1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sysfs.h> 31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 32 33 #include "base.h" 34 #include "power/power.h" 35 36 #ifdef CONFIG_SYSFS_DEPRECATED 37 #ifdef CONFIG_SYSFS_DEPRECATED_V2 38 long sysfs_deprecated = 1; 39 #else 40 long sysfs_deprecated = 0; 41 #endif 42 static int __init sysfs_deprecated_setup(char *arg) 43 { 44 return kstrtol(arg, 10, &sysfs_deprecated); 45 } 46 early_param("sysfs.deprecated", sysfs_deprecated_setup); 47 #endif 48 49 /* Device links support. */ 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static DEFINE_MUTEX(fwnode_link_lock); 53 static bool fw_devlink_is_permissive(void); 54 static bool fw_devlink_drv_reg_done; 55 56 /** 57 * fwnode_link_add - Create a link between two fwnode_handles. 58 * @con: Consumer end of the link. 59 * @sup: Supplier end of the link. 60 * 61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 62 * represents the detail that the firmware lists @sup fwnode as supplying a 63 * resource to @con. 64 * 65 * The driver core will use the fwnode link to create a device link between the 66 * two device objects corresponding to @con and @sup when they are created. The 67 * driver core will automatically delete the fwnode link between @con and @sup 68 * after doing that. 69 * 70 * Attempts to create duplicate links between the same pair of fwnode handles 71 * are ignored and there is no reference counting. 72 */ 73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 74 { 75 struct fwnode_link *link; 76 int ret = 0; 77 78 mutex_lock(&fwnode_link_lock); 79 80 list_for_each_entry(link, &sup->consumers, s_hook) 81 if (link->consumer == con) 82 goto out; 83 84 link = kzalloc(sizeof(*link), GFP_KERNEL); 85 if (!link) { 86 ret = -ENOMEM; 87 goto out; 88 } 89 90 link->supplier = sup; 91 INIT_LIST_HEAD(&link->s_hook); 92 link->consumer = con; 93 INIT_LIST_HEAD(&link->c_hook); 94 95 list_add(&link->s_hook, &sup->consumers); 96 list_add(&link->c_hook, &con->suppliers); 97 out: 98 mutex_unlock(&fwnode_link_lock); 99 100 return ret; 101 } 102 103 /** 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 105 * @fwnode: fwnode whose supplier links need to be deleted 106 * 107 * Deletes all supplier links connecting directly to @fwnode. 108 */ 109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 110 { 111 struct fwnode_link *link, *tmp; 112 113 mutex_lock(&fwnode_link_lock); 114 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 mutex_unlock(&fwnode_link_lock); 120 } 121 122 /** 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 124 * @fwnode: fwnode whose consumer links need to be deleted 125 * 126 * Deletes all consumer links connecting directly to @fwnode. 127 */ 128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 129 { 130 struct fwnode_link *link, *tmp; 131 132 mutex_lock(&fwnode_link_lock); 133 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 134 list_del(&link->s_hook); 135 list_del(&link->c_hook); 136 kfree(link); 137 } 138 mutex_unlock(&fwnode_link_lock); 139 } 140 141 /** 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 143 * @fwnode: fwnode whose links needs to be deleted 144 * 145 * Deletes all links connecting directly to a fwnode. 146 */ 147 void fwnode_links_purge(struct fwnode_handle *fwnode) 148 { 149 fwnode_links_purge_suppliers(fwnode); 150 fwnode_links_purge_consumers(fwnode); 151 } 152 153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 154 { 155 struct fwnode_handle *child; 156 157 /* Don't purge consumer links of an added child */ 158 if (fwnode->dev) 159 return; 160 161 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 162 fwnode_links_purge_consumers(fwnode); 163 164 fwnode_for_each_available_child_node(fwnode, child) 165 fw_devlink_purge_absent_suppliers(child); 166 } 167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 168 169 #ifdef CONFIG_SRCU 170 static DEFINE_MUTEX(device_links_lock); 171 DEFINE_STATIC_SRCU(device_links_srcu); 172 173 static inline void device_links_write_lock(void) 174 { 175 mutex_lock(&device_links_lock); 176 } 177 178 static inline void device_links_write_unlock(void) 179 { 180 mutex_unlock(&device_links_lock); 181 } 182 183 int device_links_read_lock(void) __acquires(&device_links_srcu) 184 { 185 return srcu_read_lock(&device_links_srcu); 186 } 187 188 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 189 { 190 srcu_read_unlock(&device_links_srcu, idx); 191 } 192 193 int device_links_read_lock_held(void) 194 { 195 return srcu_read_lock_held(&device_links_srcu); 196 } 197 198 static void device_link_synchronize_removal(void) 199 { 200 synchronize_srcu(&device_links_srcu); 201 } 202 203 static void device_link_remove_from_lists(struct device_link *link) 204 { 205 list_del_rcu(&link->s_node); 206 list_del_rcu(&link->c_node); 207 } 208 #else /* !CONFIG_SRCU */ 209 static DECLARE_RWSEM(device_links_lock); 210 211 static inline void device_links_write_lock(void) 212 { 213 down_write(&device_links_lock); 214 } 215 216 static inline void device_links_write_unlock(void) 217 { 218 up_write(&device_links_lock); 219 } 220 221 int device_links_read_lock(void) 222 { 223 down_read(&device_links_lock); 224 return 0; 225 } 226 227 void device_links_read_unlock(int not_used) 228 { 229 up_read(&device_links_lock); 230 } 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 int device_links_read_lock_held(void) 234 { 235 return lockdep_is_held(&device_links_lock); 236 } 237 #endif 238 239 static inline void device_link_synchronize_removal(void) 240 { 241 } 242 243 static void device_link_remove_from_lists(struct device_link *link) 244 { 245 list_del(&link->s_node); 246 list_del(&link->c_node); 247 } 248 #endif /* !CONFIG_SRCU */ 249 250 static bool device_is_ancestor(struct device *dev, struct device *target) 251 { 252 while (target->parent) { 253 target = target->parent; 254 if (dev == target) 255 return true; 256 } 257 return false; 258 } 259 260 /** 261 * device_is_dependent - Check if one device depends on another one 262 * @dev: Device to check dependencies for. 263 * @target: Device to check against. 264 * 265 * Check if @target depends on @dev or any device dependent on it (its child or 266 * its consumer etc). Return 1 if that is the case or 0 otherwise. 267 */ 268 int device_is_dependent(struct device *dev, void *target) 269 { 270 struct device_link *link; 271 int ret; 272 273 /* 274 * The "ancestors" check is needed to catch the case when the target 275 * device has not been completely initialized yet and it is still 276 * missing from the list of children of its parent device. 277 */ 278 if (dev == target || device_is_ancestor(dev, target)) 279 return 1; 280 281 ret = device_for_each_child(dev, target, device_is_dependent); 282 if (ret) 283 return ret; 284 285 list_for_each_entry(link, &dev->links.consumers, s_node) { 286 if ((link->flags & ~DL_FLAG_INFERRED) == 287 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 288 continue; 289 290 if (link->consumer == target) 291 return 1; 292 293 ret = device_is_dependent(link->consumer, target); 294 if (ret) 295 break; 296 } 297 return ret; 298 } 299 300 static void device_link_init_status(struct device_link *link, 301 struct device *consumer, 302 struct device *supplier) 303 { 304 switch (supplier->links.status) { 305 case DL_DEV_PROBING: 306 switch (consumer->links.status) { 307 case DL_DEV_PROBING: 308 /* 309 * A consumer driver can create a link to a supplier 310 * that has not completed its probing yet as long as it 311 * knows that the supplier is already functional (for 312 * example, it has just acquired some resources from the 313 * supplier). 314 */ 315 link->status = DL_STATE_CONSUMER_PROBE; 316 break; 317 default: 318 link->status = DL_STATE_DORMANT; 319 break; 320 } 321 break; 322 case DL_DEV_DRIVER_BOUND: 323 switch (consumer->links.status) { 324 case DL_DEV_PROBING: 325 link->status = DL_STATE_CONSUMER_PROBE; 326 break; 327 case DL_DEV_DRIVER_BOUND: 328 link->status = DL_STATE_ACTIVE; 329 break; 330 default: 331 link->status = DL_STATE_AVAILABLE; 332 break; 333 } 334 break; 335 case DL_DEV_UNBINDING: 336 link->status = DL_STATE_SUPPLIER_UNBIND; 337 break; 338 default: 339 link->status = DL_STATE_DORMANT; 340 break; 341 } 342 } 343 344 static int device_reorder_to_tail(struct device *dev, void *not_used) 345 { 346 struct device_link *link; 347 348 /* 349 * Devices that have not been registered yet will be put to the ends 350 * of the lists during the registration, so skip them here. 351 */ 352 if (device_is_registered(dev)) 353 devices_kset_move_last(dev); 354 355 if (device_pm_initialized(dev)) 356 device_pm_move_last(dev); 357 358 device_for_each_child(dev, NULL, device_reorder_to_tail); 359 list_for_each_entry(link, &dev->links.consumers, s_node) { 360 if ((link->flags & ~DL_FLAG_INFERRED) == 361 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 362 continue; 363 device_reorder_to_tail(link->consumer, NULL); 364 } 365 366 return 0; 367 } 368 369 /** 370 * device_pm_move_to_tail - Move set of devices to the end of device lists 371 * @dev: Device to move 372 * 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 374 * 375 * It moves the @dev along with all of its children and all of its consumers 376 * to the ends of the device_kset and dpm_list, recursively. 377 */ 378 void device_pm_move_to_tail(struct device *dev) 379 { 380 int idx; 381 382 idx = device_links_read_lock(); 383 device_pm_lock(); 384 device_reorder_to_tail(dev, NULL); 385 device_pm_unlock(); 386 device_links_read_unlock(idx); 387 } 388 389 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 390 391 static ssize_t status_show(struct device *dev, 392 struct device_attribute *attr, char *buf) 393 { 394 const char *output; 395 396 switch (to_devlink(dev)->status) { 397 case DL_STATE_NONE: 398 output = "not tracked"; 399 break; 400 case DL_STATE_DORMANT: 401 output = "dormant"; 402 break; 403 case DL_STATE_AVAILABLE: 404 output = "available"; 405 break; 406 case DL_STATE_CONSUMER_PROBE: 407 output = "consumer probing"; 408 break; 409 case DL_STATE_ACTIVE: 410 output = "active"; 411 break; 412 case DL_STATE_SUPPLIER_UNBIND: 413 output = "supplier unbinding"; 414 break; 415 default: 416 output = "unknown"; 417 break; 418 } 419 420 return sysfs_emit(buf, "%s\n", output); 421 } 422 static DEVICE_ATTR_RO(status); 423 424 static ssize_t auto_remove_on_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct device_link *link = to_devlink(dev); 428 const char *output; 429 430 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 431 output = "supplier unbind"; 432 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 433 output = "consumer unbind"; 434 else 435 output = "never"; 436 437 return sysfs_emit(buf, "%s\n", output); 438 } 439 static DEVICE_ATTR_RO(auto_remove_on); 440 441 static ssize_t runtime_pm_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct device_link *link = to_devlink(dev); 445 446 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 447 } 448 static DEVICE_ATTR_RO(runtime_pm); 449 450 static ssize_t sync_state_only_show(struct device *dev, 451 struct device_attribute *attr, char *buf) 452 { 453 struct device_link *link = to_devlink(dev); 454 455 return sysfs_emit(buf, "%d\n", 456 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 457 } 458 static DEVICE_ATTR_RO(sync_state_only); 459 460 static struct attribute *devlink_attrs[] = { 461 &dev_attr_status.attr, 462 &dev_attr_auto_remove_on.attr, 463 &dev_attr_runtime_pm.attr, 464 &dev_attr_sync_state_only.attr, 465 NULL, 466 }; 467 ATTRIBUTE_GROUPS(devlink); 468 469 static void device_link_release_fn(struct work_struct *work) 470 { 471 struct device_link *link = container_of(work, struct device_link, rm_work); 472 473 /* Ensure that all references to the link object have been dropped. */ 474 device_link_synchronize_removal(); 475 476 while (refcount_dec_not_one(&link->rpm_active)) 477 pm_runtime_put(link->supplier); 478 479 put_device(link->consumer); 480 put_device(link->supplier); 481 kfree(link); 482 } 483 484 static void devlink_dev_release(struct device *dev) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 INIT_WORK(&link->rm_work, device_link_release_fn); 489 /* 490 * It may take a while to complete this work because of the SRCU 491 * synchronization in device_link_release_fn() and if the consumer or 492 * supplier devices get deleted when it runs, so put it into the "long" 493 * workqueue. 494 */ 495 queue_work(system_long_wq, &link->rm_work); 496 } 497 498 static struct class devlink_class = { 499 .name = "devlink", 500 .owner = THIS_MODULE, 501 .dev_groups = devlink_groups, 502 .dev_release = devlink_dev_release, 503 }; 504 505 static int devlink_add_symlinks(struct device *dev, 506 struct class_interface *class_intf) 507 { 508 int ret; 509 size_t len; 510 struct device_link *link = to_devlink(dev); 511 struct device *sup = link->supplier; 512 struct device *con = link->consumer; 513 char *buf; 514 515 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 516 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 517 len += strlen(":"); 518 len += strlen("supplier:") + 1; 519 buf = kzalloc(len, GFP_KERNEL); 520 if (!buf) 521 return -ENOMEM; 522 523 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 524 if (ret) 525 goto out; 526 527 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 528 if (ret) 529 goto err_con; 530 531 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 532 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 533 if (ret) 534 goto err_con_dev; 535 536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 537 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 538 if (ret) 539 goto err_sup_dev; 540 541 goto out; 542 543 err_sup_dev: 544 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 545 sysfs_remove_link(&sup->kobj, buf); 546 err_con_dev: 547 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 548 err_con: 549 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 550 out: 551 kfree(buf); 552 return ret; 553 } 554 555 static void devlink_remove_symlinks(struct device *dev, 556 struct class_interface *class_intf) 557 { 558 struct device_link *link = to_devlink(dev); 559 size_t len; 560 struct device *sup = link->supplier; 561 struct device *con = link->consumer; 562 char *buf; 563 564 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 565 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 566 567 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 568 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 569 len += strlen(":"); 570 len += strlen("supplier:") + 1; 571 buf = kzalloc(len, GFP_KERNEL); 572 if (!buf) { 573 WARN(1, "Unable to properly free device link symlinks!\n"); 574 return; 575 } 576 577 if (device_is_registered(con)) { 578 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 579 sysfs_remove_link(&con->kobj, buf); 580 } 581 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 582 sysfs_remove_link(&sup->kobj, buf); 583 kfree(buf); 584 } 585 586 static struct class_interface devlink_class_intf = { 587 .class = &devlink_class, 588 .add_dev = devlink_add_symlinks, 589 .remove_dev = devlink_remove_symlinks, 590 }; 591 592 static int __init devlink_class_init(void) 593 { 594 int ret; 595 596 ret = class_register(&devlink_class); 597 if (ret) 598 return ret; 599 600 ret = class_interface_register(&devlink_class_intf); 601 if (ret) 602 class_unregister(&devlink_class); 603 604 return ret; 605 } 606 postcore_initcall(devlink_class_init); 607 608 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 609 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 610 DL_FLAG_AUTOPROBE_CONSUMER | \ 611 DL_FLAG_SYNC_STATE_ONLY | \ 612 DL_FLAG_INFERRED) 613 614 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 615 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 616 617 /** 618 * device_link_add - Create a link between two devices. 619 * @consumer: Consumer end of the link. 620 * @supplier: Supplier end of the link. 621 * @flags: Link flags. 622 * 623 * The caller is responsible for the proper synchronization of the link creation 624 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 625 * runtime PM framework to take the link into account. Second, if the 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 627 * be forced into the active meta state and reference-counted upon the creation 628 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 629 * ignored. 630 * 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 632 * expected to release the link returned by it directly with the help of either 633 * device_link_del() or device_link_remove(). 634 * 635 * If that flag is not set, however, the caller of this function is handing the 636 * management of the link over to the driver core entirely and its return value 637 * can only be used to check whether or not the link is present. In that case, 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 639 * flags can be used to indicate to the driver core when the link can be safely 640 * deleted. Namely, setting one of them in @flags indicates to the driver core 641 * that the link is not going to be used (by the given caller of this function) 642 * after unbinding the consumer or supplier driver, respectively, from its 643 * device, so the link can be deleted at that point. If none of them is set, 644 * the link will be maintained until one of the devices pointed to by it (either 645 * the consumer or the supplier) is unregistered. 646 * 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 650 * be used to request the driver core to automatically probe for a consumer 651 * driver after successfully binding a driver to the supplier device. 652 * 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 655 * the same time is invalid and will cause NULL to be returned upfront. 656 * However, if a device link between the given @consumer and @supplier pair 657 * exists already when this function is called for them, the existing link will 658 * be returned regardless of its current type and status (the link's flags may 659 * be modified then). The caller of this function is then expected to treat 660 * the link as though it has just been created, so (in particular) if 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 662 * explicitly when not needed any more (as stated above). 663 * 664 * A side effect of the link creation is re-ordering of dpm_list and the 665 * devices_kset list by moving the consumer device and all devices depending 666 * on it to the ends of these lists (that does not happen to devices that have 667 * not been registered when this function is called). 668 * 669 * The supplier device is required to be registered when this function is called 670 * and NULL will be returned if that is not the case. The consumer device need 671 * not be registered, however. 672 */ 673 struct device_link *device_link_add(struct device *consumer, 674 struct device *supplier, u32 flags) 675 { 676 struct device_link *link; 677 678 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 679 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 680 (flags & DL_FLAG_SYNC_STATE_ONLY && 681 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 682 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 683 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 684 DL_FLAG_AUTOREMOVE_SUPPLIER))) 685 return NULL; 686 687 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 688 if (pm_runtime_get_sync(supplier) < 0) { 689 pm_runtime_put_noidle(supplier); 690 return NULL; 691 } 692 } 693 694 if (!(flags & DL_FLAG_STATELESS)) 695 flags |= DL_FLAG_MANAGED; 696 697 device_links_write_lock(); 698 device_pm_lock(); 699 700 /* 701 * If the supplier has not been fully registered yet or there is a 702 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 703 * the supplier already in the graph, return NULL. If the link is a 704 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 705 * because it only affects sync_state() callbacks. 706 */ 707 if (!device_pm_initialized(supplier) 708 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 709 device_is_dependent(consumer, supplier))) { 710 link = NULL; 711 goto out; 712 } 713 714 /* 715 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 716 * So, only create it if the consumer hasn't probed yet. 717 */ 718 if (flags & DL_FLAG_SYNC_STATE_ONLY && 719 consumer->links.status != DL_DEV_NO_DRIVER && 720 consumer->links.status != DL_DEV_PROBING) { 721 link = NULL; 722 goto out; 723 } 724 725 /* 726 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 727 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 728 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 729 */ 730 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 731 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 732 733 list_for_each_entry(link, &supplier->links.consumers, s_node) { 734 if (link->consumer != consumer) 735 continue; 736 737 if (link->flags & DL_FLAG_INFERRED && 738 !(flags & DL_FLAG_INFERRED)) 739 link->flags &= ~DL_FLAG_INFERRED; 740 741 if (flags & DL_FLAG_PM_RUNTIME) { 742 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 743 pm_runtime_new_link(consumer); 744 link->flags |= DL_FLAG_PM_RUNTIME; 745 } 746 if (flags & DL_FLAG_RPM_ACTIVE) 747 refcount_inc(&link->rpm_active); 748 } 749 750 if (flags & DL_FLAG_STATELESS) { 751 kref_get(&link->kref); 752 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 753 !(link->flags & DL_FLAG_STATELESS)) { 754 link->flags |= DL_FLAG_STATELESS; 755 goto reorder; 756 } else { 757 link->flags |= DL_FLAG_STATELESS; 758 goto out; 759 } 760 } 761 762 /* 763 * If the life time of the link following from the new flags is 764 * longer than indicated by the flags of the existing link, 765 * update the existing link to stay around longer. 766 */ 767 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 768 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 769 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 770 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 771 } 772 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 773 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 774 DL_FLAG_AUTOREMOVE_SUPPLIER); 775 } 776 if (!(link->flags & DL_FLAG_MANAGED)) { 777 kref_get(&link->kref); 778 link->flags |= DL_FLAG_MANAGED; 779 device_link_init_status(link, consumer, supplier); 780 } 781 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 782 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 783 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 784 goto reorder; 785 } 786 787 goto out; 788 } 789 790 link = kzalloc(sizeof(*link), GFP_KERNEL); 791 if (!link) 792 goto out; 793 794 refcount_set(&link->rpm_active, 1); 795 796 get_device(supplier); 797 link->supplier = supplier; 798 INIT_LIST_HEAD(&link->s_node); 799 get_device(consumer); 800 link->consumer = consumer; 801 INIT_LIST_HEAD(&link->c_node); 802 link->flags = flags; 803 kref_init(&link->kref); 804 805 link->link_dev.class = &devlink_class; 806 device_set_pm_not_required(&link->link_dev); 807 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 808 dev_bus_name(supplier), dev_name(supplier), 809 dev_bus_name(consumer), dev_name(consumer)); 810 if (device_register(&link->link_dev)) { 811 put_device(consumer); 812 put_device(supplier); 813 kfree(link); 814 link = NULL; 815 goto out; 816 } 817 818 if (flags & DL_FLAG_PM_RUNTIME) { 819 if (flags & DL_FLAG_RPM_ACTIVE) 820 refcount_inc(&link->rpm_active); 821 822 pm_runtime_new_link(consumer); 823 } 824 825 /* Determine the initial link state. */ 826 if (flags & DL_FLAG_STATELESS) 827 link->status = DL_STATE_NONE; 828 else 829 device_link_init_status(link, consumer, supplier); 830 831 /* 832 * Some callers expect the link creation during consumer driver probe to 833 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 834 */ 835 if (link->status == DL_STATE_CONSUMER_PROBE && 836 flags & DL_FLAG_PM_RUNTIME) 837 pm_runtime_resume(supplier); 838 839 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 840 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 841 842 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 843 dev_dbg(consumer, 844 "Linked as a sync state only consumer to %s\n", 845 dev_name(supplier)); 846 goto out; 847 } 848 849 reorder: 850 /* 851 * Move the consumer and all of the devices depending on it to the end 852 * of dpm_list and the devices_kset list. 853 * 854 * It is necessary to hold dpm_list locked throughout all that or else 855 * we may end up suspending with a wrong ordering of it. 856 */ 857 device_reorder_to_tail(consumer, NULL); 858 859 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 860 861 out: 862 device_pm_unlock(); 863 device_links_write_unlock(); 864 865 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 866 pm_runtime_put(supplier); 867 868 return link; 869 } 870 EXPORT_SYMBOL_GPL(device_link_add); 871 872 static void __device_link_del(struct kref *kref) 873 { 874 struct device_link *link = container_of(kref, struct device_link, kref); 875 876 dev_dbg(link->consumer, "Dropping the link to %s\n", 877 dev_name(link->supplier)); 878 879 pm_runtime_drop_link(link); 880 881 device_link_remove_from_lists(link); 882 device_unregister(&link->link_dev); 883 } 884 885 static void device_link_put_kref(struct device_link *link) 886 { 887 if (link->flags & DL_FLAG_STATELESS) 888 kref_put(&link->kref, __device_link_del); 889 else 890 WARN(1, "Unable to drop a managed device link reference\n"); 891 } 892 893 /** 894 * device_link_del - Delete a stateless link between two devices. 895 * @link: Device link to delete. 896 * 897 * The caller must ensure proper synchronization of this function with runtime 898 * PM. If the link was added multiple times, it needs to be deleted as often. 899 * Care is required for hotplugged devices: Their links are purged on removal 900 * and calling device_link_del() is then no longer allowed. 901 */ 902 void device_link_del(struct device_link *link) 903 { 904 device_links_write_lock(); 905 device_link_put_kref(link); 906 device_links_write_unlock(); 907 } 908 EXPORT_SYMBOL_GPL(device_link_del); 909 910 /** 911 * device_link_remove - Delete a stateless link between two devices. 912 * @consumer: Consumer end of the link. 913 * @supplier: Supplier end of the link. 914 * 915 * The caller must ensure proper synchronization of this function with runtime 916 * PM. 917 */ 918 void device_link_remove(void *consumer, struct device *supplier) 919 { 920 struct device_link *link; 921 922 if (WARN_ON(consumer == supplier)) 923 return; 924 925 device_links_write_lock(); 926 927 list_for_each_entry(link, &supplier->links.consumers, s_node) { 928 if (link->consumer == consumer) { 929 device_link_put_kref(link); 930 break; 931 } 932 } 933 934 device_links_write_unlock(); 935 } 936 EXPORT_SYMBOL_GPL(device_link_remove); 937 938 static void device_links_missing_supplier(struct device *dev) 939 { 940 struct device_link *link; 941 942 list_for_each_entry(link, &dev->links.suppliers, c_node) { 943 if (link->status != DL_STATE_CONSUMER_PROBE) 944 continue; 945 946 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 947 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 948 } else { 949 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 950 WRITE_ONCE(link->status, DL_STATE_DORMANT); 951 } 952 } 953 } 954 955 /** 956 * device_links_check_suppliers - Check presence of supplier drivers. 957 * @dev: Consumer device. 958 * 959 * Check links from this device to any suppliers. Walk the list of the device's 960 * links to suppliers and see if all of them are available. If not, simply 961 * return -EPROBE_DEFER. 962 * 963 * We need to guarantee that the supplier will not go away after the check has 964 * been positive here. It only can go away in __device_release_driver() and 965 * that function checks the device's links to consumers. This means we need to 966 * mark the link as "consumer probe in progress" to make the supplier removal 967 * wait for us to complete (or bad things may happen). 968 * 969 * Links without the DL_FLAG_MANAGED flag set are ignored. 970 */ 971 int device_links_check_suppliers(struct device *dev) 972 { 973 struct device_link *link; 974 int ret = 0; 975 976 /* 977 * Device waiting for supplier to become available is not allowed to 978 * probe. 979 */ 980 mutex_lock(&fwnode_link_lock); 981 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 982 !fw_devlink_is_permissive()) { 983 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n", 984 list_first_entry(&dev->fwnode->suppliers, 985 struct fwnode_link, 986 c_hook)->supplier); 987 mutex_unlock(&fwnode_link_lock); 988 return -EPROBE_DEFER; 989 } 990 mutex_unlock(&fwnode_link_lock); 991 992 device_links_write_lock(); 993 994 list_for_each_entry(link, &dev->links.suppliers, c_node) { 995 if (!(link->flags & DL_FLAG_MANAGED)) 996 continue; 997 998 if (link->status != DL_STATE_AVAILABLE && 999 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1000 device_links_missing_supplier(dev); 1001 dev_dbg(dev, "probe deferral - supplier %s not ready\n", 1002 dev_name(link->supplier)); 1003 ret = -EPROBE_DEFER; 1004 break; 1005 } 1006 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1007 } 1008 dev->links.status = DL_DEV_PROBING; 1009 1010 device_links_write_unlock(); 1011 return ret; 1012 } 1013 1014 /** 1015 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1016 * @dev: Device to call sync_state() on 1017 * @list: List head to queue the @dev on 1018 * 1019 * Queues a device for a sync_state() callback when the device links write lock 1020 * isn't held. This allows the sync_state() execution flow to use device links 1021 * APIs. The caller must ensure this function is called with 1022 * device_links_write_lock() held. 1023 * 1024 * This function does a get_device() to make sure the device is not freed while 1025 * on this list. 1026 * 1027 * So the caller must also ensure that device_links_flush_sync_list() is called 1028 * as soon as the caller releases device_links_write_lock(). This is necessary 1029 * to make sure the sync_state() is called in a timely fashion and the 1030 * put_device() is called on this device. 1031 */ 1032 static void __device_links_queue_sync_state(struct device *dev, 1033 struct list_head *list) 1034 { 1035 struct device_link *link; 1036 1037 if (!dev_has_sync_state(dev)) 1038 return; 1039 if (dev->state_synced) 1040 return; 1041 1042 list_for_each_entry(link, &dev->links.consumers, s_node) { 1043 if (!(link->flags & DL_FLAG_MANAGED)) 1044 continue; 1045 if (link->status != DL_STATE_ACTIVE) 1046 return; 1047 } 1048 1049 /* 1050 * Set the flag here to avoid adding the same device to a list more 1051 * than once. This can happen if new consumers get added to the device 1052 * and probed before the list is flushed. 1053 */ 1054 dev->state_synced = true; 1055 1056 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1057 return; 1058 1059 get_device(dev); 1060 list_add_tail(&dev->links.defer_sync, list); 1061 } 1062 1063 /** 1064 * device_links_flush_sync_list - Call sync_state() on a list of devices 1065 * @list: List of devices to call sync_state() on 1066 * @dont_lock_dev: Device for which lock is already held by the caller 1067 * 1068 * Calls sync_state() on all the devices that have been queued for it. This 1069 * function is used in conjunction with __device_links_queue_sync_state(). The 1070 * @dont_lock_dev parameter is useful when this function is called from a 1071 * context where a device lock is already held. 1072 */ 1073 static void device_links_flush_sync_list(struct list_head *list, 1074 struct device *dont_lock_dev) 1075 { 1076 struct device *dev, *tmp; 1077 1078 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1079 list_del_init(&dev->links.defer_sync); 1080 1081 if (dev != dont_lock_dev) 1082 device_lock(dev); 1083 1084 if (dev->bus->sync_state) 1085 dev->bus->sync_state(dev); 1086 else if (dev->driver && dev->driver->sync_state) 1087 dev->driver->sync_state(dev); 1088 1089 if (dev != dont_lock_dev) 1090 device_unlock(dev); 1091 1092 put_device(dev); 1093 } 1094 } 1095 1096 void device_links_supplier_sync_state_pause(void) 1097 { 1098 device_links_write_lock(); 1099 defer_sync_state_count++; 1100 device_links_write_unlock(); 1101 } 1102 1103 void device_links_supplier_sync_state_resume(void) 1104 { 1105 struct device *dev, *tmp; 1106 LIST_HEAD(sync_list); 1107 1108 device_links_write_lock(); 1109 if (!defer_sync_state_count) { 1110 WARN(true, "Unmatched sync_state pause/resume!"); 1111 goto out; 1112 } 1113 defer_sync_state_count--; 1114 if (defer_sync_state_count) 1115 goto out; 1116 1117 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1118 /* 1119 * Delete from deferred_sync list before queuing it to 1120 * sync_list because defer_sync is used for both lists. 1121 */ 1122 list_del_init(&dev->links.defer_sync); 1123 __device_links_queue_sync_state(dev, &sync_list); 1124 } 1125 out: 1126 device_links_write_unlock(); 1127 1128 device_links_flush_sync_list(&sync_list, NULL); 1129 } 1130 1131 static int sync_state_resume_initcall(void) 1132 { 1133 device_links_supplier_sync_state_resume(); 1134 return 0; 1135 } 1136 late_initcall(sync_state_resume_initcall); 1137 1138 static void __device_links_supplier_defer_sync(struct device *sup) 1139 { 1140 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1141 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1142 } 1143 1144 static void device_link_drop_managed(struct device_link *link) 1145 { 1146 link->flags &= ~DL_FLAG_MANAGED; 1147 WRITE_ONCE(link->status, DL_STATE_NONE); 1148 kref_put(&link->kref, __device_link_del); 1149 } 1150 1151 static ssize_t waiting_for_supplier_show(struct device *dev, 1152 struct device_attribute *attr, 1153 char *buf) 1154 { 1155 bool val; 1156 1157 device_lock(dev); 1158 val = !list_empty(&dev->fwnode->suppliers); 1159 device_unlock(dev); 1160 return sysfs_emit(buf, "%u\n", val); 1161 } 1162 static DEVICE_ATTR_RO(waiting_for_supplier); 1163 1164 /** 1165 * device_links_force_bind - Prepares device to be force bound 1166 * @dev: Consumer device. 1167 * 1168 * device_bind_driver() force binds a device to a driver without calling any 1169 * driver probe functions. So the consumer really isn't going to wait for any 1170 * supplier before it's bound to the driver. We still want the device link 1171 * states to be sensible when this happens. 1172 * 1173 * In preparation for device_bind_driver(), this function goes through each 1174 * supplier device links and checks if the supplier is bound. If it is, then 1175 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1176 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1177 */ 1178 void device_links_force_bind(struct device *dev) 1179 { 1180 struct device_link *link, *ln; 1181 1182 device_links_write_lock(); 1183 1184 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1185 if (!(link->flags & DL_FLAG_MANAGED)) 1186 continue; 1187 1188 if (link->status != DL_STATE_AVAILABLE) { 1189 device_link_drop_managed(link); 1190 continue; 1191 } 1192 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1193 } 1194 dev->links.status = DL_DEV_PROBING; 1195 1196 device_links_write_unlock(); 1197 } 1198 1199 /** 1200 * device_links_driver_bound - Update device links after probing its driver. 1201 * @dev: Device to update the links for. 1202 * 1203 * The probe has been successful, so update links from this device to any 1204 * consumers by changing their status to "available". 1205 * 1206 * Also change the status of @dev's links to suppliers to "active". 1207 * 1208 * Links without the DL_FLAG_MANAGED flag set are ignored. 1209 */ 1210 void device_links_driver_bound(struct device *dev) 1211 { 1212 struct device_link *link, *ln; 1213 LIST_HEAD(sync_list); 1214 1215 /* 1216 * If a device binds successfully, it's expected to have created all 1217 * the device links it needs to or make new device links as it needs 1218 * them. So, fw_devlink no longer needs to create device links to any 1219 * of the device's suppliers. 1220 * 1221 * Also, if a child firmware node of this bound device is not added as 1222 * a device by now, assume it is never going to be added and make sure 1223 * other devices don't defer probe indefinitely by waiting for such a 1224 * child device. 1225 */ 1226 if (dev->fwnode && dev->fwnode->dev == dev) { 1227 struct fwnode_handle *child; 1228 fwnode_links_purge_suppliers(dev->fwnode); 1229 fwnode_for_each_available_child_node(dev->fwnode, child) 1230 fw_devlink_purge_absent_suppliers(child); 1231 } 1232 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1233 1234 device_links_write_lock(); 1235 1236 list_for_each_entry(link, &dev->links.consumers, s_node) { 1237 if (!(link->flags & DL_FLAG_MANAGED)) 1238 continue; 1239 1240 /* 1241 * Links created during consumer probe may be in the "consumer 1242 * probe" state to start with if the supplier is still probing 1243 * when they are created and they may become "active" if the 1244 * consumer probe returns first. Skip them here. 1245 */ 1246 if (link->status == DL_STATE_CONSUMER_PROBE || 1247 link->status == DL_STATE_ACTIVE) 1248 continue; 1249 1250 WARN_ON(link->status != DL_STATE_DORMANT); 1251 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1252 1253 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1254 driver_deferred_probe_add(link->consumer); 1255 } 1256 1257 if (defer_sync_state_count) 1258 __device_links_supplier_defer_sync(dev); 1259 else 1260 __device_links_queue_sync_state(dev, &sync_list); 1261 1262 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1263 struct device *supplier; 1264 1265 if (!(link->flags & DL_FLAG_MANAGED)) 1266 continue; 1267 1268 supplier = link->supplier; 1269 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1270 /* 1271 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1272 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1273 * save to drop the managed link completely. 1274 */ 1275 device_link_drop_managed(link); 1276 } else { 1277 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1278 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1279 } 1280 1281 /* 1282 * This needs to be done even for the deleted 1283 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1284 * device link that was preventing the supplier from getting a 1285 * sync_state() call. 1286 */ 1287 if (defer_sync_state_count) 1288 __device_links_supplier_defer_sync(supplier); 1289 else 1290 __device_links_queue_sync_state(supplier, &sync_list); 1291 } 1292 1293 dev->links.status = DL_DEV_DRIVER_BOUND; 1294 1295 device_links_write_unlock(); 1296 1297 device_links_flush_sync_list(&sync_list, dev); 1298 } 1299 1300 /** 1301 * __device_links_no_driver - Update links of a device without a driver. 1302 * @dev: Device without a drvier. 1303 * 1304 * Delete all non-persistent links from this device to any suppliers. 1305 * 1306 * Persistent links stay around, but their status is changed to "available", 1307 * unless they already are in the "supplier unbind in progress" state in which 1308 * case they need not be updated. 1309 * 1310 * Links without the DL_FLAG_MANAGED flag set are ignored. 1311 */ 1312 static void __device_links_no_driver(struct device *dev) 1313 { 1314 struct device_link *link, *ln; 1315 1316 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1317 if (!(link->flags & DL_FLAG_MANAGED)) 1318 continue; 1319 1320 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1321 device_link_drop_managed(link); 1322 continue; 1323 } 1324 1325 if (link->status != DL_STATE_CONSUMER_PROBE && 1326 link->status != DL_STATE_ACTIVE) 1327 continue; 1328 1329 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1330 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1331 } else { 1332 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1333 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1334 } 1335 } 1336 1337 dev->links.status = DL_DEV_NO_DRIVER; 1338 } 1339 1340 /** 1341 * device_links_no_driver - Update links after failing driver probe. 1342 * @dev: Device whose driver has just failed to probe. 1343 * 1344 * Clean up leftover links to consumers for @dev and invoke 1345 * %__device_links_no_driver() to update links to suppliers for it as 1346 * appropriate. 1347 * 1348 * Links without the DL_FLAG_MANAGED flag set are ignored. 1349 */ 1350 void device_links_no_driver(struct device *dev) 1351 { 1352 struct device_link *link; 1353 1354 device_links_write_lock(); 1355 1356 list_for_each_entry(link, &dev->links.consumers, s_node) { 1357 if (!(link->flags & DL_FLAG_MANAGED)) 1358 continue; 1359 1360 /* 1361 * The probe has failed, so if the status of the link is 1362 * "consumer probe" or "active", it must have been added by 1363 * a probing consumer while this device was still probing. 1364 * Change its state to "dormant", as it represents a valid 1365 * relationship, but it is not functionally meaningful. 1366 */ 1367 if (link->status == DL_STATE_CONSUMER_PROBE || 1368 link->status == DL_STATE_ACTIVE) 1369 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1370 } 1371 1372 __device_links_no_driver(dev); 1373 1374 device_links_write_unlock(); 1375 } 1376 1377 /** 1378 * device_links_driver_cleanup - Update links after driver removal. 1379 * @dev: Device whose driver has just gone away. 1380 * 1381 * Update links to consumers for @dev by changing their status to "dormant" and 1382 * invoke %__device_links_no_driver() to update links to suppliers for it as 1383 * appropriate. 1384 * 1385 * Links without the DL_FLAG_MANAGED flag set are ignored. 1386 */ 1387 void device_links_driver_cleanup(struct device *dev) 1388 { 1389 struct device_link *link, *ln; 1390 1391 device_links_write_lock(); 1392 1393 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1394 if (!(link->flags & DL_FLAG_MANAGED)) 1395 continue; 1396 1397 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1398 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1399 1400 /* 1401 * autoremove the links between this @dev and its consumer 1402 * devices that are not active, i.e. where the link state 1403 * has moved to DL_STATE_SUPPLIER_UNBIND. 1404 */ 1405 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1406 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1407 device_link_drop_managed(link); 1408 1409 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1410 } 1411 1412 list_del_init(&dev->links.defer_sync); 1413 __device_links_no_driver(dev); 1414 1415 device_links_write_unlock(); 1416 } 1417 1418 /** 1419 * device_links_busy - Check if there are any busy links to consumers. 1420 * @dev: Device to check. 1421 * 1422 * Check each consumer of the device and return 'true' if its link's status 1423 * is one of "consumer probe" or "active" (meaning that the given consumer is 1424 * probing right now or its driver is present). Otherwise, change the link 1425 * state to "supplier unbind" to prevent the consumer from being probed 1426 * successfully going forward. 1427 * 1428 * Return 'false' if there are no probing or active consumers. 1429 * 1430 * Links without the DL_FLAG_MANAGED flag set are ignored. 1431 */ 1432 bool device_links_busy(struct device *dev) 1433 { 1434 struct device_link *link; 1435 bool ret = false; 1436 1437 device_links_write_lock(); 1438 1439 list_for_each_entry(link, &dev->links.consumers, s_node) { 1440 if (!(link->flags & DL_FLAG_MANAGED)) 1441 continue; 1442 1443 if (link->status == DL_STATE_CONSUMER_PROBE 1444 || link->status == DL_STATE_ACTIVE) { 1445 ret = true; 1446 break; 1447 } 1448 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1449 } 1450 1451 dev->links.status = DL_DEV_UNBINDING; 1452 1453 device_links_write_unlock(); 1454 return ret; 1455 } 1456 1457 /** 1458 * device_links_unbind_consumers - Force unbind consumers of the given device. 1459 * @dev: Device to unbind the consumers of. 1460 * 1461 * Walk the list of links to consumers for @dev and if any of them is in the 1462 * "consumer probe" state, wait for all device probes in progress to complete 1463 * and start over. 1464 * 1465 * If that's not the case, change the status of the link to "supplier unbind" 1466 * and check if the link was in the "active" state. If so, force the consumer 1467 * driver to unbind and start over (the consumer will not re-probe as we have 1468 * changed the state of the link already). 1469 * 1470 * Links without the DL_FLAG_MANAGED flag set are ignored. 1471 */ 1472 void device_links_unbind_consumers(struct device *dev) 1473 { 1474 struct device_link *link; 1475 1476 start: 1477 device_links_write_lock(); 1478 1479 list_for_each_entry(link, &dev->links.consumers, s_node) { 1480 enum device_link_state status; 1481 1482 if (!(link->flags & DL_FLAG_MANAGED) || 1483 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1484 continue; 1485 1486 status = link->status; 1487 if (status == DL_STATE_CONSUMER_PROBE) { 1488 device_links_write_unlock(); 1489 1490 wait_for_device_probe(); 1491 goto start; 1492 } 1493 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1494 if (status == DL_STATE_ACTIVE) { 1495 struct device *consumer = link->consumer; 1496 1497 get_device(consumer); 1498 1499 device_links_write_unlock(); 1500 1501 device_release_driver_internal(consumer, NULL, 1502 consumer->parent); 1503 put_device(consumer); 1504 goto start; 1505 } 1506 } 1507 1508 device_links_write_unlock(); 1509 } 1510 1511 /** 1512 * device_links_purge - Delete existing links to other devices. 1513 * @dev: Target device. 1514 */ 1515 static void device_links_purge(struct device *dev) 1516 { 1517 struct device_link *link, *ln; 1518 1519 if (dev->class == &devlink_class) 1520 return; 1521 1522 /* 1523 * Delete all of the remaining links from this device to any other 1524 * devices (either consumers or suppliers). 1525 */ 1526 device_links_write_lock(); 1527 1528 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1529 WARN_ON(link->status == DL_STATE_ACTIVE); 1530 __device_link_del(&link->kref); 1531 } 1532 1533 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1534 WARN_ON(link->status != DL_STATE_DORMANT && 1535 link->status != DL_STATE_NONE); 1536 __device_link_del(&link->kref); 1537 } 1538 1539 device_links_write_unlock(); 1540 } 1541 1542 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1543 DL_FLAG_SYNC_STATE_ONLY) 1544 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1545 DL_FLAG_AUTOPROBE_CONSUMER) 1546 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1547 DL_FLAG_PM_RUNTIME) 1548 1549 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1550 static int __init fw_devlink_setup(char *arg) 1551 { 1552 if (!arg) 1553 return -EINVAL; 1554 1555 if (strcmp(arg, "off") == 0) { 1556 fw_devlink_flags = 0; 1557 } else if (strcmp(arg, "permissive") == 0) { 1558 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1559 } else if (strcmp(arg, "on") == 0) { 1560 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1561 } else if (strcmp(arg, "rpm") == 0) { 1562 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1563 } 1564 return 0; 1565 } 1566 early_param("fw_devlink", fw_devlink_setup); 1567 1568 static bool fw_devlink_strict; 1569 static int __init fw_devlink_strict_setup(char *arg) 1570 { 1571 return strtobool(arg, &fw_devlink_strict); 1572 } 1573 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1574 1575 u32 fw_devlink_get_flags(void) 1576 { 1577 return fw_devlink_flags; 1578 } 1579 1580 static bool fw_devlink_is_permissive(void) 1581 { 1582 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1583 } 1584 1585 bool fw_devlink_is_strict(void) 1586 { 1587 return fw_devlink_strict && !fw_devlink_is_permissive(); 1588 } 1589 1590 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1591 { 1592 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1593 return; 1594 1595 fwnode_call_int_op(fwnode, add_links); 1596 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1597 } 1598 1599 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1600 { 1601 struct fwnode_handle *child = NULL; 1602 1603 fw_devlink_parse_fwnode(fwnode); 1604 1605 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1606 fw_devlink_parse_fwtree(child); 1607 } 1608 1609 static void fw_devlink_relax_link(struct device_link *link) 1610 { 1611 if (!(link->flags & DL_FLAG_INFERRED)) 1612 return; 1613 1614 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1615 return; 1616 1617 pm_runtime_drop_link(link); 1618 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1619 dev_dbg(link->consumer, "Relaxing link with %s\n", 1620 dev_name(link->supplier)); 1621 } 1622 1623 static int fw_devlink_no_driver(struct device *dev, void *data) 1624 { 1625 struct device_link *link = to_devlink(dev); 1626 1627 if (!link->supplier->can_match) 1628 fw_devlink_relax_link(link); 1629 1630 return 0; 1631 } 1632 1633 void fw_devlink_drivers_done(void) 1634 { 1635 fw_devlink_drv_reg_done = true; 1636 device_links_write_lock(); 1637 class_for_each_device(&devlink_class, NULL, NULL, 1638 fw_devlink_no_driver); 1639 device_links_write_unlock(); 1640 } 1641 1642 static void fw_devlink_unblock_consumers(struct device *dev) 1643 { 1644 struct device_link *link; 1645 1646 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1647 return; 1648 1649 device_links_write_lock(); 1650 list_for_each_entry(link, &dev->links.consumers, s_node) 1651 fw_devlink_relax_link(link); 1652 device_links_write_unlock(); 1653 } 1654 1655 /** 1656 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1657 * @con: Device to check dependencies for. 1658 * @sup: Device to check against. 1659 * 1660 * Check if @sup depends on @con or any device dependent on it (its child or 1661 * its consumer etc). When such a cyclic dependency is found, convert all 1662 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1663 * This is the equivalent of doing fw_devlink=permissive just between the 1664 * devices in the cycle. We need to do this because, at this point, fw_devlink 1665 * can't tell which of these dependencies is not a real dependency. 1666 * 1667 * Return 1 if a cycle is found. Otherwise, return 0. 1668 */ 1669 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1670 { 1671 struct device_link *link; 1672 int ret; 1673 1674 if (con == sup) 1675 return 1; 1676 1677 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1678 if (ret) 1679 return ret; 1680 1681 list_for_each_entry(link, &con->links.consumers, s_node) { 1682 if ((link->flags & ~DL_FLAG_INFERRED) == 1683 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1684 continue; 1685 1686 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1687 continue; 1688 1689 ret = 1; 1690 1691 fw_devlink_relax_link(link); 1692 } 1693 return ret; 1694 } 1695 1696 /** 1697 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1698 * @con: consumer device for the device link 1699 * @sup_handle: fwnode handle of supplier 1700 * @flags: devlink flags 1701 * 1702 * This function will try to create a device link between the consumer device 1703 * @con and the supplier device represented by @sup_handle. 1704 * 1705 * The supplier has to be provided as a fwnode because incorrect cycles in 1706 * fwnode links can sometimes cause the supplier device to never be created. 1707 * This function detects such cases and returns an error if it cannot create a 1708 * device link from the consumer to a missing supplier. 1709 * 1710 * Returns, 1711 * 0 on successfully creating a device link 1712 * -EINVAL if the device link cannot be created as expected 1713 * -EAGAIN if the device link cannot be created right now, but it may be 1714 * possible to do that in the future 1715 */ 1716 static int fw_devlink_create_devlink(struct device *con, 1717 struct fwnode_handle *sup_handle, u32 flags) 1718 { 1719 struct device *sup_dev; 1720 int ret = 0; 1721 1722 sup_dev = get_dev_from_fwnode(sup_handle); 1723 if (sup_dev) { 1724 /* 1725 * If it's one of those drivers that don't actually bind to 1726 * their device using driver core, then don't wait on this 1727 * supplier device indefinitely. 1728 */ 1729 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1730 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1731 ret = -EINVAL; 1732 goto out; 1733 } 1734 1735 /* 1736 * If this fails, it is due to cycles in device links. Just 1737 * give up on this link and treat it as invalid. 1738 */ 1739 if (!device_link_add(con, sup_dev, flags) && 1740 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1741 dev_info(con, "Fixing up cyclic dependency with %s\n", 1742 dev_name(sup_dev)); 1743 device_links_write_lock(); 1744 fw_devlink_relax_cycle(con, sup_dev); 1745 device_links_write_unlock(); 1746 device_link_add(con, sup_dev, 1747 FW_DEVLINK_FLAGS_PERMISSIVE); 1748 ret = -EINVAL; 1749 } 1750 1751 goto out; 1752 } 1753 1754 /* Supplier that's already initialized without a struct device. */ 1755 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1756 return -EINVAL; 1757 1758 /* 1759 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1760 * cycles. So cycle detection isn't necessary and shouldn't be 1761 * done. 1762 */ 1763 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1764 return -EAGAIN; 1765 1766 /* 1767 * If we can't find the supplier device from its fwnode, it might be 1768 * due to a cyclic dependency between fwnodes. Some of these cycles can 1769 * be broken by applying logic. Check for these types of cycles and 1770 * break them so that devices in the cycle probe properly. 1771 * 1772 * If the supplier's parent is dependent on the consumer, then 1773 * the consumer-supplier dependency is a false dependency. So, 1774 * treat it as an invalid link. 1775 */ 1776 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1777 if (sup_dev && device_is_dependent(con, sup_dev)) { 1778 dev_dbg(con, "Not linking to %pfwP - False link\n", 1779 sup_handle); 1780 ret = -EINVAL; 1781 } else { 1782 /* 1783 * Can't check for cycles or no cycles. So let's try 1784 * again later. 1785 */ 1786 ret = -EAGAIN; 1787 } 1788 1789 out: 1790 put_device(sup_dev); 1791 return ret; 1792 } 1793 1794 /** 1795 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1796 * @dev: Device that needs to be linked to its consumers 1797 * 1798 * This function looks at all the consumer fwnodes of @dev and creates device 1799 * links between the consumer device and @dev (supplier). 1800 * 1801 * If the consumer device has not been added yet, then this function creates a 1802 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1803 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1804 * sync_state() callback before the real consumer device gets to be added and 1805 * then probed. 1806 * 1807 * Once device links are created from the real consumer to @dev (supplier), the 1808 * fwnode links are deleted. 1809 */ 1810 static void __fw_devlink_link_to_consumers(struct device *dev) 1811 { 1812 struct fwnode_handle *fwnode = dev->fwnode; 1813 struct fwnode_link *link, *tmp; 1814 1815 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1816 u32 dl_flags = fw_devlink_get_flags(); 1817 struct device *con_dev; 1818 bool own_link = true; 1819 int ret; 1820 1821 con_dev = get_dev_from_fwnode(link->consumer); 1822 /* 1823 * If consumer device is not available yet, make a "proxy" 1824 * SYNC_STATE_ONLY link from the consumer's parent device to 1825 * the supplier device. This is necessary to make sure the 1826 * supplier doesn't get a sync_state() callback before the real 1827 * consumer can create a device link to the supplier. 1828 * 1829 * This proxy link step is needed to handle the case where the 1830 * consumer's parent device is added before the supplier. 1831 */ 1832 if (!con_dev) { 1833 con_dev = fwnode_get_next_parent_dev(link->consumer); 1834 /* 1835 * However, if the consumer's parent device is also the 1836 * parent of the supplier, don't create a 1837 * consumer-supplier link from the parent to its child 1838 * device. Such a dependency is impossible. 1839 */ 1840 if (con_dev && 1841 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1842 put_device(con_dev); 1843 con_dev = NULL; 1844 } else { 1845 own_link = false; 1846 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1847 } 1848 } 1849 1850 if (!con_dev) 1851 continue; 1852 1853 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1854 put_device(con_dev); 1855 if (!own_link || ret == -EAGAIN) 1856 continue; 1857 1858 list_del(&link->s_hook); 1859 list_del(&link->c_hook); 1860 kfree(link); 1861 } 1862 } 1863 1864 /** 1865 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1866 * @dev: The consumer device that needs to be linked to its suppliers 1867 * @fwnode: Root of the fwnode tree that is used to create device links 1868 * 1869 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1870 * @fwnode and creates device links between @dev (consumer) and all the 1871 * supplier devices of the entire fwnode tree at @fwnode. 1872 * 1873 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1874 * and the real suppliers of @dev. Once these device links are created, the 1875 * fwnode links are deleted. When such device links are successfully created, 1876 * this function is called recursively on those supplier devices. This is 1877 * needed to detect and break some invalid cycles in fwnode links. See 1878 * fw_devlink_create_devlink() for more details. 1879 * 1880 * In addition, it also looks at all the suppliers of the entire fwnode tree 1881 * because some of the child devices of @dev that have not been added yet 1882 * (because @dev hasn't probed) might already have their suppliers added to 1883 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1884 * @dev (consumer) and these suppliers to make sure they don't execute their 1885 * sync_state() callbacks before these child devices have a chance to create 1886 * their device links. The fwnode links that correspond to the child devices 1887 * aren't delete because they are needed later to create the device links 1888 * between the real consumer and supplier devices. 1889 */ 1890 static void __fw_devlink_link_to_suppliers(struct device *dev, 1891 struct fwnode_handle *fwnode) 1892 { 1893 bool own_link = (dev->fwnode == fwnode); 1894 struct fwnode_link *link, *tmp; 1895 struct fwnode_handle *child = NULL; 1896 u32 dl_flags; 1897 1898 if (own_link) 1899 dl_flags = fw_devlink_get_flags(); 1900 else 1901 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1902 1903 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1904 int ret; 1905 struct device *sup_dev; 1906 struct fwnode_handle *sup = link->supplier; 1907 1908 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1909 if (!own_link || ret == -EAGAIN) 1910 continue; 1911 1912 list_del(&link->s_hook); 1913 list_del(&link->c_hook); 1914 kfree(link); 1915 1916 /* If no device link was created, nothing more to do. */ 1917 if (ret) 1918 continue; 1919 1920 /* 1921 * If a device link was successfully created to a supplier, we 1922 * now need to try and link the supplier to all its suppliers. 1923 * 1924 * This is needed to detect and delete false dependencies in 1925 * fwnode links that haven't been converted to a device link 1926 * yet. See comments in fw_devlink_create_devlink() for more 1927 * details on the false dependency. 1928 * 1929 * Without deleting these false dependencies, some devices will 1930 * never probe because they'll keep waiting for their false 1931 * dependency fwnode links to be converted to device links. 1932 */ 1933 sup_dev = get_dev_from_fwnode(sup); 1934 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1935 put_device(sup_dev); 1936 } 1937 1938 /* 1939 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1940 * all the descendants. This proxy link step is needed to handle the 1941 * case where the supplier is added before the consumer's parent device 1942 * (@dev). 1943 */ 1944 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1945 __fw_devlink_link_to_suppliers(dev, child); 1946 } 1947 1948 static void fw_devlink_link_device(struct device *dev) 1949 { 1950 struct fwnode_handle *fwnode = dev->fwnode; 1951 1952 if (!fw_devlink_flags) 1953 return; 1954 1955 fw_devlink_parse_fwtree(fwnode); 1956 1957 mutex_lock(&fwnode_link_lock); 1958 __fw_devlink_link_to_consumers(dev); 1959 __fw_devlink_link_to_suppliers(dev, fwnode); 1960 mutex_unlock(&fwnode_link_lock); 1961 } 1962 1963 /* Device links support end. */ 1964 1965 int (*platform_notify)(struct device *dev) = NULL; 1966 int (*platform_notify_remove)(struct device *dev) = NULL; 1967 static struct kobject *dev_kobj; 1968 struct kobject *sysfs_dev_char_kobj; 1969 struct kobject *sysfs_dev_block_kobj; 1970 1971 static DEFINE_MUTEX(device_hotplug_lock); 1972 1973 void lock_device_hotplug(void) 1974 { 1975 mutex_lock(&device_hotplug_lock); 1976 } 1977 1978 void unlock_device_hotplug(void) 1979 { 1980 mutex_unlock(&device_hotplug_lock); 1981 } 1982 1983 int lock_device_hotplug_sysfs(void) 1984 { 1985 if (mutex_trylock(&device_hotplug_lock)) 1986 return 0; 1987 1988 /* Avoid busy looping (5 ms of sleep should do). */ 1989 msleep(5); 1990 return restart_syscall(); 1991 } 1992 1993 #ifdef CONFIG_BLOCK 1994 static inline int device_is_not_partition(struct device *dev) 1995 { 1996 return !(dev->type == &part_type); 1997 } 1998 #else 1999 static inline int device_is_not_partition(struct device *dev) 2000 { 2001 return 1; 2002 } 2003 #endif 2004 2005 static int 2006 device_platform_notify(struct device *dev, enum kobject_action action) 2007 { 2008 int ret; 2009 2010 ret = acpi_platform_notify(dev, action); 2011 if (ret) 2012 return ret; 2013 2014 ret = software_node_notify(dev, action); 2015 if (ret) 2016 return ret; 2017 2018 if (platform_notify && action == KOBJ_ADD) 2019 platform_notify(dev); 2020 else if (platform_notify_remove && action == KOBJ_REMOVE) 2021 platform_notify_remove(dev); 2022 return 0; 2023 } 2024 2025 /** 2026 * dev_driver_string - Return a device's driver name, if at all possible 2027 * @dev: struct device to get the name of 2028 * 2029 * Will return the device's driver's name if it is bound to a device. If 2030 * the device is not bound to a driver, it will return the name of the bus 2031 * it is attached to. If it is not attached to a bus either, an empty 2032 * string will be returned. 2033 */ 2034 const char *dev_driver_string(const struct device *dev) 2035 { 2036 struct device_driver *drv; 2037 2038 /* dev->driver can change to NULL underneath us because of unbinding, 2039 * so be careful about accessing it. dev->bus and dev->class should 2040 * never change once they are set, so they don't need special care. 2041 */ 2042 drv = READ_ONCE(dev->driver); 2043 return drv ? drv->name : dev_bus_name(dev); 2044 } 2045 EXPORT_SYMBOL(dev_driver_string); 2046 2047 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2048 2049 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2050 char *buf) 2051 { 2052 struct device_attribute *dev_attr = to_dev_attr(attr); 2053 struct device *dev = kobj_to_dev(kobj); 2054 ssize_t ret = -EIO; 2055 2056 if (dev_attr->show) 2057 ret = dev_attr->show(dev, dev_attr, buf); 2058 if (ret >= (ssize_t)PAGE_SIZE) { 2059 printk("dev_attr_show: %pS returned bad count\n", 2060 dev_attr->show); 2061 } 2062 return ret; 2063 } 2064 2065 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2066 const char *buf, size_t count) 2067 { 2068 struct device_attribute *dev_attr = to_dev_attr(attr); 2069 struct device *dev = kobj_to_dev(kobj); 2070 ssize_t ret = -EIO; 2071 2072 if (dev_attr->store) 2073 ret = dev_attr->store(dev, dev_attr, buf, count); 2074 return ret; 2075 } 2076 2077 static const struct sysfs_ops dev_sysfs_ops = { 2078 .show = dev_attr_show, 2079 .store = dev_attr_store, 2080 }; 2081 2082 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2083 2084 ssize_t device_store_ulong(struct device *dev, 2085 struct device_attribute *attr, 2086 const char *buf, size_t size) 2087 { 2088 struct dev_ext_attribute *ea = to_ext_attr(attr); 2089 int ret; 2090 unsigned long new; 2091 2092 ret = kstrtoul(buf, 0, &new); 2093 if (ret) 2094 return ret; 2095 *(unsigned long *)(ea->var) = new; 2096 /* Always return full write size even if we didn't consume all */ 2097 return size; 2098 } 2099 EXPORT_SYMBOL_GPL(device_store_ulong); 2100 2101 ssize_t device_show_ulong(struct device *dev, 2102 struct device_attribute *attr, 2103 char *buf) 2104 { 2105 struct dev_ext_attribute *ea = to_ext_attr(attr); 2106 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2107 } 2108 EXPORT_SYMBOL_GPL(device_show_ulong); 2109 2110 ssize_t device_store_int(struct device *dev, 2111 struct device_attribute *attr, 2112 const char *buf, size_t size) 2113 { 2114 struct dev_ext_attribute *ea = to_ext_attr(attr); 2115 int ret; 2116 long new; 2117 2118 ret = kstrtol(buf, 0, &new); 2119 if (ret) 2120 return ret; 2121 2122 if (new > INT_MAX || new < INT_MIN) 2123 return -EINVAL; 2124 *(int *)(ea->var) = new; 2125 /* Always return full write size even if we didn't consume all */ 2126 return size; 2127 } 2128 EXPORT_SYMBOL_GPL(device_store_int); 2129 2130 ssize_t device_show_int(struct device *dev, 2131 struct device_attribute *attr, 2132 char *buf) 2133 { 2134 struct dev_ext_attribute *ea = to_ext_attr(attr); 2135 2136 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2137 } 2138 EXPORT_SYMBOL_GPL(device_show_int); 2139 2140 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2141 const char *buf, size_t size) 2142 { 2143 struct dev_ext_attribute *ea = to_ext_attr(attr); 2144 2145 if (strtobool(buf, ea->var) < 0) 2146 return -EINVAL; 2147 2148 return size; 2149 } 2150 EXPORT_SYMBOL_GPL(device_store_bool); 2151 2152 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2153 char *buf) 2154 { 2155 struct dev_ext_attribute *ea = to_ext_attr(attr); 2156 2157 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2158 } 2159 EXPORT_SYMBOL_GPL(device_show_bool); 2160 2161 /** 2162 * device_release - free device structure. 2163 * @kobj: device's kobject. 2164 * 2165 * This is called once the reference count for the object 2166 * reaches 0. We forward the call to the device's release 2167 * method, which should handle actually freeing the structure. 2168 */ 2169 static void device_release(struct kobject *kobj) 2170 { 2171 struct device *dev = kobj_to_dev(kobj); 2172 struct device_private *p = dev->p; 2173 2174 /* 2175 * Some platform devices are driven without driver attached 2176 * and managed resources may have been acquired. Make sure 2177 * all resources are released. 2178 * 2179 * Drivers still can add resources into device after device 2180 * is deleted but alive, so release devres here to avoid 2181 * possible memory leak. 2182 */ 2183 devres_release_all(dev); 2184 2185 kfree(dev->dma_range_map); 2186 2187 if (dev->release) 2188 dev->release(dev); 2189 else if (dev->type && dev->type->release) 2190 dev->type->release(dev); 2191 else if (dev->class && dev->class->dev_release) 2192 dev->class->dev_release(dev); 2193 else 2194 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2195 dev_name(dev)); 2196 kfree(p); 2197 } 2198 2199 static const void *device_namespace(struct kobject *kobj) 2200 { 2201 struct device *dev = kobj_to_dev(kobj); 2202 const void *ns = NULL; 2203 2204 if (dev->class && dev->class->ns_type) 2205 ns = dev->class->namespace(dev); 2206 2207 return ns; 2208 } 2209 2210 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2211 { 2212 struct device *dev = kobj_to_dev(kobj); 2213 2214 if (dev->class && dev->class->get_ownership) 2215 dev->class->get_ownership(dev, uid, gid); 2216 } 2217 2218 static struct kobj_type device_ktype = { 2219 .release = device_release, 2220 .sysfs_ops = &dev_sysfs_ops, 2221 .namespace = device_namespace, 2222 .get_ownership = device_get_ownership, 2223 }; 2224 2225 2226 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2227 { 2228 struct kobj_type *ktype = get_ktype(kobj); 2229 2230 if (ktype == &device_ktype) { 2231 struct device *dev = kobj_to_dev(kobj); 2232 if (dev->bus) 2233 return 1; 2234 if (dev->class) 2235 return 1; 2236 } 2237 return 0; 2238 } 2239 2240 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2241 { 2242 struct device *dev = kobj_to_dev(kobj); 2243 2244 if (dev->bus) 2245 return dev->bus->name; 2246 if (dev->class) 2247 return dev->class->name; 2248 return NULL; 2249 } 2250 2251 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2252 struct kobj_uevent_env *env) 2253 { 2254 struct device *dev = kobj_to_dev(kobj); 2255 int retval = 0; 2256 2257 /* add device node properties if present */ 2258 if (MAJOR(dev->devt)) { 2259 const char *tmp; 2260 const char *name; 2261 umode_t mode = 0; 2262 kuid_t uid = GLOBAL_ROOT_UID; 2263 kgid_t gid = GLOBAL_ROOT_GID; 2264 2265 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2266 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2267 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2268 if (name) { 2269 add_uevent_var(env, "DEVNAME=%s", name); 2270 if (mode) 2271 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2272 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2273 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2274 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2275 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2276 kfree(tmp); 2277 } 2278 } 2279 2280 if (dev->type && dev->type->name) 2281 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2282 2283 if (dev->driver) 2284 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2285 2286 /* Add common DT information about the device */ 2287 of_device_uevent(dev, env); 2288 2289 /* have the bus specific function add its stuff */ 2290 if (dev->bus && dev->bus->uevent) { 2291 retval = dev->bus->uevent(dev, env); 2292 if (retval) 2293 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2294 dev_name(dev), __func__, retval); 2295 } 2296 2297 /* have the class specific function add its stuff */ 2298 if (dev->class && dev->class->dev_uevent) { 2299 retval = dev->class->dev_uevent(dev, env); 2300 if (retval) 2301 pr_debug("device: '%s': %s: class uevent() " 2302 "returned %d\n", dev_name(dev), 2303 __func__, retval); 2304 } 2305 2306 /* have the device type specific function add its stuff */ 2307 if (dev->type && dev->type->uevent) { 2308 retval = dev->type->uevent(dev, env); 2309 if (retval) 2310 pr_debug("device: '%s': %s: dev_type uevent() " 2311 "returned %d\n", dev_name(dev), 2312 __func__, retval); 2313 } 2314 2315 return retval; 2316 } 2317 2318 static const struct kset_uevent_ops device_uevent_ops = { 2319 .filter = dev_uevent_filter, 2320 .name = dev_uevent_name, 2321 .uevent = dev_uevent, 2322 }; 2323 2324 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2325 char *buf) 2326 { 2327 struct kobject *top_kobj; 2328 struct kset *kset; 2329 struct kobj_uevent_env *env = NULL; 2330 int i; 2331 int len = 0; 2332 int retval; 2333 2334 /* search the kset, the device belongs to */ 2335 top_kobj = &dev->kobj; 2336 while (!top_kobj->kset && top_kobj->parent) 2337 top_kobj = top_kobj->parent; 2338 if (!top_kobj->kset) 2339 goto out; 2340 2341 kset = top_kobj->kset; 2342 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2343 goto out; 2344 2345 /* respect filter */ 2346 if (kset->uevent_ops && kset->uevent_ops->filter) 2347 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2348 goto out; 2349 2350 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2351 if (!env) 2352 return -ENOMEM; 2353 2354 /* let the kset specific function add its keys */ 2355 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2356 if (retval) 2357 goto out; 2358 2359 /* copy keys to file */ 2360 for (i = 0; i < env->envp_idx; i++) 2361 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2362 out: 2363 kfree(env); 2364 return len; 2365 } 2366 2367 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2368 const char *buf, size_t count) 2369 { 2370 int rc; 2371 2372 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2373 2374 if (rc) { 2375 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2376 return rc; 2377 } 2378 2379 return count; 2380 } 2381 static DEVICE_ATTR_RW(uevent); 2382 2383 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2384 char *buf) 2385 { 2386 bool val; 2387 2388 device_lock(dev); 2389 val = !dev->offline; 2390 device_unlock(dev); 2391 return sysfs_emit(buf, "%u\n", val); 2392 } 2393 2394 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2395 const char *buf, size_t count) 2396 { 2397 bool val; 2398 int ret; 2399 2400 ret = strtobool(buf, &val); 2401 if (ret < 0) 2402 return ret; 2403 2404 ret = lock_device_hotplug_sysfs(); 2405 if (ret) 2406 return ret; 2407 2408 ret = val ? device_online(dev) : device_offline(dev); 2409 unlock_device_hotplug(); 2410 return ret < 0 ? ret : count; 2411 } 2412 static DEVICE_ATTR_RW(online); 2413 2414 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2415 char *buf) 2416 { 2417 const char *loc; 2418 2419 switch (dev->removable) { 2420 case DEVICE_REMOVABLE: 2421 loc = "removable"; 2422 break; 2423 case DEVICE_FIXED: 2424 loc = "fixed"; 2425 break; 2426 default: 2427 loc = "unknown"; 2428 } 2429 return sysfs_emit(buf, "%s\n", loc); 2430 } 2431 static DEVICE_ATTR_RO(removable); 2432 2433 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2434 { 2435 return sysfs_create_groups(&dev->kobj, groups); 2436 } 2437 EXPORT_SYMBOL_GPL(device_add_groups); 2438 2439 void device_remove_groups(struct device *dev, 2440 const struct attribute_group **groups) 2441 { 2442 sysfs_remove_groups(&dev->kobj, groups); 2443 } 2444 EXPORT_SYMBOL_GPL(device_remove_groups); 2445 2446 union device_attr_group_devres { 2447 const struct attribute_group *group; 2448 const struct attribute_group **groups; 2449 }; 2450 2451 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2452 { 2453 return ((union device_attr_group_devres *)res)->group == data; 2454 } 2455 2456 static void devm_attr_group_remove(struct device *dev, void *res) 2457 { 2458 union device_attr_group_devres *devres = res; 2459 const struct attribute_group *group = devres->group; 2460 2461 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2462 sysfs_remove_group(&dev->kobj, group); 2463 } 2464 2465 static void devm_attr_groups_remove(struct device *dev, void *res) 2466 { 2467 union device_attr_group_devres *devres = res; 2468 const struct attribute_group **groups = devres->groups; 2469 2470 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2471 sysfs_remove_groups(&dev->kobj, groups); 2472 } 2473 2474 /** 2475 * devm_device_add_group - given a device, create a managed attribute group 2476 * @dev: The device to create the group for 2477 * @grp: The attribute group to create 2478 * 2479 * This function creates a group for the first time. It will explicitly 2480 * warn and error if any of the attribute files being created already exist. 2481 * 2482 * Returns 0 on success or error code on failure. 2483 */ 2484 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2485 { 2486 union device_attr_group_devres *devres; 2487 int error; 2488 2489 devres = devres_alloc(devm_attr_group_remove, 2490 sizeof(*devres), GFP_KERNEL); 2491 if (!devres) 2492 return -ENOMEM; 2493 2494 error = sysfs_create_group(&dev->kobj, grp); 2495 if (error) { 2496 devres_free(devres); 2497 return error; 2498 } 2499 2500 devres->group = grp; 2501 devres_add(dev, devres); 2502 return 0; 2503 } 2504 EXPORT_SYMBOL_GPL(devm_device_add_group); 2505 2506 /** 2507 * devm_device_remove_group: remove a managed group from a device 2508 * @dev: device to remove the group from 2509 * @grp: group to remove 2510 * 2511 * This function removes a group of attributes from a device. The attributes 2512 * previously have to have been created for this group, otherwise it will fail. 2513 */ 2514 void devm_device_remove_group(struct device *dev, 2515 const struct attribute_group *grp) 2516 { 2517 WARN_ON(devres_release(dev, devm_attr_group_remove, 2518 devm_attr_group_match, 2519 /* cast away const */ (void *)grp)); 2520 } 2521 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2522 2523 /** 2524 * devm_device_add_groups - create a bunch of managed attribute groups 2525 * @dev: The device to create the group for 2526 * @groups: The attribute groups to create, NULL terminated 2527 * 2528 * This function creates a bunch of managed attribute groups. If an error 2529 * occurs when creating a group, all previously created groups will be 2530 * removed, unwinding everything back to the original state when this 2531 * function was called. It will explicitly warn and error if any of the 2532 * attribute files being created already exist. 2533 * 2534 * Returns 0 on success or error code from sysfs_create_group on failure. 2535 */ 2536 int devm_device_add_groups(struct device *dev, 2537 const struct attribute_group **groups) 2538 { 2539 union device_attr_group_devres *devres; 2540 int error; 2541 2542 devres = devres_alloc(devm_attr_groups_remove, 2543 sizeof(*devres), GFP_KERNEL); 2544 if (!devres) 2545 return -ENOMEM; 2546 2547 error = sysfs_create_groups(&dev->kobj, groups); 2548 if (error) { 2549 devres_free(devres); 2550 return error; 2551 } 2552 2553 devres->groups = groups; 2554 devres_add(dev, devres); 2555 return 0; 2556 } 2557 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2558 2559 /** 2560 * devm_device_remove_groups - remove a list of managed groups 2561 * 2562 * @dev: The device for the groups to be removed from 2563 * @groups: NULL terminated list of groups to be removed 2564 * 2565 * If groups is not NULL, remove the specified groups from the device. 2566 */ 2567 void devm_device_remove_groups(struct device *dev, 2568 const struct attribute_group **groups) 2569 { 2570 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2571 devm_attr_group_match, 2572 /* cast away const */ (void *)groups)); 2573 } 2574 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2575 2576 static int device_add_attrs(struct device *dev) 2577 { 2578 struct class *class = dev->class; 2579 const struct device_type *type = dev->type; 2580 int error; 2581 2582 if (class) { 2583 error = device_add_groups(dev, class->dev_groups); 2584 if (error) 2585 return error; 2586 } 2587 2588 if (type) { 2589 error = device_add_groups(dev, type->groups); 2590 if (error) 2591 goto err_remove_class_groups; 2592 } 2593 2594 error = device_add_groups(dev, dev->groups); 2595 if (error) 2596 goto err_remove_type_groups; 2597 2598 if (device_supports_offline(dev) && !dev->offline_disabled) { 2599 error = device_create_file(dev, &dev_attr_online); 2600 if (error) 2601 goto err_remove_dev_groups; 2602 } 2603 2604 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2605 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2606 if (error) 2607 goto err_remove_dev_online; 2608 } 2609 2610 if (dev_removable_is_valid(dev)) { 2611 error = device_create_file(dev, &dev_attr_removable); 2612 if (error) 2613 goto err_remove_dev_waiting_for_supplier; 2614 } 2615 2616 return 0; 2617 2618 err_remove_dev_waiting_for_supplier: 2619 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2620 err_remove_dev_online: 2621 device_remove_file(dev, &dev_attr_online); 2622 err_remove_dev_groups: 2623 device_remove_groups(dev, dev->groups); 2624 err_remove_type_groups: 2625 if (type) 2626 device_remove_groups(dev, type->groups); 2627 err_remove_class_groups: 2628 if (class) 2629 device_remove_groups(dev, class->dev_groups); 2630 2631 return error; 2632 } 2633 2634 static void device_remove_attrs(struct device *dev) 2635 { 2636 struct class *class = dev->class; 2637 const struct device_type *type = dev->type; 2638 2639 device_remove_file(dev, &dev_attr_removable); 2640 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2641 device_remove_file(dev, &dev_attr_online); 2642 device_remove_groups(dev, dev->groups); 2643 2644 if (type) 2645 device_remove_groups(dev, type->groups); 2646 2647 if (class) 2648 device_remove_groups(dev, class->dev_groups); 2649 } 2650 2651 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2652 char *buf) 2653 { 2654 return print_dev_t(buf, dev->devt); 2655 } 2656 static DEVICE_ATTR_RO(dev); 2657 2658 /* /sys/devices/ */ 2659 struct kset *devices_kset; 2660 2661 /** 2662 * devices_kset_move_before - Move device in the devices_kset's list. 2663 * @deva: Device to move. 2664 * @devb: Device @deva should come before. 2665 */ 2666 static void devices_kset_move_before(struct device *deva, struct device *devb) 2667 { 2668 if (!devices_kset) 2669 return; 2670 pr_debug("devices_kset: Moving %s before %s\n", 2671 dev_name(deva), dev_name(devb)); 2672 spin_lock(&devices_kset->list_lock); 2673 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2674 spin_unlock(&devices_kset->list_lock); 2675 } 2676 2677 /** 2678 * devices_kset_move_after - Move device in the devices_kset's list. 2679 * @deva: Device to move 2680 * @devb: Device @deva should come after. 2681 */ 2682 static void devices_kset_move_after(struct device *deva, struct device *devb) 2683 { 2684 if (!devices_kset) 2685 return; 2686 pr_debug("devices_kset: Moving %s after %s\n", 2687 dev_name(deva), dev_name(devb)); 2688 spin_lock(&devices_kset->list_lock); 2689 list_move(&deva->kobj.entry, &devb->kobj.entry); 2690 spin_unlock(&devices_kset->list_lock); 2691 } 2692 2693 /** 2694 * devices_kset_move_last - move the device to the end of devices_kset's list. 2695 * @dev: device to move 2696 */ 2697 void devices_kset_move_last(struct device *dev) 2698 { 2699 if (!devices_kset) 2700 return; 2701 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2702 spin_lock(&devices_kset->list_lock); 2703 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2704 spin_unlock(&devices_kset->list_lock); 2705 } 2706 2707 /** 2708 * device_create_file - create sysfs attribute file for device. 2709 * @dev: device. 2710 * @attr: device attribute descriptor. 2711 */ 2712 int device_create_file(struct device *dev, 2713 const struct device_attribute *attr) 2714 { 2715 int error = 0; 2716 2717 if (dev) { 2718 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2719 "Attribute %s: write permission without 'store'\n", 2720 attr->attr.name); 2721 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2722 "Attribute %s: read permission without 'show'\n", 2723 attr->attr.name); 2724 error = sysfs_create_file(&dev->kobj, &attr->attr); 2725 } 2726 2727 return error; 2728 } 2729 EXPORT_SYMBOL_GPL(device_create_file); 2730 2731 /** 2732 * device_remove_file - remove sysfs attribute file. 2733 * @dev: device. 2734 * @attr: device attribute descriptor. 2735 */ 2736 void device_remove_file(struct device *dev, 2737 const struct device_attribute *attr) 2738 { 2739 if (dev) 2740 sysfs_remove_file(&dev->kobj, &attr->attr); 2741 } 2742 EXPORT_SYMBOL_GPL(device_remove_file); 2743 2744 /** 2745 * device_remove_file_self - remove sysfs attribute file from its own method. 2746 * @dev: device. 2747 * @attr: device attribute descriptor. 2748 * 2749 * See kernfs_remove_self() for details. 2750 */ 2751 bool device_remove_file_self(struct device *dev, 2752 const struct device_attribute *attr) 2753 { 2754 if (dev) 2755 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2756 else 2757 return false; 2758 } 2759 EXPORT_SYMBOL_GPL(device_remove_file_self); 2760 2761 /** 2762 * device_create_bin_file - create sysfs binary attribute file for device. 2763 * @dev: device. 2764 * @attr: device binary attribute descriptor. 2765 */ 2766 int device_create_bin_file(struct device *dev, 2767 const struct bin_attribute *attr) 2768 { 2769 int error = -EINVAL; 2770 if (dev) 2771 error = sysfs_create_bin_file(&dev->kobj, attr); 2772 return error; 2773 } 2774 EXPORT_SYMBOL_GPL(device_create_bin_file); 2775 2776 /** 2777 * device_remove_bin_file - remove sysfs binary attribute file 2778 * @dev: device. 2779 * @attr: device binary attribute descriptor. 2780 */ 2781 void device_remove_bin_file(struct device *dev, 2782 const struct bin_attribute *attr) 2783 { 2784 if (dev) 2785 sysfs_remove_bin_file(&dev->kobj, attr); 2786 } 2787 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2788 2789 static void klist_children_get(struct klist_node *n) 2790 { 2791 struct device_private *p = to_device_private_parent(n); 2792 struct device *dev = p->device; 2793 2794 get_device(dev); 2795 } 2796 2797 static void klist_children_put(struct klist_node *n) 2798 { 2799 struct device_private *p = to_device_private_parent(n); 2800 struct device *dev = p->device; 2801 2802 put_device(dev); 2803 } 2804 2805 /** 2806 * device_initialize - init device structure. 2807 * @dev: device. 2808 * 2809 * This prepares the device for use by other layers by initializing 2810 * its fields. 2811 * It is the first half of device_register(), if called by 2812 * that function, though it can also be called separately, so one 2813 * may use @dev's fields. In particular, get_device()/put_device() 2814 * may be used for reference counting of @dev after calling this 2815 * function. 2816 * 2817 * All fields in @dev must be initialized by the caller to 0, except 2818 * for those explicitly set to some other value. The simplest 2819 * approach is to use kzalloc() to allocate the structure containing 2820 * @dev. 2821 * 2822 * NOTE: Use put_device() to give up your reference instead of freeing 2823 * @dev directly once you have called this function. 2824 */ 2825 void device_initialize(struct device *dev) 2826 { 2827 dev->kobj.kset = devices_kset; 2828 kobject_init(&dev->kobj, &device_ktype); 2829 INIT_LIST_HEAD(&dev->dma_pools); 2830 mutex_init(&dev->mutex); 2831 #ifdef CONFIG_PROVE_LOCKING 2832 mutex_init(&dev->lockdep_mutex); 2833 #endif 2834 lockdep_set_novalidate_class(&dev->mutex); 2835 spin_lock_init(&dev->devres_lock); 2836 INIT_LIST_HEAD(&dev->devres_head); 2837 device_pm_init(dev); 2838 set_dev_node(dev, -1); 2839 #ifdef CONFIG_GENERIC_MSI_IRQ 2840 INIT_LIST_HEAD(&dev->msi_list); 2841 #endif 2842 INIT_LIST_HEAD(&dev->links.consumers); 2843 INIT_LIST_HEAD(&dev->links.suppliers); 2844 INIT_LIST_HEAD(&dev->links.defer_sync); 2845 dev->links.status = DL_DEV_NO_DRIVER; 2846 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2847 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2848 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2849 dev->dma_coherent = dma_default_coherent; 2850 #endif 2851 } 2852 EXPORT_SYMBOL_GPL(device_initialize); 2853 2854 struct kobject *virtual_device_parent(struct device *dev) 2855 { 2856 static struct kobject *virtual_dir = NULL; 2857 2858 if (!virtual_dir) 2859 virtual_dir = kobject_create_and_add("virtual", 2860 &devices_kset->kobj); 2861 2862 return virtual_dir; 2863 } 2864 2865 struct class_dir { 2866 struct kobject kobj; 2867 struct class *class; 2868 }; 2869 2870 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2871 2872 static void class_dir_release(struct kobject *kobj) 2873 { 2874 struct class_dir *dir = to_class_dir(kobj); 2875 kfree(dir); 2876 } 2877 2878 static const 2879 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2880 { 2881 struct class_dir *dir = to_class_dir(kobj); 2882 return dir->class->ns_type; 2883 } 2884 2885 static struct kobj_type class_dir_ktype = { 2886 .release = class_dir_release, 2887 .sysfs_ops = &kobj_sysfs_ops, 2888 .child_ns_type = class_dir_child_ns_type 2889 }; 2890 2891 static struct kobject * 2892 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2893 { 2894 struct class_dir *dir; 2895 int retval; 2896 2897 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2898 if (!dir) 2899 return ERR_PTR(-ENOMEM); 2900 2901 dir->class = class; 2902 kobject_init(&dir->kobj, &class_dir_ktype); 2903 2904 dir->kobj.kset = &class->p->glue_dirs; 2905 2906 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2907 if (retval < 0) { 2908 kobject_put(&dir->kobj); 2909 return ERR_PTR(retval); 2910 } 2911 return &dir->kobj; 2912 } 2913 2914 static DEFINE_MUTEX(gdp_mutex); 2915 2916 static struct kobject *get_device_parent(struct device *dev, 2917 struct device *parent) 2918 { 2919 if (dev->class) { 2920 struct kobject *kobj = NULL; 2921 struct kobject *parent_kobj; 2922 struct kobject *k; 2923 2924 #ifdef CONFIG_BLOCK 2925 /* block disks show up in /sys/block */ 2926 if (sysfs_deprecated && dev->class == &block_class) { 2927 if (parent && parent->class == &block_class) 2928 return &parent->kobj; 2929 return &block_class.p->subsys.kobj; 2930 } 2931 #endif 2932 2933 /* 2934 * If we have no parent, we live in "virtual". 2935 * Class-devices with a non class-device as parent, live 2936 * in a "glue" directory to prevent namespace collisions. 2937 */ 2938 if (parent == NULL) 2939 parent_kobj = virtual_device_parent(dev); 2940 else if (parent->class && !dev->class->ns_type) 2941 return &parent->kobj; 2942 else 2943 parent_kobj = &parent->kobj; 2944 2945 mutex_lock(&gdp_mutex); 2946 2947 /* find our class-directory at the parent and reference it */ 2948 spin_lock(&dev->class->p->glue_dirs.list_lock); 2949 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2950 if (k->parent == parent_kobj) { 2951 kobj = kobject_get(k); 2952 break; 2953 } 2954 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2955 if (kobj) { 2956 mutex_unlock(&gdp_mutex); 2957 return kobj; 2958 } 2959 2960 /* or create a new class-directory at the parent device */ 2961 k = class_dir_create_and_add(dev->class, parent_kobj); 2962 /* do not emit an uevent for this simple "glue" directory */ 2963 mutex_unlock(&gdp_mutex); 2964 return k; 2965 } 2966 2967 /* subsystems can specify a default root directory for their devices */ 2968 if (!parent && dev->bus && dev->bus->dev_root) 2969 return &dev->bus->dev_root->kobj; 2970 2971 if (parent) 2972 return &parent->kobj; 2973 return NULL; 2974 } 2975 2976 static inline bool live_in_glue_dir(struct kobject *kobj, 2977 struct device *dev) 2978 { 2979 if (!kobj || !dev->class || 2980 kobj->kset != &dev->class->p->glue_dirs) 2981 return false; 2982 return true; 2983 } 2984 2985 static inline struct kobject *get_glue_dir(struct device *dev) 2986 { 2987 return dev->kobj.parent; 2988 } 2989 2990 /* 2991 * make sure cleaning up dir as the last step, we need to make 2992 * sure .release handler of kobject is run with holding the 2993 * global lock 2994 */ 2995 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2996 { 2997 unsigned int ref; 2998 2999 /* see if we live in a "glue" directory */ 3000 if (!live_in_glue_dir(glue_dir, dev)) 3001 return; 3002 3003 mutex_lock(&gdp_mutex); 3004 /** 3005 * There is a race condition between removing glue directory 3006 * and adding a new device under the glue directory. 3007 * 3008 * CPU1: CPU2: 3009 * 3010 * device_add() 3011 * get_device_parent() 3012 * class_dir_create_and_add() 3013 * kobject_add_internal() 3014 * create_dir() // create glue_dir 3015 * 3016 * device_add() 3017 * get_device_parent() 3018 * kobject_get() // get glue_dir 3019 * 3020 * device_del() 3021 * cleanup_glue_dir() 3022 * kobject_del(glue_dir) 3023 * 3024 * kobject_add() 3025 * kobject_add_internal() 3026 * create_dir() // in glue_dir 3027 * sysfs_create_dir_ns() 3028 * kernfs_create_dir_ns(sd) 3029 * 3030 * sysfs_remove_dir() // glue_dir->sd=NULL 3031 * sysfs_put() // free glue_dir->sd 3032 * 3033 * // sd is freed 3034 * kernfs_new_node(sd) 3035 * kernfs_get(glue_dir) 3036 * kernfs_add_one() 3037 * kernfs_put() 3038 * 3039 * Before CPU1 remove last child device under glue dir, if CPU2 add 3040 * a new device under glue dir, the glue_dir kobject reference count 3041 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3042 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3043 * and sysfs_put(). This result in glue_dir->sd is freed. 3044 * 3045 * Then the CPU2 will see a stale "empty" but still potentially used 3046 * glue dir around in kernfs_new_node(). 3047 * 3048 * In order to avoid this happening, we also should make sure that 3049 * kernfs_node for glue_dir is released in CPU1 only when refcount 3050 * for glue_dir kobj is 1. 3051 */ 3052 ref = kref_read(&glue_dir->kref); 3053 if (!kobject_has_children(glue_dir) && !--ref) 3054 kobject_del(glue_dir); 3055 kobject_put(glue_dir); 3056 mutex_unlock(&gdp_mutex); 3057 } 3058 3059 static int device_add_class_symlinks(struct device *dev) 3060 { 3061 struct device_node *of_node = dev_of_node(dev); 3062 int error; 3063 3064 if (of_node) { 3065 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3066 if (error) 3067 dev_warn(dev, "Error %d creating of_node link\n",error); 3068 /* An error here doesn't warrant bringing down the device */ 3069 } 3070 3071 if (!dev->class) 3072 return 0; 3073 3074 error = sysfs_create_link(&dev->kobj, 3075 &dev->class->p->subsys.kobj, 3076 "subsystem"); 3077 if (error) 3078 goto out_devnode; 3079 3080 if (dev->parent && device_is_not_partition(dev)) { 3081 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3082 "device"); 3083 if (error) 3084 goto out_subsys; 3085 } 3086 3087 #ifdef CONFIG_BLOCK 3088 /* /sys/block has directories and does not need symlinks */ 3089 if (sysfs_deprecated && dev->class == &block_class) 3090 return 0; 3091 #endif 3092 3093 /* link in the class directory pointing to the device */ 3094 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3095 &dev->kobj, dev_name(dev)); 3096 if (error) 3097 goto out_device; 3098 3099 return 0; 3100 3101 out_device: 3102 sysfs_remove_link(&dev->kobj, "device"); 3103 3104 out_subsys: 3105 sysfs_remove_link(&dev->kobj, "subsystem"); 3106 out_devnode: 3107 sysfs_remove_link(&dev->kobj, "of_node"); 3108 return error; 3109 } 3110 3111 static void device_remove_class_symlinks(struct device *dev) 3112 { 3113 if (dev_of_node(dev)) 3114 sysfs_remove_link(&dev->kobj, "of_node"); 3115 3116 if (!dev->class) 3117 return; 3118 3119 if (dev->parent && device_is_not_partition(dev)) 3120 sysfs_remove_link(&dev->kobj, "device"); 3121 sysfs_remove_link(&dev->kobj, "subsystem"); 3122 #ifdef CONFIG_BLOCK 3123 if (sysfs_deprecated && dev->class == &block_class) 3124 return; 3125 #endif 3126 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3127 } 3128 3129 /** 3130 * dev_set_name - set a device name 3131 * @dev: device 3132 * @fmt: format string for the device's name 3133 */ 3134 int dev_set_name(struct device *dev, const char *fmt, ...) 3135 { 3136 va_list vargs; 3137 int err; 3138 3139 va_start(vargs, fmt); 3140 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3141 va_end(vargs); 3142 return err; 3143 } 3144 EXPORT_SYMBOL_GPL(dev_set_name); 3145 3146 /** 3147 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3148 * @dev: device 3149 * 3150 * By default we select char/ for new entries. Setting class->dev_obj 3151 * to NULL prevents an entry from being created. class->dev_kobj must 3152 * be set (or cleared) before any devices are registered to the class 3153 * otherwise device_create_sys_dev_entry() and 3154 * device_remove_sys_dev_entry() will disagree about the presence of 3155 * the link. 3156 */ 3157 static struct kobject *device_to_dev_kobj(struct device *dev) 3158 { 3159 struct kobject *kobj; 3160 3161 if (dev->class) 3162 kobj = dev->class->dev_kobj; 3163 else 3164 kobj = sysfs_dev_char_kobj; 3165 3166 return kobj; 3167 } 3168 3169 static int device_create_sys_dev_entry(struct device *dev) 3170 { 3171 struct kobject *kobj = device_to_dev_kobj(dev); 3172 int error = 0; 3173 char devt_str[15]; 3174 3175 if (kobj) { 3176 format_dev_t(devt_str, dev->devt); 3177 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3178 } 3179 3180 return error; 3181 } 3182 3183 static void device_remove_sys_dev_entry(struct device *dev) 3184 { 3185 struct kobject *kobj = device_to_dev_kobj(dev); 3186 char devt_str[15]; 3187 3188 if (kobj) { 3189 format_dev_t(devt_str, dev->devt); 3190 sysfs_remove_link(kobj, devt_str); 3191 } 3192 } 3193 3194 static int device_private_init(struct device *dev) 3195 { 3196 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3197 if (!dev->p) 3198 return -ENOMEM; 3199 dev->p->device = dev; 3200 klist_init(&dev->p->klist_children, klist_children_get, 3201 klist_children_put); 3202 INIT_LIST_HEAD(&dev->p->deferred_probe); 3203 return 0; 3204 } 3205 3206 /** 3207 * device_add - add device to device hierarchy. 3208 * @dev: device. 3209 * 3210 * This is part 2 of device_register(), though may be called 3211 * separately _iff_ device_initialize() has been called separately. 3212 * 3213 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3214 * to the global and sibling lists for the device, then 3215 * adds it to the other relevant subsystems of the driver model. 3216 * 3217 * Do not call this routine or device_register() more than once for 3218 * any device structure. The driver model core is not designed to work 3219 * with devices that get unregistered and then spring back to life. 3220 * (Among other things, it's very hard to guarantee that all references 3221 * to the previous incarnation of @dev have been dropped.) Allocate 3222 * and register a fresh new struct device instead. 3223 * 3224 * NOTE: _Never_ directly free @dev after calling this function, even 3225 * if it returned an error! Always use put_device() to give up your 3226 * reference instead. 3227 * 3228 * Rule of thumb is: if device_add() succeeds, you should call 3229 * device_del() when you want to get rid of it. If device_add() has 3230 * *not* succeeded, use *only* put_device() to drop the reference 3231 * count. 3232 */ 3233 int device_add(struct device *dev) 3234 { 3235 struct device *parent; 3236 struct kobject *kobj; 3237 struct class_interface *class_intf; 3238 int error = -EINVAL; 3239 struct kobject *glue_dir = NULL; 3240 3241 dev = get_device(dev); 3242 if (!dev) 3243 goto done; 3244 3245 if (!dev->p) { 3246 error = device_private_init(dev); 3247 if (error) 3248 goto done; 3249 } 3250 3251 /* 3252 * for statically allocated devices, which should all be converted 3253 * some day, we need to initialize the name. We prevent reading back 3254 * the name, and force the use of dev_name() 3255 */ 3256 if (dev->init_name) { 3257 dev_set_name(dev, "%s", dev->init_name); 3258 dev->init_name = NULL; 3259 } 3260 3261 /* subsystems can specify simple device enumeration */ 3262 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3263 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3264 3265 if (!dev_name(dev)) { 3266 error = -EINVAL; 3267 goto name_error; 3268 } 3269 3270 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3271 3272 parent = get_device(dev->parent); 3273 kobj = get_device_parent(dev, parent); 3274 if (IS_ERR(kobj)) { 3275 error = PTR_ERR(kobj); 3276 goto parent_error; 3277 } 3278 if (kobj) 3279 dev->kobj.parent = kobj; 3280 3281 /* use parent numa_node */ 3282 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3283 set_dev_node(dev, dev_to_node(parent)); 3284 3285 /* first, register with generic layer. */ 3286 /* we require the name to be set before, and pass NULL */ 3287 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3288 if (error) { 3289 glue_dir = get_glue_dir(dev); 3290 goto Error; 3291 } 3292 3293 /* notify platform of device entry */ 3294 error = device_platform_notify(dev, KOBJ_ADD); 3295 if (error) 3296 goto platform_error; 3297 3298 error = device_create_file(dev, &dev_attr_uevent); 3299 if (error) 3300 goto attrError; 3301 3302 error = device_add_class_symlinks(dev); 3303 if (error) 3304 goto SymlinkError; 3305 error = device_add_attrs(dev); 3306 if (error) 3307 goto AttrsError; 3308 error = bus_add_device(dev); 3309 if (error) 3310 goto BusError; 3311 error = dpm_sysfs_add(dev); 3312 if (error) 3313 goto DPMError; 3314 device_pm_add(dev); 3315 3316 if (MAJOR(dev->devt)) { 3317 error = device_create_file(dev, &dev_attr_dev); 3318 if (error) 3319 goto DevAttrError; 3320 3321 error = device_create_sys_dev_entry(dev); 3322 if (error) 3323 goto SysEntryError; 3324 3325 devtmpfs_create_node(dev); 3326 } 3327 3328 /* Notify clients of device addition. This call must come 3329 * after dpm_sysfs_add() and before kobject_uevent(). 3330 */ 3331 if (dev->bus) 3332 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3333 BUS_NOTIFY_ADD_DEVICE, dev); 3334 3335 kobject_uevent(&dev->kobj, KOBJ_ADD); 3336 3337 /* 3338 * Check if any of the other devices (consumers) have been waiting for 3339 * this device (supplier) to be added so that they can create a device 3340 * link to it. 3341 * 3342 * This needs to happen after device_pm_add() because device_link_add() 3343 * requires the supplier be registered before it's called. 3344 * 3345 * But this also needs to happen before bus_probe_device() to make sure 3346 * waiting consumers can link to it before the driver is bound to the 3347 * device and the driver sync_state callback is called for this device. 3348 */ 3349 if (dev->fwnode && !dev->fwnode->dev) { 3350 dev->fwnode->dev = dev; 3351 fw_devlink_link_device(dev); 3352 } 3353 3354 bus_probe_device(dev); 3355 3356 /* 3357 * If all driver registration is done and a newly added device doesn't 3358 * match with any driver, don't block its consumers from probing in 3359 * case the consumer device is able to operate without this supplier. 3360 */ 3361 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3362 fw_devlink_unblock_consumers(dev); 3363 3364 if (parent) 3365 klist_add_tail(&dev->p->knode_parent, 3366 &parent->p->klist_children); 3367 3368 if (dev->class) { 3369 mutex_lock(&dev->class->p->mutex); 3370 /* tie the class to the device */ 3371 klist_add_tail(&dev->p->knode_class, 3372 &dev->class->p->klist_devices); 3373 3374 /* notify any interfaces that the device is here */ 3375 list_for_each_entry(class_intf, 3376 &dev->class->p->interfaces, node) 3377 if (class_intf->add_dev) 3378 class_intf->add_dev(dev, class_intf); 3379 mutex_unlock(&dev->class->p->mutex); 3380 } 3381 done: 3382 put_device(dev); 3383 return error; 3384 SysEntryError: 3385 if (MAJOR(dev->devt)) 3386 device_remove_file(dev, &dev_attr_dev); 3387 DevAttrError: 3388 device_pm_remove(dev); 3389 dpm_sysfs_remove(dev); 3390 DPMError: 3391 bus_remove_device(dev); 3392 BusError: 3393 device_remove_attrs(dev); 3394 AttrsError: 3395 device_remove_class_symlinks(dev); 3396 SymlinkError: 3397 device_remove_file(dev, &dev_attr_uevent); 3398 attrError: 3399 device_platform_notify(dev, KOBJ_REMOVE); 3400 platform_error: 3401 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3402 glue_dir = get_glue_dir(dev); 3403 kobject_del(&dev->kobj); 3404 Error: 3405 cleanup_glue_dir(dev, glue_dir); 3406 parent_error: 3407 put_device(parent); 3408 name_error: 3409 kfree(dev->p); 3410 dev->p = NULL; 3411 goto done; 3412 } 3413 EXPORT_SYMBOL_GPL(device_add); 3414 3415 /** 3416 * device_register - register a device with the system. 3417 * @dev: pointer to the device structure 3418 * 3419 * This happens in two clean steps - initialize the device 3420 * and add it to the system. The two steps can be called 3421 * separately, but this is the easiest and most common. 3422 * I.e. you should only call the two helpers separately if 3423 * have a clearly defined need to use and refcount the device 3424 * before it is added to the hierarchy. 3425 * 3426 * For more information, see the kerneldoc for device_initialize() 3427 * and device_add(). 3428 * 3429 * NOTE: _Never_ directly free @dev after calling this function, even 3430 * if it returned an error! Always use put_device() to give up the 3431 * reference initialized in this function instead. 3432 */ 3433 int device_register(struct device *dev) 3434 { 3435 device_initialize(dev); 3436 return device_add(dev); 3437 } 3438 EXPORT_SYMBOL_GPL(device_register); 3439 3440 /** 3441 * get_device - increment reference count for device. 3442 * @dev: device. 3443 * 3444 * This simply forwards the call to kobject_get(), though 3445 * we do take care to provide for the case that we get a NULL 3446 * pointer passed in. 3447 */ 3448 struct device *get_device(struct device *dev) 3449 { 3450 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3451 } 3452 EXPORT_SYMBOL_GPL(get_device); 3453 3454 /** 3455 * put_device - decrement reference count. 3456 * @dev: device in question. 3457 */ 3458 void put_device(struct device *dev) 3459 { 3460 /* might_sleep(); */ 3461 if (dev) 3462 kobject_put(&dev->kobj); 3463 } 3464 EXPORT_SYMBOL_GPL(put_device); 3465 3466 bool kill_device(struct device *dev) 3467 { 3468 /* 3469 * Require the device lock and set the "dead" flag to guarantee that 3470 * the update behavior is consistent with the other bitfields near 3471 * it and that we cannot have an asynchronous probe routine trying 3472 * to run while we are tearing out the bus/class/sysfs from 3473 * underneath the device. 3474 */ 3475 device_lock_assert(dev); 3476 3477 if (dev->p->dead) 3478 return false; 3479 dev->p->dead = true; 3480 return true; 3481 } 3482 EXPORT_SYMBOL_GPL(kill_device); 3483 3484 /** 3485 * device_del - delete device from system. 3486 * @dev: device. 3487 * 3488 * This is the first part of the device unregistration 3489 * sequence. This removes the device from the lists we control 3490 * from here, has it removed from the other driver model 3491 * subsystems it was added to in device_add(), and removes it 3492 * from the kobject hierarchy. 3493 * 3494 * NOTE: this should be called manually _iff_ device_add() was 3495 * also called manually. 3496 */ 3497 void device_del(struct device *dev) 3498 { 3499 struct device *parent = dev->parent; 3500 struct kobject *glue_dir = NULL; 3501 struct class_interface *class_intf; 3502 unsigned int noio_flag; 3503 3504 device_lock(dev); 3505 kill_device(dev); 3506 device_unlock(dev); 3507 3508 if (dev->fwnode && dev->fwnode->dev == dev) 3509 dev->fwnode->dev = NULL; 3510 3511 /* Notify clients of device removal. This call must come 3512 * before dpm_sysfs_remove(). 3513 */ 3514 noio_flag = memalloc_noio_save(); 3515 if (dev->bus) 3516 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3517 BUS_NOTIFY_DEL_DEVICE, dev); 3518 3519 dpm_sysfs_remove(dev); 3520 if (parent) 3521 klist_del(&dev->p->knode_parent); 3522 if (MAJOR(dev->devt)) { 3523 devtmpfs_delete_node(dev); 3524 device_remove_sys_dev_entry(dev); 3525 device_remove_file(dev, &dev_attr_dev); 3526 } 3527 if (dev->class) { 3528 device_remove_class_symlinks(dev); 3529 3530 mutex_lock(&dev->class->p->mutex); 3531 /* notify any interfaces that the device is now gone */ 3532 list_for_each_entry(class_intf, 3533 &dev->class->p->interfaces, node) 3534 if (class_intf->remove_dev) 3535 class_intf->remove_dev(dev, class_intf); 3536 /* remove the device from the class list */ 3537 klist_del(&dev->p->knode_class); 3538 mutex_unlock(&dev->class->p->mutex); 3539 } 3540 device_remove_file(dev, &dev_attr_uevent); 3541 device_remove_attrs(dev); 3542 bus_remove_device(dev); 3543 device_pm_remove(dev); 3544 driver_deferred_probe_del(dev); 3545 device_platform_notify(dev, KOBJ_REMOVE); 3546 device_remove_properties(dev); 3547 device_links_purge(dev); 3548 3549 if (dev->bus) 3550 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3551 BUS_NOTIFY_REMOVED_DEVICE, dev); 3552 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3553 glue_dir = get_glue_dir(dev); 3554 kobject_del(&dev->kobj); 3555 cleanup_glue_dir(dev, glue_dir); 3556 memalloc_noio_restore(noio_flag); 3557 put_device(parent); 3558 } 3559 EXPORT_SYMBOL_GPL(device_del); 3560 3561 /** 3562 * device_unregister - unregister device from system. 3563 * @dev: device going away. 3564 * 3565 * We do this in two parts, like we do device_register(). First, 3566 * we remove it from all the subsystems with device_del(), then 3567 * we decrement the reference count via put_device(). If that 3568 * is the final reference count, the device will be cleaned up 3569 * via device_release() above. Otherwise, the structure will 3570 * stick around until the final reference to the device is dropped. 3571 */ 3572 void device_unregister(struct device *dev) 3573 { 3574 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3575 device_del(dev); 3576 put_device(dev); 3577 } 3578 EXPORT_SYMBOL_GPL(device_unregister); 3579 3580 static struct device *prev_device(struct klist_iter *i) 3581 { 3582 struct klist_node *n = klist_prev(i); 3583 struct device *dev = NULL; 3584 struct device_private *p; 3585 3586 if (n) { 3587 p = to_device_private_parent(n); 3588 dev = p->device; 3589 } 3590 return dev; 3591 } 3592 3593 static struct device *next_device(struct klist_iter *i) 3594 { 3595 struct klist_node *n = klist_next(i); 3596 struct device *dev = NULL; 3597 struct device_private *p; 3598 3599 if (n) { 3600 p = to_device_private_parent(n); 3601 dev = p->device; 3602 } 3603 return dev; 3604 } 3605 3606 /** 3607 * device_get_devnode - path of device node file 3608 * @dev: device 3609 * @mode: returned file access mode 3610 * @uid: returned file owner 3611 * @gid: returned file group 3612 * @tmp: possibly allocated string 3613 * 3614 * Return the relative path of a possible device node. 3615 * Non-default names may need to allocate a memory to compose 3616 * a name. This memory is returned in tmp and needs to be 3617 * freed by the caller. 3618 */ 3619 const char *device_get_devnode(struct device *dev, 3620 umode_t *mode, kuid_t *uid, kgid_t *gid, 3621 const char **tmp) 3622 { 3623 char *s; 3624 3625 *tmp = NULL; 3626 3627 /* the device type may provide a specific name */ 3628 if (dev->type && dev->type->devnode) 3629 *tmp = dev->type->devnode(dev, mode, uid, gid); 3630 if (*tmp) 3631 return *tmp; 3632 3633 /* the class may provide a specific name */ 3634 if (dev->class && dev->class->devnode) 3635 *tmp = dev->class->devnode(dev, mode); 3636 if (*tmp) 3637 return *tmp; 3638 3639 /* return name without allocation, tmp == NULL */ 3640 if (strchr(dev_name(dev), '!') == NULL) 3641 return dev_name(dev); 3642 3643 /* replace '!' in the name with '/' */ 3644 s = kstrdup(dev_name(dev), GFP_KERNEL); 3645 if (!s) 3646 return NULL; 3647 strreplace(s, '!', '/'); 3648 return *tmp = s; 3649 } 3650 3651 /** 3652 * device_for_each_child - device child iterator. 3653 * @parent: parent struct device. 3654 * @fn: function to be called for each device. 3655 * @data: data for the callback. 3656 * 3657 * Iterate over @parent's child devices, and call @fn for each, 3658 * passing it @data. 3659 * 3660 * We check the return of @fn each time. If it returns anything 3661 * other than 0, we break out and return that value. 3662 */ 3663 int device_for_each_child(struct device *parent, void *data, 3664 int (*fn)(struct device *dev, void *data)) 3665 { 3666 struct klist_iter i; 3667 struct device *child; 3668 int error = 0; 3669 3670 if (!parent->p) 3671 return 0; 3672 3673 klist_iter_init(&parent->p->klist_children, &i); 3674 while (!error && (child = next_device(&i))) 3675 error = fn(child, data); 3676 klist_iter_exit(&i); 3677 return error; 3678 } 3679 EXPORT_SYMBOL_GPL(device_for_each_child); 3680 3681 /** 3682 * device_for_each_child_reverse - device child iterator in reversed order. 3683 * @parent: parent struct device. 3684 * @fn: function to be called for each device. 3685 * @data: data for the callback. 3686 * 3687 * Iterate over @parent's child devices, and call @fn for each, 3688 * passing it @data. 3689 * 3690 * We check the return of @fn each time. If it returns anything 3691 * other than 0, we break out and return that value. 3692 */ 3693 int device_for_each_child_reverse(struct device *parent, void *data, 3694 int (*fn)(struct device *dev, void *data)) 3695 { 3696 struct klist_iter i; 3697 struct device *child; 3698 int error = 0; 3699 3700 if (!parent->p) 3701 return 0; 3702 3703 klist_iter_init(&parent->p->klist_children, &i); 3704 while ((child = prev_device(&i)) && !error) 3705 error = fn(child, data); 3706 klist_iter_exit(&i); 3707 return error; 3708 } 3709 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3710 3711 /** 3712 * device_find_child - device iterator for locating a particular device. 3713 * @parent: parent struct device 3714 * @match: Callback function to check device 3715 * @data: Data to pass to match function 3716 * 3717 * This is similar to the device_for_each_child() function above, but it 3718 * returns a reference to a device that is 'found' for later use, as 3719 * determined by the @match callback. 3720 * 3721 * The callback should return 0 if the device doesn't match and non-zero 3722 * if it does. If the callback returns non-zero and a reference to the 3723 * current device can be obtained, this function will return to the caller 3724 * and not iterate over any more devices. 3725 * 3726 * NOTE: you will need to drop the reference with put_device() after use. 3727 */ 3728 struct device *device_find_child(struct device *parent, void *data, 3729 int (*match)(struct device *dev, void *data)) 3730 { 3731 struct klist_iter i; 3732 struct device *child; 3733 3734 if (!parent) 3735 return NULL; 3736 3737 klist_iter_init(&parent->p->klist_children, &i); 3738 while ((child = next_device(&i))) 3739 if (match(child, data) && get_device(child)) 3740 break; 3741 klist_iter_exit(&i); 3742 return child; 3743 } 3744 EXPORT_SYMBOL_GPL(device_find_child); 3745 3746 /** 3747 * device_find_child_by_name - device iterator for locating a child device. 3748 * @parent: parent struct device 3749 * @name: name of the child device 3750 * 3751 * This is similar to the device_find_child() function above, but it 3752 * returns a reference to a device that has the name @name. 3753 * 3754 * NOTE: you will need to drop the reference with put_device() after use. 3755 */ 3756 struct device *device_find_child_by_name(struct device *parent, 3757 const char *name) 3758 { 3759 struct klist_iter i; 3760 struct device *child; 3761 3762 if (!parent) 3763 return NULL; 3764 3765 klist_iter_init(&parent->p->klist_children, &i); 3766 while ((child = next_device(&i))) 3767 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3768 break; 3769 klist_iter_exit(&i); 3770 return child; 3771 } 3772 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3773 3774 int __init devices_init(void) 3775 { 3776 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3777 if (!devices_kset) 3778 return -ENOMEM; 3779 dev_kobj = kobject_create_and_add("dev", NULL); 3780 if (!dev_kobj) 3781 goto dev_kobj_err; 3782 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3783 if (!sysfs_dev_block_kobj) 3784 goto block_kobj_err; 3785 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3786 if (!sysfs_dev_char_kobj) 3787 goto char_kobj_err; 3788 3789 return 0; 3790 3791 char_kobj_err: 3792 kobject_put(sysfs_dev_block_kobj); 3793 block_kobj_err: 3794 kobject_put(dev_kobj); 3795 dev_kobj_err: 3796 kset_unregister(devices_kset); 3797 return -ENOMEM; 3798 } 3799 3800 static int device_check_offline(struct device *dev, void *not_used) 3801 { 3802 int ret; 3803 3804 ret = device_for_each_child(dev, NULL, device_check_offline); 3805 if (ret) 3806 return ret; 3807 3808 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3809 } 3810 3811 /** 3812 * device_offline - Prepare the device for hot-removal. 3813 * @dev: Device to be put offline. 3814 * 3815 * Execute the device bus type's .offline() callback, if present, to prepare 3816 * the device for a subsequent hot-removal. If that succeeds, the device must 3817 * not be used until either it is removed or its bus type's .online() callback 3818 * is executed. 3819 * 3820 * Call under device_hotplug_lock. 3821 */ 3822 int device_offline(struct device *dev) 3823 { 3824 int ret; 3825 3826 if (dev->offline_disabled) 3827 return -EPERM; 3828 3829 ret = device_for_each_child(dev, NULL, device_check_offline); 3830 if (ret) 3831 return ret; 3832 3833 device_lock(dev); 3834 if (device_supports_offline(dev)) { 3835 if (dev->offline) { 3836 ret = 1; 3837 } else { 3838 ret = dev->bus->offline(dev); 3839 if (!ret) { 3840 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3841 dev->offline = true; 3842 } 3843 } 3844 } 3845 device_unlock(dev); 3846 3847 return ret; 3848 } 3849 3850 /** 3851 * device_online - Put the device back online after successful device_offline(). 3852 * @dev: Device to be put back online. 3853 * 3854 * If device_offline() has been successfully executed for @dev, but the device 3855 * has not been removed subsequently, execute its bus type's .online() callback 3856 * to indicate that the device can be used again. 3857 * 3858 * Call under device_hotplug_lock. 3859 */ 3860 int device_online(struct device *dev) 3861 { 3862 int ret = 0; 3863 3864 device_lock(dev); 3865 if (device_supports_offline(dev)) { 3866 if (dev->offline) { 3867 ret = dev->bus->online(dev); 3868 if (!ret) { 3869 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3870 dev->offline = false; 3871 } 3872 } else { 3873 ret = 1; 3874 } 3875 } 3876 device_unlock(dev); 3877 3878 return ret; 3879 } 3880 3881 struct root_device { 3882 struct device dev; 3883 struct module *owner; 3884 }; 3885 3886 static inline struct root_device *to_root_device(struct device *d) 3887 { 3888 return container_of(d, struct root_device, dev); 3889 } 3890 3891 static void root_device_release(struct device *dev) 3892 { 3893 kfree(to_root_device(dev)); 3894 } 3895 3896 /** 3897 * __root_device_register - allocate and register a root device 3898 * @name: root device name 3899 * @owner: owner module of the root device, usually THIS_MODULE 3900 * 3901 * This function allocates a root device and registers it 3902 * using device_register(). In order to free the returned 3903 * device, use root_device_unregister(). 3904 * 3905 * Root devices are dummy devices which allow other devices 3906 * to be grouped under /sys/devices. Use this function to 3907 * allocate a root device and then use it as the parent of 3908 * any device which should appear under /sys/devices/{name} 3909 * 3910 * The /sys/devices/{name} directory will also contain a 3911 * 'module' symlink which points to the @owner directory 3912 * in sysfs. 3913 * 3914 * Returns &struct device pointer on success, or ERR_PTR() on error. 3915 * 3916 * Note: You probably want to use root_device_register(). 3917 */ 3918 struct device *__root_device_register(const char *name, struct module *owner) 3919 { 3920 struct root_device *root; 3921 int err = -ENOMEM; 3922 3923 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3924 if (!root) 3925 return ERR_PTR(err); 3926 3927 err = dev_set_name(&root->dev, "%s", name); 3928 if (err) { 3929 kfree(root); 3930 return ERR_PTR(err); 3931 } 3932 3933 root->dev.release = root_device_release; 3934 3935 err = device_register(&root->dev); 3936 if (err) { 3937 put_device(&root->dev); 3938 return ERR_PTR(err); 3939 } 3940 3941 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3942 if (owner) { 3943 struct module_kobject *mk = &owner->mkobj; 3944 3945 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3946 if (err) { 3947 device_unregister(&root->dev); 3948 return ERR_PTR(err); 3949 } 3950 root->owner = owner; 3951 } 3952 #endif 3953 3954 return &root->dev; 3955 } 3956 EXPORT_SYMBOL_GPL(__root_device_register); 3957 3958 /** 3959 * root_device_unregister - unregister and free a root device 3960 * @dev: device going away 3961 * 3962 * This function unregisters and cleans up a device that was created by 3963 * root_device_register(). 3964 */ 3965 void root_device_unregister(struct device *dev) 3966 { 3967 struct root_device *root = to_root_device(dev); 3968 3969 if (root->owner) 3970 sysfs_remove_link(&root->dev.kobj, "module"); 3971 3972 device_unregister(dev); 3973 } 3974 EXPORT_SYMBOL_GPL(root_device_unregister); 3975 3976 3977 static void device_create_release(struct device *dev) 3978 { 3979 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3980 kfree(dev); 3981 } 3982 3983 static __printf(6, 0) struct device * 3984 device_create_groups_vargs(struct class *class, struct device *parent, 3985 dev_t devt, void *drvdata, 3986 const struct attribute_group **groups, 3987 const char *fmt, va_list args) 3988 { 3989 struct device *dev = NULL; 3990 int retval = -ENODEV; 3991 3992 if (class == NULL || IS_ERR(class)) 3993 goto error; 3994 3995 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3996 if (!dev) { 3997 retval = -ENOMEM; 3998 goto error; 3999 } 4000 4001 device_initialize(dev); 4002 dev->devt = devt; 4003 dev->class = class; 4004 dev->parent = parent; 4005 dev->groups = groups; 4006 dev->release = device_create_release; 4007 dev_set_drvdata(dev, drvdata); 4008 4009 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4010 if (retval) 4011 goto error; 4012 4013 retval = device_add(dev); 4014 if (retval) 4015 goto error; 4016 4017 return dev; 4018 4019 error: 4020 put_device(dev); 4021 return ERR_PTR(retval); 4022 } 4023 4024 /** 4025 * device_create - creates a device and registers it with sysfs 4026 * @class: pointer to the struct class that this device should be registered to 4027 * @parent: pointer to the parent struct device of this new device, if any 4028 * @devt: the dev_t for the char device to be added 4029 * @drvdata: the data to be added to the device for callbacks 4030 * @fmt: string for the device's name 4031 * 4032 * This function can be used by char device classes. A struct device 4033 * will be created in sysfs, registered to the specified class. 4034 * 4035 * A "dev" file will be created, showing the dev_t for the device, if 4036 * the dev_t is not 0,0. 4037 * If a pointer to a parent struct device is passed in, the newly created 4038 * struct device will be a child of that device in sysfs. 4039 * The pointer to the struct device will be returned from the call. 4040 * Any further sysfs files that might be required can be created using this 4041 * pointer. 4042 * 4043 * Returns &struct device pointer on success, or ERR_PTR() on error. 4044 * 4045 * Note: the struct class passed to this function must have previously 4046 * been created with a call to class_create(). 4047 */ 4048 struct device *device_create(struct class *class, struct device *parent, 4049 dev_t devt, void *drvdata, const char *fmt, ...) 4050 { 4051 va_list vargs; 4052 struct device *dev; 4053 4054 va_start(vargs, fmt); 4055 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4056 fmt, vargs); 4057 va_end(vargs); 4058 return dev; 4059 } 4060 EXPORT_SYMBOL_GPL(device_create); 4061 4062 /** 4063 * device_create_with_groups - creates a device and registers it with sysfs 4064 * @class: pointer to the struct class that this device should be registered to 4065 * @parent: pointer to the parent struct device of this new device, if any 4066 * @devt: the dev_t for the char device to be added 4067 * @drvdata: the data to be added to the device for callbacks 4068 * @groups: NULL-terminated list of attribute groups to be created 4069 * @fmt: string for the device's name 4070 * 4071 * This function can be used by char device classes. A struct device 4072 * will be created in sysfs, registered to the specified class. 4073 * Additional attributes specified in the groups parameter will also 4074 * be created automatically. 4075 * 4076 * A "dev" file will be created, showing the dev_t for the device, if 4077 * the dev_t is not 0,0. 4078 * If a pointer to a parent struct device is passed in, the newly created 4079 * struct device will be a child of that device in sysfs. 4080 * The pointer to the struct device will be returned from the call. 4081 * Any further sysfs files that might be required can be created using this 4082 * pointer. 4083 * 4084 * Returns &struct device pointer on success, or ERR_PTR() on error. 4085 * 4086 * Note: the struct class passed to this function must have previously 4087 * been created with a call to class_create(). 4088 */ 4089 struct device *device_create_with_groups(struct class *class, 4090 struct device *parent, dev_t devt, 4091 void *drvdata, 4092 const struct attribute_group **groups, 4093 const char *fmt, ...) 4094 { 4095 va_list vargs; 4096 struct device *dev; 4097 4098 va_start(vargs, fmt); 4099 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4100 fmt, vargs); 4101 va_end(vargs); 4102 return dev; 4103 } 4104 EXPORT_SYMBOL_GPL(device_create_with_groups); 4105 4106 /** 4107 * device_destroy - removes a device that was created with device_create() 4108 * @class: pointer to the struct class that this device was registered with 4109 * @devt: the dev_t of the device that was previously registered 4110 * 4111 * This call unregisters and cleans up a device that was created with a 4112 * call to device_create(). 4113 */ 4114 void device_destroy(struct class *class, dev_t devt) 4115 { 4116 struct device *dev; 4117 4118 dev = class_find_device_by_devt(class, devt); 4119 if (dev) { 4120 put_device(dev); 4121 device_unregister(dev); 4122 } 4123 } 4124 EXPORT_SYMBOL_GPL(device_destroy); 4125 4126 /** 4127 * device_rename - renames a device 4128 * @dev: the pointer to the struct device to be renamed 4129 * @new_name: the new name of the device 4130 * 4131 * It is the responsibility of the caller to provide mutual 4132 * exclusion between two different calls of device_rename 4133 * on the same device to ensure that new_name is valid and 4134 * won't conflict with other devices. 4135 * 4136 * Note: Don't call this function. Currently, the networking layer calls this 4137 * function, but that will change. The following text from Kay Sievers offers 4138 * some insight: 4139 * 4140 * Renaming devices is racy at many levels, symlinks and other stuff are not 4141 * replaced atomically, and you get a "move" uevent, but it's not easy to 4142 * connect the event to the old and new device. Device nodes are not renamed at 4143 * all, there isn't even support for that in the kernel now. 4144 * 4145 * In the meantime, during renaming, your target name might be taken by another 4146 * driver, creating conflicts. Or the old name is taken directly after you 4147 * renamed it -- then you get events for the same DEVPATH, before you even see 4148 * the "move" event. It's just a mess, and nothing new should ever rely on 4149 * kernel device renaming. Besides that, it's not even implemented now for 4150 * other things than (driver-core wise very simple) network devices. 4151 * 4152 * We are currently about to change network renaming in udev to completely 4153 * disallow renaming of devices in the same namespace as the kernel uses, 4154 * because we can't solve the problems properly, that arise with swapping names 4155 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4156 * be allowed to some other name than eth[0-9]*, for the aforementioned 4157 * reasons. 4158 * 4159 * Make up a "real" name in the driver before you register anything, or add 4160 * some other attributes for userspace to find the device, or use udev to add 4161 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4162 * don't even want to get into that and try to implement the missing pieces in 4163 * the core. We really have other pieces to fix in the driver core mess. :) 4164 */ 4165 int device_rename(struct device *dev, const char *new_name) 4166 { 4167 struct kobject *kobj = &dev->kobj; 4168 char *old_device_name = NULL; 4169 int error; 4170 4171 dev = get_device(dev); 4172 if (!dev) 4173 return -EINVAL; 4174 4175 dev_dbg(dev, "renaming to %s\n", new_name); 4176 4177 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4178 if (!old_device_name) { 4179 error = -ENOMEM; 4180 goto out; 4181 } 4182 4183 if (dev->class) { 4184 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4185 kobj, old_device_name, 4186 new_name, kobject_namespace(kobj)); 4187 if (error) 4188 goto out; 4189 } 4190 4191 error = kobject_rename(kobj, new_name); 4192 if (error) 4193 goto out; 4194 4195 out: 4196 put_device(dev); 4197 4198 kfree(old_device_name); 4199 4200 return error; 4201 } 4202 EXPORT_SYMBOL_GPL(device_rename); 4203 4204 static int device_move_class_links(struct device *dev, 4205 struct device *old_parent, 4206 struct device *new_parent) 4207 { 4208 int error = 0; 4209 4210 if (old_parent) 4211 sysfs_remove_link(&dev->kobj, "device"); 4212 if (new_parent) 4213 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4214 "device"); 4215 return error; 4216 } 4217 4218 /** 4219 * device_move - moves a device to a new parent 4220 * @dev: the pointer to the struct device to be moved 4221 * @new_parent: the new parent of the device (can be NULL) 4222 * @dpm_order: how to reorder the dpm_list 4223 */ 4224 int device_move(struct device *dev, struct device *new_parent, 4225 enum dpm_order dpm_order) 4226 { 4227 int error; 4228 struct device *old_parent; 4229 struct kobject *new_parent_kobj; 4230 4231 dev = get_device(dev); 4232 if (!dev) 4233 return -EINVAL; 4234 4235 device_pm_lock(); 4236 new_parent = get_device(new_parent); 4237 new_parent_kobj = get_device_parent(dev, new_parent); 4238 if (IS_ERR(new_parent_kobj)) { 4239 error = PTR_ERR(new_parent_kobj); 4240 put_device(new_parent); 4241 goto out; 4242 } 4243 4244 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4245 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4246 error = kobject_move(&dev->kobj, new_parent_kobj); 4247 if (error) { 4248 cleanup_glue_dir(dev, new_parent_kobj); 4249 put_device(new_parent); 4250 goto out; 4251 } 4252 old_parent = dev->parent; 4253 dev->parent = new_parent; 4254 if (old_parent) 4255 klist_remove(&dev->p->knode_parent); 4256 if (new_parent) { 4257 klist_add_tail(&dev->p->knode_parent, 4258 &new_parent->p->klist_children); 4259 set_dev_node(dev, dev_to_node(new_parent)); 4260 } 4261 4262 if (dev->class) { 4263 error = device_move_class_links(dev, old_parent, new_parent); 4264 if (error) { 4265 /* We ignore errors on cleanup since we're hosed anyway... */ 4266 device_move_class_links(dev, new_parent, old_parent); 4267 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4268 if (new_parent) 4269 klist_remove(&dev->p->knode_parent); 4270 dev->parent = old_parent; 4271 if (old_parent) { 4272 klist_add_tail(&dev->p->knode_parent, 4273 &old_parent->p->klist_children); 4274 set_dev_node(dev, dev_to_node(old_parent)); 4275 } 4276 } 4277 cleanup_glue_dir(dev, new_parent_kobj); 4278 put_device(new_parent); 4279 goto out; 4280 } 4281 } 4282 switch (dpm_order) { 4283 case DPM_ORDER_NONE: 4284 break; 4285 case DPM_ORDER_DEV_AFTER_PARENT: 4286 device_pm_move_after(dev, new_parent); 4287 devices_kset_move_after(dev, new_parent); 4288 break; 4289 case DPM_ORDER_PARENT_BEFORE_DEV: 4290 device_pm_move_before(new_parent, dev); 4291 devices_kset_move_before(new_parent, dev); 4292 break; 4293 case DPM_ORDER_DEV_LAST: 4294 device_pm_move_last(dev); 4295 devices_kset_move_last(dev); 4296 break; 4297 } 4298 4299 put_device(old_parent); 4300 out: 4301 device_pm_unlock(); 4302 put_device(dev); 4303 return error; 4304 } 4305 EXPORT_SYMBOL_GPL(device_move); 4306 4307 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4308 kgid_t kgid) 4309 { 4310 struct kobject *kobj = &dev->kobj; 4311 struct class *class = dev->class; 4312 const struct device_type *type = dev->type; 4313 int error; 4314 4315 if (class) { 4316 /* 4317 * Change the device groups of the device class for @dev to 4318 * @kuid/@kgid. 4319 */ 4320 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4321 kgid); 4322 if (error) 4323 return error; 4324 } 4325 4326 if (type) { 4327 /* 4328 * Change the device groups of the device type for @dev to 4329 * @kuid/@kgid. 4330 */ 4331 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4332 kgid); 4333 if (error) 4334 return error; 4335 } 4336 4337 /* Change the device groups of @dev to @kuid/@kgid. */ 4338 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4339 if (error) 4340 return error; 4341 4342 if (device_supports_offline(dev) && !dev->offline_disabled) { 4343 /* Change online device attributes of @dev to @kuid/@kgid. */ 4344 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4345 kuid, kgid); 4346 if (error) 4347 return error; 4348 } 4349 4350 return 0; 4351 } 4352 4353 /** 4354 * device_change_owner - change the owner of an existing device. 4355 * @dev: device. 4356 * @kuid: new owner's kuid 4357 * @kgid: new owner's kgid 4358 * 4359 * This changes the owner of @dev and its corresponding sysfs entries to 4360 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4361 * core. 4362 * 4363 * Returns 0 on success or error code on failure. 4364 */ 4365 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4366 { 4367 int error; 4368 struct kobject *kobj = &dev->kobj; 4369 4370 dev = get_device(dev); 4371 if (!dev) 4372 return -EINVAL; 4373 4374 /* 4375 * Change the kobject and the default attributes and groups of the 4376 * ktype associated with it to @kuid/@kgid. 4377 */ 4378 error = sysfs_change_owner(kobj, kuid, kgid); 4379 if (error) 4380 goto out; 4381 4382 /* 4383 * Change the uevent file for @dev to the new owner. The uevent file 4384 * was created in a separate step when @dev got added and we mirror 4385 * that step here. 4386 */ 4387 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4388 kgid); 4389 if (error) 4390 goto out; 4391 4392 /* 4393 * Change the device groups, the device groups associated with the 4394 * device class, and the groups associated with the device type of @dev 4395 * to @kuid/@kgid. 4396 */ 4397 error = device_attrs_change_owner(dev, kuid, kgid); 4398 if (error) 4399 goto out; 4400 4401 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4402 if (error) 4403 goto out; 4404 4405 #ifdef CONFIG_BLOCK 4406 if (sysfs_deprecated && dev->class == &block_class) 4407 goto out; 4408 #endif 4409 4410 /* 4411 * Change the owner of the symlink located in the class directory of 4412 * the device class associated with @dev which points to the actual 4413 * directory entry for @dev to @kuid/@kgid. This ensures that the 4414 * symlink shows the same permissions as its target. 4415 */ 4416 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4417 dev_name(dev), kuid, kgid); 4418 if (error) 4419 goto out; 4420 4421 out: 4422 put_device(dev); 4423 return error; 4424 } 4425 EXPORT_SYMBOL_GPL(device_change_owner); 4426 4427 /** 4428 * device_shutdown - call ->shutdown() on each device to shutdown. 4429 */ 4430 void device_shutdown(void) 4431 { 4432 struct device *dev, *parent; 4433 4434 wait_for_device_probe(); 4435 device_block_probing(); 4436 4437 cpufreq_suspend(); 4438 4439 spin_lock(&devices_kset->list_lock); 4440 /* 4441 * Walk the devices list backward, shutting down each in turn. 4442 * Beware that device unplug events may also start pulling 4443 * devices offline, even as the system is shutting down. 4444 */ 4445 while (!list_empty(&devices_kset->list)) { 4446 dev = list_entry(devices_kset->list.prev, struct device, 4447 kobj.entry); 4448 4449 /* 4450 * hold reference count of device's parent to 4451 * prevent it from being freed because parent's 4452 * lock is to be held 4453 */ 4454 parent = get_device(dev->parent); 4455 get_device(dev); 4456 /* 4457 * Make sure the device is off the kset list, in the 4458 * event that dev->*->shutdown() doesn't remove it. 4459 */ 4460 list_del_init(&dev->kobj.entry); 4461 spin_unlock(&devices_kset->list_lock); 4462 4463 /* hold lock to avoid race with probe/release */ 4464 if (parent) 4465 device_lock(parent); 4466 device_lock(dev); 4467 4468 /* Don't allow any more runtime suspends */ 4469 pm_runtime_get_noresume(dev); 4470 pm_runtime_barrier(dev); 4471 4472 if (dev->class && dev->class->shutdown_pre) { 4473 if (initcall_debug) 4474 dev_info(dev, "shutdown_pre\n"); 4475 dev->class->shutdown_pre(dev); 4476 } 4477 if (dev->bus && dev->bus->shutdown) { 4478 if (initcall_debug) 4479 dev_info(dev, "shutdown\n"); 4480 dev->bus->shutdown(dev); 4481 } else if (dev->driver && dev->driver->shutdown) { 4482 if (initcall_debug) 4483 dev_info(dev, "shutdown\n"); 4484 dev->driver->shutdown(dev); 4485 } 4486 4487 device_unlock(dev); 4488 if (parent) 4489 device_unlock(parent); 4490 4491 put_device(dev); 4492 put_device(parent); 4493 4494 spin_lock(&devices_kset->list_lock); 4495 } 4496 spin_unlock(&devices_kset->list_lock); 4497 } 4498 4499 /* 4500 * Device logging functions 4501 */ 4502 4503 #ifdef CONFIG_PRINTK 4504 static void 4505 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4506 { 4507 const char *subsys; 4508 4509 memset(dev_info, 0, sizeof(*dev_info)); 4510 4511 if (dev->class) 4512 subsys = dev->class->name; 4513 else if (dev->bus) 4514 subsys = dev->bus->name; 4515 else 4516 return; 4517 4518 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4519 4520 /* 4521 * Add device identifier DEVICE=: 4522 * b12:8 block dev_t 4523 * c127:3 char dev_t 4524 * n8 netdev ifindex 4525 * +sound:card0 subsystem:devname 4526 */ 4527 if (MAJOR(dev->devt)) { 4528 char c; 4529 4530 if (strcmp(subsys, "block") == 0) 4531 c = 'b'; 4532 else 4533 c = 'c'; 4534 4535 snprintf(dev_info->device, sizeof(dev_info->device), 4536 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4537 } else if (strcmp(subsys, "net") == 0) { 4538 struct net_device *net = to_net_dev(dev); 4539 4540 snprintf(dev_info->device, sizeof(dev_info->device), 4541 "n%u", net->ifindex); 4542 } else { 4543 snprintf(dev_info->device, sizeof(dev_info->device), 4544 "+%s:%s", subsys, dev_name(dev)); 4545 } 4546 } 4547 4548 int dev_vprintk_emit(int level, const struct device *dev, 4549 const char *fmt, va_list args) 4550 { 4551 struct dev_printk_info dev_info; 4552 4553 set_dev_info(dev, &dev_info); 4554 4555 return vprintk_emit(0, level, &dev_info, fmt, args); 4556 } 4557 EXPORT_SYMBOL(dev_vprintk_emit); 4558 4559 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4560 { 4561 va_list args; 4562 int r; 4563 4564 va_start(args, fmt); 4565 4566 r = dev_vprintk_emit(level, dev, fmt, args); 4567 4568 va_end(args); 4569 4570 return r; 4571 } 4572 EXPORT_SYMBOL(dev_printk_emit); 4573 4574 static void __dev_printk(const char *level, const struct device *dev, 4575 struct va_format *vaf) 4576 { 4577 if (dev) 4578 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4579 dev_driver_string(dev), dev_name(dev), vaf); 4580 else 4581 printk("%s(NULL device *): %pV", level, vaf); 4582 } 4583 4584 void dev_printk(const char *level, const struct device *dev, 4585 const char *fmt, ...) 4586 { 4587 struct va_format vaf; 4588 va_list args; 4589 4590 va_start(args, fmt); 4591 4592 vaf.fmt = fmt; 4593 vaf.va = &args; 4594 4595 __dev_printk(level, dev, &vaf); 4596 4597 va_end(args); 4598 } 4599 EXPORT_SYMBOL(dev_printk); 4600 4601 #define define_dev_printk_level(func, kern_level) \ 4602 void func(const struct device *dev, const char *fmt, ...) \ 4603 { \ 4604 struct va_format vaf; \ 4605 va_list args; \ 4606 \ 4607 va_start(args, fmt); \ 4608 \ 4609 vaf.fmt = fmt; \ 4610 vaf.va = &args; \ 4611 \ 4612 __dev_printk(kern_level, dev, &vaf); \ 4613 \ 4614 va_end(args); \ 4615 } \ 4616 EXPORT_SYMBOL(func); 4617 4618 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4619 define_dev_printk_level(_dev_alert, KERN_ALERT); 4620 define_dev_printk_level(_dev_crit, KERN_CRIT); 4621 define_dev_printk_level(_dev_err, KERN_ERR); 4622 define_dev_printk_level(_dev_warn, KERN_WARNING); 4623 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4624 define_dev_printk_level(_dev_info, KERN_INFO); 4625 4626 #endif 4627 4628 /** 4629 * dev_err_probe - probe error check and log helper 4630 * @dev: the pointer to the struct device 4631 * @err: error value to test 4632 * @fmt: printf-style format string 4633 * @...: arguments as specified in the format string 4634 * 4635 * This helper implements common pattern present in probe functions for error 4636 * checking: print debug or error message depending if the error value is 4637 * -EPROBE_DEFER and propagate error upwards. 4638 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4639 * checked later by reading devices_deferred debugfs attribute. 4640 * It replaces code sequence:: 4641 * 4642 * if (err != -EPROBE_DEFER) 4643 * dev_err(dev, ...); 4644 * else 4645 * dev_dbg(dev, ...); 4646 * return err; 4647 * 4648 * with:: 4649 * 4650 * return dev_err_probe(dev, err, ...); 4651 * 4652 * Returns @err. 4653 * 4654 */ 4655 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4656 { 4657 struct va_format vaf; 4658 va_list args; 4659 4660 va_start(args, fmt); 4661 vaf.fmt = fmt; 4662 vaf.va = &args; 4663 4664 if (err != -EPROBE_DEFER) { 4665 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4666 } else { 4667 device_set_deferred_probe_reason(dev, &vaf); 4668 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4669 } 4670 4671 va_end(args); 4672 4673 return err; 4674 } 4675 EXPORT_SYMBOL_GPL(dev_err_probe); 4676 4677 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4678 { 4679 return fwnode && !IS_ERR(fwnode->secondary); 4680 } 4681 4682 /** 4683 * set_primary_fwnode - Change the primary firmware node of a given device. 4684 * @dev: Device to handle. 4685 * @fwnode: New primary firmware node of the device. 4686 * 4687 * Set the device's firmware node pointer to @fwnode, but if a secondary 4688 * firmware node of the device is present, preserve it. 4689 * 4690 * Valid fwnode cases are: 4691 * - primary --> secondary --> -ENODEV 4692 * - primary --> NULL 4693 * - secondary --> -ENODEV 4694 * - NULL 4695 */ 4696 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4697 { 4698 struct device *parent = dev->parent; 4699 struct fwnode_handle *fn = dev->fwnode; 4700 4701 if (fwnode) { 4702 if (fwnode_is_primary(fn)) 4703 fn = fn->secondary; 4704 4705 if (fn) { 4706 WARN_ON(fwnode->secondary); 4707 fwnode->secondary = fn; 4708 } 4709 dev->fwnode = fwnode; 4710 } else { 4711 if (fwnode_is_primary(fn)) { 4712 dev->fwnode = fn->secondary; 4713 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4714 if (!(parent && fn == parent->fwnode)) 4715 fn->secondary = NULL; 4716 } else { 4717 dev->fwnode = NULL; 4718 } 4719 } 4720 } 4721 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4722 4723 /** 4724 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4725 * @dev: Device to handle. 4726 * @fwnode: New secondary firmware node of the device. 4727 * 4728 * If a primary firmware node of the device is present, set its secondary 4729 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4730 * @fwnode. 4731 */ 4732 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4733 { 4734 if (fwnode) 4735 fwnode->secondary = ERR_PTR(-ENODEV); 4736 4737 if (fwnode_is_primary(dev->fwnode)) 4738 dev->fwnode->secondary = fwnode; 4739 else 4740 dev->fwnode = fwnode; 4741 } 4742 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4743 4744 /** 4745 * device_set_of_node_from_dev - reuse device-tree node of another device 4746 * @dev: device whose device-tree node is being set 4747 * @dev2: device whose device-tree node is being reused 4748 * 4749 * Takes another reference to the new device-tree node after first dropping 4750 * any reference held to the old node. 4751 */ 4752 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4753 { 4754 of_node_put(dev->of_node); 4755 dev->of_node = of_node_get(dev2->of_node); 4756 dev->of_node_reused = true; 4757 } 4758 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4759 4760 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4761 { 4762 dev->fwnode = fwnode; 4763 dev->of_node = to_of_node(fwnode); 4764 } 4765 EXPORT_SYMBOL_GPL(device_set_node); 4766 4767 int device_match_name(struct device *dev, const void *name) 4768 { 4769 return sysfs_streq(dev_name(dev), name); 4770 } 4771 EXPORT_SYMBOL_GPL(device_match_name); 4772 4773 int device_match_of_node(struct device *dev, const void *np) 4774 { 4775 return dev->of_node == np; 4776 } 4777 EXPORT_SYMBOL_GPL(device_match_of_node); 4778 4779 int device_match_fwnode(struct device *dev, const void *fwnode) 4780 { 4781 return dev_fwnode(dev) == fwnode; 4782 } 4783 EXPORT_SYMBOL_GPL(device_match_fwnode); 4784 4785 int device_match_devt(struct device *dev, const void *pdevt) 4786 { 4787 return dev->devt == *(dev_t *)pdevt; 4788 } 4789 EXPORT_SYMBOL_GPL(device_match_devt); 4790 4791 int device_match_acpi_dev(struct device *dev, const void *adev) 4792 { 4793 return ACPI_COMPANION(dev) == adev; 4794 } 4795 EXPORT_SYMBOL(device_match_acpi_dev); 4796 4797 int device_match_any(struct device *dev, const void *unused) 4798 { 4799 return 1; 4800 } 4801 EXPORT_SYMBOL_GPL(device_match_any); 4802