1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 int (*platform_notify)(struct device *dev) = NULL; 48 int (*platform_notify_remove)(struct device *dev) = NULL; 49 static struct kobject *dev_kobj; 50 struct kobject *sysfs_dev_char_kobj; 51 struct kobject *sysfs_dev_block_kobj; 52 53 static DEFINE_MUTEX(device_hotplug_lock); 54 55 void lock_device_hotplug(void) 56 { 57 mutex_lock(&device_hotplug_lock); 58 } 59 60 void unlock_device_hotplug(void) 61 { 62 mutex_unlock(&device_hotplug_lock); 63 } 64 65 int lock_device_hotplug_sysfs(void) 66 { 67 if (mutex_trylock(&device_hotplug_lock)) 68 return 0; 69 70 /* Avoid busy looping (5 ms of sleep should do). */ 71 msleep(5); 72 return restart_syscall(); 73 } 74 75 #ifdef CONFIG_BLOCK 76 static inline int device_is_not_partition(struct device *dev) 77 { 78 return !(dev->type == &part_type); 79 } 80 #else 81 static inline int device_is_not_partition(struct device *dev) 82 { 83 return 1; 84 } 85 #endif 86 87 /** 88 * dev_driver_string - Return a device's driver name, if at all possible 89 * @dev: struct device to get the name of 90 * 91 * Will return the device's driver's name if it is bound to a device. If 92 * the device is not bound to a driver, it will return the name of the bus 93 * it is attached to. If it is not attached to a bus either, an empty 94 * string will be returned. 95 */ 96 const char *dev_driver_string(const struct device *dev) 97 { 98 struct device_driver *drv; 99 100 /* dev->driver can change to NULL underneath us because of unbinding, 101 * so be careful about accessing it. dev->bus and dev->class should 102 * never change once they are set, so they don't need special care. 103 */ 104 drv = ACCESS_ONCE(dev->driver); 105 return drv ? drv->name : 106 (dev->bus ? dev->bus->name : 107 (dev->class ? dev->class->name : "")); 108 } 109 EXPORT_SYMBOL(dev_driver_string); 110 111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 112 113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 114 char *buf) 115 { 116 struct device_attribute *dev_attr = to_dev_attr(attr); 117 struct device *dev = kobj_to_dev(kobj); 118 ssize_t ret = -EIO; 119 120 if (dev_attr->show) 121 ret = dev_attr->show(dev, dev_attr, buf); 122 if (ret >= (ssize_t)PAGE_SIZE) { 123 print_symbol("dev_attr_show: %s returned bad count\n", 124 (unsigned long)dev_attr->show); 125 } 126 return ret; 127 } 128 129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 130 const char *buf, size_t count) 131 { 132 struct device_attribute *dev_attr = to_dev_attr(attr); 133 struct device *dev = kobj_to_dev(kobj); 134 ssize_t ret = -EIO; 135 136 if (dev_attr->store) 137 ret = dev_attr->store(dev, dev_attr, buf, count); 138 return ret; 139 } 140 141 static const struct sysfs_ops dev_sysfs_ops = { 142 .show = dev_attr_show, 143 .store = dev_attr_store, 144 }; 145 146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 147 148 ssize_t device_store_ulong(struct device *dev, 149 struct device_attribute *attr, 150 const char *buf, size_t size) 151 { 152 struct dev_ext_attribute *ea = to_ext_attr(attr); 153 char *end; 154 unsigned long new = simple_strtoul(buf, &end, 0); 155 if (end == buf) 156 return -EINVAL; 157 *(unsigned long *)(ea->var) = new; 158 /* Always return full write size even if we didn't consume all */ 159 return size; 160 } 161 EXPORT_SYMBOL_GPL(device_store_ulong); 162 163 ssize_t device_show_ulong(struct device *dev, 164 struct device_attribute *attr, 165 char *buf) 166 { 167 struct dev_ext_attribute *ea = to_ext_attr(attr); 168 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 169 } 170 EXPORT_SYMBOL_GPL(device_show_ulong); 171 172 ssize_t device_store_int(struct device *dev, 173 struct device_attribute *attr, 174 const char *buf, size_t size) 175 { 176 struct dev_ext_attribute *ea = to_ext_attr(attr); 177 char *end; 178 long new = simple_strtol(buf, &end, 0); 179 if (end == buf || new > INT_MAX || new < INT_MIN) 180 return -EINVAL; 181 *(int *)(ea->var) = new; 182 /* Always return full write size even if we didn't consume all */ 183 return size; 184 } 185 EXPORT_SYMBOL_GPL(device_store_int); 186 187 ssize_t device_show_int(struct device *dev, 188 struct device_attribute *attr, 189 char *buf) 190 { 191 struct dev_ext_attribute *ea = to_ext_attr(attr); 192 193 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 194 } 195 EXPORT_SYMBOL_GPL(device_show_int); 196 197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 198 const char *buf, size_t size) 199 { 200 struct dev_ext_attribute *ea = to_ext_attr(attr); 201 202 if (strtobool(buf, ea->var) < 0) 203 return -EINVAL; 204 205 return size; 206 } 207 EXPORT_SYMBOL_GPL(device_store_bool); 208 209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 210 char *buf) 211 { 212 struct dev_ext_attribute *ea = to_ext_attr(attr); 213 214 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 215 } 216 EXPORT_SYMBOL_GPL(device_show_bool); 217 218 /** 219 * device_release - free device structure. 220 * @kobj: device's kobject. 221 * 222 * This is called once the reference count for the object 223 * reaches 0. We forward the call to the device's release 224 * method, which should handle actually freeing the structure. 225 */ 226 static void device_release(struct kobject *kobj) 227 { 228 struct device *dev = kobj_to_dev(kobj); 229 struct device_private *p = dev->p; 230 231 /* 232 * Some platform devices are driven without driver attached 233 * and managed resources may have been acquired. Make sure 234 * all resources are released. 235 * 236 * Drivers still can add resources into device after device 237 * is deleted but alive, so release devres here to avoid 238 * possible memory leak. 239 */ 240 devres_release_all(dev); 241 242 if (dev->release) 243 dev->release(dev); 244 else if (dev->type && dev->type->release) 245 dev->type->release(dev); 246 else if (dev->class && dev->class->dev_release) 247 dev->class->dev_release(dev); 248 else 249 WARN(1, KERN_ERR "Device '%s' does not have a release() " 250 "function, it is broken and must be fixed.\n", 251 dev_name(dev)); 252 kfree(p); 253 } 254 255 static const void *device_namespace(struct kobject *kobj) 256 { 257 struct device *dev = kobj_to_dev(kobj); 258 const void *ns = NULL; 259 260 if (dev->class && dev->class->ns_type) 261 ns = dev->class->namespace(dev); 262 263 return ns; 264 } 265 266 static struct kobj_type device_ktype = { 267 .release = device_release, 268 .sysfs_ops = &dev_sysfs_ops, 269 .namespace = device_namespace, 270 }; 271 272 273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 274 { 275 struct kobj_type *ktype = get_ktype(kobj); 276 277 if (ktype == &device_ktype) { 278 struct device *dev = kobj_to_dev(kobj); 279 if (dev->bus) 280 return 1; 281 if (dev->class) 282 return 1; 283 } 284 return 0; 285 } 286 287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 288 { 289 struct device *dev = kobj_to_dev(kobj); 290 291 if (dev->bus) 292 return dev->bus->name; 293 if (dev->class) 294 return dev->class->name; 295 return NULL; 296 } 297 298 static int dev_uevent(struct kset *kset, struct kobject *kobj, 299 struct kobj_uevent_env *env) 300 { 301 struct device *dev = kobj_to_dev(kobj); 302 int retval = 0; 303 304 /* add device node properties if present */ 305 if (MAJOR(dev->devt)) { 306 const char *tmp; 307 const char *name; 308 umode_t mode = 0; 309 kuid_t uid = GLOBAL_ROOT_UID; 310 kgid_t gid = GLOBAL_ROOT_GID; 311 312 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 313 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 314 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 315 if (name) { 316 add_uevent_var(env, "DEVNAME=%s", name); 317 if (mode) 318 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 319 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 320 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 321 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 322 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 323 kfree(tmp); 324 } 325 } 326 327 if (dev->type && dev->type->name) 328 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 329 330 if (dev->driver) 331 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 332 333 /* Add common DT information about the device */ 334 of_device_uevent(dev, env); 335 336 /* have the bus specific function add its stuff */ 337 if (dev->bus && dev->bus->uevent) { 338 retval = dev->bus->uevent(dev, env); 339 if (retval) 340 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 341 dev_name(dev), __func__, retval); 342 } 343 344 /* have the class specific function add its stuff */ 345 if (dev->class && dev->class->dev_uevent) { 346 retval = dev->class->dev_uevent(dev, env); 347 if (retval) 348 pr_debug("device: '%s': %s: class uevent() " 349 "returned %d\n", dev_name(dev), 350 __func__, retval); 351 } 352 353 /* have the device type specific function add its stuff */ 354 if (dev->type && dev->type->uevent) { 355 retval = dev->type->uevent(dev, env); 356 if (retval) 357 pr_debug("device: '%s': %s: dev_type uevent() " 358 "returned %d\n", dev_name(dev), 359 __func__, retval); 360 } 361 362 return retval; 363 } 364 365 static const struct kset_uevent_ops device_uevent_ops = { 366 .filter = dev_uevent_filter, 367 .name = dev_uevent_name, 368 .uevent = dev_uevent, 369 }; 370 371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 372 char *buf) 373 { 374 struct kobject *top_kobj; 375 struct kset *kset; 376 struct kobj_uevent_env *env = NULL; 377 int i; 378 size_t count = 0; 379 int retval; 380 381 /* search the kset, the device belongs to */ 382 top_kobj = &dev->kobj; 383 while (!top_kobj->kset && top_kobj->parent) 384 top_kobj = top_kobj->parent; 385 if (!top_kobj->kset) 386 goto out; 387 388 kset = top_kobj->kset; 389 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 390 goto out; 391 392 /* respect filter */ 393 if (kset->uevent_ops && kset->uevent_ops->filter) 394 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 395 goto out; 396 397 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 398 if (!env) 399 return -ENOMEM; 400 401 /* let the kset specific function add its keys */ 402 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 403 if (retval) 404 goto out; 405 406 /* copy keys to file */ 407 for (i = 0; i < env->envp_idx; i++) 408 count += sprintf(&buf[count], "%s\n", env->envp[i]); 409 out: 410 kfree(env); 411 return count; 412 } 413 414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 415 const char *buf, size_t count) 416 { 417 enum kobject_action action; 418 419 if (kobject_action_type(buf, count, &action) == 0) 420 kobject_uevent(&dev->kobj, action); 421 else 422 dev_err(dev, "uevent: unknown action-string\n"); 423 return count; 424 } 425 static DEVICE_ATTR_RW(uevent); 426 427 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 428 char *buf) 429 { 430 bool val; 431 432 device_lock(dev); 433 val = !dev->offline; 434 device_unlock(dev); 435 return sprintf(buf, "%u\n", val); 436 } 437 438 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 439 const char *buf, size_t count) 440 { 441 bool val; 442 int ret; 443 444 ret = strtobool(buf, &val); 445 if (ret < 0) 446 return ret; 447 448 ret = lock_device_hotplug_sysfs(); 449 if (ret) 450 return ret; 451 452 ret = val ? device_online(dev) : device_offline(dev); 453 unlock_device_hotplug(); 454 return ret < 0 ? ret : count; 455 } 456 static DEVICE_ATTR_RW(online); 457 458 int device_add_groups(struct device *dev, const struct attribute_group **groups) 459 { 460 return sysfs_create_groups(&dev->kobj, groups); 461 } 462 463 void device_remove_groups(struct device *dev, 464 const struct attribute_group **groups) 465 { 466 sysfs_remove_groups(&dev->kobj, groups); 467 } 468 469 static int device_add_attrs(struct device *dev) 470 { 471 struct class *class = dev->class; 472 const struct device_type *type = dev->type; 473 int error; 474 475 if (class) { 476 error = device_add_groups(dev, class->dev_groups); 477 if (error) 478 return error; 479 } 480 481 if (type) { 482 error = device_add_groups(dev, type->groups); 483 if (error) 484 goto err_remove_class_groups; 485 } 486 487 error = device_add_groups(dev, dev->groups); 488 if (error) 489 goto err_remove_type_groups; 490 491 if (device_supports_offline(dev) && !dev->offline_disabled) { 492 error = device_create_file(dev, &dev_attr_online); 493 if (error) 494 goto err_remove_dev_groups; 495 } 496 497 return 0; 498 499 err_remove_dev_groups: 500 device_remove_groups(dev, dev->groups); 501 err_remove_type_groups: 502 if (type) 503 device_remove_groups(dev, type->groups); 504 err_remove_class_groups: 505 if (class) 506 device_remove_groups(dev, class->dev_groups); 507 508 return error; 509 } 510 511 static void device_remove_attrs(struct device *dev) 512 { 513 struct class *class = dev->class; 514 const struct device_type *type = dev->type; 515 516 device_remove_file(dev, &dev_attr_online); 517 device_remove_groups(dev, dev->groups); 518 519 if (type) 520 device_remove_groups(dev, type->groups); 521 522 if (class) 523 device_remove_groups(dev, class->dev_groups); 524 } 525 526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 527 char *buf) 528 { 529 return print_dev_t(buf, dev->devt); 530 } 531 static DEVICE_ATTR_RO(dev); 532 533 /* /sys/devices/ */ 534 struct kset *devices_kset; 535 536 /** 537 * devices_kset_move_before - Move device in the devices_kset's list. 538 * @deva: Device to move. 539 * @devb: Device @deva should come before. 540 */ 541 static void devices_kset_move_before(struct device *deva, struct device *devb) 542 { 543 if (!devices_kset) 544 return; 545 pr_debug("devices_kset: Moving %s before %s\n", 546 dev_name(deva), dev_name(devb)); 547 spin_lock(&devices_kset->list_lock); 548 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 549 spin_unlock(&devices_kset->list_lock); 550 } 551 552 /** 553 * devices_kset_move_after - Move device in the devices_kset's list. 554 * @deva: Device to move 555 * @devb: Device @deva should come after. 556 */ 557 static void devices_kset_move_after(struct device *deva, struct device *devb) 558 { 559 if (!devices_kset) 560 return; 561 pr_debug("devices_kset: Moving %s after %s\n", 562 dev_name(deva), dev_name(devb)); 563 spin_lock(&devices_kset->list_lock); 564 list_move(&deva->kobj.entry, &devb->kobj.entry); 565 spin_unlock(&devices_kset->list_lock); 566 } 567 568 /** 569 * devices_kset_move_last - move the device to the end of devices_kset's list. 570 * @dev: device to move 571 */ 572 void devices_kset_move_last(struct device *dev) 573 { 574 if (!devices_kset) 575 return; 576 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 577 spin_lock(&devices_kset->list_lock); 578 list_move_tail(&dev->kobj.entry, &devices_kset->list); 579 spin_unlock(&devices_kset->list_lock); 580 } 581 582 /** 583 * device_create_file - create sysfs attribute file for device. 584 * @dev: device. 585 * @attr: device attribute descriptor. 586 */ 587 int device_create_file(struct device *dev, 588 const struct device_attribute *attr) 589 { 590 int error = 0; 591 592 if (dev) { 593 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 594 "Attribute %s: write permission without 'store'\n", 595 attr->attr.name); 596 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 597 "Attribute %s: read permission without 'show'\n", 598 attr->attr.name); 599 error = sysfs_create_file(&dev->kobj, &attr->attr); 600 } 601 602 return error; 603 } 604 EXPORT_SYMBOL_GPL(device_create_file); 605 606 /** 607 * device_remove_file - remove sysfs attribute file. 608 * @dev: device. 609 * @attr: device attribute descriptor. 610 */ 611 void device_remove_file(struct device *dev, 612 const struct device_attribute *attr) 613 { 614 if (dev) 615 sysfs_remove_file(&dev->kobj, &attr->attr); 616 } 617 EXPORT_SYMBOL_GPL(device_remove_file); 618 619 /** 620 * device_remove_file_self - remove sysfs attribute file from its own method. 621 * @dev: device. 622 * @attr: device attribute descriptor. 623 * 624 * See kernfs_remove_self() for details. 625 */ 626 bool device_remove_file_self(struct device *dev, 627 const struct device_attribute *attr) 628 { 629 if (dev) 630 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 631 else 632 return false; 633 } 634 EXPORT_SYMBOL_GPL(device_remove_file_self); 635 636 /** 637 * device_create_bin_file - create sysfs binary attribute file for device. 638 * @dev: device. 639 * @attr: device binary attribute descriptor. 640 */ 641 int device_create_bin_file(struct device *dev, 642 const struct bin_attribute *attr) 643 { 644 int error = -EINVAL; 645 if (dev) 646 error = sysfs_create_bin_file(&dev->kobj, attr); 647 return error; 648 } 649 EXPORT_SYMBOL_GPL(device_create_bin_file); 650 651 /** 652 * device_remove_bin_file - remove sysfs binary attribute file 653 * @dev: device. 654 * @attr: device binary attribute descriptor. 655 */ 656 void device_remove_bin_file(struct device *dev, 657 const struct bin_attribute *attr) 658 { 659 if (dev) 660 sysfs_remove_bin_file(&dev->kobj, attr); 661 } 662 EXPORT_SYMBOL_GPL(device_remove_bin_file); 663 664 static void klist_children_get(struct klist_node *n) 665 { 666 struct device_private *p = to_device_private_parent(n); 667 struct device *dev = p->device; 668 669 get_device(dev); 670 } 671 672 static void klist_children_put(struct klist_node *n) 673 { 674 struct device_private *p = to_device_private_parent(n); 675 struct device *dev = p->device; 676 677 put_device(dev); 678 } 679 680 /** 681 * device_initialize - init device structure. 682 * @dev: device. 683 * 684 * This prepares the device for use by other layers by initializing 685 * its fields. 686 * It is the first half of device_register(), if called by 687 * that function, though it can also be called separately, so one 688 * may use @dev's fields. In particular, get_device()/put_device() 689 * may be used for reference counting of @dev after calling this 690 * function. 691 * 692 * All fields in @dev must be initialized by the caller to 0, except 693 * for those explicitly set to some other value. The simplest 694 * approach is to use kzalloc() to allocate the structure containing 695 * @dev. 696 * 697 * NOTE: Use put_device() to give up your reference instead of freeing 698 * @dev directly once you have called this function. 699 */ 700 void device_initialize(struct device *dev) 701 { 702 dev->kobj.kset = devices_kset; 703 kobject_init(&dev->kobj, &device_ktype); 704 INIT_LIST_HEAD(&dev->dma_pools); 705 mutex_init(&dev->mutex); 706 lockdep_set_novalidate_class(&dev->mutex); 707 spin_lock_init(&dev->devres_lock); 708 INIT_LIST_HEAD(&dev->devres_head); 709 device_pm_init(dev); 710 set_dev_node(dev, -1); 711 #ifdef CONFIG_GENERIC_MSI_IRQ 712 INIT_LIST_HEAD(&dev->msi_list); 713 #endif 714 } 715 EXPORT_SYMBOL_GPL(device_initialize); 716 717 struct kobject *virtual_device_parent(struct device *dev) 718 { 719 static struct kobject *virtual_dir = NULL; 720 721 if (!virtual_dir) 722 virtual_dir = kobject_create_and_add("virtual", 723 &devices_kset->kobj); 724 725 return virtual_dir; 726 } 727 728 struct class_dir { 729 struct kobject kobj; 730 struct class *class; 731 }; 732 733 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 734 735 static void class_dir_release(struct kobject *kobj) 736 { 737 struct class_dir *dir = to_class_dir(kobj); 738 kfree(dir); 739 } 740 741 static const 742 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 743 { 744 struct class_dir *dir = to_class_dir(kobj); 745 return dir->class->ns_type; 746 } 747 748 static struct kobj_type class_dir_ktype = { 749 .release = class_dir_release, 750 .sysfs_ops = &kobj_sysfs_ops, 751 .child_ns_type = class_dir_child_ns_type 752 }; 753 754 static struct kobject * 755 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 756 { 757 struct class_dir *dir; 758 int retval; 759 760 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 761 if (!dir) 762 return NULL; 763 764 dir->class = class; 765 kobject_init(&dir->kobj, &class_dir_ktype); 766 767 dir->kobj.kset = &class->p->glue_dirs; 768 769 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 770 if (retval < 0) { 771 kobject_put(&dir->kobj); 772 return NULL; 773 } 774 return &dir->kobj; 775 } 776 777 static DEFINE_MUTEX(gdp_mutex); 778 779 static struct kobject *get_device_parent(struct device *dev, 780 struct device *parent) 781 { 782 if (dev->class) { 783 struct kobject *kobj = NULL; 784 struct kobject *parent_kobj; 785 struct kobject *k; 786 787 #ifdef CONFIG_BLOCK 788 /* block disks show up in /sys/block */ 789 if (sysfs_deprecated && dev->class == &block_class) { 790 if (parent && parent->class == &block_class) 791 return &parent->kobj; 792 return &block_class.p->subsys.kobj; 793 } 794 #endif 795 796 /* 797 * If we have no parent, we live in "virtual". 798 * Class-devices with a non class-device as parent, live 799 * in a "glue" directory to prevent namespace collisions. 800 */ 801 if (parent == NULL) 802 parent_kobj = virtual_device_parent(dev); 803 else if (parent->class && !dev->class->ns_type) 804 return &parent->kobj; 805 else 806 parent_kobj = &parent->kobj; 807 808 mutex_lock(&gdp_mutex); 809 810 /* find our class-directory at the parent and reference it */ 811 spin_lock(&dev->class->p->glue_dirs.list_lock); 812 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 813 if (k->parent == parent_kobj) { 814 kobj = kobject_get(k); 815 break; 816 } 817 spin_unlock(&dev->class->p->glue_dirs.list_lock); 818 if (kobj) { 819 mutex_unlock(&gdp_mutex); 820 return kobj; 821 } 822 823 /* or create a new class-directory at the parent device */ 824 k = class_dir_create_and_add(dev->class, parent_kobj); 825 /* do not emit an uevent for this simple "glue" directory */ 826 mutex_unlock(&gdp_mutex); 827 return k; 828 } 829 830 /* subsystems can specify a default root directory for their devices */ 831 if (!parent && dev->bus && dev->bus->dev_root) 832 return &dev->bus->dev_root->kobj; 833 834 if (parent) 835 return &parent->kobj; 836 return NULL; 837 } 838 839 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 840 { 841 /* see if we live in a "glue" directory */ 842 if (!glue_dir || !dev->class || 843 glue_dir->kset != &dev->class->p->glue_dirs) 844 return; 845 846 mutex_lock(&gdp_mutex); 847 kobject_put(glue_dir); 848 mutex_unlock(&gdp_mutex); 849 } 850 851 static void cleanup_device_parent(struct device *dev) 852 { 853 cleanup_glue_dir(dev, dev->kobj.parent); 854 } 855 856 static int device_add_class_symlinks(struct device *dev) 857 { 858 struct device_node *of_node = dev_of_node(dev); 859 int error; 860 861 if (of_node) { 862 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 863 if (error) 864 dev_warn(dev, "Error %d creating of_node link\n",error); 865 /* An error here doesn't warrant bringing down the device */ 866 } 867 868 if (!dev->class) 869 return 0; 870 871 error = sysfs_create_link(&dev->kobj, 872 &dev->class->p->subsys.kobj, 873 "subsystem"); 874 if (error) 875 goto out_devnode; 876 877 if (dev->parent && device_is_not_partition(dev)) { 878 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 879 "device"); 880 if (error) 881 goto out_subsys; 882 } 883 884 #ifdef CONFIG_BLOCK 885 /* /sys/block has directories and does not need symlinks */ 886 if (sysfs_deprecated && dev->class == &block_class) 887 return 0; 888 #endif 889 890 /* link in the class directory pointing to the device */ 891 error = sysfs_create_link(&dev->class->p->subsys.kobj, 892 &dev->kobj, dev_name(dev)); 893 if (error) 894 goto out_device; 895 896 return 0; 897 898 out_device: 899 sysfs_remove_link(&dev->kobj, "device"); 900 901 out_subsys: 902 sysfs_remove_link(&dev->kobj, "subsystem"); 903 out_devnode: 904 sysfs_remove_link(&dev->kobj, "of_node"); 905 return error; 906 } 907 908 static void device_remove_class_symlinks(struct device *dev) 909 { 910 if (dev_of_node(dev)) 911 sysfs_remove_link(&dev->kobj, "of_node"); 912 913 if (!dev->class) 914 return; 915 916 if (dev->parent && device_is_not_partition(dev)) 917 sysfs_remove_link(&dev->kobj, "device"); 918 sysfs_remove_link(&dev->kobj, "subsystem"); 919 #ifdef CONFIG_BLOCK 920 if (sysfs_deprecated && dev->class == &block_class) 921 return; 922 #endif 923 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 924 } 925 926 /** 927 * dev_set_name - set a device name 928 * @dev: device 929 * @fmt: format string for the device's name 930 */ 931 int dev_set_name(struct device *dev, const char *fmt, ...) 932 { 933 va_list vargs; 934 int err; 935 936 va_start(vargs, fmt); 937 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 938 va_end(vargs); 939 return err; 940 } 941 EXPORT_SYMBOL_GPL(dev_set_name); 942 943 /** 944 * device_to_dev_kobj - select a /sys/dev/ directory for the device 945 * @dev: device 946 * 947 * By default we select char/ for new entries. Setting class->dev_obj 948 * to NULL prevents an entry from being created. class->dev_kobj must 949 * be set (or cleared) before any devices are registered to the class 950 * otherwise device_create_sys_dev_entry() and 951 * device_remove_sys_dev_entry() will disagree about the presence of 952 * the link. 953 */ 954 static struct kobject *device_to_dev_kobj(struct device *dev) 955 { 956 struct kobject *kobj; 957 958 if (dev->class) 959 kobj = dev->class->dev_kobj; 960 else 961 kobj = sysfs_dev_char_kobj; 962 963 return kobj; 964 } 965 966 static int device_create_sys_dev_entry(struct device *dev) 967 { 968 struct kobject *kobj = device_to_dev_kobj(dev); 969 int error = 0; 970 char devt_str[15]; 971 972 if (kobj) { 973 format_dev_t(devt_str, dev->devt); 974 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 975 } 976 977 return error; 978 } 979 980 static void device_remove_sys_dev_entry(struct device *dev) 981 { 982 struct kobject *kobj = device_to_dev_kobj(dev); 983 char devt_str[15]; 984 985 if (kobj) { 986 format_dev_t(devt_str, dev->devt); 987 sysfs_remove_link(kobj, devt_str); 988 } 989 } 990 991 int device_private_init(struct device *dev) 992 { 993 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 994 if (!dev->p) 995 return -ENOMEM; 996 dev->p->device = dev; 997 klist_init(&dev->p->klist_children, klist_children_get, 998 klist_children_put); 999 INIT_LIST_HEAD(&dev->p->deferred_probe); 1000 return 0; 1001 } 1002 1003 /** 1004 * device_add - add device to device hierarchy. 1005 * @dev: device. 1006 * 1007 * This is part 2 of device_register(), though may be called 1008 * separately _iff_ device_initialize() has been called separately. 1009 * 1010 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1011 * to the global and sibling lists for the device, then 1012 * adds it to the other relevant subsystems of the driver model. 1013 * 1014 * Do not call this routine or device_register() more than once for 1015 * any device structure. The driver model core is not designed to work 1016 * with devices that get unregistered and then spring back to life. 1017 * (Among other things, it's very hard to guarantee that all references 1018 * to the previous incarnation of @dev have been dropped.) Allocate 1019 * and register a fresh new struct device instead. 1020 * 1021 * NOTE: _Never_ directly free @dev after calling this function, even 1022 * if it returned an error! Always use put_device() to give up your 1023 * reference instead. 1024 */ 1025 int device_add(struct device *dev) 1026 { 1027 struct device *parent = NULL; 1028 struct kobject *kobj; 1029 struct class_interface *class_intf; 1030 int error = -EINVAL; 1031 1032 dev = get_device(dev); 1033 if (!dev) 1034 goto done; 1035 1036 if (!dev->p) { 1037 error = device_private_init(dev); 1038 if (error) 1039 goto done; 1040 } 1041 1042 /* 1043 * for statically allocated devices, which should all be converted 1044 * some day, we need to initialize the name. We prevent reading back 1045 * the name, and force the use of dev_name() 1046 */ 1047 if (dev->init_name) { 1048 dev_set_name(dev, "%s", dev->init_name); 1049 dev->init_name = NULL; 1050 } 1051 1052 /* subsystems can specify simple device enumeration */ 1053 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1054 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1055 1056 if (!dev_name(dev)) { 1057 error = -EINVAL; 1058 goto name_error; 1059 } 1060 1061 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1062 1063 parent = get_device(dev->parent); 1064 kobj = get_device_parent(dev, parent); 1065 if (kobj) 1066 dev->kobj.parent = kobj; 1067 1068 /* use parent numa_node */ 1069 if (parent) 1070 set_dev_node(dev, dev_to_node(parent)); 1071 1072 /* first, register with generic layer. */ 1073 /* we require the name to be set before, and pass NULL */ 1074 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1075 if (error) 1076 goto Error; 1077 1078 /* notify platform of device entry */ 1079 if (platform_notify) 1080 platform_notify(dev); 1081 1082 error = device_create_file(dev, &dev_attr_uevent); 1083 if (error) 1084 goto attrError; 1085 1086 error = device_add_class_symlinks(dev); 1087 if (error) 1088 goto SymlinkError; 1089 error = device_add_attrs(dev); 1090 if (error) 1091 goto AttrsError; 1092 error = bus_add_device(dev); 1093 if (error) 1094 goto BusError; 1095 error = dpm_sysfs_add(dev); 1096 if (error) 1097 goto DPMError; 1098 device_pm_add(dev); 1099 1100 if (MAJOR(dev->devt)) { 1101 error = device_create_file(dev, &dev_attr_dev); 1102 if (error) 1103 goto DevAttrError; 1104 1105 error = device_create_sys_dev_entry(dev); 1106 if (error) 1107 goto SysEntryError; 1108 1109 devtmpfs_create_node(dev); 1110 } 1111 1112 /* Notify clients of device addition. This call must come 1113 * after dpm_sysfs_add() and before kobject_uevent(). 1114 */ 1115 if (dev->bus) 1116 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1117 BUS_NOTIFY_ADD_DEVICE, dev); 1118 1119 kobject_uevent(&dev->kobj, KOBJ_ADD); 1120 bus_probe_device(dev); 1121 if (parent) 1122 klist_add_tail(&dev->p->knode_parent, 1123 &parent->p->klist_children); 1124 1125 if (dev->class) { 1126 mutex_lock(&dev->class->p->mutex); 1127 /* tie the class to the device */ 1128 klist_add_tail(&dev->knode_class, 1129 &dev->class->p->klist_devices); 1130 1131 /* notify any interfaces that the device is here */ 1132 list_for_each_entry(class_intf, 1133 &dev->class->p->interfaces, node) 1134 if (class_intf->add_dev) 1135 class_intf->add_dev(dev, class_intf); 1136 mutex_unlock(&dev->class->p->mutex); 1137 } 1138 done: 1139 put_device(dev); 1140 return error; 1141 SysEntryError: 1142 if (MAJOR(dev->devt)) 1143 device_remove_file(dev, &dev_attr_dev); 1144 DevAttrError: 1145 device_pm_remove(dev); 1146 dpm_sysfs_remove(dev); 1147 DPMError: 1148 bus_remove_device(dev); 1149 BusError: 1150 device_remove_attrs(dev); 1151 AttrsError: 1152 device_remove_class_symlinks(dev); 1153 SymlinkError: 1154 device_remove_file(dev, &dev_attr_uevent); 1155 attrError: 1156 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1157 kobject_del(&dev->kobj); 1158 Error: 1159 cleanup_device_parent(dev); 1160 put_device(parent); 1161 name_error: 1162 kfree(dev->p); 1163 dev->p = NULL; 1164 goto done; 1165 } 1166 EXPORT_SYMBOL_GPL(device_add); 1167 1168 /** 1169 * device_register - register a device with the system. 1170 * @dev: pointer to the device structure 1171 * 1172 * This happens in two clean steps - initialize the device 1173 * and add it to the system. The two steps can be called 1174 * separately, but this is the easiest and most common. 1175 * I.e. you should only call the two helpers separately if 1176 * have a clearly defined need to use and refcount the device 1177 * before it is added to the hierarchy. 1178 * 1179 * For more information, see the kerneldoc for device_initialize() 1180 * and device_add(). 1181 * 1182 * NOTE: _Never_ directly free @dev after calling this function, even 1183 * if it returned an error! Always use put_device() to give up the 1184 * reference initialized in this function instead. 1185 */ 1186 int device_register(struct device *dev) 1187 { 1188 device_initialize(dev); 1189 return device_add(dev); 1190 } 1191 EXPORT_SYMBOL_GPL(device_register); 1192 1193 /** 1194 * get_device - increment reference count for device. 1195 * @dev: device. 1196 * 1197 * This simply forwards the call to kobject_get(), though 1198 * we do take care to provide for the case that we get a NULL 1199 * pointer passed in. 1200 */ 1201 struct device *get_device(struct device *dev) 1202 { 1203 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1204 } 1205 EXPORT_SYMBOL_GPL(get_device); 1206 1207 /** 1208 * put_device - decrement reference count. 1209 * @dev: device in question. 1210 */ 1211 void put_device(struct device *dev) 1212 { 1213 /* might_sleep(); */ 1214 if (dev) 1215 kobject_put(&dev->kobj); 1216 } 1217 EXPORT_SYMBOL_GPL(put_device); 1218 1219 /** 1220 * device_del - delete device from system. 1221 * @dev: device. 1222 * 1223 * This is the first part of the device unregistration 1224 * sequence. This removes the device from the lists we control 1225 * from here, has it removed from the other driver model 1226 * subsystems it was added to in device_add(), and removes it 1227 * from the kobject hierarchy. 1228 * 1229 * NOTE: this should be called manually _iff_ device_add() was 1230 * also called manually. 1231 */ 1232 void device_del(struct device *dev) 1233 { 1234 struct device *parent = dev->parent; 1235 struct class_interface *class_intf; 1236 1237 /* Notify clients of device removal. This call must come 1238 * before dpm_sysfs_remove(). 1239 */ 1240 if (dev->bus) 1241 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1242 BUS_NOTIFY_DEL_DEVICE, dev); 1243 dpm_sysfs_remove(dev); 1244 if (parent) 1245 klist_del(&dev->p->knode_parent); 1246 if (MAJOR(dev->devt)) { 1247 devtmpfs_delete_node(dev); 1248 device_remove_sys_dev_entry(dev); 1249 device_remove_file(dev, &dev_attr_dev); 1250 } 1251 if (dev->class) { 1252 device_remove_class_symlinks(dev); 1253 1254 mutex_lock(&dev->class->p->mutex); 1255 /* notify any interfaces that the device is now gone */ 1256 list_for_each_entry(class_intf, 1257 &dev->class->p->interfaces, node) 1258 if (class_intf->remove_dev) 1259 class_intf->remove_dev(dev, class_intf); 1260 /* remove the device from the class list */ 1261 klist_del(&dev->knode_class); 1262 mutex_unlock(&dev->class->p->mutex); 1263 } 1264 device_remove_file(dev, &dev_attr_uevent); 1265 device_remove_attrs(dev); 1266 bus_remove_device(dev); 1267 device_pm_remove(dev); 1268 driver_deferred_probe_del(dev); 1269 1270 /* Notify the platform of the removal, in case they 1271 * need to do anything... 1272 */ 1273 if (platform_notify_remove) 1274 platform_notify_remove(dev); 1275 if (dev->bus) 1276 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1277 BUS_NOTIFY_REMOVED_DEVICE, dev); 1278 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1279 cleanup_device_parent(dev); 1280 kobject_del(&dev->kobj); 1281 put_device(parent); 1282 } 1283 EXPORT_SYMBOL_GPL(device_del); 1284 1285 /** 1286 * device_unregister - unregister device from system. 1287 * @dev: device going away. 1288 * 1289 * We do this in two parts, like we do device_register(). First, 1290 * we remove it from all the subsystems with device_del(), then 1291 * we decrement the reference count via put_device(). If that 1292 * is the final reference count, the device will be cleaned up 1293 * via device_release() above. Otherwise, the structure will 1294 * stick around until the final reference to the device is dropped. 1295 */ 1296 void device_unregister(struct device *dev) 1297 { 1298 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1299 device_del(dev); 1300 put_device(dev); 1301 } 1302 EXPORT_SYMBOL_GPL(device_unregister); 1303 1304 static struct device *prev_device(struct klist_iter *i) 1305 { 1306 struct klist_node *n = klist_prev(i); 1307 struct device *dev = NULL; 1308 struct device_private *p; 1309 1310 if (n) { 1311 p = to_device_private_parent(n); 1312 dev = p->device; 1313 } 1314 return dev; 1315 } 1316 1317 static struct device *next_device(struct klist_iter *i) 1318 { 1319 struct klist_node *n = klist_next(i); 1320 struct device *dev = NULL; 1321 struct device_private *p; 1322 1323 if (n) { 1324 p = to_device_private_parent(n); 1325 dev = p->device; 1326 } 1327 return dev; 1328 } 1329 1330 /** 1331 * device_get_devnode - path of device node file 1332 * @dev: device 1333 * @mode: returned file access mode 1334 * @uid: returned file owner 1335 * @gid: returned file group 1336 * @tmp: possibly allocated string 1337 * 1338 * Return the relative path of a possible device node. 1339 * Non-default names may need to allocate a memory to compose 1340 * a name. This memory is returned in tmp and needs to be 1341 * freed by the caller. 1342 */ 1343 const char *device_get_devnode(struct device *dev, 1344 umode_t *mode, kuid_t *uid, kgid_t *gid, 1345 const char **tmp) 1346 { 1347 char *s; 1348 1349 *tmp = NULL; 1350 1351 /* the device type may provide a specific name */ 1352 if (dev->type && dev->type->devnode) 1353 *tmp = dev->type->devnode(dev, mode, uid, gid); 1354 if (*tmp) 1355 return *tmp; 1356 1357 /* the class may provide a specific name */ 1358 if (dev->class && dev->class->devnode) 1359 *tmp = dev->class->devnode(dev, mode); 1360 if (*tmp) 1361 return *tmp; 1362 1363 /* return name without allocation, tmp == NULL */ 1364 if (strchr(dev_name(dev), '!') == NULL) 1365 return dev_name(dev); 1366 1367 /* replace '!' in the name with '/' */ 1368 s = kstrdup(dev_name(dev), GFP_KERNEL); 1369 if (!s) 1370 return NULL; 1371 strreplace(s, '!', '/'); 1372 return *tmp = s; 1373 } 1374 1375 /** 1376 * device_for_each_child - device child iterator. 1377 * @parent: parent struct device. 1378 * @fn: function to be called for each device. 1379 * @data: data for the callback. 1380 * 1381 * Iterate over @parent's child devices, and call @fn for each, 1382 * passing it @data. 1383 * 1384 * We check the return of @fn each time. If it returns anything 1385 * other than 0, we break out and return that value. 1386 */ 1387 int device_for_each_child(struct device *parent, void *data, 1388 int (*fn)(struct device *dev, void *data)) 1389 { 1390 struct klist_iter i; 1391 struct device *child; 1392 int error = 0; 1393 1394 if (!parent->p) 1395 return 0; 1396 1397 klist_iter_init(&parent->p->klist_children, &i); 1398 while ((child = next_device(&i)) && !error) 1399 error = fn(child, data); 1400 klist_iter_exit(&i); 1401 return error; 1402 } 1403 EXPORT_SYMBOL_GPL(device_for_each_child); 1404 1405 /** 1406 * device_for_each_child_reverse - device child iterator in reversed order. 1407 * @parent: parent struct device. 1408 * @fn: function to be called for each device. 1409 * @data: data for the callback. 1410 * 1411 * Iterate over @parent's child devices, and call @fn for each, 1412 * passing it @data. 1413 * 1414 * We check the return of @fn each time. If it returns anything 1415 * other than 0, we break out and return that value. 1416 */ 1417 int device_for_each_child_reverse(struct device *parent, void *data, 1418 int (*fn)(struct device *dev, void *data)) 1419 { 1420 struct klist_iter i; 1421 struct device *child; 1422 int error = 0; 1423 1424 if (!parent->p) 1425 return 0; 1426 1427 klist_iter_init(&parent->p->klist_children, &i); 1428 while ((child = prev_device(&i)) && !error) 1429 error = fn(child, data); 1430 klist_iter_exit(&i); 1431 return error; 1432 } 1433 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 1434 1435 /** 1436 * device_find_child - device iterator for locating a particular device. 1437 * @parent: parent struct device 1438 * @match: Callback function to check device 1439 * @data: Data to pass to match function 1440 * 1441 * This is similar to the device_for_each_child() function above, but it 1442 * returns a reference to a device that is 'found' for later use, as 1443 * determined by the @match callback. 1444 * 1445 * The callback should return 0 if the device doesn't match and non-zero 1446 * if it does. If the callback returns non-zero and a reference to the 1447 * current device can be obtained, this function will return to the caller 1448 * and not iterate over any more devices. 1449 * 1450 * NOTE: you will need to drop the reference with put_device() after use. 1451 */ 1452 struct device *device_find_child(struct device *parent, void *data, 1453 int (*match)(struct device *dev, void *data)) 1454 { 1455 struct klist_iter i; 1456 struct device *child; 1457 1458 if (!parent) 1459 return NULL; 1460 1461 klist_iter_init(&parent->p->klist_children, &i); 1462 while ((child = next_device(&i))) 1463 if (match(child, data) && get_device(child)) 1464 break; 1465 klist_iter_exit(&i); 1466 return child; 1467 } 1468 EXPORT_SYMBOL_GPL(device_find_child); 1469 1470 int __init devices_init(void) 1471 { 1472 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 1473 if (!devices_kset) 1474 return -ENOMEM; 1475 dev_kobj = kobject_create_and_add("dev", NULL); 1476 if (!dev_kobj) 1477 goto dev_kobj_err; 1478 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 1479 if (!sysfs_dev_block_kobj) 1480 goto block_kobj_err; 1481 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 1482 if (!sysfs_dev_char_kobj) 1483 goto char_kobj_err; 1484 1485 return 0; 1486 1487 char_kobj_err: 1488 kobject_put(sysfs_dev_block_kobj); 1489 block_kobj_err: 1490 kobject_put(dev_kobj); 1491 dev_kobj_err: 1492 kset_unregister(devices_kset); 1493 return -ENOMEM; 1494 } 1495 1496 static int device_check_offline(struct device *dev, void *not_used) 1497 { 1498 int ret; 1499 1500 ret = device_for_each_child(dev, NULL, device_check_offline); 1501 if (ret) 1502 return ret; 1503 1504 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 1505 } 1506 1507 /** 1508 * device_offline - Prepare the device for hot-removal. 1509 * @dev: Device to be put offline. 1510 * 1511 * Execute the device bus type's .offline() callback, if present, to prepare 1512 * the device for a subsequent hot-removal. If that succeeds, the device must 1513 * not be used until either it is removed or its bus type's .online() callback 1514 * is executed. 1515 * 1516 * Call under device_hotplug_lock. 1517 */ 1518 int device_offline(struct device *dev) 1519 { 1520 int ret; 1521 1522 if (dev->offline_disabled) 1523 return -EPERM; 1524 1525 ret = device_for_each_child(dev, NULL, device_check_offline); 1526 if (ret) 1527 return ret; 1528 1529 device_lock(dev); 1530 if (device_supports_offline(dev)) { 1531 if (dev->offline) { 1532 ret = 1; 1533 } else { 1534 ret = dev->bus->offline(dev); 1535 if (!ret) { 1536 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 1537 dev->offline = true; 1538 } 1539 } 1540 } 1541 device_unlock(dev); 1542 1543 return ret; 1544 } 1545 1546 /** 1547 * device_online - Put the device back online after successful device_offline(). 1548 * @dev: Device to be put back online. 1549 * 1550 * If device_offline() has been successfully executed for @dev, but the device 1551 * has not been removed subsequently, execute its bus type's .online() callback 1552 * to indicate that the device can be used again. 1553 * 1554 * Call under device_hotplug_lock. 1555 */ 1556 int device_online(struct device *dev) 1557 { 1558 int ret = 0; 1559 1560 device_lock(dev); 1561 if (device_supports_offline(dev)) { 1562 if (dev->offline) { 1563 ret = dev->bus->online(dev); 1564 if (!ret) { 1565 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 1566 dev->offline = false; 1567 } 1568 } else { 1569 ret = 1; 1570 } 1571 } 1572 device_unlock(dev); 1573 1574 return ret; 1575 } 1576 1577 struct root_device { 1578 struct device dev; 1579 struct module *owner; 1580 }; 1581 1582 static inline struct root_device *to_root_device(struct device *d) 1583 { 1584 return container_of(d, struct root_device, dev); 1585 } 1586 1587 static void root_device_release(struct device *dev) 1588 { 1589 kfree(to_root_device(dev)); 1590 } 1591 1592 /** 1593 * __root_device_register - allocate and register a root device 1594 * @name: root device name 1595 * @owner: owner module of the root device, usually THIS_MODULE 1596 * 1597 * This function allocates a root device and registers it 1598 * using device_register(). In order to free the returned 1599 * device, use root_device_unregister(). 1600 * 1601 * Root devices are dummy devices which allow other devices 1602 * to be grouped under /sys/devices. Use this function to 1603 * allocate a root device and then use it as the parent of 1604 * any device which should appear under /sys/devices/{name} 1605 * 1606 * The /sys/devices/{name} directory will also contain a 1607 * 'module' symlink which points to the @owner directory 1608 * in sysfs. 1609 * 1610 * Returns &struct device pointer on success, or ERR_PTR() on error. 1611 * 1612 * Note: You probably want to use root_device_register(). 1613 */ 1614 struct device *__root_device_register(const char *name, struct module *owner) 1615 { 1616 struct root_device *root; 1617 int err = -ENOMEM; 1618 1619 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 1620 if (!root) 1621 return ERR_PTR(err); 1622 1623 err = dev_set_name(&root->dev, "%s", name); 1624 if (err) { 1625 kfree(root); 1626 return ERR_PTR(err); 1627 } 1628 1629 root->dev.release = root_device_release; 1630 1631 err = device_register(&root->dev); 1632 if (err) { 1633 put_device(&root->dev); 1634 return ERR_PTR(err); 1635 } 1636 1637 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 1638 if (owner) { 1639 struct module_kobject *mk = &owner->mkobj; 1640 1641 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 1642 if (err) { 1643 device_unregister(&root->dev); 1644 return ERR_PTR(err); 1645 } 1646 root->owner = owner; 1647 } 1648 #endif 1649 1650 return &root->dev; 1651 } 1652 EXPORT_SYMBOL_GPL(__root_device_register); 1653 1654 /** 1655 * root_device_unregister - unregister and free a root device 1656 * @dev: device going away 1657 * 1658 * This function unregisters and cleans up a device that was created by 1659 * root_device_register(). 1660 */ 1661 void root_device_unregister(struct device *dev) 1662 { 1663 struct root_device *root = to_root_device(dev); 1664 1665 if (root->owner) 1666 sysfs_remove_link(&root->dev.kobj, "module"); 1667 1668 device_unregister(dev); 1669 } 1670 EXPORT_SYMBOL_GPL(root_device_unregister); 1671 1672 1673 static void device_create_release(struct device *dev) 1674 { 1675 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1676 kfree(dev); 1677 } 1678 1679 static struct device * 1680 device_create_groups_vargs(struct class *class, struct device *parent, 1681 dev_t devt, void *drvdata, 1682 const struct attribute_group **groups, 1683 const char *fmt, va_list args) 1684 { 1685 struct device *dev = NULL; 1686 int retval = -ENODEV; 1687 1688 if (class == NULL || IS_ERR(class)) 1689 goto error; 1690 1691 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1692 if (!dev) { 1693 retval = -ENOMEM; 1694 goto error; 1695 } 1696 1697 device_initialize(dev); 1698 dev->devt = devt; 1699 dev->class = class; 1700 dev->parent = parent; 1701 dev->groups = groups; 1702 dev->release = device_create_release; 1703 dev_set_drvdata(dev, drvdata); 1704 1705 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 1706 if (retval) 1707 goto error; 1708 1709 retval = device_add(dev); 1710 if (retval) 1711 goto error; 1712 1713 return dev; 1714 1715 error: 1716 put_device(dev); 1717 return ERR_PTR(retval); 1718 } 1719 1720 /** 1721 * device_create_vargs - creates a device and registers it with sysfs 1722 * @class: pointer to the struct class that this device should be registered to 1723 * @parent: pointer to the parent struct device of this new device, if any 1724 * @devt: the dev_t for the char device to be added 1725 * @drvdata: the data to be added to the device for callbacks 1726 * @fmt: string for the device's name 1727 * @args: va_list for the device's name 1728 * 1729 * This function can be used by char device classes. A struct device 1730 * will be created in sysfs, registered to the specified class. 1731 * 1732 * A "dev" file will be created, showing the dev_t for the device, if 1733 * the dev_t is not 0,0. 1734 * If a pointer to a parent struct device is passed in, the newly created 1735 * struct device will be a child of that device in sysfs. 1736 * The pointer to the struct device will be returned from the call. 1737 * Any further sysfs files that might be required can be created using this 1738 * pointer. 1739 * 1740 * Returns &struct device pointer on success, or ERR_PTR() on error. 1741 * 1742 * Note: the struct class passed to this function must have previously 1743 * been created with a call to class_create(). 1744 */ 1745 struct device *device_create_vargs(struct class *class, struct device *parent, 1746 dev_t devt, void *drvdata, const char *fmt, 1747 va_list args) 1748 { 1749 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 1750 fmt, args); 1751 } 1752 EXPORT_SYMBOL_GPL(device_create_vargs); 1753 1754 /** 1755 * device_create - creates a device and registers it with sysfs 1756 * @class: pointer to the struct class that this device should be registered to 1757 * @parent: pointer to the parent struct device of this new device, if any 1758 * @devt: the dev_t for the char device to be added 1759 * @drvdata: the data to be added to the device for callbacks 1760 * @fmt: string for the device's name 1761 * 1762 * This function can be used by char device classes. A struct device 1763 * will be created in sysfs, registered to the specified class. 1764 * 1765 * A "dev" file will be created, showing the dev_t for the device, if 1766 * the dev_t is not 0,0. 1767 * If a pointer to a parent struct device is passed in, the newly created 1768 * struct device will be a child of that device in sysfs. 1769 * The pointer to the struct device will be returned from the call. 1770 * Any further sysfs files that might be required can be created using this 1771 * pointer. 1772 * 1773 * Returns &struct device pointer on success, or ERR_PTR() on error. 1774 * 1775 * Note: the struct class passed to this function must have previously 1776 * been created with a call to class_create(). 1777 */ 1778 struct device *device_create(struct class *class, struct device *parent, 1779 dev_t devt, void *drvdata, const char *fmt, ...) 1780 { 1781 va_list vargs; 1782 struct device *dev; 1783 1784 va_start(vargs, fmt); 1785 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 1786 va_end(vargs); 1787 return dev; 1788 } 1789 EXPORT_SYMBOL_GPL(device_create); 1790 1791 /** 1792 * device_create_with_groups - creates a device and registers it with sysfs 1793 * @class: pointer to the struct class that this device should be registered to 1794 * @parent: pointer to the parent struct device of this new device, if any 1795 * @devt: the dev_t for the char device to be added 1796 * @drvdata: the data to be added to the device for callbacks 1797 * @groups: NULL-terminated list of attribute groups to be created 1798 * @fmt: string for the device's name 1799 * 1800 * This function can be used by char device classes. A struct device 1801 * will be created in sysfs, registered to the specified class. 1802 * Additional attributes specified in the groups parameter will also 1803 * be created automatically. 1804 * 1805 * A "dev" file will be created, showing the dev_t for the device, if 1806 * the dev_t is not 0,0. 1807 * If a pointer to a parent struct device is passed in, the newly created 1808 * struct device will be a child of that device in sysfs. 1809 * The pointer to the struct device will be returned from the call. 1810 * Any further sysfs files that might be required can be created using this 1811 * pointer. 1812 * 1813 * Returns &struct device pointer on success, or ERR_PTR() on error. 1814 * 1815 * Note: the struct class passed to this function must have previously 1816 * been created with a call to class_create(). 1817 */ 1818 struct device *device_create_with_groups(struct class *class, 1819 struct device *parent, dev_t devt, 1820 void *drvdata, 1821 const struct attribute_group **groups, 1822 const char *fmt, ...) 1823 { 1824 va_list vargs; 1825 struct device *dev; 1826 1827 va_start(vargs, fmt); 1828 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 1829 fmt, vargs); 1830 va_end(vargs); 1831 return dev; 1832 } 1833 EXPORT_SYMBOL_GPL(device_create_with_groups); 1834 1835 static int __match_devt(struct device *dev, const void *data) 1836 { 1837 const dev_t *devt = data; 1838 1839 return dev->devt == *devt; 1840 } 1841 1842 /** 1843 * device_destroy - removes a device that was created with device_create() 1844 * @class: pointer to the struct class that this device was registered with 1845 * @devt: the dev_t of the device that was previously registered 1846 * 1847 * This call unregisters and cleans up a device that was created with a 1848 * call to device_create(). 1849 */ 1850 void device_destroy(struct class *class, dev_t devt) 1851 { 1852 struct device *dev; 1853 1854 dev = class_find_device(class, NULL, &devt, __match_devt); 1855 if (dev) { 1856 put_device(dev); 1857 device_unregister(dev); 1858 } 1859 } 1860 EXPORT_SYMBOL_GPL(device_destroy); 1861 1862 /** 1863 * device_rename - renames a device 1864 * @dev: the pointer to the struct device to be renamed 1865 * @new_name: the new name of the device 1866 * 1867 * It is the responsibility of the caller to provide mutual 1868 * exclusion between two different calls of device_rename 1869 * on the same device to ensure that new_name is valid and 1870 * won't conflict with other devices. 1871 * 1872 * Note: Don't call this function. Currently, the networking layer calls this 1873 * function, but that will change. The following text from Kay Sievers offers 1874 * some insight: 1875 * 1876 * Renaming devices is racy at many levels, symlinks and other stuff are not 1877 * replaced atomically, and you get a "move" uevent, but it's not easy to 1878 * connect the event to the old and new device. Device nodes are not renamed at 1879 * all, there isn't even support for that in the kernel now. 1880 * 1881 * In the meantime, during renaming, your target name might be taken by another 1882 * driver, creating conflicts. Or the old name is taken directly after you 1883 * renamed it -- then you get events for the same DEVPATH, before you even see 1884 * the "move" event. It's just a mess, and nothing new should ever rely on 1885 * kernel device renaming. Besides that, it's not even implemented now for 1886 * other things than (driver-core wise very simple) network devices. 1887 * 1888 * We are currently about to change network renaming in udev to completely 1889 * disallow renaming of devices in the same namespace as the kernel uses, 1890 * because we can't solve the problems properly, that arise with swapping names 1891 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 1892 * be allowed to some other name than eth[0-9]*, for the aforementioned 1893 * reasons. 1894 * 1895 * Make up a "real" name in the driver before you register anything, or add 1896 * some other attributes for userspace to find the device, or use udev to add 1897 * symlinks -- but never rename kernel devices later, it's a complete mess. We 1898 * don't even want to get into that and try to implement the missing pieces in 1899 * the core. We really have other pieces to fix in the driver core mess. :) 1900 */ 1901 int device_rename(struct device *dev, const char *new_name) 1902 { 1903 struct kobject *kobj = &dev->kobj; 1904 char *old_device_name = NULL; 1905 int error; 1906 1907 dev = get_device(dev); 1908 if (!dev) 1909 return -EINVAL; 1910 1911 dev_dbg(dev, "renaming to %s\n", new_name); 1912 1913 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 1914 if (!old_device_name) { 1915 error = -ENOMEM; 1916 goto out; 1917 } 1918 1919 if (dev->class) { 1920 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 1921 kobj, old_device_name, 1922 new_name, kobject_namespace(kobj)); 1923 if (error) 1924 goto out; 1925 } 1926 1927 error = kobject_rename(kobj, new_name); 1928 if (error) 1929 goto out; 1930 1931 out: 1932 put_device(dev); 1933 1934 kfree(old_device_name); 1935 1936 return error; 1937 } 1938 EXPORT_SYMBOL_GPL(device_rename); 1939 1940 static int device_move_class_links(struct device *dev, 1941 struct device *old_parent, 1942 struct device *new_parent) 1943 { 1944 int error = 0; 1945 1946 if (old_parent) 1947 sysfs_remove_link(&dev->kobj, "device"); 1948 if (new_parent) 1949 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 1950 "device"); 1951 return error; 1952 } 1953 1954 /** 1955 * device_move - moves a device to a new parent 1956 * @dev: the pointer to the struct device to be moved 1957 * @new_parent: the new parent of the device (can by NULL) 1958 * @dpm_order: how to reorder the dpm_list 1959 */ 1960 int device_move(struct device *dev, struct device *new_parent, 1961 enum dpm_order dpm_order) 1962 { 1963 int error; 1964 struct device *old_parent; 1965 struct kobject *new_parent_kobj; 1966 1967 dev = get_device(dev); 1968 if (!dev) 1969 return -EINVAL; 1970 1971 device_pm_lock(); 1972 new_parent = get_device(new_parent); 1973 new_parent_kobj = get_device_parent(dev, new_parent); 1974 1975 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 1976 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 1977 error = kobject_move(&dev->kobj, new_parent_kobj); 1978 if (error) { 1979 cleanup_glue_dir(dev, new_parent_kobj); 1980 put_device(new_parent); 1981 goto out; 1982 } 1983 old_parent = dev->parent; 1984 dev->parent = new_parent; 1985 if (old_parent) 1986 klist_remove(&dev->p->knode_parent); 1987 if (new_parent) { 1988 klist_add_tail(&dev->p->knode_parent, 1989 &new_parent->p->klist_children); 1990 set_dev_node(dev, dev_to_node(new_parent)); 1991 } 1992 1993 if (dev->class) { 1994 error = device_move_class_links(dev, old_parent, new_parent); 1995 if (error) { 1996 /* We ignore errors on cleanup since we're hosed anyway... */ 1997 device_move_class_links(dev, new_parent, old_parent); 1998 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 1999 if (new_parent) 2000 klist_remove(&dev->p->knode_parent); 2001 dev->parent = old_parent; 2002 if (old_parent) { 2003 klist_add_tail(&dev->p->knode_parent, 2004 &old_parent->p->klist_children); 2005 set_dev_node(dev, dev_to_node(old_parent)); 2006 } 2007 } 2008 cleanup_glue_dir(dev, new_parent_kobj); 2009 put_device(new_parent); 2010 goto out; 2011 } 2012 } 2013 switch (dpm_order) { 2014 case DPM_ORDER_NONE: 2015 break; 2016 case DPM_ORDER_DEV_AFTER_PARENT: 2017 device_pm_move_after(dev, new_parent); 2018 devices_kset_move_after(dev, new_parent); 2019 break; 2020 case DPM_ORDER_PARENT_BEFORE_DEV: 2021 device_pm_move_before(new_parent, dev); 2022 devices_kset_move_before(new_parent, dev); 2023 break; 2024 case DPM_ORDER_DEV_LAST: 2025 device_pm_move_last(dev); 2026 devices_kset_move_last(dev); 2027 break; 2028 } 2029 2030 put_device(old_parent); 2031 out: 2032 device_pm_unlock(); 2033 put_device(dev); 2034 return error; 2035 } 2036 EXPORT_SYMBOL_GPL(device_move); 2037 2038 /** 2039 * device_shutdown - call ->shutdown() on each device to shutdown. 2040 */ 2041 void device_shutdown(void) 2042 { 2043 struct device *dev, *parent; 2044 2045 spin_lock(&devices_kset->list_lock); 2046 /* 2047 * Walk the devices list backward, shutting down each in turn. 2048 * Beware that device unplug events may also start pulling 2049 * devices offline, even as the system is shutting down. 2050 */ 2051 while (!list_empty(&devices_kset->list)) { 2052 dev = list_entry(devices_kset->list.prev, struct device, 2053 kobj.entry); 2054 2055 /* 2056 * hold reference count of device's parent to 2057 * prevent it from being freed because parent's 2058 * lock is to be held 2059 */ 2060 parent = get_device(dev->parent); 2061 get_device(dev); 2062 /* 2063 * Make sure the device is off the kset list, in the 2064 * event that dev->*->shutdown() doesn't remove it. 2065 */ 2066 list_del_init(&dev->kobj.entry); 2067 spin_unlock(&devices_kset->list_lock); 2068 2069 /* hold lock to avoid race with probe/release */ 2070 if (parent) 2071 device_lock(parent); 2072 device_lock(dev); 2073 2074 /* Don't allow any more runtime suspends */ 2075 pm_runtime_get_noresume(dev); 2076 pm_runtime_barrier(dev); 2077 2078 if (dev->bus && dev->bus->shutdown) { 2079 if (initcall_debug) 2080 dev_info(dev, "shutdown\n"); 2081 dev->bus->shutdown(dev); 2082 } else if (dev->driver && dev->driver->shutdown) { 2083 if (initcall_debug) 2084 dev_info(dev, "shutdown\n"); 2085 dev->driver->shutdown(dev); 2086 } 2087 2088 device_unlock(dev); 2089 if (parent) 2090 device_unlock(parent); 2091 2092 put_device(dev); 2093 put_device(parent); 2094 2095 spin_lock(&devices_kset->list_lock); 2096 } 2097 spin_unlock(&devices_kset->list_lock); 2098 } 2099 2100 /* 2101 * Device logging functions 2102 */ 2103 2104 #ifdef CONFIG_PRINTK 2105 static int 2106 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2107 { 2108 const char *subsys; 2109 size_t pos = 0; 2110 2111 if (dev->class) 2112 subsys = dev->class->name; 2113 else if (dev->bus) 2114 subsys = dev->bus->name; 2115 else 2116 return 0; 2117 2118 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2119 if (pos >= hdrlen) 2120 goto overflow; 2121 2122 /* 2123 * Add device identifier DEVICE=: 2124 * b12:8 block dev_t 2125 * c127:3 char dev_t 2126 * n8 netdev ifindex 2127 * +sound:card0 subsystem:devname 2128 */ 2129 if (MAJOR(dev->devt)) { 2130 char c; 2131 2132 if (strcmp(subsys, "block") == 0) 2133 c = 'b'; 2134 else 2135 c = 'c'; 2136 pos++; 2137 pos += snprintf(hdr + pos, hdrlen - pos, 2138 "DEVICE=%c%u:%u", 2139 c, MAJOR(dev->devt), MINOR(dev->devt)); 2140 } else if (strcmp(subsys, "net") == 0) { 2141 struct net_device *net = to_net_dev(dev); 2142 2143 pos++; 2144 pos += snprintf(hdr + pos, hdrlen - pos, 2145 "DEVICE=n%u", net->ifindex); 2146 } else { 2147 pos++; 2148 pos += snprintf(hdr + pos, hdrlen - pos, 2149 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2150 } 2151 2152 if (pos >= hdrlen) 2153 goto overflow; 2154 2155 return pos; 2156 2157 overflow: 2158 dev_WARN(dev, "device/subsystem name too long"); 2159 return 0; 2160 } 2161 2162 int dev_vprintk_emit(int level, const struct device *dev, 2163 const char *fmt, va_list args) 2164 { 2165 char hdr[128]; 2166 size_t hdrlen; 2167 2168 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2169 2170 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2171 } 2172 EXPORT_SYMBOL(dev_vprintk_emit); 2173 2174 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2175 { 2176 va_list args; 2177 int r; 2178 2179 va_start(args, fmt); 2180 2181 r = dev_vprintk_emit(level, dev, fmt, args); 2182 2183 va_end(args); 2184 2185 return r; 2186 } 2187 EXPORT_SYMBOL(dev_printk_emit); 2188 2189 static void __dev_printk(const char *level, const struct device *dev, 2190 struct va_format *vaf) 2191 { 2192 if (dev) 2193 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2194 dev_driver_string(dev), dev_name(dev), vaf); 2195 else 2196 printk("%s(NULL device *): %pV", level, vaf); 2197 } 2198 2199 void dev_printk(const char *level, const struct device *dev, 2200 const char *fmt, ...) 2201 { 2202 struct va_format vaf; 2203 va_list args; 2204 2205 va_start(args, fmt); 2206 2207 vaf.fmt = fmt; 2208 vaf.va = &args; 2209 2210 __dev_printk(level, dev, &vaf); 2211 2212 va_end(args); 2213 } 2214 EXPORT_SYMBOL(dev_printk); 2215 2216 #define define_dev_printk_level(func, kern_level) \ 2217 void func(const struct device *dev, const char *fmt, ...) \ 2218 { \ 2219 struct va_format vaf; \ 2220 va_list args; \ 2221 \ 2222 va_start(args, fmt); \ 2223 \ 2224 vaf.fmt = fmt; \ 2225 vaf.va = &args; \ 2226 \ 2227 __dev_printk(kern_level, dev, &vaf); \ 2228 \ 2229 va_end(args); \ 2230 } \ 2231 EXPORT_SYMBOL(func); 2232 2233 define_dev_printk_level(dev_emerg, KERN_EMERG); 2234 define_dev_printk_level(dev_alert, KERN_ALERT); 2235 define_dev_printk_level(dev_crit, KERN_CRIT); 2236 define_dev_printk_level(dev_err, KERN_ERR); 2237 define_dev_printk_level(dev_warn, KERN_WARNING); 2238 define_dev_printk_level(dev_notice, KERN_NOTICE); 2239 define_dev_printk_level(_dev_info, KERN_INFO); 2240 2241 #endif 2242 2243 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2244 { 2245 return fwnode && !IS_ERR(fwnode->secondary); 2246 } 2247 2248 /** 2249 * set_primary_fwnode - Change the primary firmware node of a given device. 2250 * @dev: Device to handle. 2251 * @fwnode: New primary firmware node of the device. 2252 * 2253 * Set the device's firmware node pointer to @fwnode, but if a secondary 2254 * firmware node of the device is present, preserve it. 2255 */ 2256 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2257 { 2258 if (fwnode) { 2259 struct fwnode_handle *fn = dev->fwnode; 2260 2261 if (fwnode_is_primary(fn)) 2262 fn = fn->secondary; 2263 2264 fwnode->secondary = fn; 2265 dev->fwnode = fwnode; 2266 } else { 2267 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2268 dev->fwnode->secondary : NULL; 2269 } 2270 } 2271 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2272 2273 /** 2274 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2275 * @dev: Device to handle. 2276 * @fwnode: New secondary firmware node of the device. 2277 * 2278 * If a primary firmware node of the device is present, set its secondary 2279 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2280 * @fwnode. 2281 */ 2282 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2283 { 2284 if (fwnode) 2285 fwnode->secondary = ERR_PTR(-ENODEV); 2286 2287 if (fwnode_is_primary(dev->fwnode)) 2288 dev->fwnode->secondary = fwnode; 2289 else 2290 dev->fwnode = fwnode; 2291 } 2292