xref: /linux/drivers/base/core.c (revision bb5b94f5bbe75470912b70fb08880fc5273aa62d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static DEFINE_MUTEX(fwnode_link_lock);
53 static bool fw_devlink_is_permissive(void);
54 static bool fw_devlink_drv_reg_done;
55 
56 /**
57  * fwnode_link_add - Create a link between two fwnode_handles.
58  * @con: Consumer end of the link.
59  * @sup: Supplier end of the link.
60  *
61  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62  * represents the detail that the firmware lists @sup fwnode as supplying a
63  * resource to @con.
64  *
65  * The driver core will use the fwnode link to create a device link between the
66  * two device objects corresponding to @con and @sup when they are created. The
67  * driver core will automatically delete the fwnode link between @con and @sup
68  * after doing that.
69  *
70  * Attempts to create duplicate links between the same pair of fwnode handles
71  * are ignored and there is no reference counting.
72  */
73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74 {
75 	struct fwnode_link *link;
76 	int ret = 0;
77 
78 	mutex_lock(&fwnode_link_lock);
79 
80 	list_for_each_entry(link, &sup->consumers, s_hook)
81 		if (link->consumer == con)
82 			goto out;
83 
84 	link = kzalloc(sizeof(*link), GFP_KERNEL);
85 	if (!link) {
86 		ret = -ENOMEM;
87 		goto out;
88 	}
89 
90 	link->supplier = sup;
91 	INIT_LIST_HEAD(&link->s_hook);
92 	link->consumer = con;
93 	INIT_LIST_HEAD(&link->c_hook);
94 
95 	list_add(&link->s_hook, &sup->consumers);
96 	list_add(&link->c_hook, &con->suppliers);
97 out:
98 	mutex_unlock(&fwnode_link_lock);
99 
100 	return ret;
101 }
102 
103 /**
104  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105  * @fwnode: fwnode whose supplier links need to be deleted
106  *
107  * Deletes all supplier links connecting directly to @fwnode.
108  */
109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110 {
111 	struct fwnode_link *link, *tmp;
112 
113 	mutex_lock(&fwnode_link_lock);
114 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 		list_del(&link->s_hook);
116 		list_del(&link->c_hook);
117 		kfree(link);
118 	}
119 	mutex_unlock(&fwnode_link_lock);
120 }
121 
122 /**
123  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124  * @fwnode: fwnode whose consumer links need to be deleted
125  *
126  * Deletes all consumer links connecting directly to @fwnode.
127  */
128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129 {
130 	struct fwnode_link *link, *tmp;
131 
132 	mutex_lock(&fwnode_link_lock);
133 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 		list_del(&link->s_hook);
135 		list_del(&link->c_hook);
136 		kfree(link);
137 	}
138 	mutex_unlock(&fwnode_link_lock);
139 }
140 
141 /**
142  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143  * @fwnode: fwnode whose links needs to be deleted
144  *
145  * Deletes all links connecting directly to a fwnode.
146  */
147 void fwnode_links_purge(struct fwnode_handle *fwnode)
148 {
149 	fwnode_links_purge_suppliers(fwnode);
150 	fwnode_links_purge_consumers(fwnode);
151 }
152 
153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154 {
155 	struct fwnode_handle *child;
156 
157 	/* Don't purge consumer links of an added child */
158 	if (fwnode->dev)
159 		return;
160 
161 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 	fwnode_links_purge_consumers(fwnode);
163 
164 	fwnode_for_each_available_child_node(fwnode, child)
165 		fw_devlink_purge_absent_suppliers(child);
166 }
167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
168 
169 #ifdef CONFIG_SRCU
170 static DEFINE_MUTEX(device_links_lock);
171 DEFINE_STATIC_SRCU(device_links_srcu);
172 
173 static inline void device_links_write_lock(void)
174 {
175 	mutex_lock(&device_links_lock);
176 }
177 
178 static inline void device_links_write_unlock(void)
179 {
180 	mutex_unlock(&device_links_lock);
181 }
182 
183 int device_links_read_lock(void) __acquires(&device_links_srcu)
184 {
185 	return srcu_read_lock(&device_links_srcu);
186 }
187 
188 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
189 {
190 	srcu_read_unlock(&device_links_srcu, idx);
191 }
192 
193 int device_links_read_lock_held(void)
194 {
195 	return srcu_read_lock_held(&device_links_srcu);
196 }
197 
198 static void device_link_synchronize_removal(void)
199 {
200 	synchronize_srcu(&device_links_srcu);
201 }
202 
203 static void device_link_remove_from_lists(struct device_link *link)
204 {
205 	list_del_rcu(&link->s_node);
206 	list_del_rcu(&link->c_node);
207 }
208 #else /* !CONFIG_SRCU */
209 static DECLARE_RWSEM(device_links_lock);
210 
211 static inline void device_links_write_lock(void)
212 {
213 	down_write(&device_links_lock);
214 }
215 
216 static inline void device_links_write_unlock(void)
217 {
218 	up_write(&device_links_lock);
219 }
220 
221 int device_links_read_lock(void)
222 {
223 	down_read(&device_links_lock);
224 	return 0;
225 }
226 
227 void device_links_read_unlock(int not_used)
228 {
229 	up_read(&device_links_lock);
230 }
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 int device_links_read_lock_held(void)
234 {
235 	return lockdep_is_held(&device_links_lock);
236 }
237 #endif
238 
239 static inline void device_link_synchronize_removal(void)
240 {
241 }
242 
243 static void device_link_remove_from_lists(struct device_link *link)
244 {
245 	list_del(&link->s_node);
246 	list_del(&link->c_node);
247 }
248 #endif /* !CONFIG_SRCU */
249 
250 static bool device_is_ancestor(struct device *dev, struct device *target)
251 {
252 	while (target->parent) {
253 		target = target->parent;
254 		if (dev == target)
255 			return true;
256 	}
257 	return false;
258 }
259 
260 /**
261  * device_is_dependent - Check if one device depends on another one
262  * @dev: Device to check dependencies for.
263  * @target: Device to check against.
264  *
265  * Check if @target depends on @dev or any device dependent on it (its child or
266  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
267  */
268 int device_is_dependent(struct device *dev, void *target)
269 {
270 	struct device_link *link;
271 	int ret;
272 
273 	/*
274 	 * The "ancestors" check is needed to catch the case when the target
275 	 * device has not been completely initialized yet and it is still
276 	 * missing from the list of children of its parent device.
277 	 */
278 	if (dev == target || device_is_ancestor(dev, target))
279 		return 1;
280 
281 	ret = device_for_each_child(dev, target, device_is_dependent);
282 	if (ret)
283 		return ret;
284 
285 	list_for_each_entry(link, &dev->links.consumers, s_node) {
286 		if ((link->flags & ~DL_FLAG_INFERRED) ==
287 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
288 			continue;
289 
290 		if (link->consumer == target)
291 			return 1;
292 
293 		ret = device_is_dependent(link->consumer, target);
294 		if (ret)
295 			break;
296 	}
297 	return ret;
298 }
299 
300 static void device_link_init_status(struct device_link *link,
301 				    struct device *consumer,
302 				    struct device *supplier)
303 {
304 	switch (supplier->links.status) {
305 	case DL_DEV_PROBING:
306 		switch (consumer->links.status) {
307 		case DL_DEV_PROBING:
308 			/*
309 			 * A consumer driver can create a link to a supplier
310 			 * that has not completed its probing yet as long as it
311 			 * knows that the supplier is already functional (for
312 			 * example, it has just acquired some resources from the
313 			 * supplier).
314 			 */
315 			link->status = DL_STATE_CONSUMER_PROBE;
316 			break;
317 		default:
318 			link->status = DL_STATE_DORMANT;
319 			break;
320 		}
321 		break;
322 	case DL_DEV_DRIVER_BOUND:
323 		switch (consumer->links.status) {
324 		case DL_DEV_PROBING:
325 			link->status = DL_STATE_CONSUMER_PROBE;
326 			break;
327 		case DL_DEV_DRIVER_BOUND:
328 			link->status = DL_STATE_ACTIVE;
329 			break;
330 		default:
331 			link->status = DL_STATE_AVAILABLE;
332 			break;
333 		}
334 		break;
335 	case DL_DEV_UNBINDING:
336 		link->status = DL_STATE_SUPPLIER_UNBIND;
337 		break;
338 	default:
339 		link->status = DL_STATE_DORMANT;
340 		break;
341 	}
342 }
343 
344 static int device_reorder_to_tail(struct device *dev, void *not_used)
345 {
346 	struct device_link *link;
347 
348 	/*
349 	 * Devices that have not been registered yet will be put to the ends
350 	 * of the lists during the registration, so skip them here.
351 	 */
352 	if (device_is_registered(dev))
353 		devices_kset_move_last(dev);
354 
355 	if (device_pm_initialized(dev))
356 		device_pm_move_last(dev);
357 
358 	device_for_each_child(dev, NULL, device_reorder_to_tail);
359 	list_for_each_entry(link, &dev->links.consumers, s_node) {
360 		if ((link->flags & ~DL_FLAG_INFERRED) ==
361 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
362 			continue;
363 		device_reorder_to_tail(link->consumer, NULL);
364 	}
365 
366 	return 0;
367 }
368 
369 /**
370  * device_pm_move_to_tail - Move set of devices to the end of device lists
371  * @dev: Device to move
372  *
373  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
374  *
375  * It moves the @dev along with all of its children and all of its consumers
376  * to the ends of the device_kset and dpm_list, recursively.
377  */
378 void device_pm_move_to_tail(struct device *dev)
379 {
380 	int idx;
381 
382 	idx = device_links_read_lock();
383 	device_pm_lock();
384 	device_reorder_to_tail(dev, NULL);
385 	device_pm_unlock();
386 	device_links_read_unlock(idx);
387 }
388 
389 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
390 
391 static ssize_t status_show(struct device *dev,
392 			   struct device_attribute *attr, char *buf)
393 {
394 	const char *output;
395 
396 	switch (to_devlink(dev)->status) {
397 	case DL_STATE_NONE:
398 		output = "not tracked";
399 		break;
400 	case DL_STATE_DORMANT:
401 		output = "dormant";
402 		break;
403 	case DL_STATE_AVAILABLE:
404 		output = "available";
405 		break;
406 	case DL_STATE_CONSUMER_PROBE:
407 		output = "consumer probing";
408 		break;
409 	case DL_STATE_ACTIVE:
410 		output = "active";
411 		break;
412 	case DL_STATE_SUPPLIER_UNBIND:
413 		output = "supplier unbinding";
414 		break;
415 	default:
416 		output = "unknown";
417 		break;
418 	}
419 
420 	return sysfs_emit(buf, "%s\n", output);
421 }
422 static DEVICE_ATTR_RO(status);
423 
424 static ssize_t auto_remove_on_show(struct device *dev,
425 				   struct device_attribute *attr, char *buf)
426 {
427 	struct device_link *link = to_devlink(dev);
428 	const char *output;
429 
430 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
431 		output = "supplier unbind";
432 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
433 		output = "consumer unbind";
434 	else
435 		output = "never";
436 
437 	return sysfs_emit(buf, "%s\n", output);
438 }
439 static DEVICE_ATTR_RO(auto_remove_on);
440 
441 static ssize_t runtime_pm_show(struct device *dev,
442 			       struct device_attribute *attr, char *buf)
443 {
444 	struct device_link *link = to_devlink(dev);
445 
446 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
447 }
448 static DEVICE_ATTR_RO(runtime_pm);
449 
450 static ssize_t sync_state_only_show(struct device *dev,
451 				    struct device_attribute *attr, char *buf)
452 {
453 	struct device_link *link = to_devlink(dev);
454 
455 	return sysfs_emit(buf, "%d\n",
456 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
457 }
458 static DEVICE_ATTR_RO(sync_state_only);
459 
460 static struct attribute *devlink_attrs[] = {
461 	&dev_attr_status.attr,
462 	&dev_attr_auto_remove_on.attr,
463 	&dev_attr_runtime_pm.attr,
464 	&dev_attr_sync_state_only.attr,
465 	NULL,
466 };
467 ATTRIBUTE_GROUPS(devlink);
468 
469 static void device_link_release_fn(struct work_struct *work)
470 {
471 	struct device_link *link = container_of(work, struct device_link, rm_work);
472 
473 	/* Ensure that all references to the link object have been dropped. */
474 	device_link_synchronize_removal();
475 
476 	while (refcount_dec_not_one(&link->rpm_active))
477 		pm_runtime_put(link->supplier);
478 
479 	put_device(link->consumer);
480 	put_device(link->supplier);
481 	kfree(link);
482 }
483 
484 static void devlink_dev_release(struct device *dev)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	INIT_WORK(&link->rm_work, device_link_release_fn);
489 	/*
490 	 * It may take a while to complete this work because of the SRCU
491 	 * synchronization in device_link_release_fn() and if the consumer or
492 	 * supplier devices get deleted when it runs, so put it into the "long"
493 	 * workqueue.
494 	 */
495 	queue_work(system_long_wq, &link->rm_work);
496 }
497 
498 static struct class devlink_class = {
499 	.name = "devlink",
500 	.owner = THIS_MODULE,
501 	.dev_groups = devlink_groups,
502 	.dev_release = devlink_dev_release,
503 };
504 
505 static int devlink_add_symlinks(struct device *dev,
506 				struct class_interface *class_intf)
507 {
508 	int ret;
509 	size_t len;
510 	struct device_link *link = to_devlink(dev);
511 	struct device *sup = link->supplier;
512 	struct device *con = link->consumer;
513 	char *buf;
514 
515 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
516 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
517 	len += strlen(":");
518 	len += strlen("supplier:") + 1;
519 	buf = kzalloc(len, GFP_KERNEL);
520 	if (!buf)
521 		return -ENOMEM;
522 
523 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
524 	if (ret)
525 		goto out;
526 
527 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
528 	if (ret)
529 		goto err_con;
530 
531 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
532 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
533 	if (ret)
534 		goto err_con_dev;
535 
536 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
537 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
538 	if (ret)
539 		goto err_sup_dev;
540 
541 	goto out;
542 
543 err_sup_dev:
544 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
545 	sysfs_remove_link(&sup->kobj, buf);
546 err_con_dev:
547 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
548 err_con:
549 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
550 out:
551 	kfree(buf);
552 	return ret;
553 }
554 
555 static void devlink_remove_symlinks(struct device *dev,
556 				   struct class_interface *class_intf)
557 {
558 	struct device_link *link = to_devlink(dev);
559 	size_t len;
560 	struct device *sup = link->supplier;
561 	struct device *con = link->consumer;
562 	char *buf;
563 
564 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
565 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
566 
567 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
568 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
569 	len += strlen(":");
570 	len += strlen("supplier:") + 1;
571 	buf = kzalloc(len, GFP_KERNEL);
572 	if (!buf) {
573 		WARN(1, "Unable to properly free device link symlinks!\n");
574 		return;
575 	}
576 
577 	if (device_is_registered(con)) {
578 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
579 		sysfs_remove_link(&con->kobj, buf);
580 	}
581 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
582 	sysfs_remove_link(&sup->kobj, buf);
583 	kfree(buf);
584 }
585 
586 static struct class_interface devlink_class_intf = {
587 	.class = &devlink_class,
588 	.add_dev = devlink_add_symlinks,
589 	.remove_dev = devlink_remove_symlinks,
590 };
591 
592 static int __init devlink_class_init(void)
593 {
594 	int ret;
595 
596 	ret = class_register(&devlink_class);
597 	if (ret)
598 		return ret;
599 
600 	ret = class_interface_register(&devlink_class_intf);
601 	if (ret)
602 		class_unregister(&devlink_class);
603 
604 	return ret;
605 }
606 postcore_initcall(devlink_class_init);
607 
608 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
609 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
610 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
611 			       DL_FLAG_SYNC_STATE_ONLY | \
612 			       DL_FLAG_INFERRED)
613 
614 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
615 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
616 
617 /**
618  * device_link_add - Create a link between two devices.
619  * @consumer: Consumer end of the link.
620  * @supplier: Supplier end of the link.
621  * @flags: Link flags.
622  *
623  * The caller is responsible for the proper synchronization of the link creation
624  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
625  * runtime PM framework to take the link into account.  Second, if the
626  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
627  * be forced into the active meta state and reference-counted upon the creation
628  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
629  * ignored.
630  *
631  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
632  * expected to release the link returned by it directly with the help of either
633  * device_link_del() or device_link_remove().
634  *
635  * If that flag is not set, however, the caller of this function is handing the
636  * management of the link over to the driver core entirely and its return value
637  * can only be used to check whether or not the link is present.  In that case,
638  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
639  * flags can be used to indicate to the driver core when the link can be safely
640  * deleted.  Namely, setting one of them in @flags indicates to the driver core
641  * that the link is not going to be used (by the given caller of this function)
642  * after unbinding the consumer or supplier driver, respectively, from its
643  * device, so the link can be deleted at that point.  If none of them is set,
644  * the link will be maintained until one of the devices pointed to by it (either
645  * the consumer or the supplier) is unregistered.
646  *
647  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
648  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
649  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
650  * be used to request the driver core to automatically probe for a consumer
651  * driver after successfully binding a driver to the supplier device.
652  *
653  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
654  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
655  * the same time is invalid and will cause NULL to be returned upfront.
656  * However, if a device link between the given @consumer and @supplier pair
657  * exists already when this function is called for them, the existing link will
658  * be returned regardless of its current type and status (the link's flags may
659  * be modified then).  The caller of this function is then expected to treat
660  * the link as though it has just been created, so (in particular) if
661  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
662  * explicitly when not needed any more (as stated above).
663  *
664  * A side effect of the link creation is re-ordering of dpm_list and the
665  * devices_kset list by moving the consumer device and all devices depending
666  * on it to the ends of these lists (that does not happen to devices that have
667  * not been registered when this function is called).
668  *
669  * The supplier device is required to be registered when this function is called
670  * and NULL will be returned if that is not the case.  The consumer device need
671  * not be registered, however.
672  */
673 struct device_link *device_link_add(struct device *consumer,
674 				    struct device *supplier, u32 flags)
675 {
676 	struct device_link *link;
677 
678 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
679 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
680 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
681 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
682 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
683 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
684 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
685 		return NULL;
686 
687 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
688 		if (pm_runtime_get_sync(supplier) < 0) {
689 			pm_runtime_put_noidle(supplier);
690 			return NULL;
691 		}
692 	}
693 
694 	if (!(flags & DL_FLAG_STATELESS))
695 		flags |= DL_FLAG_MANAGED;
696 
697 	device_links_write_lock();
698 	device_pm_lock();
699 
700 	/*
701 	 * If the supplier has not been fully registered yet or there is a
702 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
703 	 * the supplier already in the graph, return NULL. If the link is a
704 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
705 	 * because it only affects sync_state() callbacks.
706 	 */
707 	if (!device_pm_initialized(supplier)
708 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
709 		  device_is_dependent(consumer, supplier))) {
710 		link = NULL;
711 		goto out;
712 	}
713 
714 	/*
715 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
716 	 * So, only create it if the consumer hasn't probed yet.
717 	 */
718 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
719 	    consumer->links.status != DL_DEV_NO_DRIVER &&
720 	    consumer->links.status != DL_DEV_PROBING) {
721 		link = NULL;
722 		goto out;
723 	}
724 
725 	/*
726 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
727 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
728 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
729 	 */
730 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
731 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
732 
733 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
734 		if (link->consumer != consumer)
735 			continue;
736 
737 		if (link->flags & DL_FLAG_INFERRED &&
738 		    !(flags & DL_FLAG_INFERRED))
739 			link->flags &= ~DL_FLAG_INFERRED;
740 
741 		if (flags & DL_FLAG_PM_RUNTIME) {
742 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
743 				pm_runtime_new_link(consumer);
744 				link->flags |= DL_FLAG_PM_RUNTIME;
745 			}
746 			if (flags & DL_FLAG_RPM_ACTIVE)
747 				refcount_inc(&link->rpm_active);
748 		}
749 
750 		if (flags & DL_FLAG_STATELESS) {
751 			kref_get(&link->kref);
752 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
753 			    !(link->flags & DL_FLAG_STATELESS)) {
754 				link->flags |= DL_FLAG_STATELESS;
755 				goto reorder;
756 			} else {
757 				link->flags |= DL_FLAG_STATELESS;
758 				goto out;
759 			}
760 		}
761 
762 		/*
763 		 * If the life time of the link following from the new flags is
764 		 * longer than indicated by the flags of the existing link,
765 		 * update the existing link to stay around longer.
766 		 */
767 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
768 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
769 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
770 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
771 			}
772 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
773 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
774 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
775 		}
776 		if (!(link->flags & DL_FLAG_MANAGED)) {
777 			kref_get(&link->kref);
778 			link->flags |= DL_FLAG_MANAGED;
779 			device_link_init_status(link, consumer, supplier);
780 		}
781 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
782 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
783 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
784 			goto reorder;
785 		}
786 
787 		goto out;
788 	}
789 
790 	link = kzalloc(sizeof(*link), GFP_KERNEL);
791 	if (!link)
792 		goto out;
793 
794 	refcount_set(&link->rpm_active, 1);
795 
796 	get_device(supplier);
797 	link->supplier = supplier;
798 	INIT_LIST_HEAD(&link->s_node);
799 	get_device(consumer);
800 	link->consumer = consumer;
801 	INIT_LIST_HEAD(&link->c_node);
802 	link->flags = flags;
803 	kref_init(&link->kref);
804 
805 	link->link_dev.class = &devlink_class;
806 	device_set_pm_not_required(&link->link_dev);
807 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
808 		     dev_bus_name(supplier), dev_name(supplier),
809 		     dev_bus_name(consumer), dev_name(consumer));
810 	if (device_register(&link->link_dev)) {
811 		put_device(consumer);
812 		put_device(supplier);
813 		kfree(link);
814 		link = NULL;
815 		goto out;
816 	}
817 
818 	if (flags & DL_FLAG_PM_RUNTIME) {
819 		if (flags & DL_FLAG_RPM_ACTIVE)
820 			refcount_inc(&link->rpm_active);
821 
822 		pm_runtime_new_link(consumer);
823 	}
824 
825 	/* Determine the initial link state. */
826 	if (flags & DL_FLAG_STATELESS)
827 		link->status = DL_STATE_NONE;
828 	else
829 		device_link_init_status(link, consumer, supplier);
830 
831 	/*
832 	 * Some callers expect the link creation during consumer driver probe to
833 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
834 	 */
835 	if (link->status == DL_STATE_CONSUMER_PROBE &&
836 	    flags & DL_FLAG_PM_RUNTIME)
837 		pm_runtime_resume(supplier);
838 
839 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
840 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
841 
842 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
843 		dev_dbg(consumer,
844 			"Linked as a sync state only consumer to %s\n",
845 			dev_name(supplier));
846 		goto out;
847 	}
848 
849 reorder:
850 	/*
851 	 * Move the consumer and all of the devices depending on it to the end
852 	 * of dpm_list and the devices_kset list.
853 	 *
854 	 * It is necessary to hold dpm_list locked throughout all that or else
855 	 * we may end up suspending with a wrong ordering of it.
856 	 */
857 	device_reorder_to_tail(consumer, NULL);
858 
859 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
860 
861 out:
862 	device_pm_unlock();
863 	device_links_write_unlock();
864 
865 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
866 		pm_runtime_put(supplier);
867 
868 	return link;
869 }
870 EXPORT_SYMBOL_GPL(device_link_add);
871 
872 static void __device_link_del(struct kref *kref)
873 {
874 	struct device_link *link = container_of(kref, struct device_link, kref);
875 
876 	dev_dbg(link->consumer, "Dropping the link to %s\n",
877 		dev_name(link->supplier));
878 
879 	pm_runtime_drop_link(link);
880 
881 	device_link_remove_from_lists(link);
882 	device_unregister(&link->link_dev);
883 }
884 
885 static void device_link_put_kref(struct device_link *link)
886 {
887 	if (link->flags & DL_FLAG_STATELESS)
888 		kref_put(&link->kref, __device_link_del);
889 	else
890 		WARN(1, "Unable to drop a managed device link reference\n");
891 }
892 
893 /**
894  * device_link_del - Delete a stateless link between two devices.
895  * @link: Device link to delete.
896  *
897  * The caller must ensure proper synchronization of this function with runtime
898  * PM.  If the link was added multiple times, it needs to be deleted as often.
899  * Care is required for hotplugged devices:  Their links are purged on removal
900  * and calling device_link_del() is then no longer allowed.
901  */
902 void device_link_del(struct device_link *link)
903 {
904 	device_links_write_lock();
905 	device_link_put_kref(link);
906 	device_links_write_unlock();
907 }
908 EXPORT_SYMBOL_GPL(device_link_del);
909 
910 /**
911  * device_link_remove - Delete a stateless link between two devices.
912  * @consumer: Consumer end of the link.
913  * @supplier: Supplier end of the link.
914  *
915  * The caller must ensure proper synchronization of this function with runtime
916  * PM.
917  */
918 void device_link_remove(void *consumer, struct device *supplier)
919 {
920 	struct device_link *link;
921 
922 	if (WARN_ON(consumer == supplier))
923 		return;
924 
925 	device_links_write_lock();
926 
927 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
928 		if (link->consumer == consumer) {
929 			device_link_put_kref(link);
930 			break;
931 		}
932 	}
933 
934 	device_links_write_unlock();
935 }
936 EXPORT_SYMBOL_GPL(device_link_remove);
937 
938 static void device_links_missing_supplier(struct device *dev)
939 {
940 	struct device_link *link;
941 
942 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
943 		if (link->status != DL_STATE_CONSUMER_PROBE)
944 			continue;
945 
946 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
947 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
948 		} else {
949 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
950 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
951 		}
952 	}
953 }
954 
955 /**
956  * device_links_check_suppliers - Check presence of supplier drivers.
957  * @dev: Consumer device.
958  *
959  * Check links from this device to any suppliers.  Walk the list of the device's
960  * links to suppliers and see if all of them are available.  If not, simply
961  * return -EPROBE_DEFER.
962  *
963  * We need to guarantee that the supplier will not go away after the check has
964  * been positive here.  It only can go away in __device_release_driver() and
965  * that function  checks the device's links to consumers.  This means we need to
966  * mark the link as "consumer probe in progress" to make the supplier removal
967  * wait for us to complete (or bad things may happen).
968  *
969  * Links without the DL_FLAG_MANAGED flag set are ignored.
970  */
971 int device_links_check_suppliers(struct device *dev)
972 {
973 	struct device_link *link;
974 	int ret = 0;
975 
976 	/*
977 	 * Device waiting for supplier to become available is not allowed to
978 	 * probe.
979 	 */
980 	mutex_lock(&fwnode_link_lock);
981 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
982 	    !fw_devlink_is_permissive()) {
983 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
984 			list_first_entry(&dev->fwnode->suppliers,
985 			struct fwnode_link,
986 			c_hook)->supplier);
987 		mutex_unlock(&fwnode_link_lock);
988 		return -EPROBE_DEFER;
989 	}
990 	mutex_unlock(&fwnode_link_lock);
991 
992 	device_links_write_lock();
993 
994 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
995 		if (!(link->flags & DL_FLAG_MANAGED))
996 			continue;
997 
998 		if (link->status != DL_STATE_AVAILABLE &&
999 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1000 			device_links_missing_supplier(dev);
1001 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1002 				dev_name(link->supplier));
1003 			ret = -EPROBE_DEFER;
1004 			break;
1005 		}
1006 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1007 	}
1008 	dev->links.status = DL_DEV_PROBING;
1009 
1010 	device_links_write_unlock();
1011 	return ret;
1012 }
1013 
1014 /**
1015  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1016  * @dev: Device to call sync_state() on
1017  * @list: List head to queue the @dev on
1018  *
1019  * Queues a device for a sync_state() callback when the device links write lock
1020  * isn't held. This allows the sync_state() execution flow to use device links
1021  * APIs.  The caller must ensure this function is called with
1022  * device_links_write_lock() held.
1023  *
1024  * This function does a get_device() to make sure the device is not freed while
1025  * on this list.
1026  *
1027  * So the caller must also ensure that device_links_flush_sync_list() is called
1028  * as soon as the caller releases device_links_write_lock().  This is necessary
1029  * to make sure the sync_state() is called in a timely fashion and the
1030  * put_device() is called on this device.
1031  */
1032 static void __device_links_queue_sync_state(struct device *dev,
1033 					    struct list_head *list)
1034 {
1035 	struct device_link *link;
1036 
1037 	if (!dev_has_sync_state(dev))
1038 		return;
1039 	if (dev->state_synced)
1040 		return;
1041 
1042 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1043 		if (!(link->flags & DL_FLAG_MANAGED))
1044 			continue;
1045 		if (link->status != DL_STATE_ACTIVE)
1046 			return;
1047 	}
1048 
1049 	/*
1050 	 * Set the flag here to avoid adding the same device to a list more
1051 	 * than once. This can happen if new consumers get added to the device
1052 	 * and probed before the list is flushed.
1053 	 */
1054 	dev->state_synced = true;
1055 
1056 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1057 		return;
1058 
1059 	get_device(dev);
1060 	list_add_tail(&dev->links.defer_sync, list);
1061 }
1062 
1063 /**
1064  * device_links_flush_sync_list - Call sync_state() on a list of devices
1065  * @list: List of devices to call sync_state() on
1066  * @dont_lock_dev: Device for which lock is already held by the caller
1067  *
1068  * Calls sync_state() on all the devices that have been queued for it. This
1069  * function is used in conjunction with __device_links_queue_sync_state(). The
1070  * @dont_lock_dev parameter is useful when this function is called from a
1071  * context where a device lock is already held.
1072  */
1073 static void device_links_flush_sync_list(struct list_head *list,
1074 					 struct device *dont_lock_dev)
1075 {
1076 	struct device *dev, *tmp;
1077 
1078 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1079 		list_del_init(&dev->links.defer_sync);
1080 
1081 		if (dev != dont_lock_dev)
1082 			device_lock(dev);
1083 
1084 		if (dev->bus->sync_state)
1085 			dev->bus->sync_state(dev);
1086 		else if (dev->driver && dev->driver->sync_state)
1087 			dev->driver->sync_state(dev);
1088 
1089 		if (dev != dont_lock_dev)
1090 			device_unlock(dev);
1091 
1092 		put_device(dev);
1093 	}
1094 }
1095 
1096 void device_links_supplier_sync_state_pause(void)
1097 {
1098 	device_links_write_lock();
1099 	defer_sync_state_count++;
1100 	device_links_write_unlock();
1101 }
1102 
1103 void device_links_supplier_sync_state_resume(void)
1104 {
1105 	struct device *dev, *tmp;
1106 	LIST_HEAD(sync_list);
1107 
1108 	device_links_write_lock();
1109 	if (!defer_sync_state_count) {
1110 		WARN(true, "Unmatched sync_state pause/resume!");
1111 		goto out;
1112 	}
1113 	defer_sync_state_count--;
1114 	if (defer_sync_state_count)
1115 		goto out;
1116 
1117 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1118 		/*
1119 		 * Delete from deferred_sync list before queuing it to
1120 		 * sync_list because defer_sync is used for both lists.
1121 		 */
1122 		list_del_init(&dev->links.defer_sync);
1123 		__device_links_queue_sync_state(dev, &sync_list);
1124 	}
1125 out:
1126 	device_links_write_unlock();
1127 
1128 	device_links_flush_sync_list(&sync_list, NULL);
1129 }
1130 
1131 static int sync_state_resume_initcall(void)
1132 {
1133 	device_links_supplier_sync_state_resume();
1134 	return 0;
1135 }
1136 late_initcall(sync_state_resume_initcall);
1137 
1138 static void __device_links_supplier_defer_sync(struct device *sup)
1139 {
1140 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1141 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1142 }
1143 
1144 static void device_link_drop_managed(struct device_link *link)
1145 {
1146 	link->flags &= ~DL_FLAG_MANAGED;
1147 	WRITE_ONCE(link->status, DL_STATE_NONE);
1148 	kref_put(&link->kref, __device_link_del);
1149 }
1150 
1151 static ssize_t waiting_for_supplier_show(struct device *dev,
1152 					 struct device_attribute *attr,
1153 					 char *buf)
1154 {
1155 	bool val;
1156 
1157 	device_lock(dev);
1158 	val = !list_empty(&dev->fwnode->suppliers);
1159 	device_unlock(dev);
1160 	return sysfs_emit(buf, "%u\n", val);
1161 }
1162 static DEVICE_ATTR_RO(waiting_for_supplier);
1163 
1164 /**
1165  * device_links_force_bind - Prepares device to be force bound
1166  * @dev: Consumer device.
1167  *
1168  * device_bind_driver() force binds a device to a driver without calling any
1169  * driver probe functions. So the consumer really isn't going to wait for any
1170  * supplier before it's bound to the driver. We still want the device link
1171  * states to be sensible when this happens.
1172  *
1173  * In preparation for device_bind_driver(), this function goes through each
1174  * supplier device links and checks if the supplier is bound. If it is, then
1175  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1176  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1177  */
1178 void device_links_force_bind(struct device *dev)
1179 {
1180 	struct device_link *link, *ln;
1181 
1182 	device_links_write_lock();
1183 
1184 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1185 		if (!(link->flags & DL_FLAG_MANAGED))
1186 			continue;
1187 
1188 		if (link->status != DL_STATE_AVAILABLE) {
1189 			device_link_drop_managed(link);
1190 			continue;
1191 		}
1192 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1193 	}
1194 	dev->links.status = DL_DEV_PROBING;
1195 
1196 	device_links_write_unlock();
1197 }
1198 
1199 /**
1200  * device_links_driver_bound - Update device links after probing its driver.
1201  * @dev: Device to update the links for.
1202  *
1203  * The probe has been successful, so update links from this device to any
1204  * consumers by changing their status to "available".
1205  *
1206  * Also change the status of @dev's links to suppliers to "active".
1207  *
1208  * Links without the DL_FLAG_MANAGED flag set are ignored.
1209  */
1210 void device_links_driver_bound(struct device *dev)
1211 {
1212 	struct device_link *link, *ln;
1213 	LIST_HEAD(sync_list);
1214 
1215 	/*
1216 	 * If a device binds successfully, it's expected to have created all
1217 	 * the device links it needs to or make new device links as it needs
1218 	 * them. So, fw_devlink no longer needs to create device links to any
1219 	 * of the device's suppliers.
1220 	 *
1221 	 * Also, if a child firmware node of this bound device is not added as
1222 	 * a device by now, assume it is never going to be added and make sure
1223 	 * other devices don't defer probe indefinitely by waiting for such a
1224 	 * child device.
1225 	 */
1226 	if (dev->fwnode && dev->fwnode->dev == dev) {
1227 		struct fwnode_handle *child;
1228 		fwnode_links_purge_suppliers(dev->fwnode);
1229 		fwnode_for_each_available_child_node(dev->fwnode, child)
1230 			fw_devlink_purge_absent_suppliers(child);
1231 	}
1232 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1233 
1234 	device_links_write_lock();
1235 
1236 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1237 		if (!(link->flags & DL_FLAG_MANAGED))
1238 			continue;
1239 
1240 		/*
1241 		 * Links created during consumer probe may be in the "consumer
1242 		 * probe" state to start with if the supplier is still probing
1243 		 * when they are created and they may become "active" if the
1244 		 * consumer probe returns first.  Skip them here.
1245 		 */
1246 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1247 		    link->status == DL_STATE_ACTIVE)
1248 			continue;
1249 
1250 		WARN_ON(link->status != DL_STATE_DORMANT);
1251 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1252 
1253 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1254 			driver_deferred_probe_add(link->consumer);
1255 	}
1256 
1257 	if (defer_sync_state_count)
1258 		__device_links_supplier_defer_sync(dev);
1259 	else
1260 		__device_links_queue_sync_state(dev, &sync_list);
1261 
1262 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1263 		struct device *supplier;
1264 
1265 		if (!(link->flags & DL_FLAG_MANAGED))
1266 			continue;
1267 
1268 		supplier = link->supplier;
1269 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1270 			/*
1271 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1272 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1273 			 * save to drop the managed link completely.
1274 			 */
1275 			device_link_drop_managed(link);
1276 		} else {
1277 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1278 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1279 		}
1280 
1281 		/*
1282 		 * This needs to be done even for the deleted
1283 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1284 		 * device link that was preventing the supplier from getting a
1285 		 * sync_state() call.
1286 		 */
1287 		if (defer_sync_state_count)
1288 			__device_links_supplier_defer_sync(supplier);
1289 		else
1290 			__device_links_queue_sync_state(supplier, &sync_list);
1291 	}
1292 
1293 	dev->links.status = DL_DEV_DRIVER_BOUND;
1294 
1295 	device_links_write_unlock();
1296 
1297 	device_links_flush_sync_list(&sync_list, dev);
1298 }
1299 
1300 /**
1301  * __device_links_no_driver - Update links of a device without a driver.
1302  * @dev: Device without a drvier.
1303  *
1304  * Delete all non-persistent links from this device to any suppliers.
1305  *
1306  * Persistent links stay around, but their status is changed to "available",
1307  * unless they already are in the "supplier unbind in progress" state in which
1308  * case they need not be updated.
1309  *
1310  * Links without the DL_FLAG_MANAGED flag set are ignored.
1311  */
1312 static void __device_links_no_driver(struct device *dev)
1313 {
1314 	struct device_link *link, *ln;
1315 
1316 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1317 		if (!(link->flags & DL_FLAG_MANAGED))
1318 			continue;
1319 
1320 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1321 			device_link_drop_managed(link);
1322 			continue;
1323 		}
1324 
1325 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1326 		    link->status != DL_STATE_ACTIVE)
1327 			continue;
1328 
1329 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1330 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1331 		} else {
1332 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1333 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1334 		}
1335 	}
1336 
1337 	dev->links.status = DL_DEV_NO_DRIVER;
1338 }
1339 
1340 /**
1341  * device_links_no_driver - Update links after failing driver probe.
1342  * @dev: Device whose driver has just failed to probe.
1343  *
1344  * Clean up leftover links to consumers for @dev and invoke
1345  * %__device_links_no_driver() to update links to suppliers for it as
1346  * appropriate.
1347  *
1348  * Links without the DL_FLAG_MANAGED flag set are ignored.
1349  */
1350 void device_links_no_driver(struct device *dev)
1351 {
1352 	struct device_link *link;
1353 
1354 	device_links_write_lock();
1355 
1356 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1357 		if (!(link->flags & DL_FLAG_MANAGED))
1358 			continue;
1359 
1360 		/*
1361 		 * The probe has failed, so if the status of the link is
1362 		 * "consumer probe" or "active", it must have been added by
1363 		 * a probing consumer while this device was still probing.
1364 		 * Change its state to "dormant", as it represents a valid
1365 		 * relationship, but it is not functionally meaningful.
1366 		 */
1367 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1368 		    link->status == DL_STATE_ACTIVE)
1369 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1370 	}
1371 
1372 	__device_links_no_driver(dev);
1373 
1374 	device_links_write_unlock();
1375 }
1376 
1377 /**
1378  * device_links_driver_cleanup - Update links after driver removal.
1379  * @dev: Device whose driver has just gone away.
1380  *
1381  * Update links to consumers for @dev by changing their status to "dormant" and
1382  * invoke %__device_links_no_driver() to update links to suppliers for it as
1383  * appropriate.
1384  *
1385  * Links without the DL_FLAG_MANAGED flag set are ignored.
1386  */
1387 void device_links_driver_cleanup(struct device *dev)
1388 {
1389 	struct device_link *link, *ln;
1390 
1391 	device_links_write_lock();
1392 
1393 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1394 		if (!(link->flags & DL_FLAG_MANAGED))
1395 			continue;
1396 
1397 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1398 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1399 
1400 		/*
1401 		 * autoremove the links between this @dev and its consumer
1402 		 * devices that are not active, i.e. where the link state
1403 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1404 		 */
1405 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1406 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1407 			device_link_drop_managed(link);
1408 
1409 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1410 	}
1411 
1412 	list_del_init(&dev->links.defer_sync);
1413 	__device_links_no_driver(dev);
1414 
1415 	device_links_write_unlock();
1416 }
1417 
1418 /**
1419  * device_links_busy - Check if there are any busy links to consumers.
1420  * @dev: Device to check.
1421  *
1422  * Check each consumer of the device and return 'true' if its link's status
1423  * is one of "consumer probe" or "active" (meaning that the given consumer is
1424  * probing right now or its driver is present).  Otherwise, change the link
1425  * state to "supplier unbind" to prevent the consumer from being probed
1426  * successfully going forward.
1427  *
1428  * Return 'false' if there are no probing or active consumers.
1429  *
1430  * Links without the DL_FLAG_MANAGED flag set are ignored.
1431  */
1432 bool device_links_busy(struct device *dev)
1433 {
1434 	struct device_link *link;
1435 	bool ret = false;
1436 
1437 	device_links_write_lock();
1438 
1439 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1440 		if (!(link->flags & DL_FLAG_MANAGED))
1441 			continue;
1442 
1443 		if (link->status == DL_STATE_CONSUMER_PROBE
1444 		    || link->status == DL_STATE_ACTIVE) {
1445 			ret = true;
1446 			break;
1447 		}
1448 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1449 	}
1450 
1451 	dev->links.status = DL_DEV_UNBINDING;
1452 
1453 	device_links_write_unlock();
1454 	return ret;
1455 }
1456 
1457 /**
1458  * device_links_unbind_consumers - Force unbind consumers of the given device.
1459  * @dev: Device to unbind the consumers of.
1460  *
1461  * Walk the list of links to consumers for @dev and if any of them is in the
1462  * "consumer probe" state, wait for all device probes in progress to complete
1463  * and start over.
1464  *
1465  * If that's not the case, change the status of the link to "supplier unbind"
1466  * and check if the link was in the "active" state.  If so, force the consumer
1467  * driver to unbind and start over (the consumer will not re-probe as we have
1468  * changed the state of the link already).
1469  *
1470  * Links without the DL_FLAG_MANAGED flag set are ignored.
1471  */
1472 void device_links_unbind_consumers(struct device *dev)
1473 {
1474 	struct device_link *link;
1475 
1476  start:
1477 	device_links_write_lock();
1478 
1479 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1480 		enum device_link_state status;
1481 
1482 		if (!(link->flags & DL_FLAG_MANAGED) ||
1483 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1484 			continue;
1485 
1486 		status = link->status;
1487 		if (status == DL_STATE_CONSUMER_PROBE) {
1488 			device_links_write_unlock();
1489 
1490 			wait_for_device_probe();
1491 			goto start;
1492 		}
1493 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1494 		if (status == DL_STATE_ACTIVE) {
1495 			struct device *consumer = link->consumer;
1496 
1497 			get_device(consumer);
1498 
1499 			device_links_write_unlock();
1500 
1501 			device_release_driver_internal(consumer, NULL,
1502 						       consumer->parent);
1503 			put_device(consumer);
1504 			goto start;
1505 		}
1506 	}
1507 
1508 	device_links_write_unlock();
1509 }
1510 
1511 /**
1512  * device_links_purge - Delete existing links to other devices.
1513  * @dev: Target device.
1514  */
1515 static void device_links_purge(struct device *dev)
1516 {
1517 	struct device_link *link, *ln;
1518 
1519 	if (dev->class == &devlink_class)
1520 		return;
1521 
1522 	/*
1523 	 * Delete all of the remaining links from this device to any other
1524 	 * devices (either consumers or suppliers).
1525 	 */
1526 	device_links_write_lock();
1527 
1528 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1529 		WARN_ON(link->status == DL_STATE_ACTIVE);
1530 		__device_link_del(&link->kref);
1531 	}
1532 
1533 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1534 		WARN_ON(link->status != DL_STATE_DORMANT &&
1535 			link->status != DL_STATE_NONE);
1536 		__device_link_del(&link->kref);
1537 	}
1538 
1539 	device_links_write_unlock();
1540 }
1541 
1542 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1543 					 DL_FLAG_SYNC_STATE_ONLY)
1544 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1545 					 DL_FLAG_AUTOPROBE_CONSUMER)
1546 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1547 					 DL_FLAG_PM_RUNTIME)
1548 
1549 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1550 static int __init fw_devlink_setup(char *arg)
1551 {
1552 	if (!arg)
1553 		return -EINVAL;
1554 
1555 	if (strcmp(arg, "off") == 0) {
1556 		fw_devlink_flags = 0;
1557 	} else if (strcmp(arg, "permissive") == 0) {
1558 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1559 	} else if (strcmp(arg, "on") == 0) {
1560 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1561 	} else if (strcmp(arg, "rpm") == 0) {
1562 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1563 	}
1564 	return 0;
1565 }
1566 early_param("fw_devlink", fw_devlink_setup);
1567 
1568 static bool fw_devlink_strict;
1569 static int __init fw_devlink_strict_setup(char *arg)
1570 {
1571 	return strtobool(arg, &fw_devlink_strict);
1572 }
1573 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1574 
1575 u32 fw_devlink_get_flags(void)
1576 {
1577 	return fw_devlink_flags;
1578 }
1579 
1580 static bool fw_devlink_is_permissive(void)
1581 {
1582 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1583 }
1584 
1585 bool fw_devlink_is_strict(void)
1586 {
1587 	return fw_devlink_strict && !fw_devlink_is_permissive();
1588 }
1589 
1590 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1591 {
1592 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1593 		return;
1594 
1595 	fwnode_call_int_op(fwnode, add_links);
1596 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1597 }
1598 
1599 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1600 {
1601 	struct fwnode_handle *child = NULL;
1602 
1603 	fw_devlink_parse_fwnode(fwnode);
1604 
1605 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1606 		fw_devlink_parse_fwtree(child);
1607 }
1608 
1609 static void fw_devlink_relax_link(struct device_link *link)
1610 {
1611 	if (!(link->flags & DL_FLAG_INFERRED))
1612 		return;
1613 
1614 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1615 		return;
1616 
1617 	pm_runtime_drop_link(link);
1618 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1619 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1620 		dev_name(link->supplier));
1621 }
1622 
1623 static int fw_devlink_no_driver(struct device *dev, void *data)
1624 {
1625 	struct device_link *link = to_devlink(dev);
1626 
1627 	if (!link->supplier->can_match)
1628 		fw_devlink_relax_link(link);
1629 
1630 	return 0;
1631 }
1632 
1633 void fw_devlink_drivers_done(void)
1634 {
1635 	fw_devlink_drv_reg_done = true;
1636 	device_links_write_lock();
1637 	class_for_each_device(&devlink_class, NULL, NULL,
1638 			      fw_devlink_no_driver);
1639 	device_links_write_unlock();
1640 }
1641 
1642 static void fw_devlink_unblock_consumers(struct device *dev)
1643 {
1644 	struct device_link *link;
1645 
1646 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1647 		return;
1648 
1649 	device_links_write_lock();
1650 	list_for_each_entry(link, &dev->links.consumers, s_node)
1651 		fw_devlink_relax_link(link);
1652 	device_links_write_unlock();
1653 }
1654 
1655 /**
1656  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1657  * @con: Device to check dependencies for.
1658  * @sup: Device to check against.
1659  *
1660  * Check if @sup depends on @con or any device dependent on it (its child or
1661  * its consumer etc).  When such a cyclic dependency is found, convert all
1662  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1663  * This is the equivalent of doing fw_devlink=permissive just between the
1664  * devices in the cycle. We need to do this because, at this point, fw_devlink
1665  * can't tell which of these dependencies is not a real dependency.
1666  *
1667  * Return 1 if a cycle is found. Otherwise, return 0.
1668  */
1669 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1670 {
1671 	struct device_link *link;
1672 	int ret;
1673 
1674 	if (con == sup)
1675 		return 1;
1676 
1677 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1678 	if (ret)
1679 		return ret;
1680 
1681 	list_for_each_entry(link, &con->links.consumers, s_node) {
1682 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1683 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1684 			continue;
1685 
1686 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1687 			continue;
1688 
1689 		ret = 1;
1690 
1691 		fw_devlink_relax_link(link);
1692 	}
1693 	return ret;
1694 }
1695 
1696 /**
1697  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1698  * @con: consumer device for the device link
1699  * @sup_handle: fwnode handle of supplier
1700  * @flags: devlink flags
1701  *
1702  * This function will try to create a device link between the consumer device
1703  * @con and the supplier device represented by @sup_handle.
1704  *
1705  * The supplier has to be provided as a fwnode because incorrect cycles in
1706  * fwnode links can sometimes cause the supplier device to never be created.
1707  * This function detects such cases and returns an error if it cannot create a
1708  * device link from the consumer to a missing supplier.
1709  *
1710  * Returns,
1711  * 0 on successfully creating a device link
1712  * -EINVAL if the device link cannot be created as expected
1713  * -EAGAIN if the device link cannot be created right now, but it may be
1714  *  possible to do that in the future
1715  */
1716 static int fw_devlink_create_devlink(struct device *con,
1717 				     struct fwnode_handle *sup_handle, u32 flags)
1718 {
1719 	struct device *sup_dev;
1720 	int ret = 0;
1721 
1722 	sup_dev = get_dev_from_fwnode(sup_handle);
1723 	if (sup_dev) {
1724 		/*
1725 		 * If it's one of those drivers that don't actually bind to
1726 		 * their device using driver core, then don't wait on this
1727 		 * supplier device indefinitely.
1728 		 */
1729 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1730 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1731 			ret = -EINVAL;
1732 			goto out;
1733 		}
1734 
1735 		/*
1736 		 * If this fails, it is due to cycles in device links.  Just
1737 		 * give up on this link and treat it as invalid.
1738 		 */
1739 		if (!device_link_add(con, sup_dev, flags) &&
1740 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1741 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1742 				 dev_name(sup_dev));
1743 			device_links_write_lock();
1744 			fw_devlink_relax_cycle(con, sup_dev);
1745 			device_links_write_unlock();
1746 			device_link_add(con, sup_dev,
1747 					FW_DEVLINK_FLAGS_PERMISSIVE);
1748 			ret = -EINVAL;
1749 		}
1750 
1751 		goto out;
1752 	}
1753 
1754 	/* Supplier that's already initialized without a struct device. */
1755 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1756 		return -EINVAL;
1757 
1758 	/*
1759 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1760 	 * cycles. So cycle detection isn't necessary and shouldn't be
1761 	 * done.
1762 	 */
1763 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1764 		return -EAGAIN;
1765 
1766 	/*
1767 	 * If we can't find the supplier device from its fwnode, it might be
1768 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1769 	 * be broken by applying logic. Check for these types of cycles and
1770 	 * break them so that devices in the cycle probe properly.
1771 	 *
1772 	 * If the supplier's parent is dependent on the consumer, then
1773 	 * the consumer-supplier dependency is a false dependency. So,
1774 	 * treat it as an invalid link.
1775 	 */
1776 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1777 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1778 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1779 			sup_handle);
1780 		ret = -EINVAL;
1781 	} else {
1782 		/*
1783 		 * Can't check for cycles or no cycles. So let's try
1784 		 * again later.
1785 		 */
1786 		ret = -EAGAIN;
1787 	}
1788 
1789 out:
1790 	put_device(sup_dev);
1791 	return ret;
1792 }
1793 
1794 /**
1795  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1796  * @dev: Device that needs to be linked to its consumers
1797  *
1798  * This function looks at all the consumer fwnodes of @dev and creates device
1799  * links between the consumer device and @dev (supplier).
1800  *
1801  * If the consumer device has not been added yet, then this function creates a
1802  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1803  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1804  * sync_state() callback before the real consumer device gets to be added and
1805  * then probed.
1806  *
1807  * Once device links are created from the real consumer to @dev (supplier), the
1808  * fwnode links are deleted.
1809  */
1810 static void __fw_devlink_link_to_consumers(struct device *dev)
1811 {
1812 	struct fwnode_handle *fwnode = dev->fwnode;
1813 	struct fwnode_link *link, *tmp;
1814 
1815 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1816 		u32 dl_flags = fw_devlink_get_flags();
1817 		struct device *con_dev;
1818 		bool own_link = true;
1819 		int ret;
1820 
1821 		con_dev = get_dev_from_fwnode(link->consumer);
1822 		/*
1823 		 * If consumer device is not available yet, make a "proxy"
1824 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1825 		 * the supplier device. This is necessary to make sure the
1826 		 * supplier doesn't get a sync_state() callback before the real
1827 		 * consumer can create a device link to the supplier.
1828 		 *
1829 		 * This proxy link step is needed to handle the case where the
1830 		 * consumer's parent device is added before the supplier.
1831 		 */
1832 		if (!con_dev) {
1833 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1834 			/*
1835 			 * However, if the consumer's parent device is also the
1836 			 * parent of the supplier, don't create a
1837 			 * consumer-supplier link from the parent to its child
1838 			 * device. Such a dependency is impossible.
1839 			 */
1840 			if (con_dev &&
1841 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1842 				put_device(con_dev);
1843 				con_dev = NULL;
1844 			} else {
1845 				own_link = false;
1846 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1847 			}
1848 		}
1849 
1850 		if (!con_dev)
1851 			continue;
1852 
1853 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1854 		put_device(con_dev);
1855 		if (!own_link || ret == -EAGAIN)
1856 			continue;
1857 
1858 		list_del(&link->s_hook);
1859 		list_del(&link->c_hook);
1860 		kfree(link);
1861 	}
1862 }
1863 
1864 /**
1865  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1866  * @dev: The consumer device that needs to be linked to its suppliers
1867  * @fwnode: Root of the fwnode tree that is used to create device links
1868  *
1869  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1870  * @fwnode and creates device links between @dev (consumer) and all the
1871  * supplier devices of the entire fwnode tree at @fwnode.
1872  *
1873  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1874  * and the real suppliers of @dev. Once these device links are created, the
1875  * fwnode links are deleted. When such device links are successfully created,
1876  * this function is called recursively on those supplier devices. This is
1877  * needed to detect and break some invalid cycles in fwnode links.  See
1878  * fw_devlink_create_devlink() for more details.
1879  *
1880  * In addition, it also looks at all the suppliers of the entire fwnode tree
1881  * because some of the child devices of @dev that have not been added yet
1882  * (because @dev hasn't probed) might already have their suppliers added to
1883  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1884  * @dev (consumer) and these suppliers to make sure they don't execute their
1885  * sync_state() callbacks before these child devices have a chance to create
1886  * their device links. The fwnode links that correspond to the child devices
1887  * aren't delete because they are needed later to create the device links
1888  * between the real consumer and supplier devices.
1889  */
1890 static void __fw_devlink_link_to_suppliers(struct device *dev,
1891 					   struct fwnode_handle *fwnode)
1892 {
1893 	bool own_link = (dev->fwnode == fwnode);
1894 	struct fwnode_link *link, *tmp;
1895 	struct fwnode_handle *child = NULL;
1896 	u32 dl_flags;
1897 
1898 	if (own_link)
1899 		dl_flags = fw_devlink_get_flags();
1900 	else
1901 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1902 
1903 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1904 		int ret;
1905 		struct device *sup_dev;
1906 		struct fwnode_handle *sup = link->supplier;
1907 
1908 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1909 		if (!own_link || ret == -EAGAIN)
1910 			continue;
1911 
1912 		list_del(&link->s_hook);
1913 		list_del(&link->c_hook);
1914 		kfree(link);
1915 
1916 		/* If no device link was created, nothing more to do. */
1917 		if (ret)
1918 			continue;
1919 
1920 		/*
1921 		 * If a device link was successfully created to a supplier, we
1922 		 * now need to try and link the supplier to all its suppliers.
1923 		 *
1924 		 * This is needed to detect and delete false dependencies in
1925 		 * fwnode links that haven't been converted to a device link
1926 		 * yet. See comments in fw_devlink_create_devlink() for more
1927 		 * details on the false dependency.
1928 		 *
1929 		 * Without deleting these false dependencies, some devices will
1930 		 * never probe because they'll keep waiting for their false
1931 		 * dependency fwnode links to be converted to device links.
1932 		 */
1933 		sup_dev = get_dev_from_fwnode(sup);
1934 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1935 		put_device(sup_dev);
1936 	}
1937 
1938 	/*
1939 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1940 	 * all the descendants. This proxy link step is needed to handle the
1941 	 * case where the supplier is added before the consumer's parent device
1942 	 * (@dev).
1943 	 */
1944 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1945 		__fw_devlink_link_to_suppliers(dev, child);
1946 }
1947 
1948 static void fw_devlink_link_device(struct device *dev)
1949 {
1950 	struct fwnode_handle *fwnode = dev->fwnode;
1951 
1952 	if (!fw_devlink_flags)
1953 		return;
1954 
1955 	fw_devlink_parse_fwtree(fwnode);
1956 
1957 	mutex_lock(&fwnode_link_lock);
1958 	__fw_devlink_link_to_consumers(dev);
1959 	__fw_devlink_link_to_suppliers(dev, fwnode);
1960 	mutex_unlock(&fwnode_link_lock);
1961 }
1962 
1963 /* Device links support end. */
1964 
1965 int (*platform_notify)(struct device *dev) = NULL;
1966 int (*platform_notify_remove)(struct device *dev) = NULL;
1967 static struct kobject *dev_kobj;
1968 struct kobject *sysfs_dev_char_kobj;
1969 struct kobject *sysfs_dev_block_kobj;
1970 
1971 static DEFINE_MUTEX(device_hotplug_lock);
1972 
1973 void lock_device_hotplug(void)
1974 {
1975 	mutex_lock(&device_hotplug_lock);
1976 }
1977 
1978 void unlock_device_hotplug(void)
1979 {
1980 	mutex_unlock(&device_hotplug_lock);
1981 }
1982 
1983 int lock_device_hotplug_sysfs(void)
1984 {
1985 	if (mutex_trylock(&device_hotplug_lock))
1986 		return 0;
1987 
1988 	/* Avoid busy looping (5 ms of sleep should do). */
1989 	msleep(5);
1990 	return restart_syscall();
1991 }
1992 
1993 #ifdef CONFIG_BLOCK
1994 static inline int device_is_not_partition(struct device *dev)
1995 {
1996 	return !(dev->type == &part_type);
1997 }
1998 #else
1999 static inline int device_is_not_partition(struct device *dev)
2000 {
2001 	return 1;
2002 }
2003 #endif
2004 
2005 static int
2006 device_platform_notify(struct device *dev, enum kobject_action action)
2007 {
2008 	int ret;
2009 
2010 	ret = acpi_platform_notify(dev, action);
2011 	if (ret)
2012 		return ret;
2013 
2014 	ret = software_node_notify(dev, action);
2015 	if (ret)
2016 		return ret;
2017 
2018 	if (platform_notify && action == KOBJ_ADD)
2019 		platform_notify(dev);
2020 	else if (platform_notify_remove && action == KOBJ_REMOVE)
2021 		platform_notify_remove(dev);
2022 	return 0;
2023 }
2024 
2025 /**
2026  * dev_driver_string - Return a device's driver name, if at all possible
2027  * @dev: struct device to get the name of
2028  *
2029  * Will return the device's driver's name if it is bound to a device.  If
2030  * the device is not bound to a driver, it will return the name of the bus
2031  * it is attached to.  If it is not attached to a bus either, an empty
2032  * string will be returned.
2033  */
2034 const char *dev_driver_string(const struct device *dev)
2035 {
2036 	struct device_driver *drv;
2037 
2038 	/* dev->driver can change to NULL underneath us because of unbinding,
2039 	 * so be careful about accessing it.  dev->bus and dev->class should
2040 	 * never change once they are set, so they don't need special care.
2041 	 */
2042 	drv = READ_ONCE(dev->driver);
2043 	return drv ? drv->name : dev_bus_name(dev);
2044 }
2045 EXPORT_SYMBOL(dev_driver_string);
2046 
2047 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2048 
2049 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2050 			     char *buf)
2051 {
2052 	struct device_attribute *dev_attr = to_dev_attr(attr);
2053 	struct device *dev = kobj_to_dev(kobj);
2054 	ssize_t ret = -EIO;
2055 
2056 	if (dev_attr->show)
2057 		ret = dev_attr->show(dev, dev_attr, buf);
2058 	if (ret >= (ssize_t)PAGE_SIZE) {
2059 		printk("dev_attr_show: %pS returned bad count\n",
2060 				dev_attr->show);
2061 	}
2062 	return ret;
2063 }
2064 
2065 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2066 			      const char *buf, size_t count)
2067 {
2068 	struct device_attribute *dev_attr = to_dev_attr(attr);
2069 	struct device *dev = kobj_to_dev(kobj);
2070 	ssize_t ret = -EIO;
2071 
2072 	if (dev_attr->store)
2073 		ret = dev_attr->store(dev, dev_attr, buf, count);
2074 	return ret;
2075 }
2076 
2077 static const struct sysfs_ops dev_sysfs_ops = {
2078 	.show	= dev_attr_show,
2079 	.store	= dev_attr_store,
2080 };
2081 
2082 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2083 
2084 ssize_t device_store_ulong(struct device *dev,
2085 			   struct device_attribute *attr,
2086 			   const char *buf, size_t size)
2087 {
2088 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2089 	int ret;
2090 	unsigned long new;
2091 
2092 	ret = kstrtoul(buf, 0, &new);
2093 	if (ret)
2094 		return ret;
2095 	*(unsigned long *)(ea->var) = new;
2096 	/* Always return full write size even if we didn't consume all */
2097 	return size;
2098 }
2099 EXPORT_SYMBOL_GPL(device_store_ulong);
2100 
2101 ssize_t device_show_ulong(struct device *dev,
2102 			  struct device_attribute *attr,
2103 			  char *buf)
2104 {
2105 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2106 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2107 }
2108 EXPORT_SYMBOL_GPL(device_show_ulong);
2109 
2110 ssize_t device_store_int(struct device *dev,
2111 			 struct device_attribute *attr,
2112 			 const char *buf, size_t size)
2113 {
2114 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2115 	int ret;
2116 	long new;
2117 
2118 	ret = kstrtol(buf, 0, &new);
2119 	if (ret)
2120 		return ret;
2121 
2122 	if (new > INT_MAX || new < INT_MIN)
2123 		return -EINVAL;
2124 	*(int *)(ea->var) = new;
2125 	/* Always return full write size even if we didn't consume all */
2126 	return size;
2127 }
2128 EXPORT_SYMBOL_GPL(device_store_int);
2129 
2130 ssize_t device_show_int(struct device *dev,
2131 			struct device_attribute *attr,
2132 			char *buf)
2133 {
2134 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2135 
2136 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2137 }
2138 EXPORT_SYMBOL_GPL(device_show_int);
2139 
2140 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2141 			  const char *buf, size_t size)
2142 {
2143 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2144 
2145 	if (strtobool(buf, ea->var) < 0)
2146 		return -EINVAL;
2147 
2148 	return size;
2149 }
2150 EXPORT_SYMBOL_GPL(device_store_bool);
2151 
2152 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2153 			 char *buf)
2154 {
2155 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2156 
2157 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2158 }
2159 EXPORT_SYMBOL_GPL(device_show_bool);
2160 
2161 /**
2162  * device_release - free device structure.
2163  * @kobj: device's kobject.
2164  *
2165  * This is called once the reference count for the object
2166  * reaches 0. We forward the call to the device's release
2167  * method, which should handle actually freeing the structure.
2168  */
2169 static void device_release(struct kobject *kobj)
2170 {
2171 	struct device *dev = kobj_to_dev(kobj);
2172 	struct device_private *p = dev->p;
2173 
2174 	/*
2175 	 * Some platform devices are driven without driver attached
2176 	 * and managed resources may have been acquired.  Make sure
2177 	 * all resources are released.
2178 	 *
2179 	 * Drivers still can add resources into device after device
2180 	 * is deleted but alive, so release devres here to avoid
2181 	 * possible memory leak.
2182 	 */
2183 	devres_release_all(dev);
2184 
2185 	kfree(dev->dma_range_map);
2186 
2187 	if (dev->release)
2188 		dev->release(dev);
2189 	else if (dev->type && dev->type->release)
2190 		dev->type->release(dev);
2191 	else if (dev->class && dev->class->dev_release)
2192 		dev->class->dev_release(dev);
2193 	else
2194 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2195 			dev_name(dev));
2196 	kfree(p);
2197 }
2198 
2199 static const void *device_namespace(struct kobject *kobj)
2200 {
2201 	struct device *dev = kobj_to_dev(kobj);
2202 	const void *ns = NULL;
2203 
2204 	if (dev->class && dev->class->ns_type)
2205 		ns = dev->class->namespace(dev);
2206 
2207 	return ns;
2208 }
2209 
2210 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2211 {
2212 	struct device *dev = kobj_to_dev(kobj);
2213 
2214 	if (dev->class && dev->class->get_ownership)
2215 		dev->class->get_ownership(dev, uid, gid);
2216 }
2217 
2218 static struct kobj_type device_ktype = {
2219 	.release	= device_release,
2220 	.sysfs_ops	= &dev_sysfs_ops,
2221 	.namespace	= device_namespace,
2222 	.get_ownership	= device_get_ownership,
2223 };
2224 
2225 
2226 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2227 {
2228 	struct kobj_type *ktype = get_ktype(kobj);
2229 
2230 	if (ktype == &device_ktype) {
2231 		struct device *dev = kobj_to_dev(kobj);
2232 		if (dev->bus)
2233 			return 1;
2234 		if (dev->class)
2235 			return 1;
2236 	}
2237 	return 0;
2238 }
2239 
2240 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2241 {
2242 	struct device *dev = kobj_to_dev(kobj);
2243 
2244 	if (dev->bus)
2245 		return dev->bus->name;
2246 	if (dev->class)
2247 		return dev->class->name;
2248 	return NULL;
2249 }
2250 
2251 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2252 		      struct kobj_uevent_env *env)
2253 {
2254 	struct device *dev = kobj_to_dev(kobj);
2255 	int retval = 0;
2256 
2257 	/* add device node properties if present */
2258 	if (MAJOR(dev->devt)) {
2259 		const char *tmp;
2260 		const char *name;
2261 		umode_t mode = 0;
2262 		kuid_t uid = GLOBAL_ROOT_UID;
2263 		kgid_t gid = GLOBAL_ROOT_GID;
2264 
2265 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2266 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2267 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2268 		if (name) {
2269 			add_uevent_var(env, "DEVNAME=%s", name);
2270 			if (mode)
2271 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2272 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2273 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2274 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2275 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2276 			kfree(tmp);
2277 		}
2278 	}
2279 
2280 	if (dev->type && dev->type->name)
2281 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2282 
2283 	if (dev->driver)
2284 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2285 
2286 	/* Add common DT information about the device */
2287 	of_device_uevent(dev, env);
2288 
2289 	/* have the bus specific function add its stuff */
2290 	if (dev->bus && dev->bus->uevent) {
2291 		retval = dev->bus->uevent(dev, env);
2292 		if (retval)
2293 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2294 				 dev_name(dev), __func__, retval);
2295 	}
2296 
2297 	/* have the class specific function add its stuff */
2298 	if (dev->class && dev->class->dev_uevent) {
2299 		retval = dev->class->dev_uevent(dev, env);
2300 		if (retval)
2301 			pr_debug("device: '%s': %s: class uevent() "
2302 				 "returned %d\n", dev_name(dev),
2303 				 __func__, retval);
2304 	}
2305 
2306 	/* have the device type specific function add its stuff */
2307 	if (dev->type && dev->type->uevent) {
2308 		retval = dev->type->uevent(dev, env);
2309 		if (retval)
2310 			pr_debug("device: '%s': %s: dev_type uevent() "
2311 				 "returned %d\n", dev_name(dev),
2312 				 __func__, retval);
2313 	}
2314 
2315 	return retval;
2316 }
2317 
2318 static const struct kset_uevent_ops device_uevent_ops = {
2319 	.filter =	dev_uevent_filter,
2320 	.name =		dev_uevent_name,
2321 	.uevent =	dev_uevent,
2322 };
2323 
2324 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2325 			   char *buf)
2326 {
2327 	struct kobject *top_kobj;
2328 	struct kset *kset;
2329 	struct kobj_uevent_env *env = NULL;
2330 	int i;
2331 	int len = 0;
2332 	int retval;
2333 
2334 	/* search the kset, the device belongs to */
2335 	top_kobj = &dev->kobj;
2336 	while (!top_kobj->kset && top_kobj->parent)
2337 		top_kobj = top_kobj->parent;
2338 	if (!top_kobj->kset)
2339 		goto out;
2340 
2341 	kset = top_kobj->kset;
2342 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2343 		goto out;
2344 
2345 	/* respect filter */
2346 	if (kset->uevent_ops && kset->uevent_ops->filter)
2347 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2348 			goto out;
2349 
2350 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2351 	if (!env)
2352 		return -ENOMEM;
2353 
2354 	/* let the kset specific function add its keys */
2355 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2356 	if (retval)
2357 		goto out;
2358 
2359 	/* copy keys to file */
2360 	for (i = 0; i < env->envp_idx; i++)
2361 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2362 out:
2363 	kfree(env);
2364 	return len;
2365 }
2366 
2367 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2368 			    const char *buf, size_t count)
2369 {
2370 	int rc;
2371 
2372 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2373 
2374 	if (rc) {
2375 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2376 		return rc;
2377 	}
2378 
2379 	return count;
2380 }
2381 static DEVICE_ATTR_RW(uevent);
2382 
2383 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2384 			   char *buf)
2385 {
2386 	bool val;
2387 
2388 	device_lock(dev);
2389 	val = !dev->offline;
2390 	device_unlock(dev);
2391 	return sysfs_emit(buf, "%u\n", val);
2392 }
2393 
2394 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2395 			    const char *buf, size_t count)
2396 {
2397 	bool val;
2398 	int ret;
2399 
2400 	ret = strtobool(buf, &val);
2401 	if (ret < 0)
2402 		return ret;
2403 
2404 	ret = lock_device_hotplug_sysfs();
2405 	if (ret)
2406 		return ret;
2407 
2408 	ret = val ? device_online(dev) : device_offline(dev);
2409 	unlock_device_hotplug();
2410 	return ret < 0 ? ret : count;
2411 }
2412 static DEVICE_ATTR_RW(online);
2413 
2414 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2415 			      char *buf)
2416 {
2417 	const char *loc;
2418 
2419 	switch (dev->removable) {
2420 	case DEVICE_REMOVABLE:
2421 		loc = "removable";
2422 		break;
2423 	case DEVICE_FIXED:
2424 		loc = "fixed";
2425 		break;
2426 	default:
2427 		loc = "unknown";
2428 	}
2429 	return sysfs_emit(buf, "%s\n", loc);
2430 }
2431 static DEVICE_ATTR_RO(removable);
2432 
2433 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2434 {
2435 	return sysfs_create_groups(&dev->kobj, groups);
2436 }
2437 EXPORT_SYMBOL_GPL(device_add_groups);
2438 
2439 void device_remove_groups(struct device *dev,
2440 			  const struct attribute_group **groups)
2441 {
2442 	sysfs_remove_groups(&dev->kobj, groups);
2443 }
2444 EXPORT_SYMBOL_GPL(device_remove_groups);
2445 
2446 union device_attr_group_devres {
2447 	const struct attribute_group *group;
2448 	const struct attribute_group **groups;
2449 };
2450 
2451 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2452 {
2453 	return ((union device_attr_group_devres *)res)->group == data;
2454 }
2455 
2456 static void devm_attr_group_remove(struct device *dev, void *res)
2457 {
2458 	union device_attr_group_devres *devres = res;
2459 	const struct attribute_group *group = devres->group;
2460 
2461 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2462 	sysfs_remove_group(&dev->kobj, group);
2463 }
2464 
2465 static void devm_attr_groups_remove(struct device *dev, void *res)
2466 {
2467 	union device_attr_group_devres *devres = res;
2468 	const struct attribute_group **groups = devres->groups;
2469 
2470 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2471 	sysfs_remove_groups(&dev->kobj, groups);
2472 }
2473 
2474 /**
2475  * devm_device_add_group - given a device, create a managed attribute group
2476  * @dev:	The device to create the group for
2477  * @grp:	The attribute group to create
2478  *
2479  * This function creates a group for the first time.  It will explicitly
2480  * warn and error if any of the attribute files being created already exist.
2481  *
2482  * Returns 0 on success or error code on failure.
2483  */
2484 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2485 {
2486 	union device_attr_group_devres *devres;
2487 	int error;
2488 
2489 	devres = devres_alloc(devm_attr_group_remove,
2490 			      sizeof(*devres), GFP_KERNEL);
2491 	if (!devres)
2492 		return -ENOMEM;
2493 
2494 	error = sysfs_create_group(&dev->kobj, grp);
2495 	if (error) {
2496 		devres_free(devres);
2497 		return error;
2498 	}
2499 
2500 	devres->group = grp;
2501 	devres_add(dev, devres);
2502 	return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(devm_device_add_group);
2505 
2506 /**
2507  * devm_device_remove_group: remove a managed group from a device
2508  * @dev:	device to remove the group from
2509  * @grp:	group to remove
2510  *
2511  * This function removes a group of attributes from a device. The attributes
2512  * previously have to have been created for this group, otherwise it will fail.
2513  */
2514 void devm_device_remove_group(struct device *dev,
2515 			      const struct attribute_group *grp)
2516 {
2517 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2518 			       devm_attr_group_match,
2519 			       /* cast away const */ (void *)grp));
2520 }
2521 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2522 
2523 /**
2524  * devm_device_add_groups - create a bunch of managed attribute groups
2525  * @dev:	The device to create the group for
2526  * @groups:	The attribute groups to create, NULL terminated
2527  *
2528  * This function creates a bunch of managed attribute groups.  If an error
2529  * occurs when creating a group, all previously created groups will be
2530  * removed, unwinding everything back to the original state when this
2531  * function was called.  It will explicitly warn and error if any of the
2532  * attribute files being created already exist.
2533  *
2534  * Returns 0 on success or error code from sysfs_create_group on failure.
2535  */
2536 int devm_device_add_groups(struct device *dev,
2537 			   const struct attribute_group **groups)
2538 {
2539 	union device_attr_group_devres *devres;
2540 	int error;
2541 
2542 	devres = devres_alloc(devm_attr_groups_remove,
2543 			      sizeof(*devres), GFP_KERNEL);
2544 	if (!devres)
2545 		return -ENOMEM;
2546 
2547 	error = sysfs_create_groups(&dev->kobj, groups);
2548 	if (error) {
2549 		devres_free(devres);
2550 		return error;
2551 	}
2552 
2553 	devres->groups = groups;
2554 	devres_add(dev, devres);
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2558 
2559 /**
2560  * devm_device_remove_groups - remove a list of managed groups
2561  *
2562  * @dev:	The device for the groups to be removed from
2563  * @groups:	NULL terminated list of groups to be removed
2564  *
2565  * If groups is not NULL, remove the specified groups from the device.
2566  */
2567 void devm_device_remove_groups(struct device *dev,
2568 			       const struct attribute_group **groups)
2569 {
2570 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2571 			       devm_attr_group_match,
2572 			       /* cast away const */ (void *)groups));
2573 }
2574 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2575 
2576 static int device_add_attrs(struct device *dev)
2577 {
2578 	struct class *class = dev->class;
2579 	const struct device_type *type = dev->type;
2580 	int error;
2581 
2582 	if (class) {
2583 		error = device_add_groups(dev, class->dev_groups);
2584 		if (error)
2585 			return error;
2586 	}
2587 
2588 	if (type) {
2589 		error = device_add_groups(dev, type->groups);
2590 		if (error)
2591 			goto err_remove_class_groups;
2592 	}
2593 
2594 	error = device_add_groups(dev, dev->groups);
2595 	if (error)
2596 		goto err_remove_type_groups;
2597 
2598 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2599 		error = device_create_file(dev, &dev_attr_online);
2600 		if (error)
2601 			goto err_remove_dev_groups;
2602 	}
2603 
2604 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2605 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2606 		if (error)
2607 			goto err_remove_dev_online;
2608 	}
2609 
2610 	if (dev_removable_is_valid(dev)) {
2611 		error = device_create_file(dev, &dev_attr_removable);
2612 		if (error)
2613 			goto err_remove_dev_waiting_for_supplier;
2614 	}
2615 
2616 	return 0;
2617 
2618  err_remove_dev_waiting_for_supplier:
2619 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2620  err_remove_dev_online:
2621 	device_remove_file(dev, &dev_attr_online);
2622  err_remove_dev_groups:
2623 	device_remove_groups(dev, dev->groups);
2624  err_remove_type_groups:
2625 	if (type)
2626 		device_remove_groups(dev, type->groups);
2627  err_remove_class_groups:
2628 	if (class)
2629 		device_remove_groups(dev, class->dev_groups);
2630 
2631 	return error;
2632 }
2633 
2634 static void device_remove_attrs(struct device *dev)
2635 {
2636 	struct class *class = dev->class;
2637 	const struct device_type *type = dev->type;
2638 
2639 	device_remove_file(dev, &dev_attr_removable);
2640 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2641 	device_remove_file(dev, &dev_attr_online);
2642 	device_remove_groups(dev, dev->groups);
2643 
2644 	if (type)
2645 		device_remove_groups(dev, type->groups);
2646 
2647 	if (class)
2648 		device_remove_groups(dev, class->dev_groups);
2649 }
2650 
2651 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2652 			char *buf)
2653 {
2654 	return print_dev_t(buf, dev->devt);
2655 }
2656 static DEVICE_ATTR_RO(dev);
2657 
2658 /* /sys/devices/ */
2659 struct kset *devices_kset;
2660 
2661 /**
2662  * devices_kset_move_before - Move device in the devices_kset's list.
2663  * @deva: Device to move.
2664  * @devb: Device @deva should come before.
2665  */
2666 static void devices_kset_move_before(struct device *deva, struct device *devb)
2667 {
2668 	if (!devices_kset)
2669 		return;
2670 	pr_debug("devices_kset: Moving %s before %s\n",
2671 		 dev_name(deva), dev_name(devb));
2672 	spin_lock(&devices_kset->list_lock);
2673 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2674 	spin_unlock(&devices_kset->list_lock);
2675 }
2676 
2677 /**
2678  * devices_kset_move_after - Move device in the devices_kset's list.
2679  * @deva: Device to move
2680  * @devb: Device @deva should come after.
2681  */
2682 static void devices_kset_move_after(struct device *deva, struct device *devb)
2683 {
2684 	if (!devices_kset)
2685 		return;
2686 	pr_debug("devices_kset: Moving %s after %s\n",
2687 		 dev_name(deva), dev_name(devb));
2688 	spin_lock(&devices_kset->list_lock);
2689 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2690 	spin_unlock(&devices_kset->list_lock);
2691 }
2692 
2693 /**
2694  * devices_kset_move_last - move the device to the end of devices_kset's list.
2695  * @dev: device to move
2696  */
2697 void devices_kset_move_last(struct device *dev)
2698 {
2699 	if (!devices_kset)
2700 		return;
2701 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2702 	spin_lock(&devices_kset->list_lock);
2703 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2704 	spin_unlock(&devices_kset->list_lock);
2705 }
2706 
2707 /**
2708  * device_create_file - create sysfs attribute file for device.
2709  * @dev: device.
2710  * @attr: device attribute descriptor.
2711  */
2712 int device_create_file(struct device *dev,
2713 		       const struct device_attribute *attr)
2714 {
2715 	int error = 0;
2716 
2717 	if (dev) {
2718 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2719 			"Attribute %s: write permission without 'store'\n",
2720 			attr->attr.name);
2721 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2722 			"Attribute %s: read permission without 'show'\n",
2723 			attr->attr.name);
2724 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2725 	}
2726 
2727 	return error;
2728 }
2729 EXPORT_SYMBOL_GPL(device_create_file);
2730 
2731 /**
2732  * device_remove_file - remove sysfs attribute file.
2733  * @dev: device.
2734  * @attr: device attribute descriptor.
2735  */
2736 void device_remove_file(struct device *dev,
2737 			const struct device_attribute *attr)
2738 {
2739 	if (dev)
2740 		sysfs_remove_file(&dev->kobj, &attr->attr);
2741 }
2742 EXPORT_SYMBOL_GPL(device_remove_file);
2743 
2744 /**
2745  * device_remove_file_self - remove sysfs attribute file from its own method.
2746  * @dev: device.
2747  * @attr: device attribute descriptor.
2748  *
2749  * See kernfs_remove_self() for details.
2750  */
2751 bool device_remove_file_self(struct device *dev,
2752 			     const struct device_attribute *attr)
2753 {
2754 	if (dev)
2755 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2756 	else
2757 		return false;
2758 }
2759 EXPORT_SYMBOL_GPL(device_remove_file_self);
2760 
2761 /**
2762  * device_create_bin_file - create sysfs binary attribute file for device.
2763  * @dev: device.
2764  * @attr: device binary attribute descriptor.
2765  */
2766 int device_create_bin_file(struct device *dev,
2767 			   const struct bin_attribute *attr)
2768 {
2769 	int error = -EINVAL;
2770 	if (dev)
2771 		error = sysfs_create_bin_file(&dev->kobj, attr);
2772 	return error;
2773 }
2774 EXPORT_SYMBOL_GPL(device_create_bin_file);
2775 
2776 /**
2777  * device_remove_bin_file - remove sysfs binary attribute file
2778  * @dev: device.
2779  * @attr: device binary attribute descriptor.
2780  */
2781 void device_remove_bin_file(struct device *dev,
2782 			    const struct bin_attribute *attr)
2783 {
2784 	if (dev)
2785 		sysfs_remove_bin_file(&dev->kobj, attr);
2786 }
2787 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2788 
2789 static void klist_children_get(struct klist_node *n)
2790 {
2791 	struct device_private *p = to_device_private_parent(n);
2792 	struct device *dev = p->device;
2793 
2794 	get_device(dev);
2795 }
2796 
2797 static void klist_children_put(struct klist_node *n)
2798 {
2799 	struct device_private *p = to_device_private_parent(n);
2800 	struct device *dev = p->device;
2801 
2802 	put_device(dev);
2803 }
2804 
2805 /**
2806  * device_initialize - init device structure.
2807  * @dev: device.
2808  *
2809  * This prepares the device for use by other layers by initializing
2810  * its fields.
2811  * It is the first half of device_register(), if called by
2812  * that function, though it can also be called separately, so one
2813  * may use @dev's fields. In particular, get_device()/put_device()
2814  * may be used for reference counting of @dev after calling this
2815  * function.
2816  *
2817  * All fields in @dev must be initialized by the caller to 0, except
2818  * for those explicitly set to some other value.  The simplest
2819  * approach is to use kzalloc() to allocate the structure containing
2820  * @dev.
2821  *
2822  * NOTE: Use put_device() to give up your reference instead of freeing
2823  * @dev directly once you have called this function.
2824  */
2825 void device_initialize(struct device *dev)
2826 {
2827 	dev->kobj.kset = devices_kset;
2828 	kobject_init(&dev->kobj, &device_ktype);
2829 	INIT_LIST_HEAD(&dev->dma_pools);
2830 	mutex_init(&dev->mutex);
2831 #ifdef CONFIG_PROVE_LOCKING
2832 	mutex_init(&dev->lockdep_mutex);
2833 #endif
2834 	lockdep_set_novalidate_class(&dev->mutex);
2835 	spin_lock_init(&dev->devres_lock);
2836 	INIT_LIST_HEAD(&dev->devres_head);
2837 	device_pm_init(dev);
2838 	set_dev_node(dev, -1);
2839 #ifdef CONFIG_GENERIC_MSI_IRQ
2840 	INIT_LIST_HEAD(&dev->msi_list);
2841 #endif
2842 	INIT_LIST_HEAD(&dev->links.consumers);
2843 	INIT_LIST_HEAD(&dev->links.suppliers);
2844 	INIT_LIST_HEAD(&dev->links.defer_sync);
2845 	dev->links.status = DL_DEV_NO_DRIVER;
2846 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2847     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2848     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2849 	dev->dma_coherent = dma_default_coherent;
2850 #endif
2851 }
2852 EXPORT_SYMBOL_GPL(device_initialize);
2853 
2854 struct kobject *virtual_device_parent(struct device *dev)
2855 {
2856 	static struct kobject *virtual_dir = NULL;
2857 
2858 	if (!virtual_dir)
2859 		virtual_dir = kobject_create_and_add("virtual",
2860 						     &devices_kset->kobj);
2861 
2862 	return virtual_dir;
2863 }
2864 
2865 struct class_dir {
2866 	struct kobject kobj;
2867 	struct class *class;
2868 };
2869 
2870 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2871 
2872 static void class_dir_release(struct kobject *kobj)
2873 {
2874 	struct class_dir *dir = to_class_dir(kobj);
2875 	kfree(dir);
2876 }
2877 
2878 static const
2879 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2880 {
2881 	struct class_dir *dir = to_class_dir(kobj);
2882 	return dir->class->ns_type;
2883 }
2884 
2885 static struct kobj_type class_dir_ktype = {
2886 	.release	= class_dir_release,
2887 	.sysfs_ops	= &kobj_sysfs_ops,
2888 	.child_ns_type	= class_dir_child_ns_type
2889 };
2890 
2891 static struct kobject *
2892 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2893 {
2894 	struct class_dir *dir;
2895 	int retval;
2896 
2897 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2898 	if (!dir)
2899 		return ERR_PTR(-ENOMEM);
2900 
2901 	dir->class = class;
2902 	kobject_init(&dir->kobj, &class_dir_ktype);
2903 
2904 	dir->kobj.kset = &class->p->glue_dirs;
2905 
2906 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2907 	if (retval < 0) {
2908 		kobject_put(&dir->kobj);
2909 		return ERR_PTR(retval);
2910 	}
2911 	return &dir->kobj;
2912 }
2913 
2914 static DEFINE_MUTEX(gdp_mutex);
2915 
2916 static struct kobject *get_device_parent(struct device *dev,
2917 					 struct device *parent)
2918 {
2919 	if (dev->class) {
2920 		struct kobject *kobj = NULL;
2921 		struct kobject *parent_kobj;
2922 		struct kobject *k;
2923 
2924 #ifdef CONFIG_BLOCK
2925 		/* block disks show up in /sys/block */
2926 		if (sysfs_deprecated && dev->class == &block_class) {
2927 			if (parent && parent->class == &block_class)
2928 				return &parent->kobj;
2929 			return &block_class.p->subsys.kobj;
2930 		}
2931 #endif
2932 
2933 		/*
2934 		 * If we have no parent, we live in "virtual".
2935 		 * Class-devices with a non class-device as parent, live
2936 		 * in a "glue" directory to prevent namespace collisions.
2937 		 */
2938 		if (parent == NULL)
2939 			parent_kobj = virtual_device_parent(dev);
2940 		else if (parent->class && !dev->class->ns_type)
2941 			return &parent->kobj;
2942 		else
2943 			parent_kobj = &parent->kobj;
2944 
2945 		mutex_lock(&gdp_mutex);
2946 
2947 		/* find our class-directory at the parent and reference it */
2948 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2949 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2950 			if (k->parent == parent_kobj) {
2951 				kobj = kobject_get(k);
2952 				break;
2953 			}
2954 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2955 		if (kobj) {
2956 			mutex_unlock(&gdp_mutex);
2957 			return kobj;
2958 		}
2959 
2960 		/* or create a new class-directory at the parent device */
2961 		k = class_dir_create_and_add(dev->class, parent_kobj);
2962 		/* do not emit an uevent for this simple "glue" directory */
2963 		mutex_unlock(&gdp_mutex);
2964 		return k;
2965 	}
2966 
2967 	/* subsystems can specify a default root directory for their devices */
2968 	if (!parent && dev->bus && dev->bus->dev_root)
2969 		return &dev->bus->dev_root->kobj;
2970 
2971 	if (parent)
2972 		return &parent->kobj;
2973 	return NULL;
2974 }
2975 
2976 static inline bool live_in_glue_dir(struct kobject *kobj,
2977 				    struct device *dev)
2978 {
2979 	if (!kobj || !dev->class ||
2980 	    kobj->kset != &dev->class->p->glue_dirs)
2981 		return false;
2982 	return true;
2983 }
2984 
2985 static inline struct kobject *get_glue_dir(struct device *dev)
2986 {
2987 	return dev->kobj.parent;
2988 }
2989 
2990 /*
2991  * make sure cleaning up dir as the last step, we need to make
2992  * sure .release handler of kobject is run with holding the
2993  * global lock
2994  */
2995 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2996 {
2997 	unsigned int ref;
2998 
2999 	/* see if we live in a "glue" directory */
3000 	if (!live_in_glue_dir(glue_dir, dev))
3001 		return;
3002 
3003 	mutex_lock(&gdp_mutex);
3004 	/**
3005 	 * There is a race condition between removing glue directory
3006 	 * and adding a new device under the glue directory.
3007 	 *
3008 	 * CPU1:                                         CPU2:
3009 	 *
3010 	 * device_add()
3011 	 *   get_device_parent()
3012 	 *     class_dir_create_and_add()
3013 	 *       kobject_add_internal()
3014 	 *         create_dir()    // create glue_dir
3015 	 *
3016 	 *                                               device_add()
3017 	 *                                                 get_device_parent()
3018 	 *                                                   kobject_get() // get glue_dir
3019 	 *
3020 	 * device_del()
3021 	 *   cleanup_glue_dir()
3022 	 *     kobject_del(glue_dir)
3023 	 *
3024 	 *                                               kobject_add()
3025 	 *                                                 kobject_add_internal()
3026 	 *                                                   create_dir() // in glue_dir
3027 	 *                                                     sysfs_create_dir_ns()
3028 	 *                                                       kernfs_create_dir_ns(sd)
3029 	 *
3030 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3031 	 *       sysfs_put()        // free glue_dir->sd
3032 	 *
3033 	 *                                                         // sd is freed
3034 	 *                                                         kernfs_new_node(sd)
3035 	 *                                                           kernfs_get(glue_dir)
3036 	 *                                                           kernfs_add_one()
3037 	 *                                                           kernfs_put()
3038 	 *
3039 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3040 	 * a new device under glue dir, the glue_dir kobject reference count
3041 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3042 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3043 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3044 	 *
3045 	 * Then the CPU2 will see a stale "empty" but still potentially used
3046 	 * glue dir around in kernfs_new_node().
3047 	 *
3048 	 * In order to avoid this happening, we also should make sure that
3049 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3050 	 * for glue_dir kobj is 1.
3051 	 */
3052 	ref = kref_read(&glue_dir->kref);
3053 	if (!kobject_has_children(glue_dir) && !--ref)
3054 		kobject_del(glue_dir);
3055 	kobject_put(glue_dir);
3056 	mutex_unlock(&gdp_mutex);
3057 }
3058 
3059 static int device_add_class_symlinks(struct device *dev)
3060 {
3061 	struct device_node *of_node = dev_of_node(dev);
3062 	int error;
3063 
3064 	if (of_node) {
3065 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3066 		if (error)
3067 			dev_warn(dev, "Error %d creating of_node link\n",error);
3068 		/* An error here doesn't warrant bringing down the device */
3069 	}
3070 
3071 	if (!dev->class)
3072 		return 0;
3073 
3074 	error = sysfs_create_link(&dev->kobj,
3075 				  &dev->class->p->subsys.kobj,
3076 				  "subsystem");
3077 	if (error)
3078 		goto out_devnode;
3079 
3080 	if (dev->parent && device_is_not_partition(dev)) {
3081 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3082 					  "device");
3083 		if (error)
3084 			goto out_subsys;
3085 	}
3086 
3087 #ifdef CONFIG_BLOCK
3088 	/* /sys/block has directories and does not need symlinks */
3089 	if (sysfs_deprecated && dev->class == &block_class)
3090 		return 0;
3091 #endif
3092 
3093 	/* link in the class directory pointing to the device */
3094 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3095 				  &dev->kobj, dev_name(dev));
3096 	if (error)
3097 		goto out_device;
3098 
3099 	return 0;
3100 
3101 out_device:
3102 	sysfs_remove_link(&dev->kobj, "device");
3103 
3104 out_subsys:
3105 	sysfs_remove_link(&dev->kobj, "subsystem");
3106 out_devnode:
3107 	sysfs_remove_link(&dev->kobj, "of_node");
3108 	return error;
3109 }
3110 
3111 static void device_remove_class_symlinks(struct device *dev)
3112 {
3113 	if (dev_of_node(dev))
3114 		sysfs_remove_link(&dev->kobj, "of_node");
3115 
3116 	if (!dev->class)
3117 		return;
3118 
3119 	if (dev->parent && device_is_not_partition(dev))
3120 		sysfs_remove_link(&dev->kobj, "device");
3121 	sysfs_remove_link(&dev->kobj, "subsystem");
3122 #ifdef CONFIG_BLOCK
3123 	if (sysfs_deprecated && dev->class == &block_class)
3124 		return;
3125 #endif
3126 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3127 }
3128 
3129 /**
3130  * dev_set_name - set a device name
3131  * @dev: device
3132  * @fmt: format string for the device's name
3133  */
3134 int dev_set_name(struct device *dev, const char *fmt, ...)
3135 {
3136 	va_list vargs;
3137 	int err;
3138 
3139 	va_start(vargs, fmt);
3140 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3141 	va_end(vargs);
3142 	return err;
3143 }
3144 EXPORT_SYMBOL_GPL(dev_set_name);
3145 
3146 /**
3147  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3148  * @dev: device
3149  *
3150  * By default we select char/ for new entries.  Setting class->dev_obj
3151  * to NULL prevents an entry from being created.  class->dev_kobj must
3152  * be set (or cleared) before any devices are registered to the class
3153  * otherwise device_create_sys_dev_entry() and
3154  * device_remove_sys_dev_entry() will disagree about the presence of
3155  * the link.
3156  */
3157 static struct kobject *device_to_dev_kobj(struct device *dev)
3158 {
3159 	struct kobject *kobj;
3160 
3161 	if (dev->class)
3162 		kobj = dev->class->dev_kobj;
3163 	else
3164 		kobj = sysfs_dev_char_kobj;
3165 
3166 	return kobj;
3167 }
3168 
3169 static int device_create_sys_dev_entry(struct device *dev)
3170 {
3171 	struct kobject *kobj = device_to_dev_kobj(dev);
3172 	int error = 0;
3173 	char devt_str[15];
3174 
3175 	if (kobj) {
3176 		format_dev_t(devt_str, dev->devt);
3177 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3178 	}
3179 
3180 	return error;
3181 }
3182 
3183 static void device_remove_sys_dev_entry(struct device *dev)
3184 {
3185 	struct kobject *kobj = device_to_dev_kobj(dev);
3186 	char devt_str[15];
3187 
3188 	if (kobj) {
3189 		format_dev_t(devt_str, dev->devt);
3190 		sysfs_remove_link(kobj, devt_str);
3191 	}
3192 }
3193 
3194 static int device_private_init(struct device *dev)
3195 {
3196 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3197 	if (!dev->p)
3198 		return -ENOMEM;
3199 	dev->p->device = dev;
3200 	klist_init(&dev->p->klist_children, klist_children_get,
3201 		   klist_children_put);
3202 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3203 	return 0;
3204 }
3205 
3206 /**
3207  * device_add - add device to device hierarchy.
3208  * @dev: device.
3209  *
3210  * This is part 2 of device_register(), though may be called
3211  * separately _iff_ device_initialize() has been called separately.
3212  *
3213  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3214  * to the global and sibling lists for the device, then
3215  * adds it to the other relevant subsystems of the driver model.
3216  *
3217  * Do not call this routine or device_register() more than once for
3218  * any device structure.  The driver model core is not designed to work
3219  * with devices that get unregistered and then spring back to life.
3220  * (Among other things, it's very hard to guarantee that all references
3221  * to the previous incarnation of @dev have been dropped.)  Allocate
3222  * and register a fresh new struct device instead.
3223  *
3224  * NOTE: _Never_ directly free @dev after calling this function, even
3225  * if it returned an error! Always use put_device() to give up your
3226  * reference instead.
3227  *
3228  * Rule of thumb is: if device_add() succeeds, you should call
3229  * device_del() when you want to get rid of it. If device_add() has
3230  * *not* succeeded, use *only* put_device() to drop the reference
3231  * count.
3232  */
3233 int device_add(struct device *dev)
3234 {
3235 	struct device *parent;
3236 	struct kobject *kobj;
3237 	struct class_interface *class_intf;
3238 	int error = -EINVAL;
3239 	struct kobject *glue_dir = NULL;
3240 
3241 	dev = get_device(dev);
3242 	if (!dev)
3243 		goto done;
3244 
3245 	if (!dev->p) {
3246 		error = device_private_init(dev);
3247 		if (error)
3248 			goto done;
3249 	}
3250 
3251 	/*
3252 	 * for statically allocated devices, which should all be converted
3253 	 * some day, we need to initialize the name. We prevent reading back
3254 	 * the name, and force the use of dev_name()
3255 	 */
3256 	if (dev->init_name) {
3257 		dev_set_name(dev, "%s", dev->init_name);
3258 		dev->init_name = NULL;
3259 	}
3260 
3261 	/* subsystems can specify simple device enumeration */
3262 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3263 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3264 
3265 	if (!dev_name(dev)) {
3266 		error = -EINVAL;
3267 		goto name_error;
3268 	}
3269 
3270 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3271 
3272 	parent = get_device(dev->parent);
3273 	kobj = get_device_parent(dev, parent);
3274 	if (IS_ERR(kobj)) {
3275 		error = PTR_ERR(kobj);
3276 		goto parent_error;
3277 	}
3278 	if (kobj)
3279 		dev->kobj.parent = kobj;
3280 
3281 	/* use parent numa_node */
3282 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3283 		set_dev_node(dev, dev_to_node(parent));
3284 
3285 	/* first, register with generic layer. */
3286 	/* we require the name to be set before, and pass NULL */
3287 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3288 	if (error) {
3289 		glue_dir = get_glue_dir(dev);
3290 		goto Error;
3291 	}
3292 
3293 	/* notify platform of device entry */
3294 	error = device_platform_notify(dev, KOBJ_ADD);
3295 	if (error)
3296 		goto platform_error;
3297 
3298 	error = device_create_file(dev, &dev_attr_uevent);
3299 	if (error)
3300 		goto attrError;
3301 
3302 	error = device_add_class_symlinks(dev);
3303 	if (error)
3304 		goto SymlinkError;
3305 	error = device_add_attrs(dev);
3306 	if (error)
3307 		goto AttrsError;
3308 	error = bus_add_device(dev);
3309 	if (error)
3310 		goto BusError;
3311 	error = dpm_sysfs_add(dev);
3312 	if (error)
3313 		goto DPMError;
3314 	device_pm_add(dev);
3315 
3316 	if (MAJOR(dev->devt)) {
3317 		error = device_create_file(dev, &dev_attr_dev);
3318 		if (error)
3319 			goto DevAttrError;
3320 
3321 		error = device_create_sys_dev_entry(dev);
3322 		if (error)
3323 			goto SysEntryError;
3324 
3325 		devtmpfs_create_node(dev);
3326 	}
3327 
3328 	/* Notify clients of device addition.  This call must come
3329 	 * after dpm_sysfs_add() and before kobject_uevent().
3330 	 */
3331 	if (dev->bus)
3332 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3333 					     BUS_NOTIFY_ADD_DEVICE, dev);
3334 
3335 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3336 
3337 	/*
3338 	 * Check if any of the other devices (consumers) have been waiting for
3339 	 * this device (supplier) to be added so that they can create a device
3340 	 * link to it.
3341 	 *
3342 	 * This needs to happen after device_pm_add() because device_link_add()
3343 	 * requires the supplier be registered before it's called.
3344 	 *
3345 	 * But this also needs to happen before bus_probe_device() to make sure
3346 	 * waiting consumers can link to it before the driver is bound to the
3347 	 * device and the driver sync_state callback is called for this device.
3348 	 */
3349 	if (dev->fwnode && !dev->fwnode->dev) {
3350 		dev->fwnode->dev = dev;
3351 		fw_devlink_link_device(dev);
3352 	}
3353 
3354 	bus_probe_device(dev);
3355 
3356 	/*
3357 	 * If all driver registration is done and a newly added device doesn't
3358 	 * match with any driver, don't block its consumers from probing in
3359 	 * case the consumer device is able to operate without this supplier.
3360 	 */
3361 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3362 		fw_devlink_unblock_consumers(dev);
3363 
3364 	if (parent)
3365 		klist_add_tail(&dev->p->knode_parent,
3366 			       &parent->p->klist_children);
3367 
3368 	if (dev->class) {
3369 		mutex_lock(&dev->class->p->mutex);
3370 		/* tie the class to the device */
3371 		klist_add_tail(&dev->p->knode_class,
3372 			       &dev->class->p->klist_devices);
3373 
3374 		/* notify any interfaces that the device is here */
3375 		list_for_each_entry(class_intf,
3376 				    &dev->class->p->interfaces, node)
3377 			if (class_intf->add_dev)
3378 				class_intf->add_dev(dev, class_intf);
3379 		mutex_unlock(&dev->class->p->mutex);
3380 	}
3381 done:
3382 	put_device(dev);
3383 	return error;
3384  SysEntryError:
3385 	if (MAJOR(dev->devt))
3386 		device_remove_file(dev, &dev_attr_dev);
3387  DevAttrError:
3388 	device_pm_remove(dev);
3389 	dpm_sysfs_remove(dev);
3390  DPMError:
3391 	bus_remove_device(dev);
3392  BusError:
3393 	device_remove_attrs(dev);
3394  AttrsError:
3395 	device_remove_class_symlinks(dev);
3396  SymlinkError:
3397 	device_remove_file(dev, &dev_attr_uevent);
3398  attrError:
3399 	device_platform_notify(dev, KOBJ_REMOVE);
3400 platform_error:
3401 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3402 	glue_dir = get_glue_dir(dev);
3403 	kobject_del(&dev->kobj);
3404  Error:
3405 	cleanup_glue_dir(dev, glue_dir);
3406 parent_error:
3407 	put_device(parent);
3408 name_error:
3409 	kfree(dev->p);
3410 	dev->p = NULL;
3411 	goto done;
3412 }
3413 EXPORT_SYMBOL_GPL(device_add);
3414 
3415 /**
3416  * device_register - register a device with the system.
3417  * @dev: pointer to the device structure
3418  *
3419  * This happens in two clean steps - initialize the device
3420  * and add it to the system. The two steps can be called
3421  * separately, but this is the easiest and most common.
3422  * I.e. you should only call the two helpers separately if
3423  * have a clearly defined need to use and refcount the device
3424  * before it is added to the hierarchy.
3425  *
3426  * For more information, see the kerneldoc for device_initialize()
3427  * and device_add().
3428  *
3429  * NOTE: _Never_ directly free @dev after calling this function, even
3430  * if it returned an error! Always use put_device() to give up the
3431  * reference initialized in this function instead.
3432  */
3433 int device_register(struct device *dev)
3434 {
3435 	device_initialize(dev);
3436 	return device_add(dev);
3437 }
3438 EXPORT_SYMBOL_GPL(device_register);
3439 
3440 /**
3441  * get_device - increment reference count for device.
3442  * @dev: device.
3443  *
3444  * This simply forwards the call to kobject_get(), though
3445  * we do take care to provide for the case that we get a NULL
3446  * pointer passed in.
3447  */
3448 struct device *get_device(struct device *dev)
3449 {
3450 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3451 }
3452 EXPORT_SYMBOL_GPL(get_device);
3453 
3454 /**
3455  * put_device - decrement reference count.
3456  * @dev: device in question.
3457  */
3458 void put_device(struct device *dev)
3459 {
3460 	/* might_sleep(); */
3461 	if (dev)
3462 		kobject_put(&dev->kobj);
3463 }
3464 EXPORT_SYMBOL_GPL(put_device);
3465 
3466 bool kill_device(struct device *dev)
3467 {
3468 	/*
3469 	 * Require the device lock and set the "dead" flag to guarantee that
3470 	 * the update behavior is consistent with the other bitfields near
3471 	 * it and that we cannot have an asynchronous probe routine trying
3472 	 * to run while we are tearing out the bus/class/sysfs from
3473 	 * underneath the device.
3474 	 */
3475 	device_lock_assert(dev);
3476 
3477 	if (dev->p->dead)
3478 		return false;
3479 	dev->p->dead = true;
3480 	return true;
3481 }
3482 EXPORT_SYMBOL_GPL(kill_device);
3483 
3484 /**
3485  * device_del - delete device from system.
3486  * @dev: device.
3487  *
3488  * This is the first part of the device unregistration
3489  * sequence. This removes the device from the lists we control
3490  * from here, has it removed from the other driver model
3491  * subsystems it was added to in device_add(), and removes it
3492  * from the kobject hierarchy.
3493  *
3494  * NOTE: this should be called manually _iff_ device_add() was
3495  * also called manually.
3496  */
3497 void device_del(struct device *dev)
3498 {
3499 	struct device *parent = dev->parent;
3500 	struct kobject *glue_dir = NULL;
3501 	struct class_interface *class_intf;
3502 	unsigned int noio_flag;
3503 
3504 	device_lock(dev);
3505 	kill_device(dev);
3506 	device_unlock(dev);
3507 
3508 	if (dev->fwnode && dev->fwnode->dev == dev)
3509 		dev->fwnode->dev = NULL;
3510 
3511 	/* Notify clients of device removal.  This call must come
3512 	 * before dpm_sysfs_remove().
3513 	 */
3514 	noio_flag = memalloc_noio_save();
3515 	if (dev->bus)
3516 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3517 					     BUS_NOTIFY_DEL_DEVICE, dev);
3518 
3519 	dpm_sysfs_remove(dev);
3520 	if (parent)
3521 		klist_del(&dev->p->knode_parent);
3522 	if (MAJOR(dev->devt)) {
3523 		devtmpfs_delete_node(dev);
3524 		device_remove_sys_dev_entry(dev);
3525 		device_remove_file(dev, &dev_attr_dev);
3526 	}
3527 	if (dev->class) {
3528 		device_remove_class_symlinks(dev);
3529 
3530 		mutex_lock(&dev->class->p->mutex);
3531 		/* notify any interfaces that the device is now gone */
3532 		list_for_each_entry(class_intf,
3533 				    &dev->class->p->interfaces, node)
3534 			if (class_intf->remove_dev)
3535 				class_intf->remove_dev(dev, class_intf);
3536 		/* remove the device from the class list */
3537 		klist_del(&dev->p->knode_class);
3538 		mutex_unlock(&dev->class->p->mutex);
3539 	}
3540 	device_remove_file(dev, &dev_attr_uevent);
3541 	device_remove_attrs(dev);
3542 	bus_remove_device(dev);
3543 	device_pm_remove(dev);
3544 	driver_deferred_probe_del(dev);
3545 	device_platform_notify(dev, KOBJ_REMOVE);
3546 	device_remove_properties(dev);
3547 	device_links_purge(dev);
3548 
3549 	if (dev->bus)
3550 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3551 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3552 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3553 	glue_dir = get_glue_dir(dev);
3554 	kobject_del(&dev->kobj);
3555 	cleanup_glue_dir(dev, glue_dir);
3556 	memalloc_noio_restore(noio_flag);
3557 	put_device(parent);
3558 }
3559 EXPORT_SYMBOL_GPL(device_del);
3560 
3561 /**
3562  * device_unregister - unregister device from system.
3563  * @dev: device going away.
3564  *
3565  * We do this in two parts, like we do device_register(). First,
3566  * we remove it from all the subsystems with device_del(), then
3567  * we decrement the reference count via put_device(). If that
3568  * is the final reference count, the device will be cleaned up
3569  * via device_release() above. Otherwise, the structure will
3570  * stick around until the final reference to the device is dropped.
3571  */
3572 void device_unregister(struct device *dev)
3573 {
3574 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3575 	device_del(dev);
3576 	put_device(dev);
3577 }
3578 EXPORT_SYMBOL_GPL(device_unregister);
3579 
3580 static struct device *prev_device(struct klist_iter *i)
3581 {
3582 	struct klist_node *n = klist_prev(i);
3583 	struct device *dev = NULL;
3584 	struct device_private *p;
3585 
3586 	if (n) {
3587 		p = to_device_private_parent(n);
3588 		dev = p->device;
3589 	}
3590 	return dev;
3591 }
3592 
3593 static struct device *next_device(struct klist_iter *i)
3594 {
3595 	struct klist_node *n = klist_next(i);
3596 	struct device *dev = NULL;
3597 	struct device_private *p;
3598 
3599 	if (n) {
3600 		p = to_device_private_parent(n);
3601 		dev = p->device;
3602 	}
3603 	return dev;
3604 }
3605 
3606 /**
3607  * device_get_devnode - path of device node file
3608  * @dev: device
3609  * @mode: returned file access mode
3610  * @uid: returned file owner
3611  * @gid: returned file group
3612  * @tmp: possibly allocated string
3613  *
3614  * Return the relative path of a possible device node.
3615  * Non-default names may need to allocate a memory to compose
3616  * a name. This memory is returned in tmp and needs to be
3617  * freed by the caller.
3618  */
3619 const char *device_get_devnode(struct device *dev,
3620 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3621 			       const char **tmp)
3622 {
3623 	char *s;
3624 
3625 	*tmp = NULL;
3626 
3627 	/* the device type may provide a specific name */
3628 	if (dev->type && dev->type->devnode)
3629 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3630 	if (*tmp)
3631 		return *tmp;
3632 
3633 	/* the class may provide a specific name */
3634 	if (dev->class && dev->class->devnode)
3635 		*tmp = dev->class->devnode(dev, mode);
3636 	if (*tmp)
3637 		return *tmp;
3638 
3639 	/* return name without allocation, tmp == NULL */
3640 	if (strchr(dev_name(dev), '!') == NULL)
3641 		return dev_name(dev);
3642 
3643 	/* replace '!' in the name with '/' */
3644 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3645 	if (!s)
3646 		return NULL;
3647 	strreplace(s, '!', '/');
3648 	return *tmp = s;
3649 }
3650 
3651 /**
3652  * device_for_each_child - device child iterator.
3653  * @parent: parent struct device.
3654  * @fn: function to be called for each device.
3655  * @data: data for the callback.
3656  *
3657  * Iterate over @parent's child devices, and call @fn for each,
3658  * passing it @data.
3659  *
3660  * We check the return of @fn each time. If it returns anything
3661  * other than 0, we break out and return that value.
3662  */
3663 int device_for_each_child(struct device *parent, void *data,
3664 			  int (*fn)(struct device *dev, void *data))
3665 {
3666 	struct klist_iter i;
3667 	struct device *child;
3668 	int error = 0;
3669 
3670 	if (!parent->p)
3671 		return 0;
3672 
3673 	klist_iter_init(&parent->p->klist_children, &i);
3674 	while (!error && (child = next_device(&i)))
3675 		error = fn(child, data);
3676 	klist_iter_exit(&i);
3677 	return error;
3678 }
3679 EXPORT_SYMBOL_GPL(device_for_each_child);
3680 
3681 /**
3682  * device_for_each_child_reverse - device child iterator in reversed order.
3683  * @parent: parent struct device.
3684  * @fn: function to be called for each device.
3685  * @data: data for the callback.
3686  *
3687  * Iterate over @parent's child devices, and call @fn for each,
3688  * passing it @data.
3689  *
3690  * We check the return of @fn each time. If it returns anything
3691  * other than 0, we break out and return that value.
3692  */
3693 int device_for_each_child_reverse(struct device *parent, void *data,
3694 				  int (*fn)(struct device *dev, void *data))
3695 {
3696 	struct klist_iter i;
3697 	struct device *child;
3698 	int error = 0;
3699 
3700 	if (!parent->p)
3701 		return 0;
3702 
3703 	klist_iter_init(&parent->p->klist_children, &i);
3704 	while ((child = prev_device(&i)) && !error)
3705 		error = fn(child, data);
3706 	klist_iter_exit(&i);
3707 	return error;
3708 }
3709 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3710 
3711 /**
3712  * device_find_child - device iterator for locating a particular device.
3713  * @parent: parent struct device
3714  * @match: Callback function to check device
3715  * @data: Data to pass to match function
3716  *
3717  * This is similar to the device_for_each_child() function above, but it
3718  * returns a reference to a device that is 'found' for later use, as
3719  * determined by the @match callback.
3720  *
3721  * The callback should return 0 if the device doesn't match and non-zero
3722  * if it does.  If the callback returns non-zero and a reference to the
3723  * current device can be obtained, this function will return to the caller
3724  * and not iterate over any more devices.
3725  *
3726  * NOTE: you will need to drop the reference with put_device() after use.
3727  */
3728 struct device *device_find_child(struct device *parent, void *data,
3729 				 int (*match)(struct device *dev, void *data))
3730 {
3731 	struct klist_iter i;
3732 	struct device *child;
3733 
3734 	if (!parent)
3735 		return NULL;
3736 
3737 	klist_iter_init(&parent->p->klist_children, &i);
3738 	while ((child = next_device(&i)))
3739 		if (match(child, data) && get_device(child))
3740 			break;
3741 	klist_iter_exit(&i);
3742 	return child;
3743 }
3744 EXPORT_SYMBOL_GPL(device_find_child);
3745 
3746 /**
3747  * device_find_child_by_name - device iterator for locating a child device.
3748  * @parent: parent struct device
3749  * @name: name of the child device
3750  *
3751  * This is similar to the device_find_child() function above, but it
3752  * returns a reference to a device that has the name @name.
3753  *
3754  * NOTE: you will need to drop the reference with put_device() after use.
3755  */
3756 struct device *device_find_child_by_name(struct device *parent,
3757 					 const char *name)
3758 {
3759 	struct klist_iter i;
3760 	struct device *child;
3761 
3762 	if (!parent)
3763 		return NULL;
3764 
3765 	klist_iter_init(&parent->p->klist_children, &i);
3766 	while ((child = next_device(&i)))
3767 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3768 			break;
3769 	klist_iter_exit(&i);
3770 	return child;
3771 }
3772 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3773 
3774 int __init devices_init(void)
3775 {
3776 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3777 	if (!devices_kset)
3778 		return -ENOMEM;
3779 	dev_kobj = kobject_create_and_add("dev", NULL);
3780 	if (!dev_kobj)
3781 		goto dev_kobj_err;
3782 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3783 	if (!sysfs_dev_block_kobj)
3784 		goto block_kobj_err;
3785 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3786 	if (!sysfs_dev_char_kobj)
3787 		goto char_kobj_err;
3788 
3789 	return 0;
3790 
3791  char_kobj_err:
3792 	kobject_put(sysfs_dev_block_kobj);
3793  block_kobj_err:
3794 	kobject_put(dev_kobj);
3795  dev_kobj_err:
3796 	kset_unregister(devices_kset);
3797 	return -ENOMEM;
3798 }
3799 
3800 static int device_check_offline(struct device *dev, void *not_used)
3801 {
3802 	int ret;
3803 
3804 	ret = device_for_each_child(dev, NULL, device_check_offline);
3805 	if (ret)
3806 		return ret;
3807 
3808 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3809 }
3810 
3811 /**
3812  * device_offline - Prepare the device for hot-removal.
3813  * @dev: Device to be put offline.
3814  *
3815  * Execute the device bus type's .offline() callback, if present, to prepare
3816  * the device for a subsequent hot-removal.  If that succeeds, the device must
3817  * not be used until either it is removed or its bus type's .online() callback
3818  * is executed.
3819  *
3820  * Call under device_hotplug_lock.
3821  */
3822 int device_offline(struct device *dev)
3823 {
3824 	int ret;
3825 
3826 	if (dev->offline_disabled)
3827 		return -EPERM;
3828 
3829 	ret = device_for_each_child(dev, NULL, device_check_offline);
3830 	if (ret)
3831 		return ret;
3832 
3833 	device_lock(dev);
3834 	if (device_supports_offline(dev)) {
3835 		if (dev->offline) {
3836 			ret = 1;
3837 		} else {
3838 			ret = dev->bus->offline(dev);
3839 			if (!ret) {
3840 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3841 				dev->offline = true;
3842 			}
3843 		}
3844 	}
3845 	device_unlock(dev);
3846 
3847 	return ret;
3848 }
3849 
3850 /**
3851  * device_online - Put the device back online after successful device_offline().
3852  * @dev: Device to be put back online.
3853  *
3854  * If device_offline() has been successfully executed for @dev, but the device
3855  * has not been removed subsequently, execute its bus type's .online() callback
3856  * to indicate that the device can be used again.
3857  *
3858  * Call under device_hotplug_lock.
3859  */
3860 int device_online(struct device *dev)
3861 {
3862 	int ret = 0;
3863 
3864 	device_lock(dev);
3865 	if (device_supports_offline(dev)) {
3866 		if (dev->offline) {
3867 			ret = dev->bus->online(dev);
3868 			if (!ret) {
3869 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3870 				dev->offline = false;
3871 			}
3872 		} else {
3873 			ret = 1;
3874 		}
3875 	}
3876 	device_unlock(dev);
3877 
3878 	return ret;
3879 }
3880 
3881 struct root_device {
3882 	struct device dev;
3883 	struct module *owner;
3884 };
3885 
3886 static inline struct root_device *to_root_device(struct device *d)
3887 {
3888 	return container_of(d, struct root_device, dev);
3889 }
3890 
3891 static void root_device_release(struct device *dev)
3892 {
3893 	kfree(to_root_device(dev));
3894 }
3895 
3896 /**
3897  * __root_device_register - allocate and register a root device
3898  * @name: root device name
3899  * @owner: owner module of the root device, usually THIS_MODULE
3900  *
3901  * This function allocates a root device and registers it
3902  * using device_register(). In order to free the returned
3903  * device, use root_device_unregister().
3904  *
3905  * Root devices are dummy devices which allow other devices
3906  * to be grouped under /sys/devices. Use this function to
3907  * allocate a root device and then use it as the parent of
3908  * any device which should appear under /sys/devices/{name}
3909  *
3910  * The /sys/devices/{name} directory will also contain a
3911  * 'module' symlink which points to the @owner directory
3912  * in sysfs.
3913  *
3914  * Returns &struct device pointer on success, or ERR_PTR() on error.
3915  *
3916  * Note: You probably want to use root_device_register().
3917  */
3918 struct device *__root_device_register(const char *name, struct module *owner)
3919 {
3920 	struct root_device *root;
3921 	int err = -ENOMEM;
3922 
3923 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3924 	if (!root)
3925 		return ERR_PTR(err);
3926 
3927 	err = dev_set_name(&root->dev, "%s", name);
3928 	if (err) {
3929 		kfree(root);
3930 		return ERR_PTR(err);
3931 	}
3932 
3933 	root->dev.release = root_device_release;
3934 
3935 	err = device_register(&root->dev);
3936 	if (err) {
3937 		put_device(&root->dev);
3938 		return ERR_PTR(err);
3939 	}
3940 
3941 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3942 	if (owner) {
3943 		struct module_kobject *mk = &owner->mkobj;
3944 
3945 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3946 		if (err) {
3947 			device_unregister(&root->dev);
3948 			return ERR_PTR(err);
3949 		}
3950 		root->owner = owner;
3951 	}
3952 #endif
3953 
3954 	return &root->dev;
3955 }
3956 EXPORT_SYMBOL_GPL(__root_device_register);
3957 
3958 /**
3959  * root_device_unregister - unregister and free a root device
3960  * @dev: device going away
3961  *
3962  * This function unregisters and cleans up a device that was created by
3963  * root_device_register().
3964  */
3965 void root_device_unregister(struct device *dev)
3966 {
3967 	struct root_device *root = to_root_device(dev);
3968 
3969 	if (root->owner)
3970 		sysfs_remove_link(&root->dev.kobj, "module");
3971 
3972 	device_unregister(dev);
3973 }
3974 EXPORT_SYMBOL_GPL(root_device_unregister);
3975 
3976 
3977 static void device_create_release(struct device *dev)
3978 {
3979 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3980 	kfree(dev);
3981 }
3982 
3983 static __printf(6, 0) struct device *
3984 device_create_groups_vargs(struct class *class, struct device *parent,
3985 			   dev_t devt, void *drvdata,
3986 			   const struct attribute_group **groups,
3987 			   const char *fmt, va_list args)
3988 {
3989 	struct device *dev = NULL;
3990 	int retval = -ENODEV;
3991 
3992 	if (class == NULL || IS_ERR(class))
3993 		goto error;
3994 
3995 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3996 	if (!dev) {
3997 		retval = -ENOMEM;
3998 		goto error;
3999 	}
4000 
4001 	device_initialize(dev);
4002 	dev->devt = devt;
4003 	dev->class = class;
4004 	dev->parent = parent;
4005 	dev->groups = groups;
4006 	dev->release = device_create_release;
4007 	dev_set_drvdata(dev, drvdata);
4008 
4009 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4010 	if (retval)
4011 		goto error;
4012 
4013 	retval = device_add(dev);
4014 	if (retval)
4015 		goto error;
4016 
4017 	return dev;
4018 
4019 error:
4020 	put_device(dev);
4021 	return ERR_PTR(retval);
4022 }
4023 
4024 /**
4025  * device_create - creates a device and registers it with sysfs
4026  * @class: pointer to the struct class that this device should be registered to
4027  * @parent: pointer to the parent struct device of this new device, if any
4028  * @devt: the dev_t for the char device to be added
4029  * @drvdata: the data to be added to the device for callbacks
4030  * @fmt: string for the device's name
4031  *
4032  * This function can be used by char device classes.  A struct device
4033  * will be created in sysfs, registered to the specified class.
4034  *
4035  * A "dev" file will be created, showing the dev_t for the device, if
4036  * the dev_t is not 0,0.
4037  * If a pointer to a parent struct device is passed in, the newly created
4038  * struct device will be a child of that device in sysfs.
4039  * The pointer to the struct device will be returned from the call.
4040  * Any further sysfs files that might be required can be created using this
4041  * pointer.
4042  *
4043  * Returns &struct device pointer on success, or ERR_PTR() on error.
4044  *
4045  * Note: the struct class passed to this function must have previously
4046  * been created with a call to class_create().
4047  */
4048 struct device *device_create(struct class *class, struct device *parent,
4049 			     dev_t devt, void *drvdata, const char *fmt, ...)
4050 {
4051 	va_list vargs;
4052 	struct device *dev;
4053 
4054 	va_start(vargs, fmt);
4055 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4056 					  fmt, vargs);
4057 	va_end(vargs);
4058 	return dev;
4059 }
4060 EXPORT_SYMBOL_GPL(device_create);
4061 
4062 /**
4063  * device_create_with_groups - creates a device and registers it with sysfs
4064  * @class: pointer to the struct class that this device should be registered to
4065  * @parent: pointer to the parent struct device of this new device, if any
4066  * @devt: the dev_t for the char device to be added
4067  * @drvdata: the data to be added to the device for callbacks
4068  * @groups: NULL-terminated list of attribute groups to be created
4069  * @fmt: string for the device's name
4070  *
4071  * This function can be used by char device classes.  A struct device
4072  * will be created in sysfs, registered to the specified class.
4073  * Additional attributes specified in the groups parameter will also
4074  * be created automatically.
4075  *
4076  * A "dev" file will be created, showing the dev_t for the device, if
4077  * the dev_t is not 0,0.
4078  * If a pointer to a parent struct device is passed in, the newly created
4079  * struct device will be a child of that device in sysfs.
4080  * The pointer to the struct device will be returned from the call.
4081  * Any further sysfs files that might be required can be created using this
4082  * pointer.
4083  *
4084  * Returns &struct device pointer on success, or ERR_PTR() on error.
4085  *
4086  * Note: the struct class passed to this function must have previously
4087  * been created with a call to class_create().
4088  */
4089 struct device *device_create_with_groups(struct class *class,
4090 					 struct device *parent, dev_t devt,
4091 					 void *drvdata,
4092 					 const struct attribute_group **groups,
4093 					 const char *fmt, ...)
4094 {
4095 	va_list vargs;
4096 	struct device *dev;
4097 
4098 	va_start(vargs, fmt);
4099 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4100 					 fmt, vargs);
4101 	va_end(vargs);
4102 	return dev;
4103 }
4104 EXPORT_SYMBOL_GPL(device_create_with_groups);
4105 
4106 /**
4107  * device_destroy - removes a device that was created with device_create()
4108  * @class: pointer to the struct class that this device was registered with
4109  * @devt: the dev_t of the device that was previously registered
4110  *
4111  * This call unregisters and cleans up a device that was created with a
4112  * call to device_create().
4113  */
4114 void device_destroy(struct class *class, dev_t devt)
4115 {
4116 	struct device *dev;
4117 
4118 	dev = class_find_device_by_devt(class, devt);
4119 	if (dev) {
4120 		put_device(dev);
4121 		device_unregister(dev);
4122 	}
4123 }
4124 EXPORT_SYMBOL_GPL(device_destroy);
4125 
4126 /**
4127  * device_rename - renames a device
4128  * @dev: the pointer to the struct device to be renamed
4129  * @new_name: the new name of the device
4130  *
4131  * It is the responsibility of the caller to provide mutual
4132  * exclusion between two different calls of device_rename
4133  * on the same device to ensure that new_name is valid and
4134  * won't conflict with other devices.
4135  *
4136  * Note: Don't call this function.  Currently, the networking layer calls this
4137  * function, but that will change.  The following text from Kay Sievers offers
4138  * some insight:
4139  *
4140  * Renaming devices is racy at many levels, symlinks and other stuff are not
4141  * replaced atomically, and you get a "move" uevent, but it's not easy to
4142  * connect the event to the old and new device. Device nodes are not renamed at
4143  * all, there isn't even support for that in the kernel now.
4144  *
4145  * In the meantime, during renaming, your target name might be taken by another
4146  * driver, creating conflicts. Or the old name is taken directly after you
4147  * renamed it -- then you get events for the same DEVPATH, before you even see
4148  * the "move" event. It's just a mess, and nothing new should ever rely on
4149  * kernel device renaming. Besides that, it's not even implemented now for
4150  * other things than (driver-core wise very simple) network devices.
4151  *
4152  * We are currently about to change network renaming in udev to completely
4153  * disallow renaming of devices in the same namespace as the kernel uses,
4154  * because we can't solve the problems properly, that arise with swapping names
4155  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4156  * be allowed to some other name than eth[0-9]*, for the aforementioned
4157  * reasons.
4158  *
4159  * Make up a "real" name in the driver before you register anything, or add
4160  * some other attributes for userspace to find the device, or use udev to add
4161  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4162  * don't even want to get into that and try to implement the missing pieces in
4163  * the core. We really have other pieces to fix in the driver core mess. :)
4164  */
4165 int device_rename(struct device *dev, const char *new_name)
4166 {
4167 	struct kobject *kobj = &dev->kobj;
4168 	char *old_device_name = NULL;
4169 	int error;
4170 
4171 	dev = get_device(dev);
4172 	if (!dev)
4173 		return -EINVAL;
4174 
4175 	dev_dbg(dev, "renaming to %s\n", new_name);
4176 
4177 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4178 	if (!old_device_name) {
4179 		error = -ENOMEM;
4180 		goto out;
4181 	}
4182 
4183 	if (dev->class) {
4184 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4185 					     kobj, old_device_name,
4186 					     new_name, kobject_namespace(kobj));
4187 		if (error)
4188 			goto out;
4189 	}
4190 
4191 	error = kobject_rename(kobj, new_name);
4192 	if (error)
4193 		goto out;
4194 
4195 out:
4196 	put_device(dev);
4197 
4198 	kfree(old_device_name);
4199 
4200 	return error;
4201 }
4202 EXPORT_SYMBOL_GPL(device_rename);
4203 
4204 static int device_move_class_links(struct device *dev,
4205 				   struct device *old_parent,
4206 				   struct device *new_parent)
4207 {
4208 	int error = 0;
4209 
4210 	if (old_parent)
4211 		sysfs_remove_link(&dev->kobj, "device");
4212 	if (new_parent)
4213 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4214 					  "device");
4215 	return error;
4216 }
4217 
4218 /**
4219  * device_move - moves a device to a new parent
4220  * @dev: the pointer to the struct device to be moved
4221  * @new_parent: the new parent of the device (can be NULL)
4222  * @dpm_order: how to reorder the dpm_list
4223  */
4224 int device_move(struct device *dev, struct device *new_parent,
4225 		enum dpm_order dpm_order)
4226 {
4227 	int error;
4228 	struct device *old_parent;
4229 	struct kobject *new_parent_kobj;
4230 
4231 	dev = get_device(dev);
4232 	if (!dev)
4233 		return -EINVAL;
4234 
4235 	device_pm_lock();
4236 	new_parent = get_device(new_parent);
4237 	new_parent_kobj = get_device_parent(dev, new_parent);
4238 	if (IS_ERR(new_parent_kobj)) {
4239 		error = PTR_ERR(new_parent_kobj);
4240 		put_device(new_parent);
4241 		goto out;
4242 	}
4243 
4244 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4245 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4246 	error = kobject_move(&dev->kobj, new_parent_kobj);
4247 	if (error) {
4248 		cleanup_glue_dir(dev, new_parent_kobj);
4249 		put_device(new_parent);
4250 		goto out;
4251 	}
4252 	old_parent = dev->parent;
4253 	dev->parent = new_parent;
4254 	if (old_parent)
4255 		klist_remove(&dev->p->knode_parent);
4256 	if (new_parent) {
4257 		klist_add_tail(&dev->p->knode_parent,
4258 			       &new_parent->p->klist_children);
4259 		set_dev_node(dev, dev_to_node(new_parent));
4260 	}
4261 
4262 	if (dev->class) {
4263 		error = device_move_class_links(dev, old_parent, new_parent);
4264 		if (error) {
4265 			/* We ignore errors on cleanup since we're hosed anyway... */
4266 			device_move_class_links(dev, new_parent, old_parent);
4267 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4268 				if (new_parent)
4269 					klist_remove(&dev->p->knode_parent);
4270 				dev->parent = old_parent;
4271 				if (old_parent) {
4272 					klist_add_tail(&dev->p->knode_parent,
4273 						       &old_parent->p->klist_children);
4274 					set_dev_node(dev, dev_to_node(old_parent));
4275 				}
4276 			}
4277 			cleanup_glue_dir(dev, new_parent_kobj);
4278 			put_device(new_parent);
4279 			goto out;
4280 		}
4281 	}
4282 	switch (dpm_order) {
4283 	case DPM_ORDER_NONE:
4284 		break;
4285 	case DPM_ORDER_DEV_AFTER_PARENT:
4286 		device_pm_move_after(dev, new_parent);
4287 		devices_kset_move_after(dev, new_parent);
4288 		break;
4289 	case DPM_ORDER_PARENT_BEFORE_DEV:
4290 		device_pm_move_before(new_parent, dev);
4291 		devices_kset_move_before(new_parent, dev);
4292 		break;
4293 	case DPM_ORDER_DEV_LAST:
4294 		device_pm_move_last(dev);
4295 		devices_kset_move_last(dev);
4296 		break;
4297 	}
4298 
4299 	put_device(old_parent);
4300 out:
4301 	device_pm_unlock();
4302 	put_device(dev);
4303 	return error;
4304 }
4305 EXPORT_SYMBOL_GPL(device_move);
4306 
4307 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4308 				     kgid_t kgid)
4309 {
4310 	struct kobject *kobj = &dev->kobj;
4311 	struct class *class = dev->class;
4312 	const struct device_type *type = dev->type;
4313 	int error;
4314 
4315 	if (class) {
4316 		/*
4317 		 * Change the device groups of the device class for @dev to
4318 		 * @kuid/@kgid.
4319 		 */
4320 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4321 						  kgid);
4322 		if (error)
4323 			return error;
4324 	}
4325 
4326 	if (type) {
4327 		/*
4328 		 * Change the device groups of the device type for @dev to
4329 		 * @kuid/@kgid.
4330 		 */
4331 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4332 						  kgid);
4333 		if (error)
4334 			return error;
4335 	}
4336 
4337 	/* Change the device groups of @dev to @kuid/@kgid. */
4338 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4339 	if (error)
4340 		return error;
4341 
4342 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4343 		/* Change online device attributes of @dev to @kuid/@kgid. */
4344 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4345 						kuid, kgid);
4346 		if (error)
4347 			return error;
4348 	}
4349 
4350 	return 0;
4351 }
4352 
4353 /**
4354  * device_change_owner - change the owner of an existing device.
4355  * @dev: device.
4356  * @kuid: new owner's kuid
4357  * @kgid: new owner's kgid
4358  *
4359  * This changes the owner of @dev and its corresponding sysfs entries to
4360  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4361  * core.
4362  *
4363  * Returns 0 on success or error code on failure.
4364  */
4365 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4366 {
4367 	int error;
4368 	struct kobject *kobj = &dev->kobj;
4369 
4370 	dev = get_device(dev);
4371 	if (!dev)
4372 		return -EINVAL;
4373 
4374 	/*
4375 	 * Change the kobject and the default attributes and groups of the
4376 	 * ktype associated with it to @kuid/@kgid.
4377 	 */
4378 	error = sysfs_change_owner(kobj, kuid, kgid);
4379 	if (error)
4380 		goto out;
4381 
4382 	/*
4383 	 * Change the uevent file for @dev to the new owner. The uevent file
4384 	 * was created in a separate step when @dev got added and we mirror
4385 	 * that step here.
4386 	 */
4387 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4388 					kgid);
4389 	if (error)
4390 		goto out;
4391 
4392 	/*
4393 	 * Change the device groups, the device groups associated with the
4394 	 * device class, and the groups associated with the device type of @dev
4395 	 * to @kuid/@kgid.
4396 	 */
4397 	error = device_attrs_change_owner(dev, kuid, kgid);
4398 	if (error)
4399 		goto out;
4400 
4401 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4402 	if (error)
4403 		goto out;
4404 
4405 #ifdef CONFIG_BLOCK
4406 	if (sysfs_deprecated && dev->class == &block_class)
4407 		goto out;
4408 #endif
4409 
4410 	/*
4411 	 * Change the owner of the symlink located in the class directory of
4412 	 * the device class associated with @dev which points to the actual
4413 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4414 	 * symlink shows the same permissions as its target.
4415 	 */
4416 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4417 					dev_name(dev), kuid, kgid);
4418 	if (error)
4419 		goto out;
4420 
4421 out:
4422 	put_device(dev);
4423 	return error;
4424 }
4425 EXPORT_SYMBOL_GPL(device_change_owner);
4426 
4427 /**
4428  * device_shutdown - call ->shutdown() on each device to shutdown.
4429  */
4430 void device_shutdown(void)
4431 {
4432 	struct device *dev, *parent;
4433 
4434 	wait_for_device_probe();
4435 	device_block_probing();
4436 
4437 	cpufreq_suspend();
4438 
4439 	spin_lock(&devices_kset->list_lock);
4440 	/*
4441 	 * Walk the devices list backward, shutting down each in turn.
4442 	 * Beware that device unplug events may also start pulling
4443 	 * devices offline, even as the system is shutting down.
4444 	 */
4445 	while (!list_empty(&devices_kset->list)) {
4446 		dev = list_entry(devices_kset->list.prev, struct device,
4447 				kobj.entry);
4448 
4449 		/*
4450 		 * hold reference count of device's parent to
4451 		 * prevent it from being freed because parent's
4452 		 * lock is to be held
4453 		 */
4454 		parent = get_device(dev->parent);
4455 		get_device(dev);
4456 		/*
4457 		 * Make sure the device is off the kset list, in the
4458 		 * event that dev->*->shutdown() doesn't remove it.
4459 		 */
4460 		list_del_init(&dev->kobj.entry);
4461 		spin_unlock(&devices_kset->list_lock);
4462 
4463 		/* hold lock to avoid race with probe/release */
4464 		if (parent)
4465 			device_lock(parent);
4466 		device_lock(dev);
4467 
4468 		/* Don't allow any more runtime suspends */
4469 		pm_runtime_get_noresume(dev);
4470 		pm_runtime_barrier(dev);
4471 
4472 		if (dev->class && dev->class->shutdown_pre) {
4473 			if (initcall_debug)
4474 				dev_info(dev, "shutdown_pre\n");
4475 			dev->class->shutdown_pre(dev);
4476 		}
4477 		if (dev->bus && dev->bus->shutdown) {
4478 			if (initcall_debug)
4479 				dev_info(dev, "shutdown\n");
4480 			dev->bus->shutdown(dev);
4481 		} else if (dev->driver && dev->driver->shutdown) {
4482 			if (initcall_debug)
4483 				dev_info(dev, "shutdown\n");
4484 			dev->driver->shutdown(dev);
4485 		}
4486 
4487 		device_unlock(dev);
4488 		if (parent)
4489 			device_unlock(parent);
4490 
4491 		put_device(dev);
4492 		put_device(parent);
4493 
4494 		spin_lock(&devices_kset->list_lock);
4495 	}
4496 	spin_unlock(&devices_kset->list_lock);
4497 }
4498 
4499 /*
4500  * Device logging functions
4501  */
4502 
4503 #ifdef CONFIG_PRINTK
4504 static void
4505 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4506 {
4507 	const char *subsys;
4508 
4509 	memset(dev_info, 0, sizeof(*dev_info));
4510 
4511 	if (dev->class)
4512 		subsys = dev->class->name;
4513 	else if (dev->bus)
4514 		subsys = dev->bus->name;
4515 	else
4516 		return;
4517 
4518 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4519 
4520 	/*
4521 	 * Add device identifier DEVICE=:
4522 	 *   b12:8         block dev_t
4523 	 *   c127:3        char dev_t
4524 	 *   n8            netdev ifindex
4525 	 *   +sound:card0  subsystem:devname
4526 	 */
4527 	if (MAJOR(dev->devt)) {
4528 		char c;
4529 
4530 		if (strcmp(subsys, "block") == 0)
4531 			c = 'b';
4532 		else
4533 			c = 'c';
4534 
4535 		snprintf(dev_info->device, sizeof(dev_info->device),
4536 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4537 	} else if (strcmp(subsys, "net") == 0) {
4538 		struct net_device *net = to_net_dev(dev);
4539 
4540 		snprintf(dev_info->device, sizeof(dev_info->device),
4541 			 "n%u", net->ifindex);
4542 	} else {
4543 		snprintf(dev_info->device, sizeof(dev_info->device),
4544 			 "+%s:%s", subsys, dev_name(dev));
4545 	}
4546 }
4547 
4548 int dev_vprintk_emit(int level, const struct device *dev,
4549 		     const char *fmt, va_list args)
4550 {
4551 	struct dev_printk_info dev_info;
4552 
4553 	set_dev_info(dev, &dev_info);
4554 
4555 	return vprintk_emit(0, level, &dev_info, fmt, args);
4556 }
4557 EXPORT_SYMBOL(dev_vprintk_emit);
4558 
4559 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4560 {
4561 	va_list args;
4562 	int r;
4563 
4564 	va_start(args, fmt);
4565 
4566 	r = dev_vprintk_emit(level, dev, fmt, args);
4567 
4568 	va_end(args);
4569 
4570 	return r;
4571 }
4572 EXPORT_SYMBOL(dev_printk_emit);
4573 
4574 static void __dev_printk(const char *level, const struct device *dev,
4575 			struct va_format *vaf)
4576 {
4577 	if (dev)
4578 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4579 				dev_driver_string(dev), dev_name(dev), vaf);
4580 	else
4581 		printk("%s(NULL device *): %pV", level, vaf);
4582 }
4583 
4584 void dev_printk(const char *level, const struct device *dev,
4585 		const char *fmt, ...)
4586 {
4587 	struct va_format vaf;
4588 	va_list args;
4589 
4590 	va_start(args, fmt);
4591 
4592 	vaf.fmt = fmt;
4593 	vaf.va = &args;
4594 
4595 	__dev_printk(level, dev, &vaf);
4596 
4597 	va_end(args);
4598 }
4599 EXPORT_SYMBOL(dev_printk);
4600 
4601 #define define_dev_printk_level(func, kern_level)		\
4602 void func(const struct device *dev, const char *fmt, ...)	\
4603 {								\
4604 	struct va_format vaf;					\
4605 	va_list args;						\
4606 								\
4607 	va_start(args, fmt);					\
4608 								\
4609 	vaf.fmt = fmt;						\
4610 	vaf.va = &args;						\
4611 								\
4612 	__dev_printk(kern_level, dev, &vaf);			\
4613 								\
4614 	va_end(args);						\
4615 }								\
4616 EXPORT_SYMBOL(func);
4617 
4618 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4619 define_dev_printk_level(_dev_alert, KERN_ALERT);
4620 define_dev_printk_level(_dev_crit, KERN_CRIT);
4621 define_dev_printk_level(_dev_err, KERN_ERR);
4622 define_dev_printk_level(_dev_warn, KERN_WARNING);
4623 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4624 define_dev_printk_level(_dev_info, KERN_INFO);
4625 
4626 #endif
4627 
4628 /**
4629  * dev_err_probe - probe error check and log helper
4630  * @dev: the pointer to the struct device
4631  * @err: error value to test
4632  * @fmt: printf-style format string
4633  * @...: arguments as specified in the format string
4634  *
4635  * This helper implements common pattern present in probe functions for error
4636  * checking: print debug or error message depending if the error value is
4637  * -EPROBE_DEFER and propagate error upwards.
4638  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4639  * checked later by reading devices_deferred debugfs attribute.
4640  * It replaces code sequence::
4641  *
4642  * 	if (err != -EPROBE_DEFER)
4643  * 		dev_err(dev, ...);
4644  * 	else
4645  * 		dev_dbg(dev, ...);
4646  * 	return err;
4647  *
4648  * with::
4649  *
4650  * 	return dev_err_probe(dev, err, ...);
4651  *
4652  * Returns @err.
4653  *
4654  */
4655 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4656 {
4657 	struct va_format vaf;
4658 	va_list args;
4659 
4660 	va_start(args, fmt);
4661 	vaf.fmt = fmt;
4662 	vaf.va = &args;
4663 
4664 	if (err != -EPROBE_DEFER) {
4665 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4666 	} else {
4667 		device_set_deferred_probe_reason(dev, &vaf);
4668 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4669 	}
4670 
4671 	va_end(args);
4672 
4673 	return err;
4674 }
4675 EXPORT_SYMBOL_GPL(dev_err_probe);
4676 
4677 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4678 {
4679 	return fwnode && !IS_ERR(fwnode->secondary);
4680 }
4681 
4682 /**
4683  * set_primary_fwnode - Change the primary firmware node of a given device.
4684  * @dev: Device to handle.
4685  * @fwnode: New primary firmware node of the device.
4686  *
4687  * Set the device's firmware node pointer to @fwnode, but if a secondary
4688  * firmware node of the device is present, preserve it.
4689  *
4690  * Valid fwnode cases are:
4691  *  - primary --> secondary --> -ENODEV
4692  *  - primary --> NULL
4693  *  - secondary --> -ENODEV
4694  *  - NULL
4695  */
4696 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4697 {
4698 	struct device *parent = dev->parent;
4699 	struct fwnode_handle *fn = dev->fwnode;
4700 
4701 	if (fwnode) {
4702 		if (fwnode_is_primary(fn))
4703 			fn = fn->secondary;
4704 
4705 		if (fn) {
4706 			WARN_ON(fwnode->secondary);
4707 			fwnode->secondary = fn;
4708 		}
4709 		dev->fwnode = fwnode;
4710 	} else {
4711 		if (fwnode_is_primary(fn)) {
4712 			dev->fwnode = fn->secondary;
4713 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4714 			if (!(parent && fn == parent->fwnode))
4715 				fn->secondary = NULL;
4716 		} else {
4717 			dev->fwnode = NULL;
4718 		}
4719 	}
4720 }
4721 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4722 
4723 /**
4724  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4725  * @dev: Device to handle.
4726  * @fwnode: New secondary firmware node of the device.
4727  *
4728  * If a primary firmware node of the device is present, set its secondary
4729  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4730  * @fwnode.
4731  */
4732 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4733 {
4734 	if (fwnode)
4735 		fwnode->secondary = ERR_PTR(-ENODEV);
4736 
4737 	if (fwnode_is_primary(dev->fwnode))
4738 		dev->fwnode->secondary = fwnode;
4739 	else
4740 		dev->fwnode = fwnode;
4741 }
4742 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4743 
4744 /**
4745  * device_set_of_node_from_dev - reuse device-tree node of another device
4746  * @dev: device whose device-tree node is being set
4747  * @dev2: device whose device-tree node is being reused
4748  *
4749  * Takes another reference to the new device-tree node after first dropping
4750  * any reference held to the old node.
4751  */
4752 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4753 {
4754 	of_node_put(dev->of_node);
4755 	dev->of_node = of_node_get(dev2->of_node);
4756 	dev->of_node_reused = true;
4757 }
4758 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4759 
4760 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4761 {
4762 	dev->fwnode = fwnode;
4763 	dev->of_node = to_of_node(fwnode);
4764 }
4765 EXPORT_SYMBOL_GPL(device_set_node);
4766 
4767 int device_match_name(struct device *dev, const void *name)
4768 {
4769 	return sysfs_streq(dev_name(dev), name);
4770 }
4771 EXPORT_SYMBOL_GPL(device_match_name);
4772 
4773 int device_match_of_node(struct device *dev, const void *np)
4774 {
4775 	return dev->of_node == np;
4776 }
4777 EXPORT_SYMBOL_GPL(device_match_of_node);
4778 
4779 int device_match_fwnode(struct device *dev, const void *fwnode)
4780 {
4781 	return dev_fwnode(dev) == fwnode;
4782 }
4783 EXPORT_SYMBOL_GPL(device_match_fwnode);
4784 
4785 int device_match_devt(struct device *dev, const void *pdevt)
4786 {
4787 	return dev->devt == *(dev_t *)pdevt;
4788 }
4789 EXPORT_SYMBOL_GPL(device_match_devt);
4790 
4791 int device_match_acpi_dev(struct device *dev, const void *adev)
4792 {
4793 	return ACPI_COMPANION(dev) == adev;
4794 }
4795 EXPORT_SYMBOL(device_match_acpi_dev);
4796 
4797 int device_match_any(struct device *dev, const void *unused)
4798 {
4799 	return 1;
4800 }
4801 EXPORT_SYMBOL_GPL(device_match_any);
4802