1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/device.h> 12 #include <linux/err.h> 13 #include <linux/fwnode.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/kdev_t.h> 19 #include <linux/notifier.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/genhd.h> 23 #include <linux/mutex.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/netdevice.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sysfs.h> 28 29 #include "base.h" 30 #include "power/power.h" 31 32 #ifdef CONFIG_SYSFS_DEPRECATED 33 #ifdef CONFIG_SYSFS_DEPRECATED_V2 34 long sysfs_deprecated = 1; 35 #else 36 long sysfs_deprecated = 0; 37 #endif 38 static int __init sysfs_deprecated_setup(char *arg) 39 { 40 return kstrtol(arg, 10, &sysfs_deprecated); 41 } 42 early_param("sysfs.deprecated", sysfs_deprecated_setup); 43 #endif 44 45 /* Device links support. */ 46 47 #ifdef CONFIG_SRCU 48 static DEFINE_MUTEX(device_links_lock); 49 DEFINE_STATIC_SRCU(device_links_srcu); 50 51 static inline void device_links_write_lock(void) 52 { 53 mutex_lock(&device_links_lock); 54 } 55 56 static inline void device_links_write_unlock(void) 57 { 58 mutex_unlock(&device_links_lock); 59 } 60 61 int device_links_read_lock(void) 62 { 63 return srcu_read_lock(&device_links_srcu); 64 } 65 66 void device_links_read_unlock(int idx) 67 { 68 srcu_read_unlock(&device_links_srcu, idx); 69 } 70 #else /* !CONFIG_SRCU */ 71 static DECLARE_RWSEM(device_links_lock); 72 73 static inline void device_links_write_lock(void) 74 { 75 down_write(&device_links_lock); 76 } 77 78 static inline void device_links_write_unlock(void) 79 { 80 up_write(&device_links_lock); 81 } 82 83 int device_links_read_lock(void) 84 { 85 down_read(&device_links_lock); 86 return 0; 87 } 88 89 void device_links_read_unlock(int not_used) 90 { 91 up_read(&device_links_lock); 92 } 93 #endif /* !CONFIG_SRCU */ 94 95 /** 96 * device_is_dependent - Check if one device depends on another one 97 * @dev: Device to check dependencies for. 98 * @target: Device to check against. 99 * 100 * Check if @target depends on @dev or any device dependent on it (its child or 101 * its consumer etc). Return 1 if that is the case or 0 otherwise. 102 */ 103 static int device_is_dependent(struct device *dev, void *target) 104 { 105 struct device_link *link; 106 int ret; 107 108 if (WARN_ON(dev == target)) 109 return 1; 110 111 ret = device_for_each_child(dev, target, device_is_dependent); 112 if (ret) 113 return ret; 114 115 list_for_each_entry(link, &dev->links.consumers, s_node) { 116 if (WARN_ON(link->consumer == target)) 117 return 1; 118 119 ret = device_is_dependent(link->consumer, target); 120 if (ret) 121 break; 122 } 123 return ret; 124 } 125 126 static int device_reorder_to_tail(struct device *dev, void *not_used) 127 { 128 struct device_link *link; 129 130 /* 131 * Devices that have not been registered yet will be put to the ends 132 * of the lists during the registration, so skip them here. 133 */ 134 if (device_is_registered(dev)) 135 devices_kset_move_last(dev); 136 137 if (device_pm_initialized(dev)) 138 device_pm_move_last(dev); 139 140 device_for_each_child(dev, NULL, device_reorder_to_tail); 141 list_for_each_entry(link, &dev->links.consumers, s_node) 142 device_reorder_to_tail(link->consumer, NULL); 143 144 return 0; 145 } 146 147 /** 148 * device_pm_move_to_tail - Move set of devices to the end of device lists 149 * @dev: Device to move 150 * 151 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 152 * 153 * It moves the @dev along with all of its children and all of its consumers 154 * to the ends of the device_kset and dpm_list, recursively. 155 */ 156 void device_pm_move_to_tail(struct device *dev) 157 { 158 int idx; 159 160 idx = device_links_read_lock(); 161 device_pm_lock(); 162 device_reorder_to_tail(dev, NULL); 163 device_pm_unlock(); 164 device_links_read_unlock(idx); 165 } 166 167 /** 168 * device_link_add - Create a link between two devices. 169 * @consumer: Consumer end of the link. 170 * @supplier: Supplier end of the link. 171 * @flags: Link flags. 172 * 173 * The caller is responsible for the proper synchronization of the link creation 174 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 175 * runtime PM framework to take the link into account. Second, if the 176 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 177 * be forced into the active metastate and reference-counted upon the creation 178 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 179 * ignored. 180 * 181 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 182 * when the consumer device driver unbinds from it. The combination of both 183 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 184 * to be returned. 185 * 186 * A side effect of the link creation is re-ordering of dpm_list and the 187 * devices_kset list by moving the consumer device and all devices depending 188 * on it to the ends of these lists (that does not happen to devices that have 189 * not been registered when this function is called). 190 * 191 * The supplier device is required to be registered when this function is called 192 * and NULL will be returned if that is not the case. The consumer device need 193 * not be registered, however. 194 */ 195 struct device_link *device_link_add(struct device *consumer, 196 struct device *supplier, u32 flags) 197 { 198 struct device_link *link; 199 200 if (!consumer || !supplier || 201 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 202 return NULL; 203 204 device_links_write_lock(); 205 device_pm_lock(); 206 207 /* 208 * If the supplier has not been fully registered yet or there is a 209 * reverse dependency between the consumer and the supplier already in 210 * the graph, return NULL. 211 */ 212 if (!device_pm_initialized(supplier) 213 || device_is_dependent(consumer, supplier)) { 214 link = NULL; 215 goto out; 216 } 217 218 list_for_each_entry(link, &supplier->links.consumers, s_node) 219 if (link->consumer == consumer) { 220 kref_get(&link->kref); 221 goto out; 222 } 223 224 link = kzalloc(sizeof(*link), GFP_KERNEL); 225 if (!link) 226 goto out; 227 228 if (flags & DL_FLAG_PM_RUNTIME) { 229 if (flags & DL_FLAG_RPM_ACTIVE) { 230 if (pm_runtime_get_sync(supplier) < 0) { 231 pm_runtime_put_noidle(supplier); 232 kfree(link); 233 link = NULL; 234 goto out; 235 } 236 link->rpm_active = true; 237 } 238 pm_runtime_new_link(consumer); 239 /* 240 * If the link is being added by the consumer driver at probe 241 * time, balance the decrementation of the supplier's runtime PM 242 * usage counter after consumer probe in driver_probe_device(). 243 */ 244 if (consumer->links.status == DL_DEV_PROBING) 245 pm_runtime_get_noresume(supplier); 246 } 247 get_device(supplier); 248 link->supplier = supplier; 249 INIT_LIST_HEAD(&link->s_node); 250 get_device(consumer); 251 link->consumer = consumer; 252 INIT_LIST_HEAD(&link->c_node); 253 link->flags = flags; 254 kref_init(&link->kref); 255 256 /* Determine the initial link state. */ 257 if (flags & DL_FLAG_STATELESS) { 258 link->status = DL_STATE_NONE; 259 } else { 260 switch (supplier->links.status) { 261 case DL_DEV_DRIVER_BOUND: 262 switch (consumer->links.status) { 263 case DL_DEV_PROBING: 264 /* 265 * Some callers expect the link creation during 266 * consumer driver probe to resume the supplier 267 * even without DL_FLAG_RPM_ACTIVE. 268 */ 269 if (flags & DL_FLAG_PM_RUNTIME) 270 pm_runtime_resume(supplier); 271 272 link->status = DL_STATE_CONSUMER_PROBE; 273 break; 274 case DL_DEV_DRIVER_BOUND: 275 link->status = DL_STATE_ACTIVE; 276 break; 277 default: 278 link->status = DL_STATE_AVAILABLE; 279 break; 280 } 281 break; 282 case DL_DEV_UNBINDING: 283 link->status = DL_STATE_SUPPLIER_UNBIND; 284 break; 285 default: 286 link->status = DL_STATE_DORMANT; 287 break; 288 } 289 } 290 291 /* 292 * Move the consumer and all of the devices depending on it to the end 293 * of dpm_list and the devices_kset list. 294 * 295 * It is necessary to hold dpm_list locked throughout all that or else 296 * we may end up suspending with a wrong ordering of it. 297 */ 298 device_reorder_to_tail(consumer, NULL); 299 300 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 301 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 302 303 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 304 305 out: 306 device_pm_unlock(); 307 device_links_write_unlock(); 308 return link; 309 } 310 EXPORT_SYMBOL_GPL(device_link_add); 311 312 static void device_link_free(struct device_link *link) 313 { 314 put_device(link->consumer); 315 put_device(link->supplier); 316 kfree(link); 317 } 318 319 #ifdef CONFIG_SRCU 320 static void __device_link_free_srcu(struct rcu_head *rhead) 321 { 322 device_link_free(container_of(rhead, struct device_link, rcu_head)); 323 } 324 325 static void __device_link_del(struct kref *kref) 326 { 327 struct device_link *link = container_of(kref, struct device_link, kref); 328 329 dev_info(link->consumer, "Dropping the link to %s\n", 330 dev_name(link->supplier)); 331 332 if (link->flags & DL_FLAG_PM_RUNTIME) 333 pm_runtime_drop_link(link->consumer); 334 335 list_del_rcu(&link->s_node); 336 list_del_rcu(&link->c_node); 337 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 338 } 339 #else /* !CONFIG_SRCU */ 340 static void __device_link_del(struct kref *kref) 341 { 342 struct device_link *link = container_of(kref, struct device_link, kref); 343 344 dev_info(link->consumer, "Dropping the link to %s\n", 345 dev_name(link->supplier)); 346 347 if (link->flags & DL_FLAG_PM_RUNTIME) 348 pm_runtime_drop_link(link->consumer); 349 350 list_del(&link->s_node); 351 list_del(&link->c_node); 352 device_link_free(link); 353 } 354 #endif /* !CONFIG_SRCU */ 355 356 /** 357 * device_link_del - Delete a link between two devices. 358 * @link: Device link to delete. 359 * 360 * The caller must ensure proper synchronization of this function with runtime 361 * PM. If the link was added multiple times, it needs to be deleted as often. 362 * Care is required for hotplugged devices: Their links are purged on removal 363 * and calling device_link_del() is then no longer allowed. 364 */ 365 void device_link_del(struct device_link *link) 366 { 367 device_links_write_lock(); 368 device_pm_lock(); 369 kref_put(&link->kref, __device_link_del); 370 device_pm_unlock(); 371 device_links_write_unlock(); 372 } 373 EXPORT_SYMBOL_GPL(device_link_del); 374 375 /** 376 * device_link_remove - remove a link between two devices. 377 * @consumer: Consumer end of the link. 378 * @supplier: Supplier end of the link. 379 * 380 * The caller must ensure proper synchronization of this function with runtime 381 * PM. 382 */ 383 void device_link_remove(void *consumer, struct device *supplier) 384 { 385 struct device_link *link; 386 387 if (WARN_ON(consumer == supplier)) 388 return; 389 390 device_links_write_lock(); 391 device_pm_lock(); 392 393 list_for_each_entry(link, &supplier->links.consumers, s_node) { 394 if (link->consumer == consumer) { 395 kref_put(&link->kref, __device_link_del); 396 break; 397 } 398 } 399 400 device_pm_unlock(); 401 device_links_write_unlock(); 402 } 403 EXPORT_SYMBOL_GPL(device_link_remove); 404 405 static void device_links_missing_supplier(struct device *dev) 406 { 407 struct device_link *link; 408 409 list_for_each_entry(link, &dev->links.suppliers, c_node) 410 if (link->status == DL_STATE_CONSUMER_PROBE) 411 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 412 } 413 414 /** 415 * device_links_check_suppliers - Check presence of supplier drivers. 416 * @dev: Consumer device. 417 * 418 * Check links from this device to any suppliers. Walk the list of the device's 419 * links to suppliers and see if all of them are available. If not, simply 420 * return -EPROBE_DEFER. 421 * 422 * We need to guarantee that the supplier will not go away after the check has 423 * been positive here. It only can go away in __device_release_driver() and 424 * that function checks the device's links to consumers. This means we need to 425 * mark the link as "consumer probe in progress" to make the supplier removal 426 * wait for us to complete (or bad things may happen). 427 * 428 * Links with the DL_FLAG_STATELESS flag set are ignored. 429 */ 430 int device_links_check_suppliers(struct device *dev) 431 { 432 struct device_link *link; 433 int ret = 0; 434 435 device_links_write_lock(); 436 437 list_for_each_entry(link, &dev->links.suppliers, c_node) { 438 if (link->flags & DL_FLAG_STATELESS) 439 continue; 440 441 if (link->status != DL_STATE_AVAILABLE) { 442 device_links_missing_supplier(dev); 443 ret = -EPROBE_DEFER; 444 break; 445 } 446 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 447 } 448 dev->links.status = DL_DEV_PROBING; 449 450 device_links_write_unlock(); 451 return ret; 452 } 453 454 /** 455 * device_links_driver_bound - Update device links after probing its driver. 456 * @dev: Device to update the links for. 457 * 458 * The probe has been successful, so update links from this device to any 459 * consumers by changing their status to "available". 460 * 461 * Also change the status of @dev's links to suppliers to "active". 462 * 463 * Links with the DL_FLAG_STATELESS flag set are ignored. 464 */ 465 void device_links_driver_bound(struct device *dev) 466 { 467 struct device_link *link; 468 469 device_links_write_lock(); 470 471 list_for_each_entry(link, &dev->links.consumers, s_node) { 472 if (link->flags & DL_FLAG_STATELESS) 473 continue; 474 475 WARN_ON(link->status != DL_STATE_DORMANT); 476 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 477 } 478 479 list_for_each_entry(link, &dev->links.suppliers, c_node) { 480 if (link->flags & DL_FLAG_STATELESS) 481 continue; 482 483 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 484 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 485 } 486 487 dev->links.status = DL_DEV_DRIVER_BOUND; 488 489 device_links_write_unlock(); 490 } 491 492 /** 493 * __device_links_no_driver - Update links of a device without a driver. 494 * @dev: Device without a drvier. 495 * 496 * Delete all non-persistent links from this device to any suppliers. 497 * 498 * Persistent links stay around, but their status is changed to "available", 499 * unless they already are in the "supplier unbind in progress" state in which 500 * case they need not be updated. 501 * 502 * Links with the DL_FLAG_STATELESS flag set are ignored. 503 */ 504 static void __device_links_no_driver(struct device *dev) 505 { 506 struct device_link *link, *ln; 507 508 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 509 if (link->flags & DL_FLAG_STATELESS) 510 continue; 511 512 if (link->flags & DL_FLAG_AUTOREMOVE) 513 kref_put(&link->kref, __device_link_del); 514 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 515 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 516 } 517 518 dev->links.status = DL_DEV_NO_DRIVER; 519 } 520 521 void device_links_no_driver(struct device *dev) 522 { 523 device_links_write_lock(); 524 __device_links_no_driver(dev); 525 device_links_write_unlock(); 526 } 527 528 /** 529 * device_links_driver_cleanup - Update links after driver removal. 530 * @dev: Device whose driver has just gone away. 531 * 532 * Update links to consumers for @dev by changing their status to "dormant" and 533 * invoke %__device_links_no_driver() to update links to suppliers for it as 534 * appropriate. 535 * 536 * Links with the DL_FLAG_STATELESS flag set are ignored. 537 */ 538 void device_links_driver_cleanup(struct device *dev) 539 { 540 struct device_link *link; 541 542 device_links_write_lock(); 543 544 list_for_each_entry(link, &dev->links.consumers, s_node) { 545 if (link->flags & DL_FLAG_STATELESS) 546 continue; 547 548 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 549 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 550 WRITE_ONCE(link->status, DL_STATE_DORMANT); 551 } 552 553 __device_links_no_driver(dev); 554 555 device_links_write_unlock(); 556 } 557 558 /** 559 * device_links_busy - Check if there are any busy links to consumers. 560 * @dev: Device to check. 561 * 562 * Check each consumer of the device and return 'true' if its link's status 563 * is one of "consumer probe" or "active" (meaning that the given consumer is 564 * probing right now or its driver is present). Otherwise, change the link 565 * state to "supplier unbind" to prevent the consumer from being probed 566 * successfully going forward. 567 * 568 * Return 'false' if there are no probing or active consumers. 569 * 570 * Links with the DL_FLAG_STATELESS flag set are ignored. 571 */ 572 bool device_links_busy(struct device *dev) 573 { 574 struct device_link *link; 575 bool ret = false; 576 577 device_links_write_lock(); 578 579 list_for_each_entry(link, &dev->links.consumers, s_node) { 580 if (link->flags & DL_FLAG_STATELESS) 581 continue; 582 583 if (link->status == DL_STATE_CONSUMER_PROBE 584 || link->status == DL_STATE_ACTIVE) { 585 ret = true; 586 break; 587 } 588 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 589 } 590 591 dev->links.status = DL_DEV_UNBINDING; 592 593 device_links_write_unlock(); 594 return ret; 595 } 596 597 /** 598 * device_links_unbind_consumers - Force unbind consumers of the given device. 599 * @dev: Device to unbind the consumers of. 600 * 601 * Walk the list of links to consumers for @dev and if any of them is in the 602 * "consumer probe" state, wait for all device probes in progress to complete 603 * and start over. 604 * 605 * If that's not the case, change the status of the link to "supplier unbind" 606 * and check if the link was in the "active" state. If so, force the consumer 607 * driver to unbind and start over (the consumer will not re-probe as we have 608 * changed the state of the link already). 609 * 610 * Links with the DL_FLAG_STATELESS flag set are ignored. 611 */ 612 void device_links_unbind_consumers(struct device *dev) 613 { 614 struct device_link *link; 615 616 start: 617 device_links_write_lock(); 618 619 list_for_each_entry(link, &dev->links.consumers, s_node) { 620 enum device_link_state status; 621 622 if (link->flags & DL_FLAG_STATELESS) 623 continue; 624 625 status = link->status; 626 if (status == DL_STATE_CONSUMER_PROBE) { 627 device_links_write_unlock(); 628 629 wait_for_device_probe(); 630 goto start; 631 } 632 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 633 if (status == DL_STATE_ACTIVE) { 634 struct device *consumer = link->consumer; 635 636 get_device(consumer); 637 638 device_links_write_unlock(); 639 640 device_release_driver_internal(consumer, NULL, 641 consumer->parent); 642 put_device(consumer); 643 goto start; 644 } 645 } 646 647 device_links_write_unlock(); 648 } 649 650 /** 651 * device_links_purge - Delete existing links to other devices. 652 * @dev: Target device. 653 */ 654 static void device_links_purge(struct device *dev) 655 { 656 struct device_link *link, *ln; 657 658 /* 659 * Delete all of the remaining links from this device to any other 660 * devices (either consumers or suppliers). 661 */ 662 device_links_write_lock(); 663 664 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 665 WARN_ON(link->status == DL_STATE_ACTIVE); 666 __device_link_del(&link->kref); 667 } 668 669 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 670 WARN_ON(link->status != DL_STATE_DORMANT && 671 link->status != DL_STATE_NONE); 672 __device_link_del(&link->kref); 673 } 674 675 device_links_write_unlock(); 676 } 677 678 /* Device links support end. */ 679 680 int (*platform_notify)(struct device *dev) = NULL; 681 int (*platform_notify_remove)(struct device *dev) = NULL; 682 static struct kobject *dev_kobj; 683 struct kobject *sysfs_dev_char_kobj; 684 struct kobject *sysfs_dev_block_kobj; 685 686 static DEFINE_MUTEX(device_hotplug_lock); 687 688 void lock_device_hotplug(void) 689 { 690 mutex_lock(&device_hotplug_lock); 691 } 692 693 void unlock_device_hotplug(void) 694 { 695 mutex_unlock(&device_hotplug_lock); 696 } 697 698 int lock_device_hotplug_sysfs(void) 699 { 700 if (mutex_trylock(&device_hotplug_lock)) 701 return 0; 702 703 /* Avoid busy looping (5 ms of sleep should do). */ 704 msleep(5); 705 return restart_syscall(); 706 } 707 708 #ifdef CONFIG_BLOCK 709 static inline int device_is_not_partition(struct device *dev) 710 { 711 return !(dev->type == &part_type); 712 } 713 #else 714 static inline int device_is_not_partition(struct device *dev) 715 { 716 return 1; 717 } 718 #endif 719 720 /** 721 * dev_driver_string - Return a device's driver name, if at all possible 722 * @dev: struct device to get the name of 723 * 724 * Will return the device's driver's name if it is bound to a device. If 725 * the device is not bound to a driver, it will return the name of the bus 726 * it is attached to. If it is not attached to a bus either, an empty 727 * string will be returned. 728 */ 729 const char *dev_driver_string(const struct device *dev) 730 { 731 struct device_driver *drv; 732 733 /* dev->driver can change to NULL underneath us because of unbinding, 734 * so be careful about accessing it. dev->bus and dev->class should 735 * never change once they are set, so they don't need special care. 736 */ 737 drv = READ_ONCE(dev->driver); 738 return drv ? drv->name : 739 (dev->bus ? dev->bus->name : 740 (dev->class ? dev->class->name : "")); 741 } 742 EXPORT_SYMBOL(dev_driver_string); 743 744 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 745 746 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 747 char *buf) 748 { 749 struct device_attribute *dev_attr = to_dev_attr(attr); 750 struct device *dev = kobj_to_dev(kobj); 751 ssize_t ret = -EIO; 752 753 if (dev_attr->show) 754 ret = dev_attr->show(dev, dev_attr, buf); 755 if (ret >= (ssize_t)PAGE_SIZE) { 756 printk("dev_attr_show: %pS returned bad count\n", 757 dev_attr->show); 758 } 759 return ret; 760 } 761 762 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 763 const char *buf, size_t count) 764 { 765 struct device_attribute *dev_attr = to_dev_attr(attr); 766 struct device *dev = kobj_to_dev(kobj); 767 ssize_t ret = -EIO; 768 769 if (dev_attr->store) 770 ret = dev_attr->store(dev, dev_attr, buf, count); 771 return ret; 772 } 773 774 static const struct sysfs_ops dev_sysfs_ops = { 775 .show = dev_attr_show, 776 .store = dev_attr_store, 777 }; 778 779 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 780 781 ssize_t device_store_ulong(struct device *dev, 782 struct device_attribute *attr, 783 const char *buf, size_t size) 784 { 785 struct dev_ext_attribute *ea = to_ext_attr(attr); 786 char *end; 787 unsigned long new = simple_strtoul(buf, &end, 0); 788 if (end == buf) 789 return -EINVAL; 790 *(unsigned long *)(ea->var) = new; 791 /* Always return full write size even if we didn't consume all */ 792 return size; 793 } 794 EXPORT_SYMBOL_GPL(device_store_ulong); 795 796 ssize_t device_show_ulong(struct device *dev, 797 struct device_attribute *attr, 798 char *buf) 799 { 800 struct dev_ext_attribute *ea = to_ext_attr(attr); 801 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 802 } 803 EXPORT_SYMBOL_GPL(device_show_ulong); 804 805 ssize_t device_store_int(struct device *dev, 806 struct device_attribute *attr, 807 const char *buf, size_t size) 808 { 809 struct dev_ext_attribute *ea = to_ext_attr(attr); 810 char *end; 811 long new = simple_strtol(buf, &end, 0); 812 if (end == buf || new > INT_MAX || new < INT_MIN) 813 return -EINVAL; 814 *(int *)(ea->var) = new; 815 /* Always return full write size even if we didn't consume all */ 816 return size; 817 } 818 EXPORT_SYMBOL_GPL(device_store_int); 819 820 ssize_t device_show_int(struct device *dev, 821 struct device_attribute *attr, 822 char *buf) 823 { 824 struct dev_ext_attribute *ea = to_ext_attr(attr); 825 826 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 827 } 828 EXPORT_SYMBOL_GPL(device_show_int); 829 830 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 831 const char *buf, size_t size) 832 { 833 struct dev_ext_attribute *ea = to_ext_attr(attr); 834 835 if (strtobool(buf, ea->var) < 0) 836 return -EINVAL; 837 838 return size; 839 } 840 EXPORT_SYMBOL_GPL(device_store_bool); 841 842 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 843 char *buf) 844 { 845 struct dev_ext_attribute *ea = to_ext_attr(attr); 846 847 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 848 } 849 EXPORT_SYMBOL_GPL(device_show_bool); 850 851 /** 852 * device_release - free device structure. 853 * @kobj: device's kobject. 854 * 855 * This is called once the reference count for the object 856 * reaches 0. We forward the call to the device's release 857 * method, which should handle actually freeing the structure. 858 */ 859 static void device_release(struct kobject *kobj) 860 { 861 struct device *dev = kobj_to_dev(kobj); 862 struct device_private *p = dev->p; 863 864 /* 865 * Some platform devices are driven without driver attached 866 * and managed resources may have been acquired. Make sure 867 * all resources are released. 868 * 869 * Drivers still can add resources into device after device 870 * is deleted but alive, so release devres here to avoid 871 * possible memory leak. 872 */ 873 devres_release_all(dev); 874 875 if (dev->release) 876 dev->release(dev); 877 else if (dev->type && dev->type->release) 878 dev->type->release(dev); 879 else if (dev->class && dev->class->dev_release) 880 dev->class->dev_release(dev); 881 else 882 WARN(1, KERN_ERR "Device '%s' does not have a release() " 883 "function, it is broken and must be fixed.\n", 884 dev_name(dev)); 885 kfree(p); 886 } 887 888 static const void *device_namespace(struct kobject *kobj) 889 { 890 struct device *dev = kobj_to_dev(kobj); 891 const void *ns = NULL; 892 893 if (dev->class && dev->class->ns_type) 894 ns = dev->class->namespace(dev); 895 896 return ns; 897 } 898 899 static struct kobj_type device_ktype = { 900 .release = device_release, 901 .sysfs_ops = &dev_sysfs_ops, 902 .namespace = device_namespace, 903 }; 904 905 906 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 907 { 908 struct kobj_type *ktype = get_ktype(kobj); 909 910 if (ktype == &device_ktype) { 911 struct device *dev = kobj_to_dev(kobj); 912 if (dev->bus) 913 return 1; 914 if (dev->class) 915 return 1; 916 } 917 return 0; 918 } 919 920 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 921 { 922 struct device *dev = kobj_to_dev(kobj); 923 924 if (dev->bus) 925 return dev->bus->name; 926 if (dev->class) 927 return dev->class->name; 928 return NULL; 929 } 930 931 static int dev_uevent(struct kset *kset, struct kobject *kobj, 932 struct kobj_uevent_env *env) 933 { 934 struct device *dev = kobj_to_dev(kobj); 935 int retval = 0; 936 937 /* add device node properties if present */ 938 if (MAJOR(dev->devt)) { 939 const char *tmp; 940 const char *name; 941 umode_t mode = 0; 942 kuid_t uid = GLOBAL_ROOT_UID; 943 kgid_t gid = GLOBAL_ROOT_GID; 944 945 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 946 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 947 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 948 if (name) { 949 add_uevent_var(env, "DEVNAME=%s", name); 950 if (mode) 951 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 952 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 953 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 954 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 955 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 956 kfree(tmp); 957 } 958 } 959 960 if (dev->type && dev->type->name) 961 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 962 963 if (dev->driver) 964 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 965 966 /* Add common DT information about the device */ 967 of_device_uevent(dev, env); 968 969 /* have the bus specific function add its stuff */ 970 if (dev->bus && dev->bus->uevent) { 971 retval = dev->bus->uevent(dev, env); 972 if (retval) 973 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 974 dev_name(dev), __func__, retval); 975 } 976 977 /* have the class specific function add its stuff */ 978 if (dev->class && dev->class->dev_uevent) { 979 retval = dev->class->dev_uevent(dev, env); 980 if (retval) 981 pr_debug("device: '%s': %s: class uevent() " 982 "returned %d\n", dev_name(dev), 983 __func__, retval); 984 } 985 986 /* have the device type specific function add its stuff */ 987 if (dev->type && dev->type->uevent) { 988 retval = dev->type->uevent(dev, env); 989 if (retval) 990 pr_debug("device: '%s': %s: dev_type uevent() " 991 "returned %d\n", dev_name(dev), 992 __func__, retval); 993 } 994 995 return retval; 996 } 997 998 static const struct kset_uevent_ops device_uevent_ops = { 999 .filter = dev_uevent_filter, 1000 .name = dev_uevent_name, 1001 .uevent = dev_uevent, 1002 }; 1003 1004 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1005 char *buf) 1006 { 1007 struct kobject *top_kobj; 1008 struct kset *kset; 1009 struct kobj_uevent_env *env = NULL; 1010 int i; 1011 size_t count = 0; 1012 int retval; 1013 1014 /* search the kset, the device belongs to */ 1015 top_kobj = &dev->kobj; 1016 while (!top_kobj->kset && top_kobj->parent) 1017 top_kobj = top_kobj->parent; 1018 if (!top_kobj->kset) 1019 goto out; 1020 1021 kset = top_kobj->kset; 1022 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1023 goto out; 1024 1025 /* respect filter */ 1026 if (kset->uevent_ops && kset->uevent_ops->filter) 1027 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1028 goto out; 1029 1030 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1031 if (!env) 1032 return -ENOMEM; 1033 1034 /* let the kset specific function add its keys */ 1035 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1036 if (retval) 1037 goto out; 1038 1039 /* copy keys to file */ 1040 for (i = 0; i < env->envp_idx; i++) 1041 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1042 out: 1043 kfree(env); 1044 return count; 1045 } 1046 1047 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1048 const char *buf, size_t count) 1049 { 1050 if (kobject_synth_uevent(&dev->kobj, buf, count)) 1051 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1052 1053 return count; 1054 } 1055 static DEVICE_ATTR_RW(uevent); 1056 1057 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1058 char *buf) 1059 { 1060 bool val; 1061 1062 device_lock(dev); 1063 val = !dev->offline; 1064 device_unlock(dev); 1065 return sprintf(buf, "%u\n", val); 1066 } 1067 1068 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1069 const char *buf, size_t count) 1070 { 1071 bool val; 1072 int ret; 1073 1074 ret = strtobool(buf, &val); 1075 if (ret < 0) 1076 return ret; 1077 1078 ret = lock_device_hotplug_sysfs(); 1079 if (ret) 1080 return ret; 1081 1082 ret = val ? device_online(dev) : device_offline(dev); 1083 unlock_device_hotplug(); 1084 return ret < 0 ? ret : count; 1085 } 1086 static DEVICE_ATTR_RW(online); 1087 1088 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1089 { 1090 return sysfs_create_groups(&dev->kobj, groups); 1091 } 1092 EXPORT_SYMBOL_GPL(device_add_groups); 1093 1094 void device_remove_groups(struct device *dev, 1095 const struct attribute_group **groups) 1096 { 1097 sysfs_remove_groups(&dev->kobj, groups); 1098 } 1099 EXPORT_SYMBOL_GPL(device_remove_groups); 1100 1101 union device_attr_group_devres { 1102 const struct attribute_group *group; 1103 const struct attribute_group **groups; 1104 }; 1105 1106 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1107 { 1108 return ((union device_attr_group_devres *)res)->group == data; 1109 } 1110 1111 static void devm_attr_group_remove(struct device *dev, void *res) 1112 { 1113 union device_attr_group_devres *devres = res; 1114 const struct attribute_group *group = devres->group; 1115 1116 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1117 sysfs_remove_group(&dev->kobj, group); 1118 } 1119 1120 static void devm_attr_groups_remove(struct device *dev, void *res) 1121 { 1122 union device_attr_group_devres *devres = res; 1123 const struct attribute_group **groups = devres->groups; 1124 1125 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1126 sysfs_remove_groups(&dev->kobj, groups); 1127 } 1128 1129 /** 1130 * devm_device_add_group - given a device, create a managed attribute group 1131 * @dev: The device to create the group for 1132 * @grp: The attribute group to create 1133 * 1134 * This function creates a group for the first time. It will explicitly 1135 * warn and error if any of the attribute files being created already exist. 1136 * 1137 * Returns 0 on success or error code on failure. 1138 */ 1139 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1140 { 1141 union device_attr_group_devres *devres; 1142 int error; 1143 1144 devres = devres_alloc(devm_attr_group_remove, 1145 sizeof(*devres), GFP_KERNEL); 1146 if (!devres) 1147 return -ENOMEM; 1148 1149 error = sysfs_create_group(&dev->kobj, grp); 1150 if (error) { 1151 devres_free(devres); 1152 return error; 1153 } 1154 1155 devres->group = grp; 1156 devres_add(dev, devres); 1157 return 0; 1158 } 1159 EXPORT_SYMBOL_GPL(devm_device_add_group); 1160 1161 /** 1162 * devm_device_remove_group: remove a managed group from a device 1163 * @dev: device to remove the group from 1164 * @grp: group to remove 1165 * 1166 * This function removes a group of attributes from a device. The attributes 1167 * previously have to have been created for this group, otherwise it will fail. 1168 */ 1169 void devm_device_remove_group(struct device *dev, 1170 const struct attribute_group *grp) 1171 { 1172 WARN_ON(devres_release(dev, devm_attr_group_remove, 1173 devm_attr_group_match, 1174 /* cast away const */ (void *)grp)); 1175 } 1176 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1177 1178 /** 1179 * devm_device_add_groups - create a bunch of managed attribute groups 1180 * @dev: The device to create the group for 1181 * @groups: The attribute groups to create, NULL terminated 1182 * 1183 * This function creates a bunch of managed attribute groups. If an error 1184 * occurs when creating a group, all previously created groups will be 1185 * removed, unwinding everything back to the original state when this 1186 * function was called. It will explicitly warn and error if any of the 1187 * attribute files being created already exist. 1188 * 1189 * Returns 0 on success or error code from sysfs_create_group on failure. 1190 */ 1191 int devm_device_add_groups(struct device *dev, 1192 const struct attribute_group **groups) 1193 { 1194 union device_attr_group_devres *devres; 1195 int error; 1196 1197 devres = devres_alloc(devm_attr_groups_remove, 1198 sizeof(*devres), GFP_KERNEL); 1199 if (!devres) 1200 return -ENOMEM; 1201 1202 error = sysfs_create_groups(&dev->kobj, groups); 1203 if (error) { 1204 devres_free(devres); 1205 return error; 1206 } 1207 1208 devres->groups = groups; 1209 devres_add(dev, devres); 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1213 1214 /** 1215 * devm_device_remove_groups - remove a list of managed groups 1216 * 1217 * @dev: The device for the groups to be removed from 1218 * @groups: NULL terminated list of groups to be removed 1219 * 1220 * If groups is not NULL, remove the specified groups from the device. 1221 */ 1222 void devm_device_remove_groups(struct device *dev, 1223 const struct attribute_group **groups) 1224 { 1225 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1226 devm_attr_group_match, 1227 /* cast away const */ (void *)groups)); 1228 } 1229 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1230 1231 static int device_add_attrs(struct device *dev) 1232 { 1233 struct class *class = dev->class; 1234 const struct device_type *type = dev->type; 1235 int error; 1236 1237 if (class) { 1238 error = device_add_groups(dev, class->dev_groups); 1239 if (error) 1240 return error; 1241 } 1242 1243 if (type) { 1244 error = device_add_groups(dev, type->groups); 1245 if (error) 1246 goto err_remove_class_groups; 1247 } 1248 1249 error = device_add_groups(dev, dev->groups); 1250 if (error) 1251 goto err_remove_type_groups; 1252 1253 if (device_supports_offline(dev) && !dev->offline_disabled) { 1254 error = device_create_file(dev, &dev_attr_online); 1255 if (error) 1256 goto err_remove_dev_groups; 1257 } 1258 1259 return 0; 1260 1261 err_remove_dev_groups: 1262 device_remove_groups(dev, dev->groups); 1263 err_remove_type_groups: 1264 if (type) 1265 device_remove_groups(dev, type->groups); 1266 err_remove_class_groups: 1267 if (class) 1268 device_remove_groups(dev, class->dev_groups); 1269 1270 return error; 1271 } 1272 1273 static void device_remove_attrs(struct device *dev) 1274 { 1275 struct class *class = dev->class; 1276 const struct device_type *type = dev->type; 1277 1278 device_remove_file(dev, &dev_attr_online); 1279 device_remove_groups(dev, dev->groups); 1280 1281 if (type) 1282 device_remove_groups(dev, type->groups); 1283 1284 if (class) 1285 device_remove_groups(dev, class->dev_groups); 1286 } 1287 1288 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1289 char *buf) 1290 { 1291 return print_dev_t(buf, dev->devt); 1292 } 1293 static DEVICE_ATTR_RO(dev); 1294 1295 /* /sys/devices/ */ 1296 struct kset *devices_kset; 1297 1298 /** 1299 * devices_kset_move_before - Move device in the devices_kset's list. 1300 * @deva: Device to move. 1301 * @devb: Device @deva should come before. 1302 */ 1303 static void devices_kset_move_before(struct device *deva, struct device *devb) 1304 { 1305 if (!devices_kset) 1306 return; 1307 pr_debug("devices_kset: Moving %s before %s\n", 1308 dev_name(deva), dev_name(devb)); 1309 spin_lock(&devices_kset->list_lock); 1310 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1311 spin_unlock(&devices_kset->list_lock); 1312 } 1313 1314 /** 1315 * devices_kset_move_after - Move device in the devices_kset's list. 1316 * @deva: Device to move 1317 * @devb: Device @deva should come after. 1318 */ 1319 static void devices_kset_move_after(struct device *deva, struct device *devb) 1320 { 1321 if (!devices_kset) 1322 return; 1323 pr_debug("devices_kset: Moving %s after %s\n", 1324 dev_name(deva), dev_name(devb)); 1325 spin_lock(&devices_kset->list_lock); 1326 list_move(&deva->kobj.entry, &devb->kobj.entry); 1327 spin_unlock(&devices_kset->list_lock); 1328 } 1329 1330 /** 1331 * devices_kset_move_last - move the device to the end of devices_kset's list. 1332 * @dev: device to move 1333 */ 1334 void devices_kset_move_last(struct device *dev) 1335 { 1336 if (!devices_kset) 1337 return; 1338 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1339 spin_lock(&devices_kset->list_lock); 1340 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1341 spin_unlock(&devices_kset->list_lock); 1342 } 1343 1344 /** 1345 * device_create_file - create sysfs attribute file for device. 1346 * @dev: device. 1347 * @attr: device attribute descriptor. 1348 */ 1349 int device_create_file(struct device *dev, 1350 const struct device_attribute *attr) 1351 { 1352 int error = 0; 1353 1354 if (dev) { 1355 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1356 "Attribute %s: write permission without 'store'\n", 1357 attr->attr.name); 1358 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1359 "Attribute %s: read permission without 'show'\n", 1360 attr->attr.name); 1361 error = sysfs_create_file(&dev->kobj, &attr->attr); 1362 } 1363 1364 return error; 1365 } 1366 EXPORT_SYMBOL_GPL(device_create_file); 1367 1368 /** 1369 * device_remove_file - remove sysfs attribute file. 1370 * @dev: device. 1371 * @attr: device attribute descriptor. 1372 */ 1373 void device_remove_file(struct device *dev, 1374 const struct device_attribute *attr) 1375 { 1376 if (dev) 1377 sysfs_remove_file(&dev->kobj, &attr->attr); 1378 } 1379 EXPORT_SYMBOL_GPL(device_remove_file); 1380 1381 /** 1382 * device_remove_file_self - remove sysfs attribute file from its own method. 1383 * @dev: device. 1384 * @attr: device attribute descriptor. 1385 * 1386 * See kernfs_remove_self() for details. 1387 */ 1388 bool device_remove_file_self(struct device *dev, 1389 const struct device_attribute *attr) 1390 { 1391 if (dev) 1392 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1393 else 1394 return false; 1395 } 1396 EXPORT_SYMBOL_GPL(device_remove_file_self); 1397 1398 /** 1399 * device_create_bin_file - create sysfs binary attribute file for device. 1400 * @dev: device. 1401 * @attr: device binary attribute descriptor. 1402 */ 1403 int device_create_bin_file(struct device *dev, 1404 const struct bin_attribute *attr) 1405 { 1406 int error = -EINVAL; 1407 if (dev) 1408 error = sysfs_create_bin_file(&dev->kobj, attr); 1409 return error; 1410 } 1411 EXPORT_SYMBOL_GPL(device_create_bin_file); 1412 1413 /** 1414 * device_remove_bin_file - remove sysfs binary attribute file 1415 * @dev: device. 1416 * @attr: device binary attribute descriptor. 1417 */ 1418 void device_remove_bin_file(struct device *dev, 1419 const struct bin_attribute *attr) 1420 { 1421 if (dev) 1422 sysfs_remove_bin_file(&dev->kobj, attr); 1423 } 1424 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1425 1426 static void klist_children_get(struct klist_node *n) 1427 { 1428 struct device_private *p = to_device_private_parent(n); 1429 struct device *dev = p->device; 1430 1431 get_device(dev); 1432 } 1433 1434 static void klist_children_put(struct klist_node *n) 1435 { 1436 struct device_private *p = to_device_private_parent(n); 1437 struct device *dev = p->device; 1438 1439 put_device(dev); 1440 } 1441 1442 /** 1443 * device_initialize - init device structure. 1444 * @dev: device. 1445 * 1446 * This prepares the device for use by other layers by initializing 1447 * its fields. 1448 * It is the first half of device_register(), if called by 1449 * that function, though it can also be called separately, so one 1450 * may use @dev's fields. In particular, get_device()/put_device() 1451 * may be used for reference counting of @dev after calling this 1452 * function. 1453 * 1454 * All fields in @dev must be initialized by the caller to 0, except 1455 * for those explicitly set to some other value. The simplest 1456 * approach is to use kzalloc() to allocate the structure containing 1457 * @dev. 1458 * 1459 * NOTE: Use put_device() to give up your reference instead of freeing 1460 * @dev directly once you have called this function. 1461 */ 1462 void device_initialize(struct device *dev) 1463 { 1464 dev->kobj.kset = devices_kset; 1465 kobject_init(&dev->kobj, &device_ktype); 1466 INIT_LIST_HEAD(&dev->dma_pools); 1467 mutex_init(&dev->mutex); 1468 lockdep_set_novalidate_class(&dev->mutex); 1469 spin_lock_init(&dev->devres_lock); 1470 INIT_LIST_HEAD(&dev->devres_head); 1471 device_pm_init(dev); 1472 set_dev_node(dev, -1); 1473 #ifdef CONFIG_GENERIC_MSI_IRQ 1474 INIT_LIST_HEAD(&dev->msi_list); 1475 #endif 1476 INIT_LIST_HEAD(&dev->links.consumers); 1477 INIT_LIST_HEAD(&dev->links.suppliers); 1478 dev->links.status = DL_DEV_NO_DRIVER; 1479 } 1480 EXPORT_SYMBOL_GPL(device_initialize); 1481 1482 struct kobject *virtual_device_parent(struct device *dev) 1483 { 1484 static struct kobject *virtual_dir = NULL; 1485 1486 if (!virtual_dir) 1487 virtual_dir = kobject_create_and_add("virtual", 1488 &devices_kset->kobj); 1489 1490 return virtual_dir; 1491 } 1492 1493 struct class_dir { 1494 struct kobject kobj; 1495 struct class *class; 1496 }; 1497 1498 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1499 1500 static void class_dir_release(struct kobject *kobj) 1501 { 1502 struct class_dir *dir = to_class_dir(kobj); 1503 kfree(dir); 1504 } 1505 1506 static const 1507 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1508 { 1509 struct class_dir *dir = to_class_dir(kobj); 1510 return dir->class->ns_type; 1511 } 1512 1513 static struct kobj_type class_dir_ktype = { 1514 .release = class_dir_release, 1515 .sysfs_ops = &kobj_sysfs_ops, 1516 .child_ns_type = class_dir_child_ns_type 1517 }; 1518 1519 static struct kobject * 1520 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1521 { 1522 struct class_dir *dir; 1523 int retval; 1524 1525 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1526 if (!dir) 1527 return ERR_PTR(-ENOMEM); 1528 1529 dir->class = class; 1530 kobject_init(&dir->kobj, &class_dir_ktype); 1531 1532 dir->kobj.kset = &class->p->glue_dirs; 1533 1534 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1535 if (retval < 0) { 1536 kobject_put(&dir->kobj); 1537 return ERR_PTR(retval); 1538 } 1539 return &dir->kobj; 1540 } 1541 1542 static DEFINE_MUTEX(gdp_mutex); 1543 1544 static struct kobject *get_device_parent(struct device *dev, 1545 struct device *parent) 1546 { 1547 if (dev->class) { 1548 struct kobject *kobj = NULL; 1549 struct kobject *parent_kobj; 1550 struct kobject *k; 1551 1552 #ifdef CONFIG_BLOCK 1553 /* block disks show up in /sys/block */ 1554 if (sysfs_deprecated && dev->class == &block_class) { 1555 if (parent && parent->class == &block_class) 1556 return &parent->kobj; 1557 return &block_class.p->subsys.kobj; 1558 } 1559 #endif 1560 1561 /* 1562 * If we have no parent, we live in "virtual". 1563 * Class-devices with a non class-device as parent, live 1564 * in a "glue" directory to prevent namespace collisions. 1565 */ 1566 if (parent == NULL) 1567 parent_kobj = virtual_device_parent(dev); 1568 else if (parent->class && !dev->class->ns_type) 1569 return &parent->kobj; 1570 else 1571 parent_kobj = &parent->kobj; 1572 1573 mutex_lock(&gdp_mutex); 1574 1575 /* find our class-directory at the parent and reference it */ 1576 spin_lock(&dev->class->p->glue_dirs.list_lock); 1577 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1578 if (k->parent == parent_kobj) { 1579 kobj = kobject_get(k); 1580 break; 1581 } 1582 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1583 if (kobj) { 1584 mutex_unlock(&gdp_mutex); 1585 return kobj; 1586 } 1587 1588 /* or create a new class-directory at the parent device */ 1589 k = class_dir_create_and_add(dev->class, parent_kobj); 1590 /* do not emit an uevent for this simple "glue" directory */ 1591 mutex_unlock(&gdp_mutex); 1592 return k; 1593 } 1594 1595 /* subsystems can specify a default root directory for their devices */ 1596 if (!parent && dev->bus && dev->bus->dev_root) 1597 return &dev->bus->dev_root->kobj; 1598 1599 if (parent) 1600 return &parent->kobj; 1601 return NULL; 1602 } 1603 1604 static inline bool live_in_glue_dir(struct kobject *kobj, 1605 struct device *dev) 1606 { 1607 if (!kobj || !dev->class || 1608 kobj->kset != &dev->class->p->glue_dirs) 1609 return false; 1610 return true; 1611 } 1612 1613 static inline struct kobject *get_glue_dir(struct device *dev) 1614 { 1615 return dev->kobj.parent; 1616 } 1617 1618 /* 1619 * make sure cleaning up dir as the last step, we need to make 1620 * sure .release handler of kobject is run with holding the 1621 * global lock 1622 */ 1623 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1624 { 1625 /* see if we live in a "glue" directory */ 1626 if (!live_in_glue_dir(glue_dir, dev)) 1627 return; 1628 1629 mutex_lock(&gdp_mutex); 1630 kobject_put(glue_dir); 1631 mutex_unlock(&gdp_mutex); 1632 } 1633 1634 static int device_add_class_symlinks(struct device *dev) 1635 { 1636 struct device_node *of_node = dev_of_node(dev); 1637 int error; 1638 1639 if (of_node) { 1640 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1641 if (error) 1642 dev_warn(dev, "Error %d creating of_node link\n",error); 1643 /* An error here doesn't warrant bringing down the device */ 1644 } 1645 1646 if (!dev->class) 1647 return 0; 1648 1649 error = sysfs_create_link(&dev->kobj, 1650 &dev->class->p->subsys.kobj, 1651 "subsystem"); 1652 if (error) 1653 goto out_devnode; 1654 1655 if (dev->parent && device_is_not_partition(dev)) { 1656 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1657 "device"); 1658 if (error) 1659 goto out_subsys; 1660 } 1661 1662 #ifdef CONFIG_BLOCK 1663 /* /sys/block has directories and does not need symlinks */ 1664 if (sysfs_deprecated && dev->class == &block_class) 1665 return 0; 1666 #endif 1667 1668 /* link in the class directory pointing to the device */ 1669 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1670 &dev->kobj, dev_name(dev)); 1671 if (error) 1672 goto out_device; 1673 1674 return 0; 1675 1676 out_device: 1677 sysfs_remove_link(&dev->kobj, "device"); 1678 1679 out_subsys: 1680 sysfs_remove_link(&dev->kobj, "subsystem"); 1681 out_devnode: 1682 sysfs_remove_link(&dev->kobj, "of_node"); 1683 return error; 1684 } 1685 1686 static void device_remove_class_symlinks(struct device *dev) 1687 { 1688 if (dev_of_node(dev)) 1689 sysfs_remove_link(&dev->kobj, "of_node"); 1690 1691 if (!dev->class) 1692 return; 1693 1694 if (dev->parent && device_is_not_partition(dev)) 1695 sysfs_remove_link(&dev->kobj, "device"); 1696 sysfs_remove_link(&dev->kobj, "subsystem"); 1697 #ifdef CONFIG_BLOCK 1698 if (sysfs_deprecated && dev->class == &block_class) 1699 return; 1700 #endif 1701 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1702 } 1703 1704 /** 1705 * dev_set_name - set a device name 1706 * @dev: device 1707 * @fmt: format string for the device's name 1708 */ 1709 int dev_set_name(struct device *dev, const char *fmt, ...) 1710 { 1711 va_list vargs; 1712 int err; 1713 1714 va_start(vargs, fmt); 1715 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1716 va_end(vargs); 1717 return err; 1718 } 1719 EXPORT_SYMBOL_GPL(dev_set_name); 1720 1721 /** 1722 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1723 * @dev: device 1724 * 1725 * By default we select char/ for new entries. Setting class->dev_obj 1726 * to NULL prevents an entry from being created. class->dev_kobj must 1727 * be set (or cleared) before any devices are registered to the class 1728 * otherwise device_create_sys_dev_entry() and 1729 * device_remove_sys_dev_entry() will disagree about the presence of 1730 * the link. 1731 */ 1732 static struct kobject *device_to_dev_kobj(struct device *dev) 1733 { 1734 struct kobject *kobj; 1735 1736 if (dev->class) 1737 kobj = dev->class->dev_kobj; 1738 else 1739 kobj = sysfs_dev_char_kobj; 1740 1741 return kobj; 1742 } 1743 1744 static int device_create_sys_dev_entry(struct device *dev) 1745 { 1746 struct kobject *kobj = device_to_dev_kobj(dev); 1747 int error = 0; 1748 char devt_str[15]; 1749 1750 if (kobj) { 1751 format_dev_t(devt_str, dev->devt); 1752 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1753 } 1754 1755 return error; 1756 } 1757 1758 static void device_remove_sys_dev_entry(struct device *dev) 1759 { 1760 struct kobject *kobj = device_to_dev_kobj(dev); 1761 char devt_str[15]; 1762 1763 if (kobj) { 1764 format_dev_t(devt_str, dev->devt); 1765 sysfs_remove_link(kobj, devt_str); 1766 } 1767 } 1768 1769 int device_private_init(struct device *dev) 1770 { 1771 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1772 if (!dev->p) 1773 return -ENOMEM; 1774 dev->p->device = dev; 1775 klist_init(&dev->p->klist_children, klist_children_get, 1776 klist_children_put); 1777 INIT_LIST_HEAD(&dev->p->deferred_probe); 1778 return 0; 1779 } 1780 1781 /** 1782 * device_add - add device to device hierarchy. 1783 * @dev: device. 1784 * 1785 * This is part 2 of device_register(), though may be called 1786 * separately _iff_ device_initialize() has been called separately. 1787 * 1788 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1789 * to the global and sibling lists for the device, then 1790 * adds it to the other relevant subsystems of the driver model. 1791 * 1792 * Do not call this routine or device_register() more than once for 1793 * any device structure. The driver model core is not designed to work 1794 * with devices that get unregistered and then spring back to life. 1795 * (Among other things, it's very hard to guarantee that all references 1796 * to the previous incarnation of @dev have been dropped.) Allocate 1797 * and register a fresh new struct device instead. 1798 * 1799 * NOTE: _Never_ directly free @dev after calling this function, even 1800 * if it returned an error! Always use put_device() to give up your 1801 * reference instead. 1802 */ 1803 int device_add(struct device *dev) 1804 { 1805 struct device *parent; 1806 struct kobject *kobj; 1807 struct class_interface *class_intf; 1808 int error = -EINVAL; 1809 struct kobject *glue_dir = NULL; 1810 1811 dev = get_device(dev); 1812 if (!dev) 1813 goto done; 1814 1815 if (!dev->p) { 1816 error = device_private_init(dev); 1817 if (error) 1818 goto done; 1819 } 1820 1821 /* 1822 * for statically allocated devices, which should all be converted 1823 * some day, we need to initialize the name. We prevent reading back 1824 * the name, and force the use of dev_name() 1825 */ 1826 if (dev->init_name) { 1827 dev_set_name(dev, "%s", dev->init_name); 1828 dev->init_name = NULL; 1829 } 1830 1831 /* subsystems can specify simple device enumeration */ 1832 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1833 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1834 1835 if (!dev_name(dev)) { 1836 error = -EINVAL; 1837 goto name_error; 1838 } 1839 1840 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1841 1842 parent = get_device(dev->parent); 1843 kobj = get_device_parent(dev, parent); 1844 if (IS_ERR(kobj)) { 1845 error = PTR_ERR(kobj); 1846 goto parent_error; 1847 } 1848 if (kobj) 1849 dev->kobj.parent = kobj; 1850 1851 /* use parent numa_node */ 1852 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1853 set_dev_node(dev, dev_to_node(parent)); 1854 1855 /* first, register with generic layer. */ 1856 /* we require the name to be set before, and pass NULL */ 1857 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1858 if (error) { 1859 glue_dir = get_glue_dir(dev); 1860 goto Error; 1861 } 1862 1863 /* notify platform of device entry */ 1864 if (platform_notify) 1865 platform_notify(dev); 1866 1867 error = device_create_file(dev, &dev_attr_uevent); 1868 if (error) 1869 goto attrError; 1870 1871 error = device_add_class_symlinks(dev); 1872 if (error) 1873 goto SymlinkError; 1874 error = device_add_attrs(dev); 1875 if (error) 1876 goto AttrsError; 1877 error = bus_add_device(dev); 1878 if (error) 1879 goto BusError; 1880 error = dpm_sysfs_add(dev); 1881 if (error) 1882 goto DPMError; 1883 device_pm_add(dev); 1884 1885 if (MAJOR(dev->devt)) { 1886 error = device_create_file(dev, &dev_attr_dev); 1887 if (error) 1888 goto DevAttrError; 1889 1890 error = device_create_sys_dev_entry(dev); 1891 if (error) 1892 goto SysEntryError; 1893 1894 devtmpfs_create_node(dev); 1895 } 1896 1897 /* Notify clients of device addition. This call must come 1898 * after dpm_sysfs_add() and before kobject_uevent(). 1899 */ 1900 if (dev->bus) 1901 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1902 BUS_NOTIFY_ADD_DEVICE, dev); 1903 1904 kobject_uevent(&dev->kobj, KOBJ_ADD); 1905 bus_probe_device(dev); 1906 if (parent) 1907 klist_add_tail(&dev->p->knode_parent, 1908 &parent->p->klist_children); 1909 1910 if (dev->class) { 1911 mutex_lock(&dev->class->p->mutex); 1912 /* tie the class to the device */ 1913 klist_add_tail(&dev->knode_class, 1914 &dev->class->p->klist_devices); 1915 1916 /* notify any interfaces that the device is here */ 1917 list_for_each_entry(class_intf, 1918 &dev->class->p->interfaces, node) 1919 if (class_intf->add_dev) 1920 class_intf->add_dev(dev, class_intf); 1921 mutex_unlock(&dev->class->p->mutex); 1922 } 1923 done: 1924 put_device(dev); 1925 return error; 1926 SysEntryError: 1927 if (MAJOR(dev->devt)) 1928 device_remove_file(dev, &dev_attr_dev); 1929 DevAttrError: 1930 device_pm_remove(dev); 1931 dpm_sysfs_remove(dev); 1932 DPMError: 1933 bus_remove_device(dev); 1934 BusError: 1935 device_remove_attrs(dev); 1936 AttrsError: 1937 device_remove_class_symlinks(dev); 1938 SymlinkError: 1939 device_remove_file(dev, &dev_attr_uevent); 1940 attrError: 1941 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1942 glue_dir = get_glue_dir(dev); 1943 kobject_del(&dev->kobj); 1944 Error: 1945 cleanup_glue_dir(dev, glue_dir); 1946 parent_error: 1947 put_device(parent); 1948 name_error: 1949 kfree(dev->p); 1950 dev->p = NULL; 1951 goto done; 1952 } 1953 EXPORT_SYMBOL_GPL(device_add); 1954 1955 /** 1956 * device_register - register a device with the system. 1957 * @dev: pointer to the device structure 1958 * 1959 * This happens in two clean steps - initialize the device 1960 * and add it to the system. The two steps can be called 1961 * separately, but this is the easiest and most common. 1962 * I.e. you should only call the two helpers separately if 1963 * have a clearly defined need to use and refcount the device 1964 * before it is added to the hierarchy. 1965 * 1966 * For more information, see the kerneldoc for device_initialize() 1967 * and device_add(). 1968 * 1969 * NOTE: _Never_ directly free @dev after calling this function, even 1970 * if it returned an error! Always use put_device() to give up the 1971 * reference initialized in this function instead. 1972 */ 1973 int device_register(struct device *dev) 1974 { 1975 device_initialize(dev); 1976 return device_add(dev); 1977 } 1978 EXPORT_SYMBOL_GPL(device_register); 1979 1980 /** 1981 * get_device - increment reference count for device. 1982 * @dev: device. 1983 * 1984 * This simply forwards the call to kobject_get(), though 1985 * we do take care to provide for the case that we get a NULL 1986 * pointer passed in. 1987 */ 1988 struct device *get_device(struct device *dev) 1989 { 1990 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1991 } 1992 EXPORT_SYMBOL_GPL(get_device); 1993 1994 /** 1995 * put_device - decrement reference count. 1996 * @dev: device in question. 1997 */ 1998 void put_device(struct device *dev) 1999 { 2000 /* might_sleep(); */ 2001 if (dev) 2002 kobject_put(&dev->kobj); 2003 } 2004 EXPORT_SYMBOL_GPL(put_device); 2005 2006 /** 2007 * device_del - delete device from system. 2008 * @dev: device. 2009 * 2010 * This is the first part of the device unregistration 2011 * sequence. This removes the device from the lists we control 2012 * from here, has it removed from the other driver model 2013 * subsystems it was added to in device_add(), and removes it 2014 * from the kobject hierarchy. 2015 * 2016 * NOTE: this should be called manually _iff_ device_add() was 2017 * also called manually. 2018 */ 2019 void device_del(struct device *dev) 2020 { 2021 struct device *parent = dev->parent; 2022 struct kobject *glue_dir = NULL; 2023 struct class_interface *class_intf; 2024 2025 /* Notify clients of device removal. This call must come 2026 * before dpm_sysfs_remove(). 2027 */ 2028 if (dev->bus) 2029 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2030 BUS_NOTIFY_DEL_DEVICE, dev); 2031 2032 dpm_sysfs_remove(dev); 2033 if (parent) 2034 klist_del(&dev->p->knode_parent); 2035 if (MAJOR(dev->devt)) { 2036 devtmpfs_delete_node(dev); 2037 device_remove_sys_dev_entry(dev); 2038 device_remove_file(dev, &dev_attr_dev); 2039 } 2040 if (dev->class) { 2041 device_remove_class_symlinks(dev); 2042 2043 mutex_lock(&dev->class->p->mutex); 2044 /* notify any interfaces that the device is now gone */ 2045 list_for_each_entry(class_intf, 2046 &dev->class->p->interfaces, node) 2047 if (class_intf->remove_dev) 2048 class_intf->remove_dev(dev, class_intf); 2049 /* remove the device from the class list */ 2050 klist_del(&dev->knode_class); 2051 mutex_unlock(&dev->class->p->mutex); 2052 } 2053 device_remove_file(dev, &dev_attr_uevent); 2054 device_remove_attrs(dev); 2055 bus_remove_device(dev); 2056 device_pm_remove(dev); 2057 driver_deferred_probe_del(dev); 2058 device_remove_properties(dev); 2059 device_links_purge(dev); 2060 2061 /* Notify the platform of the removal, in case they 2062 * need to do anything... 2063 */ 2064 if (platform_notify_remove) 2065 platform_notify_remove(dev); 2066 if (dev->bus) 2067 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2068 BUS_NOTIFY_REMOVED_DEVICE, dev); 2069 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2070 glue_dir = get_glue_dir(dev); 2071 kobject_del(&dev->kobj); 2072 cleanup_glue_dir(dev, glue_dir); 2073 put_device(parent); 2074 } 2075 EXPORT_SYMBOL_GPL(device_del); 2076 2077 /** 2078 * device_unregister - unregister device from system. 2079 * @dev: device going away. 2080 * 2081 * We do this in two parts, like we do device_register(). First, 2082 * we remove it from all the subsystems with device_del(), then 2083 * we decrement the reference count via put_device(). If that 2084 * is the final reference count, the device will be cleaned up 2085 * via device_release() above. Otherwise, the structure will 2086 * stick around until the final reference to the device is dropped. 2087 */ 2088 void device_unregister(struct device *dev) 2089 { 2090 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2091 device_del(dev); 2092 put_device(dev); 2093 } 2094 EXPORT_SYMBOL_GPL(device_unregister); 2095 2096 static struct device *prev_device(struct klist_iter *i) 2097 { 2098 struct klist_node *n = klist_prev(i); 2099 struct device *dev = NULL; 2100 struct device_private *p; 2101 2102 if (n) { 2103 p = to_device_private_parent(n); 2104 dev = p->device; 2105 } 2106 return dev; 2107 } 2108 2109 static struct device *next_device(struct klist_iter *i) 2110 { 2111 struct klist_node *n = klist_next(i); 2112 struct device *dev = NULL; 2113 struct device_private *p; 2114 2115 if (n) { 2116 p = to_device_private_parent(n); 2117 dev = p->device; 2118 } 2119 return dev; 2120 } 2121 2122 /** 2123 * device_get_devnode - path of device node file 2124 * @dev: device 2125 * @mode: returned file access mode 2126 * @uid: returned file owner 2127 * @gid: returned file group 2128 * @tmp: possibly allocated string 2129 * 2130 * Return the relative path of a possible device node. 2131 * Non-default names may need to allocate a memory to compose 2132 * a name. This memory is returned in tmp and needs to be 2133 * freed by the caller. 2134 */ 2135 const char *device_get_devnode(struct device *dev, 2136 umode_t *mode, kuid_t *uid, kgid_t *gid, 2137 const char **tmp) 2138 { 2139 char *s; 2140 2141 *tmp = NULL; 2142 2143 /* the device type may provide a specific name */ 2144 if (dev->type && dev->type->devnode) 2145 *tmp = dev->type->devnode(dev, mode, uid, gid); 2146 if (*tmp) 2147 return *tmp; 2148 2149 /* the class may provide a specific name */ 2150 if (dev->class && dev->class->devnode) 2151 *tmp = dev->class->devnode(dev, mode); 2152 if (*tmp) 2153 return *tmp; 2154 2155 /* return name without allocation, tmp == NULL */ 2156 if (strchr(dev_name(dev), '!') == NULL) 2157 return dev_name(dev); 2158 2159 /* replace '!' in the name with '/' */ 2160 s = kstrdup(dev_name(dev), GFP_KERNEL); 2161 if (!s) 2162 return NULL; 2163 strreplace(s, '!', '/'); 2164 return *tmp = s; 2165 } 2166 2167 /** 2168 * device_for_each_child - device child iterator. 2169 * @parent: parent struct device. 2170 * @fn: function to be called for each device. 2171 * @data: data for the callback. 2172 * 2173 * Iterate over @parent's child devices, and call @fn for each, 2174 * passing it @data. 2175 * 2176 * We check the return of @fn each time. If it returns anything 2177 * other than 0, we break out and return that value. 2178 */ 2179 int device_for_each_child(struct device *parent, void *data, 2180 int (*fn)(struct device *dev, void *data)) 2181 { 2182 struct klist_iter i; 2183 struct device *child; 2184 int error = 0; 2185 2186 if (!parent->p) 2187 return 0; 2188 2189 klist_iter_init(&parent->p->klist_children, &i); 2190 while (!error && (child = next_device(&i))) 2191 error = fn(child, data); 2192 klist_iter_exit(&i); 2193 return error; 2194 } 2195 EXPORT_SYMBOL_GPL(device_for_each_child); 2196 2197 /** 2198 * device_for_each_child_reverse - device child iterator in reversed order. 2199 * @parent: parent struct device. 2200 * @fn: function to be called for each device. 2201 * @data: data for the callback. 2202 * 2203 * Iterate over @parent's child devices, and call @fn for each, 2204 * passing it @data. 2205 * 2206 * We check the return of @fn each time. If it returns anything 2207 * other than 0, we break out and return that value. 2208 */ 2209 int device_for_each_child_reverse(struct device *parent, void *data, 2210 int (*fn)(struct device *dev, void *data)) 2211 { 2212 struct klist_iter i; 2213 struct device *child; 2214 int error = 0; 2215 2216 if (!parent->p) 2217 return 0; 2218 2219 klist_iter_init(&parent->p->klist_children, &i); 2220 while ((child = prev_device(&i)) && !error) 2221 error = fn(child, data); 2222 klist_iter_exit(&i); 2223 return error; 2224 } 2225 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2226 2227 /** 2228 * device_find_child - device iterator for locating a particular device. 2229 * @parent: parent struct device 2230 * @match: Callback function to check device 2231 * @data: Data to pass to match function 2232 * 2233 * This is similar to the device_for_each_child() function above, but it 2234 * returns a reference to a device that is 'found' for later use, as 2235 * determined by the @match callback. 2236 * 2237 * The callback should return 0 if the device doesn't match and non-zero 2238 * if it does. If the callback returns non-zero and a reference to the 2239 * current device can be obtained, this function will return to the caller 2240 * and not iterate over any more devices. 2241 * 2242 * NOTE: you will need to drop the reference with put_device() after use. 2243 */ 2244 struct device *device_find_child(struct device *parent, void *data, 2245 int (*match)(struct device *dev, void *data)) 2246 { 2247 struct klist_iter i; 2248 struct device *child; 2249 2250 if (!parent) 2251 return NULL; 2252 2253 klist_iter_init(&parent->p->klist_children, &i); 2254 while ((child = next_device(&i))) 2255 if (match(child, data) && get_device(child)) 2256 break; 2257 klist_iter_exit(&i); 2258 return child; 2259 } 2260 EXPORT_SYMBOL_GPL(device_find_child); 2261 2262 int __init devices_init(void) 2263 { 2264 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2265 if (!devices_kset) 2266 return -ENOMEM; 2267 dev_kobj = kobject_create_and_add("dev", NULL); 2268 if (!dev_kobj) 2269 goto dev_kobj_err; 2270 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2271 if (!sysfs_dev_block_kobj) 2272 goto block_kobj_err; 2273 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2274 if (!sysfs_dev_char_kobj) 2275 goto char_kobj_err; 2276 2277 return 0; 2278 2279 char_kobj_err: 2280 kobject_put(sysfs_dev_block_kobj); 2281 block_kobj_err: 2282 kobject_put(dev_kobj); 2283 dev_kobj_err: 2284 kset_unregister(devices_kset); 2285 return -ENOMEM; 2286 } 2287 2288 static int device_check_offline(struct device *dev, void *not_used) 2289 { 2290 int ret; 2291 2292 ret = device_for_each_child(dev, NULL, device_check_offline); 2293 if (ret) 2294 return ret; 2295 2296 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2297 } 2298 2299 /** 2300 * device_offline - Prepare the device for hot-removal. 2301 * @dev: Device to be put offline. 2302 * 2303 * Execute the device bus type's .offline() callback, if present, to prepare 2304 * the device for a subsequent hot-removal. If that succeeds, the device must 2305 * not be used until either it is removed or its bus type's .online() callback 2306 * is executed. 2307 * 2308 * Call under device_hotplug_lock. 2309 */ 2310 int device_offline(struct device *dev) 2311 { 2312 int ret; 2313 2314 if (dev->offline_disabled) 2315 return -EPERM; 2316 2317 ret = device_for_each_child(dev, NULL, device_check_offline); 2318 if (ret) 2319 return ret; 2320 2321 device_lock(dev); 2322 if (device_supports_offline(dev)) { 2323 if (dev->offline) { 2324 ret = 1; 2325 } else { 2326 ret = dev->bus->offline(dev); 2327 if (!ret) { 2328 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2329 dev->offline = true; 2330 } 2331 } 2332 } 2333 device_unlock(dev); 2334 2335 return ret; 2336 } 2337 2338 /** 2339 * device_online - Put the device back online after successful device_offline(). 2340 * @dev: Device to be put back online. 2341 * 2342 * If device_offline() has been successfully executed for @dev, but the device 2343 * has not been removed subsequently, execute its bus type's .online() callback 2344 * to indicate that the device can be used again. 2345 * 2346 * Call under device_hotplug_lock. 2347 */ 2348 int device_online(struct device *dev) 2349 { 2350 int ret = 0; 2351 2352 device_lock(dev); 2353 if (device_supports_offline(dev)) { 2354 if (dev->offline) { 2355 ret = dev->bus->online(dev); 2356 if (!ret) { 2357 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2358 dev->offline = false; 2359 } 2360 } else { 2361 ret = 1; 2362 } 2363 } 2364 device_unlock(dev); 2365 2366 return ret; 2367 } 2368 2369 struct root_device { 2370 struct device dev; 2371 struct module *owner; 2372 }; 2373 2374 static inline struct root_device *to_root_device(struct device *d) 2375 { 2376 return container_of(d, struct root_device, dev); 2377 } 2378 2379 static void root_device_release(struct device *dev) 2380 { 2381 kfree(to_root_device(dev)); 2382 } 2383 2384 /** 2385 * __root_device_register - allocate and register a root device 2386 * @name: root device name 2387 * @owner: owner module of the root device, usually THIS_MODULE 2388 * 2389 * This function allocates a root device and registers it 2390 * using device_register(). In order to free the returned 2391 * device, use root_device_unregister(). 2392 * 2393 * Root devices are dummy devices which allow other devices 2394 * to be grouped under /sys/devices. Use this function to 2395 * allocate a root device and then use it as the parent of 2396 * any device which should appear under /sys/devices/{name} 2397 * 2398 * The /sys/devices/{name} directory will also contain a 2399 * 'module' symlink which points to the @owner directory 2400 * in sysfs. 2401 * 2402 * Returns &struct device pointer on success, or ERR_PTR() on error. 2403 * 2404 * Note: You probably want to use root_device_register(). 2405 */ 2406 struct device *__root_device_register(const char *name, struct module *owner) 2407 { 2408 struct root_device *root; 2409 int err = -ENOMEM; 2410 2411 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2412 if (!root) 2413 return ERR_PTR(err); 2414 2415 err = dev_set_name(&root->dev, "%s", name); 2416 if (err) { 2417 kfree(root); 2418 return ERR_PTR(err); 2419 } 2420 2421 root->dev.release = root_device_release; 2422 2423 err = device_register(&root->dev); 2424 if (err) { 2425 put_device(&root->dev); 2426 return ERR_PTR(err); 2427 } 2428 2429 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2430 if (owner) { 2431 struct module_kobject *mk = &owner->mkobj; 2432 2433 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2434 if (err) { 2435 device_unregister(&root->dev); 2436 return ERR_PTR(err); 2437 } 2438 root->owner = owner; 2439 } 2440 #endif 2441 2442 return &root->dev; 2443 } 2444 EXPORT_SYMBOL_GPL(__root_device_register); 2445 2446 /** 2447 * root_device_unregister - unregister and free a root device 2448 * @dev: device going away 2449 * 2450 * This function unregisters and cleans up a device that was created by 2451 * root_device_register(). 2452 */ 2453 void root_device_unregister(struct device *dev) 2454 { 2455 struct root_device *root = to_root_device(dev); 2456 2457 if (root->owner) 2458 sysfs_remove_link(&root->dev.kobj, "module"); 2459 2460 device_unregister(dev); 2461 } 2462 EXPORT_SYMBOL_GPL(root_device_unregister); 2463 2464 2465 static void device_create_release(struct device *dev) 2466 { 2467 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2468 kfree(dev); 2469 } 2470 2471 static __printf(6, 0) struct device * 2472 device_create_groups_vargs(struct class *class, struct device *parent, 2473 dev_t devt, void *drvdata, 2474 const struct attribute_group **groups, 2475 const char *fmt, va_list args) 2476 { 2477 struct device *dev = NULL; 2478 int retval = -ENODEV; 2479 2480 if (class == NULL || IS_ERR(class)) 2481 goto error; 2482 2483 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2484 if (!dev) { 2485 retval = -ENOMEM; 2486 goto error; 2487 } 2488 2489 device_initialize(dev); 2490 dev->devt = devt; 2491 dev->class = class; 2492 dev->parent = parent; 2493 dev->groups = groups; 2494 dev->release = device_create_release; 2495 dev_set_drvdata(dev, drvdata); 2496 2497 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2498 if (retval) 2499 goto error; 2500 2501 retval = device_add(dev); 2502 if (retval) 2503 goto error; 2504 2505 return dev; 2506 2507 error: 2508 put_device(dev); 2509 return ERR_PTR(retval); 2510 } 2511 2512 /** 2513 * device_create_vargs - creates a device and registers it with sysfs 2514 * @class: pointer to the struct class that this device should be registered to 2515 * @parent: pointer to the parent struct device of this new device, if any 2516 * @devt: the dev_t for the char device to be added 2517 * @drvdata: the data to be added to the device for callbacks 2518 * @fmt: string for the device's name 2519 * @args: va_list for the device's name 2520 * 2521 * This function can be used by char device classes. A struct device 2522 * will be created in sysfs, registered to the specified class. 2523 * 2524 * A "dev" file will be created, showing the dev_t for the device, if 2525 * the dev_t is not 0,0. 2526 * If a pointer to a parent struct device is passed in, the newly created 2527 * struct device will be a child of that device in sysfs. 2528 * The pointer to the struct device will be returned from the call. 2529 * Any further sysfs files that might be required can be created using this 2530 * pointer. 2531 * 2532 * Returns &struct device pointer on success, or ERR_PTR() on error. 2533 * 2534 * Note: the struct class passed to this function must have previously 2535 * been created with a call to class_create(). 2536 */ 2537 struct device *device_create_vargs(struct class *class, struct device *parent, 2538 dev_t devt, void *drvdata, const char *fmt, 2539 va_list args) 2540 { 2541 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2542 fmt, args); 2543 } 2544 EXPORT_SYMBOL_GPL(device_create_vargs); 2545 2546 /** 2547 * device_create - creates a device and registers it with sysfs 2548 * @class: pointer to the struct class that this device should be registered to 2549 * @parent: pointer to the parent struct device of this new device, if any 2550 * @devt: the dev_t for the char device to be added 2551 * @drvdata: the data to be added to the device for callbacks 2552 * @fmt: string for the device's name 2553 * 2554 * This function can be used by char device classes. A struct device 2555 * will be created in sysfs, registered to the specified class. 2556 * 2557 * A "dev" file will be created, showing the dev_t for the device, if 2558 * the dev_t is not 0,0. 2559 * If a pointer to a parent struct device is passed in, the newly created 2560 * struct device will be a child of that device in sysfs. 2561 * The pointer to the struct device will be returned from the call. 2562 * Any further sysfs files that might be required can be created using this 2563 * pointer. 2564 * 2565 * Returns &struct device pointer on success, or ERR_PTR() on error. 2566 * 2567 * Note: the struct class passed to this function must have previously 2568 * been created with a call to class_create(). 2569 */ 2570 struct device *device_create(struct class *class, struct device *parent, 2571 dev_t devt, void *drvdata, const char *fmt, ...) 2572 { 2573 va_list vargs; 2574 struct device *dev; 2575 2576 va_start(vargs, fmt); 2577 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2578 va_end(vargs); 2579 return dev; 2580 } 2581 EXPORT_SYMBOL_GPL(device_create); 2582 2583 /** 2584 * device_create_with_groups - creates a device and registers it with sysfs 2585 * @class: pointer to the struct class that this device should be registered to 2586 * @parent: pointer to the parent struct device of this new device, if any 2587 * @devt: the dev_t for the char device to be added 2588 * @drvdata: the data to be added to the device for callbacks 2589 * @groups: NULL-terminated list of attribute groups to be created 2590 * @fmt: string for the device's name 2591 * 2592 * This function can be used by char device classes. A struct device 2593 * will be created in sysfs, registered to the specified class. 2594 * Additional attributes specified in the groups parameter will also 2595 * be created automatically. 2596 * 2597 * A "dev" file will be created, showing the dev_t for the device, if 2598 * the dev_t is not 0,0. 2599 * If a pointer to a parent struct device is passed in, the newly created 2600 * struct device will be a child of that device in sysfs. 2601 * The pointer to the struct device will be returned from the call. 2602 * Any further sysfs files that might be required can be created using this 2603 * pointer. 2604 * 2605 * Returns &struct device pointer on success, or ERR_PTR() on error. 2606 * 2607 * Note: the struct class passed to this function must have previously 2608 * been created with a call to class_create(). 2609 */ 2610 struct device *device_create_with_groups(struct class *class, 2611 struct device *parent, dev_t devt, 2612 void *drvdata, 2613 const struct attribute_group **groups, 2614 const char *fmt, ...) 2615 { 2616 va_list vargs; 2617 struct device *dev; 2618 2619 va_start(vargs, fmt); 2620 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2621 fmt, vargs); 2622 va_end(vargs); 2623 return dev; 2624 } 2625 EXPORT_SYMBOL_GPL(device_create_with_groups); 2626 2627 static int __match_devt(struct device *dev, const void *data) 2628 { 2629 const dev_t *devt = data; 2630 2631 return dev->devt == *devt; 2632 } 2633 2634 /** 2635 * device_destroy - removes a device that was created with device_create() 2636 * @class: pointer to the struct class that this device was registered with 2637 * @devt: the dev_t of the device that was previously registered 2638 * 2639 * This call unregisters and cleans up a device that was created with a 2640 * call to device_create(). 2641 */ 2642 void device_destroy(struct class *class, dev_t devt) 2643 { 2644 struct device *dev; 2645 2646 dev = class_find_device(class, NULL, &devt, __match_devt); 2647 if (dev) { 2648 put_device(dev); 2649 device_unregister(dev); 2650 } 2651 } 2652 EXPORT_SYMBOL_GPL(device_destroy); 2653 2654 /** 2655 * device_rename - renames a device 2656 * @dev: the pointer to the struct device to be renamed 2657 * @new_name: the new name of the device 2658 * 2659 * It is the responsibility of the caller to provide mutual 2660 * exclusion between two different calls of device_rename 2661 * on the same device to ensure that new_name is valid and 2662 * won't conflict with other devices. 2663 * 2664 * Note: Don't call this function. Currently, the networking layer calls this 2665 * function, but that will change. The following text from Kay Sievers offers 2666 * some insight: 2667 * 2668 * Renaming devices is racy at many levels, symlinks and other stuff are not 2669 * replaced atomically, and you get a "move" uevent, but it's not easy to 2670 * connect the event to the old and new device. Device nodes are not renamed at 2671 * all, there isn't even support for that in the kernel now. 2672 * 2673 * In the meantime, during renaming, your target name might be taken by another 2674 * driver, creating conflicts. Or the old name is taken directly after you 2675 * renamed it -- then you get events for the same DEVPATH, before you even see 2676 * the "move" event. It's just a mess, and nothing new should ever rely on 2677 * kernel device renaming. Besides that, it's not even implemented now for 2678 * other things than (driver-core wise very simple) network devices. 2679 * 2680 * We are currently about to change network renaming in udev to completely 2681 * disallow renaming of devices in the same namespace as the kernel uses, 2682 * because we can't solve the problems properly, that arise with swapping names 2683 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2684 * be allowed to some other name than eth[0-9]*, for the aforementioned 2685 * reasons. 2686 * 2687 * Make up a "real" name in the driver before you register anything, or add 2688 * some other attributes for userspace to find the device, or use udev to add 2689 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2690 * don't even want to get into that and try to implement the missing pieces in 2691 * the core. We really have other pieces to fix in the driver core mess. :) 2692 */ 2693 int device_rename(struct device *dev, const char *new_name) 2694 { 2695 struct kobject *kobj = &dev->kobj; 2696 char *old_device_name = NULL; 2697 int error; 2698 2699 dev = get_device(dev); 2700 if (!dev) 2701 return -EINVAL; 2702 2703 dev_dbg(dev, "renaming to %s\n", new_name); 2704 2705 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2706 if (!old_device_name) { 2707 error = -ENOMEM; 2708 goto out; 2709 } 2710 2711 if (dev->class) { 2712 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2713 kobj, old_device_name, 2714 new_name, kobject_namespace(kobj)); 2715 if (error) 2716 goto out; 2717 } 2718 2719 error = kobject_rename(kobj, new_name); 2720 if (error) 2721 goto out; 2722 2723 out: 2724 put_device(dev); 2725 2726 kfree(old_device_name); 2727 2728 return error; 2729 } 2730 EXPORT_SYMBOL_GPL(device_rename); 2731 2732 static int device_move_class_links(struct device *dev, 2733 struct device *old_parent, 2734 struct device *new_parent) 2735 { 2736 int error = 0; 2737 2738 if (old_parent) 2739 sysfs_remove_link(&dev->kobj, "device"); 2740 if (new_parent) 2741 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2742 "device"); 2743 return error; 2744 } 2745 2746 /** 2747 * device_move - moves a device to a new parent 2748 * @dev: the pointer to the struct device to be moved 2749 * @new_parent: the new parent of the device (can be NULL) 2750 * @dpm_order: how to reorder the dpm_list 2751 */ 2752 int device_move(struct device *dev, struct device *new_parent, 2753 enum dpm_order dpm_order) 2754 { 2755 int error; 2756 struct device *old_parent; 2757 struct kobject *new_parent_kobj; 2758 2759 dev = get_device(dev); 2760 if (!dev) 2761 return -EINVAL; 2762 2763 device_pm_lock(); 2764 new_parent = get_device(new_parent); 2765 new_parent_kobj = get_device_parent(dev, new_parent); 2766 if (IS_ERR(new_parent_kobj)) { 2767 error = PTR_ERR(new_parent_kobj); 2768 put_device(new_parent); 2769 goto out; 2770 } 2771 2772 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2773 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2774 error = kobject_move(&dev->kobj, new_parent_kobj); 2775 if (error) { 2776 cleanup_glue_dir(dev, new_parent_kobj); 2777 put_device(new_parent); 2778 goto out; 2779 } 2780 old_parent = dev->parent; 2781 dev->parent = new_parent; 2782 if (old_parent) 2783 klist_remove(&dev->p->knode_parent); 2784 if (new_parent) { 2785 klist_add_tail(&dev->p->knode_parent, 2786 &new_parent->p->klist_children); 2787 set_dev_node(dev, dev_to_node(new_parent)); 2788 } 2789 2790 if (dev->class) { 2791 error = device_move_class_links(dev, old_parent, new_parent); 2792 if (error) { 2793 /* We ignore errors on cleanup since we're hosed anyway... */ 2794 device_move_class_links(dev, new_parent, old_parent); 2795 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2796 if (new_parent) 2797 klist_remove(&dev->p->knode_parent); 2798 dev->parent = old_parent; 2799 if (old_parent) { 2800 klist_add_tail(&dev->p->knode_parent, 2801 &old_parent->p->klist_children); 2802 set_dev_node(dev, dev_to_node(old_parent)); 2803 } 2804 } 2805 cleanup_glue_dir(dev, new_parent_kobj); 2806 put_device(new_parent); 2807 goto out; 2808 } 2809 } 2810 switch (dpm_order) { 2811 case DPM_ORDER_NONE: 2812 break; 2813 case DPM_ORDER_DEV_AFTER_PARENT: 2814 device_pm_move_after(dev, new_parent); 2815 devices_kset_move_after(dev, new_parent); 2816 break; 2817 case DPM_ORDER_PARENT_BEFORE_DEV: 2818 device_pm_move_before(new_parent, dev); 2819 devices_kset_move_before(new_parent, dev); 2820 break; 2821 case DPM_ORDER_DEV_LAST: 2822 device_pm_move_last(dev); 2823 devices_kset_move_last(dev); 2824 break; 2825 } 2826 2827 put_device(old_parent); 2828 out: 2829 device_pm_unlock(); 2830 put_device(dev); 2831 return error; 2832 } 2833 EXPORT_SYMBOL_GPL(device_move); 2834 2835 /** 2836 * device_shutdown - call ->shutdown() on each device to shutdown. 2837 */ 2838 void device_shutdown(void) 2839 { 2840 struct device *dev, *parent; 2841 2842 spin_lock(&devices_kset->list_lock); 2843 /* 2844 * Walk the devices list backward, shutting down each in turn. 2845 * Beware that device unplug events may also start pulling 2846 * devices offline, even as the system is shutting down. 2847 */ 2848 while (!list_empty(&devices_kset->list)) { 2849 dev = list_entry(devices_kset->list.prev, struct device, 2850 kobj.entry); 2851 2852 /* 2853 * hold reference count of device's parent to 2854 * prevent it from being freed because parent's 2855 * lock is to be held 2856 */ 2857 parent = get_device(dev->parent); 2858 get_device(dev); 2859 /* 2860 * Make sure the device is off the kset list, in the 2861 * event that dev->*->shutdown() doesn't remove it. 2862 */ 2863 list_del_init(&dev->kobj.entry); 2864 spin_unlock(&devices_kset->list_lock); 2865 2866 /* hold lock to avoid race with probe/release */ 2867 if (parent) 2868 device_lock(parent); 2869 device_lock(dev); 2870 2871 /* Don't allow any more runtime suspends */ 2872 pm_runtime_get_noresume(dev); 2873 pm_runtime_barrier(dev); 2874 2875 if (dev->class && dev->class->shutdown_pre) { 2876 if (initcall_debug) 2877 dev_info(dev, "shutdown_pre\n"); 2878 dev->class->shutdown_pre(dev); 2879 } 2880 if (dev->bus && dev->bus->shutdown) { 2881 if (initcall_debug) 2882 dev_info(dev, "shutdown\n"); 2883 dev->bus->shutdown(dev); 2884 } else if (dev->driver && dev->driver->shutdown) { 2885 if (initcall_debug) 2886 dev_info(dev, "shutdown\n"); 2887 dev->driver->shutdown(dev); 2888 } 2889 2890 device_unlock(dev); 2891 if (parent) 2892 device_unlock(parent); 2893 2894 put_device(dev); 2895 put_device(parent); 2896 2897 spin_lock(&devices_kset->list_lock); 2898 } 2899 spin_unlock(&devices_kset->list_lock); 2900 } 2901 2902 /* 2903 * Device logging functions 2904 */ 2905 2906 #ifdef CONFIG_PRINTK 2907 static int 2908 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2909 { 2910 const char *subsys; 2911 size_t pos = 0; 2912 2913 if (dev->class) 2914 subsys = dev->class->name; 2915 else if (dev->bus) 2916 subsys = dev->bus->name; 2917 else 2918 return 0; 2919 2920 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2921 if (pos >= hdrlen) 2922 goto overflow; 2923 2924 /* 2925 * Add device identifier DEVICE=: 2926 * b12:8 block dev_t 2927 * c127:3 char dev_t 2928 * n8 netdev ifindex 2929 * +sound:card0 subsystem:devname 2930 */ 2931 if (MAJOR(dev->devt)) { 2932 char c; 2933 2934 if (strcmp(subsys, "block") == 0) 2935 c = 'b'; 2936 else 2937 c = 'c'; 2938 pos++; 2939 pos += snprintf(hdr + pos, hdrlen - pos, 2940 "DEVICE=%c%u:%u", 2941 c, MAJOR(dev->devt), MINOR(dev->devt)); 2942 } else if (strcmp(subsys, "net") == 0) { 2943 struct net_device *net = to_net_dev(dev); 2944 2945 pos++; 2946 pos += snprintf(hdr + pos, hdrlen - pos, 2947 "DEVICE=n%u", net->ifindex); 2948 } else { 2949 pos++; 2950 pos += snprintf(hdr + pos, hdrlen - pos, 2951 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2952 } 2953 2954 if (pos >= hdrlen) 2955 goto overflow; 2956 2957 return pos; 2958 2959 overflow: 2960 dev_WARN(dev, "device/subsystem name too long"); 2961 return 0; 2962 } 2963 2964 int dev_vprintk_emit(int level, const struct device *dev, 2965 const char *fmt, va_list args) 2966 { 2967 char hdr[128]; 2968 size_t hdrlen; 2969 2970 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2971 2972 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2973 } 2974 EXPORT_SYMBOL(dev_vprintk_emit); 2975 2976 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2977 { 2978 va_list args; 2979 int r; 2980 2981 va_start(args, fmt); 2982 2983 r = dev_vprintk_emit(level, dev, fmt, args); 2984 2985 va_end(args); 2986 2987 return r; 2988 } 2989 EXPORT_SYMBOL(dev_printk_emit); 2990 2991 static void __dev_printk(const char *level, const struct device *dev, 2992 struct va_format *vaf) 2993 { 2994 if (dev) 2995 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2996 dev_driver_string(dev), dev_name(dev), vaf); 2997 else 2998 printk("%s(NULL device *): %pV", level, vaf); 2999 } 3000 3001 void dev_printk(const char *level, const struct device *dev, 3002 const char *fmt, ...) 3003 { 3004 struct va_format vaf; 3005 va_list args; 3006 3007 va_start(args, fmt); 3008 3009 vaf.fmt = fmt; 3010 vaf.va = &args; 3011 3012 __dev_printk(level, dev, &vaf); 3013 3014 va_end(args); 3015 } 3016 EXPORT_SYMBOL(dev_printk); 3017 3018 #define define_dev_printk_level(func, kern_level) \ 3019 void func(const struct device *dev, const char *fmt, ...) \ 3020 { \ 3021 struct va_format vaf; \ 3022 va_list args; \ 3023 \ 3024 va_start(args, fmt); \ 3025 \ 3026 vaf.fmt = fmt; \ 3027 vaf.va = &args; \ 3028 \ 3029 __dev_printk(kern_level, dev, &vaf); \ 3030 \ 3031 va_end(args); \ 3032 } \ 3033 EXPORT_SYMBOL(func); 3034 3035 define_dev_printk_level(dev_emerg, KERN_EMERG); 3036 define_dev_printk_level(dev_alert, KERN_ALERT); 3037 define_dev_printk_level(dev_crit, KERN_CRIT); 3038 define_dev_printk_level(dev_err, KERN_ERR); 3039 define_dev_printk_level(dev_warn, KERN_WARNING); 3040 define_dev_printk_level(dev_notice, KERN_NOTICE); 3041 define_dev_printk_level(_dev_info, KERN_INFO); 3042 3043 #endif 3044 3045 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3046 { 3047 return fwnode && !IS_ERR(fwnode->secondary); 3048 } 3049 3050 /** 3051 * set_primary_fwnode - Change the primary firmware node of a given device. 3052 * @dev: Device to handle. 3053 * @fwnode: New primary firmware node of the device. 3054 * 3055 * Set the device's firmware node pointer to @fwnode, but if a secondary 3056 * firmware node of the device is present, preserve it. 3057 */ 3058 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3059 { 3060 if (fwnode) { 3061 struct fwnode_handle *fn = dev->fwnode; 3062 3063 if (fwnode_is_primary(fn)) 3064 fn = fn->secondary; 3065 3066 if (fn) { 3067 WARN_ON(fwnode->secondary); 3068 fwnode->secondary = fn; 3069 } 3070 dev->fwnode = fwnode; 3071 } else { 3072 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3073 dev->fwnode->secondary : NULL; 3074 } 3075 } 3076 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3077 3078 /** 3079 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3080 * @dev: Device to handle. 3081 * @fwnode: New secondary firmware node of the device. 3082 * 3083 * If a primary firmware node of the device is present, set its secondary 3084 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3085 * @fwnode. 3086 */ 3087 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3088 { 3089 if (fwnode) 3090 fwnode->secondary = ERR_PTR(-ENODEV); 3091 3092 if (fwnode_is_primary(dev->fwnode)) 3093 dev->fwnode->secondary = fwnode; 3094 else 3095 dev->fwnode = fwnode; 3096 } 3097 3098 /** 3099 * device_set_of_node_from_dev - reuse device-tree node of another device 3100 * @dev: device whose device-tree node is being set 3101 * @dev2: device whose device-tree node is being reused 3102 * 3103 * Takes another reference to the new device-tree node after first dropping 3104 * any reference held to the old node. 3105 */ 3106 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3107 { 3108 of_node_put(dev->of_node); 3109 dev->of_node = of_node_get(dev2->of_node); 3110 dev->of_node_reused = true; 3111 } 3112 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3113