1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sysfs.h> 31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 32 33 #include "base.h" 34 #include "power/power.h" 35 36 #ifdef CONFIG_SYSFS_DEPRECATED 37 #ifdef CONFIG_SYSFS_DEPRECATED_V2 38 long sysfs_deprecated = 1; 39 #else 40 long sysfs_deprecated = 0; 41 #endif 42 static int __init sysfs_deprecated_setup(char *arg) 43 { 44 return kstrtol(arg, 10, &sysfs_deprecated); 45 } 46 early_param("sysfs.deprecated", sysfs_deprecated_setup); 47 #endif 48 49 /* Device links support. */ 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static DEFINE_MUTEX(fwnode_link_lock); 53 static bool fw_devlink_is_permissive(void); 54 55 /** 56 * fwnode_link_add - Create a link between two fwnode_handles. 57 * @con: Consumer end of the link. 58 * @sup: Supplier end of the link. 59 * 60 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 61 * represents the detail that the firmware lists @sup fwnode as supplying a 62 * resource to @con. 63 * 64 * The driver core will use the fwnode link to create a device link between the 65 * two device objects corresponding to @con and @sup when they are created. The 66 * driver core will automatically delete the fwnode link between @con and @sup 67 * after doing that. 68 * 69 * Attempts to create duplicate links between the same pair of fwnode handles 70 * are ignored and there is no reference counting. 71 */ 72 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 73 { 74 struct fwnode_link *link; 75 int ret = 0; 76 77 mutex_lock(&fwnode_link_lock); 78 79 list_for_each_entry(link, &sup->consumers, s_hook) 80 if (link->consumer == con) 81 goto out; 82 83 link = kzalloc(sizeof(*link), GFP_KERNEL); 84 if (!link) { 85 ret = -ENOMEM; 86 goto out; 87 } 88 89 link->supplier = sup; 90 INIT_LIST_HEAD(&link->s_hook); 91 link->consumer = con; 92 INIT_LIST_HEAD(&link->c_hook); 93 94 list_add(&link->s_hook, &sup->consumers); 95 list_add(&link->c_hook, &con->suppliers); 96 out: 97 mutex_unlock(&fwnode_link_lock); 98 99 return ret; 100 } 101 102 /** 103 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 104 * @fwnode: fwnode whose supplier links need to be deleted 105 * 106 * Deletes all supplier links connecting directly to @fwnode. 107 */ 108 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 109 { 110 struct fwnode_link *link, *tmp; 111 112 mutex_lock(&fwnode_link_lock); 113 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 114 list_del(&link->s_hook); 115 list_del(&link->c_hook); 116 kfree(link); 117 } 118 mutex_unlock(&fwnode_link_lock); 119 } 120 121 /** 122 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 123 * @fwnode: fwnode whose consumer links need to be deleted 124 * 125 * Deletes all consumer links connecting directly to @fwnode. 126 */ 127 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 128 { 129 struct fwnode_link *link, *tmp; 130 131 mutex_lock(&fwnode_link_lock); 132 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 133 list_del(&link->s_hook); 134 list_del(&link->c_hook); 135 kfree(link); 136 } 137 mutex_unlock(&fwnode_link_lock); 138 } 139 140 /** 141 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 142 * @fwnode: fwnode whose links needs to be deleted 143 * 144 * Deletes all links connecting directly to a fwnode. 145 */ 146 void fwnode_links_purge(struct fwnode_handle *fwnode) 147 { 148 fwnode_links_purge_suppliers(fwnode); 149 fwnode_links_purge_consumers(fwnode); 150 } 151 152 static void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 153 { 154 struct fwnode_handle *child; 155 156 /* Don't purge consumer links of an added child */ 157 if (fwnode->dev) 158 return; 159 160 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 161 fwnode_links_purge_consumers(fwnode); 162 163 fwnode_for_each_available_child_node(fwnode, child) 164 fw_devlink_purge_absent_suppliers(child); 165 } 166 167 #ifdef CONFIG_SRCU 168 static DEFINE_MUTEX(device_links_lock); 169 DEFINE_STATIC_SRCU(device_links_srcu); 170 171 static inline void device_links_write_lock(void) 172 { 173 mutex_lock(&device_links_lock); 174 } 175 176 static inline void device_links_write_unlock(void) 177 { 178 mutex_unlock(&device_links_lock); 179 } 180 181 int device_links_read_lock(void) __acquires(&device_links_srcu) 182 { 183 return srcu_read_lock(&device_links_srcu); 184 } 185 186 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 187 { 188 srcu_read_unlock(&device_links_srcu, idx); 189 } 190 191 int device_links_read_lock_held(void) 192 { 193 return srcu_read_lock_held(&device_links_srcu); 194 } 195 #else /* !CONFIG_SRCU */ 196 static DECLARE_RWSEM(device_links_lock); 197 198 static inline void device_links_write_lock(void) 199 { 200 down_write(&device_links_lock); 201 } 202 203 static inline void device_links_write_unlock(void) 204 { 205 up_write(&device_links_lock); 206 } 207 208 int device_links_read_lock(void) 209 { 210 down_read(&device_links_lock); 211 return 0; 212 } 213 214 void device_links_read_unlock(int not_used) 215 { 216 up_read(&device_links_lock); 217 } 218 219 #ifdef CONFIG_DEBUG_LOCK_ALLOC 220 int device_links_read_lock_held(void) 221 { 222 return lockdep_is_held(&device_links_lock); 223 } 224 #endif 225 #endif /* !CONFIG_SRCU */ 226 227 static bool device_is_ancestor(struct device *dev, struct device *target) 228 { 229 while (target->parent) { 230 target = target->parent; 231 if (dev == target) 232 return true; 233 } 234 return false; 235 } 236 237 /** 238 * device_is_dependent - Check if one device depends on another one 239 * @dev: Device to check dependencies for. 240 * @target: Device to check against. 241 * 242 * Check if @target depends on @dev or any device dependent on it (its child or 243 * its consumer etc). Return 1 if that is the case or 0 otherwise. 244 */ 245 int device_is_dependent(struct device *dev, void *target) 246 { 247 struct device_link *link; 248 int ret; 249 250 /* 251 * The "ancestors" check is needed to catch the case when the target 252 * device has not been completely initialized yet and it is still 253 * missing from the list of children of its parent device. 254 */ 255 if (dev == target || device_is_ancestor(dev, target)) 256 return 1; 257 258 ret = device_for_each_child(dev, target, device_is_dependent); 259 if (ret) 260 return ret; 261 262 list_for_each_entry(link, &dev->links.consumers, s_node) { 263 if ((link->flags & ~DL_FLAG_INFERRED) == 264 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 265 continue; 266 267 if (link->consumer == target) 268 return 1; 269 270 ret = device_is_dependent(link->consumer, target); 271 if (ret) 272 break; 273 } 274 return ret; 275 } 276 277 static void device_link_init_status(struct device_link *link, 278 struct device *consumer, 279 struct device *supplier) 280 { 281 switch (supplier->links.status) { 282 case DL_DEV_PROBING: 283 switch (consumer->links.status) { 284 case DL_DEV_PROBING: 285 /* 286 * A consumer driver can create a link to a supplier 287 * that has not completed its probing yet as long as it 288 * knows that the supplier is already functional (for 289 * example, it has just acquired some resources from the 290 * supplier). 291 */ 292 link->status = DL_STATE_CONSUMER_PROBE; 293 break; 294 default: 295 link->status = DL_STATE_DORMANT; 296 break; 297 } 298 break; 299 case DL_DEV_DRIVER_BOUND: 300 switch (consumer->links.status) { 301 case DL_DEV_PROBING: 302 link->status = DL_STATE_CONSUMER_PROBE; 303 break; 304 case DL_DEV_DRIVER_BOUND: 305 link->status = DL_STATE_ACTIVE; 306 break; 307 default: 308 link->status = DL_STATE_AVAILABLE; 309 break; 310 } 311 break; 312 case DL_DEV_UNBINDING: 313 link->status = DL_STATE_SUPPLIER_UNBIND; 314 break; 315 default: 316 link->status = DL_STATE_DORMANT; 317 break; 318 } 319 } 320 321 static int device_reorder_to_tail(struct device *dev, void *not_used) 322 { 323 struct device_link *link; 324 325 /* 326 * Devices that have not been registered yet will be put to the ends 327 * of the lists during the registration, so skip them here. 328 */ 329 if (device_is_registered(dev)) 330 devices_kset_move_last(dev); 331 332 if (device_pm_initialized(dev)) 333 device_pm_move_last(dev); 334 335 device_for_each_child(dev, NULL, device_reorder_to_tail); 336 list_for_each_entry(link, &dev->links.consumers, s_node) { 337 if ((link->flags & ~DL_FLAG_INFERRED) == 338 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 339 continue; 340 device_reorder_to_tail(link->consumer, NULL); 341 } 342 343 return 0; 344 } 345 346 /** 347 * device_pm_move_to_tail - Move set of devices to the end of device lists 348 * @dev: Device to move 349 * 350 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 351 * 352 * It moves the @dev along with all of its children and all of its consumers 353 * to the ends of the device_kset and dpm_list, recursively. 354 */ 355 void device_pm_move_to_tail(struct device *dev) 356 { 357 int idx; 358 359 idx = device_links_read_lock(); 360 device_pm_lock(); 361 device_reorder_to_tail(dev, NULL); 362 device_pm_unlock(); 363 device_links_read_unlock(idx); 364 } 365 366 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 367 368 static ssize_t status_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 const char *output; 372 373 switch (to_devlink(dev)->status) { 374 case DL_STATE_NONE: 375 output = "not tracked"; 376 break; 377 case DL_STATE_DORMANT: 378 output = "dormant"; 379 break; 380 case DL_STATE_AVAILABLE: 381 output = "available"; 382 break; 383 case DL_STATE_CONSUMER_PROBE: 384 output = "consumer probing"; 385 break; 386 case DL_STATE_ACTIVE: 387 output = "active"; 388 break; 389 case DL_STATE_SUPPLIER_UNBIND: 390 output = "supplier unbinding"; 391 break; 392 default: 393 output = "unknown"; 394 break; 395 } 396 397 return sysfs_emit(buf, "%s\n", output); 398 } 399 static DEVICE_ATTR_RO(status); 400 401 static ssize_t auto_remove_on_show(struct device *dev, 402 struct device_attribute *attr, char *buf) 403 { 404 struct device_link *link = to_devlink(dev); 405 const char *output; 406 407 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 408 output = "supplier unbind"; 409 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 410 output = "consumer unbind"; 411 else 412 output = "never"; 413 414 return sysfs_emit(buf, "%s\n", output); 415 } 416 static DEVICE_ATTR_RO(auto_remove_on); 417 418 static ssize_t runtime_pm_show(struct device *dev, 419 struct device_attribute *attr, char *buf) 420 { 421 struct device_link *link = to_devlink(dev); 422 423 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 424 } 425 static DEVICE_ATTR_RO(runtime_pm); 426 427 static ssize_t sync_state_only_show(struct device *dev, 428 struct device_attribute *attr, char *buf) 429 { 430 struct device_link *link = to_devlink(dev); 431 432 return sysfs_emit(buf, "%d\n", 433 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 434 } 435 static DEVICE_ATTR_RO(sync_state_only); 436 437 static struct attribute *devlink_attrs[] = { 438 &dev_attr_status.attr, 439 &dev_attr_auto_remove_on.attr, 440 &dev_attr_runtime_pm.attr, 441 &dev_attr_sync_state_only.attr, 442 NULL, 443 }; 444 ATTRIBUTE_GROUPS(devlink); 445 446 static void device_link_free(struct device_link *link) 447 { 448 while (refcount_dec_not_one(&link->rpm_active)) 449 pm_runtime_put(link->supplier); 450 451 put_device(link->consumer); 452 put_device(link->supplier); 453 kfree(link); 454 } 455 456 #ifdef CONFIG_SRCU 457 static void __device_link_free_srcu(struct rcu_head *rhead) 458 { 459 device_link_free(container_of(rhead, struct device_link, rcu_head)); 460 } 461 462 static void devlink_dev_release(struct device *dev) 463 { 464 struct device_link *link = to_devlink(dev); 465 466 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 467 } 468 #else 469 static void devlink_dev_release(struct device *dev) 470 { 471 device_link_free(to_devlink(dev)); 472 } 473 #endif 474 475 static struct class devlink_class = { 476 .name = "devlink", 477 .owner = THIS_MODULE, 478 .dev_groups = devlink_groups, 479 .dev_release = devlink_dev_release, 480 }; 481 482 static int devlink_add_symlinks(struct device *dev, 483 struct class_interface *class_intf) 484 { 485 int ret; 486 size_t len; 487 struct device_link *link = to_devlink(dev); 488 struct device *sup = link->supplier; 489 struct device *con = link->consumer; 490 char *buf; 491 492 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 493 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 494 len += strlen(":"); 495 len += strlen("supplier:") + 1; 496 buf = kzalloc(len, GFP_KERNEL); 497 if (!buf) 498 return -ENOMEM; 499 500 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 501 if (ret) 502 goto out; 503 504 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 505 if (ret) 506 goto err_con; 507 508 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 509 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 510 if (ret) 511 goto err_con_dev; 512 513 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 514 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 515 if (ret) 516 goto err_sup_dev; 517 518 goto out; 519 520 err_sup_dev: 521 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 522 sysfs_remove_link(&sup->kobj, buf); 523 err_con_dev: 524 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 525 err_con: 526 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 527 out: 528 kfree(buf); 529 return ret; 530 } 531 532 static void devlink_remove_symlinks(struct device *dev, 533 struct class_interface *class_intf) 534 { 535 struct device_link *link = to_devlink(dev); 536 size_t len; 537 struct device *sup = link->supplier; 538 struct device *con = link->consumer; 539 char *buf; 540 541 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 542 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 543 544 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 545 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 546 len += strlen(":"); 547 len += strlen("supplier:") + 1; 548 buf = kzalloc(len, GFP_KERNEL); 549 if (!buf) { 550 WARN(1, "Unable to properly free device link symlinks!\n"); 551 return; 552 } 553 554 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 555 sysfs_remove_link(&con->kobj, buf); 556 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 557 sysfs_remove_link(&sup->kobj, buf); 558 kfree(buf); 559 } 560 561 static struct class_interface devlink_class_intf = { 562 .class = &devlink_class, 563 .add_dev = devlink_add_symlinks, 564 .remove_dev = devlink_remove_symlinks, 565 }; 566 567 static int __init devlink_class_init(void) 568 { 569 int ret; 570 571 ret = class_register(&devlink_class); 572 if (ret) 573 return ret; 574 575 ret = class_interface_register(&devlink_class_intf); 576 if (ret) 577 class_unregister(&devlink_class); 578 579 return ret; 580 } 581 postcore_initcall(devlink_class_init); 582 583 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 584 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 585 DL_FLAG_AUTOPROBE_CONSUMER | \ 586 DL_FLAG_SYNC_STATE_ONLY | \ 587 DL_FLAG_INFERRED) 588 589 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 590 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 591 592 /** 593 * device_link_add - Create a link between two devices. 594 * @consumer: Consumer end of the link. 595 * @supplier: Supplier end of the link. 596 * @flags: Link flags. 597 * 598 * The caller is responsible for the proper synchronization of the link creation 599 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 600 * runtime PM framework to take the link into account. Second, if the 601 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 602 * be forced into the active meta state and reference-counted upon the creation 603 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 604 * ignored. 605 * 606 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 607 * expected to release the link returned by it directly with the help of either 608 * device_link_del() or device_link_remove(). 609 * 610 * If that flag is not set, however, the caller of this function is handing the 611 * management of the link over to the driver core entirely and its return value 612 * can only be used to check whether or not the link is present. In that case, 613 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 614 * flags can be used to indicate to the driver core when the link can be safely 615 * deleted. Namely, setting one of them in @flags indicates to the driver core 616 * that the link is not going to be used (by the given caller of this function) 617 * after unbinding the consumer or supplier driver, respectively, from its 618 * device, so the link can be deleted at that point. If none of them is set, 619 * the link will be maintained until one of the devices pointed to by it (either 620 * the consumer or the supplier) is unregistered. 621 * 622 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 623 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 624 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 625 * be used to request the driver core to automatically probe for a consumer 626 * driver after successfully binding a driver to the supplier device. 627 * 628 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 629 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 630 * the same time is invalid and will cause NULL to be returned upfront. 631 * However, if a device link between the given @consumer and @supplier pair 632 * exists already when this function is called for them, the existing link will 633 * be returned regardless of its current type and status (the link's flags may 634 * be modified then). The caller of this function is then expected to treat 635 * the link as though it has just been created, so (in particular) if 636 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 637 * explicitly when not needed any more (as stated above). 638 * 639 * A side effect of the link creation is re-ordering of dpm_list and the 640 * devices_kset list by moving the consumer device and all devices depending 641 * on it to the ends of these lists (that does not happen to devices that have 642 * not been registered when this function is called). 643 * 644 * The supplier device is required to be registered when this function is called 645 * and NULL will be returned if that is not the case. The consumer device need 646 * not be registered, however. 647 */ 648 struct device_link *device_link_add(struct device *consumer, 649 struct device *supplier, u32 flags) 650 { 651 struct device_link *link; 652 653 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 654 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 655 (flags & DL_FLAG_SYNC_STATE_ONLY && 656 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 657 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 658 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 659 DL_FLAG_AUTOREMOVE_SUPPLIER))) 660 return NULL; 661 662 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 663 if (pm_runtime_get_sync(supplier) < 0) { 664 pm_runtime_put_noidle(supplier); 665 return NULL; 666 } 667 } 668 669 if (!(flags & DL_FLAG_STATELESS)) 670 flags |= DL_FLAG_MANAGED; 671 672 device_links_write_lock(); 673 device_pm_lock(); 674 675 /* 676 * If the supplier has not been fully registered yet or there is a 677 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 678 * the supplier already in the graph, return NULL. If the link is a 679 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 680 * because it only affects sync_state() callbacks. 681 */ 682 if (!device_pm_initialized(supplier) 683 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 684 device_is_dependent(consumer, supplier))) { 685 link = NULL; 686 goto out; 687 } 688 689 /* 690 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 691 * So, only create it if the consumer hasn't probed yet. 692 */ 693 if (flags & DL_FLAG_SYNC_STATE_ONLY && 694 consumer->links.status != DL_DEV_NO_DRIVER && 695 consumer->links.status != DL_DEV_PROBING) { 696 link = NULL; 697 goto out; 698 } 699 700 /* 701 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 702 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 703 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 704 */ 705 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 706 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 707 708 list_for_each_entry(link, &supplier->links.consumers, s_node) { 709 if (link->consumer != consumer) 710 continue; 711 712 if (link->flags & DL_FLAG_INFERRED && 713 !(flags & DL_FLAG_INFERRED)) 714 link->flags &= ~DL_FLAG_INFERRED; 715 716 if (flags & DL_FLAG_PM_RUNTIME) { 717 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 718 pm_runtime_new_link(consumer); 719 link->flags |= DL_FLAG_PM_RUNTIME; 720 } 721 if (flags & DL_FLAG_RPM_ACTIVE) 722 refcount_inc(&link->rpm_active); 723 } 724 725 if (flags & DL_FLAG_STATELESS) { 726 kref_get(&link->kref); 727 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 728 !(link->flags & DL_FLAG_STATELESS)) { 729 link->flags |= DL_FLAG_STATELESS; 730 goto reorder; 731 } else { 732 link->flags |= DL_FLAG_STATELESS; 733 goto out; 734 } 735 } 736 737 /* 738 * If the life time of the link following from the new flags is 739 * longer than indicated by the flags of the existing link, 740 * update the existing link to stay around longer. 741 */ 742 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 743 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 744 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 745 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 746 } 747 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 748 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 749 DL_FLAG_AUTOREMOVE_SUPPLIER); 750 } 751 if (!(link->flags & DL_FLAG_MANAGED)) { 752 kref_get(&link->kref); 753 link->flags |= DL_FLAG_MANAGED; 754 device_link_init_status(link, consumer, supplier); 755 } 756 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 757 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 758 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 759 goto reorder; 760 } 761 762 goto out; 763 } 764 765 link = kzalloc(sizeof(*link), GFP_KERNEL); 766 if (!link) 767 goto out; 768 769 refcount_set(&link->rpm_active, 1); 770 771 get_device(supplier); 772 link->supplier = supplier; 773 INIT_LIST_HEAD(&link->s_node); 774 get_device(consumer); 775 link->consumer = consumer; 776 INIT_LIST_HEAD(&link->c_node); 777 link->flags = flags; 778 kref_init(&link->kref); 779 780 link->link_dev.class = &devlink_class; 781 device_set_pm_not_required(&link->link_dev); 782 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 783 dev_bus_name(supplier), dev_name(supplier), 784 dev_bus_name(consumer), dev_name(consumer)); 785 if (device_register(&link->link_dev)) { 786 put_device(consumer); 787 put_device(supplier); 788 kfree(link); 789 link = NULL; 790 goto out; 791 } 792 793 if (flags & DL_FLAG_PM_RUNTIME) { 794 if (flags & DL_FLAG_RPM_ACTIVE) 795 refcount_inc(&link->rpm_active); 796 797 pm_runtime_new_link(consumer); 798 } 799 800 /* Determine the initial link state. */ 801 if (flags & DL_FLAG_STATELESS) 802 link->status = DL_STATE_NONE; 803 else 804 device_link_init_status(link, consumer, supplier); 805 806 /* 807 * Some callers expect the link creation during consumer driver probe to 808 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 809 */ 810 if (link->status == DL_STATE_CONSUMER_PROBE && 811 flags & DL_FLAG_PM_RUNTIME) 812 pm_runtime_resume(supplier); 813 814 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 815 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 816 817 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 818 dev_dbg(consumer, 819 "Linked as a sync state only consumer to %s\n", 820 dev_name(supplier)); 821 goto out; 822 } 823 824 reorder: 825 /* 826 * Move the consumer and all of the devices depending on it to the end 827 * of dpm_list and the devices_kset list. 828 * 829 * It is necessary to hold dpm_list locked throughout all that or else 830 * we may end up suspending with a wrong ordering of it. 831 */ 832 device_reorder_to_tail(consumer, NULL); 833 834 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 835 836 out: 837 device_pm_unlock(); 838 device_links_write_unlock(); 839 840 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 841 pm_runtime_put(supplier); 842 843 return link; 844 } 845 EXPORT_SYMBOL_GPL(device_link_add); 846 847 #ifdef CONFIG_SRCU 848 static void __device_link_del(struct kref *kref) 849 { 850 struct device_link *link = container_of(kref, struct device_link, kref); 851 852 dev_dbg(link->consumer, "Dropping the link to %s\n", 853 dev_name(link->supplier)); 854 855 pm_runtime_drop_link(link); 856 857 list_del_rcu(&link->s_node); 858 list_del_rcu(&link->c_node); 859 device_unregister(&link->link_dev); 860 } 861 #else /* !CONFIG_SRCU */ 862 static void __device_link_del(struct kref *kref) 863 { 864 struct device_link *link = container_of(kref, struct device_link, kref); 865 866 dev_info(link->consumer, "Dropping the link to %s\n", 867 dev_name(link->supplier)); 868 869 pm_runtime_drop_link(link); 870 871 list_del(&link->s_node); 872 list_del(&link->c_node); 873 device_unregister(&link->link_dev); 874 } 875 #endif /* !CONFIG_SRCU */ 876 877 static void device_link_put_kref(struct device_link *link) 878 { 879 if (link->flags & DL_FLAG_STATELESS) 880 kref_put(&link->kref, __device_link_del); 881 else 882 WARN(1, "Unable to drop a managed device link reference\n"); 883 } 884 885 /** 886 * device_link_del - Delete a stateless link between two devices. 887 * @link: Device link to delete. 888 * 889 * The caller must ensure proper synchronization of this function with runtime 890 * PM. If the link was added multiple times, it needs to be deleted as often. 891 * Care is required for hotplugged devices: Their links are purged on removal 892 * and calling device_link_del() is then no longer allowed. 893 */ 894 void device_link_del(struct device_link *link) 895 { 896 device_links_write_lock(); 897 device_link_put_kref(link); 898 device_links_write_unlock(); 899 } 900 EXPORT_SYMBOL_GPL(device_link_del); 901 902 /** 903 * device_link_remove - Delete a stateless link between two devices. 904 * @consumer: Consumer end of the link. 905 * @supplier: Supplier end of the link. 906 * 907 * The caller must ensure proper synchronization of this function with runtime 908 * PM. 909 */ 910 void device_link_remove(void *consumer, struct device *supplier) 911 { 912 struct device_link *link; 913 914 if (WARN_ON(consumer == supplier)) 915 return; 916 917 device_links_write_lock(); 918 919 list_for_each_entry(link, &supplier->links.consumers, s_node) { 920 if (link->consumer == consumer) { 921 device_link_put_kref(link); 922 break; 923 } 924 } 925 926 device_links_write_unlock(); 927 } 928 EXPORT_SYMBOL_GPL(device_link_remove); 929 930 static void device_links_missing_supplier(struct device *dev) 931 { 932 struct device_link *link; 933 934 list_for_each_entry(link, &dev->links.suppliers, c_node) { 935 if (link->status != DL_STATE_CONSUMER_PROBE) 936 continue; 937 938 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 939 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 940 } else { 941 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 942 WRITE_ONCE(link->status, DL_STATE_DORMANT); 943 } 944 } 945 } 946 947 /** 948 * device_links_check_suppliers - Check presence of supplier drivers. 949 * @dev: Consumer device. 950 * 951 * Check links from this device to any suppliers. Walk the list of the device's 952 * links to suppliers and see if all of them are available. If not, simply 953 * return -EPROBE_DEFER. 954 * 955 * We need to guarantee that the supplier will not go away after the check has 956 * been positive here. It only can go away in __device_release_driver() and 957 * that function checks the device's links to consumers. This means we need to 958 * mark the link as "consumer probe in progress" to make the supplier removal 959 * wait for us to complete (or bad things may happen). 960 * 961 * Links without the DL_FLAG_MANAGED flag set are ignored. 962 */ 963 int device_links_check_suppliers(struct device *dev) 964 { 965 struct device_link *link; 966 int ret = 0; 967 968 /* 969 * Device waiting for supplier to become available is not allowed to 970 * probe. 971 */ 972 mutex_lock(&fwnode_link_lock); 973 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 974 !fw_devlink_is_permissive()) { 975 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n", 976 list_first_entry(&dev->fwnode->suppliers, 977 struct fwnode_link, 978 c_hook)->supplier); 979 mutex_unlock(&fwnode_link_lock); 980 return -EPROBE_DEFER; 981 } 982 mutex_unlock(&fwnode_link_lock); 983 984 device_links_write_lock(); 985 986 list_for_each_entry(link, &dev->links.suppliers, c_node) { 987 if (!(link->flags & DL_FLAG_MANAGED)) 988 continue; 989 990 if (link->status != DL_STATE_AVAILABLE && 991 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 992 device_links_missing_supplier(dev); 993 dev_dbg(dev, "probe deferral - supplier %s not ready\n", 994 dev_name(link->supplier)); 995 ret = -EPROBE_DEFER; 996 break; 997 } 998 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 999 } 1000 dev->links.status = DL_DEV_PROBING; 1001 1002 device_links_write_unlock(); 1003 return ret; 1004 } 1005 1006 /** 1007 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1008 * @dev: Device to call sync_state() on 1009 * @list: List head to queue the @dev on 1010 * 1011 * Queues a device for a sync_state() callback when the device links write lock 1012 * isn't held. This allows the sync_state() execution flow to use device links 1013 * APIs. The caller must ensure this function is called with 1014 * device_links_write_lock() held. 1015 * 1016 * This function does a get_device() to make sure the device is not freed while 1017 * on this list. 1018 * 1019 * So the caller must also ensure that device_links_flush_sync_list() is called 1020 * as soon as the caller releases device_links_write_lock(). This is necessary 1021 * to make sure the sync_state() is called in a timely fashion and the 1022 * put_device() is called on this device. 1023 */ 1024 static void __device_links_queue_sync_state(struct device *dev, 1025 struct list_head *list) 1026 { 1027 struct device_link *link; 1028 1029 if (!dev_has_sync_state(dev)) 1030 return; 1031 if (dev->state_synced) 1032 return; 1033 1034 list_for_each_entry(link, &dev->links.consumers, s_node) { 1035 if (!(link->flags & DL_FLAG_MANAGED)) 1036 continue; 1037 if (link->status != DL_STATE_ACTIVE) 1038 return; 1039 } 1040 1041 /* 1042 * Set the flag here to avoid adding the same device to a list more 1043 * than once. This can happen if new consumers get added to the device 1044 * and probed before the list is flushed. 1045 */ 1046 dev->state_synced = true; 1047 1048 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1049 return; 1050 1051 get_device(dev); 1052 list_add_tail(&dev->links.defer_sync, list); 1053 } 1054 1055 /** 1056 * device_links_flush_sync_list - Call sync_state() on a list of devices 1057 * @list: List of devices to call sync_state() on 1058 * @dont_lock_dev: Device for which lock is already held by the caller 1059 * 1060 * Calls sync_state() on all the devices that have been queued for it. This 1061 * function is used in conjunction with __device_links_queue_sync_state(). The 1062 * @dont_lock_dev parameter is useful when this function is called from a 1063 * context where a device lock is already held. 1064 */ 1065 static void device_links_flush_sync_list(struct list_head *list, 1066 struct device *dont_lock_dev) 1067 { 1068 struct device *dev, *tmp; 1069 1070 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1071 list_del_init(&dev->links.defer_sync); 1072 1073 if (dev != dont_lock_dev) 1074 device_lock(dev); 1075 1076 if (dev->bus->sync_state) 1077 dev->bus->sync_state(dev); 1078 else if (dev->driver && dev->driver->sync_state) 1079 dev->driver->sync_state(dev); 1080 1081 if (dev != dont_lock_dev) 1082 device_unlock(dev); 1083 1084 put_device(dev); 1085 } 1086 } 1087 1088 void device_links_supplier_sync_state_pause(void) 1089 { 1090 device_links_write_lock(); 1091 defer_sync_state_count++; 1092 device_links_write_unlock(); 1093 } 1094 1095 void device_links_supplier_sync_state_resume(void) 1096 { 1097 struct device *dev, *tmp; 1098 LIST_HEAD(sync_list); 1099 1100 device_links_write_lock(); 1101 if (!defer_sync_state_count) { 1102 WARN(true, "Unmatched sync_state pause/resume!"); 1103 goto out; 1104 } 1105 defer_sync_state_count--; 1106 if (defer_sync_state_count) 1107 goto out; 1108 1109 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1110 /* 1111 * Delete from deferred_sync list before queuing it to 1112 * sync_list because defer_sync is used for both lists. 1113 */ 1114 list_del_init(&dev->links.defer_sync); 1115 __device_links_queue_sync_state(dev, &sync_list); 1116 } 1117 out: 1118 device_links_write_unlock(); 1119 1120 device_links_flush_sync_list(&sync_list, NULL); 1121 } 1122 1123 static int sync_state_resume_initcall(void) 1124 { 1125 device_links_supplier_sync_state_resume(); 1126 return 0; 1127 } 1128 late_initcall(sync_state_resume_initcall); 1129 1130 static void __device_links_supplier_defer_sync(struct device *sup) 1131 { 1132 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1133 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1134 } 1135 1136 static void device_link_drop_managed(struct device_link *link) 1137 { 1138 link->flags &= ~DL_FLAG_MANAGED; 1139 WRITE_ONCE(link->status, DL_STATE_NONE); 1140 kref_put(&link->kref, __device_link_del); 1141 } 1142 1143 static ssize_t waiting_for_supplier_show(struct device *dev, 1144 struct device_attribute *attr, 1145 char *buf) 1146 { 1147 bool val; 1148 1149 device_lock(dev); 1150 val = !list_empty(&dev->fwnode->suppliers); 1151 device_unlock(dev); 1152 return sysfs_emit(buf, "%u\n", val); 1153 } 1154 static DEVICE_ATTR_RO(waiting_for_supplier); 1155 1156 /** 1157 * device_links_driver_bound - Update device links after probing its driver. 1158 * @dev: Device to update the links for. 1159 * 1160 * The probe has been successful, so update links from this device to any 1161 * consumers by changing their status to "available". 1162 * 1163 * Also change the status of @dev's links to suppliers to "active". 1164 * 1165 * Links without the DL_FLAG_MANAGED flag set are ignored. 1166 */ 1167 void device_links_driver_bound(struct device *dev) 1168 { 1169 struct device_link *link, *ln; 1170 LIST_HEAD(sync_list); 1171 1172 /* 1173 * If a device binds successfully, it's expected to have created all 1174 * the device links it needs to or make new device links as it needs 1175 * them. So, fw_devlink no longer needs to create device links to any 1176 * of the device's suppliers. 1177 * 1178 * Also, if a child firmware node of this bound device is not added as 1179 * a device by now, assume it is never going to be added and make sure 1180 * other devices don't defer probe indefinitely by waiting for such a 1181 * child device. 1182 */ 1183 if (dev->fwnode && dev->fwnode->dev == dev) { 1184 struct fwnode_handle *child; 1185 fwnode_links_purge_suppliers(dev->fwnode); 1186 fwnode_for_each_available_child_node(dev->fwnode, child) 1187 fw_devlink_purge_absent_suppliers(child); 1188 } 1189 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1190 1191 device_links_write_lock(); 1192 1193 list_for_each_entry(link, &dev->links.consumers, s_node) { 1194 if (!(link->flags & DL_FLAG_MANAGED)) 1195 continue; 1196 1197 /* 1198 * Links created during consumer probe may be in the "consumer 1199 * probe" state to start with if the supplier is still probing 1200 * when they are created and they may become "active" if the 1201 * consumer probe returns first. Skip them here. 1202 */ 1203 if (link->status == DL_STATE_CONSUMER_PROBE || 1204 link->status == DL_STATE_ACTIVE) 1205 continue; 1206 1207 WARN_ON(link->status != DL_STATE_DORMANT); 1208 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1209 1210 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1211 driver_deferred_probe_add(link->consumer); 1212 } 1213 1214 if (defer_sync_state_count) 1215 __device_links_supplier_defer_sync(dev); 1216 else 1217 __device_links_queue_sync_state(dev, &sync_list); 1218 1219 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1220 struct device *supplier; 1221 1222 if (!(link->flags & DL_FLAG_MANAGED)) 1223 continue; 1224 1225 supplier = link->supplier; 1226 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1227 /* 1228 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1229 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1230 * save to drop the managed link completely. 1231 */ 1232 device_link_drop_managed(link); 1233 } else { 1234 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1235 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1236 } 1237 1238 /* 1239 * This needs to be done even for the deleted 1240 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1241 * device link that was preventing the supplier from getting a 1242 * sync_state() call. 1243 */ 1244 if (defer_sync_state_count) 1245 __device_links_supplier_defer_sync(supplier); 1246 else 1247 __device_links_queue_sync_state(supplier, &sync_list); 1248 } 1249 1250 dev->links.status = DL_DEV_DRIVER_BOUND; 1251 1252 device_links_write_unlock(); 1253 1254 device_links_flush_sync_list(&sync_list, dev); 1255 } 1256 1257 /** 1258 * __device_links_no_driver - Update links of a device without a driver. 1259 * @dev: Device without a drvier. 1260 * 1261 * Delete all non-persistent links from this device to any suppliers. 1262 * 1263 * Persistent links stay around, but their status is changed to "available", 1264 * unless they already are in the "supplier unbind in progress" state in which 1265 * case they need not be updated. 1266 * 1267 * Links without the DL_FLAG_MANAGED flag set are ignored. 1268 */ 1269 static void __device_links_no_driver(struct device *dev) 1270 { 1271 struct device_link *link, *ln; 1272 1273 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1274 if (!(link->flags & DL_FLAG_MANAGED)) 1275 continue; 1276 1277 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1278 device_link_drop_managed(link); 1279 continue; 1280 } 1281 1282 if (link->status != DL_STATE_CONSUMER_PROBE && 1283 link->status != DL_STATE_ACTIVE) 1284 continue; 1285 1286 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1287 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1288 } else { 1289 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1290 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1291 } 1292 } 1293 1294 dev->links.status = DL_DEV_NO_DRIVER; 1295 } 1296 1297 /** 1298 * device_links_no_driver - Update links after failing driver probe. 1299 * @dev: Device whose driver has just failed to probe. 1300 * 1301 * Clean up leftover links to consumers for @dev and invoke 1302 * %__device_links_no_driver() to update links to suppliers for it as 1303 * appropriate. 1304 * 1305 * Links without the DL_FLAG_MANAGED flag set are ignored. 1306 */ 1307 void device_links_no_driver(struct device *dev) 1308 { 1309 struct device_link *link; 1310 1311 device_links_write_lock(); 1312 1313 list_for_each_entry(link, &dev->links.consumers, s_node) { 1314 if (!(link->flags & DL_FLAG_MANAGED)) 1315 continue; 1316 1317 /* 1318 * The probe has failed, so if the status of the link is 1319 * "consumer probe" or "active", it must have been added by 1320 * a probing consumer while this device was still probing. 1321 * Change its state to "dormant", as it represents a valid 1322 * relationship, but it is not functionally meaningful. 1323 */ 1324 if (link->status == DL_STATE_CONSUMER_PROBE || 1325 link->status == DL_STATE_ACTIVE) 1326 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1327 } 1328 1329 __device_links_no_driver(dev); 1330 1331 device_links_write_unlock(); 1332 } 1333 1334 /** 1335 * device_links_driver_cleanup - Update links after driver removal. 1336 * @dev: Device whose driver has just gone away. 1337 * 1338 * Update links to consumers for @dev by changing their status to "dormant" and 1339 * invoke %__device_links_no_driver() to update links to suppliers for it as 1340 * appropriate. 1341 * 1342 * Links without the DL_FLAG_MANAGED flag set are ignored. 1343 */ 1344 void device_links_driver_cleanup(struct device *dev) 1345 { 1346 struct device_link *link, *ln; 1347 1348 device_links_write_lock(); 1349 1350 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1351 if (!(link->flags & DL_FLAG_MANAGED)) 1352 continue; 1353 1354 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1355 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1356 1357 /* 1358 * autoremove the links between this @dev and its consumer 1359 * devices that are not active, i.e. where the link state 1360 * has moved to DL_STATE_SUPPLIER_UNBIND. 1361 */ 1362 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1363 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1364 device_link_drop_managed(link); 1365 1366 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1367 } 1368 1369 list_del_init(&dev->links.defer_sync); 1370 __device_links_no_driver(dev); 1371 1372 device_links_write_unlock(); 1373 } 1374 1375 /** 1376 * device_links_busy - Check if there are any busy links to consumers. 1377 * @dev: Device to check. 1378 * 1379 * Check each consumer of the device and return 'true' if its link's status 1380 * is one of "consumer probe" or "active" (meaning that the given consumer is 1381 * probing right now or its driver is present). Otherwise, change the link 1382 * state to "supplier unbind" to prevent the consumer from being probed 1383 * successfully going forward. 1384 * 1385 * Return 'false' if there are no probing or active consumers. 1386 * 1387 * Links without the DL_FLAG_MANAGED flag set are ignored. 1388 */ 1389 bool device_links_busy(struct device *dev) 1390 { 1391 struct device_link *link; 1392 bool ret = false; 1393 1394 device_links_write_lock(); 1395 1396 list_for_each_entry(link, &dev->links.consumers, s_node) { 1397 if (!(link->flags & DL_FLAG_MANAGED)) 1398 continue; 1399 1400 if (link->status == DL_STATE_CONSUMER_PROBE 1401 || link->status == DL_STATE_ACTIVE) { 1402 ret = true; 1403 break; 1404 } 1405 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1406 } 1407 1408 dev->links.status = DL_DEV_UNBINDING; 1409 1410 device_links_write_unlock(); 1411 return ret; 1412 } 1413 1414 /** 1415 * device_links_unbind_consumers - Force unbind consumers of the given device. 1416 * @dev: Device to unbind the consumers of. 1417 * 1418 * Walk the list of links to consumers for @dev and if any of them is in the 1419 * "consumer probe" state, wait for all device probes in progress to complete 1420 * and start over. 1421 * 1422 * If that's not the case, change the status of the link to "supplier unbind" 1423 * and check if the link was in the "active" state. If so, force the consumer 1424 * driver to unbind and start over (the consumer will not re-probe as we have 1425 * changed the state of the link already). 1426 * 1427 * Links without the DL_FLAG_MANAGED flag set are ignored. 1428 */ 1429 void device_links_unbind_consumers(struct device *dev) 1430 { 1431 struct device_link *link; 1432 1433 start: 1434 device_links_write_lock(); 1435 1436 list_for_each_entry(link, &dev->links.consumers, s_node) { 1437 enum device_link_state status; 1438 1439 if (!(link->flags & DL_FLAG_MANAGED) || 1440 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1441 continue; 1442 1443 status = link->status; 1444 if (status == DL_STATE_CONSUMER_PROBE) { 1445 device_links_write_unlock(); 1446 1447 wait_for_device_probe(); 1448 goto start; 1449 } 1450 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1451 if (status == DL_STATE_ACTIVE) { 1452 struct device *consumer = link->consumer; 1453 1454 get_device(consumer); 1455 1456 device_links_write_unlock(); 1457 1458 device_release_driver_internal(consumer, NULL, 1459 consumer->parent); 1460 put_device(consumer); 1461 goto start; 1462 } 1463 } 1464 1465 device_links_write_unlock(); 1466 } 1467 1468 /** 1469 * device_links_purge - Delete existing links to other devices. 1470 * @dev: Target device. 1471 */ 1472 static void device_links_purge(struct device *dev) 1473 { 1474 struct device_link *link, *ln; 1475 1476 if (dev->class == &devlink_class) 1477 return; 1478 1479 /* 1480 * Delete all of the remaining links from this device to any other 1481 * devices (either consumers or suppliers). 1482 */ 1483 device_links_write_lock(); 1484 1485 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1486 WARN_ON(link->status == DL_STATE_ACTIVE); 1487 __device_link_del(&link->kref); 1488 } 1489 1490 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1491 WARN_ON(link->status != DL_STATE_DORMANT && 1492 link->status != DL_STATE_NONE); 1493 __device_link_del(&link->kref); 1494 } 1495 1496 device_links_write_unlock(); 1497 } 1498 1499 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1500 DL_FLAG_SYNC_STATE_ONLY) 1501 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1502 DL_FLAG_AUTOPROBE_CONSUMER) 1503 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1504 DL_FLAG_PM_RUNTIME) 1505 1506 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1507 static int __init fw_devlink_setup(char *arg) 1508 { 1509 if (!arg) 1510 return -EINVAL; 1511 1512 if (strcmp(arg, "off") == 0) { 1513 fw_devlink_flags = 0; 1514 } else if (strcmp(arg, "permissive") == 0) { 1515 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1516 } else if (strcmp(arg, "on") == 0) { 1517 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1518 } else if (strcmp(arg, "rpm") == 0) { 1519 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1520 } 1521 return 0; 1522 } 1523 early_param("fw_devlink", fw_devlink_setup); 1524 1525 static bool fw_devlink_strict; 1526 static int __init fw_devlink_strict_setup(char *arg) 1527 { 1528 return strtobool(arg, &fw_devlink_strict); 1529 } 1530 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1531 1532 u32 fw_devlink_get_flags(void) 1533 { 1534 return fw_devlink_flags; 1535 } 1536 1537 static bool fw_devlink_is_permissive(void) 1538 { 1539 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1540 } 1541 1542 bool fw_devlink_is_strict(void) 1543 { 1544 return fw_devlink_strict && !fw_devlink_is_permissive(); 1545 } 1546 1547 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1548 { 1549 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1550 return; 1551 1552 fwnode_call_int_op(fwnode, add_links); 1553 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1554 } 1555 1556 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1557 { 1558 struct fwnode_handle *child = NULL; 1559 1560 fw_devlink_parse_fwnode(fwnode); 1561 1562 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1563 fw_devlink_parse_fwtree(child); 1564 } 1565 1566 /** 1567 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1568 * @con: Device to check dependencies for. 1569 * @sup: Device to check against. 1570 * 1571 * Check if @sup depends on @con or any device dependent on it (its child or 1572 * its consumer etc). When such a cyclic dependency is found, convert all 1573 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1574 * This is the equivalent of doing fw_devlink=permissive just between the 1575 * devices in the cycle. We need to do this because, at this point, fw_devlink 1576 * can't tell which of these dependencies is not a real dependency. 1577 * 1578 * Return 1 if a cycle is found. Otherwise, return 0. 1579 */ 1580 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1581 { 1582 struct device_link *link; 1583 int ret; 1584 1585 if (con == sup) 1586 return 1; 1587 1588 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1589 if (ret) 1590 return ret; 1591 1592 list_for_each_entry(link, &con->links.consumers, s_node) { 1593 if ((link->flags & ~DL_FLAG_INFERRED) == 1594 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1595 continue; 1596 1597 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1598 continue; 1599 1600 ret = 1; 1601 1602 if (!(link->flags & DL_FLAG_INFERRED)) 1603 continue; 1604 1605 pm_runtime_drop_link(link); 1606 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1607 dev_dbg(link->consumer, "Relaxing link with %s\n", 1608 dev_name(link->supplier)); 1609 } 1610 return ret; 1611 } 1612 1613 /** 1614 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1615 * @con - Consumer device for the device link 1616 * @sup_handle - fwnode handle of supplier 1617 * 1618 * This function will try to create a device link between the consumer device 1619 * @con and the supplier device represented by @sup_handle. 1620 * 1621 * The supplier has to be provided as a fwnode because incorrect cycles in 1622 * fwnode links can sometimes cause the supplier device to never be created. 1623 * This function detects such cases and returns an error if it cannot create a 1624 * device link from the consumer to a missing supplier. 1625 * 1626 * Returns, 1627 * 0 on successfully creating a device link 1628 * -EINVAL if the device link cannot be created as expected 1629 * -EAGAIN if the device link cannot be created right now, but it may be 1630 * possible to do that in the future 1631 */ 1632 static int fw_devlink_create_devlink(struct device *con, 1633 struct fwnode_handle *sup_handle, u32 flags) 1634 { 1635 struct device *sup_dev; 1636 int ret = 0; 1637 1638 sup_dev = get_dev_from_fwnode(sup_handle); 1639 if (sup_dev) { 1640 /* 1641 * If it's one of those drivers that don't actually bind to 1642 * their device using driver core, then don't wait on this 1643 * supplier device indefinitely. 1644 */ 1645 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1646 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1647 ret = -EINVAL; 1648 goto out; 1649 } 1650 1651 /* 1652 * If this fails, it is due to cycles in device links. Just 1653 * give up on this link and treat it as invalid. 1654 */ 1655 if (!device_link_add(con, sup_dev, flags) && 1656 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1657 dev_info(con, "Fixing up cyclic dependency with %s\n", 1658 dev_name(sup_dev)); 1659 device_links_write_lock(); 1660 fw_devlink_relax_cycle(con, sup_dev); 1661 device_links_write_unlock(); 1662 device_link_add(con, sup_dev, 1663 FW_DEVLINK_FLAGS_PERMISSIVE); 1664 ret = -EINVAL; 1665 } 1666 1667 goto out; 1668 } 1669 1670 /* Supplier that's already initialized without a struct device. */ 1671 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1672 return -EINVAL; 1673 1674 /* 1675 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1676 * cycles. So cycle detection isn't necessary and shouldn't be 1677 * done. 1678 */ 1679 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1680 return -EAGAIN; 1681 1682 /* 1683 * If we can't find the supplier device from its fwnode, it might be 1684 * due to a cyclic dependency between fwnodes. Some of these cycles can 1685 * be broken by applying logic. Check for these types of cycles and 1686 * break them so that devices in the cycle probe properly. 1687 * 1688 * If the supplier's parent is dependent on the consumer, then 1689 * the consumer-supplier dependency is a false dependency. So, 1690 * treat it as an invalid link. 1691 */ 1692 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1693 if (sup_dev && device_is_dependent(con, sup_dev)) { 1694 dev_dbg(con, "Not linking to %pfwP - False link\n", 1695 sup_handle); 1696 ret = -EINVAL; 1697 } else { 1698 /* 1699 * Can't check for cycles or no cycles. So let's try 1700 * again later. 1701 */ 1702 ret = -EAGAIN; 1703 } 1704 1705 out: 1706 put_device(sup_dev); 1707 return ret; 1708 } 1709 1710 /** 1711 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1712 * @dev - Device that needs to be linked to its consumers 1713 * 1714 * This function looks at all the consumer fwnodes of @dev and creates device 1715 * links between the consumer device and @dev (supplier). 1716 * 1717 * If the consumer device has not been added yet, then this function creates a 1718 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1719 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1720 * sync_state() callback before the real consumer device gets to be added and 1721 * then probed. 1722 * 1723 * Once device links are created from the real consumer to @dev (supplier), the 1724 * fwnode links are deleted. 1725 */ 1726 static void __fw_devlink_link_to_consumers(struct device *dev) 1727 { 1728 struct fwnode_handle *fwnode = dev->fwnode; 1729 struct fwnode_link *link, *tmp; 1730 1731 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1732 u32 dl_flags = fw_devlink_get_flags(); 1733 struct device *con_dev; 1734 bool own_link = true; 1735 int ret; 1736 1737 con_dev = get_dev_from_fwnode(link->consumer); 1738 /* 1739 * If consumer device is not available yet, make a "proxy" 1740 * SYNC_STATE_ONLY link from the consumer's parent device to 1741 * the supplier device. This is necessary to make sure the 1742 * supplier doesn't get a sync_state() callback before the real 1743 * consumer can create a device link to the supplier. 1744 * 1745 * This proxy link step is needed to handle the case where the 1746 * consumer's parent device is added before the supplier. 1747 */ 1748 if (!con_dev) { 1749 con_dev = fwnode_get_next_parent_dev(link->consumer); 1750 /* 1751 * However, if the consumer's parent device is also the 1752 * parent of the supplier, don't create a 1753 * consumer-supplier link from the parent to its child 1754 * device. Such a dependency is impossible. 1755 */ 1756 if (con_dev && 1757 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1758 put_device(con_dev); 1759 con_dev = NULL; 1760 } else { 1761 own_link = false; 1762 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1763 } 1764 } 1765 1766 if (!con_dev) 1767 continue; 1768 1769 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1770 put_device(con_dev); 1771 if (!own_link || ret == -EAGAIN) 1772 continue; 1773 1774 list_del(&link->s_hook); 1775 list_del(&link->c_hook); 1776 kfree(link); 1777 } 1778 } 1779 1780 /** 1781 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1782 * @dev - The consumer device that needs to be linked to its suppliers 1783 * @fwnode - Root of the fwnode tree that is used to create device links 1784 * 1785 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1786 * @fwnode and creates device links between @dev (consumer) and all the 1787 * supplier devices of the entire fwnode tree at @fwnode. 1788 * 1789 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1790 * and the real suppliers of @dev. Once these device links are created, the 1791 * fwnode links are deleted. When such device links are successfully created, 1792 * this function is called recursively on those supplier devices. This is 1793 * needed to detect and break some invalid cycles in fwnode links. See 1794 * fw_devlink_create_devlink() for more details. 1795 * 1796 * In addition, it also looks at all the suppliers of the entire fwnode tree 1797 * because some of the child devices of @dev that have not been added yet 1798 * (because @dev hasn't probed) might already have their suppliers added to 1799 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1800 * @dev (consumer) and these suppliers to make sure they don't execute their 1801 * sync_state() callbacks before these child devices have a chance to create 1802 * their device links. The fwnode links that correspond to the child devices 1803 * aren't delete because they are needed later to create the device links 1804 * between the real consumer and supplier devices. 1805 */ 1806 static void __fw_devlink_link_to_suppliers(struct device *dev, 1807 struct fwnode_handle *fwnode) 1808 { 1809 bool own_link = (dev->fwnode == fwnode); 1810 struct fwnode_link *link, *tmp; 1811 struct fwnode_handle *child = NULL; 1812 u32 dl_flags; 1813 1814 if (own_link) 1815 dl_flags = fw_devlink_get_flags(); 1816 else 1817 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1818 1819 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1820 int ret; 1821 struct device *sup_dev; 1822 struct fwnode_handle *sup = link->supplier; 1823 1824 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1825 if (!own_link || ret == -EAGAIN) 1826 continue; 1827 1828 list_del(&link->s_hook); 1829 list_del(&link->c_hook); 1830 kfree(link); 1831 1832 /* If no device link was created, nothing more to do. */ 1833 if (ret) 1834 continue; 1835 1836 /* 1837 * If a device link was successfully created to a supplier, we 1838 * now need to try and link the supplier to all its suppliers. 1839 * 1840 * This is needed to detect and delete false dependencies in 1841 * fwnode links that haven't been converted to a device link 1842 * yet. See comments in fw_devlink_create_devlink() for more 1843 * details on the false dependency. 1844 * 1845 * Without deleting these false dependencies, some devices will 1846 * never probe because they'll keep waiting for their false 1847 * dependency fwnode links to be converted to device links. 1848 */ 1849 sup_dev = get_dev_from_fwnode(sup); 1850 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1851 put_device(sup_dev); 1852 } 1853 1854 /* 1855 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1856 * all the descendants. This proxy link step is needed to handle the 1857 * case where the supplier is added before the consumer's parent device 1858 * (@dev). 1859 */ 1860 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1861 __fw_devlink_link_to_suppliers(dev, child); 1862 } 1863 1864 static void fw_devlink_link_device(struct device *dev) 1865 { 1866 struct fwnode_handle *fwnode = dev->fwnode; 1867 1868 if (!fw_devlink_flags) 1869 return; 1870 1871 fw_devlink_parse_fwtree(fwnode); 1872 1873 mutex_lock(&fwnode_link_lock); 1874 __fw_devlink_link_to_consumers(dev); 1875 __fw_devlink_link_to_suppliers(dev, fwnode); 1876 mutex_unlock(&fwnode_link_lock); 1877 } 1878 1879 /* Device links support end. */ 1880 1881 int (*platform_notify)(struct device *dev) = NULL; 1882 int (*platform_notify_remove)(struct device *dev) = NULL; 1883 static struct kobject *dev_kobj; 1884 struct kobject *sysfs_dev_char_kobj; 1885 struct kobject *sysfs_dev_block_kobj; 1886 1887 static DEFINE_MUTEX(device_hotplug_lock); 1888 1889 void lock_device_hotplug(void) 1890 { 1891 mutex_lock(&device_hotplug_lock); 1892 } 1893 1894 void unlock_device_hotplug(void) 1895 { 1896 mutex_unlock(&device_hotplug_lock); 1897 } 1898 1899 int lock_device_hotplug_sysfs(void) 1900 { 1901 if (mutex_trylock(&device_hotplug_lock)) 1902 return 0; 1903 1904 /* Avoid busy looping (5 ms of sleep should do). */ 1905 msleep(5); 1906 return restart_syscall(); 1907 } 1908 1909 #ifdef CONFIG_BLOCK 1910 static inline int device_is_not_partition(struct device *dev) 1911 { 1912 return !(dev->type == &part_type); 1913 } 1914 #else 1915 static inline int device_is_not_partition(struct device *dev) 1916 { 1917 return 1; 1918 } 1919 #endif 1920 1921 static int 1922 device_platform_notify(struct device *dev, enum kobject_action action) 1923 { 1924 int ret; 1925 1926 ret = acpi_platform_notify(dev, action); 1927 if (ret) 1928 return ret; 1929 1930 ret = software_node_notify(dev, action); 1931 if (ret) 1932 return ret; 1933 1934 if (platform_notify && action == KOBJ_ADD) 1935 platform_notify(dev); 1936 else if (platform_notify_remove && action == KOBJ_REMOVE) 1937 platform_notify_remove(dev); 1938 return 0; 1939 } 1940 1941 /** 1942 * dev_driver_string - Return a device's driver name, if at all possible 1943 * @dev: struct device to get the name of 1944 * 1945 * Will return the device's driver's name if it is bound to a device. If 1946 * the device is not bound to a driver, it will return the name of the bus 1947 * it is attached to. If it is not attached to a bus either, an empty 1948 * string will be returned. 1949 */ 1950 const char *dev_driver_string(const struct device *dev) 1951 { 1952 struct device_driver *drv; 1953 1954 /* dev->driver can change to NULL underneath us because of unbinding, 1955 * so be careful about accessing it. dev->bus and dev->class should 1956 * never change once they are set, so they don't need special care. 1957 */ 1958 drv = READ_ONCE(dev->driver); 1959 return drv ? drv->name : dev_bus_name(dev); 1960 } 1961 EXPORT_SYMBOL(dev_driver_string); 1962 1963 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1964 1965 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1966 char *buf) 1967 { 1968 struct device_attribute *dev_attr = to_dev_attr(attr); 1969 struct device *dev = kobj_to_dev(kobj); 1970 ssize_t ret = -EIO; 1971 1972 if (dev_attr->show) 1973 ret = dev_attr->show(dev, dev_attr, buf); 1974 if (ret >= (ssize_t)PAGE_SIZE) { 1975 printk("dev_attr_show: %pS returned bad count\n", 1976 dev_attr->show); 1977 } 1978 return ret; 1979 } 1980 1981 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1982 const char *buf, size_t count) 1983 { 1984 struct device_attribute *dev_attr = to_dev_attr(attr); 1985 struct device *dev = kobj_to_dev(kobj); 1986 ssize_t ret = -EIO; 1987 1988 if (dev_attr->store) 1989 ret = dev_attr->store(dev, dev_attr, buf, count); 1990 return ret; 1991 } 1992 1993 static const struct sysfs_ops dev_sysfs_ops = { 1994 .show = dev_attr_show, 1995 .store = dev_attr_store, 1996 }; 1997 1998 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1999 2000 ssize_t device_store_ulong(struct device *dev, 2001 struct device_attribute *attr, 2002 const char *buf, size_t size) 2003 { 2004 struct dev_ext_attribute *ea = to_ext_attr(attr); 2005 int ret; 2006 unsigned long new; 2007 2008 ret = kstrtoul(buf, 0, &new); 2009 if (ret) 2010 return ret; 2011 *(unsigned long *)(ea->var) = new; 2012 /* Always return full write size even if we didn't consume all */ 2013 return size; 2014 } 2015 EXPORT_SYMBOL_GPL(device_store_ulong); 2016 2017 ssize_t device_show_ulong(struct device *dev, 2018 struct device_attribute *attr, 2019 char *buf) 2020 { 2021 struct dev_ext_attribute *ea = to_ext_attr(attr); 2022 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2023 } 2024 EXPORT_SYMBOL_GPL(device_show_ulong); 2025 2026 ssize_t device_store_int(struct device *dev, 2027 struct device_attribute *attr, 2028 const char *buf, size_t size) 2029 { 2030 struct dev_ext_attribute *ea = to_ext_attr(attr); 2031 int ret; 2032 long new; 2033 2034 ret = kstrtol(buf, 0, &new); 2035 if (ret) 2036 return ret; 2037 2038 if (new > INT_MAX || new < INT_MIN) 2039 return -EINVAL; 2040 *(int *)(ea->var) = new; 2041 /* Always return full write size even if we didn't consume all */ 2042 return size; 2043 } 2044 EXPORT_SYMBOL_GPL(device_store_int); 2045 2046 ssize_t device_show_int(struct device *dev, 2047 struct device_attribute *attr, 2048 char *buf) 2049 { 2050 struct dev_ext_attribute *ea = to_ext_attr(attr); 2051 2052 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2053 } 2054 EXPORT_SYMBOL_GPL(device_show_int); 2055 2056 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2057 const char *buf, size_t size) 2058 { 2059 struct dev_ext_attribute *ea = to_ext_attr(attr); 2060 2061 if (strtobool(buf, ea->var) < 0) 2062 return -EINVAL; 2063 2064 return size; 2065 } 2066 EXPORT_SYMBOL_GPL(device_store_bool); 2067 2068 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2069 char *buf) 2070 { 2071 struct dev_ext_attribute *ea = to_ext_attr(attr); 2072 2073 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2074 } 2075 EXPORT_SYMBOL_GPL(device_show_bool); 2076 2077 /** 2078 * device_release - free device structure. 2079 * @kobj: device's kobject. 2080 * 2081 * This is called once the reference count for the object 2082 * reaches 0. We forward the call to the device's release 2083 * method, which should handle actually freeing the structure. 2084 */ 2085 static void device_release(struct kobject *kobj) 2086 { 2087 struct device *dev = kobj_to_dev(kobj); 2088 struct device_private *p = dev->p; 2089 2090 /* 2091 * Some platform devices are driven without driver attached 2092 * and managed resources may have been acquired. Make sure 2093 * all resources are released. 2094 * 2095 * Drivers still can add resources into device after device 2096 * is deleted but alive, so release devres here to avoid 2097 * possible memory leak. 2098 */ 2099 devres_release_all(dev); 2100 2101 kfree(dev->dma_range_map); 2102 2103 if (dev->release) 2104 dev->release(dev); 2105 else if (dev->type && dev->type->release) 2106 dev->type->release(dev); 2107 else if (dev->class && dev->class->dev_release) 2108 dev->class->dev_release(dev); 2109 else 2110 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2111 dev_name(dev)); 2112 kfree(p); 2113 } 2114 2115 static const void *device_namespace(struct kobject *kobj) 2116 { 2117 struct device *dev = kobj_to_dev(kobj); 2118 const void *ns = NULL; 2119 2120 if (dev->class && dev->class->ns_type) 2121 ns = dev->class->namespace(dev); 2122 2123 return ns; 2124 } 2125 2126 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2127 { 2128 struct device *dev = kobj_to_dev(kobj); 2129 2130 if (dev->class && dev->class->get_ownership) 2131 dev->class->get_ownership(dev, uid, gid); 2132 } 2133 2134 static struct kobj_type device_ktype = { 2135 .release = device_release, 2136 .sysfs_ops = &dev_sysfs_ops, 2137 .namespace = device_namespace, 2138 .get_ownership = device_get_ownership, 2139 }; 2140 2141 2142 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2143 { 2144 struct kobj_type *ktype = get_ktype(kobj); 2145 2146 if (ktype == &device_ktype) { 2147 struct device *dev = kobj_to_dev(kobj); 2148 if (dev->bus) 2149 return 1; 2150 if (dev->class) 2151 return 1; 2152 } 2153 return 0; 2154 } 2155 2156 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2157 { 2158 struct device *dev = kobj_to_dev(kobj); 2159 2160 if (dev->bus) 2161 return dev->bus->name; 2162 if (dev->class) 2163 return dev->class->name; 2164 return NULL; 2165 } 2166 2167 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2168 struct kobj_uevent_env *env) 2169 { 2170 struct device *dev = kobj_to_dev(kobj); 2171 int retval = 0; 2172 2173 /* add device node properties if present */ 2174 if (MAJOR(dev->devt)) { 2175 const char *tmp; 2176 const char *name; 2177 umode_t mode = 0; 2178 kuid_t uid = GLOBAL_ROOT_UID; 2179 kgid_t gid = GLOBAL_ROOT_GID; 2180 2181 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2182 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2183 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2184 if (name) { 2185 add_uevent_var(env, "DEVNAME=%s", name); 2186 if (mode) 2187 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2188 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2189 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2190 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2191 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2192 kfree(tmp); 2193 } 2194 } 2195 2196 if (dev->type && dev->type->name) 2197 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2198 2199 if (dev->driver) 2200 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2201 2202 /* Add common DT information about the device */ 2203 of_device_uevent(dev, env); 2204 2205 /* have the bus specific function add its stuff */ 2206 if (dev->bus && dev->bus->uevent) { 2207 retval = dev->bus->uevent(dev, env); 2208 if (retval) 2209 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2210 dev_name(dev), __func__, retval); 2211 } 2212 2213 /* have the class specific function add its stuff */ 2214 if (dev->class && dev->class->dev_uevent) { 2215 retval = dev->class->dev_uevent(dev, env); 2216 if (retval) 2217 pr_debug("device: '%s': %s: class uevent() " 2218 "returned %d\n", dev_name(dev), 2219 __func__, retval); 2220 } 2221 2222 /* have the device type specific function add its stuff */ 2223 if (dev->type && dev->type->uevent) { 2224 retval = dev->type->uevent(dev, env); 2225 if (retval) 2226 pr_debug("device: '%s': %s: dev_type uevent() " 2227 "returned %d\n", dev_name(dev), 2228 __func__, retval); 2229 } 2230 2231 return retval; 2232 } 2233 2234 static const struct kset_uevent_ops device_uevent_ops = { 2235 .filter = dev_uevent_filter, 2236 .name = dev_uevent_name, 2237 .uevent = dev_uevent, 2238 }; 2239 2240 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2241 char *buf) 2242 { 2243 struct kobject *top_kobj; 2244 struct kset *kset; 2245 struct kobj_uevent_env *env = NULL; 2246 int i; 2247 int len = 0; 2248 int retval; 2249 2250 /* search the kset, the device belongs to */ 2251 top_kobj = &dev->kobj; 2252 while (!top_kobj->kset && top_kobj->parent) 2253 top_kobj = top_kobj->parent; 2254 if (!top_kobj->kset) 2255 goto out; 2256 2257 kset = top_kobj->kset; 2258 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2259 goto out; 2260 2261 /* respect filter */ 2262 if (kset->uevent_ops && kset->uevent_ops->filter) 2263 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2264 goto out; 2265 2266 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2267 if (!env) 2268 return -ENOMEM; 2269 2270 /* let the kset specific function add its keys */ 2271 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2272 if (retval) 2273 goto out; 2274 2275 /* copy keys to file */ 2276 for (i = 0; i < env->envp_idx; i++) 2277 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2278 out: 2279 kfree(env); 2280 return len; 2281 } 2282 2283 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2284 const char *buf, size_t count) 2285 { 2286 int rc; 2287 2288 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2289 2290 if (rc) { 2291 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2292 return rc; 2293 } 2294 2295 return count; 2296 } 2297 static DEVICE_ATTR_RW(uevent); 2298 2299 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2300 char *buf) 2301 { 2302 bool val; 2303 2304 device_lock(dev); 2305 val = !dev->offline; 2306 device_unlock(dev); 2307 return sysfs_emit(buf, "%u\n", val); 2308 } 2309 2310 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2311 const char *buf, size_t count) 2312 { 2313 bool val; 2314 int ret; 2315 2316 ret = strtobool(buf, &val); 2317 if (ret < 0) 2318 return ret; 2319 2320 ret = lock_device_hotplug_sysfs(); 2321 if (ret) 2322 return ret; 2323 2324 ret = val ? device_online(dev) : device_offline(dev); 2325 unlock_device_hotplug(); 2326 return ret < 0 ? ret : count; 2327 } 2328 static DEVICE_ATTR_RW(online); 2329 2330 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2331 { 2332 return sysfs_create_groups(&dev->kobj, groups); 2333 } 2334 EXPORT_SYMBOL_GPL(device_add_groups); 2335 2336 void device_remove_groups(struct device *dev, 2337 const struct attribute_group **groups) 2338 { 2339 sysfs_remove_groups(&dev->kobj, groups); 2340 } 2341 EXPORT_SYMBOL_GPL(device_remove_groups); 2342 2343 union device_attr_group_devres { 2344 const struct attribute_group *group; 2345 const struct attribute_group **groups; 2346 }; 2347 2348 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2349 { 2350 return ((union device_attr_group_devres *)res)->group == data; 2351 } 2352 2353 static void devm_attr_group_remove(struct device *dev, void *res) 2354 { 2355 union device_attr_group_devres *devres = res; 2356 const struct attribute_group *group = devres->group; 2357 2358 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2359 sysfs_remove_group(&dev->kobj, group); 2360 } 2361 2362 static void devm_attr_groups_remove(struct device *dev, void *res) 2363 { 2364 union device_attr_group_devres *devres = res; 2365 const struct attribute_group **groups = devres->groups; 2366 2367 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2368 sysfs_remove_groups(&dev->kobj, groups); 2369 } 2370 2371 /** 2372 * devm_device_add_group - given a device, create a managed attribute group 2373 * @dev: The device to create the group for 2374 * @grp: The attribute group to create 2375 * 2376 * This function creates a group for the first time. It will explicitly 2377 * warn and error if any of the attribute files being created already exist. 2378 * 2379 * Returns 0 on success or error code on failure. 2380 */ 2381 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2382 { 2383 union device_attr_group_devres *devres; 2384 int error; 2385 2386 devres = devres_alloc(devm_attr_group_remove, 2387 sizeof(*devres), GFP_KERNEL); 2388 if (!devres) 2389 return -ENOMEM; 2390 2391 error = sysfs_create_group(&dev->kobj, grp); 2392 if (error) { 2393 devres_free(devres); 2394 return error; 2395 } 2396 2397 devres->group = grp; 2398 devres_add(dev, devres); 2399 return 0; 2400 } 2401 EXPORT_SYMBOL_GPL(devm_device_add_group); 2402 2403 /** 2404 * devm_device_remove_group: remove a managed group from a device 2405 * @dev: device to remove the group from 2406 * @grp: group to remove 2407 * 2408 * This function removes a group of attributes from a device. The attributes 2409 * previously have to have been created for this group, otherwise it will fail. 2410 */ 2411 void devm_device_remove_group(struct device *dev, 2412 const struct attribute_group *grp) 2413 { 2414 WARN_ON(devres_release(dev, devm_attr_group_remove, 2415 devm_attr_group_match, 2416 /* cast away const */ (void *)grp)); 2417 } 2418 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2419 2420 /** 2421 * devm_device_add_groups - create a bunch of managed attribute groups 2422 * @dev: The device to create the group for 2423 * @groups: The attribute groups to create, NULL terminated 2424 * 2425 * This function creates a bunch of managed attribute groups. If an error 2426 * occurs when creating a group, all previously created groups will be 2427 * removed, unwinding everything back to the original state when this 2428 * function was called. It will explicitly warn and error if any of the 2429 * attribute files being created already exist. 2430 * 2431 * Returns 0 on success or error code from sysfs_create_group on failure. 2432 */ 2433 int devm_device_add_groups(struct device *dev, 2434 const struct attribute_group **groups) 2435 { 2436 union device_attr_group_devres *devres; 2437 int error; 2438 2439 devres = devres_alloc(devm_attr_groups_remove, 2440 sizeof(*devres), GFP_KERNEL); 2441 if (!devres) 2442 return -ENOMEM; 2443 2444 error = sysfs_create_groups(&dev->kobj, groups); 2445 if (error) { 2446 devres_free(devres); 2447 return error; 2448 } 2449 2450 devres->groups = groups; 2451 devres_add(dev, devres); 2452 return 0; 2453 } 2454 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2455 2456 /** 2457 * devm_device_remove_groups - remove a list of managed groups 2458 * 2459 * @dev: The device for the groups to be removed from 2460 * @groups: NULL terminated list of groups to be removed 2461 * 2462 * If groups is not NULL, remove the specified groups from the device. 2463 */ 2464 void devm_device_remove_groups(struct device *dev, 2465 const struct attribute_group **groups) 2466 { 2467 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2468 devm_attr_group_match, 2469 /* cast away const */ (void *)groups)); 2470 } 2471 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2472 2473 static int device_add_attrs(struct device *dev) 2474 { 2475 struct class *class = dev->class; 2476 const struct device_type *type = dev->type; 2477 int error; 2478 2479 if (class) { 2480 error = device_add_groups(dev, class->dev_groups); 2481 if (error) 2482 return error; 2483 } 2484 2485 if (type) { 2486 error = device_add_groups(dev, type->groups); 2487 if (error) 2488 goto err_remove_class_groups; 2489 } 2490 2491 error = device_add_groups(dev, dev->groups); 2492 if (error) 2493 goto err_remove_type_groups; 2494 2495 if (device_supports_offline(dev) && !dev->offline_disabled) { 2496 error = device_create_file(dev, &dev_attr_online); 2497 if (error) 2498 goto err_remove_dev_groups; 2499 } 2500 2501 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2502 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2503 if (error) 2504 goto err_remove_dev_online; 2505 } 2506 2507 return 0; 2508 2509 err_remove_dev_online: 2510 device_remove_file(dev, &dev_attr_online); 2511 err_remove_dev_groups: 2512 device_remove_groups(dev, dev->groups); 2513 err_remove_type_groups: 2514 if (type) 2515 device_remove_groups(dev, type->groups); 2516 err_remove_class_groups: 2517 if (class) 2518 device_remove_groups(dev, class->dev_groups); 2519 2520 return error; 2521 } 2522 2523 static void device_remove_attrs(struct device *dev) 2524 { 2525 struct class *class = dev->class; 2526 const struct device_type *type = dev->type; 2527 2528 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2529 device_remove_file(dev, &dev_attr_online); 2530 device_remove_groups(dev, dev->groups); 2531 2532 if (type) 2533 device_remove_groups(dev, type->groups); 2534 2535 if (class) 2536 device_remove_groups(dev, class->dev_groups); 2537 } 2538 2539 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2540 char *buf) 2541 { 2542 return print_dev_t(buf, dev->devt); 2543 } 2544 static DEVICE_ATTR_RO(dev); 2545 2546 /* /sys/devices/ */ 2547 struct kset *devices_kset; 2548 2549 /** 2550 * devices_kset_move_before - Move device in the devices_kset's list. 2551 * @deva: Device to move. 2552 * @devb: Device @deva should come before. 2553 */ 2554 static void devices_kset_move_before(struct device *deva, struct device *devb) 2555 { 2556 if (!devices_kset) 2557 return; 2558 pr_debug("devices_kset: Moving %s before %s\n", 2559 dev_name(deva), dev_name(devb)); 2560 spin_lock(&devices_kset->list_lock); 2561 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2562 spin_unlock(&devices_kset->list_lock); 2563 } 2564 2565 /** 2566 * devices_kset_move_after - Move device in the devices_kset's list. 2567 * @deva: Device to move 2568 * @devb: Device @deva should come after. 2569 */ 2570 static void devices_kset_move_after(struct device *deva, struct device *devb) 2571 { 2572 if (!devices_kset) 2573 return; 2574 pr_debug("devices_kset: Moving %s after %s\n", 2575 dev_name(deva), dev_name(devb)); 2576 spin_lock(&devices_kset->list_lock); 2577 list_move(&deva->kobj.entry, &devb->kobj.entry); 2578 spin_unlock(&devices_kset->list_lock); 2579 } 2580 2581 /** 2582 * devices_kset_move_last - move the device to the end of devices_kset's list. 2583 * @dev: device to move 2584 */ 2585 void devices_kset_move_last(struct device *dev) 2586 { 2587 if (!devices_kset) 2588 return; 2589 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2590 spin_lock(&devices_kset->list_lock); 2591 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2592 spin_unlock(&devices_kset->list_lock); 2593 } 2594 2595 /** 2596 * device_create_file - create sysfs attribute file for device. 2597 * @dev: device. 2598 * @attr: device attribute descriptor. 2599 */ 2600 int device_create_file(struct device *dev, 2601 const struct device_attribute *attr) 2602 { 2603 int error = 0; 2604 2605 if (dev) { 2606 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2607 "Attribute %s: write permission without 'store'\n", 2608 attr->attr.name); 2609 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2610 "Attribute %s: read permission without 'show'\n", 2611 attr->attr.name); 2612 error = sysfs_create_file(&dev->kobj, &attr->attr); 2613 } 2614 2615 return error; 2616 } 2617 EXPORT_SYMBOL_GPL(device_create_file); 2618 2619 /** 2620 * device_remove_file - remove sysfs attribute file. 2621 * @dev: device. 2622 * @attr: device attribute descriptor. 2623 */ 2624 void device_remove_file(struct device *dev, 2625 const struct device_attribute *attr) 2626 { 2627 if (dev) 2628 sysfs_remove_file(&dev->kobj, &attr->attr); 2629 } 2630 EXPORT_SYMBOL_GPL(device_remove_file); 2631 2632 /** 2633 * device_remove_file_self - remove sysfs attribute file from its own method. 2634 * @dev: device. 2635 * @attr: device attribute descriptor. 2636 * 2637 * See kernfs_remove_self() for details. 2638 */ 2639 bool device_remove_file_self(struct device *dev, 2640 const struct device_attribute *attr) 2641 { 2642 if (dev) 2643 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2644 else 2645 return false; 2646 } 2647 EXPORT_SYMBOL_GPL(device_remove_file_self); 2648 2649 /** 2650 * device_create_bin_file - create sysfs binary attribute file for device. 2651 * @dev: device. 2652 * @attr: device binary attribute descriptor. 2653 */ 2654 int device_create_bin_file(struct device *dev, 2655 const struct bin_attribute *attr) 2656 { 2657 int error = -EINVAL; 2658 if (dev) 2659 error = sysfs_create_bin_file(&dev->kobj, attr); 2660 return error; 2661 } 2662 EXPORT_SYMBOL_GPL(device_create_bin_file); 2663 2664 /** 2665 * device_remove_bin_file - remove sysfs binary attribute file 2666 * @dev: device. 2667 * @attr: device binary attribute descriptor. 2668 */ 2669 void device_remove_bin_file(struct device *dev, 2670 const struct bin_attribute *attr) 2671 { 2672 if (dev) 2673 sysfs_remove_bin_file(&dev->kobj, attr); 2674 } 2675 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2676 2677 static void klist_children_get(struct klist_node *n) 2678 { 2679 struct device_private *p = to_device_private_parent(n); 2680 struct device *dev = p->device; 2681 2682 get_device(dev); 2683 } 2684 2685 static void klist_children_put(struct klist_node *n) 2686 { 2687 struct device_private *p = to_device_private_parent(n); 2688 struct device *dev = p->device; 2689 2690 put_device(dev); 2691 } 2692 2693 /** 2694 * device_initialize - init device structure. 2695 * @dev: device. 2696 * 2697 * This prepares the device for use by other layers by initializing 2698 * its fields. 2699 * It is the first half of device_register(), if called by 2700 * that function, though it can also be called separately, so one 2701 * may use @dev's fields. In particular, get_device()/put_device() 2702 * may be used for reference counting of @dev after calling this 2703 * function. 2704 * 2705 * All fields in @dev must be initialized by the caller to 0, except 2706 * for those explicitly set to some other value. The simplest 2707 * approach is to use kzalloc() to allocate the structure containing 2708 * @dev. 2709 * 2710 * NOTE: Use put_device() to give up your reference instead of freeing 2711 * @dev directly once you have called this function. 2712 */ 2713 void device_initialize(struct device *dev) 2714 { 2715 dev->kobj.kset = devices_kset; 2716 kobject_init(&dev->kobj, &device_ktype); 2717 INIT_LIST_HEAD(&dev->dma_pools); 2718 mutex_init(&dev->mutex); 2719 #ifdef CONFIG_PROVE_LOCKING 2720 mutex_init(&dev->lockdep_mutex); 2721 #endif 2722 lockdep_set_novalidate_class(&dev->mutex); 2723 spin_lock_init(&dev->devres_lock); 2724 INIT_LIST_HEAD(&dev->devres_head); 2725 device_pm_init(dev); 2726 set_dev_node(dev, -1); 2727 #ifdef CONFIG_GENERIC_MSI_IRQ 2728 INIT_LIST_HEAD(&dev->msi_list); 2729 #endif 2730 INIT_LIST_HEAD(&dev->links.consumers); 2731 INIT_LIST_HEAD(&dev->links.suppliers); 2732 INIT_LIST_HEAD(&dev->links.defer_sync); 2733 dev->links.status = DL_DEV_NO_DRIVER; 2734 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2735 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2736 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2737 dev->dma_coherent = dma_default_coherent; 2738 #endif 2739 } 2740 EXPORT_SYMBOL_GPL(device_initialize); 2741 2742 struct kobject *virtual_device_parent(struct device *dev) 2743 { 2744 static struct kobject *virtual_dir = NULL; 2745 2746 if (!virtual_dir) 2747 virtual_dir = kobject_create_and_add("virtual", 2748 &devices_kset->kobj); 2749 2750 return virtual_dir; 2751 } 2752 2753 struct class_dir { 2754 struct kobject kobj; 2755 struct class *class; 2756 }; 2757 2758 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2759 2760 static void class_dir_release(struct kobject *kobj) 2761 { 2762 struct class_dir *dir = to_class_dir(kobj); 2763 kfree(dir); 2764 } 2765 2766 static const 2767 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2768 { 2769 struct class_dir *dir = to_class_dir(kobj); 2770 return dir->class->ns_type; 2771 } 2772 2773 static struct kobj_type class_dir_ktype = { 2774 .release = class_dir_release, 2775 .sysfs_ops = &kobj_sysfs_ops, 2776 .child_ns_type = class_dir_child_ns_type 2777 }; 2778 2779 static struct kobject * 2780 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2781 { 2782 struct class_dir *dir; 2783 int retval; 2784 2785 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2786 if (!dir) 2787 return ERR_PTR(-ENOMEM); 2788 2789 dir->class = class; 2790 kobject_init(&dir->kobj, &class_dir_ktype); 2791 2792 dir->kobj.kset = &class->p->glue_dirs; 2793 2794 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2795 if (retval < 0) { 2796 kobject_put(&dir->kobj); 2797 return ERR_PTR(retval); 2798 } 2799 return &dir->kobj; 2800 } 2801 2802 static DEFINE_MUTEX(gdp_mutex); 2803 2804 static struct kobject *get_device_parent(struct device *dev, 2805 struct device *parent) 2806 { 2807 if (dev->class) { 2808 struct kobject *kobj = NULL; 2809 struct kobject *parent_kobj; 2810 struct kobject *k; 2811 2812 #ifdef CONFIG_BLOCK 2813 /* block disks show up in /sys/block */ 2814 if (sysfs_deprecated && dev->class == &block_class) { 2815 if (parent && parent->class == &block_class) 2816 return &parent->kobj; 2817 return &block_class.p->subsys.kobj; 2818 } 2819 #endif 2820 2821 /* 2822 * If we have no parent, we live in "virtual". 2823 * Class-devices with a non class-device as parent, live 2824 * in a "glue" directory to prevent namespace collisions. 2825 */ 2826 if (parent == NULL) 2827 parent_kobj = virtual_device_parent(dev); 2828 else if (parent->class && !dev->class->ns_type) 2829 return &parent->kobj; 2830 else 2831 parent_kobj = &parent->kobj; 2832 2833 mutex_lock(&gdp_mutex); 2834 2835 /* find our class-directory at the parent and reference it */ 2836 spin_lock(&dev->class->p->glue_dirs.list_lock); 2837 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2838 if (k->parent == parent_kobj) { 2839 kobj = kobject_get(k); 2840 break; 2841 } 2842 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2843 if (kobj) { 2844 mutex_unlock(&gdp_mutex); 2845 return kobj; 2846 } 2847 2848 /* or create a new class-directory at the parent device */ 2849 k = class_dir_create_and_add(dev->class, parent_kobj); 2850 /* do not emit an uevent for this simple "glue" directory */ 2851 mutex_unlock(&gdp_mutex); 2852 return k; 2853 } 2854 2855 /* subsystems can specify a default root directory for their devices */ 2856 if (!parent && dev->bus && dev->bus->dev_root) 2857 return &dev->bus->dev_root->kobj; 2858 2859 if (parent) 2860 return &parent->kobj; 2861 return NULL; 2862 } 2863 2864 static inline bool live_in_glue_dir(struct kobject *kobj, 2865 struct device *dev) 2866 { 2867 if (!kobj || !dev->class || 2868 kobj->kset != &dev->class->p->glue_dirs) 2869 return false; 2870 return true; 2871 } 2872 2873 static inline struct kobject *get_glue_dir(struct device *dev) 2874 { 2875 return dev->kobj.parent; 2876 } 2877 2878 /* 2879 * make sure cleaning up dir as the last step, we need to make 2880 * sure .release handler of kobject is run with holding the 2881 * global lock 2882 */ 2883 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2884 { 2885 unsigned int ref; 2886 2887 /* see if we live in a "glue" directory */ 2888 if (!live_in_glue_dir(glue_dir, dev)) 2889 return; 2890 2891 mutex_lock(&gdp_mutex); 2892 /** 2893 * There is a race condition between removing glue directory 2894 * and adding a new device under the glue directory. 2895 * 2896 * CPU1: CPU2: 2897 * 2898 * device_add() 2899 * get_device_parent() 2900 * class_dir_create_and_add() 2901 * kobject_add_internal() 2902 * create_dir() // create glue_dir 2903 * 2904 * device_add() 2905 * get_device_parent() 2906 * kobject_get() // get glue_dir 2907 * 2908 * device_del() 2909 * cleanup_glue_dir() 2910 * kobject_del(glue_dir) 2911 * 2912 * kobject_add() 2913 * kobject_add_internal() 2914 * create_dir() // in glue_dir 2915 * sysfs_create_dir_ns() 2916 * kernfs_create_dir_ns(sd) 2917 * 2918 * sysfs_remove_dir() // glue_dir->sd=NULL 2919 * sysfs_put() // free glue_dir->sd 2920 * 2921 * // sd is freed 2922 * kernfs_new_node(sd) 2923 * kernfs_get(glue_dir) 2924 * kernfs_add_one() 2925 * kernfs_put() 2926 * 2927 * Before CPU1 remove last child device under glue dir, if CPU2 add 2928 * a new device under glue dir, the glue_dir kobject reference count 2929 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2930 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2931 * and sysfs_put(). This result in glue_dir->sd is freed. 2932 * 2933 * Then the CPU2 will see a stale "empty" but still potentially used 2934 * glue dir around in kernfs_new_node(). 2935 * 2936 * In order to avoid this happening, we also should make sure that 2937 * kernfs_node for glue_dir is released in CPU1 only when refcount 2938 * for glue_dir kobj is 1. 2939 */ 2940 ref = kref_read(&glue_dir->kref); 2941 if (!kobject_has_children(glue_dir) && !--ref) 2942 kobject_del(glue_dir); 2943 kobject_put(glue_dir); 2944 mutex_unlock(&gdp_mutex); 2945 } 2946 2947 static int device_add_class_symlinks(struct device *dev) 2948 { 2949 struct device_node *of_node = dev_of_node(dev); 2950 int error; 2951 2952 if (of_node) { 2953 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2954 if (error) 2955 dev_warn(dev, "Error %d creating of_node link\n",error); 2956 /* An error here doesn't warrant bringing down the device */ 2957 } 2958 2959 if (!dev->class) 2960 return 0; 2961 2962 error = sysfs_create_link(&dev->kobj, 2963 &dev->class->p->subsys.kobj, 2964 "subsystem"); 2965 if (error) 2966 goto out_devnode; 2967 2968 if (dev->parent && device_is_not_partition(dev)) { 2969 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2970 "device"); 2971 if (error) 2972 goto out_subsys; 2973 } 2974 2975 #ifdef CONFIG_BLOCK 2976 /* /sys/block has directories and does not need symlinks */ 2977 if (sysfs_deprecated && dev->class == &block_class) 2978 return 0; 2979 #endif 2980 2981 /* link in the class directory pointing to the device */ 2982 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2983 &dev->kobj, dev_name(dev)); 2984 if (error) 2985 goto out_device; 2986 2987 return 0; 2988 2989 out_device: 2990 sysfs_remove_link(&dev->kobj, "device"); 2991 2992 out_subsys: 2993 sysfs_remove_link(&dev->kobj, "subsystem"); 2994 out_devnode: 2995 sysfs_remove_link(&dev->kobj, "of_node"); 2996 return error; 2997 } 2998 2999 static void device_remove_class_symlinks(struct device *dev) 3000 { 3001 if (dev_of_node(dev)) 3002 sysfs_remove_link(&dev->kobj, "of_node"); 3003 3004 if (!dev->class) 3005 return; 3006 3007 if (dev->parent && device_is_not_partition(dev)) 3008 sysfs_remove_link(&dev->kobj, "device"); 3009 sysfs_remove_link(&dev->kobj, "subsystem"); 3010 #ifdef CONFIG_BLOCK 3011 if (sysfs_deprecated && dev->class == &block_class) 3012 return; 3013 #endif 3014 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3015 } 3016 3017 /** 3018 * dev_set_name - set a device name 3019 * @dev: device 3020 * @fmt: format string for the device's name 3021 */ 3022 int dev_set_name(struct device *dev, const char *fmt, ...) 3023 { 3024 va_list vargs; 3025 int err; 3026 3027 va_start(vargs, fmt); 3028 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3029 va_end(vargs); 3030 return err; 3031 } 3032 EXPORT_SYMBOL_GPL(dev_set_name); 3033 3034 /** 3035 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3036 * @dev: device 3037 * 3038 * By default we select char/ for new entries. Setting class->dev_obj 3039 * to NULL prevents an entry from being created. class->dev_kobj must 3040 * be set (or cleared) before any devices are registered to the class 3041 * otherwise device_create_sys_dev_entry() and 3042 * device_remove_sys_dev_entry() will disagree about the presence of 3043 * the link. 3044 */ 3045 static struct kobject *device_to_dev_kobj(struct device *dev) 3046 { 3047 struct kobject *kobj; 3048 3049 if (dev->class) 3050 kobj = dev->class->dev_kobj; 3051 else 3052 kobj = sysfs_dev_char_kobj; 3053 3054 return kobj; 3055 } 3056 3057 static int device_create_sys_dev_entry(struct device *dev) 3058 { 3059 struct kobject *kobj = device_to_dev_kobj(dev); 3060 int error = 0; 3061 char devt_str[15]; 3062 3063 if (kobj) { 3064 format_dev_t(devt_str, dev->devt); 3065 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3066 } 3067 3068 return error; 3069 } 3070 3071 static void device_remove_sys_dev_entry(struct device *dev) 3072 { 3073 struct kobject *kobj = device_to_dev_kobj(dev); 3074 char devt_str[15]; 3075 3076 if (kobj) { 3077 format_dev_t(devt_str, dev->devt); 3078 sysfs_remove_link(kobj, devt_str); 3079 } 3080 } 3081 3082 static int device_private_init(struct device *dev) 3083 { 3084 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3085 if (!dev->p) 3086 return -ENOMEM; 3087 dev->p->device = dev; 3088 klist_init(&dev->p->klist_children, klist_children_get, 3089 klist_children_put); 3090 INIT_LIST_HEAD(&dev->p->deferred_probe); 3091 return 0; 3092 } 3093 3094 /** 3095 * device_add - add device to device hierarchy. 3096 * @dev: device. 3097 * 3098 * This is part 2 of device_register(), though may be called 3099 * separately _iff_ device_initialize() has been called separately. 3100 * 3101 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3102 * to the global and sibling lists for the device, then 3103 * adds it to the other relevant subsystems of the driver model. 3104 * 3105 * Do not call this routine or device_register() more than once for 3106 * any device structure. The driver model core is not designed to work 3107 * with devices that get unregistered and then spring back to life. 3108 * (Among other things, it's very hard to guarantee that all references 3109 * to the previous incarnation of @dev have been dropped.) Allocate 3110 * and register a fresh new struct device instead. 3111 * 3112 * NOTE: _Never_ directly free @dev after calling this function, even 3113 * if it returned an error! Always use put_device() to give up your 3114 * reference instead. 3115 * 3116 * Rule of thumb is: if device_add() succeeds, you should call 3117 * device_del() when you want to get rid of it. If device_add() has 3118 * *not* succeeded, use *only* put_device() to drop the reference 3119 * count. 3120 */ 3121 int device_add(struct device *dev) 3122 { 3123 struct device *parent; 3124 struct kobject *kobj; 3125 struct class_interface *class_intf; 3126 int error = -EINVAL; 3127 struct kobject *glue_dir = NULL; 3128 3129 dev = get_device(dev); 3130 if (!dev) 3131 goto done; 3132 3133 if (!dev->p) { 3134 error = device_private_init(dev); 3135 if (error) 3136 goto done; 3137 } 3138 3139 /* 3140 * for statically allocated devices, which should all be converted 3141 * some day, we need to initialize the name. We prevent reading back 3142 * the name, and force the use of dev_name() 3143 */ 3144 if (dev->init_name) { 3145 dev_set_name(dev, "%s", dev->init_name); 3146 dev->init_name = NULL; 3147 } 3148 3149 /* subsystems can specify simple device enumeration */ 3150 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3151 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3152 3153 if (!dev_name(dev)) { 3154 error = -EINVAL; 3155 goto name_error; 3156 } 3157 3158 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3159 3160 parent = get_device(dev->parent); 3161 kobj = get_device_parent(dev, parent); 3162 if (IS_ERR(kobj)) { 3163 error = PTR_ERR(kobj); 3164 goto parent_error; 3165 } 3166 if (kobj) 3167 dev->kobj.parent = kobj; 3168 3169 /* use parent numa_node */ 3170 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3171 set_dev_node(dev, dev_to_node(parent)); 3172 3173 /* first, register with generic layer. */ 3174 /* we require the name to be set before, and pass NULL */ 3175 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3176 if (error) { 3177 glue_dir = get_glue_dir(dev); 3178 goto Error; 3179 } 3180 3181 /* notify platform of device entry */ 3182 error = device_platform_notify(dev, KOBJ_ADD); 3183 if (error) 3184 goto platform_error; 3185 3186 error = device_create_file(dev, &dev_attr_uevent); 3187 if (error) 3188 goto attrError; 3189 3190 error = device_add_class_symlinks(dev); 3191 if (error) 3192 goto SymlinkError; 3193 error = device_add_attrs(dev); 3194 if (error) 3195 goto AttrsError; 3196 error = bus_add_device(dev); 3197 if (error) 3198 goto BusError; 3199 error = dpm_sysfs_add(dev); 3200 if (error) 3201 goto DPMError; 3202 device_pm_add(dev); 3203 3204 if (MAJOR(dev->devt)) { 3205 error = device_create_file(dev, &dev_attr_dev); 3206 if (error) 3207 goto DevAttrError; 3208 3209 error = device_create_sys_dev_entry(dev); 3210 if (error) 3211 goto SysEntryError; 3212 3213 devtmpfs_create_node(dev); 3214 } 3215 3216 /* Notify clients of device addition. This call must come 3217 * after dpm_sysfs_add() and before kobject_uevent(). 3218 */ 3219 if (dev->bus) 3220 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3221 BUS_NOTIFY_ADD_DEVICE, dev); 3222 3223 kobject_uevent(&dev->kobj, KOBJ_ADD); 3224 3225 /* 3226 * Check if any of the other devices (consumers) have been waiting for 3227 * this device (supplier) to be added so that they can create a device 3228 * link to it. 3229 * 3230 * This needs to happen after device_pm_add() because device_link_add() 3231 * requires the supplier be registered before it's called. 3232 * 3233 * But this also needs to happen before bus_probe_device() to make sure 3234 * waiting consumers can link to it before the driver is bound to the 3235 * device and the driver sync_state callback is called for this device. 3236 */ 3237 if (dev->fwnode && !dev->fwnode->dev) { 3238 dev->fwnode->dev = dev; 3239 fw_devlink_link_device(dev); 3240 } 3241 3242 bus_probe_device(dev); 3243 if (parent) 3244 klist_add_tail(&dev->p->knode_parent, 3245 &parent->p->klist_children); 3246 3247 if (dev->class) { 3248 mutex_lock(&dev->class->p->mutex); 3249 /* tie the class to the device */ 3250 klist_add_tail(&dev->p->knode_class, 3251 &dev->class->p->klist_devices); 3252 3253 /* notify any interfaces that the device is here */ 3254 list_for_each_entry(class_intf, 3255 &dev->class->p->interfaces, node) 3256 if (class_intf->add_dev) 3257 class_intf->add_dev(dev, class_intf); 3258 mutex_unlock(&dev->class->p->mutex); 3259 } 3260 done: 3261 put_device(dev); 3262 return error; 3263 SysEntryError: 3264 if (MAJOR(dev->devt)) 3265 device_remove_file(dev, &dev_attr_dev); 3266 DevAttrError: 3267 device_pm_remove(dev); 3268 dpm_sysfs_remove(dev); 3269 DPMError: 3270 bus_remove_device(dev); 3271 BusError: 3272 device_remove_attrs(dev); 3273 AttrsError: 3274 device_remove_class_symlinks(dev); 3275 SymlinkError: 3276 device_remove_file(dev, &dev_attr_uevent); 3277 attrError: 3278 device_platform_notify(dev, KOBJ_REMOVE); 3279 platform_error: 3280 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3281 glue_dir = get_glue_dir(dev); 3282 kobject_del(&dev->kobj); 3283 Error: 3284 cleanup_glue_dir(dev, glue_dir); 3285 parent_error: 3286 put_device(parent); 3287 name_error: 3288 kfree(dev->p); 3289 dev->p = NULL; 3290 goto done; 3291 } 3292 EXPORT_SYMBOL_GPL(device_add); 3293 3294 /** 3295 * device_register - register a device with the system. 3296 * @dev: pointer to the device structure 3297 * 3298 * This happens in two clean steps - initialize the device 3299 * and add it to the system. The two steps can be called 3300 * separately, but this is the easiest and most common. 3301 * I.e. you should only call the two helpers separately if 3302 * have a clearly defined need to use and refcount the device 3303 * before it is added to the hierarchy. 3304 * 3305 * For more information, see the kerneldoc for device_initialize() 3306 * and device_add(). 3307 * 3308 * NOTE: _Never_ directly free @dev after calling this function, even 3309 * if it returned an error! Always use put_device() to give up the 3310 * reference initialized in this function instead. 3311 */ 3312 int device_register(struct device *dev) 3313 { 3314 device_initialize(dev); 3315 return device_add(dev); 3316 } 3317 EXPORT_SYMBOL_GPL(device_register); 3318 3319 /** 3320 * get_device - increment reference count for device. 3321 * @dev: device. 3322 * 3323 * This simply forwards the call to kobject_get(), though 3324 * we do take care to provide for the case that we get a NULL 3325 * pointer passed in. 3326 */ 3327 struct device *get_device(struct device *dev) 3328 { 3329 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3330 } 3331 EXPORT_SYMBOL_GPL(get_device); 3332 3333 /** 3334 * put_device - decrement reference count. 3335 * @dev: device in question. 3336 */ 3337 void put_device(struct device *dev) 3338 { 3339 /* might_sleep(); */ 3340 if (dev) 3341 kobject_put(&dev->kobj); 3342 } 3343 EXPORT_SYMBOL_GPL(put_device); 3344 3345 bool kill_device(struct device *dev) 3346 { 3347 /* 3348 * Require the device lock and set the "dead" flag to guarantee that 3349 * the update behavior is consistent with the other bitfields near 3350 * it and that we cannot have an asynchronous probe routine trying 3351 * to run while we are tearing out the bus/class/sysfs from 3352 * underneath the device. 3353 */ 3354 lockdep_assert_held(&dev->mutex); 3355 3356 if (dev->p->dead) 3357 return false; 3358 dev->p->dead = true; 3359 return true; 3360 } 3361 EXPORT_SYMBOL_GPL(kill_device); 3362 3363 /** 3364 * device_del - delete device from system. 3365 * @dev: device. 3366 * 3367 * This is the first part of the device unregistration 3368 * sequence. This removes the device from the lists we control 3369 * from here, has it removed from the other driver model 3370 * subsystems it was added to in device_add(), and removes it 3371 * from the kobject hierarchy. 3372 * 3373 * NOTE: this should be called manually _iff_ device_add() was 3374 * also called manually. 3375 */ 3376 void device_del(struct device *dev) 3377 { 3378 struct device *parent = dev->parent; 3379 struct kobject *glue_dir = NULL; 3380 struct class_interface *class_intf; 3381 unsigned int noio_flag; 3382 3383 device_lock(dev); 3384 kill_device(dev); 3385 device_unlock(dev); 3386 3387 if (dev->fwnode && dev->fwnode->dev == dev) 3388 dev->fwnode->dev = NULL; 3389 3390 /* Notify clients of device removal. This call must come 3391 * before dpm_sysfs_remove(). 3392 */ 3393 noio_flag = memalloc_noio_save(); 3394 if (dev->bus) 3395 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3396 BUS_NOTIFY_DEL_DEVICE, dev); 3397 3398 dpm_sysfs_remove(dev); 3399 if (parent) 3400 klist_del(&dev->p->knode_parent); 3401 if (MAJOR(dev->devt)) { 3402 devtmpfs_delete_node(dev); 3403 device_remove_sys_dev_entry(dev); 3404 device_remove_file(dev, &dev_attr_dev); 3405 } 3406 if (dev->class) { 3407 device_remove_class_symlinks(dev); 3408 3409 mutex_lock(&dev->class->p->mutex); 3410 /* notify any interfaces that the device is now gone */ 3411 list_for_each_entry(class_intf, 3412 &dev->class->p->interfaces, node) 3413 if (class_intf->remove_dev) 3414 class_intf->remove_dev(dev, class_intf); 3415 /* remove the device from the class list */ 3416 klist_del(&dev->p->knode_class); 3417 mutex_unlock(&dev->class->p->mutex); 3418 } 3419 device_remove_file(dev, &dev_attr_uevent); 3420 device_remove_attrs(dev); 3421 bus_remove_device(dev); 3422 device_pm_remove(dev); 3423 driver_deferred_probe_del(dev); 3424 device_platform_notify(dev, KOBJ_REMOVE); 3425 device_remove_properties(dev); 3426 device_links_purge(dev); 3427 3428 if (dev->bus) 3429 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3430 BUS_NOTIFY_REMOVED_DEVICE, dev); 3431 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3432 glue_dir = get_glue_dir(dev); 3433 kobject_del(&dev->kobj); 3434 cleanup_glue_dir(dev, glue_dir); 3435 memalloc_noio_restore(noio_flag); 3436 put_device(parent); 3437 } 3438 EXPORT_SYMBOL_GPL(device_del); 3439 3440 /** 3441 * device_unregister - unregister device from system. 3442 * @dev: device going away. 3443 * 3444 * We do this in two parts, like we do device_register(). First, 3445 * we remove it from all the subsystems with device_del(), then 3446 * we decrement the reference count via put_device(). If that 3447 * is the final reference count, the device will be cleaned up 3448 * via device_release() above. Otherwise, the structure will 3449 * stick around until the final reference to the device is dropped. 3450 */ 3451 void device_unregister(struct device *dev) 3452 { 3453 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3454 device_del(dev); 3455 put_device(dev); 3456 } 3457 EXPORT_SYMBOL_GPL(device_unregister); 3458 3459 static struct device *prev_device(struct klist_iter *i) 3460 { 3461 struct klist_node *n = klist_prev(i); 3462 struct device *dev = NULL; 3463 struct device_private *p; 3464 3465 if (n) { 3466 p = to_device_private_parent(n); 3467 dev = p->device; 3468 } 3469 return dev; 3470 } 3471 3472 static struct device *next_device(struct klist_iter *i) 3473 { 3474 struct klist_node *n = klist_next(i); 3475 struct device *dev = NULL; 3476 struct device_private *p; 3477 3478 if (n) { 3479 p = to_device_private_parent(n); 3480 dev = p->device; 3481 } 3482 return dev; 3483 } 3484 3485 /** 3486 * device_get_devnode - path of device node file 3487 * @dev: device 3488 * @mode: returned file access mode 3489 * @uid: returned file owner 3490 * @gid: returned file group 3491 * @tmp: possibly allocated string 3492 * 3493 * Return the relative path of a possible device node. 3494 * Non-default names may need to allocate a memory to compose 3495 * a name. This memory is returned in tmp and needs to be 3496 * freed by the caller. 3497 */ 3498 const char *device_get_devnode(struct device *dev, 3499 umode_t *mode, kuid_t *uid, kgid_t *gid, 3500 const char **tmp) 3501 { 3502 char *s; 3503 3504 *tmp = NULL; 3505 3506 /* the device type may provide a specific name */ 3507 if (dev->type && dev->type->devnode) 3508 *tmp = dev->type->devnode(dev, mode, uid, gid); 3509 if (*tmp) 3510 return *tmp; 3511 3512 /* the class may provide a specific name */ 3513 if (dev->class && dev->class->devnode) 3514 *tmp = dev->class->devnode(dev, mode); 3515 if (*tmp) 3516 return *tmp; 3517 3518 /* return name without allocation, tmp == NULL */ 3519 if (strchr(dev_name(dev), '!') == NULL) 3520 return dev_name(dev); 3521 3522 /* replace '!' in the name with '/' */ 3523 s = kstrdup(dev_name(dev), GFP_KERNEL); 3524 if (!s) 3525 return NULL; 3526 strreplace(s, '!', '/'); 3527 return *tmp = s; 3528 } 3529 3530 /** 3531 * device_for_each_child - device child iterator. 3532 * @parent: parent struct device. 3533 * @fn: function to be called for each device. 3534 * @data: data for the callback. 3535 * 3536 * Iterate over @parent's child devices, and call @fn for each, 3537 * passing it @data. 3538 * 3539 * We check the return of @fn each time. If it returns anything 3540 * other than 0, we break out and return that value. 3541 */ 3542 int device_for_each_child(struct device *parent, void *data, 3543 int (*fn)(struct device *dev, void *data)) 3544 { 3545 struct klist_iter i; 3546 struct device *child; 3547 int error = 0; 3548 3549 if (!parent->p) 3550 return 0; 3551 3552 klist_iter_init(&parent->p->klist_children, &i); 3553 while (!error && (child = next_device(&i))) 3554 error = fn(child, data); 3555 klist_iter_exit(&i); 3556 return error; 3557 } 3558 EXPORT_SYMBOL_GPL(device_for_each_child); 3559 3560 /** 3561 * device_for_each_child_reverse - device child iterator in reversed order. 3562 * @parent: parent struct device. 3563 * @fn: function to be called for each device. 3564 * @data: data for the callback. 3565 * 3566 * Iterate over @parent's child devices, and call @fn for each, 3567 * passing it @data. 3568 * 3569 * We check the return of @fn each time. If it returns anything 3570 * other than 0, we break out and return that value. 3571 */ 3572 int device_for_each_child_reverse(struct device *parent, void *data, 3573 int (*fn)(struct device *dev, void *data)) 3574 { 3575 struct klist_iter i; 3576 struct device *child; 3577 int error = 0; 3578 3579 if (!parent->p) 3580 return 0; 3581 3582 klist_iter_init(&parent->p->klist_children, &i); 3583 while ((child = prev_device(&i)) && !error) 3584 error = fn(child, data); 3585 klist_iter_exit(&i); 3586 return error; 3587 } 3588 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3589 3590 /** 3591 * device_find_child - device iterator for locating a particular device. 3592 * @parent: parent struct device 3593 * @match: Callback function to check device 3594 * @data: Data to pass to match function 3595 * 3596 * This is similar to the device_for_each_child() function above, but it 3597 * returns a reference to a device that is 'found' for later use, as 3598 * determined by the @match callback. 3599 * 3600 * The callback should return 0 if the device doesn't match and non-zero 3601 * if it does. If the callback returns non-zero and a reference to the 3602 * current device can be obtained, this function will return to the caller 3603 * and not iterate over any more devices. 3604 * 3605 * NOTE: you will need to drop the reference with put_device() after use. 3606 */ 3607 struct device *device_find_child(struct device *parent, void *data, 3608 int (*match)(struct device *dev, void *data)) 3609 { 3610 struct klist_iter i; 3611 struct device *child; 3612 3613 if (!parent) 3614 return NULL; 3615 3616 klist_iter_init(&parent->p->klist_children, &i); 3617 while ((child = next_device(&i))) 3618 if (match(child, data) && get_device(child)) 3619 break; 3620 klist_iter_exit(&i); 3621 return child; 3622 } 3623 EXPORT_SYMBOL_GPL(device_find_child); 3624 3625 /** 3626 * device_find_child_by_name - device iterator for locating a child device. 3627 * @parent: parent struct device 3628 * @name: name of the child device 3629 * 3630 * This is similar to the device_find_child() function above, but it 3631 * returns a reference to a device that has the name @name. 3632 * 3633 * NOTE: you will need to drop the reference with put_device() after use. 3634 */ 3635 struct device *device_find_child_by_name(struct device *parent, 3636 const char *name) 3637 { 3638 struct klist_iter i; 3639 struct device *child; 3640 3641 if (!parent) 3642 return NULL; 3643 3644 klist_iter_init(&parent->p->klist_children, &i); 3645 while ((child = next_device(&i))) 3646 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3647 break; 3648 klist_iter_exit(&i); 3649 return child; 3650 } 3651 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3652 3653 int __init devices_init(void) 3654 { 3655 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3656 if (!devices_kset) 3657 return -ENOMEM; 3658 dev_kobj = kobject_create_and_add("dev", NULL); 3659 if (!dev_kobj) 3660 goto dev_kobj_err; 3661 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3662 if (!sysfs_dev_block_kobj) 3663 goto block_kobj_err; 3664 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3665 if (!sysfs_dev_char_kobj) 3666 goto char_kobj_err; 3667 3668 return 0; 3669 3670 char_kobj_err: 3671 kobject_put(sysfs_dev_block_kobj); 3672 block_kobj_err: 3673 kobject_put(dev_kobj); 3674 dev_kobj_err: 3675 kset_unregister(devices_kset); 3676 return -ENOMEM; 3677 } 3678 3679 static int device_check_offline(struct device *dev, void *not_used) 3680 { 3681 int ret; 3682 3683 ret = device_for_each_child(dev, NULL, device_check_offline); 3684 if (ret) 3685 return ret; 3686 3687 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3688 } 3689 3690 /** 3691 * device_offline - Prepare the device for hot-removal. 3692 * @dev: Device to be put offline. 3693 * 3694 * Execute the device bus type's .offline() callback, if present, to prepare 3695 * the device for a subsequent hot-removal. If that succeeds, the device must 3696 * not be used until either it is removed or its bus type's .online() callback 3697 * is executed. 3698 * 3699 * Call under device_hotplug_lock. 3700 */ 3701 int device_offline(struct device *dev) 3702 { 3703 int ret; 3704 3705 if (dev->offline_disabled) 3706 return -EPERM; 3707 3708 ret = device_for_each_child(dev, NULL, device_check_offline); 3709 if (ret) 3710 return ret; 3711 3712 device_lock(dev); 3713 if (device_supports_offline(dev)) { 3714 if (dev->offline) { 3715 ret = 1; 3716 } else { 3717 ret = dev->bus->offline(dev); 3718 if (!ret) { 3719 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3720 dev->offline = true; 3721 } 3722 } 3723 } 3724 device_unlock(dev); 3725 3726 return ret; 3727 } 3728 3729 /** 3730 * device_online - Put the device back online after successful device_offline(). 3731 * @dev: Device to be put back online. 3732 * 3733 * If device_offline() has been successfully executed for @dev, but the device 3734 * has not been removed subsequently, execute its bus type's .online() callback 3735 * to indicate that the device can be used again. 3736 * 3737 * Call under device_hotplug_lock. 3738 */ 3739 int device_online(struct device *dev) 3740 { 3741 int ret = 0; 3742 3743 device_lock(dev); 3744 if (device_supports_offline(dev)) { 3745 if (dev->offline) { 3746 ret = dev->bus->online(dev); 3747 if (!ret) { 3748 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3749 dev->offline = false; 3750 } 3751 } else { 3752 ret = 1; 3753 } 3754 } 3755 device_unlock(dev); 3756 3757 return ret; 3758 } 3759 3760 struct root_device { 3761 struct device dev; 3762 struct module *owner; 3763 }; 3764 3765 static inline struct root_device *to_root_device(struct device *d) 3766 { 3767 return container_of(d, struct root_device, dev); 3768 } 3769 3770 static void root_device_release(struct device *dev) 3771 { 3772 kfree(to_root_device(dev)); 3773 } 3774 3775 /** 3776 * __root_device_register - allocate and register a root device 3777 * @name: root device name 3778 * @owner: owner module of the root device, usually THIS_MODULE 3779 * 3780 * This function allocates a root device and registers it 3781 * using device_register(). In order to free the returned 3782 * device, use root_device_unregister(). 3783 * 3784 * Root devices are dummy devices which allow other devices 3785 * to be grouped under /sys/devices. Use this function to 3786 * allocate a root device and then use it as the parent of 3787 * any device which should appear under /sys/devices/{name} 3788 * 3789 * The /sys/devices/{name} directory will also contain a 3790 * 'module' symlink which points to the @owner directory 3791 * in sysfs. 3792 * 3793 * Returns &struct device pointer on success, or ERR_PTR() on error. 3794 * 3795 * Note: You probably want to use root_device_register(). 3796 */ 3797 struct device *__root_device_register(const char *name, struct module *owner) 3798 { 3799 struct root_device *root; 3800 int err = -ENOMEM; 3801 3802 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3803 if (!root) 3804 return ERR_PTR(err); 3805 3806 err = dev_set_name(&root->dev, "%s", name); 3807 if (err) { 3808 kfree(root); 3809 return ERR_PTR(err); 3810 } 3811 3812 root->dev.release = root_device_release; 3813 3814 err = device_register(&root->dev); 3815 if (err) { 3816 put_device(&root->dev); 3817 return ERR_PTR(err); 3818 } 3819 3820 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3821 if (owner) { 3822 struct module_kobject *mk = &owner->mkobj; 3823 3824 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3825 if (err) { 3826 device_unregister(&root->dev); 3827 return ERR_PTR(err); 3828 } 3829 root->owner = owner; 3830 } 3831 #endif 3832 3833 return &root->dev; 3834 } 3835 EXPORT_SYMBOL_GPL(__root_device_register); 3836 3837 /** 3838 * root_device_unregister - unregister and free a root device 3839 * @dev: device going away 3840 * 3841 * This function unregisters and cleans up a device that was created by 3842 * root_device_register(). 3843 */ 3844 void root_device_unregister(struct device *dev) 3845 { 3846 struct root_device *root = to_root_device(dev); 3847 3848 if (root->owner) 3849 sysfs_remove_link(&root->dev.kobj, "module"); 3850 3851 device_unregister(dev); 3852 } 3853 EXPORT_SYMBOL_GPL(root_device_unregister); 3854 3855 3856 static void device_create_release(struct device *dev) 3857 { 3858 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3859 kfree(dev); 3860 } 3861 3862 static __printf(6, 0) struct device * 3863 device_create_groups_vargs(struct class *class, struct device *parent, 3864 dev_t devt, void *drvdata, 3865 const struct attribute_group **groups, 3866 const char *fmt, va_list args) 3867 { 3868 struct device *dev = NULL; 3869 int retval = -ENODEV; 3870 3871 if (class == NULL || IS_ERR(class)) 3872 goto error; 3873 3874 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3875 if (!dev) { 3876 retval = -ENOMEM; 3877 goto error; 3878 } 3879 3880 device_initialize(dev); 3881 dev->devt = devt; 3882 dev->class = class; 3883 dev->parent = parent; 3884 dev->groups = groups; 3885 dev->release = device_create_release; 3886 dev_set_drvdata(dev, drvdata); 3887 3888 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3889 if (retval) 3890 goto error; 3891 3892 retval = device_add(dev); 3893 if (retval) 3894 goto error; 3895 3896 return dev; 3897 3898 error: 3899 put_device(dev); 3900 return ERR_PTR(retval); 3901 } 3902 3903 /** 3904 * device_create - creates a device and registers it with sysfs 3905 * @class: pointer to the struct class that this device should be registered to 3906 * @parent: pointer to the parent struct device of this new device, if any 3907 * @devt: the dev_t for the char device to be added 3908 * @drvdata: the data to be added to the device for callbacks 3909 * @fmt: string for the device's name 3910 * 3911 * This function can be used by char device classes. A struct device 3912 * will be created in sysfs, registered to the specified class. 3913 * 3914 * A "dev" file will be created, showing the dev_t for the device, if 3915 * the dev_t is not 0,0. 3916 * If a pointer to a parent struct device is passed in, the newly created 3917 * struct device will be a child of that device in sysfs. 3918 * The pointer to the struct device will be returned from the call. 3919 * Any further sysfs files that might be required can be created using this 3920 * pointer. 3921 * 3922 * Returns &struct device pointer on success, or ERR_PTR() on error. 3923 * 3924 * Note: the struct class passed to this function must have previously 3925 * been created with a call to class_create(). 3926 */ 3927 struct device *device_create(struct class *class, struct device *parent, 3928 dev_t devt, void *drvdata, const char *fmt, ...) 3929 { 3930 va_list vargs; 3931 struct device *dev; 3932 3933 va_start(vargs, fmt); 3934 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3935 fmt, vargs); 3936 va_end(vargs); 3937 return dev; 3938 } 3939 EXPORT_SYMBOL_GPL(device_create); 3940 3941 /** 3942 * device_create_with_groups - creates a device and registers it with sysfs 3943 * @class: pointer to the struct class that this device should be registered to 3944 * @parent: pointer to the parent struct device of this new device, if any 3945 * @devt: the dev_t for the char device to be added 3946 * @drvdata: the data to be added to the device for callbacks 3947 * @groups: NULL-terminated list of attribute groups to be created 3948 * @fmt: string for the device's name 3949 * 3950 * This function can be used by char device classes. A struct device 3951 * will be created in sysfs, registered to the specified class. 3952 * Additional attributes specified in the groups parameter will also 3953 * be created automatically. 3954 * 3955 * A "dev" file will be created, showing the dev_t for the device, if 3956 * the dev_t is not 0,0. 3957 * If a pointer to a parent struct device is passed in, the newly created 3958 * struct device will be a child of that device in sysfs. 3959 * The pointer to the struct device will be returned from the call. 3960 * Any further sysfs files that might be required can be created using this 3961 * pointer. 3962 * 3963 * Returns &struct device pointer on success, or ERR_PTR() on error. 3964 * 3965 * Note: the struct class passed to this function must have previously 3966 * been created with a call to class_create(). 3967 */ 3968 struct device *device_create_with_groups(struct class *class, 3969 struct device *parent, dev_t devt, 3970 void *drvdata, 3971 const struct attribute_group **groups, 3972 const char *fmt, ...) 3973 { 3974 va_list vargs; 3975 struct device *dev; 3976 3977 va_start(vargs, fmt); 3978 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3979 fmt, vargs); 3980 va_end(vargs); 3981 return dev; 3982 } 3983 EXPORT_SYMBOL_GPL(device_create_with_groups); 3984 3985 /** 3986 * device_destroy - removes a device that was created with device_create() 3987 * @class: pointer to the struct class that this device was registered with 3988 * @devt: the dev_t of the device that was previously registered 3989 * 3990 * This call unregisters and cleans up a device that was created with a 3991 * call to device_create(). 3992 */ 3993 void device_destroy(struct class *class, dev_t devt) 3994 { 3995 struct device *dev; 3996 3997 dev = class_find_device_by_devt(class, devt); 3998 if (dev) { 3999 put_device(dev); 4000 device_unregister(dev); 4001 } 4002 } 4003 EXPORT_SYMBOL_GPL(device_destroy); 4004 4005 /** 4006 * device_rename - renames a device 4007 * @dev: the pointer to the struct device to be renamed 4008 * @new_name: the new name of the device 4009 * 4010 * It is the responsibility of the caller to provide mutual 4011 * exclusion between two different calls of device_rename 4012 * on the same device to ensure that new_name is valid and 4013 * won't conflict with other devices. 4014 * 4015 * Note: Don't call this function. Currently, the networking layer calls this 4016 * function, but that will change. The following text from Kay Sievers offers 4017 * some insight: 4018 * 4019 * Renaming devices is racy at many levels, symlinks and other stuff are not 4020 * replaced atomically, and you get a "move" uevent, but it's not easy to 4021 * connect the event to the old and new device. Device nodes are not renamed at 4022 * all, there isn't even support for that in the kernel now. 4023 * 4024 * In the meantime, during renaming, your target name might be taken by another 4025 * driver, creating conflicts. Or the old name is taken directly after you 4026 * renamed it -- then you get events for the same DEVPATH, before you even see 4027 * the "move" event. It's just a mess, and nothing new should ever rely on 4028 * kernel device renaming. Besides that, it's not even implemented now for 4029 * other things than (driver-core wise very simple) network devices. 4030 * 4031 * We are currently about to change network renaming in udev to completely 4032 * disallow renaming of devices in the same namespace as the kernel uses, 4033 * because we can't solve the problems properly, that arise with swapping names 4034 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4035 * be allowed to some other name than eth[0-9]*, for the aforementioned 4036 * reasons. 4037 * 4038 * Make up a "real" name in the driver before you register anything, or add 4039 * some other attributes for userspace to find the device, or use udev to add 4040 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4041 * don't even want to get into that and try to implement the missing pieces in 4042 * the core. We really have other pieces to fix in the driver core mess. :) 4043 */ 4044 int device_rename(struct device *dev, const char *new_name) 4045 { 4046 struct kobject *kobj = &dev->kobj; 4047 char *old_device_name = NULL; 4048 int error; 4049 4050 dev = get_device(dev); 4051 if (!dev) 4052 return -EINVAL; 4053 4054 dev_dbg(dev, "renaming to %s\n", new_name); 4055 4056 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4057 if (!old_device_name) { 4058 error = -ENOMEM; 4059 goto out; 4060 } 4061 4062 if (dev->class) { 4063 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4064 kobj, old_device_name, 4065 new_name, kobject_namespace(kobj)); 4066 if (error) 4067 goto out; 4068 } 4069 4070 error = kobject_rename(kobj, new_name); 4071 if (error) 4072 goto out; 4073 4074 out: 4075 put_device(dev); 4076 4077 kfree(old_device_name); 4078 4079 return error; 4080 } 4081 EXPORT_SYMBOL_GPL(device_rename); 4082 4083 static int device_move_class_links(struct device *dev, 4084 struct device *old_parent, 4085 struct device *new_parent) 4086 { 4087 int error = 0; 4088 4089 if (old_parent) 4090 sysfs_remove_link(&dev->kobj, "device"); 4091 if (new_parent) 4092 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4093 "device"); 4094 return error; 4095 } 4096 4097 /** 4098 * device_move - moves a device to a new parent 4099 * @dev: the pointer to the struct device to be moved 4100 * @new_parent: the new parent of the device (can be NULL) 4101 * @dpm_order: how to reorder the dpm_list 4102 */ 4103 int device_move(struct device *dev, struct device *new_parent, 4104 enum dpm_order dpm_order) 4105 { 4106 int error; 4107 struct device *old_parent; 4108 struct kobject *new_parent_kobj; 4109 4110 dev = get_device(dev); 4111 if (!dev) 4112 return -EINVAL; 4113 4114 device_pm_lock(); 4115 new_parent = get_device(new_parent); 4116 new_parent_kobj = get_device_parent(dev, new_parent); 4117 if (IS_ERR(new_parent_kobj)) { 4118 error = PTR_ERR(new_parent_kobj); 4119 put_device(new_parent); 4120 goto out; 4121 } 4122 4123 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4124 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4125 error = kobject_move(&dev->kobj, new_parent_kobj); 4126 if (error) { 4127 cleanup_glue_dir(dev, new_parent_kobj); 4128 put_device(new_parent); 4129 goto out; 4130 } 4131 old_parent = dev->parent; 4132 dev->parent = new_parent; 4133 if (old_parent) 4134 klist_remove(&dev->p->knode_parent); 4135 if (new_parent) { 4136 klist_add_tail(&dev->p->knode_parent, 4137 &new_parent->p->klist_children); 4138 set_dev_node(dev, dev_to_node(new_parent)); 4139 } 4140 4141 if (dev->class) { 4142 error = device_move_class_links(dev, old_parent, new_parent); 4143 if (error) { 4144 /* We ignore errors on cleanup since we're hosed anyway... */ 4145 device_move_class_links(dev, new_parent, old_parent); 4146 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4147 if (new_parent) 4148 klist_remove(&dev->p->knode_parent); 4149 dev->parent = old_parent; 4150 if (old_parent) { 4151 klist_add_tail(&dev->p->knode_parent, 4152 &old_parent->p->klist_children); 4153 set_dev_node(dev, dev_to_node(old_parent)); 4154 } 4155 } 4156 cleanup_glue_dir(dev, new_parent_kobj); 4157 put_device(new_parent); 4158 goto out; 4159 } 4160 } 4161 switch (dpm_order) { 4162 case DPM_ORDER_NONE: 4163 break; 4164 case DPM_ORDER_DEV_AFTER_PARENT: 4165 device_pm_move_after(dev, new_parent); 4166 devices_kset_move_after(dev, new_parent); 4167 break; 4168 case DPM_ORDER_PARENT_BEFORE_DEV: 4169 device_pm_move_before(new_parent, dev); 4170 devices_kset_move_before(new_parent, dev); 4171 break; 4172 case DPM_ORDER_DEV_LAST: 4173 device_pm_move_last(dev); 4174 devices_kset_move_last(dev); 4175 break; 4176 } 4177 4178 put_device(old_parent); 4179 out: 4180 device_pm_unlock(); 4181 put_device(dev); 4182 return error; 4183 } 4184 EXPORT_SYMBOL_GPL(device_move); 4185 4186 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4187 kgid_t kgid) 4188 { 4189 struct kobject *kobj = &dev->kobj; 4190 struct class *class = dev->class; 4191 const struct device_type *type = dev->type; 4192 int error; 4193 4194 if (class) { 4195 /* 4196 * Change the device groups of the device class for @dev to 4197 * @kuid/@kgid. 4198 */ 4199 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4200 kgid); 4201 if (error) 4202 return error; 4203 } 4204 4205 if (type) { 4206 /* 4207 * Change the device groups of the device type for @dev to 4208 * @kuid/@kgid. 4209 */ 4210 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4211 kgid); 4212 if (error) 4213 return error; 4214 } 4215 4216 /* Change the device groups of @dev to @kuid/@kgid. */ 4217 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4218 if (error) 4219 return error; 4220 4221 if (device_supports_offline(dev) && !dev->offline_disabled) { 4222 /* Change online device attributes of @dev to @kuid/@kgid. */ 4223 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4224 kuid, kgid); 4225 if (error) 4226 return error; 4227 } 4228 4229 return 0; 4230 } 4231 4232 /** 4233 * device_change_owner - change the owner of an existing device. 4234 * @dev: device. 4235 * @kuid: new owner's kuid 4236 * @kgid: new owner's kgid 4237 * 4238 * This changes the owner of @dev and its corresponding sysfs entries to 4239 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4240 * core. 4241 * 4242 * Returns 0 on success or error code on failure. 4243 */ 4244 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4245 { 4246 int error; 4247 struct kobject *kobj = &dev->kobj; 4248 4249 dev = get_device(dev); 4250 if (!dev) 4251 return -EINVAL; 4252 4253 /* 4254 * Change the kobject and the default attributes and groups of the 4255 * ktype associated with it to @kuid/@kgid. 4256 */ 4257 error = sysfs_change_owner(kobj, kuid, kgid); 4258 if (error) 4259 goto out; 4260 4261 /* 4262 * Change the uevent file for @dev to the new owner. The uevent file 4263 * was created in a separate step when @dev got added and we mirror 4264 * that step here. 4265 */ 4266 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4267 kgid); 4268 if (error) 4269 goto out; 4270 4271 /* 4272 * Change the device groups, the device groups associated with the 4273 * device class, and the groups associated with the device type of @dev 4274 * to @kuid/@kgid. 4275 */ 4276 error = device_attrs_change_owner(dev, kuid, kgid); 4277 if (error) 4278 goto out; 4279 4280 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4281 if (error) 4282 goto out; 4283 4284 #ifdef CONFIG_BLOCK 4285 if (sysfs_deprecated && dev->class == &block_class) 4286 goto out; 4287 #endif 4288 4289 /* 4290 * Change the owner of the symlink located in the class directory of 4291 * the device class associated with @dev which points to the actual 4292 * directory entry for @dev to @kuid/@kgid. This ensures that the 4293 * symlink shows the same permissions as its target. 4294 */ 4295 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4296 dev_name(dev), kuid, kgid); 4297 if (error) 4298 goto out; 4299 4300 out: 4301 put_device(dev); 4302 return error; 4303 } 4304 EXPORT_SYMBOL_GPL(device_change_owner); 4305 4306 /** 4307 * device_shutdown - call ->shutdown() on each device to shutdown. 4308 */ 4309 void device_shutdown(void) 4310 { 4311 struct device *dev, *parent; 4312 4313 wait_for_device_probe(); 4314 device_block_probing(); 4315 4316 cpufreq_suspend(); 4317 4318 spin_lock(&devices_kset->list_lock); 4319 /* 4320 * Walk the devices list backward, shutting down each in turn. 4321 * Beware that device unplug events may also start pulling 4322 * devices offline, even as the system is shutting down. 4323 */ 4324 while (!list_empty(&devices_kset->list)) { 4325 dev = list_entry(devices_kset->list.prev, struct device, 4326 kobj.entry); 4327 4328 /* 4329 * hold reference count of device's parent to 4330 * prevent it from being freed because parent's 4331 * lock is to be held 4332 */ 4333 parent = get_device(dev->parent); 4334 get_device(dev); 4335 /* 4336 * Make sure the device is off the kset list, in the 4337 * event that dev->*->shutdown() doesn't remove it. 4338 */ 4339 list_del_init(&dev->kobj.entry); 4340 spin_unlock(&devices_kset->list_lock); 4341 4342 /* hold lock to avoid race with probe/release */ 4343 if (parent) 4344 device_lock(parent); 4345 device_lock(dev); 4346 4347 /* Don't allow any more runtime suspends */ 4348 pm_runtime_get_noresume(dev); 4349 pm_runtime_barrier(dev); 4350 4351 if (dev->class && dev->class->shutdown_pre) { 4352 if (initcall_debug) 4353 dev_info(dev, "shutdown_pre\n"); 4354 dev->class->shutdown_pre(dev); 4355 } 4356 if (dev->bus && dev->bus->shutdown) { 4357 if (initcall_debug) 4358 dev_info(dev, "shutdown\n"); 4359 dev->bus->shutdown(dev); 4360 } else if (dev->driver && dev->driver->shutdown) { 4361 if (initcall_debug) 4362 dev_info(dev, "shutdown\n"); 4363 dev->driver->shutdown(dev); 4364 } 4365 4366 device_unlock(dev); 4367 if (parent) 4368 device_unlock(parent); 4369 4370 put_device(dev); 4371 put_device(parent); 4372 4373 spin_lock(&devices_kset->list_lock); 4374 } 4375 spin_unlock(&devices_kset->list_lock); 4376 } 4377 4378 /* 4379 * Device logging functions 4380 */ 4381 4382 #ifdef CONFIG_PRINTK 4383 static void 4384 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4385 { 4386 const char *subsys; 4387 4388 memset(dev_info, 0, sizeof(*dev_info)); 4389 4390 if (dev->class) 4391 subsys = dev->class->name; 4392 else if (dev->bus) 4393 subsys = dev->bus->name; 4394 else 4395 return; 4396 4397 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4398 4399 /* 4400 * Add device identifier DEVICE=: 4401 * b12:8 block dev_t 4402 * c127:3 char dev_t 4403 * n8 netdev ifindex 4404 * +sound:card0 subsystem:devname 4405 */ 4406 if (MAJOR(dev->devt)) { 4407 char c; 4408 4409 if (strcmp(subsys, "block") == 0) 4410 c = 'b'; 4411 else 4412 c = 'c'; 4413 4414 snprintf(dev_info->device, sizeof(dev_info->device), 4415 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4416 } else if (strcmp(subsys, "net") == 0) { 4417 struct net_device *net = to_net_dev(dev); 4418 4419 snprintf(dev_info->device, sizeof(dev_info->device), 4420 "n%u", net->ifindex); 4421 } else { 4422 snprintf(dev_info->device, sizeof(dev_info->device), 4423 "+%s:%s", subsys, dev_name(dev)); 4424 } 4425 } 4426 4427 int dev_vprintk_emit(int level, const struct device *dev, 4428 const char *fmt, va_list args) 4429 { 4430 struct dev_printk_info dev_info; 4431 4432 set_dev_info(dev, &dev_info); 4433 4434 return vprintk_emit(0, level, &dev_info, fmt, args); 4435 } 4436 EXPORT_SYMBOL(dev_vprintk_emit); 4437 4438 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4439 { 4440 va_list args; 4441 int r; 4442 4443 va_start(args, fmt); 4444 4445 r = dev_vprintk_emit(level, dev, fmt, args); 4446 4447 va_end(args); 4448 4449 return r; 4450 } 4451 EXPORT_SYMBOL(dev_printk_emit); 4452 4453 static void __dev_printk(const char *level, const struct device *dev, 4454 struct va_format *vaf) 4455 { 4456 if (dev) 4457 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4458 dev_driver_string(dev), dev_name(dev), vaf); 4459 else 4460 printk("%s(NULL device *): %pV", level, vaf); 4461 } 4462 4463 void dev_printk(const char *level, const struct device *dev, 4464 const char *fmt, ...) 4465 { 4466 struct va_format vaf; 4467 va_list args; 4468 4469 va_start(args, fmt); 4470 4471 vaf.fmt = fmt; 4472 vaf.va = &args; 4473 4474 __dev_printk(level, dev, &vaf); 4475 4476 va_end(args); 4477 } 4478 EXPORT_SYMBOL(dev_printk); 4479 4480 #define define_dev_printk_level(func, kern_level) \ 4481 void func(const struct device *dev, const char *fmt, ...) \ 4482 { \ 4483 struct va_format vaf; \ 4484 va_list args; \ 4485 \ 4486 va_start(args, fmt); \ 4487 \ 4488 vaf.fmt = fmt; \ 4489 vaf.va = &args; \ 4490 \ 4491 __dev_printk(kern_level, dev, &vaf); \ 4492 \ 4493 va_end(args); \ 4494 } \ 4495 EXPORT_SYMBOL(func); 4496 4497 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4498 define_dev_printk_level(_dev_alert, KERN_ALERT); 4499 define_dev_printk_level(_dev_crit, KERN_CRIT); 4500 define_dev_printk_level(_dev_err, KERN_ERR); 4501 define_dev_printk_level(_dev_warn, KERN_WARNING); 4502 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4503 define_dev_printk_level(_dev_info, KERN_INFO); 4504 4505 #endif 4506 4507 /** 4508 * dev_err_probe - probe error check and log helper 4509 * @dev: the pointer to the struct device 4510 * @err: error value to test 4511 * @fmt: printf-style format string 4512 * @...: arguments as specified in the format string 4513 * 4514 * This helper implements common pattern present in probe functions for error 4515 * checking: print debug or error message depending if the error value is 4516 * -EPROBE_DEFER and propagate error upwards. 4517 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4518 * checked later by reading devices_deferred debugfs attribute. 4519 * It replaces code sequence:: 4520 * 4521 * if (err != -EPROBE_DEFER) 4522 * dev_err(dev, ...); 4523 * else 4524 * dev_dbg(dev, ...); 4525 * return err; 4526 * 4527 * with:: 4528 * 4529 * return dev_err_probe(dev, err, ...); 4530 * 4531 * Returns @err. 4532 * 4533 */ 4534 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4535 { 4536 struct va_format vaf; 4537 va_list args; 4538 4539 va_start(args, fmt); 4540 vaf.fmt = fmt; 4541 vaf.va = &args; 4542 4543 if (err != -EPROBE_DEFER) { 4544 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4545 } else { 4546 device_set_deferred_probe_reason(dev, &vaf); 4547 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4548 } 4549 4550 va_end(args); 4551 4552 return err; 4553 } 4554 EXPORT_SYMBOL_GPL(dev_err_probe); 4555 4556 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4557 { 4558 return fwnode && !IS_ERR(fwnode->secondary); 4559 } 4560 4561 /** 4562 * set_primary_fwnode - Change the primary firmware node of a given device. 4563 * @dev: Device to handle. 4564 * @fwnode: New primary firmware node of the device. 4565 * 4566 * Set the device's firmware node pointer to @fwnode, but if a secondary 4567 * firmware node of the device is present, preserve it. 4568 * 4569 * Valid fwnode cases are: 4570 * - primary --> secondary --> -ENODEV 4571 * - primary --> NULL 4572 * - secondary --> -ENODEV 4573 * - NULL 4574 */ 4575 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4576 { 4577 struct device *parent = dev->parent; 4578 struct fwnode_handle *fn = dev->fwnode; 4579 4580 if (fwnode) { 4581 if (fwnode_is_primary(fn)) 4582 fn = fn->secondary; 4583 4584 if (fn) { 4585 WARN_ON(fwnode->secondary); 4586 fwnode->secondary = fn; 4587 } 4588 dev->fwnode = fwnode; 4589 } else { 4590 if (fwnode_is_primary(fn)) { 4591 dev->fwnode = fn->secondary; 4592 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4593 if (!(parent && fn == parent->fwnode)) 4594 fn->secondary = NULL; 4595 } else { 4596 dev->fwnode = NULL; 4597 } 4598 } 4599 } 4600 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4601 4602 /** 4603 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4604 * @dev: Device to handle. 4605 * @fwnode: New secondary firmware node of the device. 4606 * 4607 * If a primary firmware node of the device is present, set its secondary 4608 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4609 * @fwnode. 4610 */ 4611 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4612 { 4613 if (fwnode) 4614 fwnode->secondary = ERR_PTR(-ENODEV); 4615 4616 if (fwnode_is_primary(dev->fwnode)) 4617 dev->fwnode->secondary = fwnode; 4618 else 4619 dev->fwnode = fwnode; 4620 } 4621 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4622 4623 /** 4624 * device_set_of_node_from_dev - reuse device-tree node of another device 4625 * @dev: device whose device-tree node is being set 4626 * @dev2: device whose device-tree node is being reused 4627 * 4628 * Takes another reference to the new device-tree node after first dropping 4629 * any reference held to the old node. 4630 */ 4631 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4632 { 4633 of_node_put(dev->of_node); 4634 dev->of_node = of_node_get(dev2->of_node); 4635 dev->of_node_reused = true; 4636 } 4637 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4638 4639 int device_match_name(struct device *dev, const void *name) 4640 { 4641 return sysfs_streq(dev_name(dev), name); 4642 } 4643 EXPORT_SYMBOL_GPL(device_match_name); 4644 4645 int device_match_of_node(struct device *dev, const void *np) 4646 { 4647 return dev->of_node == np; 4648 } 4649 EXPORT_SYMBOL_GPL(device_match_of_node); 4650 4651 int device_match_fwnode(struct device *dev, const void *fwnode) 4652 { 4653 return dev_fwnode(dev) == fwnode; 4654 } 4655 EXPORT_SYMBOL_GPL(device_match_fwnode); 4656 4657 int device_match_devt(struct device *dev, const void *pdevt) 4658 { 4659 return dev->devt == *(dev_t *)pdevt; 4660 } 4661 EXPORT_SYMBOL_GPL(device_match_devt); 4662 4663 int device_match_acpi_dev(struct device *dev, const void *adev) 4664 { 4665 return ACPI_COMPANION(dev) == adev; 4666 } 4667 EXPORT_SYMBOL(device_match_acpi_dev); 4668 4669 int device_match_any(struct device *dev, const void *unused) 4670 { 4671 return 1; 4672 } 4673 EXPORT_SYMBOL_GPL(device_match_any); 4674