
123 
124 	ret = device_for_each_child(dev, target, device_is_dependent);
125 	if (ret)
126 		return ret;
127 
128 	list_for_each_entry(link, &dev->links.consumers, s_node) {
129 		if (link->consumer == target)
130 			return 1;
131 
132 		ret = device_is_dependent(link->consumer, target);
133 		if (ret)
134 			break;
135 	}
136 	return ret;
137 }
138 
139 static int device_reorder_to_tail(struct device *dev, void *not_used)
140 {
141 	struct device_link *link;
142 
143 	/*
144 	 * Devices that have not been registered yet will be put to the ends
145 	 * of the lists during the registration, so skip them here.
146 	 */
147 	if (device_is_registered(dev))
148 		devices_kset_move_last(dev);
149 
150 	if (device_pm_initialized(dev))
151 		device_pm_move_last(dev);
152 
153 	device_for_each_child(dev, NULL, device_reorder_to_tail);
154 	list_for_each_entry(link, &dev->links.consumers, s_node)
155 		device_reorder_to_tail(link->consumer, NULL);
156 
157 	return 0;
158 }
159 
160 /**
161  * device_pm_move_to_tail - Move set of devices to the end of device lists
162  * @dev: Device to move
163  *
164  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
165  *
166  * It moves the @dev along with all of its children and all of its consumers
167  * to the ends of the device_kset and dpm_list, recursively.
168  */
169 void device_pm_move_to_tail(struct device *dev)
170 {
171 	int idx;
172 
173 	idx = device_links_read_lock();
174 	device_pm_lock();
175 	device_reorder_to_tail(dev, NULL);
176 	device_pm_unlock();
177 	device_links_read_unlock(idx);
178 }
179 
180 /**
181  * device_link_add - Create a link between two devices.
182  * @consumer: Consumer end of the link.
183  * @supplier: Supplier end of the link.
184  * @flags: Link flags.
185  *
186  * The caller is responsible for the proper synchronization of the link creation
187  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
188  * runtime PM framework to take the link into account.  Second, if the
189  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
190  * be forced into the active metastate and reference-counted upon the creation
191  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
192  * ignored.
193  *
194  * If DL_FLAG_STATELESS is set in @flags, the link is not going to be managed by
195  * the driver core and, in particular, the caller of this function is expected
196  * to drop the reference to the link acquired by it directly.
197  *
198  * If that flag is not set, however, the caller of this function is handing the
199  * management of the link over to the driver core entirely and its return value
200  * can only be used to check whether or not the link is present.  In that case,
201  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
202  * flags can be used to indicate to the driver core when the link can be safely
203  * deleted.  Namely, setting one of them in @flags indicates to the driver core
204  * that the link is not going to be used (by the given caller of this function)
205  * after unbinding the consumer or supplier driver, respectively, from its
206  * device, so the link can be deleted at that point.  If none of them is set,
207  * the link will be maintained until one of the devices pointed to by it (either
208  * the consumer or the supplier) is unregistered.
209  *
210  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
211  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
212  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
213  * be used to request the driver core to automaticall probe for a consmer
214  * driver after successfully binding a driver to the supplier device.
215  *
216  * The combination of DL_FLAG_STATELESS and either DL_FLAG_AUTOREMOVE_CONSUMER
217  * or DL_FLAG_AUTOREMOVE_SUPPLIER set in @flags at the same time is invalid and
218  * will cause NULL to be returned upfront.
219  *
220  * A side effect of the link creation is re-ordering of dpm_list and the
221  * devices_kset list by moving the consumer device and all devices depending
222  * on it to the ends of these lists (that does not happen to devices that have
223  * not been registered when this function is called).
224  *
225  * The supplier device is required to be registered when this function is called
226  * and NULL will be returned if that is not the case.  The consumer device need
227  * not be registered, however.
228  */
229 struct device_link *device_link_add(struct device *consumer,
230 				    struct device *supplier, u32 flags)
231 {
232 	struct device_link *link;
233 
234 	if (!consumer || !supplier ||
235 	    (flags & DL_FLAG_STATELESS &&
236 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
237 		      DL_FLAG_AUTOREMOVE_SUPPLIER |
238 		      DL_FLAG_AUTOPROBE_CONSUMER)) ||
239 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
240 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
241 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
242 		return NULL;
243 
244 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
245 		if (pm_runtime_get_sync(supplier) < 0) {
246 			pm_runtime_put_noidle(supplier);
247 			return NULL;
248 		}
249 	}
250 
251 	device_links_write_lock();
252 	device_pm_lock();
253 
254 	/*
255 	 * If the supplier has not been fully registered yet or there is a
256 	 * reverse dependency between the consumer and the supplier already in
257 	 * the graph, return NULL.
258 	 */
259 	if (!device_pm_initialized(supplier)
260 	    || device_is_dependent(consumer, supplier)) {
261 		link = NULL;
262 		goto out;
263 	}
264 
265 	/*
266 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
267 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
268 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
269 	 */
270 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
271 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
272 
273 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
274 		if (link->consumer != consumer)
275 			continue;
276 
277 		/*
278 		 * Don't return a stateless link if the caller wants a stateful
279 		 * one and vice versa.
280 		 */
281 		if (WARN_ON((flags & DL_FLAG_STATELESS) != (link->flags & DL_FLAG_STATELESS))) {
282 			link = NULL;
283 			goto out;
284 		}
285 
286 		if (flags & DL_FLAG_PM_RUNTIME) {
287 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
288 				pm_runtime_new_link(consumer);
289 				link->flags |= DL_FLAG_PM_RUNTIME;
290 			}
291 			if (flags & DL_FLAG_RPM_ACTIVE)
292 				refcount_inc(&link->rpm_active);
293 		}
294 
295 		if (flags & DL_FLAG_STATELESS) {
296 			kref_get(&link->kref);
297 			goto out;
298 		}
299 
300 		/*
301 		 * If the life time of the link following from the new flags is
302 		 * longer than indicated by the flags of the existing link,
303 		 * update the existing link to stay around longer.
304 		 */
305 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
306 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
307 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
308 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
309 			}
310 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
311 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
312 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
313 		}
314 		goto out;
315 	}
316 
317 	link = kzalloc(sizeof(*link), GFP_KERNEL);
318 	if (!link)
319 		goto out;
320 
321 	refcount_set(&link->rpm_active, 1);
322 
323 	if (flags & DL_FLAG_PM_RUNTIME) {
324 		if (flags & DL_FLAG_RPM_ACTIVE)
325 			refcount_inc(&link->rpm_active);
326 
327 		pm_runtime_new_link(consumer);
328 	}
329 
330 	get_device(supplier);
331 	link->supplier = supplier;
332 	INIT_LIST_HEAD(&link->s_node);
333 	get_device(consumer);
334 	link->consumer = consumer;
335 	INIT_LIST_HEAD(&link->c_node);
336 	link->flags = flags;
337 	kref_init(&link->kref);
338 
339 	/* Determine the initial link state. */
340 	if (flags & DL_FLAG_STATELESS) {
341 		link->status = DL_STATE_NONE;
342 	} else {
343 		switch (supplier->links.status) {
344 		case DL_DEV_PROBING:
345 			switch (consumer->links.status) {
346 			case DL_DEV_PROBING:
347 				/*
348 				 * A consumer driver can create a link to a
349 				 * supplier that has not completed its probing
350 				 * yet as long as it knows that the supplier is
351 				 * already functional (for example, it has just
352 				 * acquired some resources from the supplier).
353 				 */
354 				link->status = DL_STATE_CONSUMER_PROBE;
355 				break;
356 			default:
357 				link->status = DL_STATE_DORMANT;
358 				break;
359 			}
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			switch (consumer->links.status) {
363 			case DL_DEV_PROBING:
364 				link->status = DL_STATE_CONSUMER_PROBE;
365 				break;
366 			case DL_DEV_DRIVER_BOUND:
367 				link->status = DL_STATE_ACTIVE;
368 				break;
369 			default:
370 				link->status = DL_STATE_AVAILABLE;
371 				break;
372 			}
373 			break;
374 		case DL_DEV_UNBINDING:
375 			link->status = DL_STATE_SUPPLIER_UNBIND;
376 			break;
377 		default:
378 			link->status = DL_STATE_DORMANT;
379 			break;
380 		}
381 	}
382 
383 	/*
384 	 * Some callers expect the link creation during consumer driver probe to
385 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
386 	 */
387 	if (link->status == DL_STATE_CONSUMER_PROBE &&
388 	    flags & DL_FLAG_PM_RUNTIME)
389 		pm_runtime_resume(supplier);
390 
391 	/*
392 	 * Move the consumer and all of the devices depending on it to the end
393 	 * of dpm_list and the devices_kset list.
394 	 *
395 	 * It is necessary to hold dpm_list locked throughout all that or else
396 	 * we may end up suspending with a wrong ordering of it.
397 	 */
398 	device_reorder_to_tail(consumer, NULL);
399 
400 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
401 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
402 
403 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
404 
405  out:
406 	device_pm_unlock();
407 	device_links_write_unlock();
408 
409 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
410 		pm_runtime_put(supplier);
411 
412 	return link;
413 }
414 EXPORT_SYMBOL_GPL(device_link_add);
415 
416 static void device_link_free(struct device_link *link)
417 {
418 	while (refcount_dec_not_one(&link->rpm_active))
419 		pm_runtime_put(link->supplier);
420 
421 	put_device(link->consumer);
422 	put_device(link->supplier);
423 	kfree(link);
424 }
425 
426 #ifdef CONFIG_SRCU
427 static void __device_link_free_srcu(struct rcu_head *rhead)
428 {
429 	device_link_free(container_of(rhead, struct device_link, rcu_head));
430 }
431 
432 static void __device_link_del(struct kref *kref)
433 {
434 	struct device_link *link = container_of(kref, struct device_link, kref);
435 
436 	dev_dbg(link->consumer, "Dropping the link to %s\n",
437 		dev_name(link->supplier));
438 
439 	if (link->flags & DL_FLAG_PM_RUNTIME)
440 		pm_runtime_drop_link(link->consumer);
441 
442 	list_del_rcu(&link->s_node);
443 	list_del_rcu(&link->c_node);
444 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
445 }
446 #else /* !CONFIG_SRCU */
447 static void __device_link_del(struct kref *kref)
448 {
449 	struct device_link *link = container_of(kref, struct device_link, kref);
450 
451 	dev_info(link->consumer, "Dropping the link to %s\n",
452 		 dev_name(link->supplier));
453 
454 	if (link->flags & DL_FLAG_PM_RUNTIME)
455 		pm_runtime_drop_link(link->consumer);
456 
457 	list_del(&link->s_node);
458 	list_del(&link->c_node);
459 	device_link_free(link);
460 }
461 #endif /* !CONFIG_SRCU */
462 
463 static void device_link_put_kref(struct device_link *link)
464 {
465 	if (link->flags & DL_FLAG_STATELESS)
466 		kref_put(&link->kref, __device_link_del);
467 	else
468 		WARN(1, "Unable to drop a managed device link reference\n");
469 }
470 
471 /**
472  * device_link_del - Delete a stateless link between two devices.
473  * @link: Device link to delete.
474  *
475  * The caller must ensure proper synchronization of this function with runtime
476  * PM.  If the link was added multiple times, it needs to be deleted as often.
477  * Care is required for hotplugged devices:  Their links are purged on removal
478  * and calling device_link_del() is then no longer allowed.
479  */
480 void device_link_del(struct device_link *link)
481 {
482 	device_links_write_lock();
483 	device_pm_lock();
484 	device_link_put_kref(link);
485 	device_pm_unlock();
486 	device_links_write_unlock();
487 }
488 EXPORT_SYMBOL_GPL(device_link_del);
489 
490 /**
491  * device_link_remove - Delete a stateless link between two devices.
492  * @consumer: Consumer end of the link.
493  * @supplier: Supplier end of the link.
494  *
495  * The caller must ensure proper synchronization of this function with runtime
496  * PM.
497  */
498 void device_link_remove(void *consumer, struct device *supplier)
499 {
500 	struct device_link *link;
501 
502 	if (WARN_ON(consumer == supplier))
503 		return;
504 
505 	device_links_write_lock();
506 	device_pm_lock();
507 
508 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
509 		if (link->consumer == consumer) {
510 			device_link_put_kref(link);
511 			break;
512 		}
513 	}
514 
515 	device_pm_unlock();
516 	device_links_write_unlock();
517 }
518 EXPORT_SYMBOL_GPL(device_link_remove);
519 
520 static void device_links_missing_supplier(struct device *dev)
521 {
522 	struct device_link *link;
523 
524 	list_for_each_entry(link, &dev->links.suppliers, c_node)
525 		if (link->status == DL_STATE_CONSUMER_PROBE)
526 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
527 }
528 
529 /**
530  * device_links_check_suppliers - Check presence of supplier drivers.
531  * @dev: Consumer device.
532  *
533  * Check links from this device to any suppliers.  Walk the list of the device's
534  * links to suppliers and see if all of them are available.  If not, simply
535  * return -EPROBE_DEFER.
536  *
537  * We need to guarantee that the supplier will not go away after the check has
538  * been positive here.  It only can go away in __device_release_driver() and
539  * that function  checks the device's links to consumers.  This means we need to
540  * mark the link as "consumer probe in progress" to make the supplier removal
541  * wait for us to complete (or bad things may happen).
542  *
543  * Links with the DL_FLAG_STATELESS flag set are ignored.
544  */
545 int device_links_check_suppliers(struct device *dev)
546 {
547 	struct device_link *link;
548 	int ret = 0;
549 
550 	device_links_write_lock();
551 
552 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
553 		if (link->flags & DL_FLAG_STATELESS)
554 			continue;
555 
556 		if (link->status != DL_STATE_AVAILABLE) {
557 			device_links_missing_supplier(dev);
558 			ret = -EPROBE_DEFER;
559 			break;
560 		}
561 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
562 	}
563 	dev->links.status = DL_DEV_PROBING;
564 
565 	device_links_write_unlock();
566 	return ret;
567 }
568 
569 /**
570  * device_links_driver_bound - Update device links after probing its driver.
571  * @dev: Device to update the links for.
572  *
573  * The probe has been successful, so update links from this device to any
574  * consumers by changing their status to "available".
575  *
576  * Also change the status of @dev's links to suppliers to "active".
577  *
578  * Links with the DL_FLAG_STATELESS flag set are ignored.
579  */
580 void device_links_driver_bound(struct device *dev)
581 {
582 	struct device_link *link;
583 
584 	device_links_write_lock();
585 
586 	list_for_each_entry(link, &dev->links.consumers, s_node) {
587 		if (link->flags & DL_FLAG_STATELESS)
588 			continue;
589 
590 		/*
591 		 * Links created during consumer probe may be in the "consumer
592 		 * probe" state to start with if the supplier is still probing
593 		 * when they are created and they may become "active" if the
594 		 * consumer probe returns first.  Skip them here.
595 		 */
596 		if (link->status == DL_STATE_CONSUMER_PROBE ||
597 		    link->status == DL_STATE_ACTIVE)
598 			continue;
599 
600 		WARN_ON(link->status != DL_STATE_DORMANT);
601 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
602 
603 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
604 			driver_deferred_probe_add(link->consumer);
605 	}
606 
607 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
608 		if (link->flags & DL_FLAG_STATELESS)
609 			continue;
610 
611 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
612 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
613 	}
614 
615 	dev->links.status = DL_DEV_DRIVER_BOUND;
616 
617 	device_links_write_unlock();
618 }
619 
620 /**
621  * __device_links_no_driver - Update links of a device without a driver.
622  * @dev: Device without a drvier.
623  *
624  * Delete all non-persistent links from this device to any suppliers.
625  *
626  * Persistent links stay around, but their status is changed to "available",
627  * unless they already are in the "supplier unbind in progress" state in which
628  * case they need not be updated.
629  *
630  * Links with the DL_FLAG_STATELESS flag set are ignored.
631  */
632 static void __device_links_no_driver(struct device *dev)
633 {
634 	struct device_link *link, *ln;
635 
636 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
637 		if (link->flags & DL_FLAG_STATELESS)
638 			continue;
639 
640 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
641 			__device_link_del(&link->kref);
642 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
643 			 link->status == DL_STATE_ACTIVE)
644 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
645 	}
646 
647 	dev->links.status = DL_DEV_NO_DRIVER;
648 }
649 
650 /**
651  * device_links_no_driver - Update links after failing driver probe.
652  * @dev: Device whose driver has just failed to probe.
653  *
654  * Clean up leftover links to consumers for @dev and invoke
655  * %__device_links_no_driver() to update links to suppliers for it as
656  * appropriate.
657  *
658  * Links with the DL_FLAG_STATELESS flag set are ignored.
659  */
660 void device_links_no_driver(struct device *dev)
661 {
662 	struct device_link *link;
663 
664 	device_links_write_lock();
665 
666 	list_for_each_entry(link, &dev->links.consumers, s_node) {
667 		if (link->flags & DL_FLAG_STATELESS)
668 			continue;
669 
670 		/*
671 		 * The probe has failed, so if the status of the link is
672 		 * "consumer probe" or "active", it must have been added by
673 		 * a probing consumer while this device was still probing.
674 		 * Change its state to "dormant", as it represents a valid
675 		 * relationship, but it is not functionally meaningful.
676 		 */
677 		if (link->status == DL_STATE_CONSUMER_PROBE ||
678 		    link->status == DL_STATE_ACTIVE)
679 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
680 	}
681 
682 	__device_links_no_driver(dev);
683 
684 	device_links_write_unlock();
685 }
686 
687 /**
688  * device_links_driver_cleanup - Update links after driver removal.
689  * @dev: Device whose driver has just gone away.
690  *
691  * Update links to consumers for @dev by changing their status to "dormant" and
692  * invoke %__device_links_no_driver() to update links to suppliers for it as
693  * appropriate.
694  *
695  * Links with the DL_FLAG_STATELESS flag set are ignored.
696  */
697 void device_links_driver_cleanup(struct device *dev)
698 {
699 	struct device_link *link, *ln;
700 
701 	device_links_write_lock();
702 
703 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
704 		if (link->flags & DL_FLAG_STATELESS)
705 			continue;
706 
707 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
708 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
709 
710 		/*
711 		 * autoremove the links between this @dev and its consumer
712 		 * devices that are not active, i.e. where the link state
713 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
714 		 */
715 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
716 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
717 			__device_link_del(&link->kref);
718 
719 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
720 	}
721 
722 	__device_links_no_driver(dev);
723 
724 	device_links_write_unlock();
725 }
726 
727 /**
728  * device_links_busy - Check if there are any busy links to consumers.
729  * @dev: Device to check.
730  *
731  * Check each consumer of the device and return 'true' if its link's status
732  * is one of "consumer probe" or "active" (meaning that the given consumer is
733  * probing right now or its driver is present).  Otherwise, change the link
734  * state to "supplier unbind" to prevent the consumer from being probed
735  * successfully going forward.
736  *
737  * Return 'false' if there are no probing or active consumers.
738  *
739  * Links with the DL_FLAG_STATELESS flag set are ignored.
740  */
741 bool device_links_busy(struct device *dev)
742 {
743 	struct device_link *link;
744 	bool ret = false;
745 
746 	device_links_write_lock();
747 
748 	list_for_each_entry(link, &dev->links.consumers, s_node) {
749 		if (link->flags & DL_FLAG_STATELESS)
750 			continue;
751 
752 		if (link->status == DL_STATE_CONSUMER_PROBE
753 		    || link->status == DL_STATE_ACTIVE) {
754 			ret = true;
755 			break;
756 		}
757 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
758 	}
759 
760 	dev->links.status = DL_DEV_UNBINDING;
761 
762 	device_links_write_unlock();
763 	return ret;
764 }
765 
766 /**
767  * device_links_unbind_consumers - Force unbind consumers of the given device.
768  * @dev: Device to unbind the consumers of.
769  *
770  * Walk the list of links to consumers for @dev and if any of them is in the
771  * "consumer probe" state, wait for all device probes in progress to complete
772  * and start over.
773  *
774  * If that's not the case, change the status of the link to "supplier unbind"
775  * and check if the link was in the "active" state.  If so, force the consumer
776  * driver to unbind and start over (the consumer will not re-probe as we have
777  * changed the state of the link already).
778  *
779  * Links with the DL_FLAG_STATELESS flag set are ignored.
780  */
781 void device_links_unbind_consumers(struct device *dev)
782 {
783 	struct device_link *link;
784 
785  start:
786 	device_links_write_lock();
787 
788 	list_for_each_entry(link, &dev->links.consumers, s_node) {
789 		enum device_link_state status;
790 
791 		if (link->flags & DL_FLAG_STATELESS)
792 			continue;
793 
794 		status = link->status;
795 		if (status == DL_STATE_CONSUMER_PROBE) {
796 			device_links_write_unlock();
797 
798 			wait_for_device_probe();
799 			goto start;
800 		}
801 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
802 		if (status == DL_STATE_ACTIVE) {
803 			struct device *consumer = link->consumer;
804 
805 			get_device(consumer);
806 
807 			device_links_write_unlock();
808 
809 			device_release_driver_internal(consumer, NULL,
810 						       consumer->parent);
811 			put_device(consumer);
812 			goto start;
813 		}
814 	}
815 
816 	device_links_write_unlock();
817 }
818 
819 /**
820  * device_links_purge - Delete existing links to other devices.
821  * @dev: Target device.
822  */
823 static void device_links_purge(struct device *dev)
824 {
825 	struct device_link *link, *ln;
826 
827 	/*
828 	 * Delete all of the remaining links from this device to any other
829 	 * devices (either consumers or suppliers).
830 	 */
831 	device_links_write_lock();
832 
833 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
834 		WARN_ON(link->status == DL_STATE_ACTIVE);
835 		__device_link_del(&link->kref);
836 	}
837 
838 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
839 		WARN_ON(link->status != DL_STATE_DORMANT &&
840 			link->status != DL_STATE_NONE);
841 		__device_link_del(&link->kref);
842 	}
843 
844 	device_links_write_unlock();
845 }
846 
847 /* Device links support end. */
848 
849 int (*platform_notify)(struct device *dev) = NULL;
850 int (*platform_notify_remove)(struct device *dev) = NULL;
851 static struct kobject *dev_kobj;
852 struct kobject *sysfs_dev_char_kobj;
853 struct kobject *sysfs_dev_block_kobj;
854 
855 static DEFINE_MUTEX(device_hotplug_lock);
856 
857 void lock_device_hotplug(void)
858 {
859 	mutex_lock(&device_hotplug_lock);
860 }
861 
862 void unlock_device_hotplug(void)
863 {
864 	mutex_unlock(&device_hotplug_lock);
865 }
866 
867 int lock_device_hotplug_sysfs(void)
868 {
869 	if (mutex_trylock(&device_hotplug_lock))
870 		return 0;
871 
872 	/* Avoid busy looping (5 ms of sleep should do). */
873 	msleep(5);
874 	return restart_syscall();
875 }
876 
877 #ifdef CONFIG_BLOCK
878 static inline int device_is_not_partition(struct device *dev)
879 {
880 	return !(dev->type == &part_type);
881 }
882 #else
883 static inline int device_is_not_partition(struct device *dev)
884 {
885 	return 1;
886 }
887 #endif
888 
889 static int
890 device_platform_notify(struct device *dev, enum kobject_action action)
891 {
892 	int ret;
893 
894 	ret = acpi_platform_notify(dev, action);
895 	if (ret)
896 		return ret;
897 
898 	ret = software_node_notify(dev, action);
899 	if (ret)
900 		return ret;
901 
902 	if (platform_notify && action == KOBJ_ADD)
903 		platform_notify(dev);
904 	else if (platform_notify_remove && action == KOBJ_REMOVE)
905 		platform_notify_remove(dev);
906 	return 0;
907 }
908 
909 /**
910  * dev_driver_string - Return a device's driver name, if at all possible
911  * @dev: struct device to get the name of
912  *
913  * Will return the device's driver's name if it is bound to a device.  If
914  * the device is not bound to a driver, it will return the name of the bus
915  * it is attached to.  If it is not attached to a bus either, an empty
916  * string will be returned.
917  */
918 const char *dev_driver_string(const struct device *dev)
919 {
920 	struct device_driver *drv;
921 
922 	/* dev->driver can change to NULL underneath us because of unbinding,
923 	 * so be careful about accessing it.  dev->bus and dev->class should
924 	 * never change once they are set, so they don't need special care.
925 	 */
926 	drv = READ_ONCE(dev->driver);
927 	return drv ? drv->name :
928 			(dev->bus ? dev->bus->name :
929 			(dev->class ? dev->class->name : ""));
930 }
931 EXPORT_SYMBOL(dev_driver_string);
932 
933 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
934 
935 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
936 			     char *buf)
937 {
938 	struct device_attribute *dev_attr = to_dev_attr(attr);
939 	struct device *dev = kobj_to_dev(kobj);
940 	ssize_t ret = -EIO;
941 
942 	if (dev_attr->show)
943 		ret = dev_attr->show(dev, dev_attr, buf);
944 	if (ret >= (ssize_t)PAGE_SIZE) {
945 		printk("dev_attr_show: %pS returned bad count\n",
946 				dev_attr->show);
947 	}
948 	return ret;
949 }
950 
951 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
952 			      const char *buf, size_t count)
953 {
954 	struct device_attribute *dev_attr = to_dev_attr(attr);
955 	struct device *dev = kobj_to_dev(kobj);
956 	ssize_t ret = -EIO;
957 
958 	if (dev_attr->store)
959 		ret = dev_attr->store(dev, dev_attr, buf, count);
960 	return ret;
961 }
962 
963 static const struct sysfs_ops dev_sysfs_ops = {
964 	.show	= dev_attr_show,
965 	.store	= dev_attr_store,
966 };
967 
968 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
969 
970 ssize_t device_store_ulong(struct device *dev,
971 			   struct device_attribute *attr,
972 			   const char *buf, size_t size)
973 {
974 	struct dev_ext_attribute *ea = to_ext_attr(attr);
975 	int ret;
976 	unsigned long new;
977 
978 	ret = kstrtoul(buf, 0, &new);
979 	if (ret)
980 		return ret;
981 	*(unsigned long *)(ea->var) = new;
982 	/* Always return full write size even if we didn't consume all */
983 	return size;
984 }
985 EXPORT_SYMBOL_GPL(device_store_ulong);
986 
987 ssize_t device_show_ulong(struct device *dev,
988 			  struct device_attribute *attr,
989 			  char *buf)
990 {
991 	struct dev_ext_attribute *ea = to_ext_attr(attr);
992 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
993 }
994 EXPORT_SYMBOL_GPL(device_show_ulong);
995 
996 ssize_t device_store_int(struct device *dev,
997 			 struct device_attribute *attr,
998 			 const char *buf, size_t size)
999 {
1000 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1001 	int ret;
1002 	long new;
1003 
1004 	ret = kstrtol(buf, 0, &new);
1005 	if (ret)
1006 		return ret;
1007 
1008 	if (new > INT_MAX || new < INT_MIN)
1009 		return -EINVAL;
1010 	*(int *)(ea->var) = new;
1011 	/* Always return full write size even if we didn't consume all */
1012 	return size;
1013 }
1014 EXPORT_SYMBOL_GPL(device_store_int);
1015 
1016 ssize_t device_show_int(struct device *dev,
1017 			struct device_attribute *attr,
1018 			char *buf)
1019 {
1020 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1021 
1022 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1023 }
1024 EXPORT_SYMBOL_GPL(device_show_int);
1025 
1026 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1027 			  const char *buf, size_t size)
1028 {
1029 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1030 
1031 	if (strtobool(buf, ea->var) < 0)
1032 		return -EINVAL;
1033 
1034 	return size;
1035 }
1036 EXPORT_SYMBOL_GPL(device_store_bool);
1037 
1038 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1039 			 char *buf)
1040 {
1041 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1042 
1043 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1044 }
1045 EXPORT_SYMBOL_GPL(device_show_bool);
1046 
1047 /**
1048  * device_release - free device structure.
1049  * @kobj: device's kobject.
1050  *
1051  * This is called once the reference count for the object
1052  * reaches 0. We forward the call to the device's release
1053  * method, which should handle actually freeing the structure.
1054  */
1055 static void device_release(struct kobject *kobj)
1056 {
1057 	struct device *dev = kobj_to_dev(kobj);
1058 	struct device_private *p = dev->p;
1059 
1060 	/*
1061 	 * Some platform devices are driven without driver attached
1062 	 * and managed resources may have been acquired.  Make sure
1063 	 * all resources are released.
1064 	 *
1065 	 * Drivers still can add resources into device after device
1066 	 * is deleted but alive, so release devres here to avoid
1067 	 * possible memory leak.
1068 	 */
1069 	devres_release_all(dev);
1070 
1071 	if (dev->release)
1072 		dev->release(dev);
1073 	else if (dev->type && dev->type->release)
1074 		dev->type->release(dev);
1075 	else if (dev->class && dev->class->dev_release)
1076 		dev->class->dev_release(dev);
1077 	else
1078 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1079 			dev_name(dev));
1080 	kfree(p);
1081 }
1082 
1083 static const void *device_namespace(struct kobject *kobj)
1084 {
1085 	struct device *dev = kobj_to_dev(kobj);
1086 	const void *ns = NULL;
1087 
1088 	if (dev->class && dev->class->ns_type)
1089 		ns = dev->class->namespace(dev);
1090 
1091 	return ns;
1092 }
1093 
1094 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1095 {
1096 	struct device *dev = kobj_to_dev(kobj);
1097 
1098 	if (dev->class && dev->class->get_ownership)
1099 		dev->class->get_ownership(dev, uid, gid);
1100 }
1101 
1102 static struct kobj_type device_ktype = {
1103 	.release	= device_release,
1104 	.sysfs_ops	= &dev_sysfs_ops,
1105 	.namespace	= device_namespace,
1106 	.get_ownership	= device_get_ownership,
1107 };
1108 
1109 
1110 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1111 {
1112 	struct kobj_type *ktype = get_ktype(kobj);
1113 
1114 	if (ktype == &device_ktype) {
1115 		struct device *dev = kobj_to_dev(kobj);
1116 		if (dev->bus)
1117 			return 1;
1118 		if (dev->class)
1119 			return 1;
1120 	}
1121 	return 0;
1122 }
1123 
1124 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1125 {
1126 	struct device *dev = kobj_to_dev(kobj);
1127 
1128 	if (dev->bus)
1129 		return dev->bus->name;
1130 	if (dev->class)
1131 		return dev->class->name;
1132 	return NULL;
1133 }
1134 
1135 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1136 		      struct kobj_uevent_env *env)
1137 {
1138 	struct device *dev = kobj_to_dev(kobj);
1139 	int retval = 0;
1140 
1141 	/* add device node properties if present */
1142 	if (MAJOR(dev->devt)) {
1143 		const char *tmp;
1144 		const char *name;
1145 		umode_t mode = 0;
1146 		kuid_t uid = GLOBAL_ROOT_UID;
1147 		kgid_t gid = GLOBAL_ROOT_GID;
1148 
1149 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1150 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1151 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1152 		if (name) {
1153 			add_uevent_var(env, "DEVNAME=%s", name);
1154 			if (mode)
1155 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1156 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1157 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1158 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1159 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1160 			kfree(tmp);
1161 		}
1162 	}
1163 
1164 	if (dev->type && dev->type->name)
1165 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1166 
1167 	if (dev->driver)
1168 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1169 
1170 	/* Add common DT information about the device */
1171 	of_device_uevent(dev, env);
1172 
1173 	/* have the bus specific function add its stuff */
1174 	if (dev->bus && dev->bus->uevent) {
1175 		retval = dev->bus->uevent(dev, env);
1176 		if (retval)
1177 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1178 				 dev_name(dev), __func__, retval);
1179 	}
1180 
1181 	/* have the class specific function add its stuff */
1182 	if (dev->class && dev->class->dev_uevent) {
1183 		retval = dev->class->dev_uevent(dev, env);
1184 		if (retval)
1185 			pr_debug("device: '%s': %s: class uevent() "
1186 				 "returned %d\n", dev_name(dev),
1187 				 __func__, retval);
1188 	}
1189 
1190 	/* have the device type specific function add its stuff */
1191 	if (dev->type && dev->type->uevent) {
1192 		retval = dev->type->uevent(dev, env);
1193 		if (retval)
1194 			pr_debug("device: '%s': %s: dev_type uevent() "
1195 				 "returned %d\n", dev_name(dev),
1196 				 __func__, retval);
1197 	}
1198 
1199 	return retval;
1200 }
1201 
1202 static const struct kset_uevent_ops device_uevent_ops = {
1203 	.filter =	dev_uevent_filter,
1204 	.name =		dev_uevent_name,
1205 	.uevent =	dev_uevent,
1206 };
1207 
1208 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1209 			   char *buf)
1210 {
1211 	struct kobject *top_kobj;
1212 	struct kset *kset;
1213 	struct kobj_uevent_env *env = NULL;
1214 	int i;
1215 	size_t count = 0;
1216 	int retval;
1217 
1218 	/* search the kset, the device belongs to */
1219 	top_kobj = &dev->kobj;
1220 	while (!top_kobj->kset && top_kobj->parent)
1221 		top_kobj = top_kobj->parent;
1222 	if (!top_kobj->kset)
1223 		goto out;
1224 
1225 	kset = top_kobj->kset;
1226 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1227 		goto out;
1228 
1229 	/* respect filter */
1230 	if (kset->uevent_ops && kset->uevent_ops->filter)
1231 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1232 			goto out;
1233 
1234 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1235 	if (!env)
1236 		return -ENOMEM;
1237 
1238 	/* let the kset specific function add its keys */
1239 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1240 	if (retval)
1241 		goto out;
1242 
1243 	/* copy keys to file */
1244 	for (i = 0; i < env->envp_idx; i++)
1245 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1246 out:
1247 	kfree(env);
1248 	return count;
1249 }
1250 
1251 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1252 			    const char *buf, size_t count)
1253 {
1254 	int rc;
1255 
1256 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1257 
1258 	if (rc) {
1259 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1260 		return rc;
1261 	}
1262 
1263 	return count;
1264 }
1265 static DEVICE_ATTR_RW(uevent);
1266 
1267 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1268 			   char *buf)
1269 {
1270 	bool val;
1271 
1272 	device_lock(dev);
1273 	val = !dev->offline;
1274 	device_unlock(dev);
1275 	return sprintf(buf, "%u\n", val);
1276 }
1277 
1278 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1279 			    const char *buf, size_t count)
1280 {
1281 	bool val;
1282 	int ret;
1283 
1284 	ret = strtobool(buf, &val);
1285 	if (ret < 0)
1286 		return ret;
1287 
1288 	ret = lock_device_hotplug_sysfs();
1289 	if (ret)
1290 		return ret;
1291 
1292 	ret = val ? device_online(dev) : device_offline(dev);
1293 	unlock_device_hotplug();
1294 	return ret < 0 ? ret : count;
1295 }
1296 static DEVICE_ATTR_RW(online);
1297 
1298 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1299 {
1300 	return sysfs_create_groups(&dev->kobj, groups);
1301 }
1302 EXPORT_SYMBOL_GPL(device_add_groups);
1303 
1304 void device_remove_groups(struct device *dev,
1305 			  const struct attribute_group **groups)
1306 {
1307 	sysfs_remove_groups(&dev->kobj, groups);
1308 }
1309 EXPORT_SYMBOL_GPL(device_remove_groups);
1310 
1311 union device_attr_group_devres {
1312 	const struct attribute_group *group;
1313 	const struct attribute_group **groups;
1314 };
1315 
1316 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1317 {
1318 	return ((union device_attr_group_devres *)res)->group == data;
1319 }
1320 
1321 static void devm_attr_group_remove(struct device *dev, void *res)
1322 {
1323 	union device_attr_group_devres *devres = res;
1324 	const struct attribute_group *group = devres->group;
1325 
1326 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1327 	sysfs_remove_group(&dev->kobj, group);
1328 }
1329 
1330 static void devm_attr_groups_remove(struct device *dev, void *res)
1331 {
1332 	union device_attr_group_devres *devres = res;
1333 	const struct attribute_group **groups = devres->groups;
1334 
1335 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1336 	sysfs_remove_groups(&dev->kobj, groups);
1337 }
1338 
1339 /**
1340  * devm_device_add_group - given a device, create a managed attribute group
1341  * @dev:	The device to create the group for
1342  * @grp:	The attribute group to create
1343  *
1344  * This function creates a group for the first time.  It will explicitly
1345  * warn and error if any of the attribute files being created already exist.
1346  *
1347  * Returns 0 on success or error code on failure.
1348  */
1349 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1350 {
1351 	union device_attr_group_devres *devres;
1352 	int error;
1353 
1354 	devres = devres_alloc(devm_attr_group_remove,
1355 			      sizeof(*devres), GFP_KERNEL);
1356 	if (!devres)
1357 		return -ENOMEM;
1358 
1359 	error = sysfs_create_group(&dev->kobj, grp);
1360 	if (error) {
1361 		devres_free(devres);
1362 		return error;
1363 	}
1364 
1365 	devres->group = grp;
1366 	devres_add(dev, devres);
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(devm_device_add_group);
1370 
1371 /**
1372  * devm_device_remove_group: remove a managed group from a device
1373  * @dev:	device to remove the group from
1374  * @grp:	group to remove
1375  *
1376  * This function removes a group of attributes from a device. The attributes
1377  * previously have to have been created for this group, otherwise it will fail.
1378  */
1379 void devm_device_remove_group(struct device *dev,
1380 			      const struct attribute_group *grp)
1381 {
1382 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1383 			       devm_attr_group_match,
1384 			       /* cast away const */ (void *)grp));
1385 }
1386 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1387 
1388 /**
1389  * devm_device_add_groups - create a bunch of managed attribute groups
1390  * @dev:	The device to create the group for
1391  * @groups:	The attribute groups to create, NULL terminated
1392  *
1393  * This function creates a bunch of managed attribute groups.  If an error
1394  * occurs when creating a group, all previously created groups will be
1395  * removed, unwinding everything back to the original state when this
1396  * function was called.  It will explicitly warn and error if any of the
1397  * attribute files being created already exist.
1398  *
1399  * Returns 0 on success or error code from sysfs_create_group on failure.
1400  */
1401 int devm_device_add_groups(struct device *dev,
1402 			   const struct attribute_group **groups)
1403 {
1404 	union device_attr_group_devres *devres;
1405 	int error;
1406 
1407 	devres = devres_alloc(devm_attr_groups_remove,
1408 			      sizeof(*devres), GFP_KERNEL);
1409 	if (!devres)
1410 		return -ENOMEM;
1411 
1412 	error = sysfs_create_groups(&dev->kobj, groups);
1413 	if (error) {
1414 		devres_free(devres);
1415 		return error;
1416 	}
1417 
1418 	devres->groups = groups;
1419 	devres_add(dev, devres);
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1423 
1424 /**
1425  * devm_device_remove_groups - remove a list of managed groups
1426  *
1427  * @dev:	The device for the groups to be removed from
1428  * @groups:	NULL terminated list of groups to be removed
1429  *
1430  * If groups is not NULL, remove the specified groups from the device.
1431  */
1432 void devm_device_remove_groups(struct device *dev,
1433 			       const struct attribute_group **groups)
1434 {
1435 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1436 			       devm_attr_group_match,
1437 			       /* cast away const */ (void *)groups));
1438 }
1439 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1440 
1441 static int device_add_attrs(struct device *dev)
1442 {
1443 	struct class *class = dev->class;
1444 	const struct device_type *type = dev->type;
1445 	int error;
1446 
1447 	if (class) {
1448 		error = device_add_groups(dev, class->dev_groups);
1449 		if (error)
1450 			return error;
1451 	}
1452 
1453 	if (type) {
1454 		error = device_add_groups(dev, type->groups);
1455 		if (error)
1456 			goto err_remove_class_groups;
1457 	}
1458 
1459 	error = device_add_groups(dev, dev->groups);
1460 	if (error)
1461 		goto err_remove_type_groups;
1462 
1463 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1464 		error = device_create_file(dev, &dev_attr_online);
1465 		if (error)
1466 			goto err_remove_dev_groups;
1467 	}
1468 
1469 	return 0;
1470 
1471  err_remove_dev_groups:
1472 	device_remove_groups(dev, dev->groups);
1473  err_remove_type_groups:
1474 	if (type)
1475 		device_remove_groups(dev, type->groups);
1476  err_remove_class_groups:
1477 	if (class)
1478 		device_remove_groups(dev, class->dev_groups);
1479 
1480 	return error;
1481 }
1482 
1483 static void device_remove_attrs(struct device *dev)
1484 {
1485 	struct class *class = dev->class;
1486 	const struct device_type *type = dev->type;
1487 
1488 	device_remove_file(dev, &dev_attr_online);
1489 	device_remove_groups(dev, dev->groups);
1490 
1491 	if (type)
1492 		device_remove_groups(dev, type->groups);
1493 
1494 	if (class)
1495 		device_remove_groups(dev, class->dev_groups);
1496 }
1497 
1498 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1499 			char *buf)
1500 {
1501 	return print_dev_t(buf, dev->devt);
1502 }
1503 static DEVICE_ATTR_RO(dev);
1504 
1505 /* /sys/devices/ */
1506 struct kset *devices_kset;
1507 
1508 /**
1509  * devices_kset_move_before - Move device in the devices_kset's list.
1510  * @deva: Device to move.
1511  * @devb: Device @deva should come before.
1512  */
1513 static void devices_kset_move_before(struct device *deva, struct device *devb)
1514 {
1515 	if (!devices_kset)
1516 		return;
1517 	pr_debug("devices_kset: Moving %s before %s\n",
1518 		 dev_name(deva), dev_name(devb));
1519 	spin_lock(&devices_kset->list_lock);
1520 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1521 	spin_unlock(&devices_kset->list_lock);
1522 }
1523 
1524 /**
1525  * devices_kset_move_after - Move device in the devices_kset's list.
1526  * @deva: Device to move
1527  * @devb: Device @deva should come after.
1528  */
1529 static void devices_kset_move_after(struct device *deva, struct device *devb)
1530 {
1531 	if (!devices_kset)
1532 		return;
1533 	pr_debug("devices_kset: Moving %s after %s\n",
1534 		 dev_name(deva), dev_name(devb));
1535 	spin_lock(&devices_kset->list_lock);
1536 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1537 	spin_unlock(&devices_kset->list_lock);
1538 }
1539 
1540 /**
1541  * devices_kset_move_last - move the device to the end of devices_kset's list.
1542  * @dev: device to move
1543  */
1544 void devices_kset_move_last(struct device *dev)
1545 {
1546 	if (!devices_kset)
1547 		return;
1548 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1549 	spin_lock(&devices_kset->list_lock);
1550 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1551 	spin_unlock(&devices_kset->list_lock);
1552 }
1553 
1554 /**
1555  * device_create_file - create sysfs attribute file for device.
1556  * @dev: device.
1557  * @attr: device attribute descriptor.
1558  */
1559 int device_create_file(struct device *dev,
1560 		       const struct device_attribute *attr)
1561 {
1562 	int error = 0;
1563 
1564 	if (dev) {
1565 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1566 			"Attribute %s: write permission without 'store'\n",
1567 			attr->attr.name);
1568 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1569 			"Attribute %s: read permission without 'show'\n",
1570 			attr->attr.name);
1571 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1572 	}
1573 
1574 	return error;
1575 }
1576 EXPORT_SYMBOL_GPL(device_create_file);
1577 
1578 /**
1579  * device_remove_file - remove sysfs attribute file.
1580  * @dev: device.
1581  * @attr: device attribute descriptor.
1582  */
1583 void device_remove_file(struct device *dev,
1584 			const struct device_attribute *attr)
1585 {
1586 	if (dev)
1587 		sysfs_remove_file(&dev->kobj, &attr->attr);
1588 }
1589 EXPORT_SYMBOL_GPL(device_remove_file);
1590 
1591 /**
1592  * device_remove_file_self - remove sysfs attribute file from its own method.
1593  * @dev: device.
1594  * @attr: device attribute descriptor.
1595  *
1596  * See kernfs_remove_self() for details.
1597  */
1598 bool device_remove_file_self(struct device *dev,
1599 			     const struct device_attribute *attr)
1600 {
1601 	if (dev)
1602 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1603 	else
1604 		return false;
1605 }
1606 EXPORT_SYMBOL_GPL(device_remove_file_self);
1607 
1608 /**
1609  * device_create_bin_file - create sysfs binary attribute file for device.
1610  * @dev: device.
1611  * @attr: device binary attribute descriptor.
1612  */
1613 int device_create_bin_file(struct device *dev,
1614 			   const struct bin_attribute *attr)
1615 {
1616 	int error = -EINVAL;
1617 	if (dev)
1618 		error = sysfs_create_bin_file(&dev->kobj, attr);
1619 	return error;
1620 }
1621 EXPORT_SYMBOL_GPL(device_create_bin_file);
1622 
1623 /**
1624  * device_remove_bin_file - remove sysfs binary attribute file
1625  * @dev: device.
1626  * @attr: device binary attribute descriptor.
1627  */
1628 void device_remove_bin_file(struct device *dev,
1629 			    const struct bin_attribute *attr)
1630 {
1631 	if (dev)
1632 		sysfs_remove_bin_file(&dev->kobj, attr);
1633 }
1634 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1635 
1636 static void klist_children_get(struct klist_node *n)
1637 {
1638 	struct device_private *p = to_device_private_parent(n);
1639 	struct device *dev = p->device;
1640 
1641 	get_device(dev);
1642 }
1643 
1644 static void klist_children_put(struct klist_node *n)
1645 {
1646 	struct device_private *p = to_device_private_parent(n);
1647 	struct device *dev = p->device;
1648 
1649 	put_device(dev);
1650 }
1651 
1652 /**
1653  * device_initialize - init device structure.
1654  * @dev: device.
1655  *
1656  * This prepares the device for use by other layers by initializing
1657  * its fields.
1658  * It is the first half of device_register(), if called by
1659  * that function, though it can also be called separately, so one
1660  * may use @dev's fields. In particular, get_device()/put_device()
1661  * may be used for reference counting of @dev after calling this
1662  * function.
1663  *
1664  * All fields in @dev must be initialized by the caller to 0, except
1665  * for those explicitly set to some other value.  The simplest
1666  * approach is to use kzalloc() to allocate the structure containing
1667  * @dev.
1668  *
1669  * NOTE: Use put_device() to give up your reference instead of freeing
1670  * @dev directly once you have called this function.
1671  */
1672 void device_initialize(struct device *dev)
1673 {
1674 	dev->kobj.kset = devices_kset;
1675 	kobject_init(&dev->kobj, &device_ktype);
1676 	INIT_LIST_HEAD(&dev->dma_pools);
1677 	mutex_init(&dev->mutex);
1678 #ifdef CONFIG_PROVE_LOCKING
1679 	mutex_init(&dev->lockdep_mutex);
1680 #endif
1681 	lockdep_set_novalidate_class(&dev->mutex);
1682 	spin_lock_init(&dev->devres_lock);
1683 	INIT_LIST_HEAD(&dev->devres_head);
1684 	device_pm_init(dev);
1685 	set_dev_node(dev, -1);
1686 #ifdef CONFIG_GENERIC_MSI_IRQ
1687 	INIT_LIST_HEAD(&dev->msi_list);
1688 #endif
1689 	INIT_LIST_HEAD(&dev->links.consumers);
1690 	INIT_LIST_HEAD(&dev->links.suppliers);
1691 	dev->links.status = DL_DEV_NO_DRIVER;
1692 }
1693 EXPORT_SYMBOL_GPL(device_initialize);
1694 
1695 struct kobject *virtual_device_parent(struct device *dev)
1696 {
1697 	static struct kobject *virtual_dir = NULL;
1698 
1699 	if (!virtual_dir)
1700 		virtual_dir = kobject_create_and_add("virtual",
1701 						     &devices_kset->kobj);
1702 
1703 	return virtual_dir;
1704 }
1705 
1706 struct class_dir {
1707 	struct kobject kobj;
1708 	struct class *class;
1709 };
1710 
1711 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1712 
1713 static void class_dir_release(struct kobject *kobj)
1714 {
1715 	struct class_dir *dir = to_class_dir(kobj);
1716 	kfree(dir);
1717 }
1718 
1719 static const
1720 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1721 {
1722 	struct class_dir *dir = to_class_dir(kobj);
1723 	return dir->class->ns_type;
1724 }
1725 
1726 static struct kobj_type class_dir_ktype = {
1727 	.release	= class_dir_release,
1728 	.sysfs_ops	= &kobj_sysfs_ops,
1729 	.child_ns_type	= class_dir_child_ns_type
1730 };
1731 
1732 static struct kobject *
1733 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1734 {
1735 	struct class_dir *dir;
1736 	int retval;
1737 
1738 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1739 	if (!dir)
1740 		return ERR_PTR(-ENOMEM);
1741 
1742 	dir->class = class;
1743 	kobject_init(&dir->kobj, &class_dir_ktype);
1744 
1745 	dir->kobj.kset = &class->p->glue_dirs;
1746 
1747 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1748 	if (retval < 0) {
1749 		kobject_put(&dir->kobj);
1750 		return ERR_PTR(retval);
1751 	}
1752 	return &dir->kobj;
1753 }
1754 
1755 static DEFINE_MUTEX(gdp_mutex);
1756 
1757 static struct kobject *get_device_parent(struct device *dev,
1758 					 struct device *parent)
1759 {
1760 	if (dev->class) {
1761 		struct kobject *kobj = NULL;
1762 		struct kobject *parent_kobj;
1763 		struct kobject *k;
1764 
1765 #ifdef CONFIG_BLOCK
1766 		/* block disks show up in /sys/block */
1767 		if (sysfs_deprecated && dev->class == &block_class) {
1768 			if (parent && parent->class == &block_class)
1769 				return &parent->kobj;
1770 			return &block_class.p->subsys.kobj;
1771 		}
1772 #endif
1773 
1774 		/*
1775 		 * If we have no parent, we live in "virtual".
1776 		 * Class-devices with a non class-device as parent, live
1777 		 * in a "glue" directory to prevent namespace collisions.
1778 		 */
1779 		if (parent == NULL)
1780 			parent_kobj = virtual_device_parent(dev);
1781 		else if (parent->class && !dev->class->ns_type)
1782 			return &parent->kobj;
1783 		else
1784 			parent_kobj = &parent->kobj;
1785 
1786 		mutex_lock(&gdp_mutex);
1787 
1788 		/* find our class-directory at the parent and reference it */
1789 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1790 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1791 			if (k->parent == parent_kobj) {
1792 				kobj = kobject_get(k);
1793 				break;
1794 			}
1795 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1796 		if (kobj) {
1797 			mutex_unlock(&gdp_mutex);
1798 			return kobj;
1799 		}
1800 
1801 		/* or create a new class-directory at the parent device */
1802 		k = class_dir_create_and_add(dev->class, parent_kobj);
1803 		/* do not emit an uevent for this simple "glue" directory */
1804 		mutex_unlock(&gdp_mutex);
1805 		return k;
1806 	}
1807 
1808 	/* subsystems can specify a default root directory for their devices */
1809 	if (!parent && dev->bus && dev->bus->dev_root)
1810 		return &dev->bus->dev_root->kobj;
1811 
1812 	if (parent)
1813 		return &parent->kobj;
1814 	return NULL;
1815 }
1816 
1817 static inline bool live_in_glue_dir(struct kobject *kobj,
1818 				    struct device *dev)
1819 {
1820 	if (!kobj || !dev->class ||
1821 	    kobj->kset != &dev->class->p->glue_dirs)
1822 		return false;
1823 	return true;
1824 }
1825 
1826 static inline struct kobject *get_glue_dir(struct device *dev)
1827 {
1828 	return dev->kobj.parent;
1829 }
1830 
1831 /*
1832  * make sure cleaning up dir as the last step, we need to make
1833  * sure .release handler of kobject is run with holding the
1834  * global lock
1835  */
1836 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1837 {
1838 	unsigned int ref;
1839 
1840 	/* see if we live in a "glue" directory */
1841 	if (!live_in_glue_dir(glue_dir, dev))
1842 		return;
1843 
1844 	mutex_lock(&gdp_mutex);
1845 	/**
1846 	 * There is a race condition between removing glue directory
1847 	 * and adding a new device under the glue directory.
1848 	 *
1849 	 * CPU1:                                         CPU2:
1850 	 *
1851 	 * device_add()
1852 	 *   get_device_parent()
1853 	 *     class_dir_create_and_add()
1854 	 *       kobject_add_internal()
1855 	 *         create_dir()    // create glue_dir
1856 	 *
1857 	 *                                               device_add()
1858 	 *                                                 get_device_parent()
1859 	 *                                                   kobject_get() // get glue_dir
1860 	 *
1861 	 * device_del()
1862 	 *   cleanup_glue_dir()
1863 	 *     kobject_del(glue_dir)
1864 	 *
1865 	 *                                               kobject_add()
1866 	 *                                                 kobject_add_internal()
1867 	 *                                                   create_dir() // in glue_dir
1868 	 *                                                     sysfs_create_dir_ns()
1869 	 *                                                       kernfs_create_dir_ns(sd)
1870 	 *
1871 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1872 	 *       sysfs_put()        // free glue_dir->sd
1873 	 *
1874 	 *                                                         // sd is freed
1875 	 *                                                         kernfs_new_node(sd)
1876 	 *                                                           kernfs_get(glue_dir)
1877 	 *                                                           kernfs_add_one()
1878 	 *                                                           kernfs_put()
1879 	 *
1880 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1881 	 * a new device under glue dir, the glue_dir kobject reference count
1882 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1883 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1884 	 * and sysfs_put(). This result in glue_dir->sd is freed.
1885 	 *
1886 	 * Then the CPU2 will see a stale "empty" but still potentially used
1887 	 * glue dir around in kernfs_new_node().
1888 	 *
1889 	 * In order to avoid this happening, we also should make sure that
1890 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1891 	 * for glue_dir kobj is 1.
1892 	 */
1893 	ref = kref_read(&glue_dir->kref);
1894 	if (!kobject_has_children(glue_dir) && !--ref)
1895 		kobject_del(glue_dir);
1896 	kobject_put(glue_dir);
1897 	mutex_unlock(&gdp_mutex);
1898 }
1899 
1900 static int device_add_class_symlinks(struct device *dev)
1901 {
1902 	struct device_node *of_node = dev_of_node(dev);
1903 	int error;
1904 
1905 	if (of_node) {
1906 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1907 		if (error)
1908 			dev_warn(dev, "Error %d creating of_node link\n",error);
1909 		/* An error here doesn't warrant bringing down the device */
1910 	}
1911 
1912 	if (!dev->class)
1913 		return 0;
1914 
1915 	error = sysfs_create_link(&dev->kobj,
1916 				  &dev->class->p->subsys.kobj,
1917 				  "subsystem");
1918 	if (error)
1919 		goto out_devnode;
1920 
1921 	if (dev->parent && device_is_not_partition(dev)) {
1922 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1923 					  "device");
1924 		if (error)
1925 			goto out_subsys;
1926 	}
1927 
1928 #ifdef CONFIG_BLOCK
1929 	/* /sys/block has directories and does not need symlinks */
1930 	if (sysfs_deprecated && dev->class == &block_class)
1931 		return 0;
1932 #endif
1933 
1934 	/* link in the class directory pointing to the device */
1935 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1936 				  &dev->kobj, dev_name(dev));
1937 	if (error)
1938 		goto out_device;
1939 
1940 	return 0;
1941 
1942 out_device:
1943 	sysfs_remove_link(&dev->kobj, "device");
1944 
1945 out_subsys:
1946 	sysfs_remove_link(&dev->kobj, "subsystem");
1947 out_devnode:
1948 	sysfs_remove_link(&dev->kobj, "of_node");
1949 	return error;
1950 }
1951 
1952 static void device_remove_class_symlinks(struct device *dev)
1953 {
1954 	if (dev_of_node(dev))
1955 		sysfs_remove_link(&dev->kobj, "of_node");
1956 
1957 	if (!dev->class)
1958 		return;
1959 
1960 	if (dev->parent && device_is_not_partition(dev))
1961 		sysfs_remove_link(&dev->kobj, "device");
1962 	sysfs_remove_link(&dev->kobj, "subsystem");
1963 #ifdef CONFIG_BLOCK
1964 	if (sysfs_deprecated && dev->class == &block_class)
1965 		return;
1966 #endif
1967 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1968 }
1969 
1970 /**
1971  * dev_set_name - set a device name
1972  * @dev: device
1973  * @fmt: format string for the device's name
1974  */
1975 int dev_set_name(struct device *dev, const char *fmt, ...)
1976 {
1977 	va_list vargs;
1978 	int err;
1979 
1980 	va_start(vargs, fmt);
1981 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1982 	va_end(vargs);
1983 	return err;
1984 }
1985 EXPORT_SYMBOL_GPL(dev_set_name);
1986 
1987 /**
1988  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1989  * @dev: device
1990  *
1991  * By default we select char/ for new entries.  Setting class->dev_obj
1992  * to NULL prevents an entry from being created.  class->dev_kobj must
1993  * be set (or cleared) before any devices are registered to the class
1994  * otherwise device_create_sys_dev_entry() and
1995  * device_remove_sys_dev_entry() will disagree about the presence of
1996  * the link.
1997  */
1998 static struct kobject *device_to_dev_kobj(struct device *dev)
1999 {
2000 	struct kobject *kobj;
2001 
2002 	if (dev->class)
2003 		kobj = dev->class->dev_kobj;
2004 	else
2005 		kobj = sysfs_dev_char_kobj;
2006 
2007 	return kobj;
2008 }
2009 
2010 static int device_create_sys_dev_entry(struct device *dev)
2011 {
2012 	struct kobject *kobj = device_to_dev_kobj(dev);
2013 	int error = 0;
2014 	char devt_str[15];
2015 
2016 	if (kobj) {
2017 		format_dev_t(devt_str, dev->devt);
2018 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2019 	}
2020 
2021 	return error;
2022 }
2023 
2024 static void device_remove_sys_dev_entry(struct device *dev)
2025 {
2026 	struct kobject *kobj = device_to_dev_kobj(dev);
2027 	char devt_str[15];
2028 
2029 	if (kobj) {
2030 		format_dev_t(devt_str, dev->devt);
2031 		sysfs_remove_link(kobj, devt_str);
2032 	}
2033 }
2034 
2035 static int device_private_init(struct device *dev)
2036 {
2037 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2038 	if (!dev->p)
2039 		return -ENOMEM;
2040 	dev->p->device = dev;
2041 	klist_init(&dev->p->klist_children, klist_children_get,
2042 		   klist_children_put);
2043 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2044 	return 0;
2045 }
2046 
2047 /**
2048  * device_add - add device to device hierarchy.
2049  * @dev: device.
2050  *
2051  * This is part 2 of device_register(), though may be called
2052  * separately _iff_ device_initialize() has been called separately.
2053  *
2054  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2055  * to the global and sibling lists for the device, then
2056  * adds it to the other relevant subsystems of the driver model.
2057  *
2058  * Do not call this routine or device_register() more than once for
2059  * any device structure.  The driver model core is not designed to work
2060  * with devices that get unregistered and then spring back to life.
2061  * (Among other things, it's very hard to guarantee that all references
2062  * to the previous incarnation of @dev have been dropped.)  Allocate
2063  * and register a fresh new struct device instead.
2064  *
2065  * NOTE: _Never_ directly free @dev after calling this function, even
2066  * if it returned an error! Always use put_device() to give up your
2067  * reference instead.
2068  *
2069  * Rule of thumb is: if device_add() succeeds, you should call
2070  * device_del() when you want to get rid of it. If device_add() has
2071  * *not* succeeded, use *only* put_device() to drop the reference
2072  * count.
2073  */
2074 int device_add(struct device *dev)
2075 {
2076 	struct device *parent;
2077 	struct kobject *kobj;
2078 	struct class_interface *class_intf;
2079 	int error = -EINVAL;
2080 	struct kobject *glue_dir = NULL;
2081 
2082 	dev = get_device(dev);
2083 	if (!dev)
2084 		goto done;
2085 
2086 	if (!dev->p) {
2087 		error = device_private_init(dev);
2088 		if (error)
2089 			goto done;
2090 	}
2091 
2092 	/*
2093 	 * for statically allocated devices, which should all be converted
2094 	 * some day, we need to initialize the name. We prevent reading back
2095 	 * the name, and force the use of dev_name()
2096 	 */
2097 	if (dev->init_name) {
2098 		dev_set_name(dev, "%s", dev->init_name);
2099 		dev->init_name = NULL;
2100 	}
2101 
2102 	/* subsystems can specify simple device enumeration */
2103 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2104 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2105 
2106 	if (!dev_name(dev)) {
2107 		error = -EINVAL;
2108 		goto name_error;
2109 	}
2110 
2111 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2112 
2113 	parent = get_device(dev->parent);
2114 	kobj = get_device_parent(dev, parent);
2115 	if (IS_ERR(kobj)) {
2116 		error = PTR_ERR(kobj);
2117 		goto parent_error;
2118 	}
2119 	if (kobj)
2120 		dev->kobj.parent = kobj;
2121 
2122 	/* use parent numa_node */
2123 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2124 		set_dev_node(dev, dev_to_node(parent));
2125 
2126 	/* first, register with generic layer. */
2127 	/* we require the name to be set before, and pass NULL */
2128 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2129 	if (error) {
2130 		glue_dir = get_glue_dir(dev);
2131 		goto Error;
2132 	}
2133 
2134 	/* notify platform of device entry */
2135 	error = device_platform_notify(dev, KOBJ_ADD);
2136 	if (error)
2137 		goto platform_error;
2138 
2139 	error = device_create_file(dev, &dev_attr_uevent);
2140 	if (error)
2141 		goto attrError;
2142 
2143 	error = device_add_class_symlinks(dev);
2144 	if (error)
2145 		goto SymlinkError;
2146 	error = device_add_attrs(dev);
2147 	if (error)
2148 		goto AttrsError;
2149 	error = bus_add_device(dev);
2150 	if (error)
2151 		goto BusError;
2152 	error = dpm_sysfs_add(dev);
2153 	if (error)
2154 		goto DPMError;
2155 	device_pm_add(dev);
2156 
2157 	if (MAJOR(dev->devt)) {
2158 		error = device_create_file(dev, &dev_attr_dev);
2159 		if (error)
2160 			goto DevAttrError;
2161 
2162 		error = device_create_sys_dev_entry(dev);
2163 		if (error)
2164 			goto SysEntryError;
2165 
2166 		devtmpfs_create_node(dev);
2167 	}
2168 
2169 	/* Notify clients of device addition.  This call must come
2170 	 * after dpm_sysfs_add() and before kobject_uevent().
2171 	 */
2172 	if (dev->bus)
2173 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2174 					     BUS_NOTIFY_ADD_DEVICE, dev);
2175 
2176 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2177 	bus_probe_device(dev);
2178 	if (parent)
2179 		klist_add_tail(&dev->p->knode_parent,
2180 			       &parent->p->klist_children);
2181 
2182 	if (dev->class) {
2183 		mutex_lock(&dev->class->p->mutex);
2184 		/* tie the class to the device */
2185 		klist_add_tail(&dev->p->knode_class,
2186 			       &dev->class->p->klist_devices);
2187 
2188 		/* notify any interfaces that the device is here */
2189 		list_for_each_entry(class_intf,
2190 				    &dev->class->p->interfaces, node)
2191 			if (class_intf->add_dev)
2192 				class_intf->add_dev(dev, class_intf);
2193 		mutex_unlock(&dev->class->p->mutex);
2194 	}
2195 done:
2196 	put_device(dev);
2197 	return error;
2198  SysEntryError:
2199 	if (MAJOR(dev->devt))
2200 		device_remove_file(dev, &dev_attr_dev);
2201  DevAttrError:
2202 	device_pm_remove(dev);
2203 	dpm_sysfs_remove(dev);
2204  DPMError:
2205 	bus_remove_device(dev);
2206  BusError:
2207 	device_remove_attrs(dev);
2208  AttrsError:
2209 	device_remove_class_symlinks(dev);
2210  SymlinkError:
2211 	device_remove_file(dev, &dev_attr_uevent);
2212  attrError:
2213 	device_platform_notify(dev, KOBJ_REMOVE);
2214 platform_error:
2215 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2216 	glue_dir = get_glue_dir(dev);
2217 	kobject_del(&dev->kobj);
2218  Error:
2219 	cleanup_glue_dir(dev, glue_dir);
2220 parent_error:
2221 	put_device(parent);
2222 name_error:
2223 	kfree(dev->p);
2224 	dev->p = NULL;
2225 	goto done;
2226 }
2227 EXPORT_SYMBOL_GPL(device_add);
2228 
2229 /**
2230  * device_register - register a device with the system.
2231  * @dev: pointer to the device structure
2232  *
2233  * This happens in two clean steps - initialize the device
2234  * and add it to the system. The two steps can be called
2235  * separately, but this is the easiest and most common.
2236  * I.e. you should only call the two helpers separately if
2237  * have a clearly defined need to use and refcount the device
2238  * before it is added to the hierarchy.
2239  *
2240  * For more information, see the kerneldoc for device_initialize()
2241  * and device_add().
2242  *
2243  * NOTE: _Never_ directly free @dev after calling this function, even
2244  * if it returned an error! Always use put_device() to give up the
2245  * reference initialized in this function instead.
2246  */
2247 int device_register(struct device *dev)
2248 {
2249 	device_initialize(dev);
2250 	return device_add(dev);
2251 }
2252 EXPORT_SYMBOL_GPL(device_register);
2253 
2254 /**
2255  * get_device - increment reference count for device.
2256  * @dev: device.
2257  *
2258  * This simply forwards the call to kobject_get(), though
2259  * we do take care to provide for the case that we get a NULL
2260  * pointer passed in.
2261  */
2262 struct device *get_device(struct device *dev)
2263 {
2264 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2265 }
2266 EXPORT_SYMBOL_GPL(get_device);
2267 
2268 /**
2269  * put_device - decrement reference count.
2270  * @dev: device in question.
2271  */
2272 void put_device(struct device *dev)
2273 {
2274 	/* might_sleep(); */
2275 	if (dev)
2276 		kobject_put(&dev->kobj);
2277 }
2278 EXPORT_SYMBOL_GPL(put_device);
2279 
2280 bool kill_device(struct device *dev)
2281 {
2282 	/*
2283 	 * Require the device lock and set the "dead" flag to guarantee that
2284 	 * the update behavior is consistent with the other bitfields near
2285 	 * it and that we cannot have an asynchronous probe routine trying
2286 	 * to run while we are tearing out the bus/class/sysfs from
2287 	 * underneath the device.
2288 	 */
2289 	lockdep_assert_held(&dev->mutex);
2290 
2291 	if (dev->p->dead)
2292 		return false;
2293 	dev->p->dead = true;
2294 	return true;
2295 }
2296 EXPORT_SYMBOL_GPL(kill_device);
2297 
2298 /**
2299  * device_del - delete device from system.
2300  * @dev: device.
2301  *
2302  * This is the first part of the device unregistration
2303  * sequence. This removes the device from the lists we control
2304  * from here, has it removed from the other driver model
2305  * subsystems it was added to in device_add(), and removes it
2306  * from the kobject hierarchy.
2307  *
2308  * NOTE: this should be called manually _iff_ device_add() was
2309  * also called manually.
2310  */
2311 void device_del(struct device *dev)
2312 {
2313 	struct device *parent = dev->parent;
2314 	struct kobject *glue_dir = NULL;
2315 	struct class_interface *class_intf;
2316 
2317 	device_lock(dev);
2318 	kill_device(dev);
2319 	device_unlock(dev);
2320 
2321 	/* Notify clients of device removal.  This call must come
2322 	 * before dpm_sysfs_remove().
2323 	 */
2324 	if (dev->bus)
2325 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2326 					     BUS_NOTIFY_DEL_DEVICE, dev);
2327 
2328 	dpm_sysfs_remove(dev);
2329 	if (parent)
2330 		klist_del(&dev->p->knode_parent);
2331 	if (MAJOR(dev->devt)) {
2332 		devtmpfs_delete_node(dev);
2333 		device_remove_sys_dev_entry(dev);
2334 		device_remove_file(dev, &dev_attr_dev);
2335 	}
2336 	if (dev->class) {
2337 		device_remove_class_symlinks(dev);
2338 
2339 		mutex_lock(&dev->class->p->mutex);
2340 		/* notify any interfaces that the device is now gone */
2341 		list_for_each_entry(class_intf,
2342 				    &dev->class->p->interfaces, node)
2343 			if (class_intf->remove_dev)
2344 				class_intf->remove_dev(dev, class_intf);
2345 		/* remove the device from the class list */
2346 		klist_del(&dev->p->knode_class);
2347 		mutex_unlock(&dev->class->p->mutex);
2348 	}
2349 	device_remove_file(dev, &dev_attr_uevent);
2350 	device_remove_attrs(dev);
2351 	bus_remove_device(dev);
2352 	device_pm_remove(dev);
2353 	driver_deferred_probe_del(dev);
2354 	device_platform_notify(dev, KOBJ_REMOVE);
2355 	device_remove_properties(dev);
2356 	device_links_purge(dev);
2357 
2358 	if (dev->bus)
2359 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2360 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2361 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2362 	glue_dir = get_glue_dir(dev);
2363 	kobject_del(&dev->kobj);
2364 	cleanup_glue_dir(dev, glue_dir);
2365 	put_device(parent);
2366 }
2367 EXPORT_SYMBOL_GPL(device_del);
2368 
2369 /**
2370  * device_unregister - unregister device from system.
2371  * @dev: device going away.
2372  *
2373  * We do this in two parts, like we do device_register(). First,
2374  * we remove it from all the subsystems with device_del(), then
2375  * we decrement the reference count via put_device(). If that
2376  * is the final reference count, the device will be cleaned up
2377  * via device_release() above. Otherwise, the structure will
2378  * stick around until the final reference to the device is dropped.
2379  */
2380 void device_unregister(struct device *dev)
2381 {
2382 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2383 	device_del(dev);
2384 	put_device(dev);
2385 }
2386 EXPORT_SYMBOL_GPL(device_unregister);
2387 
2388 static struct device *prev_device(struct klist_iter *i)
2389 {
2390 	struct klist_node *n = klist_prev(i);
2391 	struct device *dev = NULL;
2392 	struct device_private *p;
2393 
2394 	if (n) {
2395 		p = to_device_private_parent(n);
2396 		dev = p->device;
2397 	}
2398 	return dev;
2399 }
2400 
2401 static struct device *next_device(struct klist_iter *i)
2402 {
2403 	struct klist_node *n = klist_next(i);
2404 	struct device *dev = NULL;
2405 	struct device_private *p;
2406 
2407 	if (n) {
2408 		p = to_device_private_parent(n);
2409 		dev = p->device;
2410 	}
2411 	return dev;
2412 }
2413 
2414 /**
2415  * device_get_devnode - path of device node file
2416  * @dev: device
2417  * @mode: returned file access mode
2418  * @uid: returned file owner
2419  * @gid: returned file group
2420  * @tmp: possibly allocated string
2421  *
2422  * Return the relative path of a possible device node.
2423  * Non-default names may need to allocate a memory to compose
2424  * a name. This memory is returned in tmp and needs to be
2425  * freed by the caller.
2426  */
2427 const char *device_get_devnode(struct device *dev,
2428 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2429 			       const char **tmp)
2430 {
2431 	char *s;
2432 
2433 	*tmp = NULL;
2434 
2435 	/* the device type may provide a specific name */
2436 	if (dev->type && dev->type->devnode)
2437 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2438 	if (*tmp)
2439 		return *tmp;
2440 
2441 	/* the class may provide a specific name */
2442 	if (dev->class && dev->class->devnode)
2443 		*tmp = dev->class->devnode(dev, mode);
2444 	if (*tmp)
2445 		return *tmp;
2446 
2447 	/* return name without allocation, tmp == NULL */
2448 	if (strchr(dev_name(dev), '!') == NULL)
2449 		return dev_name(dev);
2450 
2451 	/* replace '!' in the name with '/' */
2452 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2453 	if (!s)
2454 		return NULL;
2455 	strreplace(s, '!', '/');
2456 	return *tmp = s;
2457 }
2458 
2459 /**
2460  * device_for_each_child - device child iterator.
2461  * @parent: parent struct device.
2462  * @fn: function to be called for each device.
2463  * @data: data for the callback.
2464  *
2465  * Iterate over @parent's child devices, and call @fn for each,
2466  * passing it @data.
2467  *
2468  * We check the return of @fn each time. If it returns anything
2469  * other than 0, we break out and return that value.
2470  */
2471 int device_for_each_child(struct device *parent, void *data,
2472 			  int (*fn)(struct device *dev, void *data))
2473 {
2474 	struct klist_iter i;
2475 	struct device *child;
2476 	int error = 0;
2477 
2478 	if (!parent->p)
2479 		return 0;
2480 
2481 	klist_iter_init(&parent->p->klist_children, &i);
2482 	while (!error && (child = next_device(&i)))
2483 		error = fn(child, data);
2484 	klist_iter_exit(&i);
2485 	return error;
2486 }
2487 EXPORT_SYMBOL_GPL(device_for_each_child);
2488 
2489 /**
2490  * device_for_each_child_reverse - device child iterator in reversed order.
2491  * @parent: parent struct device.
2492  * @fn: function to be called for each device.
2493  * @data: data for the callback.
2494  *
2495  * Iterate over @parent's child devices, and call @fn for each,
2496  * passing it @data.
2497  *
2498  * We check the return of @fn each time. If it returns anything
2499  * other than 0, we break out and return that value.
2500  */
2501 int device_for_each_child_reverse(struct device *parent, void *data,
2502 				  int (*fn)(struct device *dev, void *data))
2503 {
2504 	struct klist_iter i;
2505 	struct device *child;
2506 	int error = 0;
2507 
2508 	if (!parent->p)
2509 		return 0;
2510 
2511 	klist_iter_init(&parent->p->klist_children, &i);
2512 	while ((child = prev_device(&i)) && !error)
2513 		error = fn(child, data);
2514 	klist_iter_exit(&i);
2515 	return error;
2516 }
2517 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2518 
2519 /**
2520  * device_find_child - device iterator for locating a particular device.
2521  * @parent: parent struct device
2522  * @match: Callback function to check device
2523  * @data: Data to pass to match function
2524  *
2525  * This is similar to the device_for_each_child() function above, but it
2526  * returns a reference to a device that is 'found' for later use, as
2527  * determined by the @match callback.
2528  *
2529  * The callback should return 0 if the device doesn't match and non-zero
2530  * if it does.  If the callback returns non-zero and a reference to the
2531  * current device can be obtained, this function will return to the caller
2532  * and not iterate over any more devices.
2533  *
2534  * NOTE: you will need to drop the reference with put_device() after use.
2535  */
2536 struct device *device_find_child(struct device *parent, void *data,
2537 				 int (*match)(struct device *dev, void *data))
2538 {
2539 	struct klist_iter i;
2540 	struct device *child;
2541 
2542 	if (!parent)
2543 		return NULL;
2544 
2545 	klist_iter_init(&parent->p->klist_children, &i);
2546 	while ((child = next_device(&i)))
2547 		if (match(child, data) && get_device(child))
2548 			break;
2549 	klist_iter_exit(&i);
2550 	return child;
2551 }
2552 EXPORT_SYMBOL_GPL(device_find_child);
2553 
2554 /**
2555  * device_find_child_by_name - device iterator for locating a child device.
2556  * @parent: parent struct device
2557  * @name: name of the child device
2558  *
2559  * This is similar to the device_find_child() function above, but it
2560  * returns a reference to a device that has the name @name.
2561  *
2562  * NOTE: you will need to drop the reference with put_device() after use.
2563  */
2564 struct device *device_find_child_by_name(struct device *parent,
2565 					 const char *name)
2566 {
2567 	struct klist_iter i;
2568 	struct device *child;
2569 
2570 	if (!parent)
2571 		return NULL;
2572 
2573 	klist_iter_init(&parent->p->klist_children, &i);
2574 	while ((child = next_device(&i)))
2575 		if (!strcmp(dev_name(child), name) && get_device(child))
2576 			break;
2577 	klist_iter_exit(&i);
2578 	return child;
2579 }
2580 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2581 
2582 int __init devices_init(void)
2583 {
2584 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2585 	if (!devices_kset)
2586 		return -ENOMEM;
2587 	dev_kobj = kobject_create_and_add("dev", NULL);
2588 	if (!dev_kobj)
2589 		goto dev_kobj_err;
2590 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2591 	if (!sysfs_dev_block_kobj)
2592 		goto block_kobj_err;
2593 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2594 	if (!sysfs_dev_char_kobj)
2595 		goto char_kobj_err;
2596 
2597 	return 0;
2598 
2599  char_kobj_err:
2600 	kobject_put(sysfs_dev_block_kobj);
2601  block_kobj_err:
2602 	kobject_put(dev_kobj);
2603  dev_kobj_err:
2604 	kset_unregister(devices_kset);
2605 	return -ENOMEM;
2606 }
2607 
2608 static int device_check_offline(struct device *dev, void *not_used)
2609 {
2610 	int ret;
2611 
2612 	ret = device_for_each_child(dev, NULL, device_check_offline);
2613 	if (ret)
2614 		return ret;
2615 
2616 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2617 }
2618 
2619 /**
2620  * device_offline - Prepare the device for hot-removal.
2621  * @dev: Device to be put offline.
2622  *
2623  * Execute the device bus type's .offline() callback, if present, to prepare
2624  * the device for a subsequent hot-removal.  If that succeeds, the device must
2625  * not be used until either it is removed or its bus type's .online() callback
2626  * is executed.
2627  *
2628  * Call under device_hotplug_lock.
2629  */
2630 int device_offline(struct device *dev)
2631 {
2632 	int ret;
2633 
2634 	if (dev->offline_disabled)
2635 		return -EPERM;
2636 
2637 	ret = device_for_each_child(dev, NULL, device_check_offline);
2638 	if (ret)
2639 		return ret;
2640 
2641 	device_lock(dev);
2642 	if (device_supports_offline(dev)) {
2643 		if (dev->offline) {
2644 			ret = 1;
2645 		} else {
2646 			ret = dev->bus->offline(dev);
2647 			if (!ret) {
2648 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2649 				dev->offline = true;
2650 			}
2651 		}
2652 	}
2653 	device_unlock(dev);
2654 
2655 	return ret;
2656 }
2657 
2658 /**
2659  * device_online - Put the device back online after successful device_offline().
2660  * @dev: Device to be put back online.
2661  *
2662  * If device_offline() has been successfully executed for @dev, but the device
2663  * has not been removed subsequently, execute its bus type's .online() callback
2664  * to indicate that the device can be used again.
2665  *
2666  * Call under device_hotplug_lock.
2667  */
2668 int device_online(struct device *dev)
2669 {
2670 	int ret = 0;
2671 
2672 	device_lock(dev);
2673 	if (device_supports_offline(dev)) {
2674 		if (dev->offline) {
2675 			ret = dev->bus->online(dev);
2676 			if (!ret) {
2677 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2678 				dev->offline = false;
2679 			}
2680 		} else {
2681 			ret = 1;
2682 		}
2683 	}
2684 	device_unlock(dev);
2685 
2686 	return ret;
2687 }
2688 
2689 struct root_device {
2690 	struct device dev;
2691 	struct module *owner;
2692 };
2693 
2694 static inline struct root_device *to_root_device(struct device *d)
2695 {
2696 	return container_of(d, struct root_device, dev);
2697 }
2698 
2699 static void root_device_release(struct device *dev)
2700 {
2701 	kfree(to_root_device(dev));
2702 }
2703 
2704 /**
2705  * __root_device_register - allocate and register a root device
2706  * @name: root device name
2707  * @owner: owner module of the root device, usually THIS_MODULE
2708  *
2709  * This function allocates a root device and registers it
2710  * using device_register(). In order to free the returned
2711  * device, use root_device_unregister().
2712  *
2713  * Root devices are dummy devices which allow other devices
2714  * to be grouped under /sys/devices. Use this function to
2715  * allocate a root device and then use it as the parent of
2716  * any device which should appear under /sys/devices/{name}
2717  *
2718  * The /sys/devices/{name} directory will also contain a
2719  * 'module' symlink which points to the @owner directory
2720  * in sysfs.
2721  *
2722  * Returns &struct device pointer on success, or ERR_PTR() on error.
2723  *
2724  * Note: You probably want to use root_device_register().
2725  */
2726 struct device *__root_device_register(const char *name, struct module *owner)
2727 {
2728 	struct root_device *root;
2729 	int err = -ENOMEM;
2730 
2731 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2732 	if (!root)
2733 		return ERR_PTR(err);
2734 
2735 	err = dev_set_name(&root->dev, "%s", name);
2736 	if (err) {
2737 		kfree(root);
2738 		return ERR_PTR(err);
2739 	}
2740 
2741 	root->dev.release = root_device_release;
2742 
2743 	err = device_register(&root->dev);
2744 	if (err) {
2745 		put_device(&root->dev);
2746 		return ERR_PTR(err);
2747 	}
2748 
2749 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2750 	if (owner) {
2751 		struct module_kobject *mk = &owner->mkobj;
2752 
2753 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2754 		if (err) {
2755 			device_unregister(&root->dev);
2756 			return ERR_PTR(err);
2757 		}
2758 		root->owner = owner;
2759 	}
2760 #endif
2761 
2762 	return &root->dev;
2763 }
2764 EXPORT_SYMBOL_GPL(__root_device_register);
2765 
2766 /**
2767  * root_device_unregister - unregister and free a root device
2768  * @dev: device going away
2769  *
2770  * This function unregisters and cleans up a device that was created by
2771  * root_device_register().
2772  */
2773 void root_device_unregister(struct device *dev)
2774 {
2775 	struct root_device *root = to_root_device(dev);
2776 
2777 	if (root->owner)
2778 		sysfs_remove_link(&root->dev.kobj, "module");
2779 
2780 	device_unregister(dev);
2781 }
2782 EXPORT_SYMBOL_GPL(root_device_unregister);
2783 
2784 
2785 static void device_create_release(struct device *dev)
2786 {
2787 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2788 	kfree(dev);
2789 }
2790 
2791 static __printf(6, 0) struct device *
2792 device_create_groups_vargs(struct class *class, struct device *parent,
2793 			   dev_t devt, void *drvdata,
2794 			   const struct attribute_group **groups,
2795 			   const char *fmt, va_list args)
2796 {
2797 	struct device *dev = NULL;
2798 	int retval = -ENODEV;
2799 
2800 	if (class == NULL || IS_ERR(class))
2801 		goto error;
2802 
2803 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2804 	if (!dev) {
2805 		retval = -ENOMEM;
2806 		goto error;
2807 	}
2808 
2809 	device_initialize(dev);
2810 	dev->devt = devt;
2811 	dev->class = class;
2812 	dev->parent = parent;
2813 	dev->groups = groups;
2814 	dev->release = device_create_release;
2815 	dev_set_drvdata(dev, drvdata);
2816 
2817 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2818 	if (retval)
2819 		goto error;
2820 
2821 	retval = device_add(dev);
2822 	if (retval)
2823 		goto error;
2824 
2825 	return dev;
2826 
2827 error:
2828 	put_device(dev);
2829 	return ERR_PTR(retval);
2830 }
2831 
2832 /**
2833  * device_create_vargs - creates a device and registers it with sysfs
2834  * @class: pointer to the struct class that this device should be registered to
2835  * @parent: pointer to the parent struct device of this new device, if any
2836  * @devt: the dev_t for the char device to be added
2837  * @drvdata: the data to be added to the device for callbacks
2838  * @fmt: string for the device's name
2839  * @args: va_list for the device's name
2840  *
2841  * This function can be used by char device classes.  A struct device
2842  * will be created in sysfs, registered to the specified class.
2843  *
2844  * A "dev" file will be created, showing the dev_t for the device, if
2845  * the dev_t is not 0,0.
2846  * If a pointer to a parent struct device is passed in, the newly created
2847  * struct device will be a child of that device in sysfs.
2848  * The pointer to the struct device will be returned from the call.
2849  * Any further sysfs files that might be required can be created using this
2850  * pointer.
2851  *
2852  * Returns &struct device pointer on success, or ERR_PTR() on error.
2853  *
2854  * Note: the struct class passed to this function must have previously
2855  * been created with a call to class_create().
2856  */
2857 struct device *device_create_vargs(struct class *class, struct device *parent,
2858 				   dev_t devt, void *drvdata, const char *fmt,
2859 				   va_list args)
2860 {
2861 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2862 					  fmt, args);
2863 }
2864 EXPORT_SYMBOL_GPL(device_create_vargs);
2865 
2866 /**
2867  * device_create - creates a device and registers it with sysfs
2868  * @class: pointer to the struct class that this device should be registered to
2869  * @parent: pointer to the parent struct device of this new device, if any
2870  * @devt: the dev_t for the char device to be added
2871  * @drvdata: the data to be added to the device for callbacks
2872  * @fmt: string for the device's name
2873  *
2874  * This function can be used by char device classes.  A struct device
2875  * will be created in sysfs, registered to the specified class.
2876  *
2877  * A "dev" file will be created, showing the dev_t for the device, if
2878  * the dev_t is not 0,0.
2879  * If a pointer to a parent struct device is passed in, the newly created
2880  * struct device will be a child of that device in sysfs.
2881  * The pointer to the struct device will be returned from the call.
2882  * Any further sysfs files that might be required can be created using this
2883  * pointer.
2884  *
2885  * Returns &struct device pointer on success, or ERR_PTR() on error.
2886  *
2887  * Note: the struct class passed to this function must have previously
2888  * been created with a call to class_create().
2889  */
2890 struct device *device_create(struct class *class, struct device *parent,
2891 			     dev_t devt, void *drvdata, const char *fmt, ...)
2892 {
2893 	va_list vargs;
2894 	struct device *dev;
2895 
2896 	va_start(vargs, fmt);
2897 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2898 	va_end(vargs);
2899 	return dev;
2900 }
2901 EXPORT_SYMBOL_GPL(device_create);
2902 
2903 /**
2904  * device_create_with_groups - creates a device and registers it with sysfs
2905  * @class: pointer to the struct class that this device should be registered to
2906  * @parent: pointer to the parent struct device of this new device, if any
2907  * @devt: the dev_t for the char device to be added
2908  * @drvdata: the data to be added to the device for callbacks
2909  * @groups: NULL-terminated list of attribute groups to be created
2910  * @fmt: string for the device's name
2911  *
2912  * This function can be used by char device classes.  A struct device
2913  * will be created in sysfs, registered to the specified class.
2914  * Additional attributes specified in the groups parameter will also
2915  * be created automatically.
2916  *
2917  * A "dev" file will be created, showing the dev_t for the device, if
2918  * the dev_t is not 0,0.
2919  * If a pointer to a parent struct device is passed in, the newly created
2920  * struct device will be a child of that device in sysfs.
2921  * The pointer to the struct device will be returned from the call.
2922  * Any further sysfs files that might be required can be created using this
2923  * pointer.
2924  *
2925  * Returns &struct device pointer on success, or ERR_PTR() on error.
2926  *
2927  * Note: the struct class passed to this function must have previously
2928  * been created with a call to class_create().
2929  */
2930 struct device *device_create_with_groups(struct class *class,
2931 					 struct device *parent, dev_t devt,
2932 					 void *drvdata,
2933 					 const struct attribute_group **groups,
2934 					 const char *fmt, ...)
2935 {
2936 	va_list vargs;
2937 	struct device *dev;
2938 
2939 	va_start(vargs, fmt);
2940 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2941 					 fmt, vargs);
2942 	va_end(vargs);
2943 	return dev;
2944 }
2945 EXPORT_SYMBOL_GPL(device_create_with_groups);
2946 
2947 static int __match_devt(struct device *dev, const void *data)
2948 {
2949 	const dev_t *devt = data;
2950 
2951 	return dev->devt == *devt;
2952 }
2953 
2954 /**
2955  * device_destroy - removes a device that was created with device_create()
2956  * @class: pointer to the struct class that this device was registered with
2957  * @devt: the dev_t of the device that was previously registered
2958  *
2959  * This call unregisters and cleans up a device that was created with a
2960  * call to device_create().
2961  */
2962 void device_destroy(struct class *class, dev_t devt)
2963 {
2964 	struct device *dev;
2965 
2966 	dev = class_find_device(class, NULL, &devt, __match_devt);
2967 	if (dev) {
2968 		put_device(dev);
2969 		device_unregister(dev);
2970 	}
2971 }
2972 EXPORT_SYMBOL_GPL(device_destroy);
2973 
2974 /**
2975  * device_rename - renames a device
2976  * @dev: the pointer to the struct device to be renamed
2977  * @new_name: the new name of the device
2978  *
2979  * It is the responsibility of the caller to provide mutual
2980  * exclusion between two different calls of device_rename
2981  * on the same device to ensure that new_name is valid and
2982  * won't conflict with other devices.
2983  *
2984  * Note: Don't call this function.  Currently, the networking layer calls this
2985  * function, but that will change.  The following text from Kay Sievers offers
2986  * some insight:
2987  *
2988  * Renaming devices is racy at many levels, symlinks and other stuff are not
2989  * replaced atomically, and you get a "move" uevent, but it's not easy to
2990  * connect the event to the old and new device. Device nodes are not renamed at
2991  * all, there isn't even support for that in the kernel now.
2992  *
2993  * In the meantime, during renaming, your target name might be taken by another
2994  * driver, creating conflicts. Or the old name is taken directly after you
2995  * renamed it -- then you get events for the same DEVPATH, before you even see
2996  * the "move" event. It's just a mess, and nothing new should ever rely on
2997  * kernel device renaming. Besides that, it's not even implemented now for
2998  * other things than (driver-core wise very simple) network devices.
2999  *
3000  * We are currently about to change network renaming in udev to completely
3001  * disallow renaming of devices in the same namespace as the kernel uses,
3002  * because we can't solve the problems properly, that arise with swapping names
3003  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3004  * be allowed to some other name than eth[0-9]*, for the aforementioned
3005  * reasons.
3006  *
3007  * Make up a "real" name in the driver before you register anything, or add
3008  * some other attributes for userspace to find the device, or use udev to add
3009  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3010  * don't even want to get into that and try to implement the missing pieces in
3011  * the core. We really have other pieces to fix in the driver core mess. :)
3012  */
3013 int device_rename(struct device *dev, const char *new_name)
3014 {
3015 	struct kobject *kobj = &dev->kobj;
3016 	char *old_device_name = NULL;
3017 	int error;
3018 
3019 	dev = get_device(dev);
3020 	if (!dev)
3021 		return -EINVAL;
3022 
3023 	dev_dbg(dev, "renaming to %s\n", new_name);
3024 
3025 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3026 	if (!old_device_name) {
3027 		error = -ENOMEM;
3028 		goto out;
3029 	}
3030 
3031 	if (dev->class) {
3032 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3033 					     kobj, old_device_name,
3034 					     new_name, kobject_namespace(kobj));
3035 		if (error)
3036 			goto out;
3037 	}
3038 
3039 	error = kobject_rename(kobj, new_name);
3040 	if (error)
3041 		goto out;
3042 
3043 out:
3044 	put_device(dev);
3045 
3046 	kfree(old_device_name);
3047 
3048 	return error;
3049 }
3050 EXPORT_SYMBOL_GPL(device_rename);
3051 
3052 static int device_move_class_links(struct device *dev,
3053 				   struct device *old_parent,
3054 				   struct device *new_parent)
3055 {
3056 	int error = 0;
3057 
3058 	if (old_parent)
3059 		sysfs_remove_link(&dev->kobj, "device");
3060 	if (new_parent)
3061 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3062 					  "device");
3063 	return error;
3064 }
3065 
3066 /**
3067  * device_move - moves a device to a new parent
3068  * @dev: the pointer to the struct device to be moved
3069  * @new_parent: the new parent of the device (can be NULL)
3070  * @dpm_order: how to reorder the dpm_list
3071  */
3072 int device_move(struct device *dev, struct device *new_parent,
3073 		enum dpm_order dpm_order)
3074 {
3075 	int error;
3076 	struct device *old_parent;
3077 	struct kobject *new_parent_kobj;
3078 
3079 	dev = get_device(dev);
3080 	if (!dev)
3081 		return -EINVAL;
3082 
3083 	device_pm_lock();
3084 	new_parent = get_device(new_parent);
3085 	new_parent_kobj = get_device_parent(dev, new_parent);
3086 	if (IS_ERR(new_parent_kobj)) {
3087 		error = PTR_ERR(new_parent_kobj);
3088 		put_device(new_parent);
3089 		goto out;
3090 	}
3091 
3092 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3093 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3094 	error = kobject_move(&dev->kobj, new_parent_kobj);
3095 	if (error) {
3096 		cleanup_glue_dir(dev, new_parent_kobj);
3097 		put_device(new_parent);
3098 		goto out;
3099 	}
3100 	old_parent = dev->parent;
3101 	dev->parent = new_parent;
3102 	if (old_parent)
3103 		klist_remove(&dev->p->knode_parent);
3104 	if (new_parent) {
3105 		klist_add_tail(&dev->p->knode_parent,
3106 			       &new_parent->p->klist_children);
3107 		set_dev_node(dev, dev_to_node(new_parent));
3108 	}
3109 
3110 	if (dev->class) {
3111 		error = device_move_class_links(dev, old_parent, new_parent);
3112 		if (error) {
3113 			/* We ignore errors on cleanup since we're hosed anyway... */
3114 			device_move_class_links(dev, new_parent, old_parent);
3115 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3116 				if (new_parent)
3117 					klist_remove(&dev->p->knode_parent);
3118 				dev->parent = old_parent;
3119 				if (old_parent) {
3120 					klist_add_tail(&dev->p->knode_parent,
3121 						       &old_parent->p->klist_children);
3122 					set_dev_node(dev, dev_to_node(old_parent));
3123 				}
3124 			}
3125 			cleanup_glue_dir(dev, new_parent_kobj);
3126 			put_device(new_parent);
3127 			goto out;
3128 		}
3129 	}
3130 	switch (dpm_order) {
3131 	case DPM_ORDER_NONE:
3132 		break;
3133 	case DPM_ORDER_DEV_AFTER_PARENT:
3134 		device_pm_move_after(dev, new_parent);
3135 		devices_kset_move_after(dev, new_parent);
3136 		break;
3137 	case DPM_ORDER_PARENT_BEFORE_DEV:
3138 		device_pm_move_before(new_parent, dev);
3139 		devices_kset_move_before(new_parent, dev);
3140 		break;
3141 	case DPM_ORDER_DEV_LAST:
3142 		device_pm_move_last(dev);
3143 		devices_kset_move_last(dev);
3144 		break;
3145 	}
3146 
3147 	put_device(old_parent);
3148 out:
3149 	device_pm_unlock();
3150 	put_device(dev);
3151 	return error;
3152 }
3153 EXPORT_SYMBOL_GPL(device_move);
3154 
3155 /**
3156  * device_shutdown - call ->shutdown() on each device to shutdown.
3157  */
3158 void device_shutdown(void)
3159 {
3160 	struct device *dev, *parent;
3161 
3162 	wait_for_device_probe();
3163 	device_block_probing();
3164 
3165 	spin_lock(&devices_kset->list_lock);
3166 	/*
3167 	 * Walk the devices list backward, shutting down each in turn.
3168 	 * Beware that device unplug events may also start pulling
3169 	 * devices offline, even as the system is shutting down.
3170 	 */
3171 	while (!list_empty(&devices_kset->list)) {
3172 		dev = list_entry(devices_kset->list.prev, struct device,
3173 				kobj.entry);
3174 
3175 		/*
3176 		 * hold reference count of device's parent to
3177 		 * prevent it from being freed because parent's
3178 		 * lock is to be held
3179 		 */
3180 		parent = get_device(dev->parent);
3181 		get_device(dev);
3182 		/*
3183 		 * Make sure the device is off the kset list, in the
3184 		 * event that dev->*->shutdown() doesn't remove it.
3185 		 */
3186 		list_del_init(&dev->kobj.entry);
3187 		spin_unlock(&devices_kset->list_lock);
3188 
3189 		/* hold lock to avoid race with probe/release */
3190 		if (parent)
3191 			device_lock(parent);
3192 		device_lock(dev);
3193 
3194 		/* Don't allow any more runtime suspends */
3195 		pm_runtime_get_noresume(dev);
3196 		pm_runtime_barrier(dev);
3197 
3198 		if (dev->class && dev->class->shutdown_pre) {
3199 			if (initcall_debug)
3200 				dev_info(dev, "shutdown_pre\n");
3201 			dev->class->shutdown_pre(dev);
3202 		}
3203 		if (dev->bus && dev->bus->shutdown) {
3204 			if (initcall_debug)
3205 				dev_info(dev, "shutdown\n");
3206 			dev->bus->shutdown(dev);
3207 		} else if (dev->driver && dev->driver->shutdown) {
3208 			if (initcall_debug)
3209 				dev_info(dev, "shutdown\n");
3210 			dev->driver->shutdown(dev);
3211 		}
3212 
3213 		device_unlock(dev);
3214 		if (parent)
3215 			device_unlock(parent);
3216 
3217 		put_device(dev);
3218 		put_device(parent);
3219 
3220 		spin_lock(&devices_kset->list_lock);
3221 	}
3222 	spin_unlock(&devices_kset->list_lock);
3223 }
3224 
3225 /*
3226  * Device logging functions
3227  */
3228 
3229 #ifdef CONFIG_PRINTK
3230 static int
3231 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3232 {
3233 	const char *subsys;
3234 	size_t pos = 0;
3235 
3236 	if (dev->class)
3237 		subsys = dev->class->name;
3238 	else if (dev->bus)
3239 		subsys = dev->bus->name;
3240 	else
3241 		return 0;
3242 
3243 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3244 	if (pos >= hdrlen)
3245 		goto overflow;
3246 
3247 	/*
3248 	 * Add device identifier DEVICE=:
3249 	 *   b12:8         block dev_t
3250 	 *   c127:3        char dev_t
3251 	 *   n8            netdev ifindex
3252 	 *   +sound:card0  subsystem:devname
3253 	 */
3254 	if (MAJOR(dev->devt)) {
3255 		char c;
3256 
3257 		if (strcmp(subsys, "block") == 0)
3258 			c = 'b';
3259 		else
3260 			c = 'c';
3261 		pos++;
3262 		pos += snprintf(hdr + pos, hdrlen - pos,
3263 				"DEVICE=%c%u:%u",
3264 				c, MAJOR(dev->devt), MINOR(dev->devt));
3265 	} else if (strcmp(subsys, "net") == 0) {
3266 		struct net_device *net = to_net_dev(dev);
3267 
3268 		pos++;
3269 		pos += snprintf(hdr + pos, hdrlen - pos,
3270 				"DEVICE=n%u", net->ifindex);
3271 	} else {
3272 		pos++;
3273 		pos += snprintf(hdr + pos, hdrlen - pos,
3274 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3275 	}
3276 
3277 	if (pos >= hdrlen)
3278 		goto overflow;
3279 
3280 	return pos;
3281 
3282 overflow:
3283 	dev_WARN(dev, "device/subsystem name too long");
3284 	return 0;
3285 }
3286 
3287 int dev_vprintk_emit(int level, const struct device *dev,
3288 		     const char *fmt, va_list args)
3289 {
3290 	char hdr[128];
3291 	size_t hdrlen;
3292 
3293 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3294 
3295 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3296 }
3297 EXPORT_SYMBOL(dev_vprintk_emit);
3298 
3299 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3300 {
3301 	va_list args;
3302 	int r;
3303 
3304 	va_start(args, fmt);
3305 
3306 	r = dev_vprintk_emit(level, dev, fmt, args);
3307 
3308 	va_end(args);
3309 
3310 	return r;
3311 }
3312 EXPORT_SYMBOL(dev_printk_emit);
3313 
3314 static void __dev_printk(const char *level, const struct device *dev,
3315 			struct va_format *vaf)
3316 {
3317 	if (dev)
3318 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3319 				dev_driver_string(dev), dev_name(dev), vaf);
3320 	else
3321 		printk("%s(NULL device *): %pV", level, vaf);
3322 }
3323 
3324 void dev_printk(const char *level, const struct device *dev,
3325 		const char *fmt, ...)
3326 {
3327 	struct va_format vaf;
3328 	va_list args;
3329 
3330 	va_start(args, fmt);
3331 
3332 	vaf.fmt = fmt;
3333 	vaf.va = &args;
3334 
3335 	__dev_printk(level, dev, &vaf);
3336 
3337 	va_end(args);
3338 }
3339 EXPORT_SYMBOL(dev_printk);
3340 
3341 #define define_dev_printk_level(func, kern_level)		\
3342 void func(const struct device *dev, const char *fmt, ...)	\
3343 {								\
3344 	struct va_format vaf;					\
3345 	va_list args;						\
3346 								\
3347 	va_start(args, fmt);					\
3348 								\
3349 	vaf.fmt = fmt;						\
3350 	vaf.va = &args;						\
3351 								\
3352 	__dev_printk(kern_level, dev, &vaf);			\
3353 								\
3354 	va_end(args);						\
3355 }								\
3356 EXPORT_SYMBOL(func);
3357 
3358 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3359 define_dev_printk_level(_dev_alert, KERN_ALERT);
3360 define_dev_printk_level(_dev_crit, KERN_CRIT);
3361 define_dev_printk_level(_dev_err, KERN_ERR);
3362 define_dev_printk_level(_dev_warn, KERN_WARNING);
3363 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3364 define_dev_printk_level(_dev_info, KERN_INFO);
3365 
3366 #endif
3367 
3368 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3369 {
3370 	return fwnode && !IS_ERR(fwnode->secondary);
3371 }
3372 
3373 /**
3374  * set_primary_fwnode - Change the primary firmware node of a given device.
3375  * @dev: Device to handle.
3376  * @fwnode: New primary firmware node of the device.
3377  *
3378  * Set the device's firmware node pointer to @fwnode, but if a secondary
3379  * firmware node of the device is present, preserve it.
3380  */
3381 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3382 {
3383 	if (fwnode) {
3384 		struct fwnode_handle *fn = dev->fwnode;
3385 
3386 		if (fwnode_is_primary(fn))
3387 			fn = fn->secondary;
3388 
3389 		if (fn) {
3390 			WARN_ON(fwnode->secondary);
3391 			fwnode->secondary = fn;
3392 		}
3393 		dev->fwnode = fwnode;
3394 	} else {
3395 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3396 			dev->fwnode->secondary : NULL;
3397 	}
3398 }
3399 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3400 
3401 /**
3402  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3403  * @dev: Device to handle.
3404  * @fwnode: New secondary firmware node of the device.
3405  *
3406  * If a primary firmware node of the device is present, set its secondary
3407  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3408  * @fwnode.
3409  */
3410 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3411 {
3412 	if (fwnode)
3413 		fwnode->secondary = ERR_PTR(-ENODEV);
3414 
3415 	if (fwnode_is_primary(dev->fwnode))
3416 		dev->fwnode->secondary = fwnode;
3417 	else
3418 		dev->fwnode = fwnode;
3419 }
3420 
3421 /**
3422  * device_set_of_node_from_dev - reuse device-tree node of another device
3423  * @dev: device whose device-tree node is being set
3424  * @dev2: device whose device-tree node is being reused
3425  *
3426  * Takes another reference to the new device-tree node after first dropping
3427  * any reference held to the old node.
3428  */
3429 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3430 {
3431 	of_node_put(dev->of_node);
3432 	dev->of_node = of_node_get(dev2->of_node);
3433 	dev->of_node_reused = true;
3434 }
3435 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3436 
3437 int device_match_of_node(struct device *dev, const void *np)
3438 {
3439 	return dev->of_node == np;
3440 }
3441 EXPORT_SYMBOL_GPL(device_match_of_node);
3442