1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * @flags: Link flags. 53 * 54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 55 * represents the detail that the firmware lists @sup fwnode as supplying a 56 * resource to @con. 57 * 58 * The driver core will use the fwnode link to create a device link between the 59 * two device objects corresponding to @con and @sup when they are created. The 60 * driver core will automatically delete the fwnode link between @con and @sup 61 * after doing that. 62 * 63 * Attempts to create duplicate links between the same pair of fwnode handles 64 * are ignored and there is no reference counting. 65 */ 66 static int __fwnode_link_add(struct fwnode_handle *con, 67 struct fwnode_handle *sup, u8 flags) 68 { 69 struct fwnode_link *link; 70 71 list_for_each_entry(link, &sup->consumers, s_hook) 72 if (link->consumer == con) { 73 link->flags |= flags; 74 return 0; 75 } 76 77 link = kzalloc(sizeof(*link), GFP_KERNEL); 78 if (!link) 79 return -ENOMEM; 80 81 link->supplier = sup; 82 INIT_LIST_HEAD(&link->s_hook); 83 link->consumer = con; 84 INIT_LIST_HEAD(&link->c_hook); 85 link->flags = flags; 86 87 list_add(&link->s_hook, &sup->consumers); 88 list_add(&link->c_hook, &con->suppliers); 89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 90 con, sup); 91 92 return 0; 93 } 94 95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 96 { 97 int ret; 98 99 mutex_lock(&fwnode_link_lock); 100 ret = __fwnode_link_add(con, sup, 0); 101 mutex_unlock(&fwnode_link_lock); 102 return ret; 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: Relaxing link with %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 mutex_lock(&fwnode_link_lock); 144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 145 __fwnode_link_del(link); 146 mutex_unlock(&fwnode_link_lock); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 mutex_lock(&fwnode_link_lock); 160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 161 __fwnode_link_del(link); 162 mutex_unlock(&fwnode_link_lock); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 static inline bool device_link_flag_is_sync_state_only(u32 flags) 288 { 289 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) == 290 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED); 291 } 292 293 /** 294 * device_is_dependent - Check if one device depends on another one 295 * @dev: Device to check dependencies for. 296 * @target: Device to check against. 297 * 298 * Check if @target depends on @dev or any device dependent on it (its child or 299 * its consumer etc). Return 1 if that is the case or 0 otherwise. 300 */ 301 static int device_is_dependent(struct device *dev, void *target) 302 { 303 struct device_link *link; 304 int ret; 305 306 /* 307 * The "ancestors" check is needed to catch the case when the target 308 * device has not been completely initialized yet and it is still 309 * missing from the list of children of its parent device. 310 */ 311 if (dev == target || device_is_ancestor(dev, target)) 312 return 1; 313 314 ret = device_for_each_child(dev, target, device_is_dependent); 315 if (ret) 316 return ret; 317 318 list_for_each_entry(link, &dev->links.consumers, s_node) { 319 if (device_link_flag_is_sync_state_only(link->flags)) 320 continue; 321 322 if (link->consumer == target) 323 return 1; 324 325 ret = device_is_dependent(link->consumer, target); 326 if (ret) 327 break; 328 } 329 return ret; 330 } 331 332 static void device_link_init_status(struct device_link *link, 333 struct device *consumer, 334 struct device *supplier) 335 { 336 switch (supplier->links.status) { 337 case DL_DEV_PROBING: 338 switch (consumer->links.status) { 339 case DL_DEV_PROBING: 340 /* 341 * A consumer driver can create a link to a supplier 342 * that has not completed its probing yet as long as it 343 * knows that the supplier is already functional (for 344 * example, it has just acquired some resources from the 345 * supplier). 346 */ 347 link->status = DL_STATE_CONSUMER_PROBE; 348 break; 349 default: 350 link->status = DL_STATE_DORMANT; 351 break; 352 } 353 break; 354 case DL_DEV_DRIVER_BOUND: 355 switch (consumer->links.status) { 356 case DL_DEV_PROBING: 357 link->status = DL_STATE_CONSUMER_PROBE; 358 break; 359 case DL_DEV_DRIVER_BOUND: 360 link->status = DL_STATE_ACTIVE; 361 break; 362 default: 363 link->status = DL_STATE_AVAILABLE; 364 break; 365 } 366 break; 367 case DL_DEV_UNBINDING: 368 link->status = DL_STATE_SUPPLIER_UNBIND; 369 break; 370 default: 371 link->status = DL_STATE_DORMANT; 372 break; 373 } 374 } 375 376 static int device_reorder_to_tail(struct device *dev, void *not_used) 377 { 378 struct device_link *link; 379 380 /* 381 * Devices that have not been registered yet will be put to the ends 382 * of the lists during the registration, so skip them here. 383 */ 384 if (device_is_registered(dev)) 385 devices_kset_move_last(dev); 386 387 if (device_pm_initialized(dev)) 388 device_pm_move_last(dev); 389 390 device_for_each_child(dev, NULL, device_reorder_to_tail); 391 list_for_each_entry(link, &dev->links.consumers, s_node) { 392 if (device_link_flag_is_sync_state_only(link->flags)) 393 continue; 394 device_reorder_to_tail(link->consumer, NULL); 395 } 396 397 return 0; 398 } 399 400 /** 401 * device_pm_move_to_tail - Move set of devices to the end of device lists 402 * @dev: Device to move 403 * 404 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 405 * 406 * It moves the @dev along with all of its children and all of its consumers 407 * to the ends of the device_kset and dpm_list, recursively. 408 */ 409 void device_pm_move_to_tail(struct device *dev) 410 { 411 int idx; 412 413 idx = device_links_read_lock(); 414 device_pm_lock(); 415 device_reorder_to_tail(dev, NULL); 416 device_pm_unlock(); 417 device_links_read_unlock(idx); 418 } 419 420 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 421 422 static ssize_t status_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 const char *output; 426 427 switch (to_devlink(dev)->status) { 428 case DL_STATE_NONE: 429 output = "not tracked"; 430 break; 431 case DL_STATE_DORMANT: 432 output = "dormant"; 433 break; 434 case DL_STATE_AVAILABLE: 435 output = "available"; 436 break; 437 case DL_STATE_CONSUMER_PROBE: 438 output = "consumer probing"; 439 break; 440 case DL_STATE_ACTIVE: 441 output = "active"; 442 break; 443 case DL_STATE_SUPPLIER_UNBIND: 444 output = "supplier unbinding"; 445 break; 446 default: 447 output = "unknown"; 448 break; 449 } 450 451 return sysfs_emit(buf, "%s\n", output); 452 } 453 static DEVICE_ATTR_RO(status); 454 455 static ssize_t auto_remove_on_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct device_link *link = to_devlink(dev); 459 const char *output; 460 461 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 462 output = "supplier unbind"; 463 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 464 output = "consumer unbind"; 465 else 466 output = "never"; 467 468 return sysfs_emit(buf, "%s\n", output); 469 } 470 static DEVICE_ATTR_RO(auto_remove_on); 471 472 static ssize_t runtime_pm_show(struct device *dev, 473 struct device_attribute *attr, char *buf) 474 { 475 struct device_link *link = to_devlink(dev); 476 477 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 478 } 479 static DEVICE_ATTR_RO(runtime_pm); 480 481 static ssize_t sync_state_only_show(struct device *dev, 482 struct device_attribute *attr, char *buf) 483 { 484 struct device_link *link = to_devlink(dev); 485 486 return sysfs_emit(buf, "%d\n", 487 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 488 } 489 static DEVICE_ATTR_RO(sync_state_only); 490 491 static struct attribute *devlink_attrs[] = { 492 &dev_attr_status.attr, 493 &dev_attr_auto_remove_on.attr, 494 &dev_attr_runtime_pm.attr, 495 &dev_attr_sync_state_only.attr, 496 NULL, 497 }; 498 ATTRIBUTE_GROUPS(devlink); 499 500 static void device_link_release_fn(struct work_struct *work) 501 { 502 struct device_link *link = container_of(work, struct device_link, rm_work); 503 504 /* Ensure that all references to the link object have been dropped. */ 505 device_link_synchronize_removal(); 506 507 pm_runtime_release_supplier(link); 508 /* 509 * If supplier_preactivated is set, the link has been dropped between 510 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 511 * in __driver_probe_device(). In that case, drop the supplier's 512 * PM-runtime usage counter to remove the reference taken by 513 * pm_runtime_get_suppliers(). 514 */ 515 if (link->supplier_preactivated) 516 pm_runtime_put_noidle(link->supplier); 517 518 pm_request_idle(link->supplier); 519 520 put_device(link->consumer); 521 put_device(link->supplier); 522 kfree(link); 523 } 524 525 static void devlink_dev_release(struct device *dev) 526 { 527 struct device_link *link = to_devlink(dev); 528 529 INIT_WORK(&link->rm_work, device_link_release_fn); 530 /* 531 * It may take a while to complete this work because of the SRCU 532 * synchronization in device_link_release_fn() and if the consumer or 533 * supplier devices get deleted when it runs, so put it into the "long" 534 * workqueue. 535 */ 536 queue_work(system_long_wq, &link->rm_work); 537 } 538 539 static struct class devlink_class = { 540 .name = "devlink", 541 .dev_groups = devlink_groups, 542 .dev_release = devlink_dev_release, 543 }; 544 545 static int devlink_add_symlinks(struct device *dev) 546 { 547 int ret; 548 size_t len; 549 struct device_link *link = to_devlink(dev); 550 struct device *sup = link->supplier; 551 struct device *con = link->consumer; 552 char *buf; 553 554 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 555 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 556 len += strlen(":"); 557 len += strlen("supplier:") + 1; 558 buf = kzalloc(len, GFP_KERNEL); 559 if (!buf) 560 return -ENOMEM; 561 562 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 563 if (ret) 564 goto out; 565 566 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 567 if (ret) 568 goto err_con; 569 570 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 571 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 572 if (ret) 573 goto err_con_dev; 574 575 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 576 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 577 if (ret) 578 goto err_sup_dev; 579 580 goto out; 581 582 err_sup_dev: 583 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 584 sysfs_remove_link(&sup->kobj, buf); 585 err_con_dev: 586 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 587 err_con: 588 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 589 out: 590 kfree(buf); 591 return ret; 592 } 593 594 static void devlink_remove_symlinks(struct device *dev) 595 { 596 struct device_link *link = to_devlink(dev); 597 size_t len; 598 struct device *sup = link->supplier; 599 struct device *con = link->consumer; 600 char *buf; 601 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 604 605 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 606 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 607 len += strlen(":"); 608 len += strlen("supplier:") + 1; 609 buf = kzalloc(len, GFP_KERNEL); 610 if (!buf) { 611 WARN(1, "Unable to properly free device link symlinks!\n"); 612 return; 613 } 614 615 if (device_is_registered(con)) { 616 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 617 sysfs_remove_link(&con->kobj, buf); 618 } 619 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 620 sysfs_remove_link(&sup->kobj, buf); 621 kfree(buf); 622 } 623 624 static struct class_interface devlink_class_intf = { 625 .class = &devlink_class, 626 .add_dev = devlink_add_symlinks, 627 .remove_dev = devlink_remove_symlinks, 628 }; 629 630 static int __init devlink_class_init(void) 631 { 632 int ret; 633 634 ret = class_register(&devlink_class); 635 if (ret) 636 return ret; 637 638 ret = class_interface_register(&devlink_class_intf); 639 if (ret) 640 class_unregister(&devlink_class); 641 642 return ret; 643 } 644 postcore_initcall(devlink_class_init); 645 646 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 647 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 648 DL_FLAG_AUTOPROBE_CONSUMER | \ 649 DL_FLAG_SYNC_STATE_ONLY | \ 650 DL_FLAG_INFERRED | \ 651 DL_FLAG_CYCLE) 652 653 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 654 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 655 656 /** 657 * device_link_add - Create a link between two devices. 658 * @consumer: Consumer end of the link. 659 * @supplier: Supplier end of the link. 660 * @flags: Link flags. 661 * 662 * The caller is responsible for the proper synchronization of the link creation 663 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 664 * runtime PM framework to take the link into account. Second, if the 665 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 666 * be forced into the active meta state and reference-counted upon the creation 667 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 668 * ignored. 669 * 670 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 671 * expected to release the link returned by it directly with the help of either 672 * device_link_del() or device_link_remove(). 673 * 674 * If that flag is not set, however, the caller of this function is handing the 675 * management of the link over to the driver core entirely and its return value 676 * can only be used to check whether or not the link is present. In that case, 677 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 678 * flags can be used to indicate to the driver core when the link can be safely 679 * deleted. Namely, setting one of them in @flags indicates to the driver core 680 * that the link is not going to be used (by the given caller of this function) 681 * after unbinding the consumer or supplier driver, respectively, from its 682 * device, so the link can be deleted at that point. If none of them is set, 683 * the link will be maintained until one of the devices pointed to by it (either 684 * the consumer or the supplier) is unregistered. 685 * 686 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 687 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 688 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 689 * be used to request the driver core to automatically probe for a consumer 690 * driver after successfully binding a driver to the supplier device. 691 * 692 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 693 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 694 * the same time is invalid and will cause NULL to be returned upfront. 695 * However, if a device link between the given @consumer and @supplier pair 696 * exists already when this function is called for them, the existing link will 697 * be returned regardless of its current type and status (the link's flags may 698 * be modified then). The caller of this function is then expected to treat 699 * the link as though it has just been created, so (in particular) if 700 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 701 * explicitly when not needed any more (as stated above). 702 * 703 * A side effect of the link creation is re-ordering of dpm_list and the 704 * devices_kset list by moving the consumer device and all devices depending 705 * on it to the ends of these lists (that does not happen to devices that have 706 * not been registered when this function is called). 707 * 708 * The supplier device is required to be registered when this function is called 709 * and NULL will be returned if that is not the case. The consumer device need 710 * not be registered, however. 711 */ 712 struct device_link *device_link_add(struct device *consumer, 713 struct device *supplier, u32 flags) 714 { 715 struct device_link *link; 716 717 if (!consumer || !supplier || consumer == supplier || 718 flags & ~DL_ADD_VALID_FLAGS || 719 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 720 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 721 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 722 DL_FLAG_AUTOREMOVE_SUPPLIER))) 723 return NULL; 724 725 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 726 if (pm_runtime_get_sync(supplier) < 0) { 727 pm_runtime_put_noidle(supplier); 728 return NULL; 729 } 730 } 731 732 if (!(flags & DL_FLAG_STATELESS)) 733 flags |= DL_FLAG_MANAGED; 734 735 if (flags & DL_FLAG_SYNC_STATE_ONLY && 736 !device_link_flag_is_sync_state_only(flags)) 737 return NULL; 738 739 device_links_write_lock(); 740 device_pm_lock(); 741 742 /* 743 * If the supplier has not been fully registered yet or there is a 744 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 745 * the supplier already in the graph, return NULL. If the link is a 746 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 747 * because it only affects sync_state() callbacks. 748 */ 749 if (!device_pm_initialized(supplier) 750 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 751 device_is_dependent(consumer, supplier))) { 752 link = NULL; 753 goto out; 754 } 755 756 /* 757 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 758 * So, only create it if the consumer hasn't probed yet. 759 */ 760 if (flags & DL_FLAG_SYNC_STATE_ONLY && 761 consumer->links.status != DL_DEV_NO_DRIVER && 762 consumer->links.status != DL_DEV_PROBING) { 763 link = NULL; 764 goto out; 765 } 766 767 /* 768 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 769 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 770 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 771 */ 772 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 773 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 774 775 list_for_each_entry(link, &supplier->links.consumers, s_node) { 776 if (link->consumer != consumer) 777 continue; 778 779 if (link->flags & DL_FLAG_INFERRED && 780 !(flags & DL_FLAG_INFERRED)) 781 link->flags &= ~DL_FLAG_INFERRED; 782 783 if (flags & DL_FLAG_PM_RUNTIME) { 784 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 785 pm_runtime_new_link(consumer); 786 link->flags |= DL_FLAG_PM_RUNTIME; 787 } 788 if (flags & DL_FLAG_RPM_ACTIVE) 789 refcount_inc(&link->rpm_active); 790 } 791 792 if (flags & DL_FLAG_STATELESS) { 793 kref_get(&link->kref); 794 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 795 !(link->flags & DL_FLAG_STATELESS)) { 796 link->flags |= DL_FLAG_STATELESS; 797 goto reorder; 798 } else { 799 link->flags |= DL_FLAG_STATELESS; 800 goto out; 801 } 802 } 803 804 /* 805 * If the life time of the link following from the new flags is 806 * longer than indicated by the flags of the existing link, 807 * update the existing link to stay around longer. 808 */ 809 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 810 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 811 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 812 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 813 } 814 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 815 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 816 DL_FLAG_AUTOREMOVE_SUPPLIER); 817 } 818 if (!(link->flags & DL_FLAG_MANAGED)) { 819 kref_get(&link->kref); 820 link->flags |= DL_FLAG_MANAGED; 821 device_link_init_status(link, consumer, supplier); 822 } 823 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 824 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 825 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 826 goto reorder; 827 } 828 829 goto out; 830 } 831 832 link = kzalloc(sizeof(*link), GFP_KERNEL); 833 if (!link) 834 goto out; 835 836 refcount_set(&link->rpm_active, 1); 837 838 get_device(supplier); 839 link->supplier = supplier; 840 INIT_LIST_HEAD(&link->s_node); 841 get_device(consumer); 842 link->consumer = consumer; 843 INIT_LIST_HEAD(&link->c_node); 844 link->flags = flags; 845 kref_init(&link->kref); 846 847 link->link_dev.class = &devlink_class; 848 device_set_pm_not_required(&link->link_dev); 849 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 850 dev_bus_name(supplier), dev_name(supplier), 851 dev_bus_name(consumer), dev_name(consumer)); 852 if (device_register(&link->link_dev)) { 853 put_device(&link->link_dev); 854 link = NULL; 855 goto out; 856 } 857 858 if (flags & DL_FLAG_PM_RUNTIME) { 859 if (flags & DL_FLAG_RPM_ACTIVE) 860 refcount_inc(&link->rpm_active); 861 862 pm_runtime_new_link(consumer); 863 } 864 865 /* Determine the initial link state. */ 866 if (flags & DL_FLAG_STATELESS) 867 link->status = DL_STATE_NONE; 868 else 869 device_link_init_status(link, consumer, supplier); 870 871 /* 872 * Some callers expect the link creation during consumer driver probe to 873 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 874 */ 875 if (link->status == DL_STATE_CONSUMER_PROBE && 876 flags & DL_FLAG_PM_RUNTIME) 877 pm_runtime_resume(supplier); 878 879 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 880 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 881 882 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 883 dev_dbg(consumer, 884 "Linked as a sync state only consumer to %s\n", 885 dev_name(supplier)); 886 goto out; 887 } 888 889 reorder: 890 /* 891 * Move the consumer and all of the devices depending on it to the end 892 * of dpm_list and the devices_kset list. 893 * 894 * It is necessary to hold dpm_list locked throughout all that or else 895 * we may end up suspending with a wrong ordering of it. 896 */ 897 device_reorder_to_tail(consumer, NULL); 898 899 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 900 901 out: 902 device_pm_unlock(); 903 device_links_write_unlock(); 904 905 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 906 pm_runtime_put(supplier); 907 908 return link; 909 } 910 EXPORT_SYMBOL_GPL(device_link_add); 911 912 static void __device_link_del(struct kref *kref) 913 { 914 struct device_link *link = container_of(kref, struct device_link, kref); 915 916 dev_dbg(link->consumer, "Dropping the link to %s\n", 917 dev_name(link->supplier)); 918 919 pm_runtime_drop_link(link); 920 921 device_link_remove_from_lists(link); 922 device_unregister(&link->link_dev); 923 } 924 925 static void device_link_put_kref(struct device_link *link) 926 { 927 if (link->flags & DL_FLAG_STATELESS) 928 kref_put(&link->kref, __device_link_del); 929 else if (!device_is_registered(link->consumer)) 930 __device_link_del(&link->kref); 931 else 932 WARN(1, "Unable to drop a managed device link reference\n"); 933 } 934 935 /** 936 * device_link_del - Delete a stateless link between two devices. 937 * @link: Device link to delete. 938 * 939 * The caller must ensure proper synchronization of this function with runtime 940 * PM. If the link was added multiple times, it needs to be deleted as often. 941 * Care is required for hotplugged devices: Their links are purged on removal 942 * and calling device_link_del() is then no longer allowed. 943 */ 944 void device_link_del(struct device_link *link) 945 { 946 device_links_write_lock(); 947 device_link_put_kref(link); 948 device_links_write_unlock(); 949 } 950 EXPORT_SYMBOL_GPL(device_link_del); 951 952 /** 953 * device_link_remove - Delete a stateless link between two devices. 954 * @consumer: Consumer end of the link. 955 * @supplier: Supplier end of the link. 956 * 957 * The caller must ensure proper synchronization of this function with runtime 958 * PM. 959 */ 960 void device_link_remove(void *consumer, struct device *supplier) 961 { 962 struct device_link *link; 963 964 if (WARN_ON(consumer == supplier)) 965 return; 966 967 device_links_write_lock(); 968 969 list_for_each_entry(link, &supplier->links.consumers, s_node) { 970 if (link->consumer == consumer) { 971 device_link_put_kref(link); 972 break; 973 } 974 } 975 976 device_links_write_unlock(); 977 } 978 EXPORT_SYMBOL_GPL(device_link_remove); 979 980 static void device_links_missing_supplier(struct device *dev) 981 { 982 struct device_link *link; 983 984 list_for_each_entry(link, &dev->links.suppliers, c_node) { 985 if (link->status != DL_STATE_CONSUMER_PROBE) 986 continue; 987 988 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 989 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 990 } else { 991 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 992 WRITE_ONCE(link->status, DL_STATE_DORMANT); 993 } 994 } 995 } 996 997 static bool dev_is_best_effort(struct device *dev) 998 { 999 return (fw_devlink_best_effort && dev->can_match) || 1000 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1001 } 1002 1003 static struct fwnode_handle *fwnode_links_check_suppliers( 1004 struct fwnode_handle *fwnode) 1005 { 1006 struct fwnode_link *link; 1007 1008 if (!fwnode || fw_devlink_is_permissive()) 1009 return NULL; 1010 1011 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1012 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1013 return link->supplier; 1014 1015 return NULL; 1016 } 1017 1018 /** 1019 * device_links_check_suppliers - Check presence of supplier drivers. 1020 * @dev: Consumer device. 1021 * 1022 * Check links from this device to any suppliers. Walk the list of the device's 1023 * links to suppliers and see if all of them are available. If not, simply 1024 * return -EPROBE_DEFER. 1025 * 1026 * We need to guarantee that the supplier will not go away after the check has 1027 * been positive here. It only can go away in __device_release_driver() and 1028 * that function checks the device's links to consumers. This means we need to 1029 * mark the link as "consumer probe in progress" to make the supplier removal 1030 * wait for us to complete (or bad things may happen). 1031 * 1032 * Links without the DL_FLAG_MANAGED flag set are ignored. 1033 */ 1034 int device_links_check_suppliers(struct device *dev) 1035 { 1036 struct device_link *link; 1037 int ret = 0, fwnode_ret = 0; 1038 struct fwnode_handle *sup_fw; 1039 1040 /* 1041 * Device waiting for supplier to become available is not allowed to 1042 * probe. 1043 */ 1044 mutex_lock(&fwnode_link_lock); 1045 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1046 if (sup_fw) { 1047 if (!dev_is_best_effort(dev)) { 1048 fwnode_ret = -EPROBE_DEFER; 1049 dev_err_probe(dev, -EPROBE_DEFER, 1050 "wait for supplier %pfwf\n", sup_fw); 1051 } else { 1052 fwnode_ret = -EAGAIN; 1053 } 1054 } 1055 mutex_unlock(&fwnode_link_lock); 1056 if (fwnode_ret == -EPROBE_DEFER) 1057 return fwnode_ret; 1058 1059 device_links_write_lock(); 1060 1061 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1062 if (!(link->flags & DL_FLAG_MANAGED)) 1063 continue; 1064 1065 if (link->status != DL_STATE_AVAILABLE && 1066 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1067 1068 if (dev_is_best_effort(dev) && 1069 link->flags & DL_FLAG_INFERRED && 1070 !link->supplier->can_match) { 1071 ret = -EAGAIN; 1072 continue; 1073 } 1074 1075 device_links_missing_supplier(dev); 1076 dev_err_probe(dev, -EPROBE_DEFER, 1077 "supplier %s not ready\n", 1078 dev_name(link->supplier)); 1079 ret = -EPROBE_DEFER; 1080 break; 1081 } 1082 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1083 } 1084 dev->links.status = DL_DEV_PROBING; 1085 1086 device_links_write_unlock(); 1087 1088 return ret ? ret : fwnode_ret; 1089 } 1090 1091 /** 1092 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1093 * @dev: Device to call sync_state() on 1094 * @list: List head to queue the @dev on 1095 * 1096 * Queues a device for a sync_state() callback when the device links write lock 1097 * isn't held. This allows the sync_state() execution flow to use device links 1098 * APIs. The caller must ensure this function is called with 1099 * device_links_write_lock() held. 1100 * 1101 * This function does a get_device() to make sure the device is not freed while 1102 * on this list. 1103 * 1104 * So the caller must also ensure that device_links_flush_sync_list() is called 1105 * as soon as the caller releases device_links_write_lock(). This is necessary 1106 * to make sure the sync_state() is called in a timely fashion and the 1107 * put_device() is called on this device. 1108 */ 1109 static void __device_links_queue_sync_state(struct device *dev, 1110 struct list_head *list) 1111 { 1112 struct device_link *link; 1113 1114 if (!dev_has_sync_state(dev)) 1115 return; 1116 if (dev->state_synced) 1117 return; 1118 1119 list_for_each_entry(link, &dev->links.consumers, s_node) { 1120 if (!(link->flags & DL_FLAG_MANAGED)) 1121 continue; 1122 if (link->status != DL_STATE_ACTIVE) 1123 return; 1124 } 1125 1126 /* 1127 * Set the flag here to avoid adding the same device to a list more 1128 * than once. This can happen if new consumers get added to the device 1129 * and probed before the list is flushed. 1130 */ 1131 dev->state_synced = true; 1132 1133 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1134 return; 1135 1136 get_device(dev); 1137 list_add_tail(&dev->links.defer_sync, list); 1138 } 1139 1140 /** 1141 * device_links_flush_sync_list - Call sync_state() on a list of devices 1142 * @list: List of devices to call sync_state() on 1143 * @dont_lock_dev: Device for which lock is already held by the caller 1144 * 1145 * Calls sync_state() on all the devices that have been queued for it. This 1146 * function is used in conjunction with __device_links_queue_sync_state(). The 1147 * @dont_lock_dev parameter is useful when this function is called from a 1148 * context where a device lock is already held. 1149 */ 1150 static void device_links_flush_sync_list(struct list_head *list, 1151 struct device *dont_lock_dev) 1152 { 1153 struct device *dev, *tmp; 1154 1155 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1156 list_del_init(&dev->links.defer_sync); 1157 1158 if (dev != dont_lock_dev) 1159 device_lock(dev); 1160 1161 dev_sync_state(dev); 1162 1163 if (dev != dont_lock_dev) 1164 device_unlock(dev); 1165 1166 put_device(dev); 1167 } 1168 } 1169 1170 void device_links_supplier_sync_state_pause(void) 1171 { 1172 device_links_write_lock(); 1173 defer_sync_state_count++; 1174 device_links_write_unlock(); 1175 } 1176 1177 void device_links_supplier_sync_state_resume(void) 1178 { 1179 struct device *dev, *tmp; 1180 LIST_HEAD(sync_list); 1181 1182 device_links_write_lock(); 1183 if (!defer_sync_state_count) { 1184 WARN(true, "Unmatched sync_state pause/resume!"); 1185 goto out; 1186 } 1187 defer_sync_state_count--; 1188 if (defer_sync_state_count) 1189 goto out; 1190 1191 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1192 /* 1193 * Delete from deferred_sync list before queuing it to 1194 * sync_list because defer_sync is used for both lists. 1195 */ 1196 list_del_init(&dev->links.defer_sync); 1197 __device_links_queue_sync_state(dev, &sync_list); 1198 } 1199 out: 1200 device_links_write_unlock(); 1201 1202 device_links_flush_sync_list(&sync_list, NULL); 1203 } 1204 1205 static int sync_state_resume_initcall(void) 1206 { 1207 device_links_supplier_sync_state_resume(); 1208 return 0; 1209 } 1210 late_initcall(sync_state_resume_initcall); 1211 1212 static void __device_links_supplier_defer_sync(struct device *sup) 1213 { 1214 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1215 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1216 } 1217 1218 static void device_link_drop_managed(struct device_link *link) 1219 { 1220 link->flags &= ~DL_FLAG_MANAGED; 1221 WRITE_ONCE(link->status, DL_STATE_NONE); 1222 kref_put(&link->kref, __device_link_del); 1223 } 1224 1225 static ssize_t waiting_for_supplier_show(struct device *dev, 1226 struct device_attribute *attr, 1227 char *buf) 1228 { 1229 bool val; 1230 1231 device_lock(dev); 1232 mutex_lock(&fwnode_link_lock); 1233 val = !!fwnode_links_check_suppliers(dev->fwnode); 1234 mutex_unlock(&fwnode_link_lock); 1235 device_unlock(dev); 1236 return sysfs_emit(buf, "%u\n", val); 1237 } 1238 static DEVICE_ATTR_RO(waiting_for_supplier); 1239 1240 /** 1241 * device_links_force_bind - Prepares device to be force bound 1242 * @dev: Consumer device. 1243 * 1244 * device_bind_driver() force binds a device to a driver without calling any 1245 * driver probe functions. So the consumer really isn't going to wait for any 1246 * supplier before it's bound to the driver. We still want the device link 1247 * states to be sensible when this happens. 1248 * 1249 * In preparation for device_bind_driver(), this function goes through each 1250 * supplier device links and checks if the supplier is bound. If it is, then 1251 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1252 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1253 */ 1254 void device_links_force_bind(struct device *dev) 1255 { 1256 struct device_link *link, *ln; 1257 1258 device_links_write_lock(); 1259 1260 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1261 if (!(link->flags & DL_FLAG_MANAGED)) 1262 continue; 1263 1264 if (link->status != DL_STATE_AVAILABLE) { 1265 device_link_drop_managed(link); 1266 continue; 1267 } 1268 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1269 } 1270 dev->links.status = DL_DEV_PROBING; 1271 1272 device_links_write_unlock(); 1273 } 1274 1275 /** 1276 * device_links_driver_bound - Update device links after probing its driver. 1277 * @dev: Device to update the links for. 1278 * 1279 * The probe has been successful, so update links from this device to any 1280 * consumers by changing their status to "available". 1281 * 1282 * Also change the status of @dev's links to suppliers to "active". 1283 * 1284 * Links without the DL_FLAG_MANAGED flag set are ignored. 1285 */ 1286 void device_links_driver_bound(struct device *dev) 1287 { 1288 struct device_link *link, *ln; 1289 LIST_HEAD(sync_list); 1290 1291 /* 1292 * If a device binds successfully, it's expected to have created all 1293 * the device links it needs to or make new device links as it needs 1294 * them. So, fw_devlink no longer needs to create device links to any 1295 * of the device's suppliers. 1296 * 1297 * Also, if a child firmware node of this bound device is not added as a 1298 * device by now, assume it is never going to be added. Make this bound 1299 * device the fallback supplier to the dangling consumers of the child 1300 * firmware node because this bound device is probably implementing the 1301 * child firmware node functionality and we don't want the dangling 1302 * consumers to defer probe indefinitely waiting for a device for the 1303 * child firmware node. 1304 */ 1305 if (dev->fwnode && dev->fwnode->dev == dev) { 1306 struct fwnode_handle *child; 1307 fwnode_links_purge_suppliers(dev->fwnode); 1308 mutex_lock(&fwnode_link_lock); 1309 fwnode_for_each_available_child_node(dev->fwnode, child) 1310 __fw_devlink_pickup_dangling_consumers(child, 1311 dev->fwnode); 1312 __fw_devlink_link_to_consumers(dev); 1313 mutex_unlock(&fwnode_link_lock); 1314 } 1315 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1316 1317 device_links_write_lock(); 1318 1319 list_for_each_entry(link, &dev->links.consumers, s_node) { 1320 if (!(link->flags & DL_FLAG_MANAGED)) 1321 continue; 1322 1323 /* 1324 * Links created during consumer probe may be in the "consumer 1325 * probe" state to start with if the supplier is still probing 1326 * when they are created and they may become "active" if the 1327 * consumer probe returns first. Skip them here. 1328 */ 1329 if (link->status == DL_STATE_CONSUMER_PROBE || 1330 link->status == DL_STATE_ACTIVE) 1331 continue; 1332 1333 WARN_ON(link->status != DL_STATE_DORMANT); 1334 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1335 1336 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1337 driver_deferred_probe_add(link->consumer); 1338 } 1339 1340 if (defer_sync_state_count) 1341 __device_links_supplier_defer_sync(dev); 1342 else 1343 __device_links_queue_sync_state(dev, &sync_list); 1344 1345 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1346 struct device *supplier; 1347 1348 if (!(link->flags & DL_FLAG_MANAGED)) 1349 continue; 1350 1351 supplier = link->supplier; 1352 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1353 /* 1354 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1355 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1356 * save to drop the managed link completely. 1357 */ 1358 device_link_drop_managed(link); 1359 } else if (dev_is_best_effort(dev) && 1360 link->flags & DL_FLAG_INFERRED && 1361 link->status != DL_STATE_CONSUMER_PROBE && 1362 !link->supplier->can_match) { 1363 /* 1364 * When dev_is_best_effort() is true, we ignore device 1365 * links to suppliers that don't have a driver. If the 1366 * consumer device still managed to probe, there's no 1367 * point in maintaining a device link in a weird state 1368 * (consumer probed before supplier). So delete it. 1369 */ 1370 device_link_drop_managed(link); 1371 } else { 1372 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1373 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1374 } 1375 1376 /* 1377 * This needs to be done even for the deleted 1378 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1379 * device link that was preventing the supplier from getting a 1380 * sync_state() call. 1381 */ 1382 if (defer_sync_state_count) 1383 __device_links_supplier_defer_sync(supplier); 1384 else 1385 __device_links_queue_sync_state(supplier, &sync_list); 1386 } 1387 1388 dev->links.status = DL_DEV_DRIVER_BOUND; 1389 1390 device_links_write_unlock(); 1391 1392 device_links_flush_sync_list(&sync_list, dev); 1393 } 1394 1395 /** 1396 * __device_links_no_driver - Update links of a device without a driver. 1397 * @dev: Device without a drvier. 1398 * 1399 * Delete all non-persistent links from this device to any suppliers. 1400 * 1401 * Persistent links stay around, but their status is changed to "available", 1402 * unless they already are in the "supplier unbind in progress" state in which 1403 * case they need not be updated. 1404 * 1405 * Links without the DL_FLAG_MANAGED flag set are ignored. 1406 */ 1407 static void __device_links_no_driver(struct device *dev) 1408 { 1409 struct device_link *link, *ln; 1410 1411 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1412 if (!(link->flags & DL_FLAG_MANAGED)) 1413 continue; 1414 1415 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1416 device_link_drop_managed(link); 1417 continue; 1418 } 1419 1420 if (link->status != DL_STATE_CONSUMER_PROBE && 1421 link->status != DL_STATE_ACTIVE) 1422 continue; 1423 1424 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1425 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1426 } else { 1427 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1428 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1429 } 1430 } 1431 1432 dev->links.status = DL_DEV_NO_DRIVER; 1433 } 1434 1435 /** 1436 * device_links_no_driver - Update links after failing driver probe. 1437 * @dev: Device whose driver has just failed to probe. 1438 * 1439 * Clean up leftover links to consumers for @dev and invoke 1440 * %__device_links_no_driver() to update links to suppliers for it as 1441 * appropriate. 1442 * 1443 * Links without the DL_FLAG_MANAGED flag set are ignored. 1444 */ 1445 void device_links_no_driver(struct device *dev) 1446 { 1447 struct device_link *link; 1448 1449 device_links_write_lock(); 1450 1451 list_for_each_entry(link, &dev->links.consumers, s_node) { 1452 if (!(link->flags & DL_FLAG_MANAGED)) 1453 continue; 1454 1455 /* 1456 * The probe has failed, so if the status of the link is 1457 * "consumer probe" or "active", it must have been added by 1458 * a probing consumer while this device was still probing. 1459 * Change its state to "dormant", as it represents a valid 1460 * relationship, but it is not functionally meaningful. 1461 */ 1462 if (link->status == DL_STATE_CONSUMER_PROBE || 1463 link->status == DL_STATE_ACTIVE) 1464 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1465 } 1466 1467 __device_links_no_driver(dev); 1468 1469 device_links_write_unlock(); 1470 } 1471 1472 /** 1473 * device_links_driver_cleanup - Update links after driver removal. 1474 * @dev: Device whose driver has just gone away. 1475 * 1476 * Update links to consumers for @dev by changing their status to "dormant" and 1477 * invoke %__device_links_no_driver() to update links to suppliers for it as 1478 * appropriate. 1479 * 1480 * Links without the DL_FLAG_MANAGED flag set are ignored. 1481 */ 1482 void device_links_driver_cleanup(struct device *dev) 1483 { 1484 struct device_link *link, *ln; 1485 1486 device_links_write_lock(); 1487 1488 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1489 if (!(link->flags & DL_FLAG_MANAGED)) 1490 continue; 1491 1492 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1493 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1494 1495 /* 1496 * autoremove the links between this @dev and its consumer 1497 * devices that are not active, i.e. where the link state 1498 * has moved to DL_STATE_SUPPLIER_UNBIND. 1499 */ 1500 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1501 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1502 device_link_drop_managed(link); 1503 1504 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1505 } 1506 1507 list_del_init(&dev->links.defer_sync); 1508 __device_links_no_driver(dev); 1509 1510 device_links_write_unlock(); 1511 } 1512 1513 /** 1514 * device_links_busy - Check if there are any busy links to consumers. 1515 * @dev: Device to check. 1516 * 1517 * Check each consumer of the device and return 'true' if its link's status 1518 * is one of "consumer probe" or "active" (meaning that the given consumer is 1519 * probing right now or its driver is present). Otherwise, change the link 1520 * state to "supplier unbind" to prevent the consumer from being probed 1521 * successfully going forward. 1522 * 1523 * Return 'false' if there are no probing or active consumers. 1524 * 1525 * Links without the DL_FLAG_MANAGED flag set are ignored. 1526 */ 1527 bool device_links_busy(struct device *dev) 1528 { 1529 struct device_link *link; 1530 bool ret = false; 1531 1532 device_links_write_lock(); 1533 1534 list_for_each_entry(link, &dev->links.consumers, s_node) { 1535 if (!(link->flags & DL_FLAG_MANAGED)) 1536 continue; 1537 1538 if (link->status == DL_STATE_CONSUMER_PROBE 1539 || link->status == DL_STATE_ACTIVE) { 1540 ret = true; 1541 break; 1542 } 1543 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1544 } 1545 1546 dev->links.status = DL_DEV_UNBINDING; 1547 1548 device_links_write_unlock(); 1549 return ret; 1550 } 1551 1552 /** 1553 * device_links_unbind_consumers - Force unbind consumers of the given device. 1554 * @dev: Device to unbind the consumers of. 1555 * 1556 * Walk the list of links to consumers for @dev and if any of them is in the 1557 * "consumer probe" state, wait for all device probes in progress to complete 1558 * and start over. 1559 * 1560 * If that's not the case, change the status of the link to "supplier unbind" 1561 * and check if the link was in the "active" state. If so, force the consumer 1562 * driver to unbind and start over (the consumer will not re-probe as we have 1563 * changed the state of the link already). 1564 * 1565 * Links without the DL_FLAG_MANAGED flag set are ignored. 1566 */ 1567 void device_links_unbind_consumers(struct device *dev) 1568 { 1569 struct device_link *link; 1570 1571 start: 1572 device_links_write_lock(); 1573 1574 list_for_each_entry(link, &dev->links.consumers, s_node) { 1575 enum device_link_state status; 1576 1577 if (!(link->flags & DL_FLAG_MANAGED) || 1578 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1579 continue; 1580 1581 status = link->status; 1582 if (status == DL_STATE_CONSUMER_PROBE) { 1583 device_links_write_unlock(); 1584 1585 wait_for_device_probe(); 1586 goto start; 1587 } 1588 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1589 if (status == DL_STATE_ACTIVE) { 1590 struct device *consumer = link->consumer; 1591 1592 get_device(consumer); 1593 1594 device_links_write_unlock(); 1595 1596 device_release_driver_internal(consumer, NULL, 1597 consumer->parent); 1598 put_device(consumer); 1599 goto start; 1600 } 1601 } 1602 1603 device_links_write_unlock(); 1604 } 1605 1606 /** 1607 * device_links_purge - Delete existing links to other devices. 1608 * @dev: Target device. 1609 */ 1610 static void device_links_purge(struct device *dev) 1611 { 1612 struct device_link *link, *ln; 1613 1614 if (dev->class == &devlink_class) 1615 return; 1616 1617 /* 1618 * Delete all of the remaining links from this device to any other 1619 * devices (either consumers or suppliers). 1620 */ 1621 device_links_write_lock(); 1622 1623 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1624 WARN_ON(link->status == DL_STATE_ACTIVE); 1625 __device_link_del(&link->kref); 1626 } 1627 1628 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1629 WARN_ON(link->status != DL_STATE_DORMANT && 1630 link->status != DL_STATE_NONE); 1631 __device_link_del(&link->kref); 1632 } 1633 1634 device_links_write_unlock(); 1635 } 1636 1637 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1638 DL_FLAG_SYNC_STATE_ONLY) 1639 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1640 DL_FLAG_AUTOPROBE_CONSUMER) 1641 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1642 DL_FLAG_PM_RUNTIME) 1643 1644 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1645 static int __init fw_devlink_setup(char *arg) 1646 { 1647 if (!arg) 1648 return -EINVAL; 1649 1650 if (strcmp(arg, "off") == 0) { 1651 fw_devlink_flags = 0; 1652 } else if (strcmp(arg, "permissive") == 0) { 1653 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1654 } else if (strcmp(arg, "on") == 0) { 1655 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1656 } else if (strcmp(arg, "rpm") == 0) { 1657 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1658 } 1659 return 0; 1660 } 1661 early_param("fw_devlink", fw_devlink_setup); 1662 1663 static bool fw_devlink_strict; 1664 static int __init fw_devlink_strict_setup(char *arg) 1665 { 1666 return kstrtobool(arg, &fw_devlink_strict); 1667 } 1668 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1669 1670 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1671 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1672 1673 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1674 static int fw_devlink_sync_state; 1675 #else 1676 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1677 #endif 1678 1679 static int __init fw_devlink_sync_state_setup(char *arg) 1680 { 1681 if (!arg) 1682 return -EINVAL; 1683 1684 if (strcmp(arg, "strict") == 0) { 1685 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1686 return 0; 1687 } else if (strcmp(arg, "timeout") == 0) { 1688 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1689 return 0; 1690 } 1691 return -EINVAL; 1692 } 1693 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1694 1695 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1696 { 1697 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1698 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1699 1700 return fw_devlink_flags; 1701 } 1702 1703 static bool fw_devlink_is_permissive(void) 1704 { 1705 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1706 } 1707 1708 bool fw_devlink_is_strict(void) 1709 { 1710 return fw_devlink_strict && !fw_devlink_is_permissive(); 1711 } 1712 1713 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1714 { 1715 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1716 return; 1717 1718 fwnode_call_int_op(fwnode, add_links); 1719 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1720 } 1721 1722 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1723 { 1724 struct fwnode_handle *child = NULL; 1725 1726 fw_devlink_parse_fwnode(fwnode); 1727 1728 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1729 fw_devlink_parse_fwtree(child); 1730 } 1731 1732 static void fw_devlink_relax_link(struct device_link *link) 1733 { 1734 if (!(link->flags & DL_FLAG_INFERRED)) 1735 return; 1736 1737 if (device_link_flag_is_sync_state_only(link->flags)) 1738 return; 1739 1740 pm_runtime_drop_link(link); 1741 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1742 dev_dbg(link->consumer, "Relaxing link with %s\n", 1743 dev_name(link->supplier)); 1744 } 1745 1746 static int fw_devlink_no_driver(struct device *dev, void *data) 1747 { 1748 struct device_link *link = to_devlink(dev); 1749 1750 if (!link->supplier->can_match) 1751 fw_devlink_relax_link(link); 1752 1753 return 0; 1754 } 1755 1756 void fw_devlink_drivers_done(void) 1757 { 1758 fw_devlink_drv_reg_done = true; 1759 device_links_write_lock(); 1760 class_for_each_device(&devlink_class, NULL, NULL, 1761 fw_devlink_no_driver); 1762 device_links_write_unlock(); 1763 } 1764 1765 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1766 { 1767 struct device_link *link = to_devlink(dev); 1768 struct device *sup = link->supplier; 1769 1770 if (!(link->flags & DL_FLAG_MANAGED) || 1771 link->status == DL_STATE_ACTIVE || sup->state_synced || 1772 !dev_has_sync_state(sup)) 1773 return 0; 1774 1775 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1776 dev_warn(sup, "sync_state() pending due to %s\n", 1777 dev_name(link->consumer)); 1778 return 0; 1779 } 1780 1781 if (!list_empty(&sup->links.defer_sync)) 1782 return 0; 1783 1784 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1785 sup->state_synced = true; 1786 get_device(sup); 1787 list_add_tail(&sup->links.defer_sync, data); 1788 1789 return 0; 1790 } 1791 1792 void fw_devlink_probing_done(void) 1793 { 1794 LIST_HEAD(sync_list); 1795 1796 device_links_write_lock(); 1797 class_for_each_device(&devlink_class, NULL, &sync_list, 1798 fw_devlink_dev_sync_state); 1799 device_links_write_unlock(); 1800 device_links_flush_sync_list(&sync_list, NULL); 1801 } 1802 1803 /** 1804 * wait_for_init_devices_probe - Try to probe any device needed for init 1805 * 1806 * Some devices might need to be probed and bound successfully before the kernel 1807 * boot sequence can finish and move on to init/userspace. For example, a 1808 * network interface might need to be bound to be able to mount a NFS rootfs. 1809 * 1810 * With fw_devlink=on by default, some of these devices might be blocked from 1811 * probing because they are waiting on a optional supplier that doesn't have a 1812 * driver. While fw_devlink will eventually identify such devices and unblock 1813 * the probing automatically, it might be too late by the time it unblocks the 1814 * probing of devices. For example, the IP4 autoconfig might timeout before 1815 * fw_devlink unblocks probing of the network interface. 1816 * 1817 * This function is available to temporarily try and probe all devices that have 1818 * a driver even if some of their suppliers haven't been added or don't have 1819 * drivers. 1820 * 1821 * The drivers can then decide which of the suppliers are optional vs mandatory 1822 * and probe the device if possible. By the time this function returns, all such 1823 * "best effort" probes are guaranteed to be completed. If a device successfully 1824 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1825 * device where the supplier hasn't yet probed successfully because they have to 1826 * be optional dependencies. 1827 * 1828 * Any devices that didn't successfully probe go back to being treated as if 1829 * this function was never called. 1830 * 1831 * This also means that some devices that aren't needed for init and could have 1832 * waited for their optional supplier to probe (when the supplier's module is 1833 * loaded later on) would end up probing prematurely with limited functionality. 1834 * So call this function only when boot would fail without it. 1835 */ 1836 void __init wait_for_init_devices_probe(void) 1837 { 1838 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1839 return; 1840 1841 /* 1842 * Wait for all ongoing probes to finish so that the "best effort" is 1843 * only applied to devices that can't probe otherwise. 1844 */ 1845 wait_for_device_probe(); 1846 1847 pr_info("Trying to probe devices needed for running init ...\n"); 1848 fw_devlink_best_effort = true; 1849 driver_deferred_probe_trigger(); 1850 1851 /* 1852 * Wait for all "best effort" probes to finish before going back to 1853 * normal enforcement. 1854 */ 1855 wait_for_device_probe(); 1856 fw_devlink_best_effort = false; 1857 } 1858 1859 static void fw_devlink_unblock_consumers(struct device *dev) 1860 { 1861 struct device_link *link; 1862 1863 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1864 return; 1865 1866 device_links_write_lock(); 1867 list_for_each_entry(link, &dev->links.consumers, s_node) 1868 fw_devlink_relax_link(link); 1869 device_links_write_unlock(); 1870 } 1871 1872 1873 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1874 { 1875 struct device *dev; 1876 bool ret; 1877 1878 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1879 return false; 1880 1881 dev = get_dev_from_fwnode(fwnode); 1882 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1883 put_device(dev); 1884 1885 return ret; 1886 } 1887 1888 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1889 { 1890 struct fwnode_handle *parent; 1891 1892 fwnode_for_each_parent_node(fwnode, parent) { 1893 if (fwnode_init_without_drv(parent)) { 1894 fwnode_handle_put(parent); 1895 return true; 1896 } 1897 } 1898 1899 return false; 1900 } 1901 1902 /** 1903 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1904 * @con: Potential consumer device. 1905 * @sup_handle: Potential supplier's fwnode. 1906 * 1907 * Needs to be called with fwnode_lock and device link lock held. 1908 * 1909 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1910 * depend on @con. This function can detect multiple cyles between @sup_handle 1911 * and @con. When such dependency cycles are found, convert all device links 1912 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1913 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1914 * converted into a device link in the future, they are created as 1915 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1916 * fw_devlink=permissive just between the devices in the cycle. We need to do 1917 * this because, at this point, fw_devlink can't tell which of these 1918 * dependencies is not a real dependency. 1919 * 1920 * Return true if one or more cycles were found. Otherwise, return false. 1921 */ 1922 static bool __fw_devlink_relax_cycles(struct device *con, 1923 struct fwnode_handle *sup_handle) 1924 { 1925 struct device *sup_dev = NULL, *par_dev = NULL; 1926 struct fwnode_link *link; 1927 struct device_link *dev_link; 1928 bool ret = false; 1929 1930 if (!sup_handle) 1931 return false; 1932 1933 /* 1934 * We aren't trying to find all cycles. Just a cycle between con and 1935 * sup_handle. 1936 */ 1937 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1938 return false; 1939 1940 sup_handle->flags |= FWNODE_FLAG_VISITED; 1941 1942 sup_dev = get_dev_from_fwnode(sup_handle); 1943 1944 /* Termination condition. */ 1945 if (sup_dev == con) { 1946 ret = true; 1947 goto out; 1948 } 1949 1950 /* 1951 * If sup_dev is bound to a driver and @con hasn't started binding to a 1952 * driver, sup_dev can't be a consumer of @con. So, no need to check 1953 * further. 1954 */ 1955 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1956 con->links.status == DL_DEV_NO_DRIVER) { 1957 ret = false; 1958 goto out; 1959 } 1960 1961 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1962 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1963 __fwnode_link_cycle(link); 1964 ret = true; 1965 } 1966 } 1967 1968 /* 1969 * Give priority to device parent over fwnode parent to account for any 1970 * quirks in how fwnodes are converted to devices. 1971 */ 1972 if (sup_dev) 1973 par_dev = get_device(sup_dev->parent); 1974 else 1975 par_dev = fwnode_get_next_parent_dev(sup_handle); 1976 1977 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1978 ret = true; 1979 1980 if (!sup_dev) 1981 goto out; 1982 1983 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1984 /* 1985 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1986 * such due to a cycle. 1987 */ 1988 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1989 !(dev_link->flags & DL_FLAG_CYCLE)) 1990 continue; 1991 1992 if (__fw_devlink_relax_cycles(con, 1993 dev_link->supplier->fwnode)) { 1994 fw_devlink_relax_link(dev_link); 1995 dev_link->flags |= DL_FLAG_CYCLE; 1996 ret = true; 1997 } 1998 } 1999 2000 out: 2001 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2002 put_device(sup_dev); 2003 put_device(par_dev); 2004 return ret; 2005 } 2006 2007 /** 2008 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2009 * @con: consumer device for the device link 2010 * @sup_handle: fwnode handle of supplier 2011 * @link: fwnode link that's being converted to a device link 2012 * 2013 * This function will try to create a device link between the consumer device 2014 * @con and the supplier device represented by @sup_handle. 2015 * 2016 * The supplier has to be provided as a fwnode because incorrect cycles in 2017 * fwnode links can sometimes cause the supplier device to never be created. 2018 * This function detects such cases and returns an error if it cannot create a 2019 * device link from the consumer to a missing supplier. 2020 * 2021 * Returns, 2022 * 0 on successfully creating a device link 2023 * -EINVAL if the device link cannot be created as expected 2024 * -EAGAIN if the device link cannot be created right now, but it may be 2025 * possible to do that in the future 2026 */ 2027 static int fw_devlink_create_devlink(struct device *con, 2028 struct fwnode_handle *sup_handle, 2029 struct fwnode_link *link) 2030 { 2031 struct device *sup_dev; 2032 int ret = 0; 2033 u32 flags; 2034 2035 if (con->fwnode == link->consumer) 2036 flags = fw_devlink_get_flags(link->flags); 2037 else 2038 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2039 2040 /* 2041 * In some cases, a device P might also be a supplier to its child node 2042 * C. However, this would defer the probe of C until the probe of P 2043 * completes successfully. This is perfectly fine in the device driver 2044 * model. device_add() doesn't guarantee probe completion of the device 2045 * by the time it returns. 2046 * 2047 * However, there are a few drivers that assume C will finish probing 2048 * as soon as it's added and before P finishes probing. So, we provide 2049 * a flag to let fw_devlink know not to delay the probe of C until the 2050 * probe of P completes successfully. 2051 * 2052 * When such a flag is set, we can't create device links where P is the 2053 * supplier of C as that would delay the probe of C. 2054 */ 2055 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2056 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2057 return -EINVAL; 2058 2059 /* 2060 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2061 * So cycle detection isn't necessary and shouldn't be done. 2062 */ 2063 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) { 2064 device_links_write_lock(); 2065 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2066 __fwnode_link_cycle(link); 2067 flags = fw_devlink_get_flags(link->flags); 2068 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2069 sup_handle); 2070 } 2071 device_links_write_unlock(); 2072 } 2073 2074 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2075 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2076 else 2077 sup_dev = get_dev_from_fwnode(sup_handle); 2078 2079 if (sup_dev) { 2080 /* 2081 * If it's one of those drivers that don't actually bind to 2082 * their device using driver core, then don't wait on this 2083 * supplier device indefinitely. 2084 */ 2085 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2086 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2087 dev_dbg(con, 2088 "Not linking %pfwf - dev might never probe\n", 2089 sup_handle); 2090 ret = -EINVAL; 2091 goto out; 2092 } 2093 2094 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2095 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2096 flags, dev_name(sup_dev)); 2097 ret = -EINVAL; 2098 } 2099 2100 goto out; 2101 } 2102 2103 /* 2104 * Supplier or supplier's ancestor already initialized without a struct 2105 * device or being probed by a driver. 2106 */ 2107 if (fwnode_init_without_drv(sup_handle) || 2108 fwnode_ancestor_init_without_drv(sup_handle)) { 2109 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2110 sup_handle); 2111 return -EINVAL; 2112 } 2113 2114 ret = -EAGAIN; 2115 out: 2116 put_device(sup_dev); 2117 return ret; 2118 } 2119 2120 /** 2121 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2122 * @dev: Device that needs to be linked to its consumers 2123 * 2124 * This function looks at all the consumer fwnodes of @dev and creates device 2125 * links between the consumer device and @dev (supplier). 2126 * 2127 * If the consumer device has not been added yet, then this function creates a 2128 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2129 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2130 * sync_state() callback before the real consumer device gets to be added and 2131 * then probed. 2132 * 2133 * Once device links are created from the real consumer to @dev (supplier), the 2134 * fwnode links are deleted. 2135 */ 2136 static void __fw_devlink_link_to_consumers(struct device *dev) 2137 { 2138 struct fwnode_handle *fwnode = dev->fwnode; 2139 struct fwnode_link *link, *tmp; 2140 2141 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2142 struct device *con_dev; 2143 bool own_link = true; 2144 int ret; 2145 2146 con_dev = get_dev_from_fwnode(link->consumer); 2147 /* 2148 * If consumer device is not available yet, make a "proxy" 2149 * SYNC_STATE_ONLY link from the consumer's parent device to 2150 * the supplier device. This is necessary to make sure the 2151 * supplier doesn't get a sync_state() callback before the real 2152 * consumer can create a device link to the supplier. 2153 * 2154 * This proxy link step is needed to handle the case where the 2155 * consumer's parent device is added before the supplier. 2156 */ 2157 if (!con_dev) { 2158 con_dev = fwnode_get_next_parent_dev(link->consumer); 2159 /* 2160 * However, if the consumer's parent device is also the 2161 * parent of the supplier, don't create a 2162 * consumer-supplier link from the parent to its child 2163 * device. Such a dependency is impossible. 2164 */ 2165 if (con_dev && 2166 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2167 put_device(con_dev); 2168 con_dev = NULL; 2169 } else { 2170 own_link = false; 2171 } 2172 } 2173 2174 if (!con_dev) 2175 continue; 2176 2177 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2178 put_device(con_dev); 2179 if (!own_link || ret == -EAGAIN) 2180 continue; 2181 2182 __fwnode_link_del(link); 2183 } 2184 } 2185 2186 /** 2187 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2188 * @dev: The consumer device that needs to be linked to its suppliers 2189 * @fwnode: Root of the fwnode tree that is used to create device links 2190 * 2191 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2192 * @fwnode and creates device links between @dev (consumer) and all the 2193 * supplier devices of the entire fwnode tree at @fwnode. 2194 * 2195 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2196 * and the real suppliers of @dev. Once these device links are created, the 2197 * fwnode links are deleted. 2198 * 2199 * In addition, it also looks at all the suppliers of the entire fwnode tree 2200 * because some of the child devices of @dev that have not been added yet 2201 * (because @dev hasn't probed) might already have their suppliers added to 2202 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2203 * @dev (consumer) and these suppliers to make sure they don't execute their 2204 * sync_state() callbacks before these child devices have a chance to create 2205 * their device links. The fwnode links that correspond to the child devices 2206 * aren't delete because they are needed later to create the device links 2207 * between the real consumer and supplier devices. 2208 */ 2209 static void __fw_devlink_link_to_suppliers(struct device *dev, 2210 struct fwnode_handle *fwnode) 2211 { 2212 bool own_link = (dev->fwnode == fwnode); 2213 struct fwnode_link *link, *tmp; 2214 struct fwnode_handle *child = NULL; 2215 2216 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2217 int ret; 2218 struct fwnode_handle *sup = link->supplier; 2219 2220 ret = fw_devlink_create_devlink(dev, sup, link); 2221 if (!own_link || ret == -EAGAIN) 2222 continue; 2223 2224 __fwnode_link_del(link); 2225 } 2226 2227 /* 2228 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2229 * all the descendants. This proxy link step is needed to handle the 2230 * case where the supplier is added before the consumer's parent device 2231 * (@dev). 2232 */ 2233 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2234 __fw_devlink_link_to_suppliers(dev, child); 2235 } 2236 2237 static void fw_devlink_link_device(struct device *dev) 2238 { 2239 struct fwnode_handle *fwnode = dev->fwnode; 2240 2241 if (!fw_devlink_flags) 2242 return; 2243 2244 fw_devlink_parse_fwtree(fwnode); 2245 2246 mutex_lock(&fwnode_link_lock); 2247 __fw_devlink_link_to_consumers(dev); 2248 __fw_devlink_link_to_suppliers(dev, fwnode); 2249 mutex_unlock(&fwnode_link_lock); 2250 } 2251 2252 /* Device links support end. */ 2253 2254 int (*platform_notify)(struct device *dev) = NULL; 2255 int (*platform_notify_remove)(struct device *dev) = NULL; 2256 static struct kobject *dev_kobj; 2257 2258 /* /sys/dev/char */ 2259 static struct kobject *sysfs_dev_char_kobj; 2260 2261 /* /sys/dev/block */ 2262 static struct kobject *sysfs_dev_block_kobj; 2263 2264 static DEFINE_MUTEX(device_hotplug_lock); 2265 2266 void lock_device_hotplug(void) 2267 { 2268 mutex_lock(&device_hotplug_lock); 2269 } 2270 2271 void unlock_device_hotplug(void) 2272 { 2273 mutex_unlock(&device_hotplug_lock); 2274 } 2275 2276 int lock_device_hotplug_sysfs(void) 2277 { 2278 if (mutex_trylock(&device_hotplug_lock)) 2279 return 0; 2280 2281 /* Avoid busy looping (5 ms of sleep should do). */ 2282 msleep(5); 2283 return restart_syscall(); 2284 } 2285 2286 #ifdef CONFIG_BLOCK 2287 static inline int device_is_not_partition(struct device *dev) 2288 { 2289 return !(dev->type == &part_type); 2290 } 2291 #else 2292 static inline int device_is_not_partition(struct device *dev) 2293 { 2294 return 1; 2295 } 2296 #endif 2297 2298 static void device_platform_notify(struct device *dev) 2299 { 2300 acpi_device_notify(dev); 2301 2302 software_node_notify(dev); 2303 2304 if (platform_notify) 2305 platform_notify(dev); 2306 } 2307 2308 static void device_platform_notify_remove(struct device *dev) 2309 { 2310 if (platform_notify_remove) 2311 platform_notify_remove(dev); 2312 2313 software_node_notify_remove(dev); 2314 2315 acpi_device_notify_remove(dev); 2316 } 2317 2318 /** 2319 * dev_driver_string - Return a device's driver name, if at all possible 2320 * @dev: struct device to get the name of 2321 * 2322 * Will return the device's driver's name if it is bound to a device. If 2323 * the device is not bound to a driver, it will return the name of the bus 2324 * it is attached to. If it is not attached to a bus either, an empty 2325 * string will be returned. 2326 */ 2327 const char *dev_driver_string(const struct device *dev) 2328 { 2329 struct device_driver *drv; 2330 2331 /* dev->driver can change to NULL underneath us because of unbinding, 2332 * so be careful about accessing it. dev->bus and dev->class should 2333 * never change once they are set, so they don't need special care. 2334 */ 2335 drv = READ_ONCE(dev->driver); 2336 return drv ? drv->name : dev_bus_name(dev); 2337 } 2338 EXPORT_SYMBOL(dev_driver_string); 2339 2340 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2341 2342 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2343 char *buf) 2344 { 2345 struct device_attribute *dev_attr = to_dev_attr(attr); 2346 struct device *dev = kobj_to_dev(kobj); 2347 ssize_t ret = -EIO; 2348 2349 if (dev_attr->show) 2350 ret = dev_attr->show(dev, dev_attr, buf); 2351 if (ret >= (ssize_t)PAGE_SIZE) { 2352 printk("dev_attr_show: %pS returned bad count\n", 2353 dev_attr->show); 2354 } 2355 return ret; 2356 } 2357 2358 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2359 const char *buf, size_t count) 2360 { 2361 struct device_attribute *dev_attr = to_dev_attr(attr); 2362 struct device *dev = kobj_to_dev(kobj); 2363 ssize_t ret = -EIO; 2364 2365 if (dev_attr->store) 2366 ret = dev_attr->store(dev, dev_attr, buf, count); 2367 return ret; 2368 } 2369 2370 static const struct sysfs_ops dev_sysfs_ops = { 2371 .show = dev_attr_show, 2372 .store = dev_attr_store, 2373 }; 2374 2375 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2376 2377 ssize_t device_store_ulong(struct device *dev, 2378 struct device_attribute *attr, 2379 const char *buf, size_t size) 2380 { 2381 struct dev_ext_attribute *ea = to_ext_attr(attr); 2382 int ret; 2383 unsigned long new; 2384 2385 ret = kstrtoul(buf, 0, &new); 2386 if (ret) 2387 return ret; 2388 *(unsigned long *)(ea->var) = new; 2389 /* Always return full write size even if we didn't consume all */ 2390 return size; 2391 } 2392 EXPORT_SYMBOL_GPL(device_store_ulong); 2393 2394 ssize_t device_show_ulong(struct device *dev, 2395 struct device_attribute *attr, 2396 char *buf) 2397 { 2398 struct dev_ext_attribute *ea = to_ext_attr(attr); 2399 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2400 } 2401 EXPORT_SYMBOL_GPL(device_show_ulong); 2402 2403 ssize_t device_store_int(struct device *dev, 2404 struct device_attribute *attr, 2405 const char *buf, size_t size) 2406 { 2407 struct dev_ext_attribute *ea = to_ext_attr(attr); 2408 int ret; 2409 long new; 2410 2411 ret = kstrtol(buf, 0, &new); 2412 if (ret) 2413 return ret; 2414 2415 if (new > INT_MAX || new < INT_MIN) 2416 return -EINVAL; 2417 *(int *)(ea->var) = new; 2418 /* Always return full write size even if we didn't consume all */ 2419 return size; 2420 } 2421 EXPORT_SYMBOL_GPL(device_store_int); 2422 2423 ssize_t device_show_int(struct device *dev, 2424 struct device_attribute *attr, 2425 char *buf) 2426 { 2427 struct dev_ext_attribute *ea = to_ext_attr(attr); 2428 2429 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2430 } 2431 EXPORT_SYMBOL_GPL(device_show_int); 2432 2433 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2434 const char *buf, size_t size) 2435 { 2436 struct dev_ext_attribute *ea = to_ext_attr(attr); 2437 2438 if (kstrtobool(buf, ea->var) < 0) 2439 return -EINVAL; 2440 2441 return size; 2442 } 2443 EXPORT_SYMBOL_GPL(device_store_bool); 2444 2445 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2446 char *buf) 2447 { 2448 struct dev_ext_attribute *ea = to_ext_attr(attr); 2449 2450 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2451 } 2452 EXPORT_SYMBOL_GPL(device_show_bool); 2453 2454 /** 2455 * device_release - free device structure. 2456 * @kobj: device's kobject. 2457 * 2458 * This is called once the reference count for the object 2459 * reaches 0. We forward the call to the device's release 2460 * method, which should handle actually freeing the structure. 2461 */ 2462 static void device_release(struct kobject *kobj) 2463 { 2464 struct device *dev = kobj_to_dev(kobj); 2465 struct device_private *p = dev->p; 2466 2467 /* 2468 * Some platform devices are driven without driver attached 2469 * and managed resources may have been acquired. Make sure 2470 * all resources are released. 2471 * 2472 * Drivers still can add resources into device after device 2473 * is deleted but alive, so release devres here to avoid 2474 * possible memory leak. 2475 */ 2476 devres_release_all(dev); 2477 2478 kfree(dev->dma_range_map); 2479 2480 if (dev->release) 2481 dev->release(dev); 2482 else if (dev->type && dev->type->release) 2483 dev->type->release(dev); 2484 else if (dev->class && dev->class->dev_release) 2485 dev->class->dev_release(dev); 2486 else 2487 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2488 dev_name(dev)); 2489 kfree(p); 2490 } 2491 2492 static const void *device_namespace(const struct kobject *kobj) 2493 { 2494 const struct device *dev = kobj_to_dev(kobj); 2495 const void *ns = NULL; 2496 2497 if (dev->class && dev->class->ns_type) 2498 ns = dev->class->namespace(dev); 2499 2500 return ns; 2501 } 2502 2503 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2504 { 2505 const struct device *dev = kobj_to_dev(kobj); 2506 2507 if (dev->class && dev->class->get_ownership) 2508 dev->class->get_ownership(dev, uid, gid); 2509 } 2510 2511 static const struct kobj_type device_ktype = { 2512 .release = device_release, 2513 .sysfs_ops = &dev_sysfs_ops, 2514 .namespace = device_namespace, 2515 .get_ownership = device_get_ownership, 2516 }; 2517 2518 2519 static int dev_uevent_filter(const struct kobject *kobj) 2520 { 2521 const struct kobj_type *ktype = get_ktype(kobj); 2522 2523 if (ktype == &device_ktype) { 2524 const struct device *dev = kobj_to_dev(kobj); 2525 if (dev->bus) 2526 return 1; 2527 if (dev->class) 2528 return 1; 2529 } 2530 return 0; 2531 } 2532 2533 static const char *dev_uevent_name(const struct kobject *kobj) 2534 { 2535 const struct device *dev = kobj_to_dev(kobj); 2536 2537 if (dev->bus) 2538 return dev->bus->name; 2539 if (dev->class) 2540 return dev->class->name; 2541 return NULL; 2542 } 2543 2544 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2545 { 2546 const struct device *dev = kobj_to_dev(kobj); 2547 int retval = 0; 2548 2549 /* add device node properties if present */ 2550 if (MAJOR(dev->devt)) { 2551 const char *tmp; 2552 const char *name; 2553 umode_t mode = 0; 2554 kuid_t uid = GLOBAL_ROOT_UID; 2555 kgid_t gid = GLOBAL_ROOT_GID; 2556 2557 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2558 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2559 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2560 if (name) { 2561 add_uevent_var(env, "DEVNAME=%s", name); 2562 if (mode) 2563 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2564 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2565 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2566 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2567 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2568 kfree(tmp); 2569 } 2570 } 2571 2572 if (dev->type && dev->type->name) 2573 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2574 2575 if (dev->driver) 2576 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2577 2578 /* Add common DT information about the device */ 2579 of_device_uevent(dev, env); 2580 2581 /* have the bus specific function add its stuff */ 2582 if (dev->bus && dev->bus->uevent) { 2583 retval = dev->bus->uevent(dev, env); 2584 if (retval) 2585 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2586 dev_name(dev), __func__, retval); 2587 } 2588 2589 /* have the class specific function add its stuff */ 2590 if (dev->class && dev->class->dev_uevent) { 2591 retval = dev->class->dev_uevent(dev, env); 2592 if (retval) 2593 pr_debug("device: '%s': %s: class uevent() " 2594 "returned %d\n", dev_name(dev), 2595 __func__, retval); 2596 } 2597 2598 /* have the device type specific function add its stuff */ 2599 if (dev->type && dev->type->uevent) { 2600 retval = dev->type->uevent(dev, env); 2601 if (retval) 2602 pr_debug("device: '%s': %s: dev_type uevent() " 2603 "returned %d\n", dev_name(dev), 2604 __func__, retval); 2605 } 2606 2607 return retval; 2608 } 2609 2610 static const struct kset_uevent_ops device_uevent_ops = { 2611 .filter = dev_uevent_filter, 2612 .name = dev_uevent_name, 2613 .uevent = dev_uevent, 2614 }; 2615 2616 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2617 char *buf) 2618 { 2619 struct kobject *top_kobj; 2620 struct kset *kset; 2621 struct kobj_uevent_env *env = NULL; 2622 int i; 2623 int len = 0; 2624 int retval; 2625 2626 /* search the kset, the device belongs to */ 2627 top_kobj = &dev->kobj; 2628 while (!top_kobj->kset && top_kobj->parent) 2629 top_kobj = top_kobj->parent; 2630 if (!top_kobj->kset) 2631 goto out; 2632 2633 kset = top_kobj->kset; 2634 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2635 goto out; 2636 2637 /* respect filter */ 2638 if (kset->uevent_ops && kset->uevent_ops->filter) 2639 if (!kset->uevent_ops->filter(&dev->kobj)) 2640 goto out; 2641 2642 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2643 if (!env) 2644 return -ENOMEM; 2645 2646 /* let the kset specific function add its keys */ 2647 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2648 if (retval) 2649 goto out; 2650 2651 /* copy keys to file */ 2652 for (i = 0; i < env->envp_idx; i++) 2653 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2654 out: 2655 kfree(env); 2656 return len; 2657 } 2658 2659 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2660 const char *buf, size_t count) 2661 { 2662 int rc; 2663 2664 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2665 2666 if (rc) { 2667 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2668 return rc; 2669 } 2670 2671 return count; 2672 } 2673 static DEVICE_ATTR_RW(uevent); 2674 2675 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2676 char *buf) 2677 { 2678 bool val; 2679 2680 device_lock(dev); 2681 val = !dev->offline; 2682 device_unlock(dev); 2683 return sysfs_emit(buf, "%u\n", val); 2684 } 2685 2686 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2687 const char *buf, size_t count) 2688 { 2689 bool val; 2690 int ret; 2691 2692 ret = kstrtobool(buf, &val); 2693 if (ret < 0) 2694 return ret; 2695 2696 ret = lock_device_hotplug_sysfs(); 2697 if (ret) 2698 return ret; 2699 2700 ret = val ? device_online(dev) : device_offline(dev); 2701 unlock_device_hotplug(); 2702 return ret < 0 ? ret : count; 2703 } 2704 static DEVICE_ATTR_RW(online); 2705 2706 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2707 char *buf) 2708 { 2709 const char *loc; 2710 2711 switch (dev->removable) { 2712 case DEVICE_REMOVABLE: 2713 loc = "removable"; 2714 break; 2715 case DEVICE_FIXED: 2716 loc = "fixed"; 2717 break; 2718 default: 2719 loc = "unknown"; 2720 } 2721 return sysfs_emit(buf, "%s\n", loc); 2722 } 2723 static DEVICE_ATTR_RO(removable); 2724 2725 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2726 { 2727 return sysfs_create_groups(&dev->kobj, groups); 2728 } 2729 EXPORT_SYMBOL_GPL(device_add_groups); 2730 2731 void device_remove_groups(struct device *dev, 2732 const struct attribute_group **groups) 2733 { 2734 sysfs_remove_groups(&dev->kobj, groups); 2735 } 2736 EXPORT_SYMBOL_GPL(device_remove_groups); 2737 2738 union device_attr_group_devres { 2739 const struct attribute_group *group; 2740 const struct attribute_group **groups; 2741 }; 2742 2743 static void devm_attr_group_remove(struct device *dev, void *res) 2744 { 2745 union device_attr_group_devres *devres = res; 2746 const struct attribute_group *group = devres->group; 2747 2748 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2749 sysfs_remove_group(&dev->kobj, group); 2750 } 2751 2752 static void devm_attr_groups_remove(struct device *dev, void *res) 2753 { 2754 union device_attr_group_devres *devres = res; 2755 const struct attribute_group **groups = devres->groups; 2756 2757 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2758 sysfs_remove_groups(&dev->kobj, groups); 2759 } 2760 2761 /** 2762 * devm_device_add_group - given a device, create a managed attribute group 2763 * @dev: The device to create the group for 2764 * @grp: The attribute group to create 2765 * 2766 * This function creates a group for the first time. It will explicitly 2767 * warn and error if any of the attribute files being created already exist. 2768 * 2769 * Returns 0 on success or error code on failure. 2770 */ 2771 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2772 { 2773 union device_attr_group_devres *devres; 2774 int error; 2775 2776 devres = devres_alloc(devm_attr_group_remove, 2777 sizeof(*devres), GFP_KERNEL); 2778 if (!devres) 2779 return -ENOMEM; 2780 2781 error = sysfs_create_group(&dev->kobj, grp); 2782 if (error) { 2783 devres_free(devres); 2784 return error; 2785 } 2786 2787 devres->group = grp; 2788 devres_add(dev, devres); 2789 return 0; 2790 } 2791 EXPORT_SYMBOL_GPL(devm_device_add_group); 2792 2793 /** 2794 * devm_device_add_groups - create a bunch of managed attribute groups 2795 * @dev: The device to create the group for 2796 * @groups: The attribute groups to create, NULL terminated 2797 * 2798 * This function creates a bunch of managed attribute groups. If an error 2799 * occurs when creating a group, all previously created groups will be 2800 * removed, unwinding everything back to the original state when this 2801 * function was called. It will explicitly warn and error if any of the 2802 * attribute files being created already exist. 2803 * 2804 * Returns 0 on success or error code from sysfs_create_group on failure. 2805 */ 2806 int devm_device_add_groups(struct device *dev, 2807 const struct attribute_group **groups) 2808 { 2809 union device_attr_group_devres *devres; 2810 int error; 2811 2812 devres = devres_alloc(devm_attr_groups_remove, 2813 sizeof(*devres), GFP_KERNEL); 2814 if (!devres) 2815 return -ENOMEM; 2816 2817 error = sysfs_create_groups(&dev->kobj, groups); 2818 if (error) { 2819 devres_free(devres); 2820 return error; 2821 } 2822 2823 devres->groups = groups; 2824 devres_add(dev, devres); 2825 return 0; 2826 } 2827 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2828 2829 static int device_add_attrs(struct device *dev) 2830 { 2831 const struct class *class = dev->class; 2832 const struct device_type *type = dev->type; 2833 int error; 2834 2835 if (class) { 2836 error = device_add_groups(dev, class->dev_groups); 2837 if (error) 2838 return error; 2839 } 2840 2841 if (type) { 2842 error = device_add_groups(dev, type->groups); 2843 if (error) 2844 goto err_remove_class_groups; 2845 } 2846 2847 error = device_add_groups(dev, dev->groups); 2848 if (error) 2849 goto err_remove_type_groups; 2850 2851 if (device_supports_offline(dev) && !dev->offline_disabled) { 2852 error = device_create_file(dev, &dev_attr_online); 2853 if (error) 2854 goto err_remove_dev_groups; 2855 } 2856 2857 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2858 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2859 if (error) 2860 goto err_remove_dev_online; 2861 } 2862 2863 if (dev_removable_is_valid(dev)) { 2864 error = device_create_file(dev, &dev_attr_removable); 2865 if (error) 2866 goto err_remove_dev_waiting_for_supplier; 2867 } 2868 2869 if (dev_add_physical_location(dev)) { 2870 error = device_add_group(dev, 2871 &dev_attr_physical_location_group); 2872 if (error) 2873 goto err_remove_dev_removable; 2874 } 2875 2876 return 0; 2877 2878 err_remove_dev_removable: 2879 device_remove_file(dev, &dev_attr_removable); 2880 err_remove_dev_waiting_for_supplier: 2881 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2882 err_remove_dev_online: 2883 device_remove_file(dev, &dev_attr_online); 2884 err_remove_dev_groups: 2885 device_remove_groups(dev, dev->groups); 2886 err_remove_type_groups: 2887 if (type) 2888 device_remove_groups(dev, type->groups); 2889 err_remove_class_groups: 2890 if (class) 2891 device_remove_groups(dev, class->dev_groups); 2892 2893 return error; 2894 } 2895 2896 static void device_remove_attrs(struct device *dev) 2897 { 2898 const struct class *class = dev->class; 2899 const struct device_type *type = dev->type; 2900 2901 if (dev->physical_location) { 2902 device_remove_group(dev, &dev_attr_physical_location_group); 2903 kfree(dev->physical_location); 2904 } 2905 2906 device_remove_file(dev, &dev_attr_removable); 2907 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2908 device_remove_file(dev, &dev_attr_online); 2909 device_remove_groups(dev, dev->groups); 2910 2911 if (type) 2912 device_remove_groups(dev, type->groups); 2913 2914 if (class) 2915 device_remove_groups(dev, class->dev_groups); 2916 } 2917 2918 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2919 char *buf) 2920 { 2921 return print_dev_t(buf, dev->devt); 2922 } 2923 static DEVICE_ATTR_RO(dev); 2924 2925 /* /sys/devices/ */ 2926 struct kset *devices_kset; 2927 2928 /** 2929 * devices_kset_move_before - Move device in the devices_kset's list. 2930 * @deva: Device to move. 2931 * @devb: Device @deva should come before. 2932 */ 2933 static void devices_kset_move_before(struct device *deva, struct device *devb) 2934 { 2935 if (!devices_kset) 2936 return; 2937 pr_debug("devices_kset: Moving %s before %s\n", 2938 dev_name(deva), dev_name(devb)); 2939 spin_lock(&devices_kset->list_lock); 2940 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2941 spin_unlock(&devices_kset->list_lock); 2942 } 2943 2944 /** 2945 * devices_kset_move_after - Move device in the devices_kset's list. 2946 * @deva: Device to move 2947 * @devb: Device @deva should come after. 2948 */ 2949 static void devices_kset_move_after(struct device *deva, struct device *devb) 2950 { 2951 if (!devices_kset) 2952 return; 2953 pr_debug("devices_kset: Moving %s after %s\n", 2954 dev_name(deva), dev_name(devb)); 2955 spin_lock(&devices_kset->list_lock); 2956 list_move(&deva->kobj.entry, &devb->kobj.entry); 2957 spin_unlock(&devices_kset->list_lock); 2958 } 2959 2960 /** 2961 * devices_kset_move_last - move the device to the end of devices_kset's list. 2962 * @dev: device to move 2963 */ 2964 void devices_kset_move_last(struct device *dev) 2965 { 2966 if (!devices_kset) 2967 return; 2968 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2969 spin_lock(&devices_kset->list_lock); 2970 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2971 spin_unlock(&devices_kset->list_lock); 2972 } 2973 2974 /** 2975 * device_create_file - create sysfs attribute file for device. 2976 * @dev: device. 2977 * @attr: device attribute descriptor. 2978 */ 2979 int device_create_file(struct device *dev, 2980 const struct device_attribute *attr) 2981 { 2982 int error = 0; 2983 2984 if (dev) { 2985 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2986 "Attribute %s: write permission without 'store'\n", 2987 attr->attr.name); 2988 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2989 "Attribute %s: read permission without 'show'\n", 2990 attr->attr.name); 2991 error = sysfs_create_file(&dev->kobj, &attr->attr); 2992 } 2993 2994 return error; 2995 } 2996 EXPORT_SYMBOL_GPL(device_create_file); 2997 2998 /** 2999 * device_remove_file - remove sysfs attribute file. 3000 * @dev: device. 3001 * @attr: device attribute descriptor. 3002 */ 3003 void device_remove_file(struct device *dev, 3004 const struct device_attribute *attr) 3005 { 3006 if (dev) 3007 sysfs_remove_file(&dev->kobj, &attr->attr); 3008 } 3009 EXPORT_SYMBOL_GPL(device_remove_file); 3010 3011 /** 3012 * device_remove_file_self - remove sysfs attribute file from its own method. 3013 * @dev: device. 3014 * @attr: device attribute descriptor. 3015 * 3016 * See kernfs_remove_self() for details. 3017 */ 3018 bool device_remove_file_self(struct device *dev, 3019 const struct device_attribute *attr) 3020 { 3021 if (dev) 3022 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3023 else 3024 return false; 3025 } 3026 EXPORT_SYMBOL_GPL(device_remove_file_self); 3027 3028 /** 3029 * device_create_bin_file - create sysfs binary attribute file for device. 3030 * @dev: device. 3031 * @attr: device binary attribute descriptor. 3032 */ 3033 int device_create_bin_file(struct device *dev, 3034 const struct bin_attribute *attr) 3035 { 3036 int error = -EINVAL; 3037 if (dev) 3038 error = sysfs_create_bin_file(&dev->kobj, attr); 3039 return error; 3040 } 3041 EXPORT_SYMBOL_GPL(device_create_bin_file); 3042 3043 /** 3044 * device_remove_bin_file - remove sysfs binary attribute file 3045 * @dev: device. 3046 * @attr: device binary attribute descriptor. 3047 */ 3048 void device_remove_bin_file(struct device *dev, 3049 const struct bin_attribute *attr) 3050 { 3051 if (dev) 3052 sysfs_remove_bin_file(&dev->kobj, attr); 3053 } 3054 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3055 3056 static void klist_children_get(struct klist_node *n) 3057 { 3058 struct device_private *p = to_device_private_parent(n); 3059 struct device *dev = p->device; 3060 3061 get_device(dev); 3062 } 3063 3064 static void klist_children_put(struct klist_node *n) 3065 { 3066 struct device_private *p = to_device_private_parent(n); 3067 struct device *dev = p->device; 3068 3069 put_device(dev); 3070 } 3071 3072 /** 3073 * device_initialize - init device structure. 3074 * @dev: device. 3075 * 3076 * This prepares the device for use by other layers by initializing 3077 * its fields. 3078 * It is the first half of device_register(), if called by 3079 * that function, though it can also be called separately, so one 3080 * may use @dev's fields. In particular, get_device()/put_device() 3081 * may be used for reference counting of @dev after calling this 3082 * function. 3083 * 3084 * All fields in @dev must be initialized by the caller to 0, except 3085 * for those explicitly set to some other value. The simplest 3086 * approach is to use kzalloc() to allocate the structure containing 3087 * @dev. 3088 * 3089 * NOTE: Use put_device() to give up your reference instead of freeing 3090 * @dev directly once you have called this function. 3091 */ 3092 void device_initialize(struct device *dev) 3093 { 3094 dev->kobj.kset = devices_kset; 3095 kobject_init(&dev->kobj, &device_ktype); 3096 INIT_LIST_HEAD(&dev->dma_pools); 3097 mutex_init(&dev->mutex); 3098 lockdep_set_novalidate_class(&dev->mutex); 3099 spin_lock_init(&dev->devres_lock); 3100 INIT_LIST_HEAD(&dev->devres_head); 3101 device_pm_init(dev); 3102 set_dev_node(dev, NUMA_NO_NODE); 3103 INIT_LIST_HEAD(&dev->links.consumers); 3104 INIT_LIST_HEAD(&dev->links.suppliers); 3105 INIT_LIST_HEAD(&dev->links.defer_sync); 3106 dev->links.status = DL_DEV_NO_DRIVER; 3107 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3108 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3109 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3110 dev->dma_coherent = dma_default_coherent; 3111 #endif 3112 swiotlb_dev_init(dev); 3113 } 3114 EXPORT_SYMBOL_GPL(device_initialize); 3115 3116 struct kobject *virtual_device_parent(struct device *dev) 3117 { 3118 static struct kobject *virtual_dir = NULL; 3119 3120 if (!virtual_dir) 3121 virtual_dir = kobject_create_and_add("virtual", 3122 &devices_kset->kobj); 3123 3124 return virtual_dir; 3125 } 3126 3127 struct class_dir { 3128 struct kobject kobj; 3129 const struct class *class; 3130 }; 3131 3132 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3133 3134 static void class_dir_release(struct kobject *kobj) 3135 { 3136 struct class_dir *dir = to_class_dir(kobj); 3137 kfree(dir); 3138 } 3139 3140 static const 3141 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3142 { 3143 const struct class_dir *dir = to_class_dir(kobj); 3144 return dir->class->ns_type; 3145 } 3146 3147 static const struct kobj_type class_dir_ktype = { 3148 .release = class_dir_release, 3149 .sysfs_ops = &kobj_sysfs_ops, 3150 .child_ns_type = class_dir_child_ns_type 3151 }; 3152 3153 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3154 struct kobject *parent_kobj) 3155 { 3156 struct class_dir *dir; 3157 int retval; 3158 3159 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3160 if (!dir) 3161 return ERR_PTR(-ENOMEM); 3162 3163 dir->class = sp->class; 3164 kobject_init(&dir->kobj, &class_dir_ktype); 3165 3166 dir->kobj.kset = &sp->glue_dirs; 3167 3168 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3169 if (retval < 0) { 3170 kobject_put(&dir->kobj); 3171 return ERR_PTR(retval); 3172 } 3173 return &dir->kobj; 3174 } 3175 3176 static DEFINE_MUTEX(gdp_mutex); 3177 3178 static struct kobject *get_device_parent(struct device *dev, 3179 struct device *parent) 3180 { 3181 struct subsys_private *sp = class_to_subsys(dev->class); 3182 struct kobject *kobj = NULL; 3183 3184 if (sp) { 3185 struct kobject *parent_kobj; 3186 struct kobject *k; 3187 3188 /* 3189 * If we have no parent, we live in "virtual". 3190 * Class-devices with a non class-device as parent, live 3191 * in a "glue" directory to prevent namespace collisions. 3192 */ 3193 if (parent == NULL) 3194 parent_kobj = virtual_device_parent(dev); 3195 else if (parent->class && !dev->class->ns_type) { 3196 subsys_put(sp); 3197 return &parent->kobj; 3198 } else { 3199 parent_kobj = &parent->kobj; 3200 } 3201 3202 mutex_lock(&gdp_mutex); 3203 3204 /* find our class-directory at the parent and reference it */ 3205 spin_lock(&sp->glue_dirs.list_lock); 3206 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3207 if (k->parent == parent_kobj) { 3208 kobj = kobject_get(k); 3209 break; 3210 } 3211 spin_unlock(&sp->glue_dirs.list_lock); 3212 if (kobj) { 3213 mutex_unlock(&gdp_mutex); 3214 subsys_put(sp); 3215 return kobj; 3216 } 3217 3218 /* or create a new class-directory at the parent device */ 3219 k = class_dir_create_and_add(sp, parent_kobj); 3220 /* do not emit an uevent for this simple "glue" directory */ 3221 mutex_unlock(&gdp_mutex); 3222 subsys_put(sp); 3223 return k; 3224 } 3225 3226 /* subsystems can specify a default root directory for their devices */ 3227 if (!parent && dev->bus) { 3228 struct device *dev_root = bus_get_dev_root(dev->bus); 3229 3230 if (dev_root) { 3231 kobj = &dev_root->kobj; 3232 put_device(dev_root); 3233 return kobj; 3234 } 3235 } 3236 3237 if (parent) 3238 return &parent->kobj; 3239 return NULL; 3240 } 3241 3242 static inline bool live_in_glue_dir(struct kobject *kobj, 3243 struct device *dev) 3244 { 3245 struct subsys_private *sp; 3246 bool retval; 3247 3248 if (!kobj || !dev->class) 3249 return false; 3250 3251 sp = class_to_subsys(dev->class); 3252 if (!sp) 3253 return false; 3254 3255 if (kobj->kset == &sp->glue_dirs) 3256 retval = true; 3257 else 3258 retval = false; 3259 3260 subsys_put(sp); 3261 return retval; 3262 } 3263 3264 static inline struct kobject *get_glue_dir(struct device *dev) 3265 { 3266 return dev->kobj.parent; 3267 } 3268 3269 /** 3270 * kobject_has_children - Returns whether a kobject has children. 3271 * @kobj: the object to test 3272 * 3273 * This will return whether a kobject has other kobjects as children. 3274 * 3275 * It does NOT account for the presence of attribute files, only sub 3276 * directories. It also assumes there is no concurrent addition or 3277 * removal of such children, and thus relies on external locking. 3278 */ 3279 static inline bool kobject_has_children(struct kobject *kobj) 3280 { 3281 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3282 3283 return kobj->sd && kobj->sd->dir.subdirs; 3284 } 3285 3286 /* 3287 * make sure cleaning up dir as the last step, we need to make 3288 * sure .release handler of kobject is run with holding the 3289 * global lock 3290 */ 3291 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3292 { 3293 unsigned int ref; 3294 3295 /* see if we live in a "glue" directory */ 3296 if (!live_in_glue_dir(glue_dir, dev)) 3297 return; 3298 3299 mutex_lock(&gdp_mutex); 3300 /** 3301 * There is a race condition between removing glue directory 3302 * and adding a new device under the glue directory. 3303 * 3304 * CPU1: CPU2: 3305 * 3306 * device_add() 3307 * get_device_parent() 3308 * class_dir_create_and_add() 3309 * kobject_add_internal() 3310 * create_dir() // create glue_dir 3311 * 3312 * device_add() 3313 * get_device_parent() 3314 * kobject_get() // get glue_dir 3315 * 3316 * device_del() 3317 * cleanup_glue_dir() 3318 * kobject_del(glue_dir) 3319 * 3320 * kobject_add() 3321 * kobject_add_internal() 3322 * create_dir() // in glue_dir 3323 * sysfs_create_dir_ns() 3324 * kernfs_create_dir_ns(sd) 3325 * 3326 * sysfs_remove_dir() // glue_dir->sd=NULL 3327 * sysfs_put() // free glue_dir->sd 3328 * 3329 * // sd is freed 3330 * kernfs_new_node(sd) 3331 * kernfs_get(glue_dir) 3332 * kernfs_add_one() 3333 * kernfs_put() 3334 * 3335 * Before CPU1 remove last child device under glue dir, if CPU2 add 3336 * a new device under glue dir, the glue_dir kobject reference count 3337 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3338 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3339 * and sysfs_put(). This result in glue_dir->sd is freed. 3340 * 3341 * Then the CPU2 will see a stale "empty" but still potentially used 3342 * glue dir around in kernfs_new_node(). 3343 * 3344 * In order to avoid this happening, we also should make sure that 3345 * kernfs_node for glue_dir is released in CPU1 only when refcount 3346 * for glue_dir kobj is 1. 3347 */ 3348 ref = kref_read(&glue_dir->kref); 3349 if (!kobject_has_children(glue_dir) && !--ref) 3350 kobject_del(glue_dir); 3351 kobject_put(glue_dir); 3352 mutex_unlock(&gdp_mutex); 3353 } 3354 3355 static int device_add_class_symlinks(struct device *dev) 3356 { 3357 struct device_node *of_node = dev_of_node(dev); 3358 struct subsys_private *sp; 3359 int error; 3360 3361 if (of_node) { 3362 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3363 if (error) 3364 dev_warn(dev, "Error %d creating of_node link\n",error); 3365 /* An error here doesn't warrant bringing down the device */ 3366 } 3367 3368 sp = class_to_subsys(dev->class); 3369 if (!sp) 3370 return 0; 3371 3372 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3373 if (error) 3374 goto out_devnode; 3375 3376 if (dev->parent && device_is_not_partition(dev)) { 3377 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3378 "device"); 3379 if (error) 3380 goto out_subsys; 3381 } 3382 3383 /* link in the class directory pointing to the device */ 3384 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3385 if (error) 3386 goto out_device; 3387 goto exit; 3388 3389 out_device: 3390 sysfs_remove_link(&dev->kobj, "device"); 3391 out_subsys: 3392 sysfs_remove_link(&dev->kobj, "subsystem"); 3393 out_devnode: 3394 sysfs_remove_link(&dev->kobj, "of_node"); 3395 exit: 3396 subsys_put(sp); 3397 return error; 3398 } 3399 3400 static void device_remove_class_symlinks(struct device *dev) 3401 { 3402 struct subsys_private *sp = class_to_subsys(dev->class); 3403 3404 if (dev_of_node(dev)) 3405 sysfs_remove_link(&dev->kobj, "of_node"); 3406 3407 if (!sp) 3408 return; 3409 3410 if (dev->parent && device_is_not_partition(dev)) 3411 sysfs_remove_link(&dev->kobj, "device"); 3412 sysfs_remove_link(&dev->kobj, "subsystem"); 3413 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3414 subsys_put(sp); 3415 } 3416 3417 /** 3418 * dev_set_name - set a device name 3419 * @dev: device 3420 * @fmt: format string for the device's name 3421 */ 3422 int dev_set_name(struct device *dev, const char *fmt, ...) 3423 { 3424 va_list vargs; 3425 int err; 3426 3427 va_start(vargs, fmt); 3428 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3429 va_end(vargs); 3430 return err; 3431 } 3432 EXPORT_SYMBOL_GPL(dev_set_name); 3433 3434 /* select a /sys/dev/ directory for the device */ 3435 static struct kobject *device_to_dev_kobj(struct device *dev) 3436 { 3437 if (is_blockdev(dev)) 3438 return sysfs_dev_block_kobj; 3439 else 3440 return sysfs_dev_char_kobj; 3441 } 3442 3443 static int device_create_sys_dev_entry(struct device *dev) 3444 { 3445 struct kobject *kobj = device_to_dev_kobj(dev); 3446 int error = 0; 3447 char devt_str[15]; 3448 3449 if (kobj) { 3450 format_dev_t(devt_str, dev->devt); 3451 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3452 } 3453 3454 return error; 3455 } 3456 3457 static void device_remove_sys_dev_entry(struct device *dev) 3458 { 3459 struct kobject *kobj = device_to_dev_kobj(dev); 3460 char devt_str[15]; 3461 3462 if (kobj) { 3463 format_dev_t(devt_str, dev->devt); 3464 sysfs_remove_link(kobj, devt_str); 3465 } 3466 } 3467 3468 static int device_private_init(struct device *dev) 3469 { 3470 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3471 if (!dev->p) 3472 return -ENOMEM; 3473 dev->p->device = dev; 3474 klist_init(&dev->p->klist_children, klist_children_get, 3475 klist_children_put); 3476 INIT_LIST_HEAD(&dev->p->deferred_probe); 3477 return 0; 3478 } 3479 3480 /** 3481 * device_add - add device to device hierarchy. 3482 * @dev: device. 3483 * 3484 * This is part 2 of device_register(), though may be called 3485 * separately _iff_ device_initialize() has been called separately. 3486 * 3487 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3488 * to the global and sibling lists for the device, then 3489 * adds it to the other relevant subsystems of the driver model. 3490 * 3491 * Do not call this routine or device_register() more than once for 3492 * any device structure. The driver model core is not designed to work 3493 * with devices that get unregistered and then spring back to life. 3494 * (Among other things, it's very hard to guarantee that all references 3495 * to the previous incarnation of @dev have been dropped.) Allocate 3496 * and register a fresh new struct device instead. 3497 * 3498 * NOTE: _Never_ directly free @dev after calling this function, even 3499 * if it returned an error! Always use put_device() to give up your 3500 * reference instead. 3501 * 3502 * Rule of thumb is: if device_add() succeeds, you should call 3503 * device_del() when you want to get rid of it. If device_add() has 3504 * *not* succeeded, use *only* put_device() to drop the reference 3505 * count. 3506 */ 3507 int device_add(struct device *dev) 3508 { 3509 struct subsys_private *sp; 3510 struct device *parent; 3511 struct kobject *kobj; 3512 struct class_interface *class_intf; 3513 int error = -EINVAL; 3514 struct kobject *glue_dir = NULL; 3515 3516 dev = get_device(dev); 3517 if (!dev) 3518 goto done; 3519 3520 if (!dev->p) { 3521 error = device_private_init(dev); 3522 if (error) 3523 goto done; 3524 } 3525 3526 /* 3527 * for statically allocated devices, which should all be converted 3528 * some day, we need to initialize the name. We prevent reading back 3529 * the name, and force the use of dev_name() 3530 */ 3531 if (dev->init_name) { 3532 error = dev_set_name(dev, "%s", dev->init_name); 3533 dev->init_name = NULL; 3534 } 3535 3536 if (dev_name(dev)) 3537 error = 0; 3538 /* subsystems can specify simple device enumeration */ 3539 else if (dev->bus && dev->bus->dev_name) 3540 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3541 else 3542 error = -EINVAL; 3543 if (error) 3544 goto name_error; 3545 3546 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3547 3548 parent = get_device(dev->parent); 3549 kobj = get_device_parent(dev, parent); 3550 if (IS_ERR(kobj)) { 3551 error = PTR_ERR(kobj); 3552 goto parent_error; 3553 } 3554 if (kobj) 3555 dev->kobj.parent = kobj; 3556 3557 /* use parent numa_node */ 3558 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3559 set_dev_node(dev, dev_to_node(parent)); 3560 3561 /* first, register with generic layer. */ 3562 /* we require the name to be set before, and pass NULL */ 3563 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3564 if (error) { 3565 glue_dir = kobj; 3566 goto Error; 3567 } 3568 3569 /* notify platform of device entry */ 3570 device_platform_notify(dev); 3571 3572 error = device_create_file(dev, &dev_attr_uevent); 3573 if (error) 3574 goto attrError; 3575 3576 error = device_add_class_symlinks(dev); 3577 if (error) 3578 goto SymlinkError; 3579 error = device_add_attrs(dev); 3580 if (error) 3581 goto AttrsError; 3582 error = bus_add_device(dev); 3583 if (error) 3584 goto BusError; 3585 error = dpm_sysfs_add(dev); 3586 if (error) 3587 goto DPMError; 3588 device_pm_add(dev); 3589 3590 if (MAJOR(dev->devt)) { 3591 error = device_create_file(dev, &dev_attr_dev); 3592 if (error) 3593 goto DevAttrError; 3594 3595 error = device_create_sys_dev_entry(dev); 3596 if (error) 3597 goto SysEntryError; 3598 3599 devtmpfs_create_node(dev); 3600 } 3601 3602 /* Notify clients of device addition. This call must come 3603 * after dpm_sysfs_add() and before kobject_uevent(). 3604 */ 3605 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3606 kobject_uevent(&dev->kobj, KOBJ_ADD); 3607 3608 /* 3609 * Check if any of the other devices (consumers) have been waiting for 3610 * this device (supplier) to be added so that they can create a device 3611 * link to it. 3612 * 3613 * This needs to happen after device_pm_add() because device_link_add() 3614 * requires the supplier be registered before it's called. 3615 * 3616 * But this also needs to happen before bus_probe_device() to make sure 3617 * waiting consumers can link to it before the driver is bound to the 3618 * device and the driver sync_state callback is called for this device. 3619 */ 3620 if (dev->fwnode && !dev->fwnode->dev) { 3621 dev->fwnode->dev = dev; 3622 fw_devlink_link_device(dev); 3623 } 3624 3625 bus_probe_device(dev); 3626 3627 /* 3628 * If all driver registration is done and a newly added device doesn't 3629 * match with any driver, don't block its consumers from probing in 3630 * case the consumer device is able to operate without this supplier. 3631 */ 3632 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3633 fw_devlink_unblock_consumers(dev); 3634 3635 if (parent) 3636 klist_add_tail(&dev->p->knode_parent, 3637 &parent->p->klist_children); 3638 3639 sp = class_to_subsys(dev->class); 3640 if (sp) { 3641 mutex_lock(&sp->mutex); 3642 /* tie the class to the device */ 3643 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3644 3645 /* notify any interfaces that the device is here */ 3646 list_for_each_entry(class_intf, &sp->interfaces, node) 3647 if (class_intf->add_dev) 3648 class_intf->add_dev(dev); 3649 mutex_unlock(&sp->mutex); 3650 subsys_put(sp); 3651 } 3652 done: 3653 put_device(dev); 3654 return error; 3655 SysEntryError: 3656 if (MAJOR(dev->devt)) 3657 device_remove_file(dev, &dev_attr_dev); 3658 DevAttrError: 3659 device_pm_remove(dev); 3660 dpm_sysfs_remove(dev); 3661 DPMError: 3662 dev->driver = NULL; 3663 bus_remove_device(dev); 3664 BusError: 3665 device_remove_attrs(dev); 3666 AttrsError: 3667 device_remove_class_symlinks(dev); 3668 SymlinkError: 3669 device_remove_file(dev, &dev_attr_uevent); 3670 attrError: 3671 device_platform_notify_remove(dev); 3672 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3673 glue_dir = get_glue_dir(dev); 3674 kobject_del(&dev->kobj); 3675 Error: 3676 cleanup_glue_dir(dev, glue_dir); 3677 parent_error: 3678 put_device(parent); 3679 name_error: 3680 kfree(dev->p); 3681 dev->p = NULL; 3682 goto done; 3683 } 3684 EXPORT_SYMBOL_GPL(device_add); 3685 3686 /** 3687 * device_register - register a device with the system. 3688 * @dev: pointer to the device structure 3689 * 3690 * This happens in two clean steps - initialize the device 3691 * and add it to the system. The two steps can be called 3692 * separately, but this is the easiest and most common. 3693 * I.e. you should only call the two helpers separately if 3694 * have a clearly defined need to use and refcount the device 3695 * before it is added to the hierarchy. 3696 * 3697 * For more information, see the kerneldoc for device_initialize() 3698 * and device_add(). 3699 * 3700 * NOTE: _Never_ directly free @dev after calling this function, even 3701 * if it returned an error! Always use put_device() to give up the 3702 * reference initialized in this function instead. 3703 */ 3704 int device_register(struct device *dev) 3705 { 3706 device_initialize(dev); 3707 return device_add(dev); 3708 } 3709 EXPORT_SYMBOL_GPL(device_register); 3710 3711 /** 3712 * get_device - increment reference count for device. 3713 * @dev: device. 3714 * 3715 * This simply forwards the call to kobject_get(), though 3716 * we do take care to provide for the case that we get a NULL 3717 * pointer passed in. 3718 */ 3719 struct device *get_device(struct device *dev) 3720 { 3721 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3722 } 3723 EXPORT_SYMBOL_GPL(get_device); 3724 3725 /** 3726 * put_device - decrement reference count. 3727 * @dev: device in question. 3728 */ 3729 void put_device(struct device *dev) 3730 { 3731 /* might_sleep(); */ 3732 if (dev) 3733 kobject_put(&dev->kobj); 3734 } 3735 EXPORT_SYMBOL_GPL(put_device); 3736 3737 bool kill_device(struct device *dev) 3738 { 3739 /* 3740 * Require the device lock and set the "dead" flag to guarantee that 3741 * the update behavior is consistent with the other bitfields near 3742 * it and that we cannot have an asynchronous probe routine trying 3743 * to run while we are tearing out the bus/class/sysfs from 3744 * underneath the device. 3745 */ 3746 device_lock_assert(dev); 3747 3748 if (dev->p->dead) 3749 return false; 3750 dev->p->dead = true; 3751 return true; 3752 } 3753 EXPORT_SYMBOL_GPL(kill_device); 3754 3755 /** 3756 * device_del - delete device from system. 3757 * @dev: device. 3758 * 3759 * This is the first part of the device unregistration 3760 * sequence. This removes the device from the lists we control 3761 * from here, has it removed from the other driver model 3762 * subsystems it was added to in device_add(), and removes it 3763 * from the kobject hierarchy. 3764 * 3765 * NOTE: this should be called manually _iff_ device_add() was 3766 * also called manually. 3767 */ 3768 void device_del(struct device *dev) 3769 { 3770 struct subsys_private *sp; 3771 struct device *parent = dev->parent; 3772 struct kobject *glue_dir = NULL; 3773 struct class_interface *class_intf; 3774 unsigned int noio_flag; 3775 3776 device_lock(dev); 3777 kill_device(dev); 3778 device_unlock(dev); 3779 3780 if (dev->fwnode && dev->fwnode->dev == dev) 3781 dev->fwnode->dev = NULL; 3782 3783 /* Notify clients of device removal. This call must come 3784 * before dpm_sysfs_remove(). 3785 */ 3786 noio_flag = memalloc_noio_save(); 3787 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3788 3789 dpm_sysfs_remove(dev); 3790 if (parent) 3791 klist_del(&dev->p->knode_parent); 3792 if (MAJOR(dev->devt)) { 3793 devtmpfs_delete_node(dev); 3794 device_remove_sys_dev_entry(dev); 3795 device_remove_file(dev, &dev_attr_dev); 3796 } 3797 3798 sp = class_to_subsys(dev->class); 3799 if (sp) { 3800 device_remove_class_symlinks(dev); 3801 3802 mutex_lock(&sp->mutex); 3803 /* notify any interfaces that the device is now gone */ 3804 list_for_each_entry(class_intf, &sp->interfaces, node) 3805 if (class_intf->remove_dev) 3806 class_intf->remove_dev(dev); 3807 /* remove the device from the class list */ 3808 klist_del(&dev->p->knode_class); 3809 mutex_unlock(&sp->mutex); 3810 subsys_put(sp); 3811 } 3812 device_remove_file(dev, &dev_attr_uevent); 3813 device_remove_attrs(dev); 3814 bus_remove_device(dev); 3815 device_pm_remove(dev); 3816 driver_deferred_probe_del(dev); 3817 device_platform_notify_remove(dev); 3818 device_links_purge(dev); 3819 3820 /* 3821 * If a device does not have a driver attached, we need to clean 3822 * up any managed resources. We do this in device_release(), but 3823 * it's never called (and we leak the device) if a managed 3824 * resource holds a reference to the device. So release all 3825 * managed resources here, like we do in driver_detach(). We 3826 * still need to do so again in device_release() in case someone 3827 * adds a new resource after this point, though. 3828 */ 3829 devres_release_all(dev); 3830 3831 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3832 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3833 glue_dir = get_glue_dir(dev); 3834 kobject_del(&dev->kobj); 3835 cleanup_glue_dir(dev, glue_dir); 3836 memalloc_noio_restore(noio_flag); 3837 put_device(parent); 3838 } 3839 EXPORT_SYMBOL_GPL(device_del); 3840 3841 /** 3842 * device_unregister - unregister device from system. 3843 * @dev: device going away. 3844 * 3845 * We do this in two parts, like we do device_register(). First, 3846 * we remove it from all the subsystems with device_del(), then 3847 * we decrement the reference count via put_device(). If that 3848 * is the final reference count, the device will be cleaned up 3849 * via device_release() above. Otherwise, the structure will 3850 * stick around until the final reference to the device is dropped. 3851 */ 3852 void device_unregister(struct device *dev) 3853 { 3854 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3855 device_del(dev); 3856 put_device(dev); 3857 } 3858 EXPORT_SYMBOL_GPL(device_unregister); 3859 3860 static struct device *prev_device(struct klist_iter *i) 3861 { 3862 struct klist_node *n = klist_prev(i); 3863 struct device *dev = NULL; 3864 struct device_private *p; 3865 3866 if (n) { 3867 p = to_device_private_parent(n); 3868 dev = p->device; 3869 } 3870 return dev; 3871 } 3872 3873 static struct device *next_device(struct klist_iter *i) 3874 { 3875 struct klist_node *n = klist_next(i); 3876 struct device *dev = NULL; 3877 struct device_private *p; 3878 3879 if (n) { 3880 p = to_device_private_parent(n); 3881 dev = p->device; 3882 } 3883 return dev; 3884 } 3885 3886 /** 3887 * device_get_devnode - path of device node file 3888 * @dev: device 3889 * @mode: returned file access mode 3890 * @uid: returned file owner 3891 * @gid: returned file group 3892 * @tmp: possibly allocated string 3893 * 3894 * Return the relative path of a possible device node. 3895 * Non-default names may need to allocate a memory to compose 3896 * a name. This memory is returned in tmp and needs to be 3897 * freed by the caller. 3898 */ 3899 const char *device_get_devnode(const struct device *dev, 3900 umode_t *mode, kuid_t *uid, kgid_t *gid, 3901 const char **tmp) 3902 { 3903 char *s; 3904 3905 *tmp = NULL; 3906 3907 /* the device type may provide a specific name */ 3908 if (dev->type && dev->type->devnode) 3909 *tmp = dev->type->devnode(dev, mode, uid, gid); 3910 if (*tmp) 3911 return *tmp; 3912 3913 /* the class may provide a specific name */ 3914 if (dev->class && dev->class->devnode) 3915 *tmp = dev->class->devnode(dev, mode); 3916 if (*tmp) 3917 return *tmp; 3918 3919 /* return name without allocation, tmp == NULL */ 3920 if (strchr(dev_name(dev), '!') == NULL) 3921 return dev_name(dev); 3922 3923 /* replace '!' in the name with '/' */ 3924 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3925 if (!s) 3926 return NULL; 3927 return *tmp = s; 3928 } 3929 3930 /** 3931 * device_for_each_child - device child iterator. 3932 * @parent: parent struct device. 3933 * @fn: function to be called for each device. 3934 * @data: data for the callback. 3935 * 3936 * Iterate over @parent's child devices, and call @fn for each, 3937 * passing it @data. 3938 * 3939 * We check the return of @fn each time. If it returns anything 3940 * other than 0, we break out and return that value. 3941 */ 3942 int device_for_each_child(struct device *parent, void *data, 3943 int (*fn)(struct device *dev, void *data)) 3944 { 3945 struct klist_iter i; 3946 struct device *child; 3947 int error = 0; 3948 3949 if (!parent->p) 3950 return 0; 3951 3952 klist_iter_init(&parent->p->klist_children, &i); 3953 while (!error && (child = next_device(&i))) 3954 error = fn(child, data); 3955 klist_iter_exit(&i); 3956 return error; 3957 } 3958 EXPORT_SYMBOL_GPL(device_for_each_child); 3959 3960 /** 3961 * device_for_each_child_reverse - device child iterator in reversed order. 3962 * @parent: parent struct device. 3963 * @fn: function to be called for each device. 3964 * @data: data for the callback. 3965 * 3966 * Iterate over @parent's child devices, and call @fn for each, 3967 * passing it @data. 3968 * 3969 * We check the return of @fn each time. If it returns anything 3970 * other than 0, we break out and return that value. 3971 */ 3972 int device_for_each_child_reverse(struct device *parent, void *data, 3973 int (*fn)(struct device *dev, void *data)) 3974 { 3975 struct klist_iter i; 3976 struct device *child; 3977 int error = 0; 3978 3979 if (!parent->p) 3980 return 0; 3981 3982 klist_iter_init(&parent->p->klist_children, &i); 3983 while ((child = prev_device(&i)) && !error) 3984 error = fn(child, data); 3985 klist_iter_exit(&i); 3986 return error; 3987 } 3988 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3989 3990 /** 3991 * device_find_child - device iterator for locating a particular device. 3992 * @parent: parent struct device 3993 * @match: Callback function to check device 3994 * @data: Data to pass to match function 3995 * 3996 * This is similar to the device_for_each_child() function above, but it 3997 * returns a reference to a device that is 'found' for later use, as 3998 * determined by the @match callback. 3999 * 4000 * The callback should return 0 if the device doesn't match and non-zero 4001 * if it does. If the callback returns non-zero and a reference to the 4002 * current device can be obtained, this function will return to the caller 4003 * and not iterate over any more devices. 4004 * 4005 * NOTE: you will need to drop the reference with put_device() after use. 4006 */ 4007 struct device *device_find_child(struct device *parent, void *data, 4008 int (*match)(struct device *dev, void *data)) 4009 { 4010 struct klist_iter i; 4011 struct device *child; 4012 4013 if (!parent) 4014 return NULL; 4015 4016 klist_iter_init(&parent->p->klist_children, &i); 4017 while ((child = next_device(&i))) 4018 if (match(child, data) && get_device(child)) 4019 break; 4020 klist_iter_exit(&i); 4021 return child; 4022 } 4023 EXPORT_SYMBOL_GPL(device_find_child); 4024 4025 /** 4026 * device_find_child_by_name - device iterator for locating a child device. 4027 * @parent: parent struct device 4028 * @name: name of the child device 4029 * 4030 * This is similar to the device_find_child() function above, but it 4031 * returns a reference to a device that has the name @name. 4032 * 4033 * NOTE: you will need to drop the reference with put_device() after use. 4034 */ 4035 struct device *device_find_child_by_name(struct device *parent, 4036 const char *name) 4037 { 4038 struct klist_iter i; 4039 struct device *child; 4040 4041 if (!parent) 4042 return NULL; 4043 4044 klist_iter_init(&parent->p->klist_children, &i); 4045 while ((child = next_device(&i))) 4046 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4047 break; 4048 klist_iter_exit(&i); 4049 return child; 4050 } 4051 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4052 4053 static int match_any(struct device *dev, void *unused) 4054 { 4055 return 1; 4056 } 4057 4058 /** 4059 * device_find_any_child - device iterator for locating a child device, if any. 4060 * @parent: parent struct device 4061 * 4062 * This is similar to the device_find_child() function above, but it 4063 * returns a reference to a child device, if any. 4064 * 4065 * NOTE: you will need to drop the reference with put_device() after use. 4066 */ 4067 struct device *device_find_any_child(struct device *parent) 4068 { 4069 return device_find_child(parent, NULL, match_any); 4070 } 4071 EXPORT_SYMBOL_GPL(device_find_any_child); 4072 4073 int __init devices_init(void) 4074 { 4075 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4076 if (!devices_kset) 4077 return -ENOMEM; 4078 dev_kobj = kobject_create_and_add("dev", NULL); 4079 if (!dev_kobj) 4080 goto dev_kobj_err; 4081 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4082 if (!sysfs_dev_block_kobj) 4083 goto block_kobj_err; 4084 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4085 if (!sysfs_dev_char_kobj) 4086 goto char_kobj_err; 4087 4088 return 0; 4089 4090 char_kobj_err: 4091 kobject_put(sysfs_dev_block_kobj); 4092 block_kobj_err: 4093 kobject_put(dev_kobj); 4094 dev_kobj_err: 4095 kset_unregister(devices_kset); 4096 return -ENOMEM; 4097 } 4098 4099 static int device_check_offline(struct device *dev, void *not_used) 4100 { 4101 int ret; 4102 4103 ret = device_for_each_child(dev, NULL, device_check_offline); 4104 if (ret) 4105 return ret; 4106 4107 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4108 } 4109 4110 /** 4111 * device_offline - Prepare the device for hot-removal. 4112 * @dev: Device to be put offline. 4113 * 4114 * Execute the device bus type's .offline() callback, if present, to prepare 4115 * the device for a subsequent hot-removal. If that succeeds, the device must 4116 * not be used until either it is removed or its bus type's .online() callback 4117 * is executed. 4118 * 4119 * Call under device_hotplug_lock. 4120 */ 4121 int device_offline(struct device *dev) 4122 { 4123 int ret; 4124 4125 if (dev->offline_disabled) 4126 return -EPERM; 4127 4128 ret = device_for_each_child(dev, NULL, device_check_offline); 4129 if (ret) 4130 return ret; 4131 4132 device_lock(dev); 4133 if (device_supports_offline(dev)) { 4134 if (dev->offline) { 4135 ret = 1; 4136 } else { 4137 ret = dev->bus->offline(dev); 4138 if (!ret) { 4139 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4140 dev->offline = true; 4141 } 4142 } 4143 } 4144 device_unlock(dev); 4145 4146 return ret; 4147 } 4148 4149 /** 4150 * device_online - Put the device back online after successful device_offline(). 4151 * @dev: Device to be put back online. 4152 * 4153 * If device_offline() has been successfully executed for @dev, but the device 4154 * has not been removed subsequently, execute its bus type's .online() callback 4155 * to indicate that the device can be used again. 4156 * 4157 * Call under device_hotplug_lock. 4158 */ 4159 int device_online(struct device *dev) 4160 { 4161 int ret = 0; 4162 4163 device_lock(dev); 4164 if (device_supports_offline(dev)) { 4165 if (dev->offline) { 4166 ret = dev->bus->online(dev); 4167 if (!ret) { 4168 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4169 dev->offline = false; 4170 } 4171 } else { 4172 ret = 1; 4173 } 4174 } 4175 device_unlock(dev); 4176 4177 return ret; 4178 } 4179 4180 struct root_device { 4181 struct device dev; 4182 struct module *owner; 4183 }; 4184 4185 static inline struct root_device *to_root_device(struct device *d) 4186 { 4187 return container_of(d, struct root_device, dev); 4188 } 4189 4190 static void root_device_release(struct device *dev) 4191 { 4192 kfree(to_root_device(dev)); 4193 } 4194 4195 /** 4196 * __root_device_register - allocate and register a root device 4197 * @name: root device name 4198 * @owner: owner module of the root device, usually THIS_MODULE 4199 * 4200 * This function allocates a root device and registers it 4201 * using device_register(). In order to free the returned 4202 * device, use root_device_unregister(). 4203 * 4204 * Root devices are dummy devices which allow other devices 4205 * to be grouped under /sys/devices. Use this function to 4206 * allocate a root device and then use it as the parent of 4207 * any device which should appear under /sys/devices/{name} 4208 * 4209 * The /sys/devices/{name} directory will also contain a 4210 * 'module' symlink which points to the @owner directory 4211 * in sysfs. 4212 * 4213 * Returns &struct device pointer on success, or ERR_PTR() on error. 4214 * 4215 * Note: You probably want to use root_device_register(). 4216 */ 4217 struct device *__root_device_register(const char *name, struct module *owner) 4218 { 4219 struct root_device *root; 4220 int err = -ENOMEM; 4221 4222 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4223 if (!root) 4224 return ERR_PTR(err); 4225 4226 err = dev_set_name(&root->dev, "%s", name); 4227 if (err) { 4228 kfree(root); 4229 return ERR_PTR(err); 4230 } 4231 4232 root->dev.release = root_device_release; 4233 4234 err = device_register(&root->dev); 4235 if (err) { 4236 put_device(&root->dev); 4237 return ERR_PTR(err); 4238 } 4239 4240 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4241 if (owner) { 4242 struct module_kobject *mk = &owner->mkobj; 4243 4244 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4245 if (err) { 4246 device_unregister(&root->dev); 4247 return ERR_PTR(err); 4248 } 4249 root->owner = owner; 4250 } 4251 #endif 4252 4253 return &root->dev; 4254 } 4255 EXPORT_SYMBOL_GPL(__root_device_register); 4256 4257 /** 4258 * root_device_unregister - unregister and free a root device 4259 * @dev: device going away 4260 * 4261 * This function unregisters and cleans up a device that was created by 4262 * root_device_register(). 4263 */ 4264 void root_device_unregister(struct device *dev) 4265 { 4266 struct root_device *root = to_root_device(dev); 4267 4268 if (root->owner) 4269 sysfs_remove_link(&root->dev.kobj, "module"); 4270 4271 device_unregister(dev); 4272 } 4273 EXPORT_SYMBOL_GPL(root_device_unregister); 4274 4275 4276 static void device_create_release(struct device *dev) 4277 { 4278 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4279 kfree(dev); 4280 } 4281 4282 static __printf(6, 0) struct device * 4283 device_create_groups_vargs(const struct class *class, struct device *parent, 4284 dev_t devt, void *drvdata, 4285 const struct attribute_group **groups, 4286 const char *fmt, va_list args) 4287 { 4288 struct device *dev = NULL; 4289 int retval = -ENODEV; 4290 4291 if (IS_ERR_OR_NULL(class)) 4292 goto error; 4293 4294 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4295 if (!dev) { 4296 retval = -ENOMEM; 4297 goto error; 4298 } 4299 4300 device_initialize(dev); 4301 dev->devt = devt; 4302 dev->class = class; 4303 dev->parent = parent; 4304 dev->groups = groups; 4305 dev->release = device_create_release; 4306 dev_set_drvdata(dev, drvdata); 4307 4308 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4309 if (retval) 4310 goto error; 4311 4312 retval = device_add(dev); 4313 if (retval) 4314 goto error; 4315 4316 return dev; 4317 4318 error: 4319 put_device(dev); 4320 return ERR_PTR(retval); 4321 } 4322 4323 /** 4324 * device_create - creates a device and registers it with sysfs 4325 * @class: pointer to the struct class that this device should be registered to 4326 * @parent: pointer to the parent struct device of this new device, if any 4327 * @devt: the dev_t for the char device to be added 4328 * @drvdata: the data to be added to the device for callbacks 4329 * @fmt: string for the device's name 4330 * 4331 * This function can be used by char device classes. A struct device 4332 * will be created in sysfs, registered to the specified class. 4333 * 4334 * A "dev" file will be created, showing the dev_t for the device, if 4335 * the dev_t is not 0,0. 4336 * If a pointer to a parent struct device is passed in, the newly created 4337 * struct device will be a child of that device in sysfs. 4338 * The pointer to the struct device will be returned from the call. 4339 * Any further sysfs files that might be required can be created using this 4340 * pointer. 4341 * 4342 * Returns &struct device pointer on success, or ERR_PTR() on error. 4343 */ 4344 struct device *device_create(const struct class *class, struct device *parent, 4345 dev_t devt, void *drvdata, const char *fmt, ...) 4346 { 4347 va_list vargs; 4348 struct device *dev; 4349 4350 va_start(vargs, fmt); 4351 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4352 fmt, vargs); 4353 va_end(vargs); 4354 return dev; 4355 } 4356 EXPORT_SYMBOL_GPL(device_create); 4357 4358 /** 4359 * device_create_with_groups - creates a device and registers it with sysfs 4360 * @class: pointer to the struct class that this device should be registered to 4361 * @parent: pointer to the parent struct device of this new device, if any 4362 * @devt: the dev_t for the char device to be added 4363 * @drvdata: the data to be added to the device for callbacks 4364 * @groups: NULL-terminated list of attribute groups to be created 4365 * @fmt: string for the device's name 4366 * 4367 * This function can be used by char device classes. A struct device 4368 * will be created in sysfs, registered to the specified class. 4369 * Additional attributes specified in the groups parameter will also 4370 * be created automatically. 4371 * 4372 * A "dev" file will be created, showing the dev_t for the device, if 4373 * the dev_t is not 0,0. 4374 * If a pointer to a parent struct device is passed in, the newly created 4375 * struct device will be a child of that device in sysfs. 4376 * The pointer to the struct device will be returned from the call. 4377 * Any further sysfs files that might be required can be created using this 4378 * pointer. 4379 * 4380 * Returns &struct device pointer on success, or ERR_PTR() on error. 4381 */ 4382 struct device *device_create_with_groups(const struct class *class, 4383 struct device *parent, dev_t devt, 4384 void *drvdata, 4385 const struct attribute_group **groups, 4386 const char *fmt, ...) 4387 { 4388 va_list vargs; 4389 struct device *dev; 4390 4391 va_start(vargs, fmt); 4392 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4393 fmt, vargs); 4394 va_end(vargs); 4395 return dev; 4396 } 4397 EXPORT_SYMBOL_GPL(device_create_with_groups); 4398 4399 /** 4400 * device_destroy - removes a device that was created with device_create() 4401 * @class: pointer to the struct class that this device was registered with 4402 * @devt: the dev_t of the device that was previously registered 4403 * 4404 * This call unregisters and cleans up a device that was created with a 4405 * call to device_create(). 4406 */ 4407 void device_destroy(const struct class *class, dev_t devt) 4408 { 4409 struct device *dev; 4410 4411 dev = class_find_device_by_devt(class, devt); 4412 if (dev) { 4413 put_device(dev); 4414 device_unregister(dev); 4415 } 4416 } 4417 EXPORT_SYMBOL_GPL(device_destroy); 4418 4419 /** 4420 * device_rename - renames a device 4421 * @dev: the pointer to the struct device to be renamed 4422 * @new_name: the new name of the device 4423 * 4424 * It is the responsibility of the caller to provide mutual 4425 * exclusion between two different calls of device_rename 4426 * on the same device to ensure that new_name is valid and 4427 * won't conflict with other devices. 4428 * 4429 * Note: given that some subsystems (networking and infiniband) use this 4430 * function, with no immediate plans for this to change, we cannot assume or 4431 * require that this function not be called at all. 4432 * 4433 * However, if you're writing new code, do not call this function. The following 4434 * text from Kay Sievers offers some insight: 4435 * 4436 * Renaming devices is racy at many levels, symlinks and other stuff are not 4437 * replaced atomically, and you get a "move" uevent, but it's not easy to 4438 * connect the event to the old and new device. Device nodes are not renamed at 4439 * all, there isn't even support for that in the kernel now. 4440 * 4441 * In the meantime, during renaming, your target name might be taken by another 4442 * driver, creating conflicts. Or the old name is taken directly after you 4443 * renamed it -- then you get events for the same DEVPATH, before you even see 4444 * the "move" event. It's just a mess, and nothing new should ever rely on 4445 * kernel device renaming. Besides that, it's not even implemented now for 4446 * other things than (driver-core wise very simple) network devices. 4447 * 4448 * Make up a "real" name in the driver before you register anything, or add 4449 * some other attributes for userspace to find the device, or use udev to add 4450 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4451 * don't even want to get into that and try to implement the missing pieces in 4452 * the core. We really have other pieces to fix in the driver core mess. :) 4453 */ 4454 int device_rename(struct device *dev, const char *new_name) 4455 { 4456 struct kobject *kobj = &dev->kobj; 4457 char *old_device_name = NULL; 4458 int error; 4459 4460 dev = get_device(dev); 4461 if (!dev) 4462 return -EINVAL; 4463 4464 dev_dbg(dev, "renaming to %s\n", new_name); 4465 4466 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4467 if (!old_device_name) { 4468 error = -ENOMEM; 4469 goto out; 4470 } 4471 4472 if (dev->class) { 4473 struct subsys_private *sp = class_to_subsys(dev->class); 4474 4475 if (!sp) { 4476 error = -EINVAL; 4477 goto out; 4478 } 4479 4480 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4481 new_name, kobject_namespace(kobj)); 4482 subsys_put(sp); 4483 if (error) 4484 goto out; 4485 } 4486 4487 error = kobject_rename(kobj, new_name); 4488 if (error) 4489 goto out; 4490 4491 out: 4492 put_device(dev); 4493 4494 kfree(old_device_name); 4495 4496 return error; 4497 } 4498 EXPORT_SYMBOL_GPL(device_rename); 4499 4500 static int device_move_class_links(struct device *dev, 4501 struct device *old_parent, 4502 struct device *new_parent) 4503 { 4504 int error = 0; 4505 4506 if (old_parent) 4507 sysfs_remove_link(&dev->kobj, "device"); 4508 if (new_parent) 4509 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4510 "device"); 4511 return error; 4512 } 4513 4514 /** 4515 * device_move - moves a device to a new parent 4516 * @dev: the pointer to the struct device to be moved 4517 * @new_parent: the new parent of the device (can be NULL) 4518 * @dpm_order: how to reorder the dpm_list 4519 */ 4520 int device_move(struct device *dev, struct device *new_parent, 4521 enum dpm_order dpm_order) 4522 { 4523 int error; 4524 struct device *old_parent; 4525 struct kobject *new_parent_kobj; 4526 4527 dev = get_device(dev); 4528 if (!dev) 4529 return -EINVAL; 4530 4531 device_pm_lock(); 4532 new_parent = get_device(new_parent); 4533 new_parent_kobj = get_device_parent(dev, new_parent); 4534 if (IS_ERR(new_parent_kobj)) { 4535 error = PTR_ERR(new_parent_kobj); 4536 put_device(new_parent); 4537 goto out; 4538 } 4539 4540 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4541 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4542 error = kobject_move(&dev->kobj, new_parent_kobj); 4543 if (error) { 4544 cleanup_glue_dir(dev, new_parent_kobj); 4545 put_device(new_parent); 4546 goto out; 4547 } 4548 old_parent = dev->parent; 4549 dev->parent = new_parent; 4550 if (old_parent) 4551 klist_remove(&dev->p->knode_parent); 4552 if (new_parent) { 4553 klist_add_tail(&dev->p->knode_parent, 4554 &new_parent->p->klist_children); 4555 set_dev_node(dev, dev_to_node(new_parent)); 4556 } 4557 4558 if (dev->class) { 4559 error = device_move_class_links(dev, old_parent, new_parent); 4560 if (error) { 4561 /* We ignore errors on cleanup since we're hosed anyway... */ 4562 device_move_class_links(dev, new_parent, old_parent); 4563 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4564 if (new_parent) 4565 klist_remove(&dev->p->knode_parent); 4566 dev->parent = old_parent; 4567 if (old_parent) { 4568 klist_add_tail(&dev->p->knode_parent, 4569 &old_parent->p->klist_children); 4570 set_dev_node(dev, dev_to_node(old_parent)); 4571 } 4572 } 4573 cleanup_glue_dir(dev, new_parent_kobj); 4574 put_device(new_parent); 4575 goto out; 4576 } 4577 } 4578 switch (dpm_order) { 4579 case DPM_ORDER_NONE: 4580 break; 4581 case DPM_ORDER_DEV_AFTER_PARENT: 4582 device_pm_move_after(dev, new_parent); 4583 devices_kset_move_after(dev, new_parent); 4584 break; 4585 case DPM_ORDER_PARENT_BEFORE_DEV: 4586 device_pm_move_before(new_parent, dev); 4587 devices_kset_move_before(new_parent, dev); 4588 break; 4589 case DPM_ORDER_DEV_LAST: 4590 device_pm_move_last(dev); 4591 devices_kset_move_last(dev); 4592 break; 4593 } 4594 4595 put_device(old_parent); 4596 out: 4597 device_pm_unlock(); 4598 put_device(dev); 4599 return error; 4600 } 4601 EXPORT_SYMBOL_GPL(device_move); 4602 4603 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4604 kgid_t kgid) 4605 { 4606 struct kobject *kobj = &dev->kobj; 4607 const struct class *class = dev->class; 4608 const struct device_type *type = dev->type; 4609 int error; 4610 4611 if (class) { 4612 /* 4613 * Change the device groups of the device class for @dev to 4614 * @kuid/@kgid. 4615 */ 4616 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4617 kgid); 4618 if (error) 4619 return error; 4620 } 4621 4622 if (type) { 4623 /* 4624 * Change the device groups of the device type for @dev to 4625 * @kuid/@kgid. 4626 */ 4627 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4628 kgid); 4629 if (error) 4630 return error; 4631 } 4632 4633 /* Change the device groups of @dev to @kuid/@kgid. */ 4634 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4635 if (error) 4636 return error; 4637 4638 if (device_supports_offline(dev) && !dev->offline_disabled) { 4639 /* Change online device attributes of @dev to @kuid/@kgid. */ 4640 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4641 kuid, kgid); 4642 if (error) 4643 return error; 4644 } 4645 4646 return 0; 4647 } 4648 4649 /** 4650 * device_change_owner - change the owner of an existing device. 4651 * @dev: device. 4652 * @kuid: new owner's kuid 4653 * @kgid: new owner's kgid 4654 * 4655 * This changes the owner of @dev and its corresponding sysfs entries to 4656 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4657 * core. 4658 * 4659 * Returns 0 on success or error code on failure. 4660 */ 4661 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4662 { 4663 int error; 4664 struct kobject *kobj = &dev->kobj; 4665 struct subsys_private *sp; 4666 4667 dev = get_device(dev); 4668 if (!dev) 4669 return -EINVAL; 4670 4671 /* 4672 * Change the kobject and the default attributes and groups of the 4673 * ktype associated with it to @kuid/@kgid. 4674 */ 4675 error = sysfs_change_owner(kobj, kuid, kgid); 4676 if (error) 4677 goto out; 4678 4679 /* 4680 * Change the uevent file for @dev to the new owner. The uevent file 4681 * was created in a separate step when @dev got added and we mirror 4682 * that step here. 4683 */ 4684 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4685 kgid); 4686 if (error) 4687 goto out; 4688 4689 /* 4690 * Change the device groups, the device groups associated with the 4691 * device class, and the groups associated with the device type of @dev 4692 * to @kuid/@kgid. 4693 */ 4694 error = device_attrs_change_owner(dev, kuid, kgid); 4695 if (error) 4696 goto out; 4697 4698 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4699 if (error) 4700 goto out; 4701 4702 /* 4703 * Change the owner of the symlink located in the class directory of 4704 * the device class associated with @dev which points to the actual 4705 * directory entry for @dev to @kuid/@kgid. This ensures that the 4706 * symlink shows the same permissions as its target. 4707 */ 4708 sp = class_to_subsys(dev->class); 4709 if (!sp) { 4710 error = -EINVAL; 4711 goto out; 4712 } 4713 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4714 subsys_put(sp); 4715 4716 out: 4717 put_device(dev); 4718 return error; 4719 } 4720 EXPORT_SYMBOL_GPL(device_change_owner); 4721 4722 /** 4723 * device_shutdown - call ->shutdown() on each device to shutdown. 4724 */ 4725 void device_shutdown(void) 4726 { 4727 struct device *dev, *parent; 4728 4729 wait_for_device_probe(); 4730 device_block_probing(); 4731 4732 cpufreq_suspend(); 4733 4734 spin_lock(&devices_kset->list_lock); 4735 /* 4736 * Walk the devices list backward, shutting down each in turn. 4737 * Beware that device unplug events may also start pulling 4738 * devices offline, even as the system is shutting down. 4739 */ 4740 while (!list_empty(&devices_kset->list)) { 4741 dev = list_entry(devices_kset->list.prev, struct device, 4742 kobj.entry); 4743 4744 /* 4745 * hold reference count of device's parent to 4746 * prevent it from being freed because parent's 4747 * lock is to be held 4748 */ 4749 parent = get_device(dev->parent); 4750 get_device(dev); 4751 /* 4752 * Make sure the device is off the kset list, in the 4753 * event that dev->*->shutdown() doesn't remove it. 4754 */ 4755 list_del_init(&dev->kobj.entry); 4756 spin_unlock(&devices_kset->list_lock); 4757 4758 /* hold lock to avoid race with probe/release */ 4759 if (parent) 4760 device_lock(parent); 4761 device_lock(dev); 4762 4763 /* Don't allow any more runtime suspends */ 4764 pm_runtime_get_noresume(dev); 4765 pm_runtime_barrier(dev); 4766 4767 if (dev->class && dev->class->shutdown_pre) { 4768 if (initcall_debug) 4769 dev_info(dev, "shutdown_pre\n"); 4770 dev->class->shutdown_pre(dev); 4771 } 4772 if (dev->bus && dev->bus->shutdown) { 4773 if (initcall_debug) 4774 dev_info(dev, "shutdown\n"); 4775 dev->bus->shutdown(dev); 4776 } else if (dev->driver && dev->driver->shutdown) { 4777 if (initcall_debug) 4778 dev_info(dev, "shutdown\n"); 4779 dev->driver->shutdown(dev); 4780 } 4781 4782 device_unlock(dev); 4783 if (parent) 4784 device_unlock(parent); 4785 4786 put_device(dev); 4787 put_device(parent); 4788 4789 spin_lock(&devices_kset->list_lock); 4790 } 4791 spin_unlock(&devices_kset->list_lock); 4792 } 4793 4794 /* 4795 * Device logging functions 4796 */ 4797 4798 #ifdef CONFIG_PRINTK 4799 static void 4800 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4801 { 4802 const char *subsys; 4803 4804 memset(dev_info, 0, sizeof(*dev_info)); 4805 4806 if (dev->class) 4807 subsys = dev->class->name; 4808 else if (dev->bus) 4809 subsys = dev->bus->name; 4810 else 4811 return; 4812 4813 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4814 4815 /* 4816 * Add device identifier DEVICE=: 4817 * b12:8 block dev_t 4818 * c127:3 char dev_t 4819 * n8 netdev ifindex 4820 * +sound:card0 subsystem:devname 4821 */ 4822 if (MAJOR(dev->devt)) { 4823 char c; 4824 4825 if (strcmp(subsys, "block") == 0) 4826 c = 'b'; 4827 else 4828 c = 'c'; 4829 4830 snprintf(dev_info->device, sizeof(dev_info->device), 4831 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4832 } else if (strcmp(subsys, "net") == 0) { 4833 struct net_device *net = to_net_dev(dev); 4834 4835 snprintf(dev_info->device, sizeof(dev_info->device), 4836 "n%u", net->ifindex); 4837 } else { 4838 snprintf(dev_info->device, sizeof(dev_info->device), 4839 "+%s:%s", subsys, dev_name(dev)); 4840 } 4841 } 4842 4843 int dev_vprintk_emit(int level, const struct device *dev, 4844 const char *fmt, va_list args) 4845 { 4846 struct dev_printk_info dev_info; 4847 4848 set_dev_info(dev, &dev_info); 4849 4850 return vprintk_emit(0, level, &dev_info, fmt, args); 4851 } 4852 EXPORT_SYMBOL(dev_vprintk_emit); 4853 4854 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4855 { 4856 va_list args; 4857 int r; 4858 4859 va_start(args, fmt); 4860 4861 r = dev_vprintk_emit(level, dev, fmt, args); 4862 4863 va_end(args); 4864 4865 return r; 4866 } 4867 EXPORT_SYMBOL(dev_printk_emit); 4868 4869 static void __dev_printk(const char *level, const struct device *dev, 4870 struct va_format *vaf) 4871 { 4872 if (dev) 4873 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4874 dev_driver_string(dev), dev_name(dev), vaf); 4875 else 4876 printk("%s(NULL device *): %pV", level, vaf); 4877 } 4878 4879 void _dev_printk(const char *level, const struct device *dev, 4880 const char *fmt, ...) 4881 { 4882 struct va_format vaf; 4883 va_list args; 4884 4885 va_start(args, fmt); 4886 4887 vaf.fmt = fmt; 4888 vaf.va = &args; 4889 4890 __dev_printk(level, dev, &vaf); 4891 4892 va_end(args); 4893 } 4894 EXPORT_SYMBOL(_dev_printk); 4895 4896 #define define_dev_printk_level(func, kern_level) \ 4897 void func(const struct device *dev, const char *fmt, ...) \ 4898 { \ 4899 struct va_format vaf; \ 4900 va_list args; \ 4901 \ 4902 va_start(args, fmt); \ 4903 \ 4904 vaf.fmt = fmt; \ 4905 vaf.va = &args; \ 4906 \ 4907 __dev_printk(kern_level, dev, &vaf); \ 4908 \ 4909 va_end(args); \ 4910 } \ 4911 EXPORT_SYMBOL(func); 4912 4913 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4914 define_dev_printk_level(_dev_alert, KERN_ALERT); 4915 define_dev_printk_level(_dev_crit, KERN_CRIT); 4916 define_dev_printk_level(_dev_err, KERN_ERR); 4917 define_dev_printk_level(_dev_warn, KERN_WARNING); 4918 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4919 define_dev_printk_level(_dev_info, KERN_INFO); 4920 4921 #endif 4922 4923 /** 4924 * dev_err_probe - probe error check and log helper 4925 * @dev: the pointer to the struct device 4926 * @err: error value to test 4927 * @fmt: printf-style format string 4928 * @...: arguments as specified in the format string 4929 * 4930 * This helper implements common pattern present in probe functions for error 4931 * checking: print debug or error message depending if the error value is 4932 * -EPROBE_DEFER and propagate error upwards. 4933 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4934 * checked later by reading devices_deferred debugfs attribute. 4935 * It replaces code sequence:: 4936 * 4937 * if (err != -EPROBE_DEFER) 4938 * dev_err(dev, ...); 4939 * else 4940 * dev_dbg(dev, ...); 4941 * return err; 4942 * 4943 * with:: 4944 * 4945 * return dev_err_probe(dev, err, ...); 4946 * 4947 * Using this helper in your probe function is totally fine even if @err is 4948 * known to never be -EPROBE_DEFER. 4949 * The benefit compared to a normal dev_err() is the standardized format 4950 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 4951 * instead of "-35") and the fact that the error code is returned which allows 4952 * more compact error paths. 4953 * 4954 * Returns @err. 4955 */ 4956 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4957 { 4958 struct va_format vaf; 4959 va_list args; 4960 4961 va_start(args, fmt); 4962 vaf.fmt = fmt; 4963 vaf.va = &args; 4964 4965 if (err != -EPROBE_DEFER) { 4966 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4967 } else { 4968 device_set_deferred_probe_reason(dev, &vaf); 4969 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4970 } 4971 4972 va_end(args); 4973 4974 return err; 4975 } 4976 EXPORT_SYMBOL_GPL(dev_err_probe); 4977 4978 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4979 { 4980 return fwnode && !IS_ERR(fwnode->secondary); 4981 } 4982 4983 /** 4984 * set_primary_fwnode - Change the primary firmware node of a given device. 4985 * @dev: Device to handle. 4986 * @fwnode: New primary firmware node of the device. 4987 * 4988 * Set the device's firmware node pointer to @fwnode, but if a secondary 4989 * firmware node of the device is present, preserve it. 4990 * 4991 * Valid fwnode cases are: 4992 * - primary --> secondary --> -ENODEV 4993 * - primary --> NULL 4994 * - secondary --> -ENODEV 4995 * - NULL 4996 */ 4997 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4998 { 4999 struct device *parent = dev->parent; 5000 struct fwnode_handle *fn = dev->fwnode; 5001 5002 if (fwnode) { 5003 if (fwnode_is_primary(fn)) 5004 fn = fn->secondary; 5005 5006 if (fn) { 5007 WARN_ON(fwnode->secondary); 5008 fwnode->secondary = fn; 5009 } 5010 dev->fwnode = fwnode; 5011 } else { 5012 if (fwnode_is_primary(fn)) { 5013 dev->fwnode = fn->secondary; 5014 5015 /* Skip nullifying fn->secondary if the primary is shared */ 5016 if (parent && fn == parent->fwnode) 5017 return; 5018 5019 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5020 fn->secondary = NULL; 5021 } else { 5022 dev->fwnode = NULL; 5023 } 5024 } 5025 } 5026 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5027 5028 /** 5029 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5030 * @dev: Device to handle. 5031 * @fwnode: New secondary firmware node of the device. 5032 * 5033 * If a primary firmware node of the device is present, set its secondary 5034 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5035 * @fwnode. 5036 */ 5037 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5038 { 5039 if (fwnode) 5040 fwnode->secondary = ERR_PTR(-ENODEV); 5041 5042 if (fwnode_is_primary(dev->fwnode)) 5043 dev->fwnode->secondary = fwnode; 5044 else 5045 dev->fwnode = fwnode; 5046 } 5047 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5048 5049 /** 5050 * device_set_of_node_from_dev - reuse device-tree node of another device 5051 * @dev: device whose device-tree node is being set 5052 * @dev2: device whose device-tree node is being reused 5053 * 5054 * Takes another reference to the new device-tree node after first dropping 5055 * any reference held to the old node. 5056 */ 5057 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5058 { 5059 of_node_put(dev->of_node); 5060 dev->of_node = of_node_get(dev2->of_node); 5061 dev->of_node_reused = true; 5062 } 5063 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5064 5065 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5066 { 5067 dev->fwnode = fwnode; 5068 dev->of_node = to_of_node(fwnode); 5069 } 5070 EXPORT_SYMBOL_GPL(device_set_node); 5071 5072 int device_match_name(struct device *dev, const void *name) 5073 { 5074 return sysfs_streq(dev_name(dev), name); 5075 } 5076 EXPORT_SYMBOL_GPL(device_match_name); 5077 5078 int device_match_of_node(struct device *dev, const void *np) 5079 { 5080 return dev->of_node == np; 5081 } 5082 EXPORT_SYMBOL_GPL(device_match_of_node); 5083 5084 int device_match_fwnode(struct device *dev, const void *fwnode) 5085 { 5086 return dev_fwnode(dev) == fwnode; 5087 } 5088 EXPORT_SYMBOL_GPL(device_match_fwnode); 5089 5090 int device_match_devt(struct device *dev, const void *pdevt) 5091 { 5092 return dev->devt == *(dev_t *)pdevt; 5093 } 5094 EXPORT_SYMBOL_GPL(device_match_devt); 5095 5096 int device_match_acpi_dev(struct device *dev, const void *adev) 5097 { 5098 return ACPI_COMPANION(dev) == adev; 5099 } 5100 EXPORT_SYMBOL(device_match_acpi_dev); 5101 5102 int device_match_acpi_handle(struct device *dev, const void *handle) 5103 { 5104 return ACPI_HANDLE(dev) == handle; 5105 } 5106 EXPORT_SYMBOL(device_match_acpi_handle); 5107 5108 int device_match_any(struct device *dev, const void *unused) 5109 { 5110 return 1; 5111 } 5112 EXPORT_SYMBOL_GPL(device_match_any); 5113