1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/slab.h> 32 #include <linux/string_helpers.h> 33 #include <linux/swiotlb.h> 34 #include <linux/sysfs.h> 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 guard(mutex)(&fwnode_link_lock); 101 102 return __fwnode_link_add(con, sup, flags); 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 guard(mutex)(&fwnode_link_lock); 144 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 guard(mutex)(&fwnode_link_lock); 160 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER)) 464 output = "supplier unbind"; 465 else if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)); 489 } 490 static DEVICE_ATTR_RO(sync_state_only); 491 492 static struct attribute *devlink_attrs[] = { 493 &dev_attr_status.attr, 494 &dev_attr_auto_remove_on.attr, 495 &dev_attr_runtime_pm.attr, 496 &dev_attr_sync_state_only.attr, 497 NULL, 498 }; 499 ATTRIBUTE_GROUPS(devlink); 500 501 static void device_link_release_fn(struct work_struct *work) 502 { 503 struct device_link *link = container_of(work, struct device_link, rm_work); 504 505 /* Ensure that all references to the link object have been dropped. */ 506 device_link_synchronize_removal(); 507 508 pm_runtime_release_supplier(link); 509 /* 510 * If supplier_preactivated is set, the link has been dropped between 511 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 512 * in __driver_probe_device(). In that case, drop the supplier's 513 * PM-runtime usage counter to remove the reference taken by 514 * pm_runtime_get_suppliers(). 515 */ 516 if (link->supplier_preactivated) 517 pm_runtime_put_noidle(link->supplier); 518 519 pm_request_idle(link->supplier); 520 521 put_device(link->consumer); 522 put_device(link->supplier); 523 kfree(link); 524 } 525 526 static void devlink_dev_release(struct device *dev) 527 { 528 struct device_link *link = to_devlink(dev); 529 530 INIT_WORK(&link->rm_work, device_link_release_fn); 531 /* 532 * It may take a while to complete this work because of the SRCU 533 * synchronization in device_link_release_fn() and if the consumer or 534 * supplier devices get deleted when it runs, so put it into the 535 * dedicated workqueue. 536 */ 537 queue_work(device_link_wq, &link->rm_work); 538 } 539 540 /** 541 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 542 */ 543 void device_link_wait_removal(void) 544 { 545 /* 546 * devlink removal jobs are queued in the dedicated work queue. 547 * To be sure that all removal jobs are terminated, ensure that any 548 * scheduled work has run to completion. 549 */ 550 flush_workqueue(device_link_wq); 551 } 552 EXPORT_SYMBOL_GPL(device_link_wait_removal); 553 554 static const struct class devlink_class = { 555 .name = "devlink", 556 .dev_groups = devlink_groups, 557 .dev_release = devlink_dev_release, 558 }; 559 560 static int devlink_add_symlinks(struct device *dev) 561 { 562 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 563 int ret; 564 struct device_link *link = to_devlink(dev); 565 struct device *sup = link->supplier; 566 struct device *con = link->consumer; 567 568 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 569 if (ret) 570 goto out; 571 572 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 573 if (ret) 574 goto err_con; 575 576 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 577 if (!buf_con) { 578 ret = -ENOMEM; 579 goto err_con_dev; 580 } 581 582 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 583 if (ret) 584 goto err_con_dev; 585 586 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 587 if (!buf_sup) { 588 ret = -ENOMEM; 589 goto err_sup_dev; 590 } 591 592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 593 if (ret) 594 goto err_sup_dev; 595 596 goto out; 597 598 err_sup_dev: 599 sysfs_remove_link(&sup->kobj, buf_con); 600 err_con_dev: 601 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 602 err_con: 603 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 604 out: 605 return ret; 606 } 607 608 static void devlink_remove_symlinks(struct device *dev) 609 { 610 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 611 struct device_link *link = to_devlink(dev); 612 struct device *sup = link->supplier; 613 struct device *con = link->consumer; 614 615 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 616 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 617 618 if (device_is_registered(con)) { 619 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 620 if (!buf_sup) 621 goto out; 622 sysfs_remove_link(&con->kobj, buf_sup); 623 } 624 625 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 626 if (!buf_con) 627 goto out; 628 sysfs_remove_link(&sup->kobj, buf_con); 629 630 return; 631 632 out: 633 WARN(1, "Unable to properly free device link symlinks!\n"); 634 } 635 636 static struct class_interface devlink_class_intf = { 637 .class = &devlink_class, 638 .add_dev = devlink_add_symlinks, 639 .remove_dev = devlink_remove_symlinks, 640 }; 641 642 static int __init devlink_class_init(void) 643 { 644 int ret; 645 646 ret = class_register(&devlink_class); 647 if (ret) 648 return ret; 649 650 ret = class_interface_register(&devlink_class_intf); 651 if (ret) 652 class_unregister(&devlink_class); 653 654 return ret; 655 } 656 postcore_initcall(devlink_class_init); 657 658 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 659 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 660 DL_FLAG_AUTOPROBE_CONSUMER | \ 661 DL_FLAG_SYNC_STATE_ONLY | \ 662 DL_FLAG_INFERRED | \ 663 DL_FLAG_CYCLE) 664 665 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 666 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 667 668 /** 669 * device_link_add - Create a link between two devices. 670 * @consumer: Consumer end of the link. 671 * @supplier: Supplier end of the link. 672 * @flags: Link flags. 673 * 674 * Return: On success, a device_link struct will be returned. 675 * On error or invalid flag settings, NULL will be returned. 676 * 677 * The caller is responsible for the proper synchronization of the link creation 678 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 679 * runtime PM framework to take the link into account. Second, if the 680 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 681 * be forced into the active meta state and reference-counted upon the creation 682 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 683 * ignored. 684 * 685 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 686 * expected to release the link returned by it directly with the help of either 687 * device_link_del() or device_link_remove(). 688 * 689 * If that flag is not set, however, the caller of this function is handing the 690 * management of the link over to the driver core entirely and its return value 691 * can only be used to check whether or not the link is present. In that case, 692 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 693 * flags can be used to indicate to the driver core when the link can be safely 694 * deleted. Namely, setting one of them in @flags indicates to the driver core 695 * that the link is not going to be used (by the given caller of this function) 696 * after unbinding the consumer or supplier driver, respectively, from its 697 * device, so the link can be deleted at that point. If none of them is set, 698 * the link will be maintained until one of the devices pointed to by it (either 699 * the consumer or the supplier) is unregistered. 700 * 701 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 702 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 703 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 704 * be used to request the driver core to automatically probe for a consumer 705 * driver after successfully binding a driver to the supplier device. 706 * 707 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 708 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 709 * the same time is invalid and will cause NULL to be returned upfront. 710 * However, if a device link between the given @consumer and @supplier pair 711 * exists already when this function is called for them, the existing link will 712 * be returned regardless of its current type and status (the link's flags may 713 * be modified then). The caller of this function is then expected to treat 714 * the link as though it has just been created, so (in particular) if 715 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 716 * explicitly when not needed any more (as stated above). 717 * 718 * A side effect of the link creation is re-ordering of dpm_list and the 719 * devices_kset list by moving the consumer device and all devices depending 720 * on it to the ends of these lists (that does not happen to devices that have 721 * not been registered when this function is called). 722 * 723 * The supplier device is required to be registered when this function is called 724 * and NULL will be returned if that is not the case. The consumer device need 725 * not be registered, however. 726 */ 727 struct device_link *device_link_add(struct device *consumer, 728 struct device *supplier, u32 flags) 729 { 730 struct device_link *link; 731 732 if (!consumer || !supplier || consumer == supplier || 733 flags & ~DL_ADD_VALID_FLAGS || 734 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 735 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 736 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 737 DL_FLAG_AUTOREMOVE_SUPPLIER))) 738 return NULL; 739 740 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 741 if (pm_runtime_get_sync(supplier) < 0) { 742 pm_runtime_put_noidle(supplier); 743 return NULL; 744 } 745 } 746 747 if (!(flags & DL_FLAG_STATELESS)) 748 flags |= DL_FLAG_MANAGED; 749 750 if (flags & DL_FLAG_SYNC_STATE_ONLY && 751 !device_link_flag_is_sync_state_only(flags)) 752 return NULL; 753 754 device_links_write_lock(); 755 device_pm_lock(); 756 757 /* 758 * If the supplier has not been fully registered yet or there is a 759 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 760 * the supplier already in the graph, return NULL. If the link is a 761 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 762 * because it only affects sync_state() callbacks. 763 */ 764 if (!device_pm_initialized(supplier) 765 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 766 device_is_dependent(consumer, supplier))) { 767 link = NULL; 768 goto out; 769 } 770 771 /* 772 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 773 * So, only create it if the consumer hasn't probed yet. 774 */ 775 if (flags & DL_FLAG_SYNC_STATE_ONLY && 776 consumer->links.status != DL_DEV_NO_DRIVER && 777 consumer->links.status != DL_DEV_PROBING) { 778 link = NULL; 779 goto out; 780 } 781 782 /* 783 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 784 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 785 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 786 */ 787 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 788 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 789 790 list_for_each_entry(link, &supplier->links.consumers, s_node) { 791 if (link->consumer != consumer) 792 continue; 793 794 if (device_link_test(link, DL_FLAG_INFERRED) && 795 !(flags & DL_FLAG_INFERRED)) 796 link->flags &= ~DL_FLAG_INFERRED; 797 798 if (flags & DL_FLAG_PM_RUNTIME) { 799 if (!device_link_test(link, DL_FLAG_PM_RUNTIME)) { 800 pm_runtime_new_link(consumer); 801 link->flags |= DL_FLAG_PM_RUNTIME; 802 } 803 if (flags & DL_FLAG_RPM_ACTIVE) 804 refcount_inc(&link->rpm_active); 805 } 806 807 if (flags & DL_FLAG_STATELESS) { 808 kref_get(&link->kref); 809 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) && 810 !device_link_test(link, DL_FLAG_STATELESS)) { 811 link->flags |= DL_FLAG_STATELESS; 812 goto reorder; 813 } else { 814 link->flags |= DL_FLAG_STATELESS; 815 goto out; 816 } 817 } 818 819 /* 820 * If the life time of the link following from the new flags is 821 * longer than indicated by the flags of the existing link, 822 * update the existing link to stay around longer. 823 */ 824 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 825 if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) { 826 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 827 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 828 } 829 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 830 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 831 DL_FLAG_AUTOREMOVE_SUPPLIER); 832 } 833 if (!device_link_test(link, DL_FLAG_MANAGED)) { 834 kref_get(&link->kref); 835 link->flags |= DL_FLAG_MANAGED; 836 device_link_init_status(link, consumer, supplier); 837 } 838 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) && 839 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 840 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 841 goto reorder; 842 } 843 844 goto out; 845 } 846 847 link = kzalloc(sizeof(*link), GFP_KERNEL); 848 if (!link) 849 goto out; 850 851 refcount_set(&link->rpm_active, 1); 852 853 get_device(supplier); 854 link->supplier = supplier; 855 INIT_LIST_HEAD(&link->s_node); 856 get_device(consumer); 857 link->consumer = consumer; 858 INIT_LIST_HEAD(&link->c_node); 859 link->flags = flags; 860 kref_init(&link->kref); 861 862 link->link_dev.class = &devlink_class; 863 device_set_pm_not_required(&link->link_dev); 864 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 865 dev_bus_name(supplier), dev_name(supplier), 866 dev_bus_name(consumer), dev_name(consumer)); 867 if (device_register(&link->link_dev)) { 868 put_device(&link->link_dev); 869 link = NULL; 870 goto out; 871 } 872 873 if (flags & DL_FLAG_PM_RUNTIME) { 874 if (flags & DL_FLAG_RPM_ACTIVE) 875 refcount_inc(&link->rpm_active); 876 877 pm_runtime_new_link(consumer); 878 } 879 880 /* Determine the initial link state. */ 881 if (flags & DL_FLAG_STATELESS) 882 link->status = DL_STATE_NONE; 883 else 884 device_link_init_status(link, consumer, supplier); 885 886 /* 887 * Some callers expect the link creation during consumer driver probe to 888 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 889 */ 890 if (link->status == DL_STATE_CONSUMER_PROBE && 891 flags & DL_FLAG_PM_RUNTIME) 892 pm_runtime_resume(supplier); 893 894 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 895 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 896 897 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 898 dev_dbg(consumer, 899 "Linked as a sync state only consumer to %s\n", 900 dev_name(supplier)); 901 goto out; 902 } 903 904 reorder: 905 /* 906 * Move the consumer and all of the devices depending on it to the end 907 * of dpm_list and the devices_kset list. 908 * 909 * It is necessary to hold dpm_list locked throughout all that or else 910 * we may end up suspending with a wrong ordering of it. 911 */ 912 device_reorder_to_tail(consumer, NULL); 913 914 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 915 916 out: 917 device_pm_unlock(); 918 device_links_write_unlock(); 919 920 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 921 pm_runtime_put(supplier); 922 923 return link; 924 } 925 EXPORT_SYMBOL_GPL(device_link_add); 926 927 static void __device_link_del(struct kref *kref) 928 { 929 struct device_link *link = container_of(kref, struct device_link, kref); 930 931 dev_dbg(link->consumer, "Dropping the link to %s\n", 932 dev_name(link->supplier)); 933 934 pm_runtime_drop_link(link); 935 936 device_link_remove_from_lists(link); 937 device_unregister(&link->link_dev); 938 } 939 940 static void device_link_put_kref(struct device_link *link) 941 { 942 if (device_link_test(link, DL_FLAG_STATELESS)) 943 kref_put(&link->kref, __device_link_del); 944 else if (!device_is_registered(link->consumer)) 945 __device_link_del(&link->kref); 946 else 947 WARN(1, "Unable to drop a managed device link reference\n"); 948 } 949 950 /** 951 * device_link_del - Delete a stateless link between two devices. 952 * @link: Device link to delete. 953 * 954 * The caller must ensure proper synchronization of this function with runtime 955 * PM. If the link was added multiple times, it needs to be deleted as often. 956 * Care is required for hotplugged devices: Their links are purged on removal 957 * and calling device_link_del() is then no longer allowed. 958 */ 959 void device_link_del(struct device_link *link) 960 { 961 device_links_write_lock(); 962 device_link_put_kref(link); 963 device_links_write_unlock(); 964 } 965 EXPORT_SYMBOL_GPL(device_link_del); 966 967 /** 968 * device_link_remove - Delete a stateless link between two devices. 969 * @consumer: Consumer end of the link. 970 * @supplier: Supplier end of the link. 971 * 972 * The caller must ensure proper synchronization of this function with runtime 973 * PM. 974 */ 975 void device_link_remove(void *consumer, struct device *supplier) 976 { 977 struct device_link *link; 978 979 if (WARN_ON(consumer == supplier)) 980 return; 981 982 device_links_write_lock(); 983 984 list_for_each_entry(link, &supplier->links.consumers, s_node) { 985 if (link->consumer == consumer) { 986 device_link_put_kref(link); 987 break; 988 } 989 } 990 991 device_links_write_unlock(); 992 } 993 EXPORT_SYMBOL_GPL(device_link_remove); 994 995 static void device_links_missing_supplier(struct device *dev) 996 { 997 struct device_link *link; 998 999 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1000 if (link->status != DL_STATE_CONSUMER_PROBE) 1001 continue; 1002 1003 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1004 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1005 } else { 1006 WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)); 1007 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1008 } 1009 } 1010 } 1011 1012 static bool dev_is_best_effort(struct device *dev) 1013 { 1014 return (fw_devlink_best_effort && dev->can_match) || 1015 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1016 } 1017 1018 static struct fwnode_handle *fwnode_links_check_suppliers( 1019 struct fwnode_handle *fwnode) 1020 { 1021 struct fwnode_link *link; 1022 1023 if (!fwnode || fw_devlink_is_permissive()) 1024 return NULL; 1025 1026 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1027 if (!(link->flags & 1028 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1029 return link->supplier; 1030 1031 return NULL; 1032 } 1033 1034 /** 1035 * device_links_check_suppliers - Check presence of supplier drivers. 1036 * @dev: Consumer device. 1037 * 1038 * Check links from this device to any suppliers. Walk the list of the device's 1039 * links to suppliers and see if all of them are available. If not, simply 1040 * return -EPROBE_DEFER. 1041 * 1042 * We need to guarantee that the supplier will not go away after the check has 1043 * been positive here. It only can go away in __device_release_driver() and 1044 * that function checks the device's links to consumers. This means we need to 1045 * mark the link as "consumer probe in progress" to make the supplier removal 1046 * wait for us to complete (or bad things may happen). 1047 * 1048 * Links without the DL_FLAG_MANAGED flag set are ignored. 1049 */ 1050 int device_links_check_suppliers(struct device *dev) 1051 { 1052 struct device_link *link; 1053 int ret = 0, fwnode_ret = 0; 1054 struct fwnode_handle *sup_fw; 1055 1056 /* 1057 * Device waiting for supplier to become available is not allowed to 1058 * probe. 1059 */ 1060 scoped_guard(mutex, &fwnode_link_lock) { 1061 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1062 if (sup_fw) { 1063 if (dev_is_best_effort(dev)) 1064 fwnode_ret = -EAGAIN; 1065 else 1066 return dev_err_probe(dev, -EPROBE_DEFER, 1067 "wait for supplier %pfwf\n", sup_fw); 1068 } 1069 } 1070 1071 device_links_write_lock(); 1072 1073 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1074 if (!device_link_test(link, DL_FLAG_MANAGED)) 1075 continue; 1076 1077 if (link->status != DL_STATE_AVAILABLE && 1078 !device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) { 1079 1080 if (dev_is_best_effort(dev) && 1081 device_link_test(link, DL_FLAG_INFERRED) && 1082 !link->supplier->can_match) { 1083 ret = -EAGAIN; 1084 continue; 1085 } 1086 1087 device_links_missing_supplier(dev); 1088 ret = dev_err_probe(dev, -EPROBE_DEFER, 1089 "supplier %s not ready\n", dev_name(link->supplier)); 1090 break; 1091 } 1092 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1093 } 1094 dev->links.status = DL_DEV_PROBING; 1095 1096 device_links_write_unlock(); 1097 1098 return ret ? ret : fwnode_ret; 1099 } 1100 1101 /** 1102 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1103 * @dev: Device to call sync_state() on 1104 * @list: List head to queue the @dev on 1105 * 1106 * Queues a device for a sync_state() callback when the device links write lock 1107 * isn't held. This allows the sync_state() execution flow to use device links 1108 * APIs. The caller must ensure this function is called with 1109 * device_links_write_lock() held. 1110 * 1111 * This function does a get_device() to make sure the device is not freed while 1112 * on this list. 1113 * 1114 * So the caller must also ensure that device_links_flush_sync_list() is called 1115 * as soon as the caller releases device_links_write_lock(). This is necessary 1116 * to make sure the sync_state() is called in a timely fashion and the 1117 * put_device() is called on this device. 1118 */ 1119 static void __device_links_queue_sync_state(struct device *dev, 1120 struct list_head *list) 1121 { 1122 struct device_link *link; 1123 1124 if (!dev_has_sync_state(dev)) 1125 return; 1126 if (dev->state_synced) 1127 return; 1128 1129 list_for_each_entry(link, &dev->links.consumers, s_node) { 1130 if (!device_link_test(link, DL_FLAG_MANAGED)) 1131 continue; 1132 if (link->status != DL_STATE_ACTIVE) 1133 return; 1134 } 1135 1136 /* 1137 * Set the flag here to avoid adding the same device to a list more 1138 * than once. This can happen if new consumers get added to the device 1139 * and probed before the list is flushed. 1140 */ 1141 dev->state_synced = true; 1142 1143 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1144 return; 1145 1146 get_device(dev); 1147 list_add_tail(&dev->links.defer_sync, list); 1148 } 1149 1150 /** 1151 * device_links_flush_sync_list - Call sync_state() on a list of devices 1152 * @list: List of devices to call sync_state() on 1153 * @dont_lock_dev: Device for which lock is already held by the caller 1154 * 1155 * Calls sync_state() on all the devices that have been queued for it. This 1156 * function is used in conjunction with __device_links_queue_sync_state(). The 1157 * @dont_lock_dev parameter is useful when this function is called from a 1158 * context where a device lock is already held. 1159 */ 1160 static void device_links_flush_sync_list(struct list_head *list, 1161 struct device *dont_lock_dev) 1162 { 1163 struct device *dev, *tmp; 1164 1165 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1166 list_del_init(&dev->links.defer_sync); 1167 1168 if (dev != dont_lock_dev) 1169 device_lock(dev); 1170 1171 dev_sync_state(dev); 1172 1173 if (dev != dont_lock_dev) 1174 device_unlock(dev); 1175 1176 put_device(dev); 1177 } 1178 } 1179 1180 void device_links_supplier_sync_state_pause(void) 1181 { 1182 device_links_write_lock(); 1183 defer_sync_state_count++; 1184 device_links_write_unlock(); 1185 } 1186 1187 void device_links_supplier_sync_state_resume(void) 1188 { 1189 struct device *dev, *tmp; 1190 LIST_HEAD(sync_list); 1191 1192 device_links_write_lock(); 1193 if (!defer_sync_state_count) { 1194 WARN(true, "Unmatched sync_state pause/resume!"); 1195 goto out; 1196 } 1197 defer_sync_state_count--; 1198 if (defer_sync_state_count) 1199 goto out; 1200 1201 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1202 /* 1203 * Delete from deferred_sync list before queuing it to 1204 * sync_list because defer_sync is used for both lists. 1205 */ 1206 list_del_init(&dev->links.defer_sync); 1207 __device_links_queue_sync_state(dev, &sync_list); 1208 } 1209 out: 1210 device_links_write_unlock(); 1211 1212 device_links_flush_sync_list(&sync_list, NULL); 1213 } 1214 1215 static int sync_state_resume_initcall(void) 1216 { 1217 device_links_supplier_sync_state_resume(); 1218 return 0; 1219 } 1220 late_initcall(sync_state_resume_initcall); 1221 1222 static void __device_links_supplier_defer_sync(struct device *sup) 1223 { 1224 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1225 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1226 } 1227 1228 static void device_link_drop_managed(struct device_link *link) 1229 { 1230 link->flags &= ~DL_FLAG_MANAGED; 1231 WRITE_ONCE(link->status, DL_STATE_NONE); 1232 kref_put(&link->kref, __device_link_del); 1233 } 1234 1235 static ssize_t waiting_for_supplier_show(struct device *dev, 1236 struct device_attribute *attr, 1237 char *buf) 1238 { 1239 bool val; 1240 1241 device_lock(dev); 1242 scoped_guard(mutex, &fwnode_link_lock) 1243 val = !!fwnode_links_check_suppliers(dev->fwnode); 1244 device_unlock(dev); 1245 return sysfs_emit(buf, "%u\n", val); 1246 } 1247 static DEVICE_ATTR_RO(waiting_for_supplier); 1248 1249 /** 1250 * device_links_force_bind - Prepares device to be force bound 1251 * @dev: Consumer device. 1252 * 1253 * device_bind_driver() force binds a device to a driver without calling any 1254 * driver probe functions. So the consumer really isn't going to wait for any 1255 * supplier before it's bound to the driver. We still want the device link 1256 * states to be sensible when this happens. 1257 * 1258 * In preparation for device_bind_driver(), this function goes through each 1259 * supplier device links and checks if the supplier is bound. If it is, then 1260 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1261 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1262 */ 1263 void device_links_force_bind(struct device *dev) 1264 { 1265 struct device_link *link, *ln; 1266 1267 device_links_write_lock(); 1268 1269 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1270 if (!device_link_test(link, DL_FLAG_MANAGED)) 1271 continue; 1272 1273 if (link->status != DL_STATE_AVAILABLE) { 1274 device_link_drop_managed(link); 1275 continue; 1276 } 1277 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1278 } 1279 dev->links.status = DL_DEV_PROBING; 1280 1281 device_links_write_unlock(); 1282 } 1283 1284 /** 1285 * device_links_driver_bound - Update device links after probing its driver. 1286 * @dev: Device to update the links for. 1287 * 1288 * The probe has been successful, so update links from this device to any 1289 * consumers by changing their status to "available". 1290 * 1291 * Also change the status of @dev's links to suppliers to "active". 1292 * 1293 * Links without the DL_FLAG_MANAGED flag set are ignored. 1294 */ 1295 void device_links_driver_bound(struct device *dev) 1296 { 1297 struct device_link *link, *ln; 1298 LIST_HEAD(sync_list); 1299 1300 /* 1301 * If a device binds successfully, it's expected to have created all 1302 * the device links it needs to or make new device links as it needs 1303 * them. So, fw_devlink no longer needs to create device links to any 1304 * of the device's suppliers. 1305 * 1306 * Also, if a child firmware node of this bound device is not added as a 1307 * device by now, assume it is never going to be added. Make this bound 1308 * device the fallback supplier to the dangling consumers of the child 1309 * firmware node because this bound device is probably implementing the 1310 * child firmware node functionality and we don't want the dangling 1311 * consumers to defer probe indefinitely waiting for a device for the 1312 * child firmware node. 1313 */ 1314 if (dev->fwnode && dev->fwnode->dev == dev) { 1315 struct fwnode_handle *child; 1316 1317 fwnode_links_purge_suppliers(dev->fwnode); 1318 1319 guard(mutex)(&fwnode_link_lock); 1320 1321 fwnode_for_each_available_child_node(dev->fwnode, child) 1322 __fw_devlink_pickup_dangling_consumers(child, 1323 dev->fwnode); 1324 __fw_devlink_link_to_consumers(dev); 1325 } 1326 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1327 1328 device_links_write_lock(); 1329 1330 list_for_each_entry(link, &dev->links.consumers, s_node) { 1331 if (!device_link_test(link, DL_FLAG_MANAGED)) 1332 continue; 1333 1334 /* 1335 * Links created during consumer probe may be in the "consumer 1336 * probe" state to start with if the supplier is still probing 1337 * when they are created and they may become "active" if the 1338 * consumer probe returns first. Skip them here. 1339 */ 1340 if (link->status == DL_STATE_CONSUMER_PROBE || 1341 link->status == DL_STATE_ACTIVE) 1342 continue; 1343 1344 WARN_ON(link->status != DL_STATE_DORMANT); 1345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1346 1347 if (device_link_test(link, DL_FLAG_AUTOPROBE_CONSUMER)) 1348 driver_deferred_probe_add(link->consumer); 1349 } 1350 1351 if (defer_sync_state_count) 1352 __device_links_supplier_defer_sync(dev); 1353 else 1354 __device_links_queue_sync_state(dev, &sync_list); 1355 1356 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1357 struct device *supplier; 1358 1359 if (!device_link_test(link, DL_FLAG_MANAGED)) 1360 continue; 1361 1362 supplier = link->supplier; 1363 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) { 1364 /* 1365 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1366 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1367 * save to drop the managed link completely. 1368 */ 1369 device_link_drop_managed(link); 1370 } else if (dev_is_best_effort(dev) && 1371 device_link_test(link, DL_FLAG_INFERRED) && 1372 link->status != DL_STATE_CONSUMER_PROBE && 1373 !link->supplier->can_match) { 1374 /* 1375 * When dev_is_best_effort() is true, we ignore device 1376 * links to suppliers that don't have a driver. If the 1377 * consumer device still managed to probe, there's no 1378 * point in maintaining a device link in a weird state 1379 * (consumer probed before supplier). So delete it. 1380 */ 1381 device_link_drop_managed(link); 1382 } else { 1383 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1384 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1385 } 1386 1387 /* 1388 * This needs to be done even for the deleted 1389 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1390 * device link that was preventing the supplier from getting a 1391 * sync_state() call. 1392 */ 1393 if (defer_sync_state_count) 1394 __device_links_supplier_defer_sync(supplier); 1395 else 1396 __device_links_queue_sync_state(supplier, &sync_list); 1397 } 1398 1399 dev->links.status = DL_DEV_DRIVER_BOUND; 1400 1401 device_links_write_unlock(); 1402 1403 device_links_flush_sync_list(&sync_list, dev); 1404 } 1405 1406 /** 1407 * __device_links_no_driver - Update links of a device without a driver. 1408 * @dev: Device without a drvier. 1409 * 1410 * Delete all non-persistent links from this device to any suppliers. 1411 * 1412 * Persistent links stay around, but their status is changed to "available", 1413 * unless they already are in the "supplier unbind in progress" state in which 1414 * case they need not be updated. 1415 * 1416 * Links without the DL_FLAG_MANAGED flag set are ignored. 1417 */ 1418 static void __device_links_no_driver(struct device *dev) 1419 { 1420 struct device_link *link, *ln; 1421 1422 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1423 if (!device_link_test(link, DL_FLAG_MANAGED)) 1424 continue; 1425 1426 if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) { 1427 device_link_drop_managed(link); 1428 continue; 1429 } 1430 1431 if (link->status != DL_STATE_CONSUMER_PROBE && 1432 link->status != DL_STATE_ACTIVE) 1433 continue; 1434 1435 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1436 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1437 } else { 1438 WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)); 1439 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1440 } 1441 } 1442 1443 dev->links.status = DL_DEV_NO_DRIVER; 1444 } 1445 1446 /** 1447 * device_links_no_driver - Update links after failing driver probe. 1448 * @dev: Device whose driver has just failed to probe. 1449 * 1450 * Clean up leftover links to consumers for @dev and invoke 1451 * %__device_links_no_driver() to update links to suppliers for it as 1452 * appropriate. 1453 * 1454 * Links without the DL_FLAG_MANAGED flag set are ignored. 1455 */ 1456 void device_links_no_driver(struct device *dev) 1457 { 1458 struct device_link *link; 1459 1460 device_links_write_lock(); 1461 1462 list_for_each_entry(link, &dev->links.consumers, s_node) { 1463 if (!device_link_test(link, DL_FLAG_MANAGED)) 1464 continue; 1465 1466 /* 1467 * The probe has failed, so if the status of the link is 1468 * "consumer probe" or "active", it must have been added by 1469 * a probing consumer while this device was still probing. 1470 * Change its state to "dormant", as it represents a valid 1471 * relationship, but it is not functionally meaningful. 1472 */ 1473 if (link->status == DL_STATE_CONSUMER_PROBE || 1474 link->status == DL_STATE_ACTIVE) 1475 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1476 } 1477 1478 __device_links_no_driver(dev); 1479 1480 device_links_write_unlock(); 1481 } 1482 1483 /** 1484 * device_links_driver_cleanup - Update links after driver removal. 1485 * @dev: Device whose driver has just gone away. 1486 * 1487 * Update links to consumers for @dev by changing their status to "dormant" and 1488 * invoke %__device_links_no_driver() to update links to suppliers for it as 1489 * appropriate. 1490 * 1491 * Links without the DL_FLAG_MANAGED flag set are ignored. 1492 */ 1493 void device_links_driver_cleanup(struct device *dev) 1494 { 1495 struct device_link *link, *ln; 1496 1497 device_links_write_lock(); 1498 1499 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1500 if (!device_link_test(link, DL_FLAG_MANAGED)) 1501 continue; 1502 1503 WARN_ON(device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)); 1504 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1505 1506 /* 1507 * autoremove the links between this @dev and its consumer 1508 * devices that are not active, i.e. where the link state 1509 * has moved to DL_STATE_SUPPLIER_UNBIND. 1510 */ 1511 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1512 device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER)) 1513 device_link_drop_managed(link); 1514 1515 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1516 } 1517 1518 list_del_init(&dev->links.defer_sync); 1519 __device_links_no_driver(dev); 1520 1521 device_links_write_unlock(); 1522 } 1523 1524 /** 1525 * device_links_busy - Check if there are any busy links to consumers. 1526 * @dev: Device to check. 1527 * 1528 * Check each consumer of the device and return 'true' if its link's status 1529 * is one of "consumer probe" or "active" (meaning that the given consumer is 1530 * probing right now or its driver is present). Otherwise, change the link 1531 * state to "supplier unbind" to prevent the consumer from being probed 1532 * successfully going forward. 1533 * 1534 * Return 'false' if there are no probing or active consumers. 1535 * 1536 * Links without the DL_FLAG_MANAGED flag set are ignored. 1537 */ 1538 bool device_links_busy(struct device *dev) 1539 { 1540 struct device_link *link; 1541 bool ret = false; 1542 1543 device_links_write_lock(); 1544 1545 list_for_each_entry(link, &dev->links.consumers, s_node) { 1546 if (!device_link_test(link, DL_FLAG_MANAGED)) 1547 continue; 1548 1549 if (link->status == DL_STATE_CONSUMER_PROBE 1550 || link->status == DL_STATE_ACTIVE) { 1551 ret = true; 1552 break; 1553 } 1554 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1555 } 1556 1557 dev->links.status = DL_DEV_UNBINDING; 1558 1559 device_links_write_unlock(); 1560 return ret; 1561 } 1562 1563 /** 1564 * device_links_unbind_consumers - Force unbind consumers of the given device. 1565 * @dev: Device to unbind the consumers of. 1566 * 1567 * Walk the list of links to consumers for @dev and if any of them is in the 1568 * "consumer probe" state, wait for all device probes in progress to complete 1569 * and start over. 1570 * 1571 * If that's not the case, change the status of the link to "supplier unbind" 1572 * and check if the link was in the "active" state. If so, force the consumer 1573 * driver to unbind and start over (the consumer will not re-probe as we have 1574 * changed the state of the link already). 1575 * 1576 * Links without the DL_FLAG_MANAGED flag set are ignored. 1577 */ 1578 void device_links_unbind_consumers(struct device *dev) 1579 { 1580 struct device_link *link; 1581 1582 start: 1583 device_links_write_lock(); 1584 1585 list_for_each_entry(link, &dev->links.consumers, s_node) { 1586 enum device_link_state status; 1587 1588 if (!device_link_test(link, DL_FLAG_MANAGED) || 1589 device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) 1590 continue; 1591 1592 status = link->status; 1593 if (status == DL_STATE_CONSUMER_PROBE) { 1594 device_links_write_unlock(); 1595 1596 wait_for_device_probe(); 1597 goto start; 1598 } 1599 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1600 if (status == DL_STATE_ACTIVE) { 1601 struct device *consumer = link->consumer; 1602 1603 get_device(consumer); 1604 1605 device_links_write_unlock(); 1606 1607 device_release_driver_internal(consumer, NULL, 1608 consumer->parent); 1609 put_device(consumer); 1610 goto start; 1611 } 1612 } 1613 1614 device_links_write_unlock(); 1615 } 1616 1617 /** 1618 * device_links_purge - Delete existing links to other devices. 1619 * @dev: Target device. 1620 */ 1621 static void device_links_purge(struct device *dev) 1622 { 1623 struct device_link *link, *ln; 1624 1625 if (dev->class == &devlink_class) 1626 return; 1627 1628 /* 1629 * Delete all of the remaining links from this device to any other 1630 * devices (either consumers or suppliers). 1631 */ 1632 device_links_write_lock(); 1633 1634 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1635 WARN_ON(link->status == DL_STATE_ACTIVE); 1636 __device_link_del(&link->kref); 1637 } 1638 1639 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1640 WARN_ON(link->status != DL_STATE_DORMANT && 1641 link->status != DL_STATE_NONE); 1642 __device_link_del(&link->kref); 1643 } 1644 1645 device_links_write_unlock(); 1646 } 1647 1648 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1649 DL_FLAG_SYNC_STATE_ONLY) 1650 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1651 DL_FLAG_AUTOPROBE_CONSUMER) 1652 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1653 DL_FLAG_PM_RUNTIME) 1654 1655 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1656 static int __init fw_devlink_setup(char *arg) 1657 { 1658 if (!arg) 1659 return -EINVAL; 1660 1661 if (strcmp(arg, "off") == 0) { 1662 fw_devlink_flags = 0; 1663 } else if (strcmp(arg, "permissive") == 0) { 1664 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1665 } else if (strcmp(arg, "on") == 0) { 1666 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1667 } else if (strcmp(arg, "rpm") == 0) { 1668 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1669 } 1670 return 0; 1671 } 1672 early_param("fw_devlink", fw_devlink_setup); 1673 1674 static bool fw_devlink_strict; 1675 static int __init fw_devlink_strict_setup(char *arg) 1676 { 1677 return kstrtobool(arg, &fw_devlink_strict); 1678 } 1679 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1680 1681 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1682 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1683 1684 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1685 static int fw_devlink_sync_state; 1686 #else 1687 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1688 #endif 1689 1690 static int __init fw_devlink_sync_state_setup(char *arg) 1691 { 1692 if (!arg) 1693 return -EINVAL; 1694 1695 if (strcmp(arg, "strict") == 0) { 1696 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1697 return 0; 1698 } else if (strcmp(arg, "timeout") == 0) { 1699 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1700 return 0; 1701 } 1702 return -EINVAL; 1703 } 1704 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1705 1706 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1707 { 1708 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1709 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1710 1711 return fw_devlink_flags; 1712 } 1713 1714 static bool fw_devlink_is_permissive(void) 1715 { 1716 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1717 } 1718 1719 bool fw_devlink_is_strict(void) 1720 { 1721 return fw_devlink_strict && !fw_devlink_is_permissive(); 1722 } 1723 1724 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1725 { 1726 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1727 return; 1728 1729 fwnode_call_int_op(fwnode, add_links); 1730 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1731 } 1732 1733 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1734 { 1735 struct fwnode_handle *child = NULL; 1736 1737 fw_devlink_parse_fwnode(fwnode); 1738 1739 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1740 fw_devlink_parse_fwtree(child); 1741 } 1742 1743 static void fw_devlink_relax_link(struct device_link *link) 1744 { 1745 if (!device_link_test(link, DL_FLAG_INFERRED)) 1746 return; 1747 1748 if (device_link_flag_is_sync_state_only(link->flags)) 1749 return; 1750 1751 pm_runtime_drop_link(link); 1752 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1753 dev_dbg(link->consumer, "Relaxing link with %s\n", 1754 dev_name(link->supplier)); 1755 } 1756 1757 static int fw_devlink_no_driver(struct device *dev, void *data) 1758 { 1759 struct device_link *link = to_devlink(dev); 1760 1761 if (!link->supplier->can_match) 1762 fw_devlink_relax_link(link); 1763 1764 return 0; 1765 } 1766 1767 void fw_devlink_drivers_done(void) 1768 { 1769 fw_devlink_drv_reg_done = true; 1770 device_links_write_lock(); 1771 class_for_each_device(&devlink_class, NULL, NULL, 1772 fw_devlink_no_driver); 1773 device_links_write_unlock(); 1774 } 1775 1776 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1777 { 1778 struct device_link *link = to_devlink(dev); 1779 struct device *sup = link->supplier; 1780 1781 if (!device_link_test(link, DL_FLAG_MANAGED) || 1782 link->status == DL_STATE_ACTIVE || sup->state_synced || 1783 !dev_has_sync_state(sup)) 1784 return 0; 1785 1786 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1787 dev_warn(sup, "sync_state() pending due to %s\n", 1788 dev_name(link->consumer)); 1789 return 0; 1790 } 1791 1792 if (!list_empty(&sup->links.defer_sync)) 1793 return 0; 1794 1795 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1796 sup->state_synced = true; 1797 get_device(sup); 1798 list_add_tail(&sup->links.defer_sync, data); 1799 1800 return 0; 1801 } 1802 1803 void fw_devlink_probing_done(void) 1804 { 1805 LIST_HEAD(sync_list); 1806 1807 device_links_write_lock(); 1808 class_for_each_device(&devlink_class, NULL, &sync_list, 1809 fw_devlink_dev_sync_state); 1810 device_links_write_unlock(); 1811 device_links_flush_sync_list(&sync_list, NULL); 1812 } 1813 1814 /** 1815 * wait_for_init_devices_probe - Try to probe any device needed for init 1816 * 1817 * Some devices might need to be probed and bound successfully before the kernel 1818 * boot sequence can finish and move on to init/userspace. For example, a 1819 * network interface might need to be bound to be able to mount a NFS rootfs. 1820 * 1821 * With fw_devlink=on by default, some of these devices might be blocked from 1822 * probing because they are waiting on a optional supplier that doesn't have a 1823 * driver. While fw_devlink will eventually identify such devices and unblock 1824 * the probing automatically, it might be too late by the time it unblocks the 1825 * probing of devices. For example, the IP4 autoconfig might timeout before 1826 * fw_devlink unblocks probing of the network interface. 1827 * 1828 * This function is available to temporarily try and probe all devices that have 1829 * a driver even if some of their suppliers haven't been added or don't have 1830 * drivers. 1831 * 1832 * The drivers can then decide which of the suppliers are optional vs mandatory 1833 * and probe the device if possible. By the time this function returns, all such 1834 * "best effort" probes are guaranteed to be completed. If a device successfully 1835 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1836 * device where the supplier hasn't yet probed successfully because they have to 1837 * be optional dependencies. 1838 * 1839 * Any devices that didn't successfully probe go back to being treated as if 1840 * this function was never called. 1841 * 1842 * This also means that some devices that aren't needed for init and could have 1843 * waited for their optional supplier to probe (when the supplier's module is 1844 * loaded later on) would end up probing prematurely with limited functionality. 1845 * So call this function only when boot would fail without it. 1846 */ 1847 void __init wait_for_init_devices_probe(void) 1848 { 1849 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1850 return; 1851 1852 /* 1853 * Wait for all ongoing probes to finish so that the "best effort" is 1854 * only applied to devices that can't probe otherwise. 1855 */ 1856 wait_for_device_probe(); 1857 1858 pr_info("Trying to probe devices needed for running init ...\n"); 1859 fw_devlink_best_effort = true; 1860 driver_deferred_probe_trigger(); 1861 1862 /* 1863 * Wait for all "best effort" probes to finish before going back to 1864 * normal enforcement. 1865 */ 1866 wait_for_device_probe(); 1867 fw_devlink_best_effort = false; 1868 } 1869 1870 static void fw_devlink_unblock_consumers(struct device *dev) 1871 { 1872 struct device_link *link; 1873 1874 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1875 return; 1876 1877 device_links_write_lock(); 1878 list_for_each_entry(link, &dev->links.consumers, s_node) 1879 fw_devlink_relax_link(link); 1880 device_links_write_unlock(); 1881 } 1882 1883 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1884 1885 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1886 { 1887 struct device *dev; 1888 bool ret; 1889 1890 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1891 return false; 1892 1893 dev = get_dev_from_fwnode(fwnode); 1894 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1895 put_device(dev); 1896 1897 return ret; 1898 } 1899 1900 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1901 { 1902 struct fwnode_handle *parent; 1903 1904 fwnode_for_each_parent_node(fwnode, parent) { 1905 if (fwnode_init_without_drv(parent)) { 1906 fwnode_handle_put(parent); 1907 return true; 1908 } 1909 } 1910 1911 return false; 1912 } 1913 1914 /** 1915 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1916 * @ancestor: Firmware which is tested for being an ancestor 1917 * @child: Firmware which is tested for being the child 1918 * 1919 * A node is considered an ancestor of itself too. 1920 * 1921 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1922 */ 1923 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1924 const struct fwnode_handle *child) 1925 { 1926 struct fwnode_handle *parent; 1927 1928 if (IS_ERR_OR_NULL(ancestor)) 1929 return false; 1930 1931 if (child == ancestor) 1932 return true; 1933 1934 fwnode_for_each_parent_node(child, parent) { 1935 if (parent == ancestor) { 1936 fwnode_handle_put(parent); 1937 return true; 1938 } 1939 } 1940 return false; 1941 } 1942 1943 /** 1944 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1945 * @fwnode: firmware node 1946 * 1947 * Given a firmware node (@fwnode), this function finds its closest ancestor 1948 * firmware node that has a corresponding struct device and returns that struct 1949 * device. 1950 * 1951 * The caller is responsible for calling put_device() on the returned device 1952 * pointer. 1953 * 1954 * Return: a pointer to the device of the @fwnode's closest ancestor. 1955 */ 1956 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1957 { 1958 struct fwnode_handle *parent; 1959 struct device *dev; 1960 1961 fwnode_for_each_parent_node(fwnode, parent) { 1962 dev = get_dev_from_fwnode(parent); 1963 if (dev) { 1964 fwnode_handle_put(parent); 1965 return dev; 1966 } 1967 } 1968 return NULL; 1969 } 1970 1971 /** 1972 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1973 * @con_handle: Potential consumer device fwnode. 1974 * @sup_handle: Potential supplier's fwnode. 1975 * 1976 * Needs to be called with fwnode_lock and device link lock held. 1977 * 1978 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1979 * depend on @con. This function can detect multiple cyles between @sup_handle 1980 * and @con. When such dependency cycles are found, convert all device links 1981 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1982 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1983 * converted into a device link in the future, they are created as 1984 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1985 * fw_devlink=permissive just between the devices in the cycle. We need to do 1986 * this because, at this point, fw_devlink can't tell which of these 1987 * dependencies is not a real dependency. 1988 * 1989 * Return true if one or more cycles were found. Otherwise, return false. 1990 */ 1991 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle, 1992 struct fwnode_handle *sup_handle) 1993 { 1994 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL; 1995 struct fwnode_link *link; 1996 struct device_link *dev_link; 1997 bool ret = false; 1998 1999 if (!sup_handle) 2000 return false; 2001 2002 /* 2003 * We aren't trying to find all cycles. Just a cycle between con and 2004 * sup_handle. 2005 */ 2006 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2007 return false; 2008 2009 sup_handle->flags |= FWNODE_FLAG_VISITED; 2010 2011 /* Termination condition. */ 2012 if (sup_handle == con_handle) { 2013 pr_debug("----- cycle: start -----\n"); 2014 ret = true; 2015 goto out; 2016 } 2017 2018 sup_dev = get_dev_from_fwnode(sup_handle); 2019 con_dev = get_dev_from_fwnode(con_handle); 2020 /* 2021 * If sup_dev is bound to a driver and @con hasn't started binding to a 2022 * driver, sup_dev can't be a consumer of @con. So, no need to check 2023 * further. 2024 */ 2025 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2026 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) { 2027 ret = false; 2028 goto out; 2029 } 2030 2031 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2032 if (link->flags & FWLINK_FLAG_IGNORE) 2033 continue; 2034 2035 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) { 2036 __fwnode_link_cycle(link); 2037 ret = true; 2038 } 2039 } 2040 2041 /* 2042 * Give priority to device parent over fwnode parent to account for any 2043 * quirks in how fwnodes are converted to devices. 2044 */ 2045 if (sup_dev) 2046 par_dev = get_device(sup_dev->parent); 2047 else 2048 par_dev = fwnode_get_next_parent_dev(sup_handle); 2049 2050 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) { 2051 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2052 par_dev->fwnode); 2053 ret = true; 2054 } 2055 2056 if (!sup_dev) 2057 goto out; 2058 2059 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2060 /* 2061 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2062 * such due to a cycle. 2063 */ 2064 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2065 !device_link_test(dev_link, DL_FLAG_CYCLE)) 2066 continue; 2067 2068 if (__fw_devlink_relax_cycles(con_handle, 2069 dev_link->supplier->fwnode)) { 2070 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2071 dev_link->supplier->fwnode); 2072 fw_devlink_relax_link(dev_link); 2073 dev_link->flags |= DL_FLAG_CYCLE; 2074 ret = true; 2075 } 2076 } 2077 2078 out: 2079 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2080 put_device(sup_dev); 2081 put_device(con_dev); 2082 put_device(par_dev); 2083 return ret; 2084 } 2085 2086 /** 2087 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2088 * @con: consumer device for the device link 2089 * @sup_handle: fwnode handle of supplier 2090 * @link: fwnode link that's being converted to a device link 2091 * 2092 * This function will try to create a device link between the consumer device 2093 * @con and the supplier device represented by @sup_handle. 2094 * 2095 * The supplier has to be provided as a fwnode because incorrect cycles in 2096 * fwnode links can sometimes cause the supplier device to never be created. 2097 * This function detects such cases and returns an error if it cannot create a 2098 * device link from the consumer to a missing supplier. 2099 * 2100 * Returns, 2101 * 0 on successfully creating a device link 2102 * -EINVAL if the device link cannot be created as expected 2103 * -EAGAIN if the device link cannot be created right now, but it may be 2104 * possible to do that in the future 2105 */ 2106 static int fw_devlink_create_devlink(struct device *con, 2107 struct fwnode_handle *sup_handle, 2108 struct fwnode_link *link) 2109 { 2110 struct device *sup_dev; 2111 int ret = 0; 2112 u32 flags; 2113 2114 if (link->flags & FWLINK_FLAG_IGNORE) 2115 return 0; 2116 2117 /* 2118 * In some cases, a device P might also be a supplier to its child node 2119 * C. However, this would defer the probe of C until the probe of P 2120 * completes successfully. This is perfectly fine in the device driver 2121 * model. device_add() doesn't guarantee probe completion of the device 2122 * by the time it returns. 2123 * 2124 * However, there are a few drivers that assume C will finish probing 2125 * as soon as it's added and before P finishes probing. So, we provide 2126 * a flag to let fw_devlink know not to delay the probe of C until the 2127 * probe of P completes successfully. 2128 * 2129 * When such a flag is set, we can't create device links where P is the 2130 * supplier of C as that would delay the probe of C. 2131 */ 2132 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2133 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2134 return -EINVAL; 2135 2136 /* 2137 * Don't try to optimize by not calling the cycle detection logic under 2138 * certain conditions. There's always some corner case that won't get 2139 * detected. 2140 */ 2141 device_links_write_lock(); 2142 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) { 2143 __fwnode_link_cycle(link); 2144 pr_debug("----- cycle: end -----\n"); 2145 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n", 2146 link->consumer, sup_handle); 2147 } 2148 device_links_write_unlock(); 2149 2150 if (con->fwnode == link->consumer) 2151 flags = fw_devlink_get_flags(link->flags); 2152 else 2153 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2154 2155 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2156 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2157 else 2158 sup_dev = get_dev_from_fwnode(sup_handle); 2159 2160 if (sup_dev) { 2161 /* 2162 * If it's one of those drivers that don't actually bind to 2163 * their device using driver core, then don't wait on this 2164 * supplier device indefinitely. 2165 */ 2166 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2167 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2168 dev_dbg(con, 2169 "Not linking %pfwf - dev might never probe\n", 2170 sup_handle); 2171 ret = -EINVAL; 2172 goto out; 2173 } 2174 2175 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2176 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n", 2177 flags, dev_name(sup_dev), link->consumer); 2178 ret = -EINVAL; 2179 } 2180 2181 goto out; 2182 } 2183 2184 /* 2185 * Supplier or supplier's ancestor already initialized without a struct 2186 * device or being probed by a driver. 2187 */ 2188 if (fwnode_init_without_drv(sup_handle) || 2189 fwnode_ancestor_init_without_drv(sup_handle)) { 2190 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2191 sup_handle); 2192 return -EINVAL; 2193 } 2194 2195 ret = -EAGAIN; 2196 out: 2197 put_device(sup_dev); 2198 return ret; 2199 } 2200 2201 /** 2202 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2203 * @dev: Device that needs to be linked to its consumers 2204 * 2205 * This function looks at all the consumer fwnodes of @dev and creates device 2206 * links between the consumer device and @dev (supplier). 2207 * 2208 * If the consumer device has not been added yet, then this function creates a 2209 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2210 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2211 * sync_state() callback before the real consumer device gets to be added and 2212 * then probed. 2213 * 2214 * Once device links are created from the real consumer to @dev (supplier), the 2215 * fwnode links are deleted. 2216 */ 2217 static void __fw_devlink_link_to_consumers(struct device *dev) 2218 { 2219 struct fwnode_handle *fwnode = dev->fwnode; 2220 struct fwnode_link *link, *tmp; 2221 2222 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2223 struct device *con_dev; 2224 bool own_link = true; 2225 int ret; 2226 2227 con_dev = get_dev_from_fwnode(link->consumer); 2228 /* 2229 * If consumer device is not available yet, make a "proxy" 2230 * SYNC_STATE_ONLY link from the consumer's parent device to 2231 * the supplier device. This is necessary to make sure the 2232 * supplier doesn't get a sync_state() callback before the real 2233 * consumer can create a device link to the supplier. 2234 * 2235 * This proxy link step is needed to handle the case where the 2236 * consumer's parent device is added before the supplier. 2237 */ 2238 if (!con_dev) { 2239 con_dev = fwnode_get_next_parent_dev(link->consumer); 2240 /* 2241 * However, if the consumer's parent device is also the 2242 * parent of the supplier, don't create a 2243 * consumer-supplier link from the parent to its child 2244 * device. Such a dependency is impossible. 2245 */ 2246 if (con_dev && 2247 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2248 put_device(con_dev); 2249 con_dev = NULL; 2250 } else { 2251 own_link = false; 2252 } 2253 } 2254 2255 if (!con_dev) 2256 continue; 2257 2258 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2259 put_device(con_dev); 2260 if (!own_link || ret == -EAGAIN) 2261 continue; 2262 2263 __fwnode_link_del(link); 2264 } 2265 } 2266 2267 /** 2268 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2269 * @dev: The consumer device that needs to be linked to its suppliers 2270 * @fwnode: Root of the fwnode tree that is used to create device links 2271 * 2272 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2273 * @fwnode and creates device links between @dev (consumer) and all the 2274 * supplier devices of the entire fwnode tree at @fwnode. 2275 * 2276 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2277 * and the real suppliers of @dev. Once these device links are created, the 2278 * fwnode links are deleted. 2279 * 2280 * In addition, it also looks at all the suppliers of the entire fwnode tree 2281 * because some of the child devices of @dev that have not been added yet 2282 * (because @dev hasn't probed) might already have their suppliers added to 2283 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2284 * @dev (consumer) and these suppliers to make sure they don't execute their 2285 * sync_state() callbacks before these child devices have a chance to create 2286 * their device links. The fwnode links that correspond to the child devices 2287 * aren't delete because they are needed later to create the device links 2288 * between the real consumer and supplier devices. 2289 */ 2290 static void __fw_devlink_link_to_suppliers(struct device *dev, 2291 struct fwnode_handle *fwnode) 2292 { 2293 bool own_link = (dev->fwnode == fwnode); 2294 struct fwnode_link *link, *tmp; 2295 struct fwnode_handle *child = NULL; 2296 2297 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2298 int ret; 2299 struct fwnode_handle *sup = link->supplier; 2300 2301 ret = fw_devlink_create_devlink(dev, sup, link); 2302 if (!own_link || ret == -EAGAIN) 2303 continue; 2304 2305 __fwnode_link_del(link); 2306 } 2307 2308 /* 2309 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2310 * all the descendants. This proxy link step is needed to handle the 2311 * case where the supplier is added before the consumer's parent device 2312 * (@dev). 2313 */ 2314 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2315 __fw_devlink_link_to_suppliers(dev, child); 2316 } 2317 2318 static void fw_devlink_link_device(struct device *dev) 2319 { 2320 struct fwnode_handle *fwnode = dev->fwnode; 2321 2322 if (!fw_devlink_flags) 2323 return; 2324 2325 fw_devlink_parse_fwtree(fwnode); 2326 2327 guard(mutex)(&fwnode_link_lock); 2328 2329 __fw_devlink_link_to_consumers(dev); 2330 __fw_devlink_link_to_suppliers(dev, fwnode); 2331 } 2332 2333 /* Device links support end. */ 2334 2335 static struct kobject *dev_kobj; 2336 2337 /* /sys/dev/char */ 2338 static struct kobject *sysfs_dev_char_kobj; 2339 2340 /* /sys/dev/block */ 2341 static struct kobject *sysfs_dev_block_kobj; 2342 2343 static DEFINE_MUTEX(device_hotplug_lock); 2344 2345 void lock_device_hotplug(void) 2346 { 2347 mutex_lock(&device_hotplug_lock); 2348 } 2349 2350 void unlock_device_hotplug(void) 2351 { 2352 mutex_unlock(&device_hotplug_lock); 2353 } 2354 2355 int lock_device_hotplug_sysfs(void) 2356 { 2357 if (mutex_trylock(&device_hotplug_lock)) 2358 return 0; 2359 2360 /* Avoid busy looping (5 ms of sleep should do). */ 2361 msleep(5); 2362 return restart_syscall(); 2363 } 2364 2365 #ifdef CONFIG_BLOCK 2366 static inline int device_is_not_partition(struct device *dev) 2367 { 2368 return !(dev->type == &part_type); 2369 } 2370 #else 2371 static inline int device_is_not_partition(struct device *dev) 2372 { 2373 return 1; 2374 } 2375 #endif 2376 2377 static void device_platform_notify(struct device *dev) 2378 { 2379 acpi_device_notify(dev); 2380 2381 software_node_notify(dev); 2382 } 2383 2384 static void device_platform_notify_remove(struct device *dev) 2385 { 2386 software_node_notify_remove(dev); 2387 2388 acpi_device_notify_remove(dev); 2389 } 2390 2391 /** 2392 * dev_driver_string - Return a device's driver name, if at all possible 2393 * @dev: struct device to get the name of 2394 * 2395 * Will return the device's driver's name if it is bound to a device. If 2396 * the device is not bound to a driver, it will return the name of the bus 2397 * it is attached to. If it is not attached to a bus either, an empty 2398 * string will be returned. 2399 */ 2400 const char *dev_driver_string(const struct device *dev) 2401 { 2402 struct device_driver *drv; 2403 2404 /* dev->driver can change to NULL underneath us because of unbinding, 2405 * so be careful about accessing it. dev->bus and dev->class should 2406 * never change once they are set, so they don't need special care. 2407 */ 2408 drv = READ_ONCE(dev->driver); 2409 return drv ? drv->name : dev_bus_name(dev); 2410 } 2411 EXPORT_SYMBOL(dev_driver_string); 2412 2413 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2414 2415 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2416 char *buf) 2417 { 2418 struct device_attribute *dev_attr = to_dev_attr(attr); 2419 struct device *dev = kobj_to_dev(kobj); 2420 ssize_t ret = -EIO; 2421 2422 if (dev_attr->show) 2423 ret = dev_attr->show(dev, dev_attr, buf); 2424 if (ret >= (ssize_t)PAGE_SIZE) { 2425 printk("dev_attr_show: %pS returned bad count\n", 2426 dev_attr->show); 2427 } 2428 return ret; 2429 } 2430 2431 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2432 const char *buf, size_t count) 2433 { 2434 struct device_attribute *dev_attr = to_dev_attr(attr); 2435 struct device *dev = kobj_to_dev(kobj); 2436 ssize_t ret = -EIO; 2437 2438 if (dev_attr->store) 2439 ret = dev_attr->store(dev, dev_attr, buf, count); 2440 return ret; 2441 } 2442 2443 static const struct sysfs_ops dev_sysfs_ops = { 2444 .show = dev_attr_show, 2445 .store = dev_attr_store, 2446 }; 2447 2448 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2449 2450 ssize_t device_store_ulong(struct device *dev, 2451 struct device_attribute *attr, 2452 const char *buf, size_t size) 2453 { 2454 struct dev_ext_attribute *ea = to_ext_attr(attr); 2455 int ret; 2456 unsigned long new; 2457 2458 ret = kstrtoul(buf, 0, &new); 2459 if (ret) 2460 return ret; 2461 *(unsigned long *)(ea->var) = new; 2462 /* Always return full write size even if we didn't consume all */ 2463 return size; 2464 } 2465 EXPORT_SYMBOL_GPL(device_store_ulong); 2466 2467 ssize_t device_show_ulong(struct device *dev, 2468 struct device_attribute *attr, 2469 char *buf) 2470 { 2471 struct dev_ext_attribute *ea = to_ext_attr(attr); 2472 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2473 } 2474 EXPORT_SYMBOL_GPL(device_show_ulong); 2475 2476 ssize_t device_store_int(struct device *dev, 2477 struct device_attribute *attr, 2478 const char *buf, size_t size) 2479 { 2480 struct dev_ext_attribute *ea = to_ext_attr(attr); 2481 int ret; 2482 long new; 2483 2484 ret = kstrtol(buf, 0, &new); 2485 if (ret) 2486 return ret; 2487 2488 if (new > INT_MAX || new < INT_MIN) 2489 return -EINVAL; 2490 *(int *)(ea->var) = new; 2491 /* Always return full write size even if we didn't consume all */ 2492 return size; 2493 } 2494 EXPORT_SYMBOL_GPL(device_store_int); 2495 2496 ssize_t device_show_int(struct device *dev, 2497 struct device_attribute *attr, 2498 char *buf) 2499 { 2500 struct dev_ext_attribute *ea = to_ext_attr(attr); 2501 2502 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2503 } 2504 EXPORT_SYMBOL_GPL(device_show_int); 2505 2506 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2507 const char *buf, size_t size) 2508 { 2509 struct dev_ext_attribute *ea = to_ext_attr(attr); 2510 2511 if (kstrtobool(buf, ea->var) < 0) 2512 return -EINVAL; 2513 2514 return size; 2515 } 2516 EXPORT_SYMBOL_GPL(device_store_bool); 2517 2518 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2519 char *buf) 2520 { 2521 struct dev_ext_attribute *ea = to_ext_attr(attr); 2522 2523 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2524 } 2525 EXPORT_SYMBOL_GPL(device_show_bool); 2526 2527 ssize_t device_show_string(struct device *dev, 2528 struct device_attribute *attr, char *buf) 2529 { 2530 struct dev_ext_attribute *ea = to_ext_attr(attr); 2531 2532 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2533 } 2534 EXPORT_SYMBOL_GPL(device_show_string); 2535 2536 /** 2537 * device_release - free device structure. 2538 * @kobj: device's kobject. 2539 * 2540 * This is called once the reference count for the object 2541 * reaches 0. We forward the call to the device's release 2542 * method, which should handle actually freeing the structure. 2543 */ 2544 static void device_release(struct kobject *kobj) 2545 { 2546 struct device *dev = kobj_to_dev(kobj); 2547 struct device_private *p = dev->p; 2548 2549 /* 2550 * Some platform devices are driven without driver attached 2551 * and managed resources may have been acquired. Make sure 2552 * all resources are released. 2553 * 2554 * Drivers still can add resources into device after device 2555 * is deleted but alive, so release devres here to avoid 2556 * possible memory leak. 2557 */ 2558 devres_release_all(dev); 2559 2560 kfree(dev->dma_range_map); 2561 2562 if (dev->release) 2563 dev->release(dev); 2564 else if (dev->type && dev->type->release) 2565 dev->type->release(dev); 2566 else if (dev->class && dev->class->dev_release) 2567 dev->class->dev_release(dev); 2568 else 2569 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2570 dev_name(dev)); 2571 kfree(p); 2572 } 2573 2574 static const void *device_namespace(const struct kobject *kobj) 2575 { 2576 const struct device *dev = kobj_to_dev(kobj); 2577 const void *ns = NULL; 2578 2579 if (dev->class && dev->class->namespace) 2580 ns = dev->class->namespace(dev); 2581 2582 return ns; 2583 } 2584 2585 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2586 { 2587 const struct device *dev = kobj_to_dev(kobj); 2588 2589 if (dev->class && dev->class->get_ownership) 2590 dev->class->get_ownership(dev, uid, gid); 2591 } 2592 2593 static const struct kobj_type device_ktype = { 2594 .release = device_release, 2595 .sysfs_ops = &dev_sysfs_ops, 2596 .namespace = device_namespace, 2597 .get_ownership = device_get_ownership, 2598 }; 2599 2600 2601 static int dev_uevent_filter(const struct kobject *kobj) 2602 { 2603 const struct kobj_type *ktype = get_ktype(kobj); 2604 2605 if (ktype == &device_ktype) { 2606 const struct device *dev = kobj_to_dev(kobj); 2607 if (dev->bus) 2608 return 1; 2609 if (dev->class) 2610 return 1; 2611 } 2612 return 0; 2613 } 2614 2615 static const char *dev_uevent_name(const struct kobject *kobj) 2616 { 2617 const struct device *dev = kobj_to_dev(kobj); 2618 2619 if (dev->bus) 2620 return dev->bus->name; 2621 if (dev->class) 2622 return dev->class->name; 2623 return NULL; 2624 } 2625 2626 /* 2627 * Try filling "DRIVER=<name>" uevent variable for a device. Because this 2628 * function may race with binding and unbinding the device from a driver, 2629 * we need to be careful. Binding is generally safe, at worst we miss the 2630 * fact that the device is already bound to a driver (but the driver 2631 * information that is delivered through uevents is best-effort, it may 2632 * become obsolete as soon as it is generated anyways). Unbinding is more 2633 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should 2634 * be used to make sure we are dealing with the same pointer, and to 2635 * ensure that driver structure is not going to disappear from under us 2636 * we take bus' drivers klist lock. The assumption that only registered 2637 * driver can be bound to a device, and to unregister a driver bus code 2638 * will take the same lock. 2639 */ 2640 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env) 2641 { 2642 struct subsys_private *sp = bus_to_subsys(dev->bus); 2643 2644 if (sp) { 2645 scoped_guard(spinlock, &sp->klist_drivers.k_lock) { 2646 struct device_driver *drv = READ_ONCE(dev->driver); 2647 if (drv) 2648 add_uevent_var(env, "DRIVER=%s", drv->name); 2649 } 2650 2651 subsys_put(sp); 2652 } 2653 } 2654 2655 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2656 { 2657 const struct device *dev = kobj_to_dev(kobj); 2658 int retval = 0; 2659 2660 /* add device node properties if present */ 2661 if (MAJOR(dev->devt)) { 2662 const char *tmp; 2663 const char *name; 2664 umode_t mode = 0; 2665 kuid_t uid = GLOBAL_ROOT_UID; 2666 kgid_t gid = GLOBAL_ROOT_GID; 2667 2668 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2669 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2670 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2671 if (name) { 2672 add_uevent_var(env, "DEVNAME=%s", name); 2673 if (mode) 2674 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2675 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2676 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2677 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2678 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2679 kfree(tmp); 2680 } 2681 } 2682 2683 if (dev->type && dev->type->name) 2684 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2685 2686 /* Add "DRIVER=%s" variable if the device is bound to a driver */ 2687 dev_driver_uevent(dev, env); 2688 2689 /* Add common DT information about the device */ 2690 of_device_uevent(dev, env); 2691 2692 /* have the bus specific function add its stuff */ 2693 if (dev->bus && dev->bus->uevent) { 2694 retval = dev->bus->uevent(dev, env); 2695 if (retval) 2696 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2697 dev_name(dev), __func__, retval); 2698 } 2699 2700 /* have the class specific function add its stuff */ 2701 if (dev->class && dev->class->dev_uevent) { 2702 retval = dev->class->dev_uevent(dev, env); 2703 if (retval) 2704 pr_debug("device: '%s': %s: class uevent() " 2705 "returned %d\n", dev_name(dev), 2706 __func__, retval); 2707 } 2708 2709 /* have the device type specific function add its stuff */ 2710 if (dev->type && dev->type->uevent) { 2711 retval = dev->type->uevent(dev, env); 2712 if (retval) 2713 pr_debug("device: '%s': %s: dev_type uevent() " 2714 "returned %d\n", dev_name(dev), 2715 __func__, retval); 2716 } 2717 2718 return retval; 2719 } 2720 2721 static const struct kset_uevent_ops device_uevent_ops = { 2722 .filter = dev_uevent_filter, 2723 .name = dev_uevent_name, 2724 .uevent = dev_uevent, 2725 }; 2726 2727 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2728 char *buf) 2729 { 2730 struct kobject *top_kobj; 2731 struct kset *kset; 2732 struct kobj_uevent_env *env = NULL; 2733 int i; 2734 int len = 0; 2735 int retval; 2736 2737 /* search the kset, the device belongs to */ 2738 top_kobj = &dev->kobj; 2739 while (!top_kobj->kset && top_kobj->parent) 2740 top_kobj = top_kobj->parent; 2741 if (!top_kobj->kset) 2742 goto out; 2743 2744 kset = top_kobj->kset; 2745 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2746 goto out; 2747 2748 /* respect filter */ 2749 if (kset->uevent_ops && kset->uevent_ops->filter) 2750 if (!kset->uevent_ops->filter(&dev->kobj)) 2751 goto out; 2752 2753 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2754 if (!env) 2755 return -ENOMEM; 2756 2757 /* let the kset specific function add its keys */ 2758 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2759 if (retval) 2760 goto out; 2761 2762 /* copy keys to file */ 2763 for (i = 0; i < env->envp_idx; i++) 2764 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2765 out: 2766 kfree(env); 2767 return len; 2768 } 2769 2770 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2771 const char *buf, size_t count) 2772 { 2773 int rc; 2774 2775 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2776 2777 if (rc) { 2778 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2779 return rc; 2780 } 2781 2782 return count; 2783 } 2784 static DEVICE_ATTR_RW(uevent); 2785 2786 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2787 char *buf) 2788 { 2789 bool val; 2790 2791 device_lock(dev); 2792 val = !dev->offline; 2793 device_unlock(dev); 2794 return sysfs_emit(buf, "%u\n", val); 2795 } 2796 2797 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2798 const char *buf, size_t count) 2799 { 2800 bool val; 2801 int ret; 2802 2803 ret = kstrtobool(buf, &val); 2804 if (ret < 0) 2805 return ret; 2806 2807 ret = lock_device_hotplug_sysfs(); 2808 if (ret) 2809 return ret; 2810 2811 ret = val ? device_online(dev) : device_offline(dev); 2812 unlock_device_hotplug(); 2813 return ret < 0 ? ret : count; 2814 } 2815 static DEVICE_ATTR_RW(online); 2816 2817 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2818 char *buf) 2819 { 2820 const char *loc; 2821 2822 switch (dev->removable) { 2823 case DEVICE_REMOVABLE: 2824 loc = "removable"; 2825 break; 2826 case DEVICE_FIXED: 2827 loc = "fixed"; 2828 break; 2829 default: 2830 loc = "unknown"; 2831 } 2832 return sysfs_emit(buf, "%s\n", loc); 2833 } 2834 static DEVICE_ATTR_RO(removable); 2835 2836 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2837 { 2838 return sysfs_create_groups(&dev->kobj, groups); 2839 } 2840 EXPORT_SYMBOL_GPL(device_add_groups); 2841 2842 void device_remove_groups(struct device *dev, 2843 const struct attribute_group **groups) 2844 { 2845 sysfs_remove_groups(&dev->kobj, groups); 2846 } 2847 EXPORT_SYMBOL_GPL(device_remove_groups); 2848 2849 union device_attr_group_devres { 2850 const struct attribute_group *group; 2851 const struct attribute_group **groups; 2852 }; 2853 2854 static void devm_attr_group_remove(struct device *dev, void *res) 2855 { 2856 union device_attr_group_devres *devres = res; 2857 const struct attribute_group *group = devres->group; 2858 2859 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2860 sysfs_remove_group(&dev->kobj, group); 2861 } 2862 2863 /** 2864 * devm_device_add_group - given a device, create a managed attribute group 2865 * @dev: The device to create the group for 2866 * @grp: The attribute group to create 2867 * 2868 * This function creates a group for the first time. It will explicitly 2869 * warn and error if any of the attribute files being created already exist. 2870 * 2871 * Returns 0 on success or error code on failure. 2872 */ 2873 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2874 { 2875 union device_attr_group_devres *devres; 2876 int error; 2877 2878 devres = devres_alloc(devm_attr_group_remove, 2879 sizeof(*devres), GFP_KERNEL); 2880 if (!devres) 2881 return -ENOMEM; 2882 2883 error = sysfs_create_group(&dev->kobj, grp); 2884 if (error) { 2885 devres_free(devres); 2886 return error; 2887 } 2888 2889 devres->group = grp; 2890 devres_add(dev, devres); 2891 return 0; 2892 } 2893 EXPORT_SYMBOL_GPL(devm_device_add_group); 2894 2895 static int device_add_attrs(struct device *dev) 2896 { 2897 const struct class *class = dev->class; 2898 const struct device_type *type = dev->type; 2899 int error; 2900 2901 if (class) { 2902 error = device_add_groups(dev, class->dev_groups); 2903 if (error) 2904 return error; 2905 } 2906 2907 if (type) { 2908 error = device_add_groups(dev, type->groups); 2909 if (error) 2910 goto err_remove_class_groups; 2911 } 2912 2913 error = device_add_groups(dev, dev->groups); 2914 if (error) 2915 goto err_remove_type_groups; 2916 2917 if (device_supports_offline(dev) && !dev->offline_disabled) { 2918 error = device_create_file(dev, &dev_attr_online); 2919 if (error) 2920 goto err_remove_dev_groups; 2921 } 2922 2923 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2924 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2925 if (error) 2926 goto err_remove_dev_online; 2927 } 2928 2929 if (dev_removable_is_valid(dev)) { 2930 error = device_create_file(dev, &dev_attr_removable); 2931 if (error) 2932 goto err_remove_dev_waiting_for_supplier; 2933 } 2934 2935 if (dev_add_physical_location(dev)) { 2936 error = device_add_group(dev, 2937 &dev_attr_physical_location_group); 2938 if (error) 2939 goto err_remove_dev_removable; 2940 } 2941 2942 return 0; 2943 2944 err_remove_dev_removable: 2945 device_remove_file(dev, &dev_attr_removable); 2946 err_remove_dev_waiting_for_supplier: 2947 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2948 err_remove_dev_online: 2949 device_remove_file(dev, &dev_attr_online); 2950 err_remove_dev_groups: 2951 device_remove_groups(dev, dev->groups); 2952 err_remove_type_groups: 2953 if (type) 2954 device_remove_groups(dev, type->groups); 2955 err_remove_class_groups: 2956 if (class) 2957 device_remove_groups(dev, class->dev_groups); 2958 2959 return error; 2960 } 2961 2962 static void device_remove_attrs(struct device *dev) 2963 { 2964 const struct class *class = dev->class; 2965 const struct device_type *type = dev->type; 2966 2967 if (dev->physical_location) { 2968 device_remove_group(dev, &dev_attr_physical_location_group); 2969 kfree(dev->physical_location); 2970 } 2971 2972 device_remove_file(dev, &dev_attr_removable); 2973 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2974 device_remove_file(dev, &dev_attr_online); 2975 device_remove_groups(dev, dev->groups); 2976 2977 if (type) 2978 device_remove_groups(dev, type->groups); 2979 2980 if (class) 2981 device_remove_groups(dev, class->dev_groups); 2982 } 2983 2984 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2985 char *buf) 2986 { 2987 return print_dev_t(buf, dev->devt); 2988 } 2989 static DEVICE_ATTR_RO(dev); 2990 2991 /* /sys/devices/ */ 2992 struct kset *devices_kset; 2993 2994 /** 2995 * devices_kset_move_before - Move device in the devices_kset's list. 2996 * @deva: Device to move. 2997 * @devb: Device @deva should come before. 2998 */ 2999 static void devices_kset_move_before(struct device *deva, struct device *devb) 3000 { 3001 if (!devices_kset) 3002 return; 3003 pr_debug("devices_kset: Moving %s before %s\n", 3004 dev_name(deva), dev_name(devb)); 3005 spin_lock(&devices_kset->list_lock); 3006 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3007 spin_unlock(&devices_kset->list_lock); 3008 } 3009 3010 /** 3011 * devices_kset_move_after - Move device in the devices_kset's list. 3012 * @deva: Device to move 3013 * @devb: Device @deva should come after. 3014 */ 3015 static void devices_kset_move_after(struct device *deva, struct device *devb) 3016 { 3017 if (!devices_kset) 3018 return; 3019 pr_debug("devices_kset: Moving %s after %s\n", 3020 dev_name(deva), dev_name(devb)); 3021 spin_lock(&devices_kset->list_lock); 3022 list_move(&deva->kobj.entry, &devb->kobj.entry); 3023 spin_unlock(&devices_kset->list_lock); 3024 } 3025 3026 /** 3027 * devices_kset_move_last - move the device to the end of devices_kset's list. 3028 * @dev: device to move 3029 */ 3030 void devices_kset_move_last(struct device *dev) 3031 { 3032 if (!devices_kset) 3033 return; 3034 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3035 spin_lock(&devices_kset->list_lock); 3036 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3037 spin_unlock(&devices_kset->list_lock); 3038 } 3039 3040 /** 3041 * device_create_file - create sysfs attribute file for device. 3042 * @dev: device. 3043 * @attr: device attribute descriptor. 3044 */ 3045 int device_create_file(struct device *dev, 3046 const struct device_attribute *attr) 3047 { 3048 int error = 0; 3049 3050 if (dev) { 3051 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3052 "Attribute %s: write permission without 'store'\n", 3053 attr->attr.name); 3054 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3055 "Attribute %s: read permission without 'show'\n", 3056 attr->attr.name); 3057 error = sysfs_create_file(&dev->kobj, &attr->attr); 3058 } 3059 3060 return error; 3061 } 3062 EXPORT_SYMBOL_GPL(device_create_file); 3063 3064 /** 3065 * device_remove_file - remove sysfs attribute file. 3066 * @dev: device. 3067 * @attr: device attribute descriptor. 3068 */ 3069 void device_remove_file(struct device *dev, 3070 const struct device_attribute *attr) 3071 { 3072 if (dev) 3073 sysfs_remove_file(&dev->kobj, &attr->attr); 3074 } 3075 EXPORT_SYMBOL_GPL(device_remove_file); 3076 3077 /** 3078 * device_remove_file_self - remove sysfs attribute file from its own method. 3079 * @dev: device. 3080 * @attr: device attribute descriptor. 3081 * 3082 * See kernfs_remove_self() for details. 3083 */ 3084 bool device_remove_file_self(struct device *dev, 3085 const struct device_attribute *attr) 3086 { 3087 if (dev) 3088 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3089 else 3090 return false; 3091 } 3092 EXPORT_SYMBOL_GPL(device_remove_file_self); 3093 3094 /** 3095 * device_create_bin_file - create sysfs binary attribute file for device. 3096 * @dev: device. 3097 * @attr: device binary attribute descriptor. 3098 */ 3099 int device_create_bin_file(struct device *dev, 3100 const struct bin_attribute *attr) 3101 { 3102 int error = -EINVAL; 3103 if (dev) 3104 error = sysfs_create_bin_file(&dev->kobj, attr); 3105 return error; 3106 } 3107 EXPORT_SYMBOL_GPL(device_create_bin_file); 3108 3109 /** 3110 * device_remove_bin_file - remove sysfs binary attribute file 3111 * @dev: device. 3112 * @attr: device binary attribute descriptor. 3113 */ 3114 void device_remove_bin_file(struct device *dev, 3115 const struct bin_attribute *attr) 3116 { 3117 if (dev) 3118 sysfs_remove_bin_file(&dev->kobj, attr); 3119 } 3120 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3121 3122 static void klist_children_get(struct klist_node *n) 3123 { 3124 struct device_private *p = to_device_private_parent(n); 3125 struct device *dev = p->device; 3126 3127 get_device(dev); 3128 } 3129 3130 static void klist_children_put(struct klist_node *n) 3131 { 3132 struct device_private *p = to_device_private_parent(n); 3133 struct device *dev = p->device; 3134 3135 put_device(dev); 3136 } 3137 3138 /** 3139 * device_initialize - init device structure. 3140 * @dev: device. 3141 * 3142 * This prepares the device for use by other layers by initializing 3143 * its fields. 3144 * It is the first half of device_register(), if called by 3145 * that function, though it can also be called separately, so one 3146 * may use @dev's fields. In particular, get_device()/put_device() 3147 * may be used for reference counting of @dev after calling this 3148 * function. 3149 * 3150 * All fields in @dev must be initialized by the caller to 0, except 3151 * for those explicitly set to some other value. The simplest 3152 * approach is to use kzalloc() to allocate the structure containing 3153 * @dev. 3154 * 3155 * NOTE: Use put_device() to give up your reference instead of freeing 3156 * @dev directly once you have called this function. 3157 */ 3158 void device_initialize(struct device *dev) 3159 { 3160 dev->kobj.kset = devices_kset; 3161 kobject_init(&dev->kobj, &device_ktype); 3162 INIT_LIST_HEAD(&dev->dma_pools); 3163 mutex_init(&dev->mutex); 3164 lockdep_set_novalidate_class(&dev->mutex); 3165 spin_lock_init(&dev->devres_lock); 3166 INIT_LIST_HEAD(&dev->devres_head); 3167 device_pm_init(dev); 3168 set_dev_node(dev, NUMA_NO_NODE); 3169 INIT_LIST_HEAD(&dev->links.consumers); 3170 INIT_LIST_HEAD(&dev->links.suppliers); 3171 INIT_LIST_HEAD(&dev->links.defer_sync); 3172 dev->links.status = DL_DEV_NO_DRIVER; 3173 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3174 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3175 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3176 dev->dma_coherent = dma_default_coherent; 3177 #endif 3178 swiotlb_dev_init(dev); 3179 } 3180 EXPORT_SYMBOL_GPL(device_initialize); 3181 3182 struct kobject *virtual_device_parent(void) 3183 { 3184 static struct kobject *virtual_dir = NULL; 3185 3186 if (!virtual_dir) 3187 virtual_dir = kobject_create_and_add("virtual", 3188 &devices_kset->kobj); 3189 3190 return virtual_dir; 3191 } 3192 3193 struct class_dir { 3194 struct kobject kobj; 3195 const struct class *class; 3196 }; 3197 3198 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3199 3200 static void class_dir_release(struct kobject *kobj) 3201 { 3202 struct class_dir *dir = to_class_dir(kobj); 3203 kfree(dir); 3204 } 3205 3206 static const 3207 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3208 { 3209 const struct class_dir *dir = to_class_dir(kobj); 3210 return dir->class->ns_type; 3211 } 3212 3213 static const struct kobj_type class_dir_ktype = { 3214 .release = class_dir_release, 3215 .sysfs_ops = &kobj_sysfs_ops, 3216 .child_ns_type = class_dir_child_ns_type 3217 }; 3218 3219 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3220 struct kobject *parent_kobj) 3221 { 3222 struct class_dir *dir; 3223 int retval; 3224 3225 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3226 if (!dir) 3227 return ERR_PTR(-ENOMEM); 3228 3229 dir->class = sp->class; 3230 kobject_init(&dir->kobj, &class_dir_ktype); 3231 3232 dir->kobj.kset = &sp->glue_dirs; 3233 3234 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3235 if (retval < 0) { 3236 kobject_put(&dir->kobj); 3237 return ERR_PTR(retval); 3238 } 3239 return &dir->kobj; 3240 } 3241 3242 static DEFINE_MUTEX(gdp_mutex); 3243 3244 static struct kobject *get_device_parent(struct device *dev, 3245 struct device *parent) 3246 { 3247 struct subsys_private *sp = class_to_subsys(dev->class); 3248 struct kobject *kobj = NULL; 3249 3250 if (sp) { 3251 struct kobject *parent_kobj; 3252 struct kobject *k; 3253 3254 /* 3255 * If we have no parent, we live in "virtual". 3256 * Class-devices with a non class-device as parent, live 3257 * in a "glue" directory to prevent namespace collisions. 3258 */ 3259 if (parent == NULL) 3260 parent_kobj = virtual_device_parent(); 3261 else if (parent->class && !dev->class->ns_type) { 3262 subsys_put(sp); 3263 return &parent->kobj; 3264 } else { 3265 parent_kobj = &parent->kobj; 3266 } 3267 3268 mutex_lock(&gdp_mutex); 3269 3270 /* find our class-directory at the parent and reference it */ 3271 spin_lock(&sp->glue_dirs.list_lock); 3272 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3273 if (k->parent == parent_kobj) { 3274 kobj = kobject_get(k); 3275 break; 3276 } 3277 spin_unlock(&sp->glue_dirs.list_lock); 3278 if (kobj) { 3279 mutex_unlock(&gdp_mutex); 3280 subsys_put(sp); 3281 return kobj; 3282 } 3283 3284 /* or create a new class-directory at the parent device */ 3285 k = class_dir_create_and_add(sp, parent_kobj); 3286 /* do not emit an uevent for this simple "glue" directory */ 3287 mutex_unlock(&gdp_mutex); 3288 subsys_put(sp); 3289 return k; 3290 } 3291 3292 /* subsystems can specify a default root directory for their devices */ 3293 if (!parent && dev->bus) { 3294 struct device *dev_root = bus_get_dev_root(dev->bus); 3295 3296 if (dev_root) { 3297 kobj = &dev_root->kobj; 3298 put_device(dev_root); 3299 return kobj; 3300 } 3301 } 3302 3303 if (parent) 3304 return &parent->kobj; 3305 return NULL; 3306 } 3307 3308 static inline bool live_in_glue_dir(struct kobject *kobj, 3309 struct device *dev) 3310 { 3311 struct subsys_private *sp; 3312 bool retval; 3313 3314 if (!kobj || !dev->class) 3315 return false; 3316 3317 sp = class_to_subsys(dev->class); 3318 if (!sp) 3319 return false; 3320 3321 if (kobj->kset == &sp->glue_dirs) 3322 retval = true; 3323 else 3324 retval = false; 3325 3326 subsys_put(sp); 3327 return retval; 3328 } 3329 3330 static inline struct kobject *get_glue_dir(struct device *dev) 3331 { 3332 return dev->kobj.parent; 3333 } 3334 3335 /** 3336 * kobject_has_children - Returns whether a kobject has children. 3337 * @kobj: the object to test 3338 * 3339 * This will return whether a kobject has other kobjects as children. 3340 * 3341 * It does NOT account for the presence of attribute files, only sub 3342 * directories. It also assumes there is no concurrent addition or 3343 * removal of such children, and thus relies on external locking. 3344 */ 3345 static inline bool kobject_has_children(struct kobject *kobj) 3346 { 3347 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3348 3349 return kobj->sd && kobj->sd->dir.subdirs; 3350 } 3351 3352 /* 3353 * make sure cleaning up dir as the last step, we need to make 3354 * sure .release handler of kobject is run with holding the 3355 * global lock 3356 */ 3357 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3358 { 3359 unsigned int ref; 3360 3361 /* see if we live in a "glue" directory */ 3362 if (!live_in_glue_dir(glue_dir, dev)) 3363 return; 3364 3365 mutex_lock(&gdp_mutex); 3366 /** 3367 * There is a race condition between removing glue directory 3368 * and adding a new device under the glue directory. 3369 * 3370 * CPU1: CPU2: 3371 * 3372 * device_add() 3373 * get_device_parent() 3374 * class_dir_create_and_add() 3375 * kobject_add_internal() 3376 * create_dir() // create glue_dir 3377 * 3378 * device_add() 3379 * get_device_parent() 3380 * kobject_get() // get glue_dir 3381 * 3382 * device_del() 3383 * cleanup_glue_dir() 3384 * kobject_del(glue_dir) 3385 * 3386 * kobject_add() 3387 * kobject_add_internal() 3388 * create_dir() // in glue_dir 3389 * sysfs_create_dir_ns() 3390 * kernfs_create_dir_ns(sd) 3391 * 3392 * sysfs_remove_dir() // glue_dir->sd=NULL 3393 * sysfs_put() // free glue_dir->sd 3394 * 3395 * // sd is freed 3396 * kernfs_new_node(sd) 3397 * kernfs_get(glue_dir) 3398 * kernfs_add_one() 3399 * kernfs_put() 3400 * 3401 * Before CPU1 remove last child device under glue dir, if CPU2 add 3402 * a new device under glue dir, the glue_dir kobject reference count 3403 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3404 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3405 * and sysfs_put(). This result in glue_dir->sd is freed. 3406 * 3407 * Then the CPU2 will see a stale "empty" but still potentially used 3408 * glue dir around in kernfs_new_node(). 3409 * 3410 * In order to avoid this happening, we also should make sure that 3411 * kernfs_node for glue_dir is released in CPU1 only when refcount 3412 * for glue_dir kobj is 1. 3413 */ 3414 ref = kref_read(&glue_dir->kref); 3415 if (!kobject_has_children(glue_dir) && !--ref) 3416 kobject_del(glue_dir); 3417 kobject_put(glue_dir); 3418 mutex_unlock(&gdp_mutex); 3419 } 3420 3421 static int device_add_class_symlinks(struct device *dev) 3422 { 3423 struct device_node *of_node = dev_of_node(dev); 3424 struct subsys_private *sp; 3425 int error; 3426 3427 if (of_node) { 3428 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3429 if (error) 3430 dev_warn(dev, "Error %d creating of_node link\n",error); 3431 /* An error here doesn't warrant bringing down the device */ 3432 } 3433 3434 sp = class_to_subsys(dev->class); 3435 if (!sp) 3436 return 0; 3437 3438 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3439 if (error) 3440 goto out_devnode; 3441 3442 if (dev->parent && device_is_not_partition(dev)) { 3443 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3444 "device"); 3445 if (error) 3446 goto out_subsys; 3447 } 3448 3449 /* link in the class directory pointing to the device */ 3450 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3451 if (error) 3452 goto out_device; 3453 goto exit; 3454 3455 out_device: 3456 sysfs_remove_link(&dev->kobj, "device"); 3457 out_subsys: 3458 sysfs_remove_link(&dev->kobj, "subsystem"); 3459 out_devnode: 3460 sysfs_remove_link(&dev->kobj, "of_node"); 3461 exit: 3462 subsys_put(sp); 3463 return error; 3464 } 3465 3466 static void device_remove_class_symlinks(struct device *dev) 3467 { 3468 struct subsys_private *sp = class_to_subsys(dev->class); 3469 3470 if (dev_of_node(dev)) 3471 sysfs_remove_link(&dev->kobj, "of_node"); 3472 3473 if (!sp) 3474 return; 3475 3476 if (dev->parent && device_is_not_partition(dev)) 3477 sysfs_remove_link(&dev->kobj, "device"); 3478 sysfs_remove_link(&dev->kobj, "subsystem"); 3479 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3480 subsys_put(sp); 3481 } 3482 3483 /** 3484 * dev_set_name - set a device name 3485 * @dev: device 3486 * @fmt: format string for the device's name 3487 */ 3488 int dev_set_name(struct device *dev, const char *fmt, ...) 3489 { 3490 va_list vargs; 3491 int err; 3492 3493 va_start(vargs, fmt); 3494 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3495 va_end(vargs); 3496 return err; 3497 } 3498 EXPORT_SYMBOL_GPL(dev_set_name); 3499 3500 /* select a /sys/dev/ directory for the device */ 3501 static struct kobject *device_to_dev_kobj(struct device *dev) 3502 { 3503 if (is_blockdev(dev)) 3504 return sysfs_dev_block_kobj; 3505 else 3506 return sysfs_dev_char_kobj; 3507 } 3508 3509 static int device_create_sys_dev_entry(struct device *dev) 3510 { 3511 struct kobject *kobj = device_to_dev_kobj(dev); 3512 int error = 0; 3513 char devt_str[15]; 3514 3515 if (kobj) { 3516 format_dev_t(devt_str, dev->devt); 3517 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3518 } 3519 3520 return error; 3521 } 3522 3523 static void device_remove_sys_dev_entry(struct device *dev) 3524 { 3525 struct kobject *kobj = device_to_dev_kobj(dev); 3526 char devt_str[15]; 3527 3528 if (kobj) { 3529 format_dev_t(devt_str, dev->devt); 3530 sysfs_remove_link(kobj, devt_str); 3531 } 3532 } 3533 3534 static int device_private_init(struct device *dev) 3535 { 3536 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3537 if (!dev->p) 3538 return -ENOMEM; 3539 dev->p->device = dev; 3540 klist_init(&dev->p->klist_children, klist_children_get, 3541 klist_children_put); 3542 INIT_LIST_HEAD(&dev->p->deferred_probe); 3543 return 0; 3544 } 3545 3546 /** 3547 * device_add - add device to device hierarchy. 3548 * @dev: device. 3549 * 3550 * This is part 2 of device_register(), though may be called 3551 * separately _iff_ device_initialize() has been called separately. 3552 * 3553 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3554 * to the global and sibling lists for the device, then 3555 * adds it to the other relevant subsystems of the driver model. 3556 * 3557 * Do not call this routine or device_register() more than once for 3558 * any device structure. The driver model core is not designed to work 3559 * with devices that get unregistered and then spring back to life. 3560 * (Among other things, it's very hard to guarantee that all references 3561 * to the previous incarnation of @dev have been dropped.) Allocate 3562 * and register a fresh new struct device instead. 3563 * 3564 * NOTE: _Never_ directly free @dev after calling this function, even 3565 * if it returned an error! Always use put_device() to give up your 3566 * reference instead. 3567 * 3568 * Rule of thumb is: if device_add() succeeds, you should call 3569 * device_del() when you want to get rid of it. If device_add() has 3570 * *not* succeeded, use *only* put_device() to drop the reference 3571 * count. 3572 */ 3573 int device_add(struct device *dev) 3574 { 3575 struct subsys_private *sp; 3576 struct device *parent; 3577 struct kobject *kobj; 3578 struct class_interface *class_intf; 3579 int error = -EINVAL; 3580 struct kobject *glue_dir = NULL; 3581 3582 dev = get_device(dev); 3583 if (!dev) 3584 goto done; 3585 3586 if (!dev->p) { 3587 error = device_private_init(dev); 3588 if (error) 3589 goto done; 3590 } 3591 3592 /* 3593 * for statically allocated devices, which should all be converted 3594 * some day, we need to initialize the name. We prevent reading back 3595 * the name, and force the use of dev_name() 3596 */ 3597 if (dev->init_name) { 3598 error = dev_set_name(dev, "%s", dev->init_name); 3599 dev->init_name = NULL; 3600 } 3601 3602 if (dev_name(dev)) 3603 error = 0; 3604 /* subsystems can specify simple device enumeration */ 3605 else if (dev->bus && dev->bus->dev_name) 3606 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3607 else 3608 error = -EINVAL; 3609 if (error) 3610 goto name_error; 3611 3612 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3613 3614 parent = get_device(dev->parent); 3615 kobj = get_device_parent(dev, parent); 3616 if (IS_ERR(kobj)) { 3617 error = PTR_ERR(kobj); 3618 goto parent_error; 3619 } 3620 if (kobj) 3621 dev->kobj.parent = kobj; 3622 3623 /* use parent numa_node */ 3624 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3625 set_dev_node(dev, dev_to_node(parent)); 3626 3627 /* first, register with generic layer. */ 3628 /* we require the name to be set before, and pass NULL */ 3629 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3630 if (error) { 3631 glue_dir = kobj; 3632 goto Error; 3633 } 3634 3635 /* notify platform of device entry */ 3636 device_platform_notify(dev); 3637 3638 error = device_create_file(dev, &dev_attr_uevent); 3639 if (error) 3640 goto attrError; 3641 3642 error = device_add_class_symlinks(dev); 3643 if (error) 3644 goto SymlinkError; 3645 error = device_add_attrs(dev); 3646 if (error) 3647 goto AttrsError; 3648 error = bus_add_device(dev); 3649 if (error) 3650 goto BusError; 3651 error = dpm_sysfs_add(dev); 3652 if (error) 3653 goto DPMError; 3654 device_pm_add(dev); 3655 3656 if (MAJOR(dev->devt)) { 3657 error = device_create_file(dev, &dev_attr_dev); 3658 if (error) 3659 goto DevAttrError; 3660 3661 error = device_create_sys_dev_entry(dev); 3662 if (error) 3663 goto SysEntryError; 3664 3665 devtmpfs_create_node(dev); 3666 } 3667 3668 /* Notify clients of device addition. This call must come 3669 * after dpm_sysfs_add() and before kobject_uevent(). 3670 */ 3671 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3672 kobject_uevent(&dev->kobj, KOBJ_ADD); 3673 3674 /* 3675 * Check if any of the other devices (consumers) have been waiting for 3676 * this device (supplier) to be added so that they can create a device 3677 * link to it. 3678 * 3679 * This needs to happen after device_pm_add() because device_link_add() 3680 * requires the supplier be registered before it's called. 3681 * 3682 * But this also needs to happen before bus_probe_device() to make sure 3683 * waiting consumers can link to it before the driver is bound to the 3684 * device and the driver sync_state callback is called for this device. 3685 */ 3686 if (dev->fwnode && !dev->fwnode->dev) { 3687 dev->fwnode->dev = dev; 3688 fw_devlink_link_device(dev); 3689 } 3690 3691 bus_probe_device(dev); 3692 3693 /* 3694 * If all driver registration is done and a newly added device doesn't 3695 * match with any driver, don't block its consumers from probing in 3696 * case the consumer device is able to operate without this supplier. 3697 */ 3698 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3699 fw_devlink_unblock_consumers(dev); 3700 3701 if (parent) 3702 klist_add_tail(&dev->p->knode_parent, 3703 &parent->p->klist_children); 3704 3705 sp = class_to_subsys(dev->class); 3706 if (sp) { 3707 mutex_lock(&sp->mutex); 3708 /* tie the class to the device */ 3709 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3710 3711 /* notify any interfaces that the device is here */ 3712 list_for_each_entry(class_intf, &sp->interfaces, node) 3713 if (class_intf->add_dev) 3714 class_intf->add_dev(dev); 3715 mutex_unlock(&sp->mutex); 3716 subsys_put(sp); 3717 } 3718 done: 3719 put_device(dev); 3720 return error; 3721 SysEntryError: 3722 if (MAJOR(dev->devt)) 3723 device_remove_file(dev, &dev_attr_dev); 3724 DevAttrError: 3725 device_pm_remove(dev); 3726 dpm_sysfs_remove(dev); 3727 DPMError: 3728 device_set_driver(dev, NULL); 3729 bus_remove_device(dev); 3730 BusError: 3731 device_remove_attrs(dev); 3732 AttrsError: 3733 device_remove_class_symlinks(dev); 3734 SymlinkError: 3735 device_remove_file(dev, &dev_attr_uevent); 3736 attrError: 3737 device_platform_notify_remove(dev); 3738 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3739 glue_dir = get_glue_dir(dev); 3740 kobject_del(&dev->kobj); 3741 Error: 3742 cleanup_glue_dir(dev, glue_dir); 3743 parent_error: 3744 put_device(parent); 3745 name_error: 3746 kfree(dev->p); 3747 dev->p = NULL; 3748 goto done; 3749 } 3750 EXPORT_SYMBOL_GPL(device_add); 3751 3752 /** 3753 * device_register - register a device with the system. 3754 * @dev: pointer to the device structure 3755 * 3756 * This happens in two clean steps - initialize the device 3757 * and add it to the system. The two steps can be called 3758 * separately, but this is the easiest and most common. 3759 * I.e. you should only call the two helpers separately if 3760 * have a clearly defined need to use and refcount the device 3761 * before it is added to the hierarchy. 3762 * 3763 * For more information, see the kerneldoc for device_initialize() 3764 * and device_add(). 3765 * 3766 * NOTE: _Never_ directly free @dev after calling this function, even 3767 * if it returned an error! Always use put_device() to give up the 3768 * reference initialized in this function instead. 3769 */ 3770 int device_register(struct device *dev) 3771 { 3772 device_initialize(dev); 3773 return device_add(dev); 3774 } 3775 EXPORT_SYMBOL_GPL(device_register); 3776 3777 /** 3778 * get_device - increment reference count for device. 3779 * @dev: device. 3780 * 3781 * This simply forwards the call to kobject_get(), though 3782 * we do take care to provide for the case that we get a NULL 3783 * pointer passed in. 3784 */ 3785 struct device *get_device(struct device *dev) 3786 { 3787 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3788 } 3789 EXPORT_SYMBOL_GPL(get_device); 3790 3791 /** 3792 * put_device - decrement reference count. 3793 * @dev: device in question. 3794 */ 3795 void put_device(struct device *dev) 3796 { 3797 /* might_sleep(); */ 3798 if (dev) 3799 kobject_put(&dev->kobj); 3800 } 3801 EXPORT_SYMBOL_GPL(put_device); 3802 3803 bool kill_device(struct device *dev) 3804 { 3805 /* 3806 * Require the device lock and set the "dead" flag to guarantee that 3807 * the update behavior is consistent with the other bitfields near 3808 * it and that we cannot have an asynchronous probe routine trying 3809 * to run while we are tearing out the bus/class/sysfs from 3810 * underneath the device. 3811 */ 3812 device_lock_assert(dev); 3813 3814 if (dev->p->dead) 3815 return false; 3816 dev->p->dead = true; 3817 return true; 3818 } 3819 EXPORT_SYMBOL_GPL(kill_device); 3820 3821 /** 3822 * device_del - delete device from system. 3823 * @dev: device. 3824 * 3825 * This is the first part of the device unregistration 3826 * sequence. This removes the device from the lists we control 3827 * from here, has it removed from the other driver model 3828 * subsystems it was added to in device_add(), and removes it 3829 * from the kobject hierarchy. 3830 * 3831 * NOTE: this should be called manually _iff_ device_add() was 3832 * also called manually. 3833 */ 3834 void device_del(struct device *dev) 3835 { 3836 struct subsys_private *sp; 3837 struct device *parent = dev->parent; 3838 struct kobject *glue_dir = NULL; 3839 struct class_interface *class_intf; 3840 unsigned int noio_flag; 3841 3842 device_lock(dev); 3843 kill_device(dev); 3844 device_unlock(dev); 3845 3846 if (dev->fwnode && dev->fwnode->dev == dev) 3847 dev->fwnode->dev = NULL; 3848 3849 /* Notify clients of device removal. This call must come 3850 * before dpm_sysfs_remove(). 3851 */ 3852 noio_flag = memalloc_noio_save(); 3853 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3854 3855 dpm_sysfs_remove(dev); 3856 if (parent) 3857 klist_del(&dev->p->knode_parent); 3858 if (MAJOR(dev->devt)) { 3859 devtmpfs_delete_node(dev); 3860 device_remove_sys_dev_entry(dev); 3861 device_remove_file(dev, &dev_attr_dev); 3862 } 3863 3864 sp = class_to_subsys(dev->class); 3865 if (sp) { 3866 device_remove_class_symlinks(dev); 3867 3868 mutex_lock(&sp->mutex); 3869 /* notify any interfaces that the device is now gone */ 3870 list_for_each_entry(class_intf, &sp->interfaces, node) 3871 if (class_intf->remove_dev) 3872 class_intf->remove_dev(dev); 3873 /* remove the device from the class list */ 3874 klist_del(&dev->p->knode_class); 3875 mutex_unlock(&sp->mutex); 3876 subsys_put(sp); 3877 } 3878 device_remove_file(dev, &dev_attr_uevent); 3879 device_remove_attrs(dev); 3880 bus_remove_device(dev); 3881 device_pm_remove(dev); 3882 driver_deferred_probe_del(dev); 3883 device_platform_notify_remove(dev); 3884 device_links_purge(dev); 3885 3886 /* 3887 * If a device does not have a driver attached, we need to clean 3888 * up any managed resources. We do this in device_release(), but 3889 * it's never called (and we leak the device) if a managed 3890 * resource holds a reference to the device. So release all 3891 * managed resources here, like we do in driver_detach(). We 3892 * still need to do so again in device_release() in case someone 3893 * adds a new resource after this point, though. 3894 */ 3895 devres_release_all(dev); 3896 3897 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3898 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3899 glue_dir = get_glue_dir(dev); 3900 kobject_del(&dev->kobj); 3901 cleanup_glue_dir(dev, glue_dir); 3902 memalloc_noio_restore(noio_flag); 3903 put_device(parent); 3904 } 3905 EXPORT_SYMBOL_GPL(device_del); 3906 3907 /** 3908 * device_unregister - unregister device from system. 3909 * @dev: device going away. 3910 * 3911 * We do this in two parts, like we do device_register(). First, 3912 * we remove it from all the subsystems with device_del(), then 3913 * we decrement the reference count via put_device(). If that 3914 * is the final reference count, the device will be cleaned up 3915 * via device_release() above. Otherwise, the structure will 3916 * stick around until the final reference to the device is dropped. 3917 */ 3918 void device_unregister(struct device *dev) 3919 { 3920 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3921 device_del(dev); 3922 put_device(dev); 3923 } 3924 EXPORT_SYMBOL_GPL(device_unregister); 3925 3926 static struct device *prev_device(struct klist_iter *i) 3927 { 3928 struct klist_node *n = klist_prev(i); 3929 struct device *dev = NULL; 3930 struct device_private *p; 3931 3932 if (n) { 3933 p = to_device_private_parent(n); 3934 dev = p->device; 3935 } 3936 return dev; 3937 } 3938 3939 static struct device *next_device(struct klist_iter *i) 3940 { 3941 struct klist_node *n = klist_next(i); 3942 struct device *dev = NULL; 3943 struct device_private *p; 3944 3945 if (n) { 3946 p = to_device_private_parent(n); 3947 dev = p->device; 3948 } 3949 return dev; 3950 } 3951 3952 /** 3953 * device_get_devnode - path of device node file 3954 * @dev: device 3955 * @mode: returned file access mode 3956 * @uid: returned file owner 3957 * @gid: returned file group 3958 * @tmp: possibly allocated string 3959 * 3960 * Return the relative path of a possible device node. 3961 * Non-default names may need to allocate a memory to compose 3962 * a name. This memory is returned in tmp and needs to be 3963 * freed by the caller. 3964 */ 3965 const char *device_get_devnode(const struct device *dev, 3966 umode_t *mode, kuid_t *uid, kgid_t *gid, 3967 const char **tmp) 3968 { 3969 char *s; 3970 3971 *tmp = NULL; 3972 3973 /* the device type may provide a specific name */ 3974 if (dev->type && dev->type->devnode) 3975 *tmp = dev->type->devnode(dev, mode, uid, gid); 3976 if (*tmp) 3977 return *tmp; 3978 3979 /* the class may provide a specific name */ 3980 if (dev->class && dev->class->devnode) 3981 *tmp = dev->class->devnode(dev, mode); 3982 if (*tmp) 3983 return *tmp; 3984 3985 /* return name without allocation, tmp == NULL */ 3986 if (strchr(dev_name(dev), '!') == NULL) 3987 return dev_name(dev); 3988 3989 /* replace '!' in the name with '/' */ 3990 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3991 if (!s) 3992 return NULL; 3993 return *tmp = s; 3994 } 3995 3996 /** 3997 * device_for_each_child - device child iterator. 3998 * @parent: parent struct device. 3999 * @fn: function to be called for each device. 4000 * @data: data for the callback. 4001 * 4002 * Iterate over @parent's child devices, and call @fn for each, 4003 * passing it @data. 4004 * 4005 * We check the return of @fn each time. If it returns anything 4006 * other than 0, we break out and return that value. 4007 */ 4008 int device_for_each_child(struct device *parent, void *data, 4009 device_iter_t fn) 4010 { 4011 struct klist_iter i; 4012 struct device *child; 4013 int error = 0; 4014 4015 if (!parent || !parent->p) 4016 return 0; 4017 4018 klist_iter_init(&parent->p->klist_children, &i); 4019 while (!error && (child = next_device(&i))) 4020 error = fn(child, data); 4021 klist_iter_exit(&i); 4022 return error; 4023 } 4024 EXPORT_SYMBOL_GPL(device_for_each_child); 4025 4026 /** 4027 * device_for_each_child_reverse - device child iterator in reversed order. 4028 * @parent: parent struct device. 4029 * @fn: function to be called for each device. 4030 * @data: data for the callback. 4031 * 4032 * Iterate over @parent's child devices, and call @fn for each, 4033 * passing it @data. 4034 * 4035 * We check the return of @fn each time. If it returns anything 4036 * other than 0, we break out and return that value. 4037 */ 4038 int device_for_each_child_reverse(struct device *parent, void *data, 4039 device_iter_t fn) 4040 { 4041 struct klist_iter i; 4042 struct device *child; 4043 int error = 0; 4044 4045 if (!parent || !parent->p) 4046 return 0; 4047 4048 klist_iter_init(&parent->p->klist_children, &i); 4049 while ((child = prev_device(&i)) && !error) 4050 error = fn(child, data); 4051 klist_iter_exit(&i); 4052 return error; 4053 } 4054 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4055 4056 /** 4057 * device_for_each_child_reverse_from - device child iterator in reversed order. 4058 * @parent: parent struct device. 4059 * @from: optional starting point in child list 4060 * @fn: function to be called for each device. 4061 * @data: data for the callback. 4062 * 4063 * Iterate over @parent's child devices, starting at @from, and call @fn 4064 * for each, passing it @data. This helper is identical to 4065 * device_for_each_child_reverse() when @from is NULL. 4066 * 4067 * @fn is checked each iteration. If it returns anything other than 0, 4068 * iteration stop and that value is returned to the caller of 4069 * device_for_each_child_reverse_from(); 4070 */ 4071 int device_for_each_child_reverse_from(struct device *parent, 4072 struct device *from, void *data, 4073 device_iter_t fn) 4074 { 4075 struct klist_iter i; 4076 struct device *child; 4077 int error = 0; 4078 4079 if (!parent || !parent->p) 4080 return 0; 4081 4082 klist_iter_init_node(&parent->p->klist_children, &i, 4083 (from ? &from->p->knode_parent : NULL)); 4084 while ((child = prev_device(&i)) && !error) 4085 error = fn(child, data); 4086 klist_iter_exit(&i); 4087 return error; 4088 } 4089 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4090 4091 /** 4092 * device_find_child - device iterator for locating a particular device. 4093 * @parent: parent struct device 4094 * @match: Callback function to check device 4095 * @data: Data to pass to match function 4096 * 4097 * This is similar to the device_for_each_child() function above, but it 4098 * returns a reference to a device that is 'found' for later use, as 4099 * determined by the @match callback. 4100 * 4101 * The callback should return 0 if the device doesn't match and non-zero 4102 * if it does. If the callback returns non-zero and a reference to the 4103 * current device can be obtained, this function will return to the caller 4104 * and not iterate over any more devices. 4105 * 4106 * NOTE: you will need to drop the reference with put_device() after use. 4107 */ 4108 struct device *device_find_child(struct device *parent, const void *data, 4109 device_match_t match) 4110 { 4111 struct klist_iter i; 4112 struct device *child; 4113 4114 if (!parent || !parent->p) 4115 return NULL; 4116 4117 klist_iter_init(&parent->p->klist_children, &i); 4118 while ((child = next_device(&i))) { 4119 if (match(child, data)) { 4120 get_device(child); 4121 break; 4122 } 4123 } 4124 klist_iter_exit(&i); 4125 return child; 4126 } 4127 EXPORT_SYMBOL_GPL(device_find_child); 4128 4129 int __init devices_init(void) 4130 { 4131 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4132 if (!devices_kset) 4133 return -ENOMEM; 4134 dev_kobj = kobject_create_and_add("dev", NULL); 4135 if (!dev_kobj) 4136 goto dev_kobj_err; 4137 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4138 if (!sysfs_dev_block_kobj) 4139 goto block_kobj_err; 4140 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4141 if (!sysfs_dev_char_kobj) 4142 goto char_kobj_err; 4143 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4144 if (!device_link_wq) 4145 goto wq_err; 4146 4147 return 0; 4148 4149 wq_err: 4150 kobject_put(sysfs_dev_char_kobj); 4151 char_kobj_err: 4152 kobject_put(sysfs_dev_block_kobj); 4153 block_kobj_err: 4154 kobject_put(dev_kobj); 4155 dev_kobj_err: 4156 kset_unregister(devices_kset); 4157 return -ENOMEM; 4158 } 4159 4160 static int device_check_offline(struct device *dev, void *not_used) 4161 { 4162 int ret; 4163 4164 ret = device_for_each_child(dev, NULL, device_check_offline); 4165 if (ret) 4166 return ret; 4167 4168 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4169 } 4170 4171 /** 4172 * device_offline - Prepare the device for hot-removal. 4173 * @dev: Device to be put offline. 4174 * 4175 * Execute the device bus type's .offline() callback, if present, to prepare 4176 * the device for a subsequent hot-removal. If that succeeds, the device must 4177 * not be used until either it is removed or its bus type's .online() callback 4178 * is executed. 4179 * 4180 * Call under device_hotplug_lock. 4181 */ 4182 int device_offline(struct device *dev) 4183 { 4184 int ret; 4185 4186 if (dev->offline_disabled) 4187 return -EPERM; 4188 4189 ret = device_for_each_child(dev, NULL, device_check_offline); 4190 if (ret) 4191 return ret; 4192 4193 device_lock(dev); 4194 if (device_supports_offline(dev)) { 4195 if (dev->offline) { 4196 ret = 1; 4197 } else { 4198 ret = dev->bus->offline(dev); 4199 if (!ret) { 4200 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4201 dev->offline = true; 4202 } 4203 } 4204 } 4205 device_unlock(dev); 4206 4207 return ret; 4208 } 4209 4210 /** 4211 * device_online - Put the device back online after successful device_offline(). 4212 * @dev: Device to be put back online. 4213 * 4214 * If device_offline() has been successfully executed for @dev, but the device 4215 * has not been removed subsequently, execute its bus type's .online() callback 4216 * to indicate that the device can be used again. 4217 * 4218 * Call under device_hotplug_lock. 4219 */ 4220 int device_online(struct device *dev) 4221 { 4222 int ret = 0; 4223 4224 device_lock(dev); 4225 if (device_supports_offline(dev)) { 4226 if (dev->offline) { 4227 ret = dev->bus->online(dev); 4228 if (!ret) { 4229 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4230 dev->offline = false; 4231 } 4232 } else { 4233 ret = 1; 4234 } 4235 } 4236 device_unlock(dev); 4237 4238 return ret; 4239 } 4240 4241 struct root_device { 4242 struct device dev; 4243 struct module *owner; 4244 }; 4245 4246 static inline struct root_device *to_root_device(struct device *d) 4247 { 4248 return container_of(d, struct root_device, dev); 4249 } 4250 4251 static void root_device_release(struct device *dev) 4252 { 4253 kfree(to_root_device(dev)); 4254 } 4255 4256 /** 4257 * __root_device_register - allocate and register a root device 4258 * @name: root device name 4259 * @owner: owner module of the root device, usually THIS_MODULE 4260 * 4261 * This function allocates a root device and registers it 4262 * using device_register(). In order to free the returned 4263 * device, use root_device_unregister(). 4264 * 4265 * Root devices are dummy devices which allow other devices 4266 * to be grouped under /sys/devices. Use this function to 4267 * allocate a root device and then use it as the parent of 4268 * any device which should appear under /sys/devices/{name} 4269 * 4270 * The /sys/devices/{name} directory will also contain a 4271 * 'module' symlink which points to the @owner directory 4272 * in sysfs. 4273 * 4274 * Returns &struct device pointer on success, or ERR_PTR() on error. 4275 * 4276 * Note: You probably want to use root_device_register(). 4277 */ 4278 struct device *__root_device_register(const char *name, struct module *owner) 4279 { 4280 struct root_device *root; 4281 int err = -ENOMEM; 4282 4283 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4284 if (!root) 4285 return ERR_PTR(err); 4286 4287 err = dev_set_name(&root->dev, "%s", name); 4288 if (err) { 4289 kfree(root); 4290 return ERR_PTR(err); 4291 } 4292 4293 root->dev.release = root_device_release; 4294 4295 err = device_register(&root->dev); 4296 if (err) { 4297 put_device(&root->dev); 4298 return ERR_PTR(err); 4299 } 4300 4301 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4302 if (owner) { 4303 struct module_kobject *mk = &owner->mkobj; 4304 4305 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4306 if (err) { 4307 device_unregister(&root->dev); 4308 return ERR_PTR(err); 4309 } 4310 root->owner = owner; 4311 } 4312 #endif 4313 4314 return &root->dev; 4315 } 4316 EXPORT_SYMBOL_GPL(__root_device_register); 4317 4318 /** 4319 * root_device_unregister - unregister and free a root device 4320 * @dev: device going away 4321 * 4322 * This function unregisters and cleans up a device that was created by 4323 * root_device_register(). 4324 */ 4325 void root_device_unregister(struct device *dev) 4326 { 4327 struct root_device *root = to_root_device(dev); 4328 4329 if (root->owner) 4330 sysfs_remove_link(&root->dev.kobj, "module"); 4331 4332 device_unregister(dev); 4333 } 4334 EXPORT_SYMBOL_GPL(root_device_unregister); 4335 4336 4337 static void device_create_release(struct device *dev) 4338 { 4339 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4340 kfree(dev); 4341 } 4342 4343 static __printf(6, 0) struct device * 4344 device_create_groups_vargs(const struct class *class, struct device *parent, 4345 dev_t devt, void *drvdata, 4346 const struct attribute_group **groups, 4347 const char *fmt, va_list args) 4348 { 4349 struct device *dev = NULL; 4350 int retval = -ENODEV; 4351 4352 if (IS_ERR_OR_NULL(class)) 4353 goto error; 4354 4355 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4356 if (!dev) { 4357 retval = -ENOMEM; 4358 goto error; 4359 } 4360 4361 device_initialize(dev); 4362 dev->devt = devt; 4363 dev->class = class; 4364 dev->parent = parent; 4365 dev->groups = groups; 4366 dev->release = device_create_release; 4367 dev_set_drvdata(dev, drvdata); 4368 4369 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4370 if (retval) 4371 goto error; 4372 4373 retval = device_add(dev); 4374 if (retval) 4375 goto error; 4376 4377 return dev; 4378 4379 error: 4380 put_device(dev); 4381 return ERR_PTR(retval); 4382 } 4383 4384 /** 4385 * device_create - creates a device and registers it with sysfs 4386 * @class: pointer to the struct class that this device should be registered to 4387 * @parent: pointer to the parent struct device of this new device, if any 4388 * @devt: the dev_t for the char device to be added 4389 * @drvdata: the data to be added to the device for callbacks 4390 * @fmt: string for the device's name 4391 * 4392 * This function can be used by char device classes. A struct device 4393 * will be created in sysfs, registered to the specified class. 4394 * 4395 * A "dev" file will be created, showing the dev_t for the device, if 4396 * the dev_t is not 0,0. 4397 * If a pointer to a parent struct device is passed in, the newly created 4398 * struct device will be a child of that device in sysfs. 4399 * The pointer to the struct device will be returned from the call. 4400 * Any further sysfs files that might be required can be created using this 4401 * pointer. 4402 * 4403 * Returns &struct device pointer on success, or ERR_PTR() on error. 4404 */ 4405 struct device *device_create(const struct class *class, struct device *parent, 4406 dev_t devt, void *drvdata, const char *fmt, ...) 4407 { 4408 va_list vargs; 4409 struct device *dev; 4410 4411 va_start(vargs, fmt); 4412 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4413 fmt, vargs); 4414 va_end(vargs); 4415 return dev; 4416 } 4417 EXPORT_SYMBOL_GPL(device_create); 4418 4419 /** 4420 * device_create_with_groups - creates a device and registers it with sysfs 4421 * @class: pointer to the struct class that this device should be registered to 4422 * @parent: pointer to the parent struct device of this new device, if any 4423 * @devt: the dev_t for the char device to be added 4424 * @drvdata: the data to be added to the device for callbacks 4425 * @groups: NULL-terminated list of attribute groups to be created 4426 * @fmt: string for the device's name 4427 * 4428 * This function can be used by char device classes. A struct device 4429 * will be created in sysfs, registered to the specified class. 4430 * Additional attributes specified in the groups parameter will also 4431 * be created automatically. 4432 * 4433 * A "dev" file will be created, showing the dev_t for the device, if 4434 * the dev_t is not 0,0. 4435 * If a pointer to a parent struct device is passed in, the newly created 4436 * struct device will be a child of that device in sysfs. 4437 * The pointer to the struct device will be returned from the call. 4438 * Any further sysfs files that might be required can be created using this 4439 * pointer. 4440 * 4441 * Returns &struct device pointer on success, or ERR_PTR() on error. 4442 */ 4443 struct device *device_create_with_groups(const struct class *class, 4444 struct device *parent, dev_t devt, 4445 void *drvdata, 4446 const struct attribute_group **groups, 4447 const char *fmt, ...) 4448 { 4449 va_list vargs; 4450 struct device *dev; 4451 4452 va_start(vargs, fmt); 4453 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4454 fmt, vargs); 4455 va_end(vargs); 4456 return dev; 4457 } 4458 EXPORT_SYMBOL_GPL(device_create_with_groups); 4459 4460 /** 4461 * device_destroy - removes a device that was created with device_create() 4462 * @class: pointer to the struct class that this device was registered with 4463 * @devt: the dev_t of the device that was previously registered 4464 * 4465 * This call unregisters and cleans up a device that was created with a 4466 * call to device_create(). 4467 */ 4468 void device_destroy(const struct class *class, dev_t devt) 4469 { 4470 struct device *dev; 4471 4472 dev = class_find_device_by_devt(class, devt); 4473 if (dev) { 4474 put_device(dev); 4475 device_unregister(dev); 4476 } 4477 } 4478 EXPORT_SYMBOL_GPL(device_destroy); 4479 4480 /** 4481 * device_rename - renames a device 4482 * @dev: the pointer to the struct device to be renamed 4483 * @new_name: the new name of the device 4484 * 4485 * It is the responsibility of the caller to provide mutual 4486 * exclusion between two different calls of device_rename 4487 * on the same device to ensure that new_name is valid and 4488 * won't conflict with other devices. 4489 * 4490 * Note: given that some subsystems (networking and infiniband) use this 4491 * function, with no immediate plans for this to change, we cannot assume or 4492 * require that this function not be called at all. 4493 * 4494 * However, if you're writing new code, do not call this function. The following 4495 * text from Kay Sievers offers some insight: 4496 * 4497 * Renaming devices is racy at many levels, symlinks and other stuff are not 4498 * replaced atomically, and you get a "move" uevent, but it's not easy to 4499 * connect the event to the old and new device. Device nodes are not renamed at 4500 * all, there isn't even support for that in the kernel now. 4501 * 4502 * In the meantime, during renaming, your target name might be taken by another 4503 * driver, creating conflicts. Or the old name is taken directly after you 4504 * renamed it -- then you get events for the same DEVPATH, before you even see 4505 * the "move" event. It's just a mess, and nothing new should ever rely on 4506 * kernel device renaming. Besides that, it's not even implemented now for 4507 * other things than (driver-core wise very simple) network devices. 4508 * 4509 * Make up a "real" name in the driver before you register anything, or add 4510 * some other attributes for userspace to find the device, or use udev to add 4511 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4512 * don't even want to get into that and try to implement the missing pieces in 4513 * the core. We really have other pieces to fix in the driver core mess. :) 4514 */ 4515 int device_rename(struct device *dev, const char *new_name) 4516 { 4517 struct subsys_private *sp = NULL; 4518 struct kobject *kobj = &dev->kobj; 4519 char *old_device_name = NULL; 4520 int error; 4521 bool is_link_renamed = false; 4522 4523 dev = get_device(dev); 4524 if (!dev) 4525 return -EINVAL; 4526 4527 dev_dbg(dev, "renaming to %s\n", new_name); 4528 4529 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4530 if (!old_device_name) { 4531 error = -ENOMEM; 4532 goto out; 4533 } 4534 4535 if (dev->class) { 4536 sp = class_to_subsys(dev->class); 4537 4538 if (!sp) { 4539 error = -EINVAL; 4540 goto out; 4541 } 4542 4543 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4544 new_name, kobject_namespace(kobj)); 4545 if (error) 4546 goto out; 4547 4548 is_link_renamed = true; 4549 } 4550 4551 error = kobject_rename(kobj, new_name); 4552 out: 4553 if (error && is_link_renamed) 4554 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4555 old_device_name, kobject_namespace(kobj)); 4556 subsys_put(sp); 4557 4558 put_device(dev); 4559 4560 kfree(old_device_name); 4561 4562 return error; 4563 } 4564 EXPORT_SYMBOL_GPL(device_rename); 4565 4566 static int device_move_class_links(struct device *dev, 4567 struct device *old_parent, 4568 struct device *new_parent) 4569 { 4570 int error = 0; 4571 4572 if (old_parent) 4573 sysfs_remove_link(&dev->kobj, "device"); 4574 if (new_parent) 4575 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4576 "device"); 4577 return error; 4578 } 4579 4580 /** 4581 * device_move - moves a device to a new parent 4582 * @dev: the pointer to the struct device to be moved 4583 * @new_parent: the new parent of the device (can be NULL) 4584 * @dpm_order: how to reorder the dpm_list 4585 */ 4586 int device_move(struct device *dev, struct device *new_parent, 4587 enum dpm_order dpm_order) 4588 { 4589 int error; 4590 struct device *old_parent; 4591 struct kobject *new_parent_kobj; 4592 4593 dev = get_device(dev); 4594 if (!dev) 4595 return -EINVAL; 4596 4597 device_pm_lock(); 4598 new_parent = get_device(new_parent); 4599 new_parent_kobj = get_device_parent(dev, new_parent); 4600 if (IS_ERR(new_parent_kobj)) { 4601 error = PTR_ERR(new_parent_kobj); 4602 put_device(new_parent); 4603 goto out; 4604 } 4605 4606 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4607 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4608 error = kobject_move(&dev->kobj, new_parent_kobj); 4609 if (error) { 4610 cleanup_glue_dir(dev, new_parent_kobj); 4611 put_device(new_parent); 4612 goto out; 4613 } 4614 old_parent = dev->parent; 4615 dev->parent = new_parent; 4616 if (old_parent) 4617 klist_remove(&dev->p->knode_parent); 4618 if (new_parent) { 4619 klist_add_tail(&dev->p->knode_parent, 4620 &new_parent->p->klist_children); 4621 set_dev_node(dev, dev_to_node(new_parent)); 4622 } 4623 4624 if (dev->class) { 4625 error = device_move_class_links(dev, old_parent, new_parent); 4626 if (error) { 4627 /* We ignore errors on cleanup since we're hosed anyway... */ 4628 device_move_class_links(dev, new_parent, old_parent); 4629 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4630 if (new_parent) 4631 klist_remove(&dev->p->knode_parent); 4632 dev->parent = old_parent; 4633 if (old_parent) { 4634 klist_add_tail(&dev->p->knode_parent, 4635 &old_parent->p->klist_children); 4636 set_dev_node(dev, dev_to_node(old_parent)); 4637 } 4638 } 4639 cleanup_glue_dir(dev, new_parent_kobj); 4640 put_device(new_parent); 4641 goto out; 4642 } 4643 } 4644 switch (dpm_order) { 4645 case DPM_ORDER_NONE: 4646 break; 4647 case DPM_ORDER_DEV_AFTER_PARENT: 4648 device_pm_move_after(dev, new_parent); 4649 devices_kset_move_after(dev, new_parent); 4650 break; 4651 case DPM_ORDER_PARENT_BEFORE_DEV: 4652 device_pm_move_before(new_parent, dev); 4653 devices_kset_move_before(new_parent, dev); 4654 break; 4655 case DPM_ORDER_DEV_LAST: 4656 device_pm_move_last(dev); 4657 devices_kset_move_last(dev); 4658 break; 4659 } 4660 4661 put_device(old_parent); 4662 out: 4663 device_pm_unlock(); 4664 put_device(dev); 4665 return error; 4666 } 4667 EXPORT_SYMBOL_GPL(device_move); 4668 4669 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4670 kgid_t kgid) 4671 { 4672 struct kobject *kobj = &dev->kobj; 4673 const struct class *class = dev->class; 4674 const struct device_type *type = dev->type; 4675 int error; 4676 4677 if (class) { 4678 /* 4679 * Change the device groups of the device class for @dev to 4680 * @kuid/@kgid. 4681 */ 4682 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4683 kgid); 4684 if (error) 4685 return error; 4686 } 4687 4688 if (type) { 4689 /* 4690 * Change the device groups of the device type for @dev to 4691 * @kuid/@kgid. 4692 */ 4693 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4694 kgid); 4695 if (error) 4696 return error; 4697 } 4698 4699 /* Change the device groups of @dev to @kuid/@kgid. */ 4700 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4701 if (error) 4702 return error; 4703 4704 if (device_supports_offline(dev) && !dev->offline_disabled) { 4705 /* Change online device attributes of @dev to @kuid/@kgid. */ 4706 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4707 kuid, kgid); 4708 if (error) 4709 return error; 4710 } 4711 4712 return 0; 4713 } 4714 4715 /** 4716 * device_change_owner - change the owner of an existing device. 4717 * @dev: device. 4718 * @kuid: new owner's kuid 4719 * @kgid: new owner's kgid 4720 * 4721 * This changes the owner of @dev and its corresponding sysfs entries to 4722 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4723 * core. 4724 * 4725 * Returns 0 on success or error code on failure. 4726 */ 4727 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4728 { 4729 int error; 4730 struct kobject *kobj = &dev->kobj; 4731 struct subsys_private *sp; 4732 4733 dev = get_device(dev); 4734 if (!dev) 4735 return -EINVAL; 4736 4737 /* 4738 * Change the kobject and the default attributes and groups of the 4739 * ktype associated with it to @kuid/@kgid. 4740 */ 4741 error = sysfs_change_owner(kobj, kuid, kgid); 4742 if (error) 4743 goto out; 4744 4745 /* 4746 * Change the uevent file for @dev to the new owner. The uevent file 4747 * was created in a separate step when @dev got added and we mirror 4748 * that step here. 4749 */ 4750 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4751 kgid); 4752 if (error) 4753 goto out; 4754 4755 /* 4756 * Change the device groups, the device groups associated with the 4757 * device class, and the groups associated with the device type of @dev 4758 * to @kuid/@kgid. 4759 */ 4760 error = device_attrs_change_owner(dev, kuid, kgid); 4761 if (error) 4762 goto out; 4763 4764 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4765 if (error) 4766 goto out; 4767 4768 /* 4769 * Change the owner of the symlink located in the class directory of 4770 * the device class associated with @dev which points to the actual 4771 * directory entry for @dev to @kuid/@kgid. This ensures that the 4772 * symlink shows the same permissions as its target. 4773 */ 4774 sp = class_to_subsys(dev->class); 4775 if (!sp) { 4776 error = -EINVAL; 4777 goto out; 4778 } 4779 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4780 subsys_put(sp); 4781 4782 out: 4783 put_device(dev); 4784 return error; 4785 } 4786 EXPORT_SYMBOL_GPL(device_change_owner); 4787 4788 /** 4789 * device_shutdown - call ->shutdown() on each device to shutdown. 4790 */ 4791 void device_shutdown(void) 4792 { 4793 struct device *dev, *parent; 4794 4795 wait_for_device_probe(); 4796 device_block_probing(); 4797 4798 cpufreq_suspend(); 4799 4800 spin_lock(&devices_kset->list_lock); 4801 /* 4802 * Walk the devices list backward, shutting down each in turn. 4803 * Beware that device unplug events may also start pulling 4804 * devices offline, even as the system is shutting down. 4805 */ 4806 while (!list_empty(&devices_kset->list)) { 4807 dev = list_entry(devices_kset->list.prev, struct device, 4808 kobj.entry); 4809 4810 /* 4811 * hold reference count of device's parent to 4812 * prevent it from being freed because parent's 4813 * lock is to be held 4814 */ 4815 parent = get_device(dev->parent); 4816 get_device(dev); 4817 /* 4818 * Make sure the device is off the kset list, in the 4819 * event that dev->*->shutdown() doesn't remove it. 4820 */ 4821 list_del_init(&dev->kobj.entry); 4822 spin_unlock(&devices_kset->list_lock); 4823 4824 /* hold lock to avoid race with probe/release */ 4825 if (parent) 4826 device_lock(parent); 4827 device_lock(dev); 4828 4829 /* Don't allow any more runtime suspends */ 4830 pm_runtime_get_noresume(dev); 4831 pm_runtime_barrier(dev); 4832 4833 if (dev->class && dev->class->shutdown_pre) { 4834 if (initcall_debug) 4835 dev_info(dev, "shutdown_pre\n"); 4836 dev->class->shutdown_pre(dev); 4837 } 4838 if (dev->bus && dev->bus->shutdown) { 4839 if (initcall_debug) 4840 dev_info(dev, "shutdown\n"); 4841 dev->bus->shutdown(dev); 4842 } else if (dev->driver && dev->driver->shutdown) { 4843 if (initcall_debug) 4844 dev_info(dev, "shutdown\n"); 4845 dev->driver->shutdown(dev); 4846 } 4847 4848 device_unlock(dev); 4849 if (parent) 4850 device_unlock(parent); 4851 4852 put_device(dev); 4853 put_device(parent); 4854 4855 spin_lock(&devices_kset->list_lock); 4856 } 4857 spin_unlock(&devices_kset->list_lock); 4858 } 4859 4860 /* 4861 * Device logging functions 4862 */ 4863 4864 #ifdef CONFIG_PRINTK 4865 static void 4866 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4867 { 4868 const char *subsys; 4869 4870 memset(dev_info, 0, sizeof(*dev_info)); 4871 4872 if (dev->class) 4873 subsys = dev->class->name; 4874 else if (dev->bus) 4875 subsys = dev->bus->name; 4876 else 4877 return; 4878 4879 strscpy(dev_info->subsystem, subsys); 4880 4881 /* 4882 * Add device identifier DEVICE=: 4883 * b12:8 block dev_t 4884 * c127:3 char dev_t 4885 * n8 netdev ifindex 4886 * +sound:card0 subsystem:devname 4887 */ 4888 if (MAJOR(dev->devt)) { 4889 char c; 4890 4891 if (strcmp(subsys, "block") == 0) 4892 c = 'b'; 4893 else 4894 c = 'c'; 4895 4896 snprintf(dev_info->device, sizeof(dev_info->device), 4897 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4898 } else if (strcmp(subsys, "net") == 0) { 4899 struct net_device *net = to_net_dev(dev); 4900 4901 snprintf(dev_info->device, sizeof(dev_info->device), 4902 "n%u", net->ifindex); 4903 } else { 4904 snprintf(dev_info->device, sizeof(dev_info->device), 4905 "+%s:%s", subsys, dev_name(dev)); 4906 } 4907 } 4908 4909 int dev_vprintk_emit(int level, const struct device *dev, 4910 const char *fmt, va_list args) 4911 { 4912 struct dev_printk_info dev_info; 4913 4914 set_dev_info(dev, &dev_info); 4915 4916 return vprintk_emit(0, level, &dev_info, fmt, args); 4917 } 4918 EXPORT_SYMBOL(dev_vprintk_emit); 4919 4920 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4921 { 4922 va_list args; 4923 int r; 4924 4925 va_start(args, fmt); 4926 4927 r = dev_vprintk_emit(level, dev, fmt, args); 4928 4929 va_end(args); 4930 4931 return r; 4932 } 4933 EXPORT_SYMBOL(dev_printk_emit); 4934 4935 static void __dev_printk(const char *level, const struct device *dev, 4936 struct va_format *vaf) 4937 { 4938 if (dev) 4939 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4940 dev_driver_string(dev), dev_name(dev), vaf); 4941 else 4942 printk("%s(NULL device *): %pV", level, vaf); 4943 } 4944 4945 void _dev_printk(const char *level, const struct device *dev, 4946 const char *fmt, ...) 4947 { 4948 struct va_format vaf; 4949 va_list args; 4950 4951 va_start(args, fmt); 4952 4953 vaf.fmt = fmt; 4954 vaf.va = &args; 4955 4956 __dev_printk(level, dev, &vaf); 4957 4958 va_end(args); 4959 } 4960 EXPORT_SYMBOL(_dev_printk); 4961 4962 #define define_dev_printk_level(func, kern_level) \ 4963 void func(const struct device *dev, const char *fmt, ...) \ 4964 { \ 4965 struct va_format vaf; \ 4966 va_list args; \ 4967 \ 4968 va_start(args, fmt); \ 4969 \ 4970 vaf.fmt = fmt; \ 4971 vaf.va = &args; \ 4972 \ 4973 __dev_printk(kern_level, dev, &vaf); \ 4974 \ 4975 va_end(args); \ 4976 } \ 4977 EXPORT_SYMBOL(func); 4978 4979 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4980 define_dev_printk_level(_dev_alert, KERN_ALERT); 4981 define_dev_printk_level(_dev_crit, KERN_CRIT); 4982 define_dev_printk_level(_dev_err, KERN_ERR); 4983 define_dev_printk_level(_dev_warn, KERN_WARNING); 4984 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4985 define_dev_printk_level(_dev_info, KERN_INFO); 4986 4987 #endif 4988 4989 static void __dev_probe_failed(const struct device *dev, int err, bool fatal, 4990 const char *fmt, va_list vargsp) 4991 { 4992 struct va_format vaf; 4993 va_list vargs; 4994 4995 /* 4996 * On x86_64 and possibly on other architectures, va_list is actually a 4997 * size-1 array containing a structure. As a result, function parameter 4998 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than 4999 * T(*)[1], which is expected by its assignment to vaf.va below. 5000 * 5001 * One standard way to solve this mess is by creating a copy in a local 5002 * variable of type va_list and then using a pointer to that local copy 5003 * instead, which is the approach employed here. 5004 */ 5005 va_copy(vargs, vargsp); 5006 5007 vaf.fmt = fmt; 5008 vaf.va = &vargs; 5009 5010 switch (err) { 5011 case -EPROBE_DEFER: 5012 device_set_deferred_probe_reason(dev, &vaf); 5013 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5014 break; 5015 5016 case -ENOMEM: 5017 /* Don't print anything on -ENOMEM, there's already enough output */ 5018 break; 5019 5020 default: 5021 /* Log fatal final failures as errors, otherwise produce warnings */ 5022 if (fatal) 5023 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5024 else 5025 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5026 break; 5027 } 5028 5029 va_end(vargs); 5030 } 5031 5032 /** 5033 * dev_err_probe - probe error check and log helper 5034 * @dev: the pointer to the struct device 5035 * @err: error value to test 5036 * @fmt: printf-style format string 5037 * @...: arguments as specified in the format string 5038 * 5039 * This helper implements common pattern present in probe functions for error 5040 * checking: print debug or error message depending if the error value is 5041 * -EPROBE_DEFER and propagate error upwards. 5042 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5043 * checked later by reading devices_deferred debugfs attribute. 5044 * It replaces the following code sequence:: 5045 * 5046 * if (err != -EPROBE_DEFER) 5047 * dev_err(dev, ...); 5048 * else 5049 * dev_dbg(dev, ...); 5050 * return err; 5051 * 5052 * with:: 5053 * 5054 * return dev_err_probe(dev, err, ...); 5055 * 5056 * Using this helper in your probe function is totally fine even if @err 5057 * is known to never be -EPROBE_DEFER. 5058 * The benefit compared to a normal dev_err() is the standardized format 5059 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5060 * instead of "-35"), and having the error code returned allows more 5061 * compact error paths. 5062 * 5063 * Returns @err. 5064 */ 5065 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5066 { 5067 va_list vargs; 5068 5069 va_start(vargs, fmt); 5070 5071 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */ 5072 __dev_probe_failed(dev, err, true, fmt, vargs); 5073 5074 va_end(vargs); 5075 5076 return err; 5077 } 5078 EXPORT_SYMBOL_GPL(dev_err_probe); 5079 5080 /** 5081 * dev_warn_probe - probe error check and log helper 5082 * @dev: the pointer to the struct device 5083 * @err: error value to test 5084 * @fmt: printf-style format string 5085 * @...: arguments as specified in the format string 5086 * 5087 * This helper implements common pattern present in probe functions for error 5088 * checking: print debug or warning message depending if the error value is 5089 * -EPROBE_DEFER and propagate error upwards. 5090 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5091 * checked later by reading devices_deferred debugfs attribute. 5092 * It replaces the following code sequence:: 5093 * 5094 * if (err != -EPROBE_DEFER) 5095 * dev_warn(dev, ...); 5096 * else 5097 * dev_dbg(dev, ...); 5098 * return err; 5099 * 5100 * with:: 5101 * 5102 * return dev_warn_probe(dev, err, ...); 5103 * 5104 * Using this helper in your probe function is totally fine even if @err 5105 * is known to never be -EPROBE_DEFER. 5106 * The benefit compared to a normal dev_warn() is the standardized format 5107 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5108 * instead of "-35"), and having the error code returned allows more 5109 * compact error paths. 5110 * 5111 * Returns @err. 5112 */ 5113 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...) 5114 { 5115 va_list vargs; 5116 5117 va_start(vargs, fmt); 5118 5119 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */ 5120 __dev_probe_failed(dev, err, false, fmt, vargs); 5121 5122 va_end(vargs); 5123 5124 return err; 5125 } 5126 EXPORT_SYMBOL_GPL(dev_warn_probe); 5127 5128 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5129 { 5130 return fwnode && !IS_ERR(fwnode->secondary); 5131 } 5132 5133 /** 5134 * set_primary_fwnode - Change the primary firmware node of a given device. 5135 * @dev: Device to handle. 5136 * @fwnode: New primary firmware node of the device. 5137 * 5138 * Set the device's firmware node pointer to @fwnode, but if a secondary 5139 * firmware node of the device is present, preserve it. 5140 * 5141 * Valid fwnode cases are: 5142 * - primary --> secondary --> -ENODEV 5143 * - primary --> NULL 5144 * - secondary --> -ENODEV 5145 * - NULL 5146 */ 5147 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5148 { 5149 struct device *parent = dev->parent; 5150 struct fwnode_handle *fn = dev->fwnode; 5151 5152 if (fwnode) { 5153 if (fwnode_is_primary(fn)) 5154 fn = fn->secondary; 5155 5156 if (fn) { 5157 WARN_ON(fwnode->secondary); 5158 fwnode->secondary = fn; 5159 } 5160 dev->fwnode = fwnode; 5161 } else { 5162 if (fwnode_is_primary(fn)) { 5163 dev->fwnode = fn->secondary; 5164 5165 /* Skip nullifying fn->secondary if the primary is shared */ 5166 if (parent && fn == parent->fwnode) 5167 return; 5168 5169 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5170 fn->secondary = NULL; 5171 } else { 5172 dev->fwnode = NULL; 5173 } 5174 } 5175 } 5176 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5177 5178 /** 5179 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5180 * @dev: Device to handle. 5181 * @fwnode: New secondary firmware node of the device. 5182 * 5183 * If a primary firmware node of the device is present, set its secondary 5184 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5185 * @fwnode. 5186 */ 5187 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5188 { 5189 if (fwnode) 5190 fwnode->secondary = ERR_PTR(-ENODEV); 5191 5192 if (fwnode_is_primary(dev->fwnode)) 5193 dev->fwnode->secondary = fwnode; 5194 else 5195 dev->fwnode = fwnode; 5196 } 5197 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5198 5199 /** 5200 * device_remove_of_node - Remove an of_node from a device 5201 * @dev: device whose device tree node is being removed 5202 */ 5203 void device_remove_of_node(struct device *dev) 5204 { 5205 dev = get_device(dev); 5206 if (!dev) 5207 return; 5208 5209 if (!dev->of_node) 5210 goto end; 5211 5212 if (dev->fwnode == of_fwnode_handle(dev->of_node)) 5213 dev->fwnode = NULL; 5214 5215 of_node_put(dev->of_node); 5216 dev->of_node = NULL; 5217 5218 end: 5219 put_device(dev); 5220 } 5221 EXPORT_SYMBOL_GPL(device_remove_of_node); 5222 5223 /** 5224 * device_add_of_node - Add an of_node to an existing device 5225 * @dev: device whose device tree node is being added 5226 * @of_node: of_node to add 5227 * 5228 * Return: 0 on success or error code on failure. 5229 */ 5230 int device_add_of_node(struct device *dev, struct device_node *of_node) 5231 { 5232 int ret; 5233 5234 if (!of_node) 5235 return -EINVAL; 5236 5237 dev = get_device(dev); 5238 if (!dev) 5239 return -EINVAL; 5240 5241 if (dev->of_node) { 5242 dev_err(dev, "Cannot replace node %pOF with %pOF\n", 5243 dev->of_node, of_node); 5244 ret = -EBUSY; 5245 goto end; 5246 } 5247 5248 dev->of_node = of_node_get(of_node); 5249 5250 if (!dev->fwnode) 5251 dev->fwnode = of_fwnode_handle(of_node); 5252 5253 ret = 0; 5254 end: 5255 put_device(dev); 5256 return ret; 5257 } 5258 EXPORT_SYMBOL_GPL(device_add_of_node); 5259 5260 /** 5261 * device_set_of_node_from_dev - reuse device-tree node of another device 5262 * @dev: device whose device-tree node is being set 5263 * @dev2: device whose device-tree node is being reused 5264 * 5265 * Takes another reference to the new device-tree node after first dropping 5266 * any reference held to the old node. 5267 */ 5268 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5269 { 5270 of_node_put(dev->of_node); 5271 dev->of_node = of_node_get(dev2->of_node); 5272 dev->of_node_reused = true; 5273 } 5274 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5275 5276 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5277 { 5278 dev->fwnode = fwnode; 5279 dev->of_node = to_of_node(fwnode); 5280 } 5281 EXPORT_SYMBOL_GPL(device_set_node); 5282 5283 int device_match_name(struct device *dev, const void *name) 5284 { 5285 return sysfs_streq(dev_name(dev), name); 5286 } 5287 EXPORT_SYMBOL_GPL(device_match_name); 5288 5289 int device_match_type(struct device *dev, const void *type) 5290 { 5291 return dev->type == type; 5292 } 5293 EXPORT_SYMBOL_GPL(device_match_type); 5294 5295 int device_match_of_node(struct device *dev, const void *np) 5296 { 5297 return np && dev->of_node == np; 5298 } 5299 EXPORT_SYMBOL_GPL(device_match_of_node); 5300 5301 int device_match_fwnode(struct device *dev, const void *fwnode) 5302 { 5303 return fwnode && dev_fwnode(dev) == fwnode; 5304 } 5305 EXPORT_SYMBOL_GPL(device_match_fwnode); 5306 5307 int device_match_devt(struct device *dev, const void *pdevt) 5308 { 5309 return dev->devt == *(dev_t *)pdevt; 5310 } 5311 EXPORT_SYMBOL_GPL(device_match_devt); 5312 5313 int device_match_acpi_dev(struct device *dev, const void *adev) 5314 { 5315 return adev && ACPI_COMPANION(dev) == adev; 5316 } 5317 EXPORT_SYMBOL(device_match_acpi_dev); 5318 5319 int device_match_acpi_handle(struct device *dev, const void *handle) 5320 { 5321 return handle && ACPI_HANDLE(dev) == handle; 5322 } 5323 EXPORT_SYMBOL(device_match_acpi_handle); 5324 5325 int device_match_any(struct device *dev, const void *unused) 5326 { 5327 return 1; 5328 } 5329 EXPORT_SYMBOL_GPL(device_match_any); 5330