1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/slab.h> 32 #include <linux/string_helpers.h> 33 #include <linux/swiotlb.h> 34 #include <linux/sysfs.h> 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 guard(mutex)(&fwnode_link_lock); 101 102 return __fwnode_link_add(con, sup, flags); 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 guard(mutex)(&fwnode_link_lock); 144 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 guard(mutex)(&fwnode_link_lock); 160 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER)) 464 output = "supplier unbind"; 465 else if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)); 489 } 490 static DEVICE_ATTR_RO(sync_state_only); 491 492 static struct attribute *devlink_attrs[] = { 493 &dev_attr_status.attr, 494 &dev_attr_auto_remove_on.attr, 495 &dev_attr_runtime_pm.attr, 496 &dev_attr_sync_state_only.attr, 497 NULL, 498 }; 499 ATTRIBUTE_GROUPS(devlink); 500 501 static void device_link_release_fn(struct work_struct *work) 502 { 503 struct device_link *link = container_of(work, struct device_link, rm_work); 504 505 /* Ensure that all references to the link object have been dropped. */ 506 device_link_synchronize_removal(); 507 508 pm_runtime_release_supplier(link); 509 /* 510 * If supplier_preactivated is set, the link has been dropped between 511 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 512 * in __driver_probe_device(). In that case, drop the supplier's 513 * PM-runtime usage counter to remove the reference taken by 514 * pm_runtime_get_suppliers(). 515 */ 516 if (link->supplier_preactivated) 517 pm_runtime_put_noidle(link->supplier); 518 519 pm_request_idle(link->supplier); 520 521 put_device(link->consumer); 522 put_device(link->supplier); 523 kfree(link); 524 } 525 526 static void devlink_dev_release(struct device *dev) 527 { 528 struct device_link *link = to_devlink(dev); 529 530 INIT_WORK(&link->rm_work, device_link_release_fn); 531 /* 532 * It may take a while to complete this work because of the SRCU 533 * synchronization in device_link_release_fn() and if the consumer or 534 * supplier devices get deleted when it runs, so put it into the 535 * dedicated workqueue. 536 */ 537 queue_work(device_link_wq, &link->rm_work); 538 } 539 540 /** 541 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 542 */ 543 void device_link_wait_removal(void) 544 { 545 /* 546 * devlink removal jobs are queued in the dedicated work queue. 547 * To be sure that all removal jobs are terminated, ensure that any 548 * scheduled work has run to completion. 549 */ 550 flush_workqueue(device_link_wq); 551 } 552 EXPORT_SYMBOL_GPL(device_link_wait_removal); 553 554 static const struct class devlink_class = { 555 .name = "devlink", 556 .dev_groups = devlink_groups, 557 .dev_release = devlink_dev_release, 558 }; 559 560 static int devlink_add_symlinks(struct device *dev) 561 { 562 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 563 int ret; 564 struct device_link *link = to_devlink(dev); 565 struct device *sup = link->supplier; 566 struct device *con = link->consumer; 567 568 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 569 if (ret) 570 goto out; 571 572 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 573 if (ret) 574 goto err_con; 575 576 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 577 if (!buf_con) { 578 ret = -ENOMEM; 579 goto err_con_dev; 580 } 581 582 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 583 if (ret) 584 goto err_con_dev; 585 586 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 587 if (!buf_sup) { 588 ret = -ENOMEM; 589 goto err_sup_dev; 590 } 591 592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 593 if (ret) 594 goto err_sup_dev; 595 596 goto out; 597 598 err_sup_dev: 599 sysfs_remove_link(&sup->kobj, buf_con); 600 err_con_dev: 601 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 602 err_con: 603 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 604 out: 605 return ret; 606 } 607 608 static void devlink_remove_symlinks(struct device *dev) 609 { 610 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 611 struct device_link *link = to_devlink(dev); 612 struct device *sup = link->supplier; 613 struct device *con = link->consumer; 614 615 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 616 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 617 618 if (device_is_registered(con)) { 619 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 620 if (!buf_sup) 621 goto out; 622 sysfs_remove_link(&con->kobj, buf_sup); 623 } 624 625 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 626 if (!buf_con) 627 goto out; 628 sysfs_remove_link(&sup->kobj, buf_con); 629 630 return; 631 632 out: 633 WARN(1, "Unable to properly free device link symlinks!\n"); 634 } 635 636 static struct class_interface devlink_class_intf = { 637 .class = &devlink_class, 638 .add_dev = devlink_add_symlinks, 639 .remove_dev = devlink_remove_symlinks, 640 }; 641 642 static int __init devlink_class_init(void) 643 { 644 int ret; 645 646 ret = class_register(&devlink_class); 647 if (ret) 648 return ret; 649 650 ret = class_interface_register(&devlink_class_intf); 651 if (ret) 652 class_unregister(&devlink_class); 653 654 return ret; 655 } 656 postcore_initcall(devlink_class_init); 657 658 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 659 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 660 DL_FLAG_AUTOPROBE_CONSUMER | \ 661 DL_FLAG_SYNC_STATE_ONLY | \ 662 DL_FLAG_INFERRED | \ 663 DL_FLAG_CYCLE) 664 665 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 666 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 667 668 /** 669 * device_link_add - Create a link between two devices. 670 * @consumer: Consumer end of the link. 671 * @supplier: Supplier end of the link. 672 * @flags: Link flags. 673 * 674 * Return: On success, a device_link struct will be returned. 675 * On error or invalid flag settings, NULL will be returned. 676 * 677 * The caller is responsible for the proper synchronization of the link creation 678 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 679 * runtime PM framework to take the link into account. Second, if the 680 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 681 * be forced into the active meta state and reference-counted upon the creation 682 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 683 * ignored. 684 * 685 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 686 * expected to release the link returned by it directly with the help of either 687 * device_link_del() or device_link_remove(). 688 * 689 * If that flag is not set, however, the caller of this function is handing the 690 * management of the link over to the driver core entirely and its return value 691 * can only be used to check whether or not the link is present. In that case, 692 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 693 * flags can be used to indicate to the driver core when the link can be safely 694 * deleted. Namely, setting one of them in @flags indicates to the driver core 695 * that the link is not going to be used (by the given caller of this function) 696 * after unbinding the consumer or supplier driver, respectively, from its 697 * device, so the link can be deleted at that point. If none of them is set, 698 * the link will be maintained until one of the devices pointed to by it (either 699 * the consumer or the supplier) is unregistered. 700 * 701 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 702 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 703 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 704 * be used to request the driver core to automatically probe for a consumer 705 * driver after successfully binding a driver to the supplier device. 706 * 707 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 708 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 709 * the same time is invalid and will cause NULL to be returned upfront. 710 * However, if a device link between the given @consumer and @supplier pair 711 * exists already when this function is called for them, the existing link will 712 * be returned regardless of its current type and status (the link's flags may 713 * be modified then). The caller of this function is then expected to treat 714 * the link as though it has just been created, so (in particular) if 715 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 716 * explicitly when not needed any more (as stated above). 717 * 718 * A side effect of the link creation is re-ordering of dpm_list and the 719 * devices_kset list by moving the consumer device and all devices depending 720 * on it to the ends of these lists (that does not happen to devices that have 721 * not been registered when this function is called). 722 * 723 * The supplier device is required to be registered when this function is called 724 * and NULL will be returned if that is not the case. The consumer device need 725 * not be registered, however. 726 */ 727 struct device_link *device_link_add(struct device *consumer, 728 struct device *supplier, u32 flags) 729 { 730 struct device_link *link; 731 732 if (!consumer || !supplier || consumer == supplier || 733 flags & ~DL_ADD_VALID_FLAGS || 734 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 735 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 736 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 737 DL_FLAG_AUTOREMOVE_SUPPLIER))) 738 return NULL; 739 740 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 741 if (pm_runtime_get_sync(supplier) < 0) { 742 pm_runtime_put_noidle(supplier); 743 return NULL; 744 } 745 } 746 747 if (!(flags & DL_FLAG_STATELESS)) 748 flags |= DL_FLAG_MANAGED; 749 750 if (flags & DL_FLAG_SYNC_STATE_ONLY && 751 !device_link_flag_is_sync_state_only(flags)) 752 return NULL; 753 754 device_links_write_lock(); 755 device_pm_lock(); 756 757 /* 758 * If the supplier has not been fully registered yet or there is a 759 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 760 * the supplier already in the graph, return NULL. If the link is a 761 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 762 * because it only affects sync_state() callbacks. 763 */ 764 if (!device_pm_initialized(supplier) 765 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 766 device_is_dependent(consumer, supplier))) { 767 link = NULL; 768 goto out; 769 } 770 771 /* 772 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 773 * So, only create it if the consumer hasn't probed yet. 774 */ 775 if (flags & DL_FLAG_SYNC_STATE_ONLY && 776 consumer->links.status != DL_DEV_NO_DRIVER && 777 consumer->links.status != DL_DEV_PROBING) { 778 link = NULL; 779 goto out; 780 } 781 782 /* 783 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 784 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 785 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 786 */ 787 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 788 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 789 790 list_for_each_entry(link, &supplier->links.consumers, s_node) { 791 if (link->consumer != consumer) 792 continue; 793 794 if (device_link_test(link, DL_FLAG_INFERRED) && 795 !(flags & DL_FLAG_INFERRED)) 796 link->flags &= ~DL_FLAG_INFERRED; 797 798 if (flags & DL_FLAG_PM_RUNTIME) { 799 if (!device_link_test(link, DL_FLAG_PM_RUNTIME)) { 800 pm_runtime_new_link(consumer); 801 link->flags |= DL_FLAG_PM_RUNTIME; 802 } 803 if (flags & DL_FLAG_RPM_ACTIVE) 804 refcount_inc(&link->rpm_active); 805 } 806 807 if (flags & DL_FLAG_STATELESS) { 808 kref_get(&link->kref); 809 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) && 810 !device_link_test(link, DL_FLAG_STATELESS)) { 811 link->flags |= DL_FLAG_STATELESS; 812 goto reorder; 813 } else { 814 link->flags |= DL_FLAG_STATELESS; 815 goto out; 816 } 817 } 818 819 /* 820 * If the life time of the link following from the new flags is 821 * longer than indicated by the flags of the existing link, 822 * update the existing link to stay around longer. 823 */ 824 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 825 if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) { 826 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 827 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 828 } 829 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 830 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 831 DL_FLAG_AUTOREMOVE_SUPPLIER); 832 } 833 if (!device_link_test(link, DL_FLAG_MANAGED)) { 834 kref_get(&link->kref); 835 link->flags |= DL_FLAG_MANAGED; 836 device_link_init_status(link, consumer, supplier); 837 } 838 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) && 839 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 840 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 841 goto reorder; 842 } 843 844 goto out; 845 } 846 847 link = kzalloc(sizeof(*link), GFP_KERNEL); 848 if (!link) 849 goto out; 850 851 refcount_set(&link->rpm_active, 1); 852 853 get_device(supplier); 854 link->supplier = supplier; 855 INIT_LIST_HEAD(&link->s_node); 856 get_device(consumer); 857 link->consumer = consumer; 858 INIT_LIST_HEAD(&link->c_node); 859 link->flags = flags; 860 kref_init(&link->kref); 861 862 link->link_dev.class = &devlink_class; 863 device_set_pm_not_required(&link->link_dev); 864 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 865 dev_bus_name(supplier), dev_name(supplier), 866 dev_bus_name(consumer), dev_name(consumer)); 867 if (device_register(&link->link_dev)) { 868 put_device(&link->link_dev); 869 link = NULL; 870 goto out; 871 } 872 873 if (flags & DL_FLAG_PM_RUNTIME) { 874 if (flags & DL_FLAG_RPM_ACTIVE) 875 refcount_inc(&link->rpm_active); 876 877 pm_runtime_new_link(consumer); 878 } 879 880 /* Determine the initial link state. */ 881 if (flags & DL_FLAG_STATELESS) 882 link->status = DL_STATE_NONE; 883 else 884 device_link_init_status(link, consumer, supplier); 885 886 /* 887 * Some callers expect the link creation during consumer driver probe to 888 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 889 */ 890 if (link->status == DL_STATE_CONSUMER_PROBE && 891 flags & DL_FLAG_PM_RUNTIME) 892 pm_runtime_resume(supplier); 893 894 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 895 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 896 897 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 898 dev_dbg(consumer, 899 "Linked as a sync state only consumer to %s\n", 900 dev_name(supplier)); 901 goto out; 902 } 903 904 reorder: 905 /* 906 * Move the consumer and all of the devices depending on it to the end 907 * of dpm_list and the devices_kset list. 908 * 909 * It is necessary to hold dpm_list locked throughout all that or else 910 * we may end up suspending with a wrong ordering of it. 911 */ 912 device_reorder_to_tail(consumer, NULL); 913 914 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 915 916 out: 917 device_pm_unlock(); 918 device_links_write_unlock(); 919 920 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 921 pm_runtime_put(supplier); 922 923 return link; 924 } 925 EXPORT_SYMBOL_GPL(device_link_add); 926 927 static void __device_link_del(struct kref *kref) 928 { 929 struct device_link *link = container_of(kref, struct device_link, kref); 930 931 dev_dbg(link->consumer, "Dropping the link to %s\n", 932 dev_name(link->supplier)); 933 934 pm_runtime_drop_link(link); 935 936 device_link_remove_from_lists(link); 937 device_unregister(&link->link_dev); 938 } 939 940 static void device_link_put_kref(struct device_link *link) 941 { 942 if (device_link_test(link, DL_FLAG_STATELESS)) 943 kref_put(&link->kref, __device_link_del); 944 else if (!device_is_registered(link->consumer)) 945 __device_link_del(&link->kref); 946 else 947 WARN(1, "Unable to drop a managed device link reference\n"); 948 } 949 950 /** 951 * device_link_del - Delete a stateless link between two devices. 952 * @link: Device link to delete. 953 * 954 * The caller must ensure proper synchronization of this function with runtime 955 * PM. If the link was added multiple times, it needs to be deleted as often. 956 * Care is required for hotplugged devices: Their links are purged on removal 957 * and calling device_link_del() is then no longer allowed. 958 */ 959 void device_link_del(struct device_link *link) 960 { 961 device_links_write_lock(); 962 device_link_put_kref(link); 963 device_links_write_unlock(); 964 } 965 EXPORT_SYMBOL_GPL(device_link_del); 966 967 /** 968 * device_link_remove - Delete a stateless link between two devices. 969 * @consumer: Consumer end of the link. 970 * @supplier: Supplier end of the link. 971 * 972 * The caller must ensure proper synchronization of this function with runtime 973 * PM. 974 */ 975 void device_link_remove(void *consumer, struct device *supplier) 976 { 977 struct device_link *link; 978 979 if (WARN_ON(consumer == supplier)) 980 return; 981 982 device_links_write_lock(); 983 984 list_for_each_entry(link, &supplier->links.consumers, s_node) { 985 if (link->consumer == consumer) { 986 device_link_put_kref(link); 987 break; 988 } 989 } 990 991 device_links_write_unlock(); 992 } 993 EXPORT_SYMBOL_GPL(device_link_remove); 994 995 static void device_links_missing_supplier(struct device *dev) 996 { 997 struct device_link *link; 998 999 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1000 if (link->status != DL_STATE_CONSUMER_PROBE) 1001 continue; 1002 1003 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1004 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1005 } else { 1006 WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)); 1007 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1008 } 1009 } 1010 } 1011 1012 static bool dev_is_best_effort(struct device *dev) 1013 { 1014 return (fw_devlink_best_effort && dev->can_match) || 1015 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1016 } 1017 1018 static struct fwnode_handle *fwnode_links_check_suppliers( 1019 struct fwnode_handle *fwnode) 1020 { 1021 struct fwnode_link *link; 1022 1023 if (!fwnode || fw_devlink_is_permissive()) 1024 return NULL; 1025 1026 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1027 if (!(link->flags & 1028 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1029 return link->supplier; 1030 1031 return NULL; 1032 } 1033 1034 /** 1035 * device_links_check_suppliers - Check presence of supplier drivers. 1036 * @dev: Consumer device. 1037 * 1038 * Check links from this device to any suppliers. Walk the list of the device's 1039 * links to suppliers and see if all of them are available. If not, simply 1040 * return -EPROBE_DEFER. 1041 * 1042 * We need to guarantee that the supplier will not go away after the check has 1043 * been positive here. It only can go away in __device_release_driver() and 1044 * that function checks the device's links to consumers. This means we need to 1045 * mark the link as "consumer probe in progress" to make the supplier removal 1046 * wait for us to complete (or bad things may happen). 1047 * 1048 * Links without the DL_FLAG_MANAGED flag set are ignored. 1049 */ 1050 int device_links_check_suppliers(struct device *dev) 1051 { 1052 struct device_link *link; 1053 int ret = 0, fwnode_ret = 0; 1054 struct fwnode_handle *sup_fw; 1055 1056 /* 1057 * Device waiting for supplier to become available is not allowed to 1058 * probe. 1059 */ 1060 scoped_guard(mutex, &fwnode_link_lock) { 1061 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1062 if (sup_fw) { 1063 if (dev_is_best_effort(dev)) 1064 fwnode_ret = -EAGAIN; 1065 else 1066 return dev_err_probe(dev, -EPROBE_DEFER, 1067 "wait for supplier %pfwf\n", sup_fw); 1068 } 1069 } 1070 1071 device_links_write_lock(); 1072 1073 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1074 if (!device_link_test(link, DL_FLAG_MANAGED)) 1075 continue; 1076 1077 if (link->status != DL_STATE_AVAILABLE && 1078 !device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) { 1079 1080 if (dev_is_best_effort(dev) && 1081 device_link_test(link, DL_FLAG_INFERRED) && 1082 !link->supplier->can_match) { 1083 ret = -EAGAIN; 1084 continue; 1085 } 1086 1087 device_links_missing_supplier(dev); 1088 ret = dev_err_probe(dev, -EPROBE_DEFER, 1089 "supplier %s not ready\n", dev_name(link->supplier)); 1090 break; 1091 } 1092 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1093 } 1094 dev->links.status = DL_DEV_PROBING; 1095 1096 device_links_write_unlock(); 1097 1098 return ret ? ret : fwnode_ret; 1099 } 1100 1101 /** 1102 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1103 * @dev: Device to call sync_state() on 1104 * @list: List head to queue the @dev on 1105 * 1106 * Queues a device for a sync_state() callback when the device links write lock 1107 * isn't held. This allows the sync_state() execution flow to use device links 1108 * APIs. The caller must ensure this function is called with 1109 * device_links_write_lock() held. 1110 * 1111 * This function does a get_device() to make sure the device is not freed while 1112 * on this list. 1113 * 1114 * So the caller must also ensure that device_links_flush_sync_list() is called 1115 * as soon as the caller releases device_links_write_lock(). This is necessary 1116 * to make sure the sync_state() is called in a timely fashion and the 1117 * put_device() is called on this device. 1118 */ 1119 static void __device_links_queue_sync_state(struct device *dev, 1120 struct list_head *list) 1121 { 1122 struct device_link *link; 1123 1124 if (!dev_has_sync_state(dev)) 1125 return; 1126 if (dev->state_synced) 1127 return; 1128 1129 list_for_each_entry(link, &dev->links.consumers, s_node) { 1130 if (!device_link_test(link, DL_FLAG_MANAGED)) 1131 continue; 1132 if (link->status != DL_STATE_ACTIVE) 1133 return; 1134 } 1135 1136 /* 1137 * Set the flag here to avoid adding the same device to a list more 1138 * than once. This can happen if new consumers get added to the device 1139 * and probed before the list is flushed. 1140 */ 1141 dev->state_synced = true; 1142 1143 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1144 return; 1145 1146 get_device(dev); 1147 list_add_tail(&dev->links.defer_sync, list); 1148 } 1149 1150 /** 1151 * device_links_flush_sync_list - Call sync_state() on a list of devices 1152 * @list: List of devices to call sync_state() on 1153 * @dont_lock_dev: Device for which lock is already held by the caller 1154 * 1155 * Calls sync_state() on all the devices that have been queued for it. This 1156 * function is used in conjunction with __device_links_queue_sync_state(). The 1157 * @dont_lock_dev parameter is useful when this function is called from a 1158 * context where a device lock is already held. 1159 */ 1160 static void device_links_flush_sync_list(struct list_head *list, 1161 struct device *dont_lock_dev) 1162 { 1163 struct device *dev, *tmp; 1164 1165 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1166 list_del_init(&dev->links.defer_sync); 1167 1168 if (dev != dont_lock_dev) 1169 device_lock(dev); 1170 1171 dev_sync_state(dev); 1172 1173 if (dev != dont_lock_dev) 1174 device_unlock(dev); 1175 1176 put_device(dev); 1177 } 1178 } 1179 1180 void device_links_supplier_sync_state_pause(void) 1181 { 1182 device_links_write_lock(); 1183 defer_sync_state_count++; 1184 device_links_write_unlock(); 1185 } 1186 1187 void device_links_supplier_sync_state_resume(void) 1188 { 1189 struct device *dev, *tmp; 1190 LIST_HEAD(sync_list); 1191 1192 device_links_write_lock(); 1193 if (!defer_sync_state_count) { 1194 WARN(true, "Unmatched sync_state pause/resume!"); 1195 goto out; 1196 } 1197 defer_sync_state_count--; 1198 if (defer_sync_state_count) 1199 goto out; 1200 1201 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1202 /* 1203 * Delete from deferred_sync list before queuing it to 1204 * sync_list because defer_sync is used for both lists. 1205 */ 1206 list_del_init(&dev->links.defer_sync); 1207 __device_links_queue_sync_state(dev, &sync_list); 1208 } 1209 out: 1210 device_links_write_unlock(); 1211 1212 device_links_flush_sync_list(&sync_list, NULL); 1213 } 1214 1215 static int sync_state_resume_initcall(void) 1216 { 1217 device_links_supplier_sync_state_resume(); 1218 return 0; 1219 } 1220 late_initcall(sync_state_resume_initcall); 1221 1222 static void __device_links_supplier_defer_sync(struct device *sup) 1223 { 1224 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1225 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1226 } 1227 1228 static void device_link_drop_managed(struct device_link *link) 1229 { 1230 link->flags &= ~DL_FLAG_MANAGED; 1231 WRITE_ONCE(link->status, DL_STATE_NONE); 1232 kref_put(&link->kref, __device_link_del); 1233 } 1234 1235 static ssize_t waiting_for_supplier_show(struct device *dev, 1236 struct device_attribute *attr, 1237 char *buf) 1238 { 1239 bool val; 1240 1241 device_lock(dev); 1242 scoped_guard(mutex, &fwnode_link_lock) 1243 val = !!fwnode_links_check_suppliers(dev->fwnode); 1244 device_unlock(dev); 1245 return sysfs_emit(buf, "%u\n", val); 1246 } 1247 static DEVICE_ATTR_RO(waiting_for_supplier); 1248 1249 /** 1250 * device_links_force_bind - Prepares device to be force bound 1251 * @dev: Consumer device. 1252 * 1253 * device_bind_driver() force binds a device to a driver without calling any 1254 * driver probe functions. So the consumer really isn't going to wait for any 1255 * supplier before it's bound to the driver. We still want the device link 1256 * states to be sensible when this happens. 1257 * 1258 * In preparation for device_bind_driver(), this function goes through each 1259 * supplier device links and checks if the supplier is bound. If it is, then 1260 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1261 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1262 */ 1263 void device_links_force_bind(struct device *dev) 1264 { 1265 struct device_link *link, *ln; 1266 1267 device_links_write_lock(); 1268 1269 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1270 if (!device_link_test(link, DL_FLAG_MANAGED)) 1271 continue; 1272 1273 if (link->status != DL_STATE_AVAILABLE) { 1274 device_link_drop_managed(link); 1275 continue; 1276 } 1277 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1278 } 1279 dev->links.status = DL_DEV_PROBING; 1280 1281 device_links_write_unlock(); 1282 } 1283 1284 /** 1285 * device_links_driver_bound - Update device links after probing its driver. 1286 * @dev: Device to update the links for. 1287 * 1288 * The probe has been successful, so update links from this device to any 1289 * consumers by changing their status to "available". 1290 * 1291 * Also change the status of @dev's links to suppliers to "active". 1292 * 1293 * Links without the DL_FLAG_MANAGED flag set are ignored. 1294 */ 1295 void device_links_driver_bound(struct device *dev) 1296 { 1297 struct device_link *link, *ln; 1298 LIST_HEAD(sync_list); 1299 1300 /* 1301 * If a device binds successfully, it's expected to have created all 1302 * the device links it needs to or make new device links as it needs 1303 * them. So, fw_devlink no longer needs to create device links to any 1304 * of the device's suppliers. 1305 * 1306 * Also, if a child firmware node of this bound device is not added as a 1307 * device by now, assume it is never going to be added. Make this bound 1308 * device the fallback supplier to the dangling consumers of the child 1309 * firmware node because this bound device is probably implementing the 1310 * child firmware node functionality and we don't want the dangling 1311 * consumers to defer probe indefinitely waiting for a device for the 1312 * child firmware node. 1313 */ 1314 if (dev->fwnode && dev->fwnode->dev == dev) { 1315 struct fwnode_handle *child; 1316 1317 fwnode_links_purge_suppliers(dev->fwnode); 1318 1319 guard(mutex)(&fwnode_link_lock); 1320 1321 fwnode_for_each_available_child_node(dev->fwnode, child) 1322 __fw_devlink_pickup_dangling_consumers(child, 1323 dev->fwnode); 1324 __fw_devlink_link_to_consumers(dev); 1325 } 1326 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1327 1328 device_links_write_lock(); 1329 1330 list_for_each_entry(link, &dev->links.consumers, s_node) { 1331 if (!device_link_test(link, DL_FLAG_MANAGED)) 1332 continue; 1333 1334 /* 1335 * Links created during consumer probe may be in the "consumer 1336 * probe" state to start with if the supplier is still probing 1337 * when they are created and they may become "active" if the 1338 * consumer probe returns first. Skip them here. 1339 */ 1340 if (link->status == DL_STATE_CONSUMER_PROBE || 1341 link->status == DL_STATE_ACTIVE) 1342 continue; 1343 1344 WARN_ON(link->status != DL_STATE_DORMANT); 1345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1346 1347 if (device_link_test(link, DL_FLAG_AUTOPROBE_CONSUMER)) 1348 driver_deferred_probe_add(link->consumer); 1349 } 1350 1351 if (defer_sync_state_count) 1352 __device_links_supplier_defer_sync(dev); 1353 else 1354 __device_links_queue_sync_state(dev, &sync_list); 1355 1356 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1357 struct device *supplier; 1358 1359 if (!device_link_test(link, DL_FLAG_MANAGED)) 1360 continue; 1361 1362 supplier = link->supplier; 1363 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) { 1364 /* 1365 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1366 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1367 * save to drop the managed link completely. 1368 */ 1369 device_link_drop_managed(link); 1370 } else if (dev_is_best_effort(dev) && 1371 device_link_test(link, DL_FLAG_INFERRED) && 1372 link->status != DL_STATE_CONSUMER_PROBE && 1373 !link->supplier->can_match) { 1374 /* 1375 * When dev_is_best_effort() is true, we ignore device 1376 * links to suppliers that don't have a driver. If the 1377 * consumer device still managed to probe, there's no 1378 * point in maintaining a device link in a weird state 1379 * (consumer probed before supplier). So delete it. 1380 */ 1381 device_link_drop_managed(link); 1382 } else { 1383 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1384 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1385 } 1386 1387 /* 1388 * This needs to be done even for the deleted 1389 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1390 * device link that was preventing the supplier from getting a 1391 * sync_state() call. 1392 */ 1393 if (defer_sync_state_count) 1394 __device_links_supplier_defer_sync(supplier); 1395 else 1396 __device_links_queue_sync_state(supplier, &sync_list); 1397 } 1398 1399 dev->links.status = DL_DEV_DRIVER_BOUND; 1400 1401 device_links_write_unlock(); 1402 1403 device_links_flush_sync_list(&sync_list, dev); 1404 } 1405 1406 /** 1407 * __device_links_no_driver - Update links of a device without a driver. 1408 * @dev: Device without a drvier. 1409 * 1410 * Delete all non-persistent links from this device to any suppliers. 1411 * 1412 * Persistent links stay around, but their status is changed to "available", 1413 * unless they already are in the "supplier unbind in progress" state in which 1414 * case they need not be updated. 1415 * 1416 * Links without the DL_FLAG_MANAGED flag set are ignored. 1417 */ 1418 static void __device_links_no_driver(struct device *dev) 1419 { 1420 struct device_link *link, *ln; 1421 1422 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1423 if (!device_link_test(link, DL_FLAG_MANAGED)) 1424 continue; 1425 1426 if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) { 1427 device_link_drop_managed(link); 1428 continue; 1429 } 1430 1431 if (link->status != DL_STATE_CONSUMER_PROBE && 1432 link->status != DL_STATE_ACTIVE) 1433 continue; 1434 1435 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1436 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1437 } else { 1438 WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)); 1439 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1440 } 1441 } 1442 1443 dev->links.status = DL_DEV_NO_DRIVER; 1444 } 1445 1446 /** 1447 * device_links_no_driver - Update links after failing driver probe. 1448 * @dev: Device whose driver has just failed to probe. 1449 * 1450 * Clean up leftover links to consumers for @dev and invoke 1451 * %__device_links_no_driver() to update links to suppliers for it as 1452 * appropriate. 1453 * 1454 * Links without the DL_FLAG_MANAGED flag set are ignored. 1455 */ 1456 void device_links_no_driver(struct device *dev) 1457 { 1458 struct device_link *link; 1459 1460 device_links_write_lock(); 1461 1462 list_for_each_entry(link, &dev->links.consumers, s_node) { 1463 if (!device_link_test(link, DL_FLAG_MANAGED)) 1464 continue; 1465 1466 /* 1467 * The probe has failed, so if the status of the link is 1468 * "consumer probe" or "active", it must have been added by 1469 * a probing consumer while this device was still probing. 1470 * Change its state to "dormant", as it represents a valid 1471 * relationship, but it is not functionally meaningful. 1472 */ 1473 if (link->status == DL_STATE_CONSUMER_PROBE || 1474 link->status == DL_STATE_ACTIVE) 1475 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1476 } 1477 1478 __device_links_no_driver(dev); 1479 1480 device_links_write_unlock(); 1481 } 1482 1483 /** 1484 * device_links_driver_cleanup - Update links after driver removal. 1485 * @dev: Device whose driver has just gone away. 1486 * 1487 * Update links to consumers for @dev by changing their status to "dormant" and 1488 * invoke %__device_links_no_driver() to update links to suppliers for it as 1489 * appropriate. 1490 * 1491 * Links without the DL_FLAG_MANAGED flag set are ignored. 1492 */ 1493 void device_links_driver_cleanup(struct device *dev) 1494 { 1495 struct device_link *link, *ln; 1496 1497 device_links_write_lock(); 1498 1499 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1500 if (!device_link_test(link, DL_FLAG_MANAGED)) 1501 continue; 1502 1503 WARN_ON(device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)); 1504 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1505 1506 /* 1507 * autoremove the links between this @dev and its consumer 1508 * devices that are not active, i.e. where the link state 1509 * has moved to DL_STATE_SUPPLIER_UNBIND. 1510 */ 1511 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1512 device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER)) 1513 device_link_drop_managed(link); 1514 1515 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1516 } 1517 1518 list_del_init(&dev->links.defer_sync); 1519 __device_links_no_driver(dev); 1520 1521 device_links_write_unlock(); 1522 } 1523 1524 /** 1525 * device_links_busy - Check if there are any busy links to consumers. 1526 * @dev: Device to check. 1527 * 1528 * Check each consumer of the device and return 'true' if its link's status 1529 * is one of "consumer probe" or "active" (meaning that the given consumer is 1530 * probing right now or its driver is present). Otherwise, change the link 1531 * state to "supplier unbind" to prevent the consumer from being probed 1532 * successfully going forward. 1533 * 1534 * Return 'false' if there are no probing or active consumers. 1535 * 1536 * Links without the DL_FLAG_MANAGED flag set are ignored. 1537 */ 1538 bool device_links_busy(struct device *dev) 1539 { 1540 struct device_link *link; 1541 bool ret = false; 1542 1543 device_links_write_lock(); 1544 1545 list_for_each_entry(link, &dev->links.consumers, s_node) { 1546 if (!device_link_test(link, DL_FLAG_MANAGED)) 1547 continue; 1548 1549 if (link->status == DL_STATE_CONSUMER_PROBE 1550 || link->status == DL_STATE_ACTIVE) { 1551 ret = true; 1552 break; 1553 } 1554 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1555 } 1556 1557 dev->links.status = DL_DEV_UNBINDING; 1558 1559 device_links_write_unlock(); 1560 return ret; 1561 } 1562 1563 /** 1564 * device_links_unbind_consumers - Force unbind consumers of the given device. 1565 * @dev: Device to unbind the consumers of. 1566 * 1567 * Walk the list of links to consumers for @dev and if any of them is in the 1568 * "consumer probe" state, wait for all device probes in progress to complete 1569 * and start over. 1570 * 1571 * If that's not the case, change the status of the link to "supplier unbind" 1572 * and check if the link was in the "active" state. If so, force the consumer 1573 * driver to unbind and start over (the consumer will not re-probe as we have 1574 * changed the state of the link already). 1575 * 1576 * Links without the DL_FLAG_MANAGED flag set are ignored. 1577 */ 1578 void device_links_unbind_consumers(struct device *dev) 1579 { 1580 struct device_link *link; 1581 1582 start: 1583 device_links_write_lock(); 1584 1585 list_for_each_entry(link, &dev->links.consumers, s_node) { 1586 enum device_link_state status; 1587 1588 if (!device_link_test(link, DL_FLAG_MANAGED) || 1589 device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) 1590 continue; 1591 1592 status = link->status; 1593 if (status == DL_STATE_CONSUMER_PROBE) { 1594 device_links_write_unlock(); 1595 1596 wait_for_device_probe(); 1597 goto start; 1598 } 1599 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1600 if (status == DL_STATE_ACTIVE) { 1601 struct device *consumer = link->consumer; 1602 1603 get_device(consumer); 1604 1605 device_links_write_unlock(); 1606 1607 device_release_driver_internal(consumer, NULL, 1608 consumer->parent); 1609 put_device(consumer); 1610 goto start; 1611 } 1612 } 1613 1614 device_links_write_unlock(); 1615 } 1616 1617 /** 1618 * device_links_purge - Delete existing links to other devices. 1619 * @dev: Target device. 1620 */ 1621 static void device_links_purge(struct device *dev) 1622 { 1623 struct device_link *link, *ln; 1624 1625 if (dev->class == &devlink_class) 1626 return; 1627 1628 /* 1629 * Delete all of the remaining links from this device to any other 1630 * devices (either consumers or suppliers). 1631 */ 1632 device_links_write_lock(); 1633 1634 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1635 WARN_ON(link->status == DL_STATE_ACTIVE); 1636 __device_link_del(&link->kref); 1637 } 1638 1639 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1640 WARN_ON(link->status != DL_STATE_DORMANT && 1641 link->status != DL_STATE_NONE); 1642 __device_link_del(&link->kref); 1643 } 1644 1645 device_links_write_unlock(); 1646 } 1647 1648 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1649 DL_FLAG_SYNC_STATE_ONLY) 1650 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1651 DL_FLAG_AUTOPROBE_CONSUMER) 1652 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1653 DL_FLAG_PM_RUNTIME) 1654 1655 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1656 static int __init fw_devlink_setup(char *arg) 1657 { 1658 if (!arg) 1659 return -EINVAL; 1660 1661 if (strcmp(arg, "off") == 0) { 1662 fw_devlink_flags = 0; 1663 } else if (strcmp(arg, "permissive") == 0) { 1664 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1665 } else if (strcmp(arg, "on") == 0) { 1666 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1667 } else if (strcmp(arg, "rpm") == 0) { 1668 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1669 } 1670 return 0; 1671 } 1672 early_param("fw_devlink", fw_devlink_setup); 1673 1674 static bool fw_devlink_strict; 1675 static int __init fw_devlink_strict_setup(char *arg) 1676 { 1677 return kstrtobool(arg, &fw_devlink_strict); 1678 } 1679 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1680 1681 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1682 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1683 1684 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1685 static int fw_devlink_sync_state; 1686 #else 1687 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1688 #endif 1689 1690 static int __init fw_devlink_sync_state_setup(char *arg) 1691 { 1692 if (!arg) 1693 return -EINVAL; 1694 1695 if (strcmp(arg, "strict") == 0) { 1696 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1697 return 0; 1698 } else if (strcmp(arg, "timeout") == 0) { 1699 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1700 return 0; 1701 } 1702 return -EINVAL; 1703 } 1704 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1705 1706 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1707 { 1708 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1709 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1710 1711 return fw_devlink_flags; 1712 } 1713 1714 static bool fw_devlink_is_permissive(void) 1715 { 1716 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1717 } 1718 1719 bool fw_devlink_is_strict(void) 1720 { 1721 return fw_devlink_strict && !fw_devlink_is_permissive(); 1722 } 1723 1724 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1725 { 1726 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1727 return; 1728 1729 fwnode_call_int_op(fwnode, add_links); 1730 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1731 } 1732 1733 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1734 { 1735 struct fwnode_handle *child = NULL; 1736 1737 fw_devlink_parse_fwnode(fwnode); 1738 1739 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1740 fw_devlink_parse_fwtree(child); 1741 } 1742 1743 static void fw_devlink_relax_link(struct device_link *link) 1744 { 1745 if (!device_link_test(link, DL_FLAG_INFERRED)) 1746 return; 1747 1748 if (device_link_flag_is_sync_state_only(link->flags)) 1749 return; 1750 1751 pm_runtime_drop_link(link); 1752 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1753 dev_dbg(link->consumer, "Relaxing link with %s\n", 1754 dev_name(link->supplier)); 1755 } 1756 1757 static int fw_devlink_no_driver(struct device *dev, void *data) 1758 { 1759 struct device_link *link = to_devlink(dev); 1760 1761 if (!link->supplier->can_match) 1762 fw_devlink_relax_link(link); 1763 1764 return 0; 1765 } 1766 1767 void fw_devlink_drivers_done(void) 1768 { 1769 fw_devlink_drv_reg_done = true; 1770 device_links_write_lock(); 1771 class_for_each_device(&devlink_class, NULL, NULL, 1772 fw_devlink_no_driver); 1773 device_links_write_unlock(); 1774 } 1775 1776 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1777 { 1778 struct device_link *link = to_devlink(dev); 1779 struct device *sup = link->supplier; 1780 1781 if (!device_link_test(link, DL_FLAG_MANAGED) || 1782 link->status == DL_STATE_ACTIVE || sup->state_synced || 1783 !dev_has_sync_state(sup)) 1784 return 0; 1785 1786 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1787 dev_warn(sup, "sync_state() pending due to %s\n", 1788 dev_name(link->consumer)); 1789 return 0; 1790 } 1791 1792 if (!list_empty(&sup->links.defer_sync)) 1793 return 0; 1794 1795 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1796 sup->state_synced = true; 1797 get_device(sup); 1798 list_add_tail(&sup->links.defer_sync, data); 1799 1800 return 0; 1801 } 1802 1803 void fw_devlink_probing_done(void) 1804 { 1805 LIST_HEAD(sync_list); 1806 1807 device_links_write_lock(); 1808 class_for_each_device(&devlink_class, NULL, &sync_list, 1809 fw_devlink_dev_sync_state); 1810 device_links_write_unlock(); 1811 device_links_flush_sync_list(&sync_list, NULL); 1812 } 1813 1814 /** 1815 * wait_for_init_devices_probe - Try to probe any device needed for init 1816 * 1817 * Some devices might need to be probed and bound successfully before the kernel 1818 * boot sequence can finish and move on to init/userspace. For example, a 1819 * network interface might need to be bound to be able to mount a NFS rootfs. 1820 * 1821 * With fw_devlink=on by default, some of these devices might be blocked from 1822 * probing because they are waiting on a optional supplier that doesn't have a 1823 * driver. While fw_devlink will eventually identify such devices and unblock 1824 * the probing automatically, it might be too late by the time it unblocks the 1825 * probing of devices. For example, the IP4 autoconfig might timeout before 1826 * fw_devlink unblocks probing of the network interface. 1827 * 1828 * This function is available to temporarily try and probe all devices that have 1829 * a driver even if some of their suppliers haven't been added or don't have 1830 * drivers. 1831 * 1832 * The drivers can then decide which of the suppliers are optional vs mandatory 1833 * and probe the device if possible. By the time this function returns, all such 1834 * "best effort" probes are guaranteed to be completed. If a device successfully 1835 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1836 * device where the supplier hasn't yet probed successfully because they have to 1837 * be optional dependencies. 1838 * 1839 * Any devices that didn't successfully probe go back to being treated as if 1840 * this function was never called. 1841 * 1842 * This also means that some devices that aren't needed for init and could have 1843 * waited for their optional supplier to probe (when the supplier's module is 1844 * loaded later on) would end up probing prematurely with limited functionality. 1845 * So call this function only when boot would fail without it. 1846 */ 1847 void __init wait_for_init_devices_probe(void) 1848 { 1849 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1850 return; 1851 1852 /* 1853 * Wait for all ongoing probes to finish so that the "best effort" is 1854 * only applied to devices that can't probe otherwise. 1855 */ 1856 wait_for_device_probe(); 1857 1858 pr_info("Trying to probe devices needed for running init ...\n"); 1859 fw_devlink_best_effort = true; 1860 driver_deferred_probe_trigger(); 1861 1862 /* 1863 * Wait for all "best effort" probes to finish before going back to 1864 * normal enforcement. 1865 */ 1866 wait_for_device_probe(); 1867 fw_devlink_best_effort = false; 1868 } 1869 1870 static void fw_devlink_unblock_consumers(struct device *dev) 1871 { 1872 struct device_link *link; 1873 1874 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1875 return; 1876 1877 device_links_write_lock(); 1878 list_for_each_entry(link, &dev->links.consumers, s_node) 1879 fw_devlink_relax_link(link); 1880 device_links_write_unlock(); 1881 } 1882 1883 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1884 { 1885 struct device *dev; 1886 bool ret; 1887 1888 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1889 return false; 1890 1891 dev = get_dev_from_fwnode(fwnode); 1892 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1893 put_device(dev); 1894 1895 return ret; 1896 } 1897 1898 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1899 { 1900 struct fwnode_handle *parent; 1901 1902 fwnode_for_each_parent_node(fwnode, parent) { 1903 if (fwnode_init_without_drv(parent)) { 1904 fwnode_handle_put(parent); 1905 return true; 1906 } 1907 } 1908 1909 return false; 1910 } 1911 1912 /** 1913 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1914 * @ancestor: Firmware which is tested for being an ancestor 1915 * @child: Firmware which is tested for being the child 1916 * 1917 * A node is considered an ancestor of itself too. 1918 * 1919 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1920 */ 1921 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1922 const struct fwnode_handle *child) 1923 { 1924 struct fwnode_handle *parent; 1925 1926 if (IS_ERR_OR_NULL(ancestor)) 1927 return false; 1928 1929 if (child == ancestor) 1930 return true; 1931 1932 fwnode_for_each_parent_node(child, parent) { 1933 if (parent == ancestor) { 1934 fwnode_handle_put(parent); 1935 return true; 1936 } 1937 } 1938 return false; 1939 } 1940 1941 /** 1942 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1943 * @fwnode: firmware node 1944 * 1945 * Given a firmware node (@fwnode), this function finds its closest ancestor 1946 * firmware node that has a corresponding struct device and returns that struct 1947 * device. 1948 * 1949 * The caller is responsible for calling put_device() on the returned device 1950 * pointer. 1951 * 1952 * Return: a pointer to the device of the @fwnode's closest ancestor. 1953 */ 1954 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1955 { 1956 struct fwnode_handle *parent; 1957 struct device *dev; 1958 1959 fwnode_for_each_parent_node(fwnode, parent) { 1960 dev = get_dev_from_fwnode(parent); 1961 if (dev) { 1962 fwnode_handle_put(parent); 1963 return dev; 1964 } 1965 } 1966 return NULL; 1967 } 1968 1969 /** 1970 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1971 * @con_handle: Potential consumer device fwnode. 1972 * @sup_handle: Potential supplier's fwnode. 1973 * 1974 * Needs to be called with fwnode_lock and device link lock held. 1975 * 1976 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1977 * depend on @con. This function can detect multiple cyles between @sup_handle 1978 * and @con. When such dependency cycles are found, convert all device links 1979 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1980 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1981 * converted into a device link in the future, they are created as 1982 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1983 * fw_devlink=permissive just between the devices in the cycle. We need to do 1984 * this because, at this point, fw_devlink can't tell which of these 1985 * dependencies is not a real dependency. 1986 * 1987 * Return true if one or more cycles were found. Otherwise, return false. 1988 */ 1989 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle, 1990 struct fwnode_handle *sup_handle) 1991 { 1992 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL; 1993 struct fwnode_link *link; 1994 struct device_link *dev_link; 1995 bool ret = false; 1996 1997 if (!sup_handle) 1998 return false; 1999 2000 /* 2001 * We aren't trying to find all cycles. Just a cycle between con and 2002 * sup_handle. 2003 */ 2004 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2005 return false; 2006 2007 sup_handle->flags |= FWNODE_FLAG_VISITED; 2008 2009 /* Termination condition. */ 2010 if (sup_handle == con_handle) { 2011 pr_debug("----- cycle: start -----\n"); 2012 ret = true; 2013 goto out; 2014 } 2015 2016 sup_dev = get_dev_from_fwnode(sup_handle); 2017 con_dev = get_dev_from_fwnode(con_handle); 2018 /* 2019 * If sup_dev is bound to a driver and @con hasn't started binding to a 2020 * driver, sup_dev can't be a consumer of @con. So, no need to check 2021 * further. 2022 */ 2023 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2024 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) { 2025 ret = false; 2026 goto out; 2027 } 2028 2029 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2030 if (link->flags & FWLINK_FLAG_IGNORE) 2031 continue; 2032 2033 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) { 2034 __fwnode_link_cycle(link); 2035 ret = true; 2036 } 2037 } 2038 2039 /* 2040 * Give priority to device parent over fwnode parent to account for any 2041 * quirks in how fwnodes are converted to devices. 2042 */ 2043 if (sup_dev) 2044 par_dev = get_device(sup_dev->parent); 2045 else 2046 par_dev = fwnode_get_next_parent_dev(sup_handle); 2047 2048 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) { 2049 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2050 par_dev->fwnode); 2051 ret = true; 2052 } 2053 2054 if (!sup_dev) 2055 goto out; 2056 2057 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2058 /* 2059 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2060 * such due to a cycle. 2061 */ 2062 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2063 !device_link_test(dev_link, DL_FLAG_CYCLE)) 2064 continue; 2065 2066 if (__fw_devlink_relax_cycles(con_handle, 2067 dev_link->supplier->fwnode)) { 2068 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2069 dev_link->supplier->fwnode); 2070 fw_devlink_relax_link(dev_link); 2071 dev_link->flags |= DL_FLAG_CYCLE; 2072 ret = true; 2073 } 2074 } 2075 2076 out: 2077 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2078 put_device(sup_dev); 2079 put_device(con_dev); 2080 put_device(par_dev); 2081 return ret; 2082 } 2083 2084 /** 2085 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2086 * @con: consumer device for the device link 2087 * @sup_handle: fwnode handle of supplier 2088 * @link: fwnode link that's being converted to a device link 2089 * 2090 * This function will try to create a device link between the consumer device 2091 * @con and the supplier device represented by @sup_handle. 2092 * 2093 * The supplier has to be provided as a fwnode because incorrect cycles in 2094 * fwnode links can sometimes cause the supplier device to never be created. 2095 * This function detects such cases and returns an error if it cannot create a 2096 * device link from the consumer to a missing supplier. 2097 * 2098 * Returns, 2099 * 0 on successfully creating a device link 2100 * -EINVAL if the device link cannot be created as expected 2101 * -EAGAIN if the device link cannot be created right now, but it may be 2102 * possible to do that in the future 2103 */ 2104 static int fw_devlink_create_devlink(struct device *con, 2105 struct fwnode_handle *sup_handle, 2106 struct fwnode_link *link) 2107 { 2108 struct device *sup_dev; 2109 int ret = 0; 2110 u32 flags; 2111 2112 if (link->flags & FWLINK_FLAG_IGNORE) 2113 return 0; 2114 2115 /* 2116 * In some cases, a device P might also be a supplier to its child node 2117 * C. However, this would defer the probe of C until the probe of P 2118 * completes successfully. This is perfectly fine in the device driver 2119 * model. device_add() doesn't guarantee probe completion of the device 2120 * by the time it returns. 2121 * 2122 * However, there are a few drivers that assume C will finish probing 2123 * as soon as it's added and before P finishes probing. So, we provide 2124 * a flag to let fw_devlink know not to delay the probe of C until the 2125 * probe of P completes successfully. 2126 * 2127 * When such a flag is set, we can't create device links where P is the 2128 * supplier of C as that would delay the probe of C. 2129 */ 2130 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2131 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2132 return -EINVAL; 2133 2134 /* 2135 * Don't try to optimize by not calling the cycle detection logic under 2136 * certain conditions. There's always some corner case that won't get 2137 * detected. 2138 */ 2139 device_links_write_lock(); 2140 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) { 2141 __fwnode_link_cycle(link); 2142 pr_debug("----- cycle: end -----\n"); 2143 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n", 2144 link->consumer, sup_handle); 2145 } 2146 device_links_write_unlock(); 2147 2148 if (con->fwnode == link->consumer) 2149 flags = fw_devlink_get_flags(link->flags); 2150 else 2151 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2152 2153 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2154 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2155 else 2156 sup_dev = get_dev_from_fwnode(sup_handle); 2157 2158 if (sup_dev) { 2159 /* 2160 * If it's one of those drivers that don't actually bind to 2161 * their device using driver core, then don't wait on this 2162 * supplier device indefinitely. 2163 */ 2164 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2165 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2166 dev_dbg(con, 2167 "Not linking %pfwf - dev might never probe\n", 2168 sup_handle); 2169 ret = -EINVAL; 2170 goto out; 2171 } 2172 2173 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2174 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n", 2175 flags, dev_name(sup_dev), link->consumer); 2176 ret = -EINVAL; 2177 } 2178 2179 goto out; 2180 } 2181 2182 /* 2183 * Supplier or supplier's ancestor already initialized without a struct 2184 * device or being probed by a driver. 2185 */ 2186 if (fwnode_init_without_drv(sup_handle) || 2187 fwnode_ancestor_init_without_drv(sup_handle)) { 2188 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2189 sup_handle); 2190 return -EINVAL; 2191 } 2192 2193 ret = -EAGAIN; 2194 out: 2195 put_device(sup_dev); 2196 return ret; 2197 } 2198 2199 /** 2200 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2201 * @dev: Device that needs to be linked to its consumers 2202 * 2203 * This function looks at all the consumer fwnodes of @dev and creates device 2204 * links between the consumer device and @dev (supplier). 2205 * 2206 * If the consumer device has not been added yet, then this function creates a 2207 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2208 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2209 * sync_state() callback before the real consumer device gets to be added and 2210 * then probed. 2211 * 2212 * Once device links are created from the real consumer to @dev (supplier), the 2213 * fwnode links are deleted. 2214 */ 2215 static void __fw_devlink_link_to_consumers(struct device *dev) 2216 { 2217 struct fwnode_handle *fwnode = dev->fwnode; 2218 struct fwnode_link *link, *tmp; 2219 2220 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2221 struct device *con_dev; 2222 bool own_link = true; 2223 int ret; 2224 2225 con_dev = get_dev_from_fwnode(link->consumer); 2226 /* 2227 * If consumer device is not available yet, make a "proxy" 2228 * SYNC_STATE_ONLY link from the consumer's parent device to 2229 * the supplier device. This is necessary to make sure the 2230 * supplier doesn't get a sync_state() callback before the real 2231 * consumer can create a device link to the supplier. 2232 * 2233 * This proxy link step is needed to handle the case where the 2234 * consumer's parent device is added before the supplier. 2235 */ 2236 if (!con_dev) { 2237 con_dev = fwnode_get_next_parent_dev(link->consumer); 2238 /* 2239 * However, if the consumer's parent device is also the 2240 * parent of the supplier, don't create a 2241 * consumer-supplier link from the parent to its child 2242 * device. Such a dependency is impossible. 2243 */ 2244 if (con_dev && 2245 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2246 put_device(con_dev); 2247 con_dev = NULL; 2248 } else { 2249 own_link = false; 2250 } 2251 } 2252 2253 if (!con_dev) 2254 continue; 2255 2256 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2257 put_device(con_dev); 2258 if (!own_link || ret == -EAGAIN) 2259 continue; 2260 2261 __fwnode_link_del(link); 2262 } 2263 } 2264 2265 /** 2266 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2267 * @dev: The consumer device that needs to be linked to its suppliers 2268 * @fwnode: Root of the fwnode tree that is used to create device links 2269 * 2270 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2271 * @fwnode and creates device links between @dev (consumer) and all the 2272 * supplier devices of the entire fwnode tree at @fwnode. 2273 * 2274 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2275 * and the real suppliers of @dev. Once these device links are created, the 2276 * fwnode links are deleted. 2277 * 2278 * In addition, it also looks at all the suppliers of the entire fwnode tree 2279 * because some of the child devices of @dev that have not been added yet 2280 * (because @dev hasn't probed) might already have their suppliers added to 2281 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2282 * @dev (consumer) and these suppliers to make sure they don't execute their 2283 * sync_state() callbacks before these child devices have a chance to create 2284 * their device links. The fwnode links that correspond to the child devices 2285 * aren't delete because they are needed later to create the device links 2286 * between the real consumer and supplier devices. 2287 */ 2288 static void __fw_devlink_link_to_suppliers(struct device *dev, 2289 struct fwnode_handle *fwnode) 2290 { 2291 bool own_link = (dev->fwnode == fwnode); 2292 struct fwnode_link *link, *tmp; 2293 struct fwnode_handle *child = NULL; 2294 2295 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2296 int ret; 2297 struct fwnode_handle *sup = link->supplier; 2298 2299 ret = fw_devlink_create_devlink(dev, sup, link); 2300 if (!own_link || ret == -EAGAIN) 2301 continue; 2302 2303 __fwnode_link_del(link); 2304 } 2305 2306 /* 2307 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2308 * all the descendants. This proxy link step is needed to handle the 2309 * case where the supplier is added before the consumer's parent device 2310 * (@dev). 2311 */ 2312 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2313 __fw_devlink_link_to_suppliers(dev, child); 2314 } 2315 2316 static void fw_devlink_link_device(struct device *dev) 2317 { 2318 struct fwnode_handle *fwnode = dev->fwnode; 2319 2320 if (!fw_devlink_flags) 2321 return; 2322 2323 fw_devlink_parse_fwtree(fwnode); 2324 2325 guard(mutex)(&fwnode_link_lock); 2326 2327 __fw_devlink_link_to_consumers(dev); 2328 __fw_devlink_link_to_suppliers(dev, fwnode); 2329 } 2330 2331 /* Device links support end. */ 2332 2333 static struct kobject *dev_kobj; 2334 2335 /* /sys/dev/char */ 2336 static struct kobject *sysfs_dev_char_kobj; 2337 2338 /* /sys/dev/block */ 2339 static struct kobject *sysfs_dev_block_kobj; 2340 2341 static DEFINE_MUTEX(device_hotplug_lock); 2342 2343 void lock_device_hotplug(void) 2344 { 2345 mutex_lock(&device_hotplug_lock); 2346 } 2347 2348 void unlock_device_hotplug(void) 2349 { 2350 mutex_unlock(&device_hotplug_lock); 2351 } 2352 2353 int lock_device_hotplug_sysfs(void) 2354 { 2355 if (mutex_trylock(&device_hotplug_lock)) 2356 return 0; 2357 2358 /* Avoid busy looping (5 ms of sleep should do). */ 2359 msleep(5); 2360 return restart_syscall(); 2361 } 2362 2363 #ifdef CONFIG_BLOCK 2364 static inline int device_is_not_partition(struct device *dev) 2365 { 2366 return !(dev->type == &part_type); 2367 } 2368 #else 2369 static inline int device_is_not_partition(struct device *dev) 2370 { 2371 return 1; 2372 } 2373 #endif 2374 2375 static void device_platform_notify(struct device *dev) 2376 { 2377 acpi_device_notify(dev); 2378 2379 software_node_notify(dev); 2380 } 2381 2382 static void device_platform_notify_remove(struct device *dev) 2383 { 2384 software_node_notify_remove(dev); 2385 2386 acpi_device_notify_remove(dev); 2387 } 2388 2389 /** 2390 * dev_driver_string - Return a device's driver name, if at all possible 2391 * @dev: struct device to get the name of 2392 * 2393 * Will return the device's driver's name if it is bound to a device. If 2394 * the device is not bound to a driver, it will return the name of the bus 2395 * it is attached to. If it is not attached to a bus either, an empty 2396 * string will be returned. 2397 */ 2398 const char *dev_driver_string(const struct device *dev) 2399 { 2400 struct device_driver *drv; 2401 2402 /* dev->driver can change to NULL underneath us because of unbinding, 2403 * so be careful about accessing it. dev->bus and dev->class should 2404 * never change once they are set, so they don't need special care. 2405 */ 2406 drv = READ_ONCE(dev->driver); 2407 return drv ? drv->name : dev_bus_name(dev); 2408 } 2409 EXPORT_SYMBOL(dev_driver_string); 2410 2411 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2412 2413 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2414 char *buf) 2415 { 2416 struct device_attribute *dev_attr = to_dev_attr(attr); 2417 struct device *dev = kobj_to_dev(kobj); 2418 ssize_t ret = -EIO; 2419 2420 if (dev_attr->show) 2421 ret = dev_attr->show(dev, dev_attr, buf); 2422 if (ret >= (ssize_t)PAGE_SIZE) { 2423 printk("dev_attr_show: %pS returned bad count\n", 2424 dev_attr->show); 2425 } 2426 return ret; 2427 } 2428 2429 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2430 const char *buf, size_t count) 2431 { 2432 struct device_attribute *dev_attr = to_dev_attr(attr); 2433 struct device *dev = kobj_to_dev(kobj); 2434 ssize_t ret = -EIO; 2435 2436 if (dev_attr->store) 2437 ret = dev_attr->store(dev, dev_attr, buf, count); 2438 return ret; 2439 } 2440 2441 static const struct sysfs_ops dev_sysfs_ops = { 2442 .show = dev_attr_show, 2443 .store = dev_attr_store, 2444 }; 2445 2446 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2447 2448 ssize_t device_store_ulong(struct device *dev, 2449 struct device_attribute *attr, 2450 const char *buf, size_t size) 2451 { 2452 struct dev_ext_attribute *ea = to_ext_attr(attr); 2453 int ret; 2454 unsigned long new; 2455 2456 ret = kstrtoul(buf, 0, &new); 2457 if (ret) 2458 return ret; 2459 *(unsigned long *)(ea->var) = new; 2460 /* Always return full write size even if we didn't consume all */ 2461 return size; 2462 } 2463 EXPORT_SYMBOL_GPL(device_store_ulong); 2464 2465 ssize_t device_show_ulong(struct device *dev, 2466 struct device_attribute *attr, 2467 char *buf) 2468 { 2469 struct dev_ext_attribute *ea = to_ext_attr(attr); 2470 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2471 } 2472 EXPORT_SYMBOL_GPL(device_show_ulong); 2473 2474 ssize_t device_store_int(struct device *dev, 2475 struct device_attribute *attr, 2476 const char *buf, size_t size) 2477 { 2478 struct dev_ext_attribute *ea = to_ext_attr(attr); 2479 int ret; 2480 long new; 2481 2482 ret = kstrtol(buf, 0, &new); 2483 if (ret) 2484 return ret; 2485 2486 if (new > INT_MAX || new < INT_MIN) 2487 return -EINVAL; 2488 *(int *)(ea->var) = new; 2489 /* Always return full write size even if we didn't consume all */ 2490 return size; 2491 } 2492 EXPORT_SYMBOL_GPL(device_store_int); 2493 2494 ssize_t device_show_int(struct device *dev, 2495 struct device_attribute *attr, 2496 char *buf) 2497 { 2498 struct dev_ext_attribute *ea = to_ext_attr(attr); 2499 2500 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2501 } 2502 EXPORT_SYMBOL_GPL(device_show_int); 2503 2504 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2505 const char *buf, size_t size) 2506 { 2507 struct dev_ext_attribute *ea = to_ext_attr(attr); 2508 2509 if (kstrtobool(buf, ea->var) < 0) 2510 return -EINVAL; 2511 2512 return size; 2513 } 2514 EXPORT_SYMBOL_GPL(device_store_bool); 2515 2516 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2517 char *buf) 2518 { 2519 struct dev_ext_attribute *ea = to_ext_attr(attr); 2520 2521 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2522 } 2523 EXPORT_SYMBOL_GPL(device_show_bool); 2524 2525 ssize_t device_show_string(struct device *dev, 2526 struct device_attribute *attr, char *buf) 2527 { 2528 struct dev_ext_attribute *ea = to_ext_attr(attr); 2529 2530 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2531 } 2532 EXPORT_SYMBOL_GPL(device_show_string); 2533 2534 /** 2535 * device_release - free device structure. 2536 * @kobj: device's kobject. 2537 * 2538 * This is called once the reference count for the object 2539 * reaches 0. We forward the call to the device's release 2540 * method, which should handle actually freeing the structure. 2541 */ 2542 static void device_release(struct kobject *kobj) 2543 { 2544 struct device *dev = kobj_to_dev(kobj); 2545 struct device_private *p = dev->p; 2546 2547 /* 2548 * Some platform devices are driven without driver attached 2549 * and managed resources may have been acquired. Make sure 2550 * all resources are released. 2551 * 2552 * Drivers still can add resources into device after device 2553 * is deleted but alive, so release devres here to avoid 2554 * possible memory leak. 2555 */ 2556 devres_release_all(dev); 2557 2558 kfree(dev->dma_range_map); 2559 2560 if (dev->release) 2561 dev->release(dev); 2562 else if (dev->type && dev->type->release) 2563 dev->type->release(dev); 2564 else if (dev->class && dev->class->dev_release) 2565 dev->class->dev_release(dev); 2566 else 2567 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2568 dev_name(dev)); 2569 kfree(p); 2570 } 2571 2572 static const void *device_namespace(const struct kobject *kobj) 2573 { 2574 const struct device *dev = kobj_to_dev(kobj); 2575 const void *ns = NULL; 2576 2577 if (dev->class && dev->class->namespace) 2578 ns = dev->class->namespace(dev); 2579 2580 return ns; 2581 } 2582 2583 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2584 { 2585 const struct device *dev = kobj_to_dev(kobj); 2586 2587 if (dev->class && dev->class->get_ownership) 2588 dev->class->get_ownership(dev, uid, gid); 2589 } 2590 2591 static const struct kobj_type device_ktype = { 2592 .release = device_release, 2593 .sysfs_ops = &dev_sysfs_ops, 2594 .namespace = device_namespace, 2595 .get_ownership = device_get_ownership, 2596 }; 2597 2598 2599 static int dev_uevent_filter(const struct kobject *kobj) 2600 { 2601 const struct kobj_type *ktype = get_ktype(kobj); 2602 2603 if (ktype == &device_ktype) { 2604 const struct device *dev = kobj_to_dev(kobj); 2605 if (dev->bus) 2606 return 1; 2607 if (dev->class) 2608 return 1; 2609 } 2610 return 0; 2611 } 2612 2613 static const char *dev_uevent_name(const struct kobject *kobj) 2614 { 2615 const struct device *dev = kobj_to_dev(kobj); 2616 2617 if (dev->bus) 2618 return dev->bus->name; 2619 if (dev->class) 2620 return dev->class->name; 2621 return NULL; 2622 } 2623 2624 /* 2625 * Try filling "DRIVER=<name>" uevent variable for a device. Because this 2626 * function may race with binding and unbinding the device from a driver, 2627 * we need to be careful. Binding is generally safe, at worst we miss the 2628 * fact that the device is already bound to a driver (but the driver 2629 * information that is delivered through uevents is best-effort, it may 2630 * become obsolete as soon as it is generated anyways). Unbinding is more 2631 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should 2632 * be used to make sure we are dealing with the same pointer, and to 2633 * ensure that driver structure is not going to disappear from under us 2634 * we take bus' drivers klist lock. The assumption that only registered 2635 * driver can be bound to a device, and to unregister a driver bus code 2636 * will take the same lock. 2637 */ 2638 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env) 2639 { 2640 struct subsys_private *sp = bus_to_subsys(dev->bus); 2641 2642 if (sp) { 2643 scoped_guard(spinlock, &sp->klist_drivers.k_lock) { 2644 struct device_driver *drv = READ_ONCE(dev->driver); 2645 if (drv) 2646 add_uevent_var(env, "DRIVER=%s", drv->name); 2647 } 2648 2649 subsys_put(sp); 2650 } 2651 } 2652 2653 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2654 { 2655 const struct device *dev = kobj_to_dev(kobj); 2656 int retval = 0; 2657 2658 /* add device node properties if present */ 2659 if (MAJOR(dev->devt)) { 2660 const char *tmp; 2661 const char *name; 2662 umode_t mode = 0; 2663 kuid_t uid = GLOBAL_ROOT_UID; 2664 kgid_t gid = GLOBAL_ROOT_GID; 2665 2666 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2667 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2668 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2669 if (name) { 2670 add_uevent_var(env, "DEVNAME=%s", name); 2671 if (mode) 2672 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2673 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2674 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2675 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2676 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2677 kfree(tmp); 2678 } 2679 } 2680 2681 if (dev->type && dev->type->name) 2682 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2683 2684 /* Add "DRIVER=%s" variable if the device is bound to a driver */ 2685 dev_driver_uevent(dev, env); 2686 2687 /* Add common DT information about the device */ 2688 of_device_uevent(dev, env); 2689 2690 /* have the bus specific function add its stuff */ 2691 if (dev->bus && dev->bus->uevent) { 2692 retval = dev->bus->uevent(dev, env); 2693 if (retval) 2694 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2695 dev_name(dev), __func__, retval); 2696 } 2697 2698 /* have the class specific function add its stuff */ 2699 if (dev->class && dev->class->dev_uevent) { 2700 retval = dev->class->dev_uevent(dev, env); 2701 if (retval) 2702 pr_debug("device: '%s': %s: class uevent() " 2703 "returned %d\n", dev_name(dev), 2704 __func__, retval); 2705 } 2706 2707 /* have the device type specific function add its stuff */ 2708 if (dev->type && dev->type->uevent) { 2709 retval = dev->type->uevent(dev, env); 2710 if (retval) 2711 pr_debug("device: '%s': %s: dev_type uevent() " 2712 "returned %d\n", dev_name(dev), 2713 __func__, retval); 2714 } 2715 2716 return retval; 2717 } 2718 2719 static const struct kset_uevent_ops device_uevent_ops = { 2720 .filter = dev_uevent_filter, 2721 .name = dev_uevent_name, 2722 .uevent = dev_uevent, 2723 }; 2724 2725 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2726 char *buf) 2727 { 2728 struct kobject *top_kobj; 2729 struct kset *kset; 2730 struct kobj_uevent_env *env = NULL; 2731 int i; 2732 int len = 0; 2733 int retval; 2734 2735 /* search the kset, the device belongs to */ 2736 top_kobj = &dev->kobj; 2737 while (!top_kobj->kset && top_kobj->parent) 2738 top_kobj = top_kobj->parent; 2739 if (!top_kobj->kset) 2740 goto out; 2741 2742 kset = top_kobj->kset; 2743 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2744 goto out; 2745 2746 /* respect filter */ 2747 if (kset->uevent_ops && kset->uevent_ops->filter) 2748 if (!kset->uevent_ops->filter(&dev->kobj)) 2749 goto out; 2750 2751 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2752 if (!env) 2753 return -ENOMEM; 2754 2755 /* let the kset specific function add its keys */ 2756 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2757 if (retval) 2758 goto out; 2759 2760 /* copy keys to file */ 2761 for (i = 0; i < env->envp_idx; i++) 2762 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2763 out: 2764 kfree(env); 2765 return len; 2766 } 2767 2768 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2769 const char *buf, size_t count) 2770 { 2771 int rc; 2772 2773 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2774 2775 if (rc) { 2776 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2777 return rc; 2778 } 2779 2780 return count; 2781 } 2782 static DEVICE_ATTR_RW(uevent); 2783 2784 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2785 char *buf) 2786 { 2787 bool val; 2788 2789 device_lock(dev); 2790 val = !dev->offline; 2791 device_unlock(dev); 2792 return sysfs_emit(buf, "%u\n", val); 2793 } 2794 2795 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2796 const char *buf, size_t count) 2797 { 2798 bool val; 2799 int ret; 2800 2801 ret = kstrtobool(buf, &val); 2802 if (ret < 0) 2803 return ret; 2804 2805 ret = lock_device_hotplug_sysfs(); 2806 if (ret) 2807 return ret; 2808 2809 ret = val ? device_online(dev) : device_offline(dev); 2810 unlock_device_hotplug(); 2811 return ret < 0 ? ret : count; 2812 } 2813 static DEVICE_ATTR_RW(online); 2814 2815 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2816 char *buf) 2817 { 2818 const char *loc; 2819 2820 switch (dev->removable) { 2821 case DEVICE_REMOVABLE: 2822 loc = "removable"; 2823 break; 2824 case DEVICE_FIXED: 2825 loc = "fixed"; 2826 break; 2827 default: 2828 loc = "unknown"; 2829 } 2830 return sysfs_emit(buf, "%s\n", loc); 2831 } 2832 static DEVICE_ATTR_RO(removable); 2833 2834 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2835 { 2836 return sysfs_create_groups(&dev->kobj, groups); 2837 } 2838 EXPORT_SYMBOL_GPL(device_add_groups); 2839 2840 void device_remove_groups(struct device *dev, 2841 const struct attribute_group **groups) 2842 { 2843 sysfs_remove_groups(&dev->kobj, groups); 2844 } 2845 EXPORT_SYMBOL_GPL(device_remove_groups); 2846 2847 union device_attr_group_devres { 2848 const struct attribute_group *group; 2849 const struct attribute_group **groups; 2850 }; 2851 2852 static void devm_attr_group_remove(struct device *dev, void *res) 2853 { 2854 union device_attr_group_devres *devres = res; 2855 const struct attribute_group *group = devres->group; 2856 2857 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2858 sysfs_remove_group(&dev->kobj, group); 2859 } 2860 2861 /** 2862 * devm_device_add_group - given a device, create a managed attribute group 2863 * @dev: The device to create the group for 2864 * @grp: The attribute group to create 2865 * 2866 * This function creates a group for the first time. It will explicitly 2867 * warn and error if any of the attribute files being created already exist. 2868 * 2869 * Returns 0 on success or error code on failure. 2870 */ 2871 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2872 { 2873 union device_attr_group_devres *devres; 2874 int error; 2875 2876 devres = devres_alloc(devm_attr_group_remove, 2877 sizeof(*devres), GFP_KERNEL); 2878 if (!devres) 2879 return -ENOMEM; 2880 2881 error = sysfs_create_group(&dev->kobj, grp); 2882 if (error) { 2883 devres_free(devres); 2884 return error; 2885 } 2886 2887 devres->group = grp; 2888 devres_add(dev, devres); 2889 return 0; 2890 } 2891 EXPORT_SYMBOL_GPL(devm_device_add_group); 2892 2893 static int device_add_attrs(struct device *dev) 2894 { 2895 const struct class *class = dev->class; 2896 const struct device_type *type = dev->type; 2897 int error; 2898 2899 if (class) { 2900 error = device_add_groups(dev, class->dev_groups); 2901 if (error) 2902 return error; 2903 } 2904 2905 if (type) { 2906 error = device_add_groups(dev, type->groups); 2907 if (error) 2908 goto err_remove_class_groups; 2909 } 2910 2911 error = device_add_groups(dev, dev->groups); 2912 if (error) 2913 goto err_remove_type_groups; 2914 2915 if (device_supports_offline(dev) && !dev->offline_disabled) { 2916 error = device_create_file(dev, &dev_attr_online); 2917 if (error) 2918 goto err_remove_dev_groups; 2919 } 2920 2921 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2922 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2923 if (error) 2924 goto err_remove_dev_online; 2925 } 2926 2927 if (dev_removable_is_valid(dev)) { 2928 error = device_create_file(dev, &dev_attr_removable); 2929 if (error) 2930 goto err_remove_dev_waiting_for_supplier; 2931 } 2932 2933 if (dev_add_physical_location(dev)) { 2934 error = device_add_group(dev, 2935 &dev_attr_physical_location_group); 2936 if (error) 2937 goto err_remove_dev_removable; 2938 } 2939 2940 return 0; 2941 2942 err_remove_dev_removable: 2943 device_remove_file(dev, &dev_attr_removable); 2944 err_remove_dev_waiting_for_supplier: 2945 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2946 err_remove_dev_online: 2947 device_remove_file(dev, &dev_attr_online); 2948 err_remove_dev_groups: 2949 device_remove_groups(dev, dev->groups); 2950 err_remove_type_groups: 2951 if (type) 2952 device_remove_groups(dev, type->groups); 2953 err_remove_class_groups: 2954 if (class) 2955 device_remove_groups(dev, class->dev_groups); 2956 2957 return error; 2958 } 2959 2960 static void device_remove_attrs(struct device *dev) 2961 { 2962 const struct class *class = dev->class; 2963 const struct device_type *type = dev->type; 2964 2965 if (dev->physical_location) { 2966 device_remove_group(dev, &dev_attr_physical_location_group); 2967 kfree(dev->physical_location); 2968 } 2969 2970 device_remove_file(dev, &dev_attr_removable); 2971 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2972 device_remove_file(dev, &dev_attr_online); 2973 device_remove_groups(dev, dev->groups); 2974 2975 if (type) 2976 device_remove_groups(dev, type->groups); 2977 2978 if (class) 2979 device_remove_groups(dev, class->dev_groups); 2980 } 2981 2982 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2983 char *buf) 2984 { 2985 return print_dev_t(buf, dev->devt); 2986 } 2987 static DEVICE_ATTR_RO(dev); 2988 2989 /* /sys/devices/ */ 2990 struct kset *devices_kset; 2991 2992 /** 2993 * devices_kset_move_before - Move device in the devices_kset's list. 2994 * @deva: Device to move. 2995 * @devb: Device @deva should come before. 2996 */ 2997 static void devices_kset_move_before(struct device *deva, struct device *devb) 2998 { 2999 if (!devices_kset) 3000 return; 3001 pr_debug("devices_kset: Moving %s before %s\n", 3002 dev_name(deva), dev_name(devb)); 3003 spin_lock(&devices_kset->list_lock); 3004 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3005 spin_unlock(&devices_kset->list_lock); 3006 } 3007 3008 /** 3009 * devices_kset_move_after - Move device in the devices_kset's list. 3010 * @deva: Device to move 3011 * @devb: Device @deva should come after. 3012 */ 3013 static void devices_kset_move_after(struct device *deva, struct device *devb) 3014 { 3015 if (!devices_kset) 3016 return; 3017 pr_debug("devices_kset: Moving %s after %s\n", 3018 dev_name(deva), dev_name(devb)); 3019 spin_lock(&devices_kset->list_lock); 3020 list_move(&deva->kobj.entry, &devb->kobj.entry); 3021 spin_unlock(&devices_kset->list_lock); 3022 } 3023 3024 /** 3025 * devices_kset_move_last - move the device to the end of devices_kset's list. 3026 * @dev: device to move 3027 */ 3028 void devices_kset_move_last(struct device *dev) 3029 { 3030 if (!devices_kset) 3031 return; 3032 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3033 spin_lock(&devices_kset->list_lock); 3034 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3035 spin_unlock(&devices_kset->list_lock); 3036 } 3037 3038 /** 3039 * device_create_file - create sysfs attribute file for device. 3040 * @dev: device. 3041 * @attr: device attribute descriptor. 3042 */ 3043 int device_create_file(struct device *dev, 3044 const struct device_attribute *attr) 3045 { 3046 int error = 0; 3047 3048 if (dev) { 3049 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3050 "Attribute %s: write permission without 'store'\n", 3051 attr->attr.name); 3052 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3053 "Attribute %s: read permission without 'show'\n", 3054 attr->attr.name); 3055 error = sysfs_create_file(&dev->kobj, &attr->attr); 3056 } 3057 3058 return error; 3059 } 3060 EXPORT_SYMBOL_GPL(device_create_file); 3061 3062 /** 3063 * device_remove_file - remove sysfs attribute file. 3064 * @dev: device. 3065 * @attr: device attribute descriptor. 3066 */ 3067 void device_remove_file(struct device *dev, 3068 const struct device_attribute *attr) 3069 { 3070 if (dev) 3071 sysfs_remove_file(&dev->kobj, &attr->attr); 3072 } 3073 EXPORT_SYMBOL_GPL(device_remove_file); 3074 3075 /** 3076 * device_remove_file_self - remove sysfs attribute file from its own method. 3077 * @dev: device. 3078 * @attr: device attribute descriptor. 3079 * 3080 * See kernfs_remove_self() for details. 3081 */ 3082 bool device_remove_file_self(struct device *dev, 3083 const struct device_attribute *attr) 3084 { 3085 if (dev) 3086 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3087 else 3088 return false; 3089 } 3090 EXPORT_SYMBOL_GPL(device_remove_file_self); 3091 3092 /** 3093 * device_create_bin_file - create sysfs binary attribute file for device. 3094 * @dev: device. 3095 * @attr: device binary attribute descriptor. 3096 */ 3097 int device_create_bin_file(struct device *dev, 3098 const struct bin_attribute *attr) 3099 { 3100 int error = -EINVAL; 3101 if (dev) 3102 error = sysfs_create_bin_file(&dev->kobj, attr); 3103 return error; 3104 } 3105 EXPORT_SYMBOL_GPL(device_create_bin_file); 3106 3107 /** 3108 * device_remove_bin_file - remove sysfs binary attribute file 3109 * @dev: device. 3110 * @attr: device binary attribute descriptor. 3111 */ 3112 void device_remove_bin_file(struct device *dev, 3113 const struct bin_attribute *attr) 3114 { 3115 if (dev) 3116 sysfs_remove_bin_file(&dev->kobj, attr); 3117 } 3118 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3119 3120 static void klist_children_get(struct klist_node *n) 3121 { 3122 struct device_private *p = to_device_private_parent(n); 3123 struct device *dev = p->device; 3124 3125 get_device(dev); 3126 } 3127 3128 static void klist_children_put(struct klist_node *n) 3129 { 3130 struct device_private *p = to_device_private_parent(n); 3131 struct device *dev = p->device; 3132 3133 put_device(dev); 3134 } 3135 3136 /** 3137 * device_initialize - init device structure. 3138 * @dev: device. 3139 * 3140 * This prepares the device for use by other layers by initializing 3141 * its fields. 3142 * It is the first half of device_register(), if called by 3143 * that function, though it can also be called separately, so one 3144 * may use @dev's fields. In particular, get_device()/put_device() 3145 * may be used for reference counting of @dev after calling this 3146 * function. 3147 * 3148 * All fields in @dev must be initialized by the caller to 0, except 3149 * for those explicitly set to some other value. The simplest 3150 * approach is to use kzalloc() to allocate the structure containing 3151 * @dev. 3152 * 3153 * NOTE: Use put_device() to give up your reference instead of freeing 3154 * @dev directly once you have called this function. 3155 */ 3156 void device_initialize(struct device *dev) 3157 { 3158 dev->kobj.kset = devices_kset; 3159 kobject_init(&dev->kobj, &device_ktype); 3160 INIT_LIST_HEAD(&dev->dma_pools); 3161 mutex_init(&dev->mutex); 3162 lockdep_set_novalidate_class(&dev->mutex); 3163 spin_lock_init(&dev->devres_lock); 3164 INIT_LIST_HEAD(&dev->devres_head); 3165 device_pm_init(dev); 3166 set_dev_node(dev, NUMA_NO_NODE); 3167 INIT_LIST_HEAD(&dev->links.consumers); 3168 INIT_LIST_HEAD(&dev->links.suppliers); 3169 INIT_LIST_HEAD(&dev->links.defer_sync); 3170 dev->links.status = DL_DEV_NO_DRIVER; 3171 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3172 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3173 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3174 dev->dma_coherent = dma_default_coherent; 3175 #endif 3176 swiotlb_dev_init(dev); 3177 } 3178 EXPORT_SYMBOL_GPL(device_initialize); 3179 3180 struct kobject *virtual_device_parent(void) 3181 { 3182 static struct kobject *virtual_dir = NULL; 3183 3184 if (!virtual_dir) 3185 virtual_dir = kobject_create_and_add("virtual", 3186 &devices_kset->kobj); 3187 3188 return virtual_dir; 3189 } 3190 3191 struct class_dir { 3192 struct kobject kobj; 3193 const struct class *class; 3194 }; 3195 3196 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3197 3198 static void class_dir_release(struct kobject *kobj) 3199 { 3200 struct class_dir *dir = to_class_dir(kobj); 3201 kfree(dir); 3202 } 3203 3204 static const 3205 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3206 { 3207 const struct class_dir *dir = to_class_dir(kobj); 3208 return dir->class->ns_type; 3209 } 3210 3211 static const struct kobj_type class_dir_ktype = { 3212 .release = class_dir_release, 3213 .sysfs_ops = &kobj_sysfs_ops, 3214 .child_ns_type = class_dir_child_ns_type 3215 }; 3216 3217 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3218 struct kobject *parent_kobj) 3219 { 3220 struct class_dir *dir; 3221 int retval; 3222 3223 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3224 if (!dir) 3225 return ERR_PTR(-ENOMEM); 3226 3227 dir->class = sp->class; 3228 kobject_init(&dir->kobj, &class_dir_ktype); 3229 3230 dir->kobj.kset = &sp->glue_dirs; 3231 3232 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3233 if (retval < 0) { 3234 kobject_put(&dir->kobj); 3235 return ERR_PTR(retval); 3236 } 3237 return &dir->kobj; 3238 } 3239 3240 static DEFINE_MUTEX(gdp_mutex); 3241 3242 static struct kobject *get_device_parent(struct device *dev, 3243 struct device *parent) 3244 { 3245 struct subsys_private *sp = class_to_subsys(dev->class); 3246 struct kobject *kobj = NULL; 3247 3248 if (sp) { 3249 struct kobject *parent_kobj; 3250 struct kobject *k; 3251 3252 /* 3253 * If we have no parent, we live in "virtual". 3254 * Class-devices with a non class-device as parent, live 3255 * in a "glue" directory to prevent namespace collisions. 3256 */ 3257 if (parent == NULL) 3258 parent_kobj = virtual_device_parent(); 3259 else if (parent->class && !dev->class->ns_type) { 3260 subsys_put(sp); 3261 return &parent->kobj; 3262 } else { 3263 parent_kobj = &parent->kobj; 3264 } 3265 3266 mutex_lock(&gdp_mutex); 3267 3268 /* find our class-directory at the parent and reference it */ 3269 spin_lock(&sp->glue_dirs.list_lock); 3270 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3271 if (k->parent == parent_kobj) { 3272 kobj = kobject_get(k); 3273 break; 3274 } 3275 spin_unlock(&sp->glue_dirs.list_lock); 3276 if (kobj) { 3277 mutex_unlock(&gdp_mutex); 3278 subsys_put(sp); 3279 return kobj; 3280 } 3281 3282 /* or create a new class-directory at the parent device */ 3283 k = class_dir_create_and_add(sp, parent_kobj); 3284 /* do not emit an uevent for this simple "glue" directory */ 3285 mutex_unlock(&gdp_mutex); 3286 subsys_put(sp); 3287 return k; 3288 } 3289 3290 /* subsystems can specify a default root directory for their devices */ 3291 if (!parent && dev->bus) { 3292 struct device *dev_root = bus_get_dev_root(dev->bus); 3293 3294 if (dev_root) { 3295 kobj = &dev_root->kobj; 3296 put_device(dev_root); 3297 return kobj; 3298 } 3299 } 3300 3301 if (parent) 3302 return &parent->kobj; 3303 return NULL; 3304 } 3305 3306 static inline bool live_in_glue_dir(struct kobject *kobj, 3307 struct device *dev) 3308 { 3309 struct subsys_private *sp; 3310 bool retval; 3311 3312 if (!kobj || !dev->class) 3313 return false; 3314 3315 sp = class_to_subsys(dev->class); 3316 if (!sp) 3317 return false; 3318 3319 if (kobj->kset == &sp->glue_dirs) 3320 retval = true; 3321 else 3322 retval = false; 3323 3324 subsys_put(sp); 3325 return retval; 3326 } 3327 3328 static inline struct kobject *get_glue_dir(struct device *dev) 3329 { 3330 return dev->kobj.parent; 3331 } 3332 3333 /** 3334 * kobject_has_children - Returns whether a kobject has children. 3335 * @kobj: the object to test 3336 * 3337 * This will return whether a kobject has other kobjects as children. 3338 * 3339 * It does NOT account for the presence of attribute files, only sub 3340 * directories. It also assumes there is no concurrent addition or 3341 * removal of such children, and thus relies on external locking. 3342 */ 3343 static inline bool kobject_has_children(struct kobject *kobj) 3344 { 3345 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3346 3347 return kobj->sd && kobj->sd->dir.subdirs; 3348 } 3349 3350 /* 3351 * make sure cleaning up dir as the last step, we need to make 3352 * sure .release handler of kobject is run with holding the 3353 * global lock 3354 */ 3355 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3356 { 3357 unsigned int ref; 3358 3359 /* see if we live in a "glue" directory */ 3360 if (!live_in_glue_dir(glue_dir, dev)) 3361 return; 3362 3363 mutex_lock(&gdp_mutex); 3364 /** 3365 * There is a race condition between removing glue directory 3366 * and adding a new device under the glue directory. 3367 * 3368 * CPU1: CPU2: 3369 * 3370 * device_add() 3371 * get_device_parent() 3372 * class_dir_create_and_add() 3373 * kobject_add_internal() 3374 * create_dir() // create glue_dir 3375 * 3376 * device_add() 3377 * get_device_parent() 3378 * kobject_get() // get glue_dir 3379 * 3380 * device_del() 3381 * cleanup_glue_dir() 3382 * kobject_del(glue_dir) 3383 * 3384 * kobject_add() 3385 * kobject_add_internal() 3386 * create_dir() // in glue_dir 3387 * sysfs_create_dir_ns() 3388 * kernfs_create_dir_ns(sd) 3389 * 3390 * sysfs_remove_dir() // glue_dir->sd=NULL 3391 * sysfs_put() // free glue_dir->sd 3392 * 3393 * // sd is freed 3394 * kernfs_new_node(sd) 3395 * kernfs_get(glue_dir) 3396 * kernfs_add_one() 3397 * kernfs_put() 3398 * 3399 * Before CPU1 remove last child device under glue dir, if CPU2 add 3400 * a new device under glue dir, the glue_dir kobject reference count 3401 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3402 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3403 * and sysfs_put(). This result in glue_dir->sd is freed. 3404 * 3405 * Then the CPU2 will see a stale "empty" but still potentially used 3406 * glue dir around in kernfs_new_node(). 3407 * 3408 * In order to avoid this happening, we also should make sure that 3409 * kernfs_node for glue_dir is released in CPU1 only when refcount 3410 * for glue_dir kobj is 1. 3411 */ 3412 ref = kref_read(&glue_dir->kref); 3413 if (!kobject_has_children(glue_dir) && !--ref) 3414 kobject_del(glue_dir); 3415 kobject_put(glue_dir); 3416 mutex_unlock(&gdp_mutex); 3417 } 3418 3419 static int device_add_class_symlinks(struct device *dev) 3420 { 3421 struct device_node *of_node = dev_of_node(dev); 3422 struct subsys_private *sp; 3423 int error; 3424 3425 if (of_node) { 3426 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3427 if (error) 3428 dev_warn(dev, "Error %d creating of_node link\n",error); 3429 /* An error here doesn't warrant bringing down the device */ 3430 } 3431 3432 sp = class_to_subsys(dev->class); 3433 if (!sp) 3434 return 0; 3435 3436 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3437 if (error) 3438 goto out_devnode; 3439 3440 if (dev->parent && device_is_not_partition(dev)) { 3441 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3442 "device"); 3443 if (error) 3444 goto out_subsys; 3445 } 3446 3447 /* link in the class directory pointing to the device */ 3448 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3449 if (error) 3450 goto out_device; 3451 goto exit; 3452 3453 out_device: 3454 sysfs_remove_link(&dev->kobj, "device"); 3455 out_subsys: 3456 sysfs_remove_link(&dev->kobj, "subsystem"); 3457 out_devnode: 3458 sysfs_remove_link(&dev->kobj, "of_node"); 3459 exit: 3460 subsys_put(sp); 3461 return error; 3462 } 3463 3464 static void device_remove_class_symlinks(struct device *dev) 3465 { 3466 struct subsys_private *sp = class_to_subsys(dev->class); 3467 3468 if (dev_of_node(dev)) 3469 sysfs_remove_link(&dev->kobj, "of_node"); 3470 3471 if (!sp) 3472 return; 3473 3474 if (dev->parent && device_is_not_partition(dev)) 3475 sysfs_remove_link(&dev->kobj, "device"); 3476 sysfs_remove_link(&dev->kobj, "subsystem"); 3477 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3478 subsys_put(sp); 3479 } 3480 3481 /** 3482 * dev_set_name - set a device name 3483 * @dev: device 3484 * @fmt: format string for the device's name 3485 */ 3486 int dev_set_name(struct device *dev, const char *fmt, ...) 3487 { 3488 va_list vargs; 3489 int err; 3490 3491 va_start(vargs, fmt); 3492 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3493 va_end(vargs); 3494 return err; 3495 } 3496 EXPORT_SYMBOL_GPL(dev_set_name); 3497 3498 /* select a /sys/dev/ directory for the device */ 3499 static struct kobject *device_to_dev_kobj(struct device *dev) 3500 { 3501 if (is_blockdev(dev)) 3502 return sysfs_dev_block_kobj; 3503 else 3504 return sysfs_dev_char_kobj; 3505 } 3506 3507 static int device_create_sys_dev_entry(struct device *dev) 3508 { 3509 struct kobject *kobj = device_to_dev_kobj(dev); 3510 int error = 0; 3511 char devt_str[15]; 3512 3513 if (kobj) { 3514 format_dev_t(devt_str, dev->devt); 3515 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3516 } 3517 3518 return error; 3519 } 3520 3521 static void device_remove_sys_dev_entry(struct device *dev) 3522 { 3523 struct kobject *kobj = device_to_dev_kobj(dev); 3524 char devt_str[15]; 3525 3526 if (kobj) { 3527 format_dev_t(devt_str, dev->devt); 3528 sysfs_remove_link(kobj, devt_str); 3529 } 3530 } 3531 3532 static int device_private_init(struct device *dev) 3533 { 3534 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3535 if (!dev->p) 3536 return -ENOMEM; 3537 dev->p->device = dev; 3538 klist_init(&dev->p->klist_children, klist_children_get, 3539 klist_children_put); 3540 INIT_LIST_HEAD(&dev->p->deferred_probe); 3541 return 0; 3542 } 3543 3544 /** 3545 * device_add - add device to device hierarchy. 3546 * @dev: device. 3547 * 3548 * This is part 2 of device_register(), though may be called 3549 * separately _iff_ device_initialize() has been called separately. 3550 * 3551 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3552 * to the global and sibling lists for the device, then 3553 * adds it to the other relevant subsystems of the driver model. 3554 * 3555 * Do not call this routine or device_register() more than once for 3556 * any device structure. The driver model core is not designed to work 3557 * with devices that get unregistered and then spring back to life. 3558 * (Among other things, it's very hard to guarantee that all references 3559 * to the previous incarnation of @dev have been dropped.) Allocate 3560 * and register a fresh new struct device instead. 3561 * 3562 * NOTE: _Never_ directly free @dev after calling this function, even 3563 * if it returned an error! Always use put_device() to give up your 3564 * reference instead. 3565 * 3566 * Rule of thumb is: if device_add() succeeds, you should call 3567 * device_del() when you want to get rid of it. If device_add() has 3568 * *not* succeeded, use *only* put_device() to drop the reference 3569 * count. 3570 */ 3571 int device_add(struct device *dev) 3572 { 3573 struct subsys_private *sp; 3574 struct device *parent; 3575 struct kobject *kobj; 3576 struct class_interface *class_intf; 3577 int error = -EINVAL; 3578 struct kobject *glue_dir = NULL; 3579 3580 dev = get_device(dev); 3581 if (!dev) 3582 goto done; 3583 3584 if (!dev->p) { 3585 error = device_private_init(dev); 3586 if (error) 3587 goto done; 3588 } 3589 3590 /* 3591 * for statically allocated devices, which should all be converted 3592 * some day, we need to initialize the name. We prevent reading back 3593 * the name, and force the use of dev_name() 3594 */ 3595 if (dev->init_name) { 3596 error = dev_set_name(dev, "%s", dev->init_name); 3597 dev->init_name = NULL; 3598 } 3599 3600 if (dev_name(dev)) 3601 error = 0; 3602 /* subsystems can specify simple device enumeration */ 3603 else if (dev->bus && dev->bus->dev_name) 3604 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3605 else 3606 error = -EINVAL; 3607 if (error) 3608 goto name_error; 3609 3610 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3611 3612 parent = get_device(dev->parent); 3613 kobj = get_device_parent(dev, parent); 3614 if (IS_ERR(kobj)) { 3615 error = PTR_ERR(kobj); 3616 goto parent_error; 3617 } 3618 if (kobj) 3619 dev->kobj.parent = kobj; 3620 3621 /* use parent numa_node */ 3622 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3623 set_dev_node(dev, dev_to_node(parent)); 3624 3625 /* first, register with generic layer. */ 3626 /* we require the name to be set before, and pass NULL */ 3627 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3628 if (error) { 3629 glue_dir = kobj; 3630 goto Error; 3631 } 3632 3633 /* notify platform of device entry */ 3634 device_platform_notify(dev); 3635 3636 error = device_create_file(dev, &dev_attr_uevent); 3637 if (error) 3638 goto attrError; 3639 3640 error = device_add_class_symlinks(dev); 3641 if (error) 3642 goto SymlinkError; 3643 error = device_add_attrs(dev); 3644 if (error) 3645 goto AttrsError; 3646 error = bus_add_device(dev); 3647 if (error) 3648 goto BusError; 3649 error = dpm_sysfs_add(dev); 3650 if (error) 3651 goto DPMError; 3652 device_pm_add(dev); 3653 3654 if (MAJOR(dev->devt)) { 3655 error = device_create_file(dev, &dev_attr_dev); 3656 if (error) 3657 goto DevAttrError; 3658 3659 error = device_create_sys_dev_entry(dev); 3660 if (error) 3661 goto SysEntryError; 3662 3663 devtmpfs_create_node(dev); 3664 } 3665 3666 /* Notify clients of device addition. This call must come 3667 * after dpm_sysfs_add() and before kobject_uevent(). 3668 */ 3669 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3670 kobject_uevent(&dev->kobj, KOBJ_ADD); 3671 3672 /* 3673 * Check if any of the other devices (consumers) have been waiting for 3674 * this device (supplier) to be added so that they can create a device 3675 * link to it. 3676 * 3677 * This needs to happen after device_pm_add() because device_link_add() 3678 * requires the supplier be registered before it's called. 3679 * 3680 * But this also needs to happen before bus_probe_device() to make sure 3681 * waiting consumers can link to it before the driver is bound to the 3682 * device and the driver sync_state callback is called for this device. 3683 */ 3684 if (dev->fwnode && !dev->fwnode->dev) { 3685 dev->fwnode->dev = dev; 3686 fw_devlink_link_device(dev); 3687 } 3688 3689 bus_probe_device(dev); 3690 3691 /* 3692 * If all driver registration is done and a newly added device doesn't 3693 * match with any driver, don't block its consumers from probing in 3694 * case the consumer device is able to operate without this supplier. 3695 */ 3696 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3697 fw_devlink_unblock_consumers(dev); 3698 3699 if (parent) 3700 klist_add_tail(&dev->p->knode_parent, 3701 &parent->p->klist_children); 3702 3703 sp = class_to_subsys(dev->class); 3704 if (sp) { 3705 mutex_lock(&sp->mutex); 3706 /* tie the class to the device */ 3707 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3708 3709 /* notify any interfaces that the device is here */ 3710 list_for_each_entry(class_intf, &sp->interfaces, node) 3711 if (class_intf->add_dev) 3712 class_intf->add_dev(dev); 3713 mutex_unlock(&sp->mutex); 3714 subsys_put(sp); 3715 } 3716 done: 3717 put_device(dev); 3718 return error; 3719 SysEntryError: 3720 if (MAJOR(dev->devt)) 3721 device_remove_file(dev, &dev_attr_dev); 3722 DevAttrError: 3723 device_pm_remove(dev); 3724 dpm_sysfs_remove(dev); 3725 DPMError: 3726 device_set_driver(dev, NULL); 3727 bus_remove_device(dev); 3728 BusError: 3729 device_remove_attrs(dev); 3730 AttrsError: 3731 device_remove_class_symlinks(dev); 3732 SymlinkError: 3733 device_remove_file(dev, &dev_attr_uevent); 3734 attrError: 3735 device_platform_notify_remove(dev); 3736 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3737 glue_dir = get_glue_dir(dev); 3738 kobject_del(&dev->kobj); 3739 Error: 3740 cleanup_glue_dir(dev, glue_dir); 3741 parent_error: 3742 put_device(parent); 3743 name_error: 3744 kfree(dev->p); 3745 dev->p = NULL; 3746 goto done; 3747 } 3748 EXPORT_SYMBOL_GPL(device_add); 3749 3750 /** 3751 * device_register - register a device with the system. 3752 * @dev: pointer to the device structure 3753 * 3754 * This happens in two clean steps - initialize the device 3755 * and add it to the system. The two steps can be called 3756 * separately, but this is the easiest and most common. 3757 * I.e. you should only call the two helpers separately if 3758 * have a clearly defined need to use and refcount the device 3759 * before it is added to the hierarchy. 3760 * 3761 * For more information, see the kerneldoc for device_initialize() 3762 * and device_add(). 3763 * 3764 * NOTE: _Never_ directly free @dev after calling this function, even 3765 * if it returned an error! Always use put_device() to give up the 3766 * reference initialized in this function instead. 3767 */ 3768 int device_register(struct device *dev) 3769 { 3770 device_initialize(dev); 3771 return device_add(dev); 3772 } 3773 EXPORT_SYMBOL_GPL(device_register); 3774 3775 /** 3776 * get_device - increment reference count for device. 3777 * @dev: device. 3778 * 3779 * This simply forwards the call to kobject_get(), though 3780 * we do take care to provide for the case that we get a NULL 3781 * pointer passed in. 3782 */ 3783 struct device *get_device(struct device *dev) 3784 { 3785 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3786 } 3787 EXPORT_SYMBOL_GPL(get_device); 3788 3789 /** 3790 * put_device - decrement reference count. 3791 * @dev: device in question. 3792 */ 3793 void put_device(struct device *dev) 3794 { 3795 /* might_sleep(); */ 3796 if (dev) 3797 kobject_put(&dev->kobj); 3798 } 3799 EXPORT_SYMBOL_GPL(put_device); 3800 3801 bool kill_device(struct device *dev) 3802 { 3803 /* 3804 * Require the device lock and set the "dead" flag to guarantee that 3805 * the update behavior is consistent with the other bitfields near 3806 * it and that we cannot have an asynchronous probe routine trying 3807 * to run while we are tearing out the bus/class/sysfs from 3808 * underneath the device. 3809 */ 3810 device_lock_assert(dev); 3811 3812 if (dev->p->dead) 3813 return false; 3814 dev->p->dead = true; 3815 return true; 3816 } 3817 EXPORT_SYMBOL_GPL(kill_device); 3818 3819 /** 3820 * device_del - delete device from system. 3821 * @dev: device. 3822 * 3823 * This is the first part of the device unregistration 3824 * sequence. This removes the device from the lists we control 3825 * from here, has it removed from the other driver model 3826 * subsystems it was added to in device_add(), and removes it 3827 * from the kobject hierarchy. 3828 * 3829 * NOTE: this should be called manually _iff_ device_add() was 3830 * also called manually. 3831 */ 3832 void device_del(struct device *dev) 3833 { 3834 struct subsys_private *sp; 3835 struct device *parent = dev->parent; 3836 struct kobject *glue_dir = NULL; 3837 struct class_interface *class_intf; 3838 unsigned int noio_flag; 3839 3840 device_lock(dev); 3841 kill_device(dev); 3842 device_unlock(dev); 3843 3844 if (dev->fwnode && dev->fwnode->dev == dev) 3845 dev->fwnode->dev = NULL; 3846 3847 /* Notify clients of device removal. This call must come 3848 * before dpm_sysfs_remove(). 3849 */ 3850 noio_flag = memalloc_noio_save(); 3851 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3852 3853 dpm_sysfs_remove(dev); 3854 if (parent) 3855 klist_del(&dev->p->knode_parent); 3856 if (MAJOR(dev->devt)) { 3857 devtmpfs_delete_node(dev); 3858 device_remove_sys_dev_entry(dev); 3859 device_remove_file(dev, &dev_attr_dev); 3860 } 3861 3862 sp = class_to_subsys(dev->class); 3863 if (sp) { 3864 device_remove_class_symlinks(dev); 3865 3866 mutex_lock(&sp->mutex); 3867 /* notify any interfaces that the device is now gone */ 3868 list_for_each_entry(class_intf, &sp->interfaces, node) 3869 if (class_intf->remove_dev) 3870 class_intf->remove_dev(dev); 3871 /* remove the device from the class list */ 3872 klist_del(&dev->p->knode_class); 3873 mutex_unlock(&sp->mutex); 3874 subsys_put(sp); 3875 } 3876 device_remove_file(dev, &dev_attr_uevent); 3877 device_remove_attrs(dev); 3878 bus_remove_device(dev); 3879 device_pm_remove(dev); 3880 driver_deferred_probe_del(dev); 3881 device_platform_notify_remove(dev); 3882 device_links_purge(dev); 3883 3884 /* 3885 * If a device does not have a driver attached, we need to clean 3886 * up any managed resources. We do this in device_release(), but 3887 * it's never called (and we leak the device) if a managed 3888 * resource holds a reference to the device. So release all 3889 * managed resources here, like we do in driver_detach(). We 3890 * still need to do so again in device_release() in case someone 3891 * adds a new resource after this point, though. 3892 */ 3893 devres_release_all(dev); 3894 3895 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3896 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3897 glue_dir = get_glue_dir(dev); 3898 kobject_del(&dev->kobj); 3899 cleanup_glue_dir(dev, glue_dir); 3900 memalloc_noio_restore(noio_flag); 3901 put_device(parent); 3902 } 3903 EXPORT_SYMBOL_GPL(device_del); 3904 3905 /** 3906 * device_unregister - unregister device from system. 3907 * @dev: device going away. 3908 * 3909 * We do this in two parts, like we do device_register(). First, 3910 * we remove it from all the subsystems with device_del(), then 3911 * we decrement the reference count via put_device(). If that 3912 * is the final reference count, the device will be cleaned up 3913 * via device_release() above. Otherwise, the structure will 3914 * stick around until the final reference to the device is dropped. 3915 */ 3916 void device_unregister(struct device *dev) 3917 { 3918 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3919 device_del(dev); 3920 put_device(dev); 3921 } 3922 EXPORT_SYMBOL_GPL(device_unregister); 3923 3924 static struct device *prev_device(struct klist_iter *i) 3925 { 3926 struct klist_node *n = klist_prev(i); 3927 struct device *dev = NULL; 3928 struct device_private *p; 3929 3930 if (n) { 3931 p = to_device_private_parent(n); 3932 dev = p->device; 3933 } 3934 return dev; 3935 } 3936 3937 static struct device *next_device(struct klist_iter *i) 3938 { 3939 struct klist_node *n = klist_next(i); 3940 struct device *dev = NULL; 3941 struct device_private *p; 3942 3943 if (n) { 3944 p = to_device_private_parent(n); 3945 dev = p->device; 3946 } 3947 return dev; 3948 } 3949 3950 /** 3951 * device_get_devnode - path of device node file 3952 * @dev: device 3953 * @mode: returned file access mode 3954 * @uid: returned file owner 3955 * @gid: returned file group 3956 * @tmp: possibly allocated string 3957 * 3958 * Return the relative path of a possible device node. 3959 * Non-default names may need to allocate a memory to compose 3960 * a name. This memory is returned in tmp and needs to be 3961 * freed by the caller. 3962 */ 3963 const char *device_get_devnode(const struct device *dev, 3964 umode_t *mode, kuid_t *uid, kgid_t *gid, 3965 const char **tmp) 3966 { 3967 char *s; 3968 3969 *tmp = NULL; 3970 3971 /* the device type may provide a specific name */ 3972 if (dev->type && dev->type->devnode) 3973 *tmp = dev->type->devnode(dev, mode, uid, gid); 3974 if (*tmp) 3975 return *tmp; 3976 3977 /* the class may provide a specific name */ 3978 if (dev->class && dev->class->devnode) 3979 *tmp = dev->class->devnode(dev, mode); 3980 if (*tmp) 3981 return *tmp; 3982 3983 /* return name without allocation, tmp == NULL */ 3984 if (strchr(dev_name(dev), '!') == NULL) 3985 return dev_name(dev); 3986 3987 /* replace '!' in the name with '/' */ 3988 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3989 if (!s) 3990 return NULL; 3991 return *tmp = s; 3992 } 3993 3994 /** 3995 * device_for_each_child - device child iterator. 3996 * @parent: parent struct device. 3997 * @fn: function to be called for each device. 3998 * @data: data for the callback. 3999 * 4000 * Iterate over @parent's child devices, and call @fn for each, 4001 * passing it @data. 4002 * 4003 * We check the return of @fn each time. If it returns anything 4004 * other than 0, we break out and return that value. 4005 */ 4006 int device_for_each_child(struct device *parent, void *data, 4007 device_iter_t fn) 4008 { 4009 struct klist_iter i; 4010 struct device *child; 4011 int error = 0; 4012 4013 if (!parent || !parent->p) 4014 return 0; 4015 4016 klist_iter_init(&parent->p->klist_children, &i); 4017 while (!error && (child = next_device(&i))) 4018 error = fn(child, data); 4019 klist_iter_exit(&i); 4020 return error; 4021 } 4022 EXPORT_SYMBOL_GPL(device_for_each_child); 4023 4024 /** 4025 * device_for_each_child_reverse - device child iterator in reversed order. 4026 * @parent: parent struct device. 4027 * @fn: function to be called for each device. 4028 * @data: data for the callback. 4029 * 4030 * Iterate over @parent's child devices, and call @fn for each, 4031 * passing it @data. 4032 * 4033 * We check the return of @fn each time. If it returns anything 4034 * other than 0, we break out and return that value. 4035 */ 4036 int device_for_each_child_reverse(struct device *parent, void *data, 4037 device_iter_t fn) 4038 { 4039 struct klist_iter i; 4040 struct device *child; 4041 int error = 0; 4042 4043 if (!parent || !parent->p) 4044 return 0; 4045 4046 klist_iter_init(&parent->p->klist_children, &i); 4047 while ((child = prev_device(&i)) && !error) 4048 error = fn(child, data); 4049 klist_iter_exit(&i); 4050 return error; 4051 } 4052 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4053 4054 /** 4055 * device_for_each_child_reverse_from - device child iterator in reversed order. 4056 * @parent: parent struct device. 4057 * @from: optional starting point in child list 4058 * @fn: function to be called for each device. 4059 * @data: data for the callback. 4060 * 4061 * Iterate over @parent's child devices, starting at @from, and call @fn 4062 * for each, passing it @data. This helper is identical to 4063 * device_for_each_child_reverse() when @from is NULL. 4064 * 4065 * @fn is checked each iteration. If it returns anything other than 0, 4066 * iteration stop and that value is returned to the caller of 4067 * device_for_each_child_reverse_from(); 4068 */ 4069 int device_for_each_child_reverse_from(struct device *parent, 4070 struct device *from, void *data, 4071 device_iter_t fn) 4072 { 4073 struct klist_iter i; 4074 struct device *child; 4075 int error = 0; 4076 4077 if (!parent || !parent->p) 4078 return 0; 4079 4080 klist_iter_init_node(&parent->p->klist_children, &i, 4081 (from ? &from->p->knode_parent : NULL)); 4082 while ((child = prev_device(&i)) && !error) 4083 error = fn(child, data); 4084 klist_iter_exit(&i); 4085 return error; 4086 } 4087 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4088 4089 /** 4090 * device_find_child - device iterator for locating a particular device. 4091 * @parent: parent struct device 4092 * @match: Callback function to check device 4093 * @data: Data to pass to match function 4094 * 4095 * This is similar to the device_for_each_child() function above, but it 4096 * returns a reference to a device that is 'found' for later use, as 4097 * determined by the @match callback. 4098 * 4099 * The callback should return 0 if the device doesn't match and non-zero 4100 * if it does. If the callback returns non-zero and a reference to the 4101 * current device can be obtained, this function will return to the caller 4102 * and not iterate over any more devices. 4103 * 4104 * NOTE: you will need to drop the reference with put_device() after use. 4105 */ 4106 struct device *device_find_child(struct device *parent, const void *data, 4107 device_match_t match) 4108 { 4109 struct klist_iter i; 4110 struct device *child; 4111 4112 if (!parent || !parent->p) 4113 return NULL; 4114 4115 klist_iter_init(&parent->p->klist_children, &i); 4116 while ((child = next_device(&i))) { 4117 if (match(child, data)) { 4118 get_device(child); 4119 break; 4120 } 4121 } 4122 klist_iter_exit(&i); 4123 return child; 4124 } 4125 EXPORT_SYMBOL_GPL(device_find_child); 4126 4127 int __init devices_init(void) 4128 { 4129 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4130 if (!devices_kset) 4131 return -ENOMEM; 4132 dev_kobj = kobject_create_and_add("dev", NULL); 4133 if (!dev_kobj) 4134 goto dev_kobj_err; 4135 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4136 if (!sysfs_dev_block_kobj) 4137 goto block_kobj_err; 4138 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4139 if (!sysfs_dev_char_kobj) 4140 goto char_kobj_err; 4141 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4142 if (!device_link_wq) 4143 goto wq_err; 4144 4145 return 0; 4146 4147 wq_err: 4148 kobject_put(sysfs_dev_char_kobj); 4149 char_kobj_err: 4150 kobject_put(sysfs_dev_block_kobj); 4151 block_kobj_err: 4152 kobject_put(dev_kobj); 4153 dev_kobj_err: 4154 kset_unregister(devices_kset); 4155 return -ENOMEM; 4156 } 4157 4158 static int device_check_offline(struct device *dev, void *not_used) 4159 { 4160 int ret; 4161 4162 ret = device_for_each_child(dev, NULL, device_check_offline); 4163 if (ret) 4164 return ret; 4165 4166 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4167 } 4168 4169 /** 4170 * device_offline - Prepare the device for hot-removal. 4171 * @dev: Device to be put offline. 4172 * 4173 * Execute the device bus type's .offline() callback, if present, to prepare 4174 * the device for a subsequent hot-removal. If that succeeds, the device must 4175 * not be used until either it is removed or its bus type's .online() callback 4176 * is executed. 4177 * 4178 * Call under device_hotplug_lock. 4179 */ 4180 int device_offline(struct device *dev) 4181 { 4182 int ret; 4183 4184 if (dev->offline_disabled) 4185 return -EPERM; 4186 4187 ret = device_for_each_child(dev, NULL, device_check_offline); 4188 if (ret) 4189 return ret; 4190 4191 device_lock(dev); 4192 if (device_supports_offline(dev)) { 4193 if (dev->offline) { 4194 ret = 1; 4195 } else { 4196 ret = dev->bus->offline(dev); 4197 if (!ret) { 4198 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4199 dev->offline = true; 4200 } 4201 } 4202 } 4203 device_unlock(dev); 4204 4205 return ret; 4206 } 4207 4208 /** 4209 * device_online - Put the device back online after successful device_offline(). 4210 * @dev: Device to be put back online. 4211 * 4212 * If device_offline() has been successfully executed for @dev, but the device 4213 * has not been removed subsequently, execute its bus type's .online() callback 4214 * to indicate that the device can be used again. 4215 * 4216 * Call under device_hotplug_lock. 4217 */ 4218 int device_online(struct device *dev) 4219 { 4220 int ret = 0; 4221 4222 device_lock(dev); 4223 if (device_supports_offline(dev)) { 4224 if (dev->offline) { 4225 ret = dev->bus->online(dev); 4226 if (!ret) { 4227 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4228 dev->offline = false; 4229 } 4230 } else { 4231 ret = 1; 4232 } 4233 } 4234 device_unlock(dev); 4235 4236 return ret; 4237 } 4238 4239 struct root_device { 4240 struct device dev; 4241 struct module *owner; 4242 }; 4243 4244 static inline struct root_device *to_root_device(struct device *d) 4245 { 4246 return container_of(d, struct root_device, dev); 4247 } 4248 4249 static void root_device_release(struct device *dev) 4250 { 4251 kfree(to_root_device(dev)); 4252 } 4253 4254 /** 4255 * __root_device_register - allocate and register a root device 4256 * @name: root device name 4257 * @owner: owner module of the root device, usually THIS_MODULE 4258 * 4259 * This function allocates a root device and registers it 4260 * using device_register(). In order to free the returned 4261 * device, use root_device_unregister(). 4262 * 4263 * Root devices are dummy devices which allow other devices 4264 * to be grouped under /sys/devices. Use this function to 4265 * allocate a root device and then use it as the parent of 4266 * any device which should appear under /sys/devices/{name} 4267 * 4268 * The /sys/devices/{name} directory will also contain a 4269 * 'module' symlink which points to the @owner directory 4270 * in sysfs. 4271 * 4272 * Returns &struct device pointer on success, or ERR_PTR() on error. 4273 * 4274 * Note: You probably want to use root_device_register(). 4275 */ 4276 struct device *__root_device_register(const char *name, struct module *owner) 4277 { 4278 struct root_device *root; 4279 int err = -ENOMEM; 4280 4281 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4282 if (!root) 4283 return ERR_PTR(err); 4284 4285 err = dev_set_name(&root->dev, "%s", name); 4286 if (err) { 4287 kfree(root); 4288 return ERR_PTR(err); 4289 } 4290 4291 root->dev.release = root_device_release; 4292 4293 err = device_register(&root->dev); 4294 if (err) { 4295 put_device(&root->dev); 4296 return ERR_PTR(err); 4297 } 4298 4299 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4300 if (owner) { 4301 struct module_kobject *mk = &owner->mkobj; 4302 4303 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4304 if (err) { 4305 device_unregister(&root->dev); 4306 return ERR_PTR(err); 4307 } 4308 root->owner = owner; 4309 } 4310 #endif 4311 4312 return &root->dev; 4313 } 4314 EXPORT_SYMBOL_GPL(__root_device_register); 4315 4316 /** 4317 * root_device_unregister - unregister and free a root device 4318 * @dev: device going away 4319 * 4320 * This function unregisters and cleans up a device that was created by 4321 * root_device_register(). 4322 */ 4323 void root_device_unregister(struct device *dev) 4324 { 4325 struct root_device *root = to_root_device(dev); 4326 4327 if (root->owner) 4328 sysfs_remove_link(&root->dev.kobj, "module"); 4329 4330 device_unregister(dev); 4331 } 4332 EXPORT_SYMBOL_GPL(root_device_unregister); 4333 4334 4335 static void device_create_release(struct device *dev) 4336 { 4337 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4338 kfree(dev); 4339 } 4340 4341 static __printf(6, 0) struct device * 4342 device_create_groups_vargs(const struct class *class, struct device *parent, 4343 dev_t devt, void *drvdata, 4344 const struct attribute_group **groups, 4345 const char *fmt, va_list args) 4346 { 4347 struct device *dev = NULL; 4348 int retval = -ENODEV; 4349 4350 if (IS_ERR_OR_NULL(class)) 4351 goto error; 4352 4353 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4354 if (!dev) { 4355 retval = -ENOMEM; 4356 goto error; 4357 } 4358 4359 device_initialize(dev); 4360 dev->devt = devt; 4361 dev->class = class; 4362 dev->parent = parent; 4363 dev->groups = groups; 4364 dev->release = device_create_release; 4365 dev_set_drvdata(dev, drvdata); 4366 4367 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4368 if (retval) 4369 goto error; 4370 4371 retval = device_add(dev); 4372 if (retval) 4373 goto error; 4374 4375 return dev; 4376 4377 error: 4378 put_device(dev); 4379 return ERR_PTR(retval); 4380 } 4381 4382 /** 4383 * device_create - creates a device and registers it with sysfs 4384 * @class: pointer to the struct class that this device should be registered to 4385 * @parent: pointer to the parent struct device of this new device, if any 4386 * @devt: the dev_t for the char device to be added 4387 * @drvdata: the data to be added to the device for callbacks 4388 * @fmt: string for the device's name 4389 * 4390 * This function can be used by char device classes. A struct device 4391 * will be created in sysfs, registered to the specified class. 4392 * 4393 * A "dev" file will be created, showing the dev_t for the device, if 4394 * the dev_t is not 0,0. 4395 * If a pointer to a parent struct device is passed in, the newly created 4396 * struct device will be a child of that device in sysfs. 4397 * The pointer to the struct device will be returned from the call. 4398 * Any further sysfs files that might be required can be created using this 4399 * pointer. 4400 * 4401 * Returns &struct device pointer on success, or ERR_PTR() on error. 4402 */ 4403 struct device *device_create(const struct class *class, struct device *parent, 4404 dev_t devt, void *drvdata, const char *fmt, ...) 4405 { 4406 va_list vargs; 4407 struct device *dev; 4408 4409 va_start(vargs, fmt); 4410 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4411 fmt, vargs); 4412 va_end(vargs); 4413 return dev; 4414 } 4415 EXPORT_SYMBOL_GPL(device_create); 4416 4417 /** 4418 * device_create_with_groups - creates a device and registers it with sysfs 4419 * @class: pointer to the struct class that this device should be registered to 4420 * @parent: pointer to the parent struct device of this new device, if any 4421 * @devt: the dev_t for the char device to be added 4422 * @drvdata: the data to be added to the device for callbacks 4423 * @groups: NULL-terminated list of attribute groups to be created 4424 * @fmt: string for the device's name 4425 * 4426 * This function can be used by char device classes. A struct device 4427 * will be created in sysfs, registered to the specified class. 4428 * Additional attributes specified in the groups parameter will also 4429 * be created automatically. 4430 * 4431 * A "dev" file will be created, showing the dev_t for the device, if 4432 * the dev_t is not 0,0. 4433 * If a pointer to a parent struct device is passed in, the newly created 4434 * struct device will be a child of that device in sysfs. 4435 * The pointer to the struct device will be returned from the call. 4436 * Any further sysfs files that might be required can be created using this 4437 * pointer. 4438 * 4439 * Returns &struct device pointer on success, or ERR_PTR() on error. 4440 */ 4441 struct device *device_create_with_groups(const struct class *class, 4442 struct device *parent, dev_t devt, 4443 void *drvdata, 4444 const struct attribute_group **groups, 4445 const char *fmt, ...) 4446 { 4447 va_list vargs; 4448 struct device *dev; 4449 4450 va_start(vargs, fmt); 4451 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4452 fmt, vargs); 4453 va_end(vargs); 4454 return dev; 4455 } 4456 EXPORT_SYMBOL_GPL(device_create_with_groups); 4457 4458 /** 4459 * device_destroy - removes a device that was created with device_create() 4460 * @class: pointer to the struct class that this device was registered with 4461 * @devt: the dev_t of the device that was previously registered 4462 * 4463 * This call unregisters and cleans up a device that was created with a 4464 * call to device_create(). 4465 */ 4466 void device_destroy(const struct class *class, dev_t devt) 4467 { 4468 struct device *dev; 4469 4470 dev = class_find_device_by_devt(class, devt); 4471 if (dev) { 4472 put_device(dev); 4473 device_unregister(dev); 4474 } 4475 } 4476 EXPORT_SYMBOL_GPL(device_destroy); 4477 4478 /** 4479 * device_rename - renames a device 4480 * @dev: the pointer to the struct device to be renamed 4481 * @new_name: the new name of the device 4482 * 4483 * It is the responsibility of the caller to provide mutual 4484 * exclusion between two different calls of device_rename 4485 * on the same device to ensure that new_name is valid and 4486 * won't conflict with other devices. 4487 * 4488 * Note: given that some subsystems (networking and infiniband) use this 4489 * function, with no immediate plans for this to change, we cannot assume or 4490 * require that this function not be called at all. 4491 * 4492 * However, if you're writing new code, do not call this function. The following 4493 * text from Kay Sievers offers some insight: 4494 * 4495 * Renaming devices is racy at many levels, symlinks and other stuff are not 4496 * replaced atomically, and you get a "move" uevent, but it's not easy to 4497 * connect the event to the old and new device. Device nodes are not renamed at 4498 * all, there isn't even support for that in the kernel now. 4499 * 4500 * In the meantime, during renaming, your target name might be taken by another 4501 * driver, creating conflicts. Or the old name is taken directly after you 4502 * renamed it -- then you get events for the same DEVPATH, before you even see 4503 * the "move" event. It's just a mess, and nothing new should ever rely on 4504 * kernel device renaming. Besides that, it's not even implemented now for 4505 * other things than (driver-core wise very simple) network devices. 4506 * 4507 * Make up a "real" name in the driver before you register anything, or add 4508 * some other attributes for userspace to find the device, or use udev to add 4509 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4510 * don't even want to get into that and try to implement the missing pieces in 4511 * the core. We really have other pieces to fix in the driver core mess. :) 4512 */ 4513 int device_rename(struct device *dev, const char *new_name) 4514 { 4515 struct subsys_private *sp = NULL; 4516 struct kobject *kobj = &dev->kobj; 4517 char *old_device_name = NULL; 4518 int error; 4519 bool is_link_renamed = false; 4520 4521 dev = get_device(dev); 4522 if (!dev) 4523 return -EINVAL; 4524 4525 dev_dbg(dev, "renaming to %s\n", new_name); 4526 4527 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4528 if (!old_device_name) { 4529 error = -ENOMEM; 4530 goto out; 4531 } 4532 4533 if (dev->class) { 4534 sp = class_to_subsys(dev->class); 4535 4536 if (!sp) { 4537 error = -EINVAL; 4538 goto out; 4539 } 4540 4541 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4542 new_name, kobject_namespace(kobj)); 4543 if (error) 4544 goto out; 4545 4546 is_link_renamed = true; 4547 } 4548 4549 error = kobject_rename(kobj, new_name); 4550 out: 4551 if (error && is_link_renamed) 4552 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4553 old_device_name, kobject_namespace(kobj)); 4554 subsys_put(sp); 4555 4556 put_device(dev); 4557 4558 kfree(old_device_name); 4559 4560 return error; 4561 } 4562 EXPORT_SYMBOL_GPL(device_rename); 4563 4564 static int device_move_class_links(struct device *dev, 4565 struct device *old_parent, 4566 struct device *new_parent) 4567 { 4568 int error = 0; 4569 4570 if (old_parent) 4571 sysfs_remove_link(&dev->kobj, "device"); 4572 if (new_parent) 4573 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4574 "device"); 4575 return error; 4576 } 4577 4578 /** 4579 * device_move - moves a device to a new parent 4580 * @dev: the pointer to the struct device to be moved 4581 * @new_parent: the new parent of the device (can be NULL) 4582 * @dpm_order: how to reorder the dpm_list 4583 */ 4584 int device_move(struct device *dev, struct device *new_parent, 4585 enum dpm_order dpm_order) 4586 { 4587 int error; 4588 struct device *old_parent; 4589 struct kobject *new_parent_kobj; 4590 4591 dev = get_device(dev); 4592 if (!dev) 4593 return -EINVAL; 4594 4595 device_pm_lock(); 4596 new_parent = get_device(new_parent); 4597 new_parent_kobj = get_device_parent(dev, new_parent); 4598 if (IS_ERR(new_parent_kobj)) { 4599 error = PTR_ERR(new_parent_kobj); 4600 put_device(new_parent); 4601 goto out; 4602 } 4603 4604 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4605 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4606 error = kobject_move(&dev->kobj, new_parent_kobj); 4607 if (error) { 4608 cleanup_glue_dir(dev, new_parent_kobj); 4609 put_device(new_parent); 4610 goto out; 4611 } 4612 old_parent = dev->parent; 4613 dev->parent = new_parent; 4614 if (old_parent) 4615 klist_remove(&dev->p->knode_parent); 4616 if (new_parent) { 4617 klist_add_tail(&dev->p->knode_parent, 4618 &new_parent->p->klist_children); 4619 set_dev_node(dev, dev_to_node(new_parent)); 4620 } 4621 4622 if (dev->class) { 4623 error = device_move_class_links(dev, old_parent, new_parent); 4624 if (error) { 4625 /* We ignore errors on cleanup since we're hosed anyway... */ 4626 device_move_class_links(dev, new_parent, old_parent); 4627 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4628 if (new_parent) 4629 klist_remove(&dev->p->knode_parent); 4630 dev->parent = old_parent; 4631 if (old_parent) { 4632 klist_add_tail(&dev->p->knode_parent, 4633 &old_parent->p->klist_children); 4634 set_dev_node(dev, dev_to_node(old_parent)); 4635 } 4636 } 4637 cleanup_glue_dir(dev, new_parent_kobj); 4638 put_device(new_parent); 4639 goto out; 4640 } 4641 } 4642 switch (dpm_order) { 4643 case DPM_ORDER_NONE: 4644 break; 4645 case DPM_ORDER_DEV_AFTER_PARENT: 4646 device_pm_move_after(dev, new_parent); 4647 devices_kset_move_after(dev, new_parent); 4648 break; 4649 case DPM_ORDER_PARENT_BEFORE_DEV: 4650 device_pm_move_before(new_parent, dev); 4651 devices_kset_move_before(new_parent, dev); 4652 break; 4653 case DPM_ORDER_DEV_LAST: 4654 device_pm_move_last(dev); 4655 devices_kset_move_last(dev); 4656 break; 4657 } 4658 4659 put_device(old_parent); 4660 out: 4661 device_pm_unlock(); 4662 put_device(dev); 4663 return error; 4664 } 4665 EXPORT_SYMBOL_GPL(device_move); 4666 4667 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4668 kgid_t kgid) 4669 { 4670 struct kobject *kobj = &dev->kobj; 4671 const struct class *class = dev->class; 4672 const struct device_type *type = dev->type; 4673 int error; 4674 4675 if (class) { 4676 /* 4677 * Change the device groups of the device class for @dev to 4678 * @kuid/@kgid. 4679 */ 4680 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4681 kgid); 4682 if (error) 4683 return error; 4684 } 4685 4686 if (type) { 4687 /* 4688 * Change the device groups of the device type for @dev to 4689 * @kuid/@kgid. 4690 */ 4691 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4692 kgid); 4693 if (error) 4694 return error; 4695 } 4696 4697 /* Change the device groups of @dev to @kuid/@kgid. */ 4698 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4699 if (error) 4700 return error; 4701 4702 if (device_supports_offline(dev) && !dev->offline_disabled) { 4703 /* Change online device attributes of @dev to @kuid/@kgid. */ 4704 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4705 kuid, kgid); 4706 if (error) 4707 return error; 4708 } 4709 4710 return 0; 4711 } 4712 4713 /** 4714 * device_change_owner - change the owner of an existing device. 4715 * @dev: device. 4716 * @kuid: new owner's kuid 4717 * @kgid: new owner's kgid 4718 * 4719 * This changes the owner of @dev and its corresponding sysfs entries to 4720 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4721 * core. 4722 * 4723 * Returns 0 on success or error code on failure. 4724 */ 4725 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4726 { 4727 int error; 4728 struct kobject *kobj = &dev->kobj; 4729 struct subsys_private *sp; 4730 4731 dev = get_device(dev); 4732 if (!dev) 4733 return -EINVAL; 4734 4735 /* 4736 * Change the kobject and the default attributes and groups of the 4737 * ktype associated with it to @kuid/@kgid. 4738 */ 4739 error = sysfs_change_owner(kobj, kuid, kgid); 4740 if (error) 4741 goto out; 4742 4743 /* 4744 * Change the uevent file for @dev to the new owner. The uevent file 4745 * was created in a separate step when @dev got added and we mirror 4746 * that step here. 4747 */ 4748 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4749 kgid); 4750 if (error) 4751 goto out; 4752 4753 /* 4754 * Change the device groups, the device groups associated with the 4755 * device class, and the groups associated with the device type of @dev 4756 * to @kuid/@kgid. 4757 */ 4758 error = device_attrs_change_owner(dev, kuid, kgid); 4759 if (error) 4760 goto out; 4761 4762 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4763 if (error) 4764 goto out; 4765 4766 /* 4767 * Change the owner of the symlink located in the class directory of 4768 * the device class associated with @dev which points to the actual 4769 * directory entry for @dev to @kuid/@kgid. This ensures that the 4770 * symlink shows the same permissions as its target. 4771 */ 4772 sp = class_to_subsys(dev->class); 4773 if (!sp) { 4774 error = -EINVAL; 4775 goto out; 4776 } 4777 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4778 subsys_put(sp); 4779 4780 out: 4781 put_device(dev); 4782 return error; 4783 } 4784 EXPORT_SYMBOL_GPL(device_change_owner); 4785 4786 /** 4787 * device_shutdown - call ->shutdown() on each device to shutdown. 4788 */ 4789 void device_shutdown(void) 4790 { 4791 struct device *dev, *parent; 4792 4793 wait_for_device_probe(); 4794 device_block_probing(); 4795 4796 cpufreq_suspend(); 4797 4798 spin_lock(&devices_kset->list_lock); 4799 /* 4800 * Walk the devices list backward, shutting down each in turn. 4801 * Beware that device unplug events may also start pulling 4802 * devices offline, even as the system is shutting down. 4803 */ 4804 while (!list_empty(&devices_kset->list)) { 4805 dev = list_entry(devices_kset->list.prev, struct device, 4806 kobj.entry); 4807 4808 /* 4809 * hold reference count of device's parent to 4810 * prevent it from being freed because parent's 4811 * lock is to be held 4812 */ 4813 parent = get_device(dev->parent); 4814 get_device(dev); 4815 /* 4816 * Make sure the device is off the kset list, in the 4817 * event that dev->*->shutdown() doesn't remove it. 4818 */ 4819 list_del_init(&dev->kobj.entry); 4820 spin_unlock(&devices_kset->list_lock); 4821 4822 /* hold lock to avoid race with probe/release */ 4823 if (parent) 4824 device_lock(parent); 4825 device_lock(dev); 4826 4827 /* Don't allow any more runtime suspends */ 4828 pm_runtime_get_noresume(dev); 4829 pm_runtime_barrier(dev); 4830 4831 if (dev->class && dev->class->shutdown_pre) { 4832 if (initcall_debug) 4833 dev_info(dev, "shutdown_pre\n"); 4834 dev->class->shutdown_pre(dev); 4835 } 4836 if (dev->bus && dev->bus->shutdown) { 4837 if (initcall_debug) 4838 dev_info(dev, "shutdown\n"); 4839 dev->bus->shutdown(dev); 4840 } else if (dev->driver && dev->driver->shutdown) { 4841 if (initcall_debug) 4842 dev_info(dev, "shutdown\n"); 4843 dev->driver->shutdown(dev); 4844 } 4845 4846 device_unlock(dev); 4847 if (parent) 4848 device_unlock(parent); 4849 4850 put_device(dev); 4851 put_device(parent); 4852 4853 spin_lock(&devices_kset->list_lock); 4854 } 4855 spin_unlock(&devices_kset->list_lock); 4856 } 4857 4858 /* 4859 * Device logging functions 4860 */ 4861 4862 #ifdef CONFIG_PRINTK 4863 static void 4864 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4865 { 4866 const char *subsys; 4867 4868 memset(dev_info, 0, sizeof(*dev_info)); 4869 4870 if (dev->class) 4871 subsys = dev->class->name; 4872 else if (dev->bus) 4873 subsys = dev->bus->name; 4874 else 4875 return; 4876 4877 strscpy(dev_info->subsystem, subsys); 4878 4879 /* 4880 * Add device identifier DEVICE=: 4881 * b12:8 block dev_t 4882 * c127:3 char dev_t 4883 * n8 netdev ifindex 4884 * +sound:card0 subsystem:devname 4885 */ 4886 if (MAJOR(dev->devt)) { 4887 char c; 4888 4889 if (strcmp(subsys, "block") == 0) 4890 c = 'b'; 4891 else 4892 c = 'c'; 4893 4894 snprintf(dev_info->device, sizeof(dev_info->device), 4895 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4896 } else if (strcmp(subsys, "net") == 0) { 4897 struct net_device *net = to_net_dev(dev); 4898 4899 snprintf(dev_info->device, sizeof(dev_info->device), 4900 "n%u", net->ifindex); 4901 } else { 4902 snprintf(dev_info->device, sizeof(dev_info->device), 4903 "+%s:%s", subsys, dev_name(dev)); 4904 } 4905 } 4906 4907 int dev_vprintk_emit(int level, const struct device *dev, 4908 const char *fmt, va_list args) 4909 { 4910 struct dev_printk_info dev_info; 4911 4912 set_dev_info(dev, &dev_info); 4913 4914 return vprintk_emit(0, level, &dev_info, fmt, args); 4915 } 4916 EXPORT_SYMBOL(dev_vprintk_emit); 4917 4918 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4919 { 4920 va_list args; 4921 int r; 4922 4923 va_start(args, fmt); 4924 4925 r = dev_vprintk_emit(level, dev, fmt, args); 4926 4927 va_end(args); 4928 4929 return r; 4930 } 4931 EXPORT_SYMBOL(dev_printk_emit); 4932 4933 static void __dev_printk(const char *level, const struct device *dev, 4934 struct va_format *vaf) 4935 { 4936 if (dev) 4937 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4938 dev_driver_string(dev), dev_name(dev), vaf); 4939 else 4940 printk("%s(NULL device *): %pV", level, vaf); 4941 } 4942 4943 void _dev_printk(const char *level, const struct device *dev, 4944 const char *fmt, ...) 4945 { 4946 struct va_format vaf; 4947 va_list args; 4948 4949 va_start(args, fmt); 4950 4951 vaf.fmt = fmt; 4952 vaf.va = &args; 4953 4954 __dev_printk(level, dev, &vaf); 4955 4956 va_end(args); 4957 } 4958 EXPORT_SYMBOL(_dev_printk); 4959 4960 #define define_dev_printk_level(func, kern_level) \ 4961 void func(const struct device *dev, const char *fmt, ...) \ 4962 { \ 4963 struct va_format vaf; \ 4964 va_list args; \ 4965 \ 4966 va_start(args, fmt); \ 4967 \ 4968 vaf.fmt = fmt; \ 4969 vaf.va = &args; \ 4970 \ 4971 __dev_printk(kern_level, dev, &vaf); \ 4972 \ 4973 va_end(args); \ 4974 } \ 4975 EXPORT_SYMBOL(func); 4976 4977 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4978 define_dev_printk_level(_dev_alert, KERN_ALERT); 4979 define_dev_printk_level(_dev_crit, KERN_CRIT); 4980 define_dev_printk_level(_dev_err, KERN_ERR); 4981 define_dev_printk_level(_dev_warn, KERN_WARNING); 4982 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4983 define_dev_printk_level(_dev_info, KERN_INFO); 4984 4985 #endif 4986 4987 static void __dev_probe_failed(const struct device *dev, int err, bool fatal, 4988 const char *fmt, va_list vargsp) 4989 { 4990 struct va_format vaf; 4991 va_list vargs; 4992 4993 /* 4994 * On x86_64 and possibly on other architectures, va_list is actually a 4995 * size-1 array containing a structure. As a result, function parameter 4996 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than 4997 * T(*)[1], which is expected by its assignment to vaf.va below. 4998 * 4999 * One standard way to solve this mess is by creating a copy in a local 5000 * variable of type va_list and then using a pointer to that local copy 5001 * instead, which is the approach employed here. 5002 */ 5003 va_copy(vargs, vargsp); 5004 5005 vaf.fmt = fmt; 5006 vaf.va = &vargs; 5007 5008 switch (err) { 5009 case -EPROBE_DEFER: 5010 device_set_deferred_probe_reason(dev, &vaf); 5011 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5012 break; 5013 5014 case -ENOMEM: 5015 /* Don't print anything on -ENOMEM, there's already enough output */ 5016 break; 5017 5018 default: 5019 /* Log fatal final failures as errors, otherwise produce warnings */ 5020 if (fatal) 5021 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5022 else 5023 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5024 break; 5025 } 5026 5027 va_end(vargs); 5028 } 5029 5030 /** 5031 * dev_err_probe - probe error check and log helper 5032 * @dev: the pointer to the struct device 5033 * @err: error value to test 5034 * @fmt: printf-style format string 5035 * @...: arguments as specified in the format string 5036 * 5037 * This helper implements common pattern present in probe functions for error 5038 * checking: print debug or error message depending if the error value is 5039 * -EPROBE_DEFER and propagate error upwards. 5040 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5041 * checked later by reading devices_deferred debugfs attribute. 5042 * It replaces the following code sequence:: 5043 * 5044 * if (err != -EPROBE_DEFER) 5045 * dev_err(dev, ...); 5046 * else 5047 * dev_dbg(dev, ...); 5048 * return err; 5049 * 5050 * with:: 5051 * 5052 * return dev_err_probe(dev, err, ...); 5053 * 5054 * Using this helper in your probe function is totally fine even if @err 5055 * is known to never be -EPROBE_DEFER. 5056 * The benefit compared to a normal dev_err() is the standardized format 5057 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5058 * instead of "-35"), and having the error code returned allows more 5059 * compact error paths. 5060 * 5061 * Returns @err. 5062 */ 5063 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5064 { 5065 va_list vargs; 5066 5067 va_start(vargs, fmt); 5068 5069 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */ 5070 __dev_probe_failed(dev, err, true, fmt, vargs); 5071 5072 va_end(vargs); 5073 5074 return err; 5075 } 5076 EXPORT_SYMBOL_GPL(dev_err_probe); 5077 5078 /** 5079 * dev_warn_probe - probe error check and log helper 5080 * @dev: the pointer to the struct device 5081 * @err: error value to test 5082 * @fmt: printf-style format string 5083 * @...: arguments as specified in the format string 5084 * 5085 * This helper implements common pattern present in probe functions for error 5086 * checking: print debug or warning message depending if the error value is 5087 * -EPROBE_DEFER and propagate error upwards. 5088 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5089 * checked later by reading devices_deferred debugfs attribute. 5090 * It replaces the following code sequence:: 5091 * 5092 * if (err != -EPROBE_DEFER) 5093 * dev_warn(dev, ...); 5094 * else 5095 * dev_dbg(dev, ...); 5096 * return err; 5097 * 5098 * with:: 5099 * 5100 * return dev_warn_probe(dev, err, ...); 5101 * 5102 * Using this helper in your probe function is totally fine even if @err 5103 * is known to never be -EPROBE_DEFER. 5104 * The benefit compared to a normal dev_warn() is the standardized format 5105 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5106 * instead of "-35"), and having the error code returned allows more 5107 * compact error paths. 5108 * 5109 * Returns @err. 5110 */ 5111 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...) 5112 { 5113 va_list vargs; 5114 5115 va_start(vargs, fmt); 5116 5117 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */ 5118 __dev_probe_failed(dev, err, false, fmt, vargs); 5119 5120 va_end(vargs); 5121 5122 return err; 5123 } 5124 EXPORT_SYMBOL_GPL(dev_warn_probe); 5125 5126 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5127 { 5128 return fwnode && !IS_ERR(fwnode->secondary); 5129 } 5130 5131 /** 5132 * set_primary_fwnode - Change the primary firmware node of a given device. 5133 * @dev: Device to handle. 5134 * @fwnode: New primary firmware node of the device. 5135 * 5136 * Set the device's firmware node pointer to @fwnode, but if a secondary 5137 * firmware node of the device is present, preserve it. 5138 * 5139 * Valid fwnode cases are: 5140 * - primary --> secondary --> -ENODEV 5141 * - primary --> NULL 5142 * - secondary --> -ENODEV 5143 * - NULL 5144 */ 5145 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5146 { 5147 struct device *parent = dev->parent; 5148 struct fwnode_handle *fn = dev->fwnode; 5149 5150 if (fwnode) { 5151 if (fwnode_is_primary(fn)) 5152 fn = fn->secondary; 5153 5154 if (fn) { 5155 WARN_ON(fwnode->secondary); 5156 fwnode->secondary = fn; 5157 } 5158 dev->fwnode = fwnode; 5159 } else { 5160 if (fwnode_is_primary(fn)) { 5161 dev->fwnode = fn->secondary; 5162 5163 /* Skip nullifying fn->secondary if the primary is shared */ 5164 if (parent && fn == parent->fwnode) 5165 return; 5166 5167 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5168 fn->secondary = NULL; 5169 } else { 5170 dev->fwnode = NULL; 5171 } 5172 } 5173 } 5174 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5175 5176 /** 5177 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5178 * @dev: Device to handle. 5179 * @fwnode: New secondary firmware node of the device. 5180 * 5181 * If a primary firmware node of the device is present, set its secondary 5182 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5183 * @fwnode. 5184 */ 5185 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5186 { 5187 if (fwnode) 5188 fwnode->secondary = ERR_PTR(-ENODEV); 5189 5190 if (fwnode_is_primary(dev->fwnode)) 5191 dev->fwnode->secondary = fwnode; 5192 else 5193 dev->fwnode = fwnode; 5194 } 5195 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5196 5197 /** 5198 * device_remove_of_node - Remove an of_node from a device 5199 * @dev: device whose device tree node is being removed 5200 */ 5201 void device_remove_of_node(struct device *dev) 5202 { 5203 dev = get_device(dev); 5204 if (!dev) 5205 return; 5206 5207 if (!dev->of_node) 5208 goto end; 5209 5210 if (dev->fwnode == of_fwnode_handle(dev->of_node)) 5211 dev->fwnode = NULL; 5212 5213 of_node_put(dev->of_node); 5214 dev->of_node = NULL; 5215 5216 end: 5217 put_device(dev); 5218 } 5219 EXPORT_SYMBOL_GPL(device_remove_of_node); 5220 5221 /** 5222 * device_add_of_node - Add an of_node to an existing device 5223 * @dev: device whose device tree node is being added 5224 * @of_node: of_node to add 5225 * 5226 * Return: 0 on success or error code on failure. 5227 */ 5228 int device_add_of_node(struct device *dev, struct device_node *of_node) 5229 { 5230 int ret; 5231 5232 if (!of_node) 5233 return -EINVAL; 5234 5235 dev = get_device(dev); 5236 if (!dev) 5237 return -EINVAL; 5238 5239 if (dev->of_node) { 5240 dev_err(dev, "Cannot replace node %pOF with %pOF\n", 5241 dev->of_node, of_node); 5242 ret = -EBUSY; 5243 goto end; 5244 } 5245 5246 dev->of_node = of_node_get(of_node); 5247 5248 if (!dev->fwnode) 5249 dev->fwnode = of_fwnode_handle(of_node); 5250 5251 ret = 0; 5252 end: 5253 put_device(dev); 5254 return ret; 5255 } 5256 EXPORT_SYMBOL_GPL(device_add_of_node); 5257 5258 /** 5259 * device_set_of_node_from_dev - reuse device-tree node of another device 5260 * @dev: device whose device-tree node is being set 5261 * @dev2: device whose device-tree node is being reused 5262 * 5263 * Takes another reference to the new device-tree node after first dropping 5264 * any reference held to the old node. 5265 */ 5266 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5267 { 5268 of_node_put(dev->of_node); 5269 dev->of_node = of_node_get(dev2->of_node); 5270 dev->of_node_reused = true; 5271 } 5272 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5273 5274 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5275 { 5276 dev->fwnode = fwnode; 5277 dev->of_node = to_of_node(fwnode); 5278 } 5279 EXPORT_SYMBOL_GPL(device_set_node); 5280 5281 struct device *get_dev_from_fwnode(struct fwnode_handle *fwnode) 5282 { 5283 return get_device((fwnode)->dev); 5284 } 5285 EXPORT_SYMBOL_GPL(get_dev_from_fwnode); 5286 5287 int device_match_name(struct device *dev, const void *name) 5288 { 5289 return sysfs_streq(dev_name(dev), name); 5290 } 5291 EXPORT_SYMBOL_GPL(device_match_name); 5292 5293 int device_match_type(struct device *dev, const void *type) 5294 { 5295 return dev->type == type; 5296 } 5297 EXPORT_SYMBOL_GPL(device_match_type); 5298 5299 int device_match_of_node(struct device *dev, const void *np) 5300 { 5301 return np && dev->of_node == np; 5302 } 5303 EXPORT_SYMBOL_GPL(device_match_of_node); 5304 5305 int device_match_fwnode(struct device *dev, const void *fwnode) 5306 { 5307 return fwnode && dev_fwnode(dev) == fwnode; 5308 } 5309 EXPORT_SYMBOL_GPL(device_match_fwnode); 5310 5311 int device_match_devt(struct device *dev, const void *pdevt) 5312 { 5313 return dev->devt == *(dev_t *)pdevt; 5314 } 5315 EXPORT_SYMBOL_GPL(device_match_devt); 5316 5317 int device_match_acpi_dev(struct device *dev, const void *adev) 5318 { 5319 return adev && ACPI_COMPANION(dev) == adev; 5320 } 5321 EXPORT_SYMBOL(device_match_acpi_dev); 5322 5323 int device_match_acpi_handle(struct device *dev, const void *handle) 5324 { 5325 return handle && ACPI_HANDLE(dev) == handle; 5326 } 5327 EXPORT_SYMBOL(device_match_acpi_handle); 5328 5329 int device_match_any(struct device *dev, const void *unused) 5330 { 5331 return 1; 5332 } 5333 EXPORT_SYMBOL_GPL(device_match_any); 5334