xref: /linux/drivers/base/core.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (WARN_ON(dev == target))
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (WARN_ON(link->consumer == target))
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_pm_move_to_tail - Move set of devices to the end of device lists
149  * @dev: Device to move
150  *
151  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152  *
153  * It moves the @dev along with all of its children and all of its consumers
154  * to the ends of the device_kset and dpm_list, recursively.
155  */
156 void device_pm_move_to_tail(struct device *dev)
157 {
158 	int idx;
159 
160 	idx = device_links_read_lock();
161 	device_pm_lock();
162 	device_reorder_to_tail(dev, NULL);
163 	device_pm_unlock();
164 	device_links_read_unlock(idx);
165 }
166 
167 /**
168  * device_link_add - Create a link between two devices.
169  * @consumer: Consumer end of the link.
170  * @supplier: Supplier end of the link.
171  * @flags: Link flags.
172  *
173  * The caller is responsible for the proper synchronization of the link creation
174  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175  * runtime PM framework to take the link into account.  Second, if the
176  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177  * be forced into the active metastate and reference-counted upon the creation
178  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179  * ignored.
180  *
181  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
182  * when the consumer device driver unbinds from it.  The combination of both
183  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
184  * to be returned.
185  *
186  * A side effect of the link creation is re-ordering of dpm_list and the
187  * devices_kset list by moving the consumer device and all devices depending
188  * on it to the ends of these lists (that does not happen to devices that have
189  * not been registered when this function is called).
190  *
191  * The supplier device is required to be registered when this function is called
192  * and NULL will be returned if that is not the case.  The consumer device need
193  * not be registered, however.
194  */
195 struct device_link *device_link_add(struct device *consumer,
196 				    struct device *supplier, u32 flags)
197 {
198 	struct device_link *link;
199 
200 	if (!consumer || !supplier ||
201 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
202 		return NULL;
203 
204 	device_links_write_lock();
205 	device_pm_lock();
206 
207 	/*
208 	 * If the supplier has not been fully registered yet or there is a
209 	 * reverse dependency between the consumer and the supplier already in
210 	 * the graph, return NULL.
211 	 */
212 	if (!device_pm_initialized(supplier)
213 	    || device_is_dependent(consumer, supplier)) {
214 		link = NULL;
215 		goto out;
216 	}
217 
218 	list_for_each_entry(link, &supplier->links.consumers, s_node)
219 		if (link->consumer == consumer) {
220 			kref_get(&link->kref);
221 			goto out;
222 		}
223 
224 	link = kzalloc(sizeof(*link), GFP_KERNEL);
225 	if (!link)
226 		goto out;
227 
228 	if (flags & DL_FLAG_PM_RUNTIME) {
229 		if (flags & DL_FLAG_RPM_ACTIVE) {
230 			if (pm_runtime_get_sync(supplier) < 0) {
231 				pm_runtime_put_noidle(supplier);
232 				kfree(link);
233 				link = NULL;
234 				goto out;
235 			}
236 			link->rpm_active = true;
237 		}
238 		pm_runtime_new_link(consumer);
239 		/*
240 		 * If the link is being added by the consumer driver at probe
241 		 * time, balance the decrementation of the supplier's runtime PM
242 		 * usage counter after consumer probe in driver_probe_device().
243 		 */
244 		if (consumer->links.status == DL_DEV_PROBING)
245 			pm_runtime_get_noresume(supplier);
246 	}
247 	get_device(supplier);
248 	link->supplier = supplier;
249 	INIT_LIST_HEAD(&link->s_node);
250 	get_device(consumer);
251 	link->consumer = consumer;
252 	INIT_LIST_HEAD(&link->c_node);
253 	link->flags = flags;
254 	kref_init(&link->kref);
255 
256 	/* Determine the initial link state. */
257 	if (flags & DL_FLAG_STATELESS) {
258 		link->status = DL_STATE_NONE;
259 	} else {
260 		switch (supplier->links.status) {
261 		case DL_DEV_DRIVER_BOUND:
262 			switch (consumer->links.status) {
263 			case DL_DEV_PROBING:
264 				/*
265 				 * Some callers expect the link creation during
266 				 * consumer driver probe to resume the supplier
267 				 * even without DL_FLAG_RPM_ACTIVE.
268 				 */
269 				if (flags & DL_FLAG_PM_RUNTIME)
270 					pm_runtime_resume(supplier);
271 
272 				link->status = DL_STATE_CONSUMER_PROBE;
273 				break;
274 			case DL_DEV_DRIVER_BOUND:
275 				link->status = DL_STATE_ACTIVE;
276 				break;
277 			default:
278 				link->status = DL_STATE_AVAILABLE;
279 				break;
280 			}
281 			break;
282 		case DL_DEV_UNBINDING:
283 			link->status = DL_STATE_SUPPLIER_UNBIND;
284 			break;
285 		default:
286 			link->status = DL_STATE_DORMANT;
287 			break;
288 		}
289 	}
290 
291 	/*
292 	 * Move the consumer and all of the devices depending on it to the end
293 	 * of dpm_list and the devices_kset list.
294 	 *
295 	 * It is necessary to hold dpm_list locked throughout all that or else
296 	 * we may end up suspending with a wrong ordering of it.
297 	 */
298 	device_reorder_to_tail(consumer, NULL);
299 
300 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
301 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
302 
303 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
304 
305  out:
306 	device_pm_unlock();
307 	device_links_write_unlock();
308 	return link;
309 }
310 EXPORT_SYMBOL_GPL(device_link_add);
311 
312 static void device_link_free(struct device_link *link)
313 {
314 	put_device(link->consumer);
315 	put_device(link->supplier);
316 	kfree(link);
317 }
318 
319 #ifdef CONFIG_SRCU
320 static void __device_link_free_srcu(struct rcu_head *rhead)
321 {
322 	device_link_free(container_of(rhead, struct device_link, rcu_head));
323 }
324 
325 static void __device_link_del(struct kref *kref)
326 {
327 	struct device_link *link = container_of(kref, struct device_link, kref);
328 
329 	dev_info(link->consumer, "Dropping the link to %s\n",
330 		 dev_name(link->supplier));
331 
332 	if (link->flags & DL_FLAG_PM_RUNTIME)
333 		pm_runtime_drop_link(link->consumer);
334 
335 	list_del_rcu(&link->s_node);
336 	list_del_rcu(&link->c_node);
337 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
338 }
339 #else /* !CONFIG_SRCU */
340 static void __device_link_del(struct kref *kref)
341 {
342 	struct device_link *link = container_of(kref, struct device_link, kref);
343 
344 	dev_info(link->consumer, "Dropping the link to %s\n",
345 		 dev_name(link->supplier));
346 
347 	if (link->flags & DL_FLAG_PM_RUNTIME)
348 		pm_runtime_drop_link(link->consumer);
349 
350 	list_del(&link->s_node);
351 	list_del(&link->c_node);
352 	device_link_free(link);
353 }
354 #endif /* !CONFIG_SRCU */
355 
356 /**
357  * device_link_del - Delete a link between two devices.
358  * @link: Device link to delete.
359  *
360  * The caller must ensure proper synchronization of this function with runtime
361  * PM.  If the link was added multiple times, it needs to be deleted as often.
362  * Care is required for hotplugged devices:  Their links are purged on removal
363  * and calling device_link_del() is then no longer allowed.
364  */
365 void device_link_del(struct device_link *link)
366 {
367 	device_links_write_lock();
368 	device_pm_lock();
369 	kref_put(&link->kref, __device_link_del);
370 	device_pm_unlock();
371 	device_links_write_unlock();
372 }
373 EXPORT_SYMBOL_GPL(device_link_del);
374 
375 /**
376  * device_link_remove - remove a link between two devices.
377  * @consumer: Consumer end of the link.
378  * @supplier: Supplier end of the link.
379  *
380  * The caller must ensure proper synchronization of this function with runtime
381  * PM.
382  */
383 void device_link_remove(void *consumer, struct device *supplier)
384 {
385 	struct device_link *link;
386 
387 	if (WARN_ON(consumer == supplier))
388 		return;
389 
390 	device_links_write_lock();
391 	device_pm_lock();
392 
393 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
394 		if (link->consumer == consumer) {
395 			kref_put(&link->kref, __device_link_del);
396 			break;
397 		}
398 	}
399 
400 	device_pm_unlock();
401 	device_links_write_unlock();
402 }
403 EXPORT_SYMBOL_GPL(device_link_remove);
404 
405 static void device_links_missing_supplier(struct device *dev)
406 {
407 	struct device_link *link;
408 
409 	list_for_each_entry(link, &dev->links.suppliers, c_node)
410 		if (link->status == DL_STATE_CONSUMER_PROBE)
411 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
412 }
413 
414 /**
415  * device_links_check_suppliers - Check presence of supplier drivers.
416  * @dev: Consumer device.
417  *
418  * Check links from this device to any suppliers.  Walk the list of the device's
419  * links to suppliers and see if all of them are available.  If not, simply
420  * return -EPROBE_DEFER.
421  *
422  * We need to guarantee that the supplier will not go away after the check has
423  * been positive here.  It only can go away in __device_release_driver() and
424  * that function  checks the device's links to consumers.  This means we need to
425  * mark the link as "consumer probe in progress" to make the supplier removal
426  * wait for us to complete (or bad things may happen).
427  *
428  * Links with the DL_FLAG_STATELESS flag set are ignored.
429  */
430 int device_links_check_suppliers(struct device *dev)
431 {
432 	struct device_link *link;
433 	int ret = 0;
434 
435 	device_links_write_lock();
436 
437 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
438 		if (link->flags & DL_FLAG_STATELESS)
439 			continue;
440 
441 		if (link->status != DL_STATE_AVAILABLE) {
442 			device_links_missing_supplier(dev);
443 			ret = -EPROBE_DEFER;
444 			break;
445 		}
446 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
447 	}
448 	dev->links.status = DL_DEV_PROBING;
449 
450 	device_links_write_unlock();
451 	return ret;
452 }
453 
454 /**
455  * device_links_driver_bound - Update device links after probing its driver.
456  * @dev: Device to update the links for.
457  *
458  * The probe has been successful, so update links from this device to any
459  * consumers by changing their status to "available".
460  *
461  * Also change the status of @dev's links to suppliers to "active".
462  *
463  * Links with the DL_FLAG_STATELESS flag set are ignored.
464  */
465 void device_links_driver_bound(struct device *dev)
466 {
467 	struct device_link *link;
468 
469 	device_links_write_lock();
470 
471 	list_for_each_entry(link, &dev->links.consumers, s_node) {
472 		if (link->flags & DL_FLAG_STATELESS)
473 			continue;
474 
475 		WARN_ON(link->status != DL_STATE_DORMANT);
476 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
477 	}
478 
479 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
480 		if (link->flags & DL_FLAG_STATELESS)
481 			continue;
482 
483 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
484 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
485 	}
486 
487 	dev->links.status = DL_DEV_DRIVER_BOUND;
488 
489 	device_links_write_unlock();
490 }
491 
492 /**
493  * __device_links_no_driver - Update links of a device without a driver.
494  * @dev: Device without a drvier.
495  *
496  * Delete all non-persistent links from this device to any suppliers.
497  *
498  * Persistent links stay around, but their status is changed to "available",
499  * unless they already are in the "supplier unbind in progress" state in which
500  * case they need not be updated.
501  *
502  * Links with the DL_FLAG_STATELESS flag set are ignored.
503  */
504 static void __device_links_no_driver(struct device *dev)
505 {
506 	struct device_link *link, *ln;
507 
508 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
509 		if (link->flags & DL_FLAG_STATELESS)
510 			continue;
511 
512 		if (link->flags & DL_FLAG_AUTOREMOVE)
513 			kref_put(&link->kref, __device_link_del);
514 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
515 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
516 	}
517 
518 	dev->links.status = DL_DEV_NO_DRIVER;
519 }
520 
521 void device_links_no_driver(struct device *dev)
522 {
523 	device_links_write_lock();
524 	__device_links_no_driver(dev);
525 	device_links_write_unlock();
526 }
527 
528 /**
529  * device_links_driver_cleanup - Update links after driver removal.
530  * @dev: Device whose driver has just gone away.
531  *
532  * Update links to consumers for @dev by changing their status to "dormant" and
533  * invoke %__device_links_no_driver() to update links to suppliers for it as
534  * appropriate.
535  *
536  * Links with the DL_FLAG_STATELESS flag set are ignored.
537  */
538 void device_links_driver_cleanup(struct device *dev)
539 {
540 	struct device_link *link;
541 
542 	device_links_write_lock();
543 
544 	list_for_each_entry(link, &dev->links.consumers, s_node) {
545 		if (link->flags & DL_FLAG_STATELESS)
546 			continue;
547 
548 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
549 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
550 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
551 	}
552 
553 	__device_links_no_driver(dev);
554 
555 	device_links_write_unlock();
556 }
557 
558 /**
559  * device_links_busy - Check if there are any busy links to consumers.
560  * @dev: Device to check.
561  *
562  * Check each consumer of the device and return 'true' if its link's status
563  * is one of "consumer probe" or "active" (meaning that the given consumer is
564  * probing right now or its driver is present).  Otherwise, change the link
565  * state to "supplier unbind" to prevent the consumer from being probed
566  * successfully going forward.
567  *
568  * Return 'false' if there are no probing or active consumers.
569  *
570  * Links with the DL_FLAG_STATELESS flag set are ignored.
571  */
572 bool device_links_busy(struct device *dev)
573 {
574 	struct device_link *link;
575 	bool ret = false;
576 
577 	device_links_write_lock();
578 
579 	list_for_each_entry(link, &dev->links.consumers, s_node) {
580 		if (link->flags & DL_FLAG_STATELESS)
581 			continue;
582 
583 		if (link->status == DL_STATE_CONSUMER_PROBE
584 		    || link->status == DL_STATE_ACTIVE) {
585 			ret = true;
586 			break;
587 		}
588 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
589 	}
590 
591 	dev->links.status = DL_DEV_UNBINDING;
592 
593 	device_links_write_unlock();
594 	return ret;
595 }
596 
597 /**
598  * device_links_unbind_consumers - Force unbind consumers of the given device.
599  * @dev: Device to unbind the consumers of.
600  *
601  * Walk the list of links to consumers for @dev and if any of them is in the
602  * "consumer probe" state, wait for all device probes in progress to complete
603  * and start over.
604  *
605  * If that's not the case, change the status of the link to "supplier unbind"
606  * and check if the link was in the "active" state.  If so, force the consumer
607  * driver to unbind and start over (the consumer will not re-probe as we have
608  * changed the state of the link already).
609  *
610  * Links with the DL_FLAG_STATELESS flag set are ignored.
611  */
612 void device_links_unbind_consumers(struct device *dev)
613 {
614 	struct device_link *link;
615 
616  start:
617 	device_links_write_lock();
618 
619 	list_for_each_entry(link, &dev->links.consumers, s_node) {
620 		enum device_link_state status;
621 
622 		if (link->flags & DL_FLAG_STATELESS)
623 			continue;
624 
625 		status = link->status;
626 		if (status == DL_STATE_CONSUMER_PROBE) {
627 			device_links_write_unlock();
628 
629 			wait_for_device_probe();
630 			goto start;
631 		}
632 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
633 		if (status == DL_STATE_ACTIVE) {
634 			struct device *consumer = link->consumer;
635 
636 			get_device(consumer);
637 
638 			device_links_write_unlock();
639 
640 			device_release_driver_internal(consumer, NULL,
641 						       consumer->parent);
642 			put_device(consumer);
643 			goto start;
644 		}
645 	}
646 
647 	device_links_write_unlock();
648 }
649 
650 /**
651  * device_links_purge - Delete existing links to other devices.
652  * @dev: Target device.
653  */
654 static void device_links_purge(struct device *dev)
655 {
656 	struct device_link *link, *ln;
657 
658 	/*
659 	 * Delete all of the remaining links from this device to any other
660 	 * devices (either consumers or suppliers).
661 	 */
662 	device_links_write_lock();
663 
664 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
665 		WARN_ON(link->status == DL_STATE_ACTIVE);
666 		__device_link_del(&link->kref);
667 	}
668 
669 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
670 		WARN_ON(link->status != DL_STATE_DORMANT &&
671 			link->status != DL_STATE_NONE);
672 		__device_link_del(&link->kref);
673 	}
674 
675 	device_links_write_unlock();
676 }
677 
678 /* Device links support end. */
679 
680 int (*platform_notify)(struct device *dev) = NULL;
681 int (*platform_notify_remove)(struct device *dev) = NULL;
682 static struct kobject *dev_kobj;
683 struct kobject *sysfs_dev_char_kobj;
684 struct kobject *sysfs_dev_block_kobj;
685 
686 static DEFINE_MUTEX(device_hotplug_lock);
687 
688 void lock_device_hotplug(void)
689 {
690 	mutex_lock(&device_hotplug_lock);
691 }
692 
693 void unlock_device_hotplug(void)
694 {
695 	mutex_unlock(&device_hotplug_lock);
696 }
697 
698 int lock_device_hotplug_sysfs(void)
699 {
700 	if (mutex_trylock(&device_hotplug_lock))
701 		return 0;
702 
703 	/* Avoid busy looping (5 ms of sleep should do). */
704 	msleep(5);
705 	return restart_syscall();
706 }
707 
708 #ifdef CONFIG_BLOCK
709 static inline int device_is_not_partition(struct device *dev)
710 {
711 	return !(dev->type == &part_type);
712 }
713 #else
714 static inline int device_is_not_partition(struct device *dev)
715 {
716 	return 1;
717 }
718 #endif
719 
720 /**
721  * dev_driver_string - Return a device's driver name, if at all possible
722  * @dev: struct device to get the name of
723  *
724  * Will return the device's driver's name if it is bound to a device.  If
725  * the device is not bound to a driver, it will return the name of the bus
726  * it is attached to.  If it is not attached to a bus either, an empty
727  * string will be returned.
728  */
729 const char *dev_driver_string(const struct device *dev)
730 {
731 	struct device_driver *drv;
732 
733 	/* dev->driver can change to NULL underneath us because of unbinding,
734 	 * so be careful about accessing it.  dev->bus and dev->class should
735 	 * never change once they are set, so they don't need special care.
736 	 */
737 	drv = READ_ONCE(dev->driver);
738 	return drv ? drv->name :
739 			(dev->bus ? dev->bus->name :
740 			(dev->class ? dev->class->name : ""));
741 }
742 EXPORT_SYMBOL(dev_driver_string);
743 
744 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
745 
746 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
747 			     char *buf)
748 {
749 	struct device_attribute *dev_attr = to_dev_attr(attr);
750 	struct device *dev = kobj_to_dev(kobj);
751 	ssize_t ret = -EIO;
752 
753 	if (dev_attr->show)
754 		ret = dev_attr->show(dev, dev_attr, buf);
755 	if (ret >= (ssize_t)PAGE_SIZE) {
756 		printk("dev_attr_show: %pS returned bad count\n",
757 				dev_attr->show);
758 	}
759 	return ret;
760 }
761 
762 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
763 			      const char *buf, size_t count)
764 {
765 	struct device_attribute *dev_attr = to_dev_attr(attr);
766 	struct device *dev = kobj_to_dev(kobj);
767 	ssize_t ret = -EIO;
768 
769 	if (dev_attr->store)
770 		ret = dev_attr->store(dev, dev_attr, buf, count);
771 	return ret;
772 }
773 
774 static const struct sysfs_ops dev_sysfs_ops = {
775 	.show	= dev_attr_show,
776 	.store	= dev_attr_store,
777 };
778 
779 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
780 
781 ssize_t device_store_ulong(struct device *dev,
782 			   struct device_attribute *attr,
783 			   const char *buf, size_t size)
784 {
785 	struct dev_ext_attribute *ea = to_ext_attr(attr);
786 	char *end;
787 	unsigned long new = simple_strtoul(buf, &end, 0);
788 	if (end == buf)
789 		return -EINVAL;
790 	*(unsigned long *)(ea->var) = new;
791 	/* Always return full write size even if we didn't consume all */
792 	return size;
793 }
794 EXPORT_SYMBOL_GPL(device_store_ulong);
795 
796 ssize_t device_show_ulong(struct device *dev,
797 			  struct device_attribute *attr,
798 			  char *buf)
799 {
800 	struct dev_ext_attribute *ea = to_ext_attr(attr);
801 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
802 }
803 EXPORT_SYMBOL_GPL(device_show_ulong);
804 
805 ssize_t device_store_int(struct device *dev,
806 			 struct device_attribute *attr,
807 			 const char *buf, size_t size)
808 {
809 	struct dev_ext_attribute *ea = to_ext_attr(attr);
810 	char *end;
811 	long new = simple_strtol(buf, &end, 0);
812 	if (end == buf || new > INT_MAX || new < INT_MIN)
813 		return -EINVAL;
814 	*(int *)(ea->var) = new;
815 	/* Always return full write size even if we didn't consume all */
816 	return size;
817 }
818 EXPORT_SYMBOL_GPL(device_store_int);
819 
820 ssize_t device_show_int(struct device *dev,
821 			struct device_attribute *attr,
822 			char *buf)
823 {
824 	struct dev_ext_attribute *ea = to_ext_attr(attr);
825 
826 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
827 }
828 EXPORT_SYMBOL_GPL(device_show_int);
829 
830 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
831 			  const char *buf, size_t size)
832 {
833 	struct dev_ext_attribute *ea = to_ext_attr(attr);
834 
835 	if (strtobool(buf, ea->var) < 0)
836 		return -EINVAL;
837 
838 	return size;
839 }
840 EXPORT_SYMBOL_GPL(device_store_bool);
841 
842 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
843 			 char *buf)
844 {
845 	struct dev_ext_attribute *ea = to_ext_attr(attr);
846 
847 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
848 }
849 EXPORT_SYMBOL_GPL(device_show_bool);
850 
851 /**
852  * device_release - free device structure.
853  * @kobj: device's kobject.
854  *
855  * This is called once the reference count for the object
856  * reaches 0. We forward the call to the device's release
857  * method, which should handle actually freeing the structure.
858  */
859 static void device_release(struct kobject *kobj)
860 {
861 	struct device *dev = kobj_to_dev(kobj);
862 	struct device_private *p = dev->p;
863 
864 	/*
865 	 * Some platform devices are driven without driver attached
866 	 * and managed resources may have been acquired.  Make sure
867 	 * all resources are released.
868 	 *
869 	 * Drivers still can add resources into device after device
870 	 * is deleted but alive, so release devres here to avoid
871 	 * possible memory leak.
872 	 */
873 	devres_release_all(dev);
874 
875 	if (dev->release)
876 		dev->release(dev);
877 	else if (dev->type && dev->type->release)
878 		dev->type->release(dev);
879 	else if (dev->class && dev->class->dev_release)
880 		dev->class->dev_release(dev);
881 	else
882 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
883 			"function, it is broken and must be fixed.\n",
884 			dev_name(dev));
885 	kfree(p);
886 }
887 
888 static const void *device_namespace(struct kobject *kobj)
889 {
890 	struct device *dev = kobj_to_dev(kobj);
891 	const void *ns = NULL;
892 
893 	if (dev->class && dev->class->ns_type)
894 		ns = dev->class->namespace(dev);
895 
896 	return ns;
897 }
898 
899 static struct kobj_type device_ktype = {
900 	.release	= device_release,
901 	.sysfs_ops	= &dev_sysfs_ops,
902 	.namespace	= device_namespace,
903 };
904 
905 
906 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
907 {
908 	struct kobj_type *ktype = get_ktype(kobj);
909 
910 	if (ktype == &device_ktype) {
911 		struct device *dev = kobj_to_dev(kobj);
912 		if (dev->bus)
913 			return 1;
914 		if (dev->class)
915 			return 1;
916 	}
917 	return 0;
918 }
919 
920 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
921 {
922 	struct device *dev = kobj_to_dev(kobj);
923 
924 	if (dev->bus)
925 		return dev->bus->name;
926 	if (dev->class)
927 		return dev->class->name;
928 	return NULL;
929 }
930 
931 static int dev_uevent(struct kset *kset, struct kobject *kobj,
932 		      struct kobj_uevent_env *env)
933 {
934 	struct device *dev = kobj_to_dev(kobj);
935 	int retval = 0;
936 
937 	/* add device node properties if present */
938 	if (MAJOR(dev->devt)) {
939 		const char *tmp;
940 		const char *name;
941 		umode_t mode = 0;
942 		kuid_t uid = GLOBAL_ROOT_UID;
943 		kgid_t gid = GLOBAL_ROOT_GID;
944 
945 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
946 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
947 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
948 		if (name) {
949 			add_uevent_var(env, "DEVNAME=%s", name);
950 			if (mode)
951 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
952 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
953 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
954 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
955 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
956 			kfree(tmp);
957 		}
958 	}
959 
960 	if (dev->type && dev->type->name)
961 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
962 
963 	if (dev->driver)
964 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
965 
966 	/* Add common DT information about the device */
967 	of_device_uevent(dev, env);
968 
969 	/* have the bus specific function add its stuff */
970 	if (dev->bus && dev->bus->uevent) {
971 		retval = dev->bus->uevent(dev, env);
972 		if (retval)
973 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
974 				 dev_name(dev), __func__, retval);
975 	}
976 
977 	/* have the class specific function add its stuff */
978 	if (dev->class && dev->class->dev_uevent) {
979 		retval = dev->class->dev_uevent(dev, env);
980 		if (retval)
981 			pr_debug("device: '%s': %s: class uevent() "
982 				 "returned %d\n", dev_name(dev),
983 				 __func__, retval);
984 	}
985 
986 	/* have the device type specific function add its stuff */
987 	if (dev->type && dev->type->uevent) {
988 		retval = dev->type->uevent(dev, env);
989 		if (retval)
990 			pr_debug("device: '%s': %s: dev_type uevent() "
991 				 "returned %d\n", dev_name(dev),
992 				 __func__, retval);
993 	}
994 
995 	return retval;
996 }
997 
998 static const struct kset_uevent_ops device_uevent_ops = {
999 	.filter =	dev_uevent_filter,
1000 	.name =		dev_uevent_name,
1001 	.uevent =	dev_uevent,
1002 };
1003 
1004 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1005 			   char *buf)
1006 {
1007 	struct kobject *top_kobj;
1008 	struct kset *kset;
1009 	struct kobj_uevent_env *env = NULL;
1010 	int i;
1011 	size_t count = 0;
1012 	int retval;
1013 
1014 	/* search the kset, the device belongs to */
1015 	top_kobj = &dev->kobj;
1016 	while (!top_kobj->kset && top_kobj->parent)
1017 		top_kobj = top_kobj->parent;
1018 	if (!top_kobj->kset)
1019 		goto out;
1020 
1021 	kset = top_kobj->kset;
1022 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1023 		goto out;
1024 
1025 	/* respect filter */
1026 	if (kset->uevent_ops && kset->uevent_ops->filter)
1027 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1028 			goto out;
1029 
1030 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1031 	if (!env)
1032 		return -ENOMEM;
1033 
1034 	/* let the kset specific function add its keys */
1035 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1036 	if (retval)
1037 		goto out;
1038 
1039 	/* copy keys to file */
1040 	for (i = 0; i < env->envp_idx; i++)
1041 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1042 out:
1043 	kfree(env);
1044 	return count;
1045 }
1046 
1047 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1048 			    const char *buf, size_t count)
1049 {
1050 	if (kobject_synth_uevent(&dev->kobj, buf, count))
1051 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1052 
1053 	return count;
1054 }
1055 static DEVICE_ATTR_RW(uevent);
1056 
1057 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1058 			   char *buf)
1059 {
1060 	bool val;
1061 
1062 	device_lock(dev);
1063 	val = !dev->offline;
1064 	device_unlock(dev);
1065 	return sprintf(buf, "%u\n", val);
1066 }
1067 
1068 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1069 			    const char *buf, size_t count)
1070 {
1071 	bool val;
1072 	int ret;
1073 
1074 	ret = strtobool(buf, &val);
1075 	if (ret < 0)
1076 		return ret;
1077 
1078 	ret = lock_device_hotplug_sysfs();
1079 	if (ret)
1080 		return ret;
1081 
1082 	ret = val ? device_online(dev) : device_offline(dev);
1083 	unlock_device_hotplug();
1084 	return ret < 0 ? ret : count;
1085 }
1086 static DEVICE_ATTR_RW(online);
1087 
1088 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1089 {
1090 	return sysfs_create_groups(&dev->kobj, groups);
1091 }
1092 EXPORT_SYMBOL_GPL(device_add_groups);
1093 
1094 void device_remove_groups(struct device *dev,
1095 			  const struct attribute_group **groups)
1096 {
1097 	sysfs_remove_groups(&dev->kobj, groups);
1098 }
1099 EXPORT_SYMBOL_GPL(device_remove_groups);
1100 
1101 union device_attr_group_devres {
1102 	const struct attribute_group *group;
1103 	const struct attribute_group **groups;
1104 };
1105 
1106 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1107 {
1108 	return ((union device_attr_group_devres *)res)->group == data;
1109 }
1110 
1111 static void devm_attr_group_remove(struct device *dev, void *res)
1112 {
1113 	union device_attr_group_devres *devres = res;
1114 	const struct attribute_group *group = devres->group;
1115 
1116 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1117 	sysfs_remove_group(&dev->kobj, group);
1118 }
1119 
1120 static void devm_attr_groups_remove(struct device *dev, void *res)
1121 {
1122 	union device_attr_group_devres *devres = res;
1123 	const struct attribute_group **groups = devres->groups;
1124 
1125 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1126 	sysfs_remove_groups(&dev->kobj, groups);
1127 }
1128 
1129 /**
1130  * devm_device_add_group - given a device, create a managed attribute group
1131  * @dev:	The device to create the group for
1132  * @grp:	The attribute group to create
1133  *
1134  * This function creates a group for the first time.  It will explicitly
1135  * warn and error if any of the attribute files being created already exist.
1136  *
1137  * Returns 0 on success or error code on failure.
1138  */
1139 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1140 {
1141 	union device_attr_group_devres *devres;
1142 	int error;
1143 
1144 	devres = devres_alloc(devm_attr_group_remove,
1145 			      sizeof(*devres), GFP_KERNEL);
1146 	if (!devres)
1147 		return -ENOMEM;
1148 
1149 	error = sysfs_create_group(&dev->kobj, grp);
1150 	if (error) {
1151 		devres_free(devres);
1152 		return error;
1153 	}
1154 
1155 	devres->group = grp;
1156 	devres_add(dev, devres);
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(devm_device_add_group);
1160 
1161 /**
1162  * devm_device_remove_group: remove a managed group from a device
1163  * @dev:	device to remove the group from
1164  * @grp:	group to remove
1165  *
1166  * This function removes a group of attributes from a device. The attributes
1167  * previously have to have been created for this group, otherwise it will fail.
1168  */
1169 void devm_device_remove_group(struct device *dev,
1170 			      const struct attribute_group *grp)
1171 {
1172 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1173 			       devm_attr_group_match,
1174 			       /* cast away const */ (void *)grp));
1175 }
1176 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1177 
1178 /**
1179  * devm_device_add_groups - create a bunch of managed attribute groups
1180  * @dev:	The device to create the group for
1181  * @groups:	The attribute groups to create, NULL terminated
1182  *
1183  * This function creates a bunch of managed attribute groups.  If an error
1184  * occurs when creating a group, all previously created groups will be
1185  * removed, unwinding everything back to the original state when this
1186  * function was called.  It will explicitly warn and error if any of the
1187  * attribute files being created already exist.
1188  *
1189  * Returns 0 on success or error code from sysfs_create_group on failure.
1190  */
1191 int devm_device_add_groups(struct device *dev,
1192 			   const struct attribute_group **groups)
1193 {
1194 	union device_attr_group_devres *devres;
1195 	int error;
1196 
1197 	devres = devres_alloc(devm_attr_groups_remove,
1198 			      sizeof(*devres), GFP_KERNEL);
1199 	if (!devres)
1200 		return -ENOMEM;
1201 
1202 	error = sysfs_create_groups(&dev->kobj, groups);
1203 	if (error) {
1204 		devres_free(devres);
1205 		return error;
1206 	}
1207 
1208 	devres->groups = groups;
1209 	devres_add(dev, devres);
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1213 
1214 /**
1215  * devm_device_remove_groups - remove a list of managed groups
1216  *
1217  * @dev:	The device for the groups to be removed from
1218  * @groups:	NULL terminated list of groups to be removed
1219  *
1220  * If groups is not NULL, remove the specified groups from the device.
1221  */
1222 void devm_device_remove_groups(struct device *dev,
1223 			       const struct attribute_group **groups)
1224 {
1225 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1226 			       devm_attr_group_match,
1227 			       /* cast away const */ (void *)groups));
1228 }
1229 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1230 
1231 static int device_add_attrs(struct device *dev)
1232 {
1233 	struct class *class = dev->class;
1234 	const struct device_type *type = dev->type;
1235 	int error;
1236 
1237 	if (class) {
1238 		error = device_add_groups(dev, class->dev_groups);
1239 		if (error)
1240 			return error;
1241 	}
1242 
1243 	if (type) {
1244 		error = device_add_groups(dev, type->groups);
1245 		if (error)
1246 			goto err_remove_class_groups;
1247 	}
1248 
1249 	error = device_add_groups(dev, dev->groups);
1250 	if (error)
1251 		goto err_remove_type_groups;
1252 
1253 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1254 		error = device_create_file(dev, &dev_attr_online);
1255 		if (error)
1256 			goto err_remove_dev_groups;
1257 	}
1258 
1259 	return 0;
1260 
1261  err_remove_dev_groups:
1262 	device_remove_groups(dev, dev->groups);
1263  err_remove_type_groups:
1264 	if (type)
1265 		device_remove_groups(dev, type->groups);
1266  err_remove_class_groups:
1267 	if (class)
1268 		device_remove_groups(dev, class->dev_groups);
1269 
1270 	return error;
1271 }
1272 
1273 static void device_remove_attrs(struct device *dev)
1274 {
1275 	struct class *class = dev->class;
1276 	const struct device_type *type = dev->type;
1277 
1278 	device_remove_file(dev, &dev_attr_online);
1279 	device_remove_groups(dev, dev->groups);
1280 
1281 	if (type)
1282 		device_remove_groups(dev, type->groups);
1283 
1284 	if (class)
1285 		device_remove_groups(dev, class->dev_groups);
1286 }
1287 
1288 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1289 			char *buf)
1290 {
1291 	return print_dev_t(buf, dev->devt);
1292 }
1293 static DEVICE_ATTR_RO(dev);
1294 
1295 /* /sys/devices/ */
1296 struct kset *devices_kset;
1297 
1298 /**
1299  * devices_kset_move_before - Move device in the devices_kset's list.
1300  * @deva: Device to move.
1301  * @devb: Device @deva should come before.
1302  */
1303 static void devices_kset_move_before(struct device *deva, struct device *devb)
1304 {
1305 	if (!devices_kset)
1306 		return;
1307 	pr_debug("devices_kset: Moving %s before %s\n",
1308 		 dev_name(deva), dev_name(devb));
1309 	spin_lock(&devices_kset->list_lock);
1310 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1311 	spin_unlock(&devices_kset->list_lock);
1312 }
1313 
1314 /**
1315  * devices_kset_move_after - Move device in the devices_kset's list.
1316  * @deva: Device to move
1317  * @devb: Device @deva should come after.
1318  */
1319 static void devices_kset_move_after(struct device *deva, struct device *devb)
1320 {
1321 	if (!devices_kset)
1322 		return;
1323 	pr_debug("devices_kset: Moving %s after %s\n",
1324 		 dev_name(deva), dev_name(devb));
1325 	spin_lock(&devices_kset->list_lock);
1326 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1327 	spin_unlock(&devices_kset->list_lock);
1328 }
1329 
1330 /**
1331  * devices_kset_move_last - move the device to the end of devices_kset's list.
1332  * @dev: device to move
1333  */
1334 void devices_kset_move_last(struct device *dev)
1335 {
1336 	if (!devices_kset)
1337 		return;
1338 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1339 	spin_lock(&devices_kset->list_lock);
1340 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1341 	spin_unlock(&devices_kset->list_lock);
1342 }
1343 
1344 /**
1345  * device_create_file - create sysfs attribute file for device.
1346  * @dev: device.
1347  * @attr: device attribute descriptor.
1348  */
1349 int device_create_file(struct device *dev,
1350 		       const struct device_attribute *attr)
1351 {
1352 	int error = 0;
1353 
1354 	if (dev) {
1355 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1356 			"Attribute %s: write permission without 'store'\n",
1357 			attr->attr.name);
1358 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1359 			"Attribute %s: read permission without 'show'\n",
1360 			attr->attr.name);
1361 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1362 	}
1363 
1364 	return error;
1365 }
1366 EXPORT_SYMBOL_GPL(device_create_file);
1367 
1368 /**
1369  * device_remove_file - remove sysfs attribute file.
1370  * @dev: device.
1371  * @attr: device attribute descriptor.
1372  */
1373 void device_remove_file(struct device *dev,
1374 			const struct device_attribute *attr)
1375 {
1376 	if (dev)
1377 		sysfs_remove_file(&dev->kobj, &attr->attr);
1378 }
1379 EXPORT_SYMBOL_GPL(device_remove_file);
1380 
1381 /**
1382  * device_remove_file_self - remove sysfs attribute file from its own method.
1383  * @dev: device.
1384  * @attr: device attribute descriptor.
1385  *
1386  * See kernfs_remove_self() for details.
1387  */
1388 bool device_remove_file_self(struct device *dev,
1389 			     const struct device_attribute *attr)
1390 {
1391 	if (dev)
1392 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1393 	else
1394 		return false;
1395 }
1396 EXPORT_SYMBOL_GPL(device_remove_file_self);
1397 
1398 /**
1399  * device_create_bin_file - create sysfs binary attribute file for device.
1400  * @dev: device.
1401  * @attr: device binary attribute descriptor.
1402  */
1403 int device_create_bin_file(struct device *dev,
1404 			   const struct bin_attribute *attr)
1405 {
1406 	int error = -EINVAL;
1407 	if (dev)
1408 		error = sysfs_create_bin_file(&dev->kobj, attr);
1409 	return error;
1410 }
1411 EXPORT_SYMBOL_GPL(device_create_bin_file);
1412 
1413 /**
1414  * device_remove_bin_file - remove sysfs binary attribute file
1415  * @dev: device.
1416  * @attr: device binary attribute descriptor.
1417  */
1418 void device_remove_bin_file(struct device *dev,
1419 			    const struct bin_attribute *attr)
1420 {
1421 	if (dev)
1422 		sysfs_remove_bin_file(&dev->kobj, attr);
1423 }
1424 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1425 
1426 static void klist_children_get(struct klist_node *n)
1427 {
1428 	struct device_private *p = to_device_private_parent(n);
1429 	struct device *dev = p->device;
1430 
1431 	get_device(dev);
1432 }
1433 
1434 static void klist_children_put(struct klist_node *n)
1435 {
1436 	struct device_private *p = to_device_private_parent(n);
1437 	struct device *dev = p->device;
1438 
1439 	put_device(dev);
1440 }
1441 
1442 /**
1443  * device_initialize - init device structure.
1444  * @dev: device.
1445  *
1446  * This prepares the device for use by other layers by initializing
1447  * its fields.
1448  * It is the first half of device_register(), if called by
1449  * that function, though it can also be called separately, so one
1450  * may use @dev's fields. In particular, get_device()/put_device()
1451  * may be used for reference counting of @dev after calling this
1452  * function.
1453  *
1454  * All fields in @dev must be initialized by the caller to 0, except
1455  * for those explicitly set to some other value.  The simplest
1456  * approach is to use kzalloc() to allocate the structure containing
1457  * @dev.
1458  *
1459  * NOTE: Use put_device() to give up your reference instead of freeing
1460  * @dev directly once you have called this function.
1461  */
1462 void device_initialize(struct device *dev)
1463 {
1464 	dev->kobj.kset = devices_kset;
1465 	kobject_init(&dev->kobj, &device_ktype);
1466 	INIT_LIST_HEAD(&dev->dma_pools);
1467 	mutex_init(&dev->mutex);
1468 	lockdep_set_novalidate_class(&dev->mutex);
1469 	spin_lock_init(&dev->devres_lock);
1470 	INIT_LIST_HEAD(&dev->devres_head);
1471 	device_pm_init(dev);
1472 	set_dev_node(dev, -1);
1473 #ifdef CONFIG_GENERIC_MSI_IRQ
1474 	INIT_LIST_HEAD(&dev->msi_list);
1475 #endif
1476 	INIT_LIST_HEAD(&dev->links.consumers);
1477 	INIT_LIST_HEAD(&dev->links.suppliers);
1478 	dev->links.status = DL_DEV_NO_DRIVER;
1479 }
1480 EXPORT_SYMBOL_GPL(device_initialize);
1481 
1482 struct kobject *virtual_device_parent(struct device *dev)
1483 {
1484 	static struct kobject *virtual_dir = NULL;
1485 
1486 	if (!virtual_dir)
1487 		virtual_dir = kobject_create_and_add("virtual",
1488 						     &devices_kset->kobj);
1489 
1490 	return virtual_dir;
1491 }
1492 
1493 struct class_dir {
1494 	struct kobject kobj;
1495 	struct class *class;
1496 };
1497 
1498 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1499 
1500 static void class_dir_release(struct kobject *kobj)
1501 {
1502 	struct class_dir *dir = to_class_dir(kobj);
1503 	kfree(dir);
1504 }
1505 
1506 static const
1507 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1508 {
1509 	struct class_dir *dir = to_class_dir(kobj);
1510 	return dir->class->ns_type;
1511 }
1512 
1513 static struct kobj_type class_dir_ktype = {
1514 	.release	= class_dir_release,
1515 	.sysfs_ops	= &kobj_sysfs_ops,
1516 	.child_ns_type	= class_dir_child_ns_type
1517 };
1518 
1519 static struct kobject *
1520 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1521 {
1522 	struct class_dir *dir;
1523 	int retval;
1524 
1525 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1526 	if (!dir)
1527 		return ERR_PTR(-ENOMEM);
1528 
1529 	dir->class = class;
1530 	kobject_init(&dir->kobj, &class_dir_ktype);
1531 
1532 	dir->kobj.kset = &class->p->glue_dirs;
1533 
1534 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1535 	if (retval < 0) {
1536 		kobject_put(&dir->kobj);
1537 		return ERR_PTR(retval);
1538 	}
1539 	return &dir->kobj;
1540 }
1541 
1542 static DEFINE_MUTEX(gdp_mutex);
1543 
1544 static struct kobject *get_device_parent(struct device *dev,
1545 					 struct device *parent)
1546 {
1547 	if (dev->class) {
1548 		struct kobject *kobj = NULL;
1549 		struct kobject *parent_kobj;
1550 		struct kobject *k;
1551 
1552 #ifdef CONFIG_BLOCK
1553 		/* block disks show up in /sys/block */
1554 		if (sysfs_deprecated && dev->class == &block_class) {
1555 			if (parent && parent->class == &block_class)
1556 				return &parent->kobj;
1557 			return &block_class.p->subsys.kobj;
1558 		}
1559 #endif
1560 
1561 		/*
1562 		 * If we have no parent, we live in "virtual".
1563 		 * Class-devices with a non class-device as parent, live
1564 		 * in a "glue" directory to prevent namespace collisions.
1565 		 */
1566 		if (parent == NULL)
1567 			parent_kobj = virtual_device_parent(dev);
1568 		else if (parent->class && !dev->class->ns_type)
1569 			return &parent->kobj;
1570 		else
1571 			parent_kobj = &parent->kobj;
1572 
1573 		mutex_lock(&gdp_mutex);
1574 
1575 		/* find our class-directory at the parent and reference it */
1576 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1577 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1578 			if (k->parent == parent_kobj) {
1579 				kobj = kobject_get(k);
1580 				break;
1581 			}
1582 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1583 		if (kobj) {
1584 			mutex_unlock(&gdp_mutex);
1585 			return kobj;
1586 		}
1587 
1588 		/* or create a new class-directory at the parent device */
1589 		k = class_dir_create_and_add(dev->class, parent_kobj);
1590 		/* do not emit an uevent for this simple "glue" directory */
1591 		mutex_unlock(&gdp_mutex);
1592 		return k;
1593 	}
1594 
1595 	/* subsystems can specify a default root directory for their devices */
1596 	if (!parent && dev->bus && dev->bus->dev_root)
1597 		return &dev->bus->dev_root->kobj;
1598 
1599 	if (parent)
1600 		return &parent->kobj;
1601 	return NULL;
1602 }
1603 
1604 static inline bool live_in_glue_dir(struct kobject *kobj,
1605 				    struct device *dev)
1606 {
1607 	if (!kobj || !dev->class ||
1608 	    kobj->kset != &dev->class->p->glue_dirs)
1609 		return false;
1610 	return true;
1611 }
1612 
1613 static inline struct kobject *get_glue_dir(struct device *dev)
1614 {
1615 	return dev->kobj.parent;
1616 }
1617 
1618 /*
1619  * make sure cleaning up dir as the last step, we need to make
1620  * sure .release handler of kobject is run with holding the
1621  * global lock
1622  */
1623 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1624 {
1625 	/* see if we live in a "glue" directory */
1626 	if (!live_in_glue_dir(glue_dir, dev))
1627 		return;
1628 
1629 	mutex_lock(&gdp_mutex);
1630 	kobject_put(glue_dir);
1631 	mutex_unlock(&gdp_mutex);
1632 }
1633 
1634 static int device_add_class_symlinks(struct device *dev)
1635 {
1636 	struct device_node *of_node = dev_of_node(dev);
1637 	int error;
1638 
1639 	if (of_node) {
1640 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1641 		if (error)
1642 			dev_warn(dev, "Error %d creating of_node link\n",error);
1643 		/* An error here doesn't warrant bringing down the device */
1644 	}
1645 
1646 	if (!dev->class)
1647 		return 0;
1648 
1649 	error = sysfs_create_link(&dev->kobj,
1650 				  &dev->class->p->subsys.kobj,
1651 				  "subsystem");
1652 	if (error)
1653 		goto out_devnode;
1654 
1655 	if (dev->parent && device_is_not_partition(dev)) {
1656 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1657 					  "device");
1658 		if (error)
1659 			goto out_subsys;
1660 	}
1661 
1662 #ifdef CONFIG_BLOCK
1663 	/* /sys/block has directories and does not need symlinks */
1664 	if (sysfs_deprecated && dev->class == &block_class)
1665 		return 0;
1666 #endif
1667 
1668 	/* link in the class directory pointing to the device */
1669 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1670 				  &dev->kobj, dev_name(dev));
1671 	if (error)
1672 		goto out_device;
1673 
1674 	return 0;
1675 
1676 out_device:
1677 	sysfs_remove_link(&dev->kobj, "device");
1678 
1679 out_subsys:
1680 	sysfs_remove_link(&dev->kobj, "subsystem");
1681 out_devnode:
1682 	sysfs_remove_link(&dev->kobj, "of_node");
1683 	return error;
1684 }
1685 
1686 static void device_remove_class_symlinks(struct device *dev)
1687 {
1688 	if (dev_of_node(dev))
1689 		sysfs_remove_link(&dev->kobj, "of_node");
1690 
1691 	if (!dev->class)
1692 		return;
1693 
1694 	if (dev->parent && device_is_not_partition(dev))
1695 		sysfs_remove_link(&dev->kobj, "device");
1696 	sysfs_remove_link(&dev->kobj, "subsystem");
1697 #ifdef CONFIG_BLOCK
1698 	if (sysfs_deprecated && dev->class == &block_class)
1699 		return;
1700 #endif
1701 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1702 }
1703 
1704 /**
1705  * dev_set_name - set a device name
1706  * @dev: device
1707  * @fmt: format string for the device's name
1708  */
1709 int dev_set_name(struct device *dev, const char *fmt, ...)
1710 {
1711 	va_list vargs;
1712 	int err;
1713 
1714 	va_start(vargs, fmt);
1715 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1716 	va_end(vargs);
1717 	return err;
1718 }
1719 EXPORT_SYMBOL_GPL(dev_set_name);
1720 
1721 /**
1722  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1723  * @dev: device
1724  *
1725  * By default we select char/ for new entries.  Setting class->dev_obj
1726  * to NULL prevents an entry from being created.  class->dev_kobj must
1727  * be set (or cleared) before any devices are registered to the class
1728  * otherwise device_create_sys_dev_entry() and
1729  * device_remove_sys_dev_entry() will disagree about the presence of
1730  * the link.
1731  */
1732 static struct kobject *device_to_dev_kobj(struct device *dev)
1733 {
1734 	struct kobject *kobj;
1735 
1736 	if (dev->class)
1737 		kobj = dev->class->dev_kobj;
1738 	else
1739 		kobj = sysfs_dev_char_kobj;
1740 
1741 	return kobj;
1742 }
1743 
1744 static int device_create_sys_dev_entry(struct device *dev)
1745 {
1746 	struct kobject *kobj = device_to_dev_kobj(dev);
1747 	int error = 0;
1748 	char devt_str[15];
1749 
1750 	if (kobj) {
1751 		format_dev_t(devt_str, dev->devt);
1752 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1753 	}
1754 
1755 	return error;
1756 }
1757 
1758 static void device_remove_sys_dev_entry(struct device *dev)
1759 {
1760 	struct kobject *kobj = device_to_dev_kobj(dev);
1761 	char devt_str[15];
1762 
1763 	if (kobj) {
1764 		format_dev_t(devt_str, dev->devt);
1765 		sysfs_remove_link(kobj, devt_str);
1766 	}
1767 }
1768 
1769 int device_private_init(struct device *dev)
1770 {
1771 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1772 	if (!dev->p)
1773 		return -ENOMEM;
1774 	dev->p->device = dev;
1775 	klist_init(&dev->p->klist_children, klist_children_get,
1776 		   klist_children_put);
1777 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1778 	return 0;
1779 }
1780 
1781 /**
1782  * device_add - add device to device hierarchy.
1783  * @dev: device.
1784  *
1785  * This is part 2 of device_register(), though may be called
1786  * separately _iff_ device_initialize() has been called separately.
1787  *
1788  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1789  * to the global and sibling lists for the device, then
1790  * adds it to the other relevant subsystems of the driver model.
1791  *
1792  * Do not call this routine or device_register() more than once for
1793  * any device structure.  The driver model core is not designed to work
1794  * with devices that get unregistered and then spring back to life.
1795  * (Among other things, it's very hard to guarantee that all references
1796  * to the previous incarnation of @dev have been dropped.)  Allocate
1797  * and register a fresh new struct device instead.
1798  *
1799  * NOTE: _Never_ directly free @dev after calling this function, even
1800  * if it returned an error! Always use put_device() to give up your
1801  * reference instead.
1802  */
1803 int device_add(struct device *dev)
1804 {
1805 	struct device *parent;
1806 	struct kobject *kobj;
1807 	struct class_interface *class_intf;
1808 	int error = -EINVAL;
1809 	struct kobject *glue_dir = NULL;
1810 
1811 	dev = get_device(dev);
1812 	if (!dev)
1813 		goto done;
1814 
1815 	if (!dev->p) {
1816 		error = device_private_init(dev);
1817 		if (error)
1818 			goto done;
1819 	}
1820 
1821 	/*
1822 	 * for statically allocated devices, which should all be converted
1823 	 * some day, we need to initialize the name. We prevent reading back
1824 	 * the name, and force the use of dev_name()
1825 	 */
1826 	if (dev->init_name) {
1827 		dev_set_name(dev, "%s", dev->init_name);
1828 		dev->init_name = NULL;
1829 	}
1830 
1831 	/* subsystems can specify simple device enumeration */
1832 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1833 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1834 
1835 	if (!dev_name(dev)) {
1836 		error = -EINVAL;
1837 		goto name_error;
1838 	}
1839 
1840 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1841 
1842 	parent = get_device(dev->parent);
1843 	kobj = get_device_parent(dev, parent);
1844 	if (IS_ERR(kobj)) {
1845 		error = PTR_ERR(kobj);
1846 		goto parent_error;
1847 	}
1848 	if (kobj)
1849 		dev->kobj.parent = kobj;
1850 
1851 	/* use parent numa_node */
1852 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1853 		set_dev_node(dev, dev_to_node(parent));
1854 
1855 	/* first, register with generic layer. */
1856 	/* we require the name to be set before, and pass NULL */
1857 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1858 	if (error) {
1859 		glue_dir = get_glue_dir(dev);
1860 		goto Error;
1861 	}
1862 
1863 	/* notify platform of device entry */
1864 	if (platform_notify)
1865 		platform_notify(dev);
1866 
1867 	error = device_create_file(dev, &dev_attr_uevent);
1868 	if (error)
1869 		goto attrError;
1870 
1871 	error = device_add_class_symlinks(dev);
1872 	if (error)
1873 		goto SymlinkError;
1874 	error = device_add_attrs(dev);
1875 	if (error)
1876 		goto AttrsError;
1877 	error = bus_add_device(dev);
1878 	if (error)
1879 		goto BusError;
1880 	error = dpm_sysfs_add(dev);
1881 	if (error)
1882 		goto DPMError;
1883 	device_pm_add(dev);
1884 
1885 	if (MAJOR(dev->devt)) {
1886 		error = device_create_file(dev, &dev_attr_dev);
1887 		if (error)
1888 			goto DevAttrError;
1889 
1890 		error = device_create_sys_dev_entry(dev);
1891 		if (error)
1892 			goto SysEntryError;
1893 
1894 		devtmpfs_create_node(dev);
1895 	}
1896 
1897 	/* Notify clients of device addition.  This call must come
1898 	 * after dpm_sysfs_add() and before kobject_uevent().
1899 	 */
1900 	if (dev->bus)
1901 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1902 					     BUS_NOTIFY_ADD_DEVICE, dev);
1903 
1904 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1905 	bus_probe_device(dev);
1906 	if (parent)
1907 		klist_add_tail(&dev->p->knode_parent,
1908 			       &parent->p->klist_children);
1909 
1910 	if (dev->class) {
1911 		mutex_lock(&dev->class->p->mutex);
1912 		/* tie the class to the device */
1913 		klist_add_tail(&dev->knode_class,
1914 			       &dev->class->p->klist_devices);
1915 
1916 		/* notify any interfaces that the device is here */
1917 		list_for_each_entry(class_intf,
1918 				    &dev->class->p->interfaces, node)
1919 			if (class_intf->add_dev)
1920 				class_intf->add_dev(dev, class_intf);
1921 		mutex_unlock(&dev->class->p->mutex);
1922 	}
1923 done:
1924 	put_device(dev);
1925 	return error;
1926  SysEntryError:
1927 	if (MAJOR(dev->devt))
1928 		device_remove_file(dev, &dev_attr_dev);
1929  DevAttrError:
1930 	device_pm_remove(dev);
1931 	dpm_sysfs_remove(dev);
1932  DPMError:
1933 	bus_remove_device(dev);
1934  BusError:
1935 	device_remove_attrs(dev);
1936  AttrsError:
1937 	device_remove_class_symlinks(dev);
1938  SymlinkError:
1939 	device_remove_file(dev, &dev_attr_uevent);
1940  attrError:
1941 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1942 	glue_dir = get_glue_dir(dev);
1943 	kobject_del(&dev->kobj);
1944  Error:
1945 	cleanup_glue_dir(dev, glue_dir);
1946 parent_error:
1947 	put_device(parent);
1948 name_error:
1949 	kfree(dev->p);
1950 	dev->p = NULL;
1951 	goto done;
1952 }
1953 EXPORT_SYMBOL_GPL(device_add);
1954 
1955 /**
1956  * device_register - register a device with the system.
1957  * @dev: pointer to the device structure
1958  *
1959  * This happens in two clean steps - initialize the device
1960  * and add it to the system. The two steps can be called
1961  * separately, but this is the easiest and most common.
1962  * I.e. you should only call the two helpers separately if
1963  * have a clearly defined need to use and refcount the device
1964  * before it is added to the hierarchy.
1965  *
1966  * For more information, see the kerneldoc for device_initialize()
1967  * and device_add().
1968  *
1969  * NOTE: _Never_ directly free @dev after calling this function, even
1970  * if it returned an error! Always use put_device() to give up the
1971  * reference initialized in this function instead.
1972  */
1973 int device_register(struct device *dev)
1974 {
1975 	device_initialize(dev);
1976 	return device_add(dev);
1977 }
1978 EXPORT_SYMBOL_GPL(device_register);
1979 
1980 /**
1981  * get_device - increment reference count for device.
1982  * @dev: device.
1983  *
1984  * This simply forwards the call to kobject_get(), though
1985  * we do take care to provide for the case that we get a NULL
1986  * pointer passed in.
1987  */
1988 struct device *get_device(struct device *dev)
1989 {
1990 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1991 }
1992 EXPORT_SYMBOL_GPL(get_device);
1993 
1994 /**
1995  * put_device - decrement reference count.
1996  * @dev: device in question.
1997  */
1998 void put_device(struct device *dev)
1999 {
2000 	/* might_sleep(); */
2001 	if (dev)
2002 		kobject_put(&dev->kobj);
2003 }
2004 EXPORT_SYMBOL_GPL(put_device);
2005 
2006 /**
2007  * device_del - delete device from system.
2008  * @dev: device.
2009  *
2010  * This is the first part of the device unregistration
2011  * sequence. This removes the device from the lists we control
2012  * from here, has it removed from the other driver model
2013  * subsystems it was added to in device_add(), and removes it
2014  * from the kobject hierarchy.
2015  *
2016  * NOTE: this should be called manually _iff_ device_add() was
2017  * also called manually.
2018  */
2019 void device_del(struct device *dev)
2020 {
2021 	struct device *parent = dev->parent;
2022 	struct kobject *glue_dir = NULL;
2023 	struct class_interface *class_intf;
2024 
2025 	/* Notify clients of device removal.  This call must come
2026 	 * before dpm_sysfs_remove().
2027 	 */
2028 	if (dev->bus)
2029 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2030 					     BUS_NOTIFY_DEL_DEVICE, dev);
2031 
2032 	dpm_sysfs_remove(dev);
2033 	if (parent)
2034 		klist_del(&dev->p->knode_parent);
2035 	if (MAJOR(dev->devt)) {
2036 		devtmpfs_delete_node(dev);
2037 		device_remove_sys_dev_entry(dev);
2038 		device_remove_file(dev, &dev_attr_dev);
2039 	}
2040 	if (dev->class) {
2041 		device_remove_class_symlinks(dev);
2042 
2043 		mutex_lock(&dev->class->p->mutex);
2044 		/* notify any interfaces that the device is now gone */
2045 		list_for_each_entry(class_intf,
2046 				    &dev->class->p->interfaces, node)
2047 			if (class_intf->remove_dev)
2048 				class_intf->remove_dev(dev, class_intf);
2049 		/* remove the device from the class list */
2050 		klist_del(&dev->knode_class);
2051 		mutex_unlock(&dev->class->p->mutex);
2052 	}
2053 	device_remove_file(dev, &dev_attr_uevent);
2054 	device_remove_attrs(dev);
2055 	bus_remove_device(dev);
2056 	device_pm_remove(dev);
2057 	driver_deferred_probe_del(dev);
2058 	device_remove_properties(dev);
2059 	device_links_purge(dev);
2060 
2061 	/* Notify the platform of the removal, in case they
2062 	 * need to do anything...
2063 	 */
2064 	if (platform_notify_remove)
2065 		platform_notify_remove(dev);
2066 	if (dev->bus)
2067 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2068 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2069 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2070 	glue_dir = get_glue_dir(dev);
2071 	kobject_del(&dev->kobj);
2072 	cleanup_glue_dir(dev, glue_dir);
2073 	put_device(parent);
2074 }
2075 EXPORT_SYMBOL_GPL(device_del);
2076 
2077 /**
2078  * device_unregister - unregister device from system.
2079  * @dev: device going away.
2080  *
2081  * We do this in two parts, like we do device_register(). First,
2082  * we remove it from all the subsystems with device_del(), then
2083  * we decrement the reference count via put_device(). If that
2084  * is the final reference count, the device will be cleaned up
2085  * via device_release() above. Otherwise, the structure will
2086  * stick around until the final reference to the device is dropped.
2087  */
2088 void device_unregister(struct device *dev)
2089 {
2090 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2091 	device_del(dev);
2092 	put_device(dev);
2093 }
2094 EXPORT_SYMBOL_GPL(device_unregister);
2095 
2096 static struct device *prev_device(struct klist_iter *i)
2097 {
2098 	struct klist_node *n = klist_prev(i);
2099 	struct device *dev = NULL;
2100 	struct device_private *p;
2101 
2102 	if (n) {
2103 		p = to_device_private_parent(n);
2104 		dev = p->device;
2105 	}
2106 	return dev;
2107 }
2108 
2109 static struct device *next_device(struct klist_iter *i)
2110 {
2111 	struct klist_node *n = klist_next(i);
2112 	struct device *dev = NULL;
2113 	struct device_private *p;
2114 
2115 	if (n) {
2116 		p = to_device_private_parent(n);
2117 		dev = p->device;
2118 	}
2119 	return dev;
2120 }
2121 
2122 /**
2123  * device_get_devnode - path of device node file
2124  * @dev: device
2125  * @mode: returned file access mode
2126  * @uid: returned file owner
2127  * @gid: returned file group
2128  * @tmp: possibly allocated string
2129  *
2130  * Return the relative path of a possible device node.
2131  * Non-default names may need to allocate a memory to compose
2132  * a name. This memory is returned in tmp and needs to be
2133  * freed by the caller.
2134  */
2135 const char *device_get_devnode(struct device *dev,
2136 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2137 			       const char **tmp)
2138 {
2139 	char *s;
2140 
2141 	*tmp = NULL;
2142 
2143 	/* the device type may provide a specific name */
2144 	if (dev->type && dev->type->devnode)
2145 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2146 	if (*tmp)
2147 		return *tmp;
2148 
2149 	/* the class may provide a specific name */
2150 	if (dev->class && dev->class->devnode)
2151 		*tmp = dev->class->devnode(dev, mode);
2152 	if (*tmp)
2153 		return *tmp;
2154 
2155 	/* return name without allocation, tmp == NULL */
2156 	if (strchr(dev_name(dev), '!') == NULL)
2157 		return dev_name(dev);
2158 
2159 	/* replace '!' in the name with '/' */
2160 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2161 	if (!s)
2162 		return NULL;
2163 	strreplace(s, '!', '/');
2164 	return *tmp = s;
2165 }
2166 
2167 /**
2168  * device_for_each_child - device child iterator.
2169  * @parent: parent struct device.
2170  * @fn: function to be called for each device.
2171  * @data: data for the callback.
2172  *
2173  * Iterate over @parent's child devices, and call @fn for each,
2174  * passing it @data.
2175  *
2176  * We check the return of @fn each time. If it returns anything
2177  * other than 0, we break out and return that value.
2178  */
2179 int device_for_each_child(struct device *parent, void *data,
2180 			  int (*fn)(struct device *dev, void *data))
2181 {
2182 	struct klist_iter i;
2183 	struct device *child;
2184 	int error = 0;
2185 
2186 	if (!parent->p)
2187 		return 0;
2188 
2189 	klist_iter_init(&parent->p->klist_children, &i);
2190 	while (!error && (child = next_device(&i)))
2191 		error = fn(child, data);
2192 	klist_iter_exit(&i);
2193 	return error;
2194 }
2195 EXPORT_SYMBOL_GPL(device_for_each_child);
2196 
2197 /**
2198  * device_for_each_child_reverse - device child iterator in reversed order.
2199  * @parent: parent struct device.
2200  * @fn: function to be called for each device.
2201  * @data: data for the callback.
2202  *
2203  * Iterate over @parent's child devices, and call @fn for each,
2204  * passing it @data.
2205  *
2206  * We check the return of @fn each time. If it returns anything
2207  * other than 0, we break out and return that value.
2208  */
2209 int device_for_each_child_reverse(struct device *parent, void *data,
2210 				  int (*fn)(struct device *dev, void *data))
2211 {
2212 	struct klist_iter i;
2213 	struct device *child;
2214 	int error = 0;
2215 
2216 	if (!parent->p)
2217 		return 0;
2218 
2219 	klist_iter_init(&parent->p->klist_children, &i);
2220 	while ((child = prev_device(&i)) && !error)
2221 		error = fn(child, data);
2222 	klist_iter_exit(&i);
2223 	return error;
2224 }
2225 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2226 
2227 /**
2228  * device_find_child - device iterator for locating a particular device.
2229  * @parent: parent struct device
2230  * @match: Callback function to check device
2231  * @data: Data to pass to match function
2232  *
2233  * This is similar to the device_for_each_child() function above, but it
2234  * returns a reference to a device that is 'found' for later use, as
2235  * determined by the @match callback.
2236  *
2237  * The callback should return 0 if the device doesn't match and non-zero
2238  * if it does.  If the callback returns non-zero and a reference to the
2239  * current device can be obtained, this function will return to the caller
2240  * and not iterate over any more devices.
2241  *
2242  * NOTE: you will need to drop the reference with put_device() after use.
2243  */
2244 struct device *device_find_child(struct device *parent, void *data,
2245 				 int (*match)(struct device *dev, void *data))
2246 {
2247 	struct klist_iter i;
2248 	struct device *child;
2249 
2250 	if (!parent)
2251 		return NULL;
2252 
2253 	klist_iter_init(&parent->p->klist_children, &i);
2254 	while ((child = next_device(&i)))
2255 		if (match(child, data) && get_device(child))
2256 			break;
2257 	klist_iter_exit(&i);
2258 	return child;
2259 }
2260 EXPORT_SYMBOL_GPL(device_find_child);
2261 
2262 int __init devices_init(void)
2263 {
2264 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2265 	if (!devices_kset)
2266 		return -ENOMEM;
2267 	dev_kobj = kobject_create_and_add("dev", NULL);
2268 	if (!dev_kobj)
2269 		goto dev_kobj_err;
2270 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2271 	if (!sysfs_dev_block_kobj)
2272 		goto block_kobj_err;
2273 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2274 	if (!sysfs_dev_char_kobj)
2275 		goto char_kobj_err;
2276 
2277 	return 0;
2278 
2279  char_kobj_err:
2280 	kobject_put(sysfs_dev_block_kobj);
2281  block_kobj_err:
2282 	kobject_put(dev_kobj);
2283  dev_kobj_err:
2284 	kset_unregister(devices_kset);
2285 	return -ENOMEM;
2286 }
2287 
2288 static int device_check_offline(struct device *dev, void *not_used)
2289 {
2290 	int ret;
2291 
2292 	ret = device_for_each_child(dev, NULL, device_check_offline);
2293 	if (ret)
2294 		return ret;
2295 
2296 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2297 }
2298 
2299 /**
2300  * device_offline - Prepare the device for hot-removal.
2301  * @dev: Device to be put offline.
2302  *
2303  * Execute the device bus type's .offline() callback, if present, to prepare
2304  * the device for a subsequent hot-removal.  If that succeeds, the device must
2305  * not be used until either it is removed or its bus type's .online() callback
2306  * is executed.
2307  *
2308  * Call under device_hotplug_lock.
2309  */
2310 int device_offline(struct device *dev)
2311 {
2312 	int ret;
2313 
2314 	if (dev->offline_disabled)
2315 		return -EPERM;
2316 
2317 	ret = device_for_each_child(dev, NULL, device_check_offline);
2318 	if (ret)
2319 		return ret;
2320 
2321 	device_lock(dev);
2322 	if (device_supports_offline(dev)) {
2323 		if (dev->offline) {
2324 			ret = 1;
2325 		} else {
2326 			ret = dev->bus->offline(dev);
2327 			if (!ret) {
2328 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2329 				dev->offline = true;
2330 			}
2331 		}
2332 	}
2333 	device_unlock(dev);
2334 
2335 	return ret;
2336 }
2337 
2338 /**
2339  * device_online - Put the device back online after successful device_offline().
2340  * @dev: Device to be put back online.
2341  *
2342  * If device_offline() has been successfully executed for @dev, but the device
2343  * has not been removed subsequently, execute its bus type's .online() callback
2344  * to indicate that the device can be used again.
2345  *
2346  * Call under device_hotplug_lock.
2347  */
2348 int device_online(struct device *dev)
2349 {
2350 	int ret = 0;
2351 
2352 	device_lock(dev);
2353 	if (device_supports_offline(dev)) {
2354 		if (dev->offline) {
2355 			ret = dev->bus->online(dev);
2356 			if (!ret) {
2357 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2358 				dev->offline = false;
2359 			}
2360 		} else {
2361 			ret = 1;
2362 		}
2363 	}
2364 	device_unlock(dev);
2365 
2366 	return ret;
2367 }
2368 
2369 struct root_device {
2370 	struct device dev;
2371 	struct module *owner;
2372 };
2373 
2374 static inline struct root_device *to_root_device(struct device *d)
2375 {
2376 	return container_of(d, struct root_device, dev);
2377 }
2378 
2379 static void root_device_release(struct device *dev)
2380 {
2381 	kfree(to_root_device(dev));
2382 }
2383 
2384 /**
2385  * __root_device_register - allocate and register a root device
2386  * @name: root device name
2387  * @owner: owner module of the root device, usually THIS_MODULE
2388  *
2389  * This function allocates a root device and registers it
2390  * using device_register(). In order to free the returned
2391  * device, use root_device_unregister().
2392  *
2393  * Root devices are dummy devices which allow other devices
2394  * to be grouped under /sys/devices. Use this function to
2395  * allocate a root device and then use it as the parent of
2396  * any device which should appear under /sys/devices/{name}
2397  *
2398  * The /sys/devices/{name} directory will also contain a
2399  * 'module' symlink which points to the @owner directory
2400  * in sysfs.
2401  *
2402  * Returns &struct device pointer on success, or ERR_PTR() on error.
2403  *
2404  * Note: You probably want to use root_device_register().
2405  */
2406 struct device *__root_device_register(const char *name, struct module *owner)
2407 {
2408 	struct root_device *root;
2409 	int err = -ENOMEM;
2410 
2411 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2412 	if (!root)
2413 		return ERR_PTR(err);
2414 
2415 	err = dev_set_name(&root->dev, "%s", name);
2416 	if (err) {
2417 		kfree(root);
2418 		return ERR_PTR(err);
2419 	}
2420 
2421 	root->dev.release = root_device_release;
2422 
2423 	err = device_register(&root->dev);
2424 	if (err) {
2425 		put_device(&root->dev);
2426 		return ERR_PTR(err);
2427 	}
2428 
2429 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2430 	if (owner) {
2431 		struct module_kobject *mk = &owner->mkobj;
2432 
2433 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2434 		if (err) {
2435 			device_unregister(&root->dev);
2436 			return ERR_PTR(err);
2437 		}
2438 		root->owner = owner;
2439 	}
2440 #endif
2441 
2442 	return &root->dev;
2443 }
2444 EXPORT_SYMBOL_GPL(__root_device_register);
2445 
2446 /**
2447  * root_device_unregister - unregister and free a root device
2448  * @dev: device going away
2449  *
2450  * This function unregisters and cleans up a device that was created by
2451  * root_device_register().
2452  */
2453 void root_device_unregister(struct device *dev)
2454 {
2455 	struct root_device *root = to_root_device(dev);
2456 
2457 	if (root->owner)
2458 		sysfs_remove_link(&root->dev.kobj, "module");
2459 
2460 	device_unregister(dev);
2461 }
2462 EXPORT_SYMBOL_GPL(root_device_unregister);
2463 
2464 
2465 static void device_create_release(struct device *dev)
2466 {
2467 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2468 	kfree(dev);
2469 }
2470 
2471 static __printf(6, 0) struct device *
2472 device_create_groups_vargs(struct class *class, struct device *parent,
2473 			   dev_t devt, void *drvdata,
2474 			   const struct attribute_group **groups,
2475 			   const char *fmt, va_list args)
2476 {
2477 	struct device *dev = NULL;
2478 	int retval = -ENODEV;
2479 
2480 	if (class == NULL || IS_ERR(class))
2481 		goto error;
2482 
2483 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2484 	if (!dev) {
2485 		retval = -ENOMEM;
2486 		goto error;
2487 	}
2488 
2489 	device_initialize(dev);
2490 	dev->devt = devt;
2491 	dev->class = class;
2492 	dev->parent = parent;
2493 	dev->groups = groups;
2494 	dev->release = device_create_release;
2495 	dev_set_drvdata(dev, drvdata);
2496 
2497 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2498 	if (retval)
2499 		goto error;
2500 
2501 	retval = device_add(dev);
2502 	if (retval)
2503 		goto error;
2504 
2505 	return dev;
2506 
2507 error:
2508 	put_device(dev);
2509 	return ERR_PTR(retval);
2510 }
2511 
2512 /**
2513  * device_create_vargs - creates a device and registers it with sysfs
2514  * @class: pointer to the struct class that this device should be registered to
2515  * @parent: pointer to the parent struct device of this new device, if any
2516  * @devt: the dev_t for the char device to be added
2517  * @drvdata: the data to be added to the device for callbacks
2518  * @fmt: string for the device's name
2519  * @args: va_list for the device's name
2520  *
2521  * This function can be used by char device classes.  A struct device
2522  * will be created in sysfs, registered to the specified class.
2523  *
2524  * A "dev" file will be created, showing the dev_t for the device, if
2525  * the dev_t is not 0,0.
2526  * If a pointer to a parent struct device is passed in, the newly created
2527  * struct device will be a child of that device in sysfs.
2528  * The pointer to the struct device will be returned from the call.
2529  * Any further sysfs files that might be required can be created using this
2530  * pointer.
2531  *
2532  * Returns &struct device pointer on success, or ERR_PTR() on error.
2533  *
2534  * Note: the struct class passed to this function must have previously
2535  * been created with a call to class_create().
2536  */
2537 struct device *device_create_vargs(struct class *class, struct device *parent,
2538 				   dev_t devt, void *drvdata, const char *fmt,
2539 				   va_list args)
2540 {
2541 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2542 					  fmt, args);
2543 }
2544 EXPORT_SYMBOL_GPL(device_create_vargs);
2545 
2546 /**
2547  * device_create - creates a device and registers it with sysfs
2548  * @class: pointer to the struct class that this device should be registered to
2549  * @parent: pointer to the parent struct device of this new device, if any
2550  * @devt: the dev_t for the char device to be added
2551  * @drvdata: the data to be added to the device for callbacks
2552  * @fmt: string for the device's name
2553  *
2554  * This function can be used by char device classes.  A struct device
2555  * will be created in sysfs, registered to the specified class.
2556  *
2557  * A "dev" file will be created, showing the dev_t for the device, if
2558  * the dev_t is not 0,0.
2559  * If a pointer to a parent struct device is passed in, the newly created
2560  * struct device will be a child of that device in sysfs.
2561  * The pointer to the struct device will be returned from the call.
2562  * Any further sysfs files that might be required can be created using this
2563  * pointer.
2564  *
2565  * Returns &struct device pointer on success, or ERR_PTR() on error.
2566  *
2567  * Note: the struct class passed to this function must have previously
2568  * been created with a call to class_create().
2569  */
2570 struct device *device_create(struct class *class, struct device *parent,
2571 			     dev_t devt, void *drvdata, const char *fmt, ...)
2572 {
2573 	va_list vargs;
2574 	struct device *dev;
2575 
2576 	va_start(vargs, fmt);
2577 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2578 	va_end(vargs);
2579 	return dev;
2580 }
2581 EXPORT_SYMBOL_GPL(device_create);
2582 
2583 /**
2584  * device_create_with_groups - creates a device and registers it with sysfs
2585  * @class: pointer to the struct class that this device should be registered to
2586  * @parent: pointer to the parent struct device of this new device, if any
2587  * @devt: the dev_t for the char device to be added
2588  * @drvdata: the data to be added to the device for callbacks
2589  * @groups: NULL-terminated list of attribute groups to be created
2590  * @fmt: string for the device's name
2591  *
2592  * This function can be used by char device classes.  A struct device
2593  * will be created in sysfs, registered to the specified class.
2594  * Additional attributes specified in the groups parameter will also
2595  * be created automatically.
2596  *
2597  * A "dev" file will be created, showing the dev_t for the device, if
2598  * the dev_t is not 0,0.
2599  * If a pointer to a parent struct device is passed in, the newly created
2600  * struct device will be a child of that device in sysfs.
2601  * The pointer to the struct device will be returned from the call.
2602  * Any further sysfs files that might be required can be created using this
2603  * pointer.
2604  *
2605  * Returns &struct device pointer on success, or ERR_PTR() on error.
2606  *
2607  * Note: the struct class passed to this function must have previously
2608  * been created with a call to class_create().
2609  */
2610 struct device *device_create_with_groups(struct class *class,
2611 					 struct device *parent, dev_t devt,
2612 					 void *drvdata,
2613 					 const struct attribute_group **groups,
2614 					 const char *fmt, ...)
2615 {
2616 	va_list vargs;
2617 	struct device *dev;
2618 
2619 	va_start(vargs, fmt);
2620 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2621 					 fmt, vargs);
2622 	va_end(vargs);
2623 	return dev;
2624 }
2625 EXPORT_SYMBOL_GPL(device_create_with_groups);
2626 
2627 static int __match_devt(struct device *dev, const void *data)
2628 {
2629 	const dev_t *devt = data;
2630 
2631 	return dev->devt == *devt;
2632 }
2633 
2634 /**
2635  * device_destroy - removes a device that was created with device_create()
2636  * @class: pointer to the struct class that this device was registered with
2637  * @devt: the dev_t of the device that was previously registered
2638  *
2639  * This call unregisters and cleans up a device that was created with a
2640  * call to device_create().
2641  */
2642 void device_destroy(struct class *class, dev_t devt)
2643 {
2644 	struct device *dev;
2645 
2646 	dev = class_find_device(class, NULL, &devt, __match_devt);
2647 	if (dev) {
2648 		put_device(dev);
2649 		device_unregister(dev);
2650 	}
2651 }
2652 EXPORT_SYMBOL_GPL(device_destroy);
2653 
2654 /**
2655  * device_rename - renames a device
2656  * @dev: the pointer to the struct device to be renamed
2657  * @new_name: the new name of the device
2658  *
2659  * It is the responsibility of the caller to provide mutual
2660  * exclusion between two different calls of device_rename
2661  * on the same device to ensure that new_name is valid and
2662  * won't conflict with other devices.
2663  *
2664  * Note: Don't call this function.  Currently, the networking layer calls this
2665  * function, but that will change.  The following text from Kay Sievers offers
2666  * some insight:
2667  *
2668  * Renaming devices is racy at many levels, symlinks and other stuff are not
2669  * replaced atomically, and you get a "move" uevent, but it's not easy to
2670  * connect the event to the old and new device. Device nodes are not renamed at
2671  * all, there isn't even support for that in the kernel now.
2672  *
2673  * In the meantime, during renaming, your target name might be taken by another
2674  * driver, creating conflicts. Or the old name is taken directly after you
2675  * renamed it -- then you get events for the same DEVPATH, before you even see
2676  * the "move" event. It's just a mess, and nothing new should ever rely on
2677  * kernel device renaming. Besides that, it's not even implemented now for
2678  * other things than (driver-core wise very simple) network devices.
2679  *
2680  * We are currently about to change network renaming in udev to completely
2681  * disallow renaming of devices in the same namespace as the kernel uses,
2682  * because we can't solve the problems properly, that arise with swapping names
2683  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2684  * be allowed to some other name than eth[0-9]*, for the aforementioned
2685  * reasons.
2686  *
2687  * Make up a "real" name in the driver before you register anything, or add
2688  * some other attributes for userspace to find the device, or use udev to add
2689  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2690  * don't even want to get into that and try to implement the missing pieces in
2691  * the core. We really have other pieces to fix in the driver core mess. :)
2692  */
2693 int device_rename(struct device *dev, const char *new_name)
2694 {
2695 	struct kobject *kobj = &dev->kobj;
2696 	char *old_device_name = NULL;
2697 	int error;
2698 
2699 	dev = get_device(dev);
2700 	if (!dev)
2701 		return -EINVAL;
2702 
2703 	dev_dbg(dev, "renaming to %s\n", new_name);
2704 
2705 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2706 	if (!old_device_name) {
2707 		error = -ENOMEM;
2708 		goto out;
2709 	}
2710 
2711 	if (dev->class) {
2712 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2713 					     kobj, old_device_name,
2714 					     new_name, kobject_namespace(kobj));
2715 		if (error)
2716 			goto out;
2717 	}
2718 
2719 	error = kobject_rename(kobj, new_name);
2720 	if (error)
2721 		goto out;
2722 
2723 out:
2724 	put_device(dev);
2725 
2726 	kfree(old_device_name);
2727 
2728 	return error;
2729 }
2730 EXPORT_SYMBOL_GPL(device_rename);
2731 
2732 static int device_move_class_links(struct device *dev,
2733 				   struct device *old_parent,
2734 				   struct device *new_parent)
2735 {
2736 	int error = 0;
2737 
2738 	if (old_parent)
2739 		sysfs_remove_link(&dev->kobj, "device");
2740 	if (new_parent)
2741 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2742 					  "device");
2743 	return error;
2744 }
2745 
2746 /**
2747  * device_move - moves a device to a new parent
2748  * @dev: the pointer to the struct device to be moved
2749  * @new_parent: the new parent of the device (can be NULL)
2750  * @dpm_order: how to reorder the dpm_list
2751  */
2752 int device_move(struct device *dev, struct device *new_parent,
2753 		enum dpm_order dpm_order)
2754 {
2755 	int error;
2756 	struct device *old_parent;
2757 	struct kobject *new_parent_kobj;
2758 
2759 	dev = get_device(dev);
2760 	if (!dev)
2761 		return -EINVAL;
2762 
2763 	device_pm_lock();
2764 	new_parent = get_device(new_parent);
2765 	new_parent_kobj = get_device_parent(dev, new_parent);
2766 	if (IS_ERR(new_parent_kobj)) {
2767 		error = PTR_ERR(new_parent_kobj);
2768 		put_device(new_parent);
2769 		goto out;
2770 	}
2771 
2772 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2773 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2774 	error = kobject_move(&dev->kobj, new_parent_kobj);
2775 	if (error) {
2776 		cleanup_glue_dir(dev, new_parent_kobj);
2777 		put_device(new_parent);
2778 		goto out;
2779 	}
2780 	old_parent = dev->parent;
2781 	dev->parent = new_parent;
2782 	if (old_parent)
2783 		klist_remove(&dev->p->knode_parent);
2784 	if (new_parent) {
2785 		klist_add_tail(&dev->p->knode_parent,
2786 			       &new_parent->p->klist_children);
2787 		set_dev_node(dev, dev_to_node(new_parent));
2788 	}
2789 
2790 	if (dev->class) {
2791 		error = device_move_class_links(dev, old_parent, new_parent);
2792 		if (error) {
2793 			/* We ignore errors on cleanup since we're hosed anyway... */
2794 			device_move_class_links(dev, new_parent, old_parent);
2795 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2796 				if (new_parent)
2797 					klist_remove(&dev->p->knode_parent);
2798 				dev->parent = old_parent;
2799 				if (old_parent) {
2800 					klist_add_tail(&dev->p->knode_parent,
2801 						       &old_parent->p->klist_children);
2802 					set_dev_node(dev, dev_to_node(old_parent));
2803 				}
2804 			}
2805 			cleanup_glue_dir(dev, new_parent_kobj);
2806 			put_device(new_parent);
2807 			goto out;
2808 		}
2809 	}
2810 	switch (dpm_order) {
2811 	case DPM_ORDER_NONE:
2812 		break;
2813 	case DPM_ORDER_DEV_AFTER_PARENT:
2814 		device_pm_move_after(dev, new_parent);
2815 		devices_kset_move_after(dev, new_parent);
2816 		break;
2817 	case DPM_ORDER_PARENT_BEFORE_DEV:
2818 		device_pm_move_before(new_parent, dev);
2819 		devices_kset_move_before(new_parent, dev);
2820 		break;
2821 	case DPM_ORDER_DEV_LAST:
2822 		device_pm_move_last(dev);
2823 		devices_kset_move_last(dev);
2824 		break;
2825 	}
2826 
2827 	put_device(old_parent);
2828 out:
2829 	device_pm_unlock();
2830 	put_device(dev);
2831 	return error;
2832 }
2833 EXPORT_SYMBOL_GPL(device_move);
2834 
2835 /**
2836  * device_shutdown - call ->shutdown() on each device to shutdown.
2837  */
2838 void device_shutdown(void)
2839 {
2840 	struct device *dev, *parent;
2841 
2842 	spin_lock(&devices_kset->list_lock);
2843 	/*
2844 	 * Walk the devices list backward, shutting down each in turn.
2845 	 * Beware that device unplug events may also start pulling
2846 	 * devices offline, even as the system is shutting down.
2847 	 */
2848 	while (!list_empty(&devices_kset->list)) {
2849 		dev = list_entry(devices_kset->list.prev, struct device,
2850 				kobj.entry);
2851 
2852 		/*
2853 		 * hold reference count of device's parent to
2854 		 * prevent it from being freed because parent's
2855 		 * lock is to be held
2856 		 */
2857 		parent = get_device(dev->parent);
2858 		get_device(dev);
2859 		/*
2860 		 * Make sure the device is off the kset list, in the
2861 		 * event that dev->*->shutdown() doesn't remove it.
2862 		 */
2863 		list_del_init(&dev->kobj.entry);
2864 		spin_unlock(&devices_kset->list_lock);
2865 
2866 		/* hold lock to avoid race with probe/release */
2867 		if (parent)
2868 			device_lock(parent);
2869 		device_lock(dev);
2870 
2871 		/* Don't allow any more runtime suspends */
2872 		pm_runtime_get_noresume(dev);
2873 		pm_runtime_barrier(dev);
2874 
2875 		if (dev->class && dev->class->shutdown_pre) {
2876 			if (initcall_debug)
2877 				dev_info(dev, "shutdown_pre\n");
2878 			dev->class->shutdown_pre(dev);
2879 		}
2880 		if (dev->bus && dev->bus->shutdown) {
2881 			if (initcall_debug)
2882 				dev_info(dev, "shutdown\n");
2883 			dev->bus->shutdown(dev);
2884 		} else if (dev->driver && dev->driver->shutdown) {
2885 			if (initcall_debug)
2886 				dev_info(dev, "shutdown\n");
2887 			dev->driver->shutdown(dev);
2888 		}
2889 
2890 		device_unlock(dev);
2891 		if (parent)
2892 			device_unlock(parent);
2893 
2894 		put_device(dev);
2895 		put_device(parent);
2896 
2897 		spin_lock(&devices_kset->list_lock);
2898 	}
2899 	spin_unlock(&devices_kset->list_lock);
2900 }
2901 
2902 /*
2903  * Device logging functions
2904  */
2905 
2906 #ifdef CONFIG_PRINTK
2907 static int
2908 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2909 {
2910 	const char *subsys;
2911 	size_t pos = 0;
2912 
2913 	if (dev->class)
2914 		subsys = dev->class->name;
2915 	else if (dev->bus)
2916 		subsys = dev->bus->name;
2917 	else
2918 		return 0;
2919 
2920 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2921 	if (pos >= hdrlen)
2922 		goto overflow;
2923 
2924 	/*
2925 	 * Add device identifier DEVICE=:
2926 	 *   b12:8         block dev_t
2927 	 *   c127:3        char dev_t
2928 	 *   n8            netdev ifindex
2929 	 *   +sound:card0  subsystem:devname
2930 	 */
2931 	if (MAJOR(dev->devt)) {
2932 		char c;
2933 
2934 		if (strcmp(subsys, "block") == 0)
2935 			c = 'b';
2936 		else
2937 			c = 'c';
2938 		pos++;
2939 		pos += snprintf(hdr + pos, hdrlen - pos,
2940 				"DEVICE=%c%u:%u",
2941 				c, MAJOR(dev->devt), MINOR(dev->devt));
2942 	} else if (strcmp(subsys, "net") == 0) {
2943 		struct net_device *net = to_net_dev(dev);
2944 
2945 		pos++;
2946 		pos += snprintf(hdr + pos, hdrlen - pos,
2947 				"DEVICE=n%u", net->ifindex);
2948 	} else {
2949 		pos++;
2950 		pos += snprintf(hdr + pos, hdrlen - pos,
2951 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2952 	}
2953 
2954 	if (pos >= hdrlen)
2955 		goto overflow;
2956 
2957 	return pos;
2958 
2959 overflow:
2960 	dev_WARN(dev, "device/subsystem name too long");
2961 	return 0;
2962 }
2963 
2964 int dev_vprintk_emit(int level, const struct device *dev,
2965 		     const char *fmt, va_list args)
2966 {
2967 	char hdr[128];
2968 	size_t hdrlen;
2969 
2970 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2971 
2972 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2973 }
2974 EXPORT_SYMBOL(dev_vprintk_emit);
2975 
2976 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2977 {
2978 	va_list args;
2979 	int r;
2980 
2981 	va_start(args, fmt);
2982 
2983 	r = dev_vprintk_emit(level, dev, fmt, args);
2984 
2985 	va_end(args);
2986 
2987 	return r;
2988 }
2989 EXPORT_SYMBOL(dev_printk_emit);
2990 
2991 static void __dev_printk(const char *level, const struct device *dev,
2992 			struct va_format *vaf)
2993 {
2994 	if (dev)
2995 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2996 				dev_driver_string(dev), dev_name(dev), vaf);
2997 	else
2998 		printk("%s(NULL device *): %pV", level, vaf);
2999 }
3000 
3001 void dev_printk(const char *level, const struct device *dev,
3002 		const char *fmt, ...)
3003 {
3004 	struct va_format vaf;
3005 	va_list args;
3006 
3007 	va_start(args, fmt);
3008 
3009 	vaf.fmt = fmt;
3010 	vaf.va = &args;
3011 
3012 	__dev_printk(level, dev, &vaf);
3013 
3014 	va_end(args);
3015 }
3016 EXPORT_SYMBOL(dev_printk);
3017 
3018 #define define_dev_printk_level(func, kern_level)		\
3019 void func(const struct device *dev, const char *fmt, ...)	\
3020 {								\
3021 	struct va_format vaf;					\
3022 	va_list args;						\
3023 								\
3024 	va_start(args, fmt);					\
3025 								\
3026 	vaf.fmt = fmt;						\
3027 	vaf.va = &args;						\
3028 								\
3029 	__dev_printk(kern_level, dev, &vaf);			\
3030 								\
3031 	va_end(args);						\
3032 }								\
3033 EXPORT_SYMBOL(func);
3034 
3035 define_dev_printk_level(dev_emerg, KERN_EMERG);
3036 define_dev_printk_level(dev_alert, KERN_ALERT);
3037 define_dev_printk_level(dev_crit, KERN_CRIT);
3038 define_dev_printk_level(dev_err, KERN_ERR);
3039 define_dev_printk_level(dev_warn, KERN_WARNING);
3040 define_dev_printk_level(dev_notice, KERN_NOTICE);
3041 define_dev_printk_level(_dev_info, KERN_INFO);
3042 
3043 #endif
3044 
3045 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3046 {
3047 	return fwnode && !IS_ERR(fwnode->secondary);
3048 }
3049 
3050 /**
3051  * set_primary_fwnode - Change the primary firmware node of a given device.
3052  * @dev: Device to handle.
3053  * @fwnode: New primary firmware node of the device.
3054  *
3055  * Set the device's firmware node pointer to @fwnode, but if a secondary
3056  * firmware node of the device is present, preserve it.
3057  */
3058 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3059 {
3060 	if (fwnode) {
3061 		struct fwnode_handle *fn = dev->fwnode;
3062 
3063 		if (fwnode_is_primary(fn))
3064 			fn = fn->secondary;
3065 
3066 		if (fn) {
3067 			WARN_ON(fwnode->secondary);
3068 			fwnode->secondary = fn;
3069 		}
3070 		dev->fwnode = fwnode;
3071 	} else {
3072 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3073 			dev->fwnode->secondary : NULL;
3074 	}
3075 }
3076 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3077 
3078 /**
3079  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3080  * @dev: Device to handle.
3081  * @fwnode: New secondary firmware node of the device.
3082  *
3083  * If a primary firmware node of the device is present, set its secondary
3084  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3085  * @fwnode.
3086  */
3087 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3088 {
3089 	if (fwnode)
3090 		fwnode->secondary = ERR_PTR(-ENODEV);
3091 
3092 	if (fwnode_is_primary(dev->fwnode))
3093 		dev->fwnode->secondary = fwnode;
3094 	else
3095 		dev->fwnode = fwnode;
3096 }
3097 
3098 /**
3099  * device_set_of_node_from_dev - reuse device-tree node of another device
3100  * @dev: device whose device-tree node is being set
3101  * @dev2: device whose device-tree node is being reused
3102  *
3103  * Takes another reference to the new device-tree node after first dropping
3104  * any reference held to the old node.
3105  */
3106 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3107 {
3108 	of_node_put(dev->of_node);
3109 	dev->of_node = of_node_get(dev2->of_node);
3110 	dev->of_node_reused = true;
3111 }
3112 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3113