xref: /linux/drivers/base/core.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 
72 int device_links_read_lock_held(void)
73 {
74 	return srcu_read_lock_held(&device_links_srcu);
75 }
76 #else /* !CONFIG_SRCU */
77 static DECLARE_RWSEM(device_links_lock);
78 
79 static inline void device_links_write_lock(void)
80 {
81 	down_write(&device_links_lock);
82 }
83 
84 static inline void device_links_write_unlock(void)
85 {
86 	up_write(&device_links_lock);
87 }
88 
89 int device_links_read_lock(void)
90 {
91 	down_read(&device_links_lock);
92 	return 0;
93 }
94 
95 void device_links_read_unlock(int not_used)
96 {
97 	up_read(&device_links_lock);
98 }
99 
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 int device_links_read_lock_held(void)
102 {
103 	return lockdep_is_held(&device_links_lock);
104 }
105 #endif
106 #endif /* !CONFIG_SRCU */
107 
108 /**
109  * device_is_dependent - Check if one device depends on another one
110  * @dev: Device to check dependencies for.
111  * @target: Device to check against.
112  *
113  * Check if @target depends on @dev or any device dependent on it (its child or
114  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
115  */
116 static int device_is_dependent(struct device *dev, void *target)
117 {
118 	struct device_link *link;
119 	int ret;
120 
121 	if (dev == target)
122 		return 1;
123 
124 	ret = device_for_each_child(dev, target, device_is_dependent);
125 	if (ret)
126 		return ret;
127 
128 	list_for_each_entry(link, &dev->links.consumers, s_node) {
129 		if (link->consumer == target)
130 			return 1;
131 
132 		ret = device_is_dependent(link->consumer, target);
133 		if (ret)
134 			break;
135 	}
136 	return ret;
137 }
138 
139 static void device_link_init_status(struct device_link *link,
140 				    struct device *consumer,
141 				    struct device *supplier)
142 {
143 	switch (supplier->links.status) {
144 	case DL_DEV_PROBING:
145 		switch (consumer->links.status) {
146 		case DL_DEV_PROBING:
147 			/*
148 			 * A consumer driver can create a link to a supplier
149 			 * that has not completed its probing yet as long as it
150 			 * knows that the supplier is already functional (for
151 			 * example, it has just acquired some resources from the
152 			 * supplier).
153 			 */
154 			link->status = DL_STATE_CONSUMER_PROBE;
155 			break;
156 		default:
157 			link->status = DL_STATE_DORMANT;
158 			break;
159 		}
160 		break;
161 	case DL_DEV_DRIVER_BOUND:
162 		switch (consumer->links.status) {
163 		case DL_DEV_PROBING:
164 			link->status = DL_STATE_CONSUMER_PROBE;
165 			break;
166 		case DL_DEV_DRIVER_BOUND:
167 			link->status = DL_STATE_ACTIVE;
168 			break;
169 		default:
170 			link->status = DL_STATE_AVAILABLE;
171 			break;
172 		}
173 		break;
174 	case DL_DEV_UNBINDING:
175 		link->status = DL_STATE_SUPPLIER_UNBIND;
176 		break;
177 	default:
178 		link->status = DL_STATE_DORMANT;
179 		break;
180 	}
181 }
182 
183 static int device_reorder_to_tail(struct device *dev, void *not_used)
184 {
185 	struct device_link *link;
186 
187 	/*
188 	 * Devices that have not been registered yet will be put to the ends
189 	 * of the lists during the registration, so skip them here.
190 	 */
191 	if (device_is_registered(dev))
192 		devices_kset_move_last(dev);
193 
194 	if (device_pm_initialized(dev))
195 		device_pm_move_last(dev);
196 
197 	device_for_each_child(dev, NULL, device_reorder_to_tail);
198 	list_for_each_entry(link, &dev->links.consumers, s_node)
199 		device_reorder_to_tail(link->consumer, NULL);
200 
201 	return 0;
202 }
203 
204 /**
205  * device_pm_move_to_tail - Move set of devices to the end of device lists
206  * @dev: Device to move
207  *
208  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
209  *
210  * It moves the @dev along with all of its children and all of its consumers
211  * to the ends of the device_kset and dpm_list, recursively.
212  */
213 void device_pm_move_to_tail(struct device *dev)
214 {
215 	int idx;
216 
217 	idx = device_links_read_lock();
218 	device_pm_lock();
219 	device_reorder_to_tail(dev, NULL);
220 	device_pm_unlock();
221 	device_links_read_unlock(idx);
222 }
223 
224 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
225 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
226 			       DL_FLAG_AUTOPROBE_CONSUMER)
227 
228 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
229 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
230 
231 /**
232  * device_link_add - Create a link between two devices.
233  * @consumer: Consumer end of the link.
234  * @supplier: Supplier end of the link.
235  * @flags: Link flags.
236  *
237  * The caller is responsible for the proper synchronization of the link creation
238  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
239  * runtime PM framework to take the link into account.  Second, if the
240  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
241  * be forced into the active metastate and reference-counted upon the creation
242  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
243  * ignored.
244  *
245  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
246  * expected to release the link returned by it directly with the help of either
247  * device_link_del() or device_link_remove().
248  *
249  * If that flag is not set, however, the caller of this function is handing the
250  * management of the link over to the driver core entirely and its return value
251  * can only be used to check whether or not the link is present.  In that case,
252  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
253  * flags can be used to indicate to the driver core when the link can be safely
254  * deleted.  Namely, setting one of them in @flags indicates to the driver core
255  * that the link is not going to be used (by the given caller of this function)
256  * after unbinding the consumer or supplier driver, respectively, from its
257  * device, so the link can be deleted at that point.  If none of them is set,
258  * the link will be maintained until one of the devices pointed to by it (either
259  * the consumer or the supplier) is unregistered.
260  *
261  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
262  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
263  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
264  * be used to request the driver core to automaticall probe for a consmer
265  * driver after successfully binding a driver to the supplier device.
266  *
267  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
268  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
269  * the same time is invalid and will cause NULL to be returned upfront.
270  * However, if a device link between the given @consumer and @supplier pair
271  * exists already when this function is called for them, the existing link will
272  * be returned regardless of its current type and status (the link's flags may
273  * be modified then).  The caller of this function is then expected to treat
274  * the link as though it has just been created, so (in particular) if
275  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
276  * explicitly when not needed any more (as stated above).
277  *
278  * A side effect of the link creation is re-ordering of dpm_list and the
279  * devices_kset list by moving the consumer device and all devices depending
280  * on it to the ends of these lists (that does not happen to devices that have
281  * not been registered when this function is called).
282  *
283  * The supplier device is required to be registered when this function is called
284  * and NULL will be returned if that is not the case.  The consumer device need
285  * not be registered, however.
286  */
287 struct device_link *device_link_add(struct device *consumer,
288 				    struct device *supplier, u32 flags)
289 {
290 	struct device_link *link;
291 
292 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
293 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
294 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
295 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
296 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
297 		return NULL;
298 
299 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
300 		if (pm_runtime_get_sync(supplier) < 0) {
301 			pm_runtime_put_noidle(supplier);
302 			return NULL;
303 		}
304 	}
305 
306 	if (!(flags & DL_FLAG_STATELESS))
307 		flags |= DL_FLAG_MANAGED;
308 
309 	device_links_write_lock();
310 	device_pm_lock();
311 
312 	/*
313 	 * If the supplier has not been fully registered yet or there is a
314 	 * reverse dependency between the consumer and the supplier already in
315 	 * the graph, return NULL.
316 	 */
317 	if (!device_pm_initialized(supplier)
318 	    || device_is_dependent(consumer, supplier)) {
319 		link = NULL;
320 		goto out;
321 	}
322 
323 	/*
324 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
325 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
326 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
327 	 */
328 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
329 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
330 
331 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
332 		if (link->consumer != consumer)
333 			continue;
334 
335 		if (flags & DL_FLAG_PM_RUNTIME) {
336 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
337 				pm_runtime_new_link(consumer);
338 				link->flags |= DL_FLAG_PM_RUNTIME;
339 			}
340 			if (flags & DL_FLAG_RPM_ACTIVE)
341 				refcount_inc(&link->rpm_active);
342 		}
343 
344 		if (flags & DL_FLAG_STATELESS) {
345 			link->flags |= DL_FLAG_STATELESS;
346 			kref_get(&link->kref);
347 			goto out;
348 		}
349 
350 		/*
351 		 * If the life time of the link following from the new flags is
352 		 * longer than indicated by the flags of the existing link,
353 		 * update the existing link to stay around longer.
354 		 */
355 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
356 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
357 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
358 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
359 			}
360 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
361 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
362 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
363 		}
364 		if (!(link->flags & DL_FLAG_MANAGED)) {
365 			kref_get(&link->kref);
366 			link->flags |= DL_FLAG_MANAGED;
367 			device_link_init_status(link, consumer, supplier);
368 		}
369 		goto out;
370 	}
371 
372 	link = kzalloc(sizeof(*link), GFP_KERNEL);
373 	if (!link)
374 		goto out;
375 
376 	refcount_set(&link->rpm_active, 1);
377 
378 	if (flags & DL_FLAG_PM_RUNTIME) {
379 		if (flags & DL_FLAG_RPM_ACTIVE)
380 			refcount_inc(&link->rpm_active);
381 
382 		pm_runtime_new_link(consumer);
383 	}
384 
385 	get_device(supplier);
386 	link->supplier = supplier;
387 	INIT_LIST_HEAD(&link->s_node);
388 	get_device(consumer);
389 	link->consumer = consumer;
390 	INIT_LIST_HEAD(&link->c_node);
391 	link->flags = flags;
392 	kref_init(&link->kref);
393 
394 	/* Determine the initial link state. */
395 	if (flags & DL_FLAG_STATELESS)
396 		link->status = DL_STATE_NONE;
397 	else
398 		device_link_init_status(link, consumer, supplier);
399 
400 	/*
401 	 * Some callers expect the link creation during consumer driver probe to
402 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
403 	 */
404 	if (link->status == DL_STATE_CONSUMER_PROBE &&
405 	    flags & DL_FLAG_PM_RUNTIME)
406 		pm_runtime_resume(supplier);
407 
408 	/*
409 	 * Move the consumer and all of the devices depending on it to the end
410 	 * of dpm_list and the devices_kset list.
411 	 *
412 	 * It is necessary to hold dpm_list locked throughout all that or else
413 	 * we may end up suspending with a wrong ordering of it.
414 	 */
415 	device_reorder_to_tail(consumer, NULL);
416 
417 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
418 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
419 
420 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
421 
422  out:
423 	device_pm_unlock();
424 	device_links_write_unlock();
425 
426 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
427 		pm_runtime_put(supplier);
428 
429 	return link;
430 }
431 EXPORT_SYMBOL_GPL(device_link_add);
432 
433 static void device_link_free(struct device_link *link)
434 {
435 	while (refcount_dec_not_one(&link->rpm_active))
436 		pm_runtime_put(link->supplier);
437 
438 	put_device(link->consumer);
439 	put_device(link->supplier);
440 	kfree(link);
441 }
442 
443 #ifdef CONFIG_SRCU
444 static void __device_link_free_srcu(struct rcu_head *rhead)
445 {
446 	device_link_free(container_of(rhead, struct device_link, rcu_head));
447 }
448 
449 static void __device_link_del(struct kref *kref)
450 {
451 	struct device_link *link = container_of(kref, struct device_link, kref);
452 
453 	dev_dbg(link->consumer, "Dropping the link to %s\n",
454 		dev_name(link->supplier));
455 
456 	if (link->flags & DL_FLAG_PM_RUNTIME)
457 		pm_runtime_drop_link(link->consumer);
458 
459 	list_del_rcu(&link->s_node);
460 	list_del_rcu(&link->c_node);
461 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
462 }
463 #else /* !CONFIG_SRCU */
464 static void __device_link_del(struct kref *kref)
465 {
466 	struct device_link *link = container_of(kref, struct device_link, kref);
467 
468 	dev_info(link->consumer, "Dropping the link to %s\n",
469 		 dev_name(link->supplier));
470 
471 	if (link->flags & DL_FLAG_PM_RUNTIME)
472 		pm_runtime_drop_link(link->consumer);
473 
474 	list_del(&link->s_node);
475 	list_del(&link->c_node);
476 	device_link_free(link);
477 }
478 #endif /* !CONFIG_SRCU */
479 
480 static void device_link_put_kref(struct device_link *link)
481 {
482 	if (link->flags & DL_FLAG_STATELESS)
483 		kref_put(&link->kref, __device_link_del);
484 	else
485 		WARN(1, "Unable to drop a managed device link reference\n");
486 }
487 
488 /**
489  * device_link_del - Delete a stateless link between two devices.
490  * @link: Device link to delete.
491  *
492  * The caller must ensure proper synchronization of this function with runtime
493  * PM.  If the link was added multiple times, it needs to be deleted as often.
494  * Care is required for hotplugged devices:  Their links are purged on removal
495  * and calling device_link_del() is then no longer allowed.
496  */
497 void device_link_del(struct device_link *link)
498 {
499 	device_links_write_lock();
500 	device_pm_lock();
501 	device_link_put_kref(link);
502 	device_pm_unlock();
503 	device_links_write_unlock();
504 }
505 EXPORT_SYMBOL_GPL(device_link_del);
506 
507 /**
508  * device_link_remove - Delete a stateless link between two devices.
509  * @consumer: Consumer end of the link.
510  * @supplier: Supplier end of the link.
511  *
512  * The caller must ensure proper synchronization of this function with runtime
513  * PM.
514  */
515 void device_link_remove(void *consumer, struct device *supplier)
516 {
517 	struct device_link *link;
518 
519 	if (WARN_ON(consumer == supplier))
520 		return;
521 
522 	device_links_write_lock();
523 	device_pm_lock();
524 
525 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
526 		if (link->consumer == consumer) {
527 			device_link_put_kref(link);
528 			break;
529 		}
530 	}
531 
532 	device_pm_unlock();
533 	device_links_write_unlock();
534 }
535 EXPORT_SYMBOL_GPL(device_link_remove);
536 
537 static void device_links_missing_supplier(struct device *dev)
538 {
539 	struct device_link *link;
540 
541 	list_for_each_entry(link, &dev->links.suppliers, c_node)
542 		if (link->status == DL_STATE_CONSUMER_PROBE)
543 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
544 }
545 
546 /**
547  * device_links_check_suppliers - Check presence of supplier drivers.
548  * @dev: Consumer device.
549  *
550  * Check links from this device to any suppliers.  Walk the list of the device's
551  * links to suppliers and see if all of them are available.  If not, simply
552  * return -EPROBE_DEFER.
553  *
554  * We need to guarantee that the supplier will not go away after the check has
555  * been positive here.  It only can go away in __device_release_driver() and
556  * that function  checks the device's links to consumers.  This means we need to
557  * mark the link as "consumer probe in progress" to make the supplier removal
558  * wait for us to complete (or bad things may happen).
559  *
560  * Links without the DL_FLAG_MANAGED flag set are ignored.
561  */
562 int device_links_check_suppliers(struct device *dev)
563 {
564 	struct device_link *link;
565 	int ret = 0;
566 
567 	device_links_write_lock();
568 
569 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
570 		if (!(link->flags & DL_FLAG_MANAGED))
571 			continue;
572 
573 		if (link->status != DL_STATE_AVAILABLE) {
574 			device_links_missing_supplier(dev);
575 			ret = -EPROBE_DEFER;
576 			break;
577 		}
578 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
579 	}
580 	dev->links.status = DL_DEV_PROBING;
581 
582 	device_links_write_unlock();
583 	return ret;
584 }
585 
586 /**
587  * device_links_driver_bound - Update device links after probing its driver.
588  * @dev: Device to update the links for.
589  *
590  * The probe has been successful, so update links from this device to any
591  * consumers by changing their status to "available".
592  *
593  * Also change the status of @dev's links to suppliers to "active".
594  *
595  * Links without the DL_FLAG_MANAGED flag set are ignored.
596  */
597 void device_links_driver_bound(struct device *dev)
598 {
599 	struct device_link *link;
600 
601 	device_links_write_lock();
602 
603 	list_for_each_entry(link, &dev->links.consumers, s_node) {
604 		if (!(link->flags & DL_FLAG_MANAGED))
605 			continue;
606 
607 		/*
608 		 * Links created during consumer probe may be in the "consumer
609 		 * probe" state to start with if the supplier is still probing
610 		 * when they are created and they may become "active" if the
611 		 * consumer probe returns first.  Skip them here.
612 		 */
613 		if (link->status == DL_STATE_CONSUMER_PROBE ||
614 		    link->status == DL_STATE_ACTIVE)
615 			continue;
616 
617 		WARN_ON(link->status != DL_STATE_DORMANT);
618 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
619 
620 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
621 			driver_deferred_probe_add(link->consumer);
622 	}
623 
624 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
625 		if (!(link->flags & DL_FLAG_MANAGED))
626 			continue;
627 
628 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
629 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
630 	}
631 
632 	dev->links.status = DL_DEV_DRIVER_BOUND;
633 
634 	device_links_write_unlock();
635 }
636 
637 static void device_link_drop_managed(struct device_link *link)
638 {
639 	link->flags &= ~DL_FLAG_MANAGED;
640 	WRITE_ONCE(link->status, DL_STATE_NONE);
641 	kref_put(&link->kref, __device_link_del);
642 }
643 
644 /**
645  * __device_links_no_driver - Update links of a device without a driver.
646  * @dev: Device without a drvier.
647  *
648  * Delete all non-persistent links from this device to any suppliers.
649  *
650  * Persistent links stay around, but their status is changed to "available",
651  * unless they already are in the "supplier unbind in progress" state in which
652  * case they need not be updated.
653  *
654  * Links without the DL_FLAG_MANAGED flag set are ignored.
655  */
656 static void __device_links_no_driver(struct device *dev)
657 {
658 	struct device_link *link, *ln;
659 
660 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
661 		if (!(link->flags & DL_FLAG_MANAGED))
662 			continue;
663 
664 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
665 			device_link_drop_managed(link);
666 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
667 			 link->status == DL_STATE_ACTIVE)
668 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
669 	}
670 
671 	dev->links.status = DL_DEV_NO_DRIVER;
672 }
673 
674 /**
675  * device_links_no_driver - Update links after failing driver probe.
676  * @dev: Device whose driver has just failed to probe.
677  *
678  * Clean up leftover links to consumers for @dev and invoke
679  * %__device_links_no_driver() to update links to suppliers for it as
680  * appropriate.
681  *
682  * Links without the DL_FLAG_MANAGED flag set are ignored.
683  */
684 void device_links_no_driver(struct device *dev)
685 {
686 	struct device_link *link;
687 
688 	device_links_write_lock();
689 
690 	list_for_each_entry(link, &dev->links.consumers, s_node) {
691 		if (!(link->flags & DL_FLAG_MANAGED))
692 			continue;
693 
694 		/*
695 		 * The probe has failed, so if the status of the link is
696 		 * "consumer probe" or "active", it must have been added by
697 		 * a probing consumer while this device was still probing.
698 		 * Change its state to "dormant", as it represents a valid
699 		 * relationship, but it is not functionally meaningful.
700 		 */
701 		if (link->status == DL_STATE_CONSUMER_PROBE ||
702 		    link->status == DL_STATE_ACTIVE)
703 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
704 	}
705 
706 	__device_links_no_driver(dev);
707 
708 	device_links_write_unlock();
709 }
710 
711 /**
712  * device_links_driver_cleanup - Update links after driver removal.
713  * @dev: Device whose driver has just gone away.
714  *
715  * Update links to consumers for @dev by changing their status to "dormant" and
716  * invoke %__device_links_no_driver() to update links to suppliers for it as
717  * appropriate.
718  *
719  * Links without the DL_FLAG_MANAGED flag set are ignored.
720  */
721 void device_links_driver_cleanup(struct device *dev)
722 {
723 	struct device_link *link, *ln;
724 
725 	device_links_write_lock();
726 
727 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
728 		if (!(link->flags & DL_FLAG_MANAGED))
729 			continue;
730 
731 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
732 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
733 
734 		/*
735 		 * autoremove the links between this @dev and its consumer
736 		 * devices that are not active, i.e. where the link state
737 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
738 		 */
739 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
740 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
741 			device_link_drop_managed(link);
742 
743 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
744 	}
745 
746 	__device_links_no_driver(dev);
747 
748 	device_links_write_unlock();
749 }
750 
751 /**
752  * device_links_busy - Check if there are any busy links to consumers.
753  * @dev: Device to check.
754  *
755  * Check each consumer of the device and return 'true' if its link's status
756  * is one of "consumer probe" or "active" (meaning that the given consumer is
757  * probing right now or its driver is present).  Otherwise, change the link
758  * state to "supplier unbind" to prevent the consumer from being probed
759  * successfully going forward.
760  *
761  * Return 'false' if there are no probing or active consumers.
762  *
763  * Links without the DL_FLAG_MANAGED flag set are ignored.
764  */
765 bool device_links_busy(struct device *dev)
766 {
767 	struct device_link *link;
768 	bool ret = false;
769 
770 	device_links_write_lock();
771 
772 	list_for_each_entry(link, &dev->links.consumers, s_node) {
773 		if (!(link->flags & DL_FLAG_MANAGED))
774 			continue;
775 
776 		if (link->status == DL_STATE_CONSUMER_PROBE
777 		    || link->status == DL_STATE_ACTIVE) {
778 			ret = true;
779 			break;
780 		}
781 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
782 	}
783 
784 	dev->links.status = DL_DEV_UNBINDING;
785 
786 	device_links_write_unlock();
787 	return ret;
788 }
789 
790 /**
791  * device_links_unbind_consumers - Force unbind consumers of the given device.
792  * @dev: Device to unbind the consumers of.
793  *
794  * Walk the list of links to consumers for @dev and if any of them is in the
795  * "consumer probe" state, wait for all device probes in progress to complete
796  * and start over.
797  *
798  * If that's not the case, change the status of the link to "supplier unbind"
799  * and check if the link was in the "active" state.  If so, force the consumer
800  * driver to unbind and start over (the consumer will not re-probe as we have
801  * changed the state of the link already).
802  *
803  * Links without the DL_FLAG_MANAGED flag set are ignored.
804  */
805 void device_links_unbind_consumers(struct device *dev)
806 {
807 	struct device_link *link;
808 
809  start:
810 	device_links_write_lock();
811 
812 	list_for_each_entry(link, &dev->links.consumers, s_node) {
813 		enum device_link_state status;
814 
815 		if (!(link->flags & DL_FLAG_MANAGED))
816 			continue;
817 
818 		status = link->status;
819 		if (status == DL_STATE_CONSUMER_PROBE) {
820 			device_links_write_unlock();
821 
822 			wait_for_device_probe();
823 			goto start;
824 		}
825 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
826 		if (status == DL_STATE_ACTIVE) {
827 			struct device *consumer = link->consumer;
828 
829 			get_device(consumer);
830 
831 			device_links_write_unlock();
832 
833 			device_release_driver_internal(consumer, NULL,
834 						       consumer->parent);
835 			put_device(consumer);
836 			goto start;
837 		}
838 	}
839 
840 	device_links_write_unlock();
841 }
842 
843 /**
844  * device_links_purge - Delete existing links to other devices.
845  * @dev: Target device.
846  */
847 static void device_links_purge(struct device *dev)
848 {
849 	struct device_link *link, *ln;
850 
851 	/*
852 	 * Delete all of the remaining links from this device to any other
853 	 * devices (either consumers or suppliers).
854 	 */
855 	device_links_write_lock();
856 
857 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
858 		WARN_ON(link->status == DL_STATE_ACTIVE);
859 		__device_link_del(&link->kref);
860 	}
861 
862 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
863 		WARN_ON(link->status != DL_STATE_DORMANT &&
864 			link->status != DL_STATE_NONE);
865 		__device_link_del(&link->kref);
866 	}
867 
868 	device_links_write_unlock();
869 }
870 
871 /* Device links support end. */
872 
873 int (*platform_notify)(struct device *dev) = NULL;
874 int (*platform_notify_remove)(struct device *dev) = NULL;
875 static struct kobject *dev_kobj;
876 struct kobject *sysfs_dev_char_kobj;
877 struct kobject *sysfs_dev_block_kobj;
878 
879 static DEFINE_MUTEX(device_hotplug_lock);
880 
881 void lock_device_hotplug(void)
882 {
883 	mutex_lock(&device_hotplug_lock);
884 }
885 
886 void unlock_device_hotplug(void)
887 {
888 	mutex_unlock(&device_hotplug_lock);
889 }
890 
891 int lock_device_hotplug_sysfs(void)
892 {
893 	if (mutex_trylock(&device_hotplug_lock))
894 		return 0;
895 
896 	/* Avoid busy looping (5 ms of sleep should do). */
897 	msleep(5);
898 	return restart_syscall();
899 }
900 
901 #ifdef CONFIG_BLOCK
902 static inline int device_is_not_partition(struct device *dev)
903 {
904 	return !(dev->type == &part_type);
905 }
906 #else
907 static inline int device_is_not_partition(struct device *dev)
908 {
909 	return 1;
910 }
911 #endif
912 
913 static int
914 device_platform_notify(struct device *dev, enum kobject_action action)
915 {
916 	int ret;
917 
918 	ret = acpi_platform_notify(dev, action);
919 	if (ret)
920 		return ret;
921 
922 	ret = software_node_notify(dev, action);
923 	if (ret)
924 		return ret;
925 
926 	if (platform_notify && action == KOBJ_ADD)
927 		platform_notify(dev);
928 	else if (platform_notify_remove && action == KOBJ_REMOVE)
929 		platform_notify_remove(dev);
930 	return 0;
931 }
932 
933 /**
934  * dev_driver_string - Return a device's driver name, if at all possible
935  * @dev: struct device to get the name of
936  *
937  * Will return the device's driver's name if it is bound to a device.  If
938  * the device is not bound to a driver, it will return the name of the bus
939  * it is attached to.  If it is not attached to a bus either, an empty
940  * string will be returned.
941  */
942 const char *dev_driver_string(const struct device *dev)
943 {
944 	struct device_driver *drv;
945 
946 	/* dev->driver can change to NULL underneath us because of unbinding,
947 	 * so be careful about accessing it.  dev->bus and dev->class should
948 	 * never change once they are set, so they don't need special care.
949 	 */
950 	drv = READ_ONCE(dev->driver);
951 	return drv ? drv->name :
952 			(dev->bus ? dev->bus->name :
953 			(dev->class ? dev->class->name : ""));
954 }
955 EXPORT_SYMBOL(dev_driver_string);
956 
957 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
958 
959 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
960 			     char *buf)
961 {
962 	struct device_attribute *dev_attr = to_dev_attr(attr);
963 	struct device *dev = kobj_to_dev(kobj);
964 	ssize_t ret = -EIO;
965 
966 	if (dev_attr->show)
967 		ret = dev_attr->show(dev, dev_attr, buf);
968 	if (ret >= (ssize_t)PAGE_SIZE) {
969 		printk("dev_attr_show: %pS returned bad count\n",
970 				dev_attr->show);
971 	}
972 	return ret;
973 }
974 
975 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
976 			      const char *buf, size_t count)
977 {
978 	struct device_attribute *dev_attr = to_dev_attr(attr);
979 	struct device *dev = kobj_to_dev(kobj);
980 	ssize_t ret = -EIO;
981 
982 	if (dev_attr->store)
983 		ret = dev_attr->store(dev, dev_attr, buf, count);
984 	return ret;
985 }
986 
987 static const struct sysfs_ops dev_sysfs_ops = {
988 	.show	= dev_attr_show,
989 	.store	= dev_attr_store,
990 };
991 
992 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
993 
994 ssize_t device_store_ulong(struct device *dev,
995 			   struct device_attribute *attr,
996 			   const char *buf, size_t size)
997 {
998 	struct dev_ext_attribute *ea = to_ext_attr(attr);
999 	int ret;
1000 	unsigned long new;
1001 
1002 	ret = kstrtoul(buf, 0, &new);
1003 	if (ret)
1004 		return ret;
1005 	*(unsigned long *)(ea->var) = new;
1006 	/* Always return full write size even if we didn't consume all */
1007 	return size;
1008 }
1009 EXPORT_SYMBOL_GPL(device_store_ulong);
1010 
1011 ssize_t device_show_ulong(struct device *dev,
1012 			  struct device_attribute *attr,
1013 			  char *buf)
1014 {
1015 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1016 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1017 }
1018 EXPORT_SYMBOL_GPL(device_show_ulong);
1019 
1020 ssize_t device_store_int(struct device *dev,
1021 			 struct device_attribute *attr,
1022 			 const char *buf, size_t size)
1023 {
1024 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1025 	int ret;
1026 	long new;
1027 
1028 	ret = kstrtol(buf, 0, &new);
1029 	if (ret)
1030 		return ret;
1031 
1032 	if (new > INT_MAX || new < INT_MIN)
1033 		return -EINVAL;
1034 	*(int *)(ea->var) = new;
1035 	/* Always return full write size even if we didn't consume all */
1036 	return size;
1037 }
1038 EXPORT_SYMBOL_GPL(device_store_int);
1039 
1040 ssize_t device_show_int(struct device *dev,
1041 			struct device_attribute *attr,
1042 			char *buf)
1043 {
1044 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1045 
1046 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1047 }
1048 EXPORT_SYMBOL_GPL(device_show_int);
1049 
1050 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1051 			  const char *buf, size_t size)
1052 {
1053 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1054 
1055 	if (strtobool(buf, ea->var) < 0)
1056 		return -EINVAL;
1057 
1058 	return size;
1059 }
1060 EXPORT_SYMBOL_GPL(device_store_bool);
1061 
1062 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1063 			 char *buf)
1064 {
1065 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1066 
1067 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1068 }
1069 EXPORT_SYMBOL_GPL(device_show_bool);
1070 
1071 /**
1072  * device_release - free device structure.
1073  * @kobj: device's kobject.
1074  *
1075  * This is called once the reference count for the object
1076  * reaches 0. We forward the call to the device's release
1077  * method, which should handle actually freeing the structure.
1078  */
1079 static void device_release(struct kobject *kobj)
1080 {
1081 	struct device *dev = kobj_to_dev(kobj);
1082 	struct device_private *p = dev->p;
1083 
1084 	/*
1085 	 * Some platform devices are driven without driver attached
1086 	 * and managed resources may have been acquired.  Make sure
1087 	 * all resources are released.
1088 	 *
1089 	 * Drivers still can add resources into device after device
1090 	 * is deleted but alive, so release devres here to avoid
1091 	 * possible memory leak.
1092 	 */
1093 	devres_release_all(dev);
1094 
1095 	if (dev->release)
1096 		dev->release(dev);
1097 	else if (dev->type && dev->type->release)
1098 		dev->type->release(dev);
1099 	else if (dev->class && dev->class->dev_release)
1100 		dev->class->dev_release(dev);
1101 	else
1102 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1103 			dev_name(dev));
1104 	kfree(p);
1105 }
1106 
1107 static const void *device_namespace(struct kobject *kobj)
1108 {
1109 	struct device *dev = kobj_to_dev(kobj);
1110 	const void *ns = NULL;
1111 
1112 	if (dev->class && dev->class->ns_type)
1113 		ns = dev->class->namespace(dev);
1114 
1115 	return ns;
1116 }
1117 
1118 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1119 {
1120 	struct device *dev = kobj_to_dev(kobj);
1121 
1122 	if (dev->class && dev->class->get_ownership)
1123 		dev->class->get_ownership(dev, uid, gid);
1124 }
1125 
1126 static struct kobj_type device_ktype = {
1127 	.release	= device_release,
1128 	.sysfs_ops	= &dev_sysfs_ops,
1129 	.namespace	= device_namespace,
1130 	.get_ownership	= device_get_ownership,
1131 };
1132 
1133 
1134 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1135 {
1136 	struct kobj_type *ktype = get_ktype(kobj);
1137 
1138 	if (ktype == &device_ktype) {
1139 		struct device *dev = kobj_to_dev(kobj);
1140 		if (dev->bus)
1141 			return 1;
1142 		if (dev->class)
1143 			return 1;
1144 	}
1145 	return 0;
1146 }
1147 
1148 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1149 {
1150 	struct device *dev = kobj_to_dev(kobj);
1151 
1152 	if (dev->bus)
1153 		return dev->bus->name;
1154 	if (dev->class)
1155 		return dev->class->name;
1156 	return NULL;
1157 }
1158 
1159 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1160 		      struct kobj_uevent_env *env)
1161 {
1162 	struct device *dev = kobj_to_dev(kobj);
1163 	int retval = 0;
1164 
1165 	/* add device node properties if present */
1166 	if (MAJOR(dev->devt)) {
1167 		const char *tmp;
1168 		const char *name;
1169 		umode_t mode = 0;
1170 		kuid_t uid = GLOBAL_ROOT_UID;
1171 		kgid_t gid = GLOBAL_ROOT_GID;
1172 
1173 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1174 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1175 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1176 		if (name) {
1177 			add_uevent_var(env, "DEVNAME=%s", name);
1178 			if (mode)
1179 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1180 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1181 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1182 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1183 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1184 			kfree(tmp);
1185 		}
1186 	}
1187 
1188 	if (dev->type && dev->type->name)
1189 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1190 
1191 	if (dev->driver)
1192 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1193 
1194 	/* Add common DT information about the device */
1195 	of_device_uevent(dev, env);
1196 
1197 	/* have the bus specific function add its stuff */
1198 	if (dev->bus && dev->bus->uevent) {
1199 		retval = dev->bus->uevent(dev, env);
1200 		if (retval)
1201 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1202 				 dev_name(dev), __func__, retval);
1203 	}
1204 
1205 	/* have the class specific function add its stuff */
1206 	if (dev->class && dev->class->dev_uevent) {
1207 		retval = dev->class->dev_uevent(dev, env);
1208 		if (retval)
1209 			pr_debug("device: '%s': %s: class uevent() "
1210 				 "returned %d\n", dev_name(dev),
1211 				 __func__, retval);
1212 	}
1213 
1214 	/* have the device type specific function add its stuff */
1215 	if (dev->type && dev->type->uevent) {
1216 		retval = dev->type->uevent(dev, env);
1217 		if (retval)
1218 			pr_debug("device: '%s': %s: dev_type uevent() "
1219 				 "returned %d\n", dev_name(dev),
1220 				 __func__, retval);
1221 	}
1222 
1223 	return retval;
1224 }
1225 
1226 static const struct kset_uevent_ops device_uevent_ops = {
1227 	.filter =	dev_uevent_filter,
1228 	.name =		dev_uevent_name,
1229 	.uevent =	dev_uevent,
1230 };
1231 
1232 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1233 			   char *buf)
1234 {
1235 	struct kobject *top_kobj;
1236 	struct kset *kset;
1237 	struct kobj_uevent_env *env = NULL;
1238 	int i;
1239 	size_t count = 0;
1240 	int retval;
1241 
1242 	/* search the kset, the device belongs to */
1243 	top_kobj = &dev->kobj;
1244 	while (!top_kobj->kset && top_kobj->parent)
1245 		top_kobj = top_kobj->parent;
1246 	if (!top_kobj->kset)
1247 		goto out;
1248 
1249 	kset = top_kobj->kset;
1250 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1251 		goto out;
1252 
1253 	/* respect filter */
1254 	if (kset->uevent_ops && kset->uevent_ops->filter)
1255 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1256 			goto out;
1257 
1258 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1259 	if (!env)
1260 		return -ENOMEM;
1261 
1262 	/* let the kset specific function add its keys */
1263 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1264 	if (retval)
1265 		goto out;
1266 
1267 	/* copy keys to file */
1268 	for (i = 0; i < env->envp_idx; i++)
1269 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1270 out:
1271 	kfree(env);
1272 	return count;
1273 }
1274 
1275 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1276 			    const char *buf, size_t count)
1277 {
1278 	int rc;
1279 
1280 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1281 
1282 	if (rc) {
1283 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1284 		return rc;
1285 	}
1286 
1287 	return count;
1288 }
1289 static DEVICE_ATTR_RW(uevent);
1290 
1291 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1292 			   char *buf)
1293 {
1294 	bool val;
1295 
1296 	device_lock(dev);
1297 	val = !dev->offline;
1298 	device_unlock(dev);
1299 	return sprintf(buf, "%u\n", val);
1300 }
1301 
1302 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1303 			    const char *buf, size_t count)
1304 {
1305 	bool val;
1306 	int ret;
1307 
1308 	ret = strtobool(buf, &val);
1309 	if (ret < 0)
1310 		return ret;
1311 
1312 	ret = lock_device_hotplug_sysfs();
1313 	if (ret)
1314 		return ret;
1315 
1316 	ret = val ? device_online(dev) : device_offline(dev);
1317 	unlock_device_hotplug();
1318 	return ret < 0 ? ret : count;
1319 }
1320 static DEVICE_ATTR_RW(online);
1321 
1322 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1323 {
1324 	return sysfs_create_groups(&dev->kobj, groups);
1325 }
1326 EXPORT_SYMBOL_GPL(device_add_groups);
1327 
1328 void device_remove_groups(struct device *dev,
1329 			  const struct attribute_group **groups)
1330 {
1331 	sysfs_remove_groups(&dev->kobj, groups);
1332 }
1333 EXPORT_SYMBOL_GPL(device_remove_groups);
1334 
1335 union device_attr_group_devres {
1336 	const struct attribute_group *group;
1337 	const struct attribute_group **groups;
1338 };
1339 
1340 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1341 {
1342 	return ((union device_attr_group_devres *)res)->group == data;
1343 }
1344 
1345 static void devm_attr_group_remove(struct device *dev, void *res)
1346 {
1347 	union device_attr_group_devres *devres = res;
1348 	const struct attribute_group *group = devres->group;
1349 
1350 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1351 	sysfs_remove_group(&dev->kobj, group);
1352 }
1353 
1354 static void devm_attr_groups_remove(struct device *dev, void *res)
1355 {
1356 	union device_attr_group_devres *devres = res;
1357 	const struct attribute_group **groups = devres->groups;
1358 
1359 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1360 	sysfs_remove_groups(&dev->kobj, groups);
1361 }
1362 
1363 /**
1364  * devm_device_add_group - given a device, create a managed attribute group
1365  * @dev:	The device to create the group for
1366  * @grp:	The attribute group to create
1367  *
1368  * This function creates a group for the first time.  It will explicitly
1369  * warn and error if any of the attribute files being created already exist.
1370  *
1371  * Returns 0 on success or error code on failure.
1372  */
1373 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1374 {
1375 	union device_attr_group_devres *devres;
1376 	int error;
1377 
1378 	devres = devres_alloc(devm_attr_group_remove,
1379 			      sizeof(*devres), GFP_KERNEL);
1380 	if (!devres)
1381 		return -ENOMEM;
1382 
1383 	error = sysfs_create_group(&dev->kobj, grp);
1384 	if (error) {
1385 		devres_free(devres);
1386 		return error;
1387 	}
1388 
1389 	devres->group = grp;
1390 	devres_add(dev, devres);
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(devm_device_add_group);
1394 
1395 /**
1396  * devm_device_remove_group: remove a managed group from a device
1397  * @dev:	device to remove the group from
1398  * @grp:	group to remove
1399  *
1400  * This function removes a group of attributes from a device. The attributes
1401  * previously have to have been created for this group, otherwise it will fail.
1402  */
1403 void devm_device_remove_group(struct device *dev,
1404 			      const struct attribute_group *grp)
1405 {
1406 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1407 			       devm_attr_group_match,
1408 			       /* cast away const */ (void *)grp));
1409 }
1410 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1411 
1412 /**
1413  * devm_device_add_groups - create a bunch of managed attribute groups
1414  * @dev:	The device to create the group for
1415  * @groups:	The attribute groups to create, NULL terminated
1416  *
1417  * This function creates a bunch of managed attribute groups.  If an error
1418  * occurs when creating a group, all previously created groups will be
1419  * removed, unwinding everything back to the original state when this
1420  * function was called.  It will explicitly warn and error if any of the
1421  * attribute files being created already exist.
1422  *
1423  * Returns 0 on success or error code from sysfs_create_group on failure.
1424  */
1425 int devm_device_add_groups(struct device *dev,
1426 			   const struct attribute_group **groups)
1427 {
1428 	union device_attr_group_devres *devres;
1429 	int error;
1430 
1431 	devres = devres_alloc(devm_attr_groups_remove,
1432 			      sizeof(*devres), GFP_KERNEL);
1433 	if (!devres)
1434 		return -ENOMEM;
1435 
1436 	error = sysfs_create_groups(&dev->kobj, groups);
1437 	if (error) {
1438 		devres_free(devres);
1439 		return error;
1440 	}
1441 
1442 	devres->groups = groups;
1443 	devres_add(dev, devres);
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1447 
1448 /**
1449  * devm_device_remove_groups - remove a list of managed groups
1450  *
1451  * @dev:	The device for the groups to be removed from
1452  * @groups:	NULL terminated list of groups to be removed
1453  *
1454  * If groups is not NULL, remove the specified groups from the device.
1455  */
1456 void devm_device_remove_groups(struct device *dev,
1457 			       const struct attribute_group **groups)
1458 {
1459 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1460 			       devm_attr_group_match,
1461 			       /* cast away const */ (void *)groups));
1462 }
1463 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1464 
1465 static int device_add_attrs(struct device *dev)
1466 {
1467 	struct class *class = dev->class;
1468 	const struct device_type *type = dev->type;
1469 	int error;
1470 
1471 	if (class) {
1472 		error = device_add_groups(dev, class->dev_groups);
1473 		if (error)
1474 			return error;
1475 	}
1476 
1477 	if (type) {
1478 		error = device_add_groups(dev, type->groups);
1479 		if (error)
1480 			goto err_remove_class_groups;
1481 	}
1482 
1483 	error = device_add_groups(dev, dev->groups);
1484 	if (error)
1485 		goto err_remove_type_groups;
1486 
1487 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1488 		error = device_create_file(dev, &dev_attr_online);
1489 		if (error)
1490 			goto err_remove_dev_groups;
1491 	}
1492 
1493 	return 0;
1494 
1495  err_remove_dev_groups:
1496 	device_remove_groups(dev, dev->groups);
1497  err_remove_type_groups:
1498 	if (type)
1499 		device_remove_groups(dev, type->groups);
1500  err_remove_class_groups:
1501 	if (class)
1502 		device_remove_groups(dev, class->dev_groups);
1503 
1504 	return error;
1505 }
1506 
1507 static void device_remove_attrs(struct device *dev)
1508 {
1509 	struct class *class = dev->class;
1510 	const struct device_type *type = dev->type;
1511 
1512 	device_remove_file(dev, &dev_attr_online);
1513 	device_remove_groups(dev, dev->groups);
1514 
1515 	if (type)
1516 		device_remove_groups(dev, type->groups);
1517 
1518 	if (class)
1519 		device_remove_groups(dev, class->dev_groups);
1520 }
1521 
1522 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1523 			char *buf)
1524 {
1525 	return print_dev_t(buf, dev->devt);
1526 }
1527 static DEVICE_ATTR_RO(dev);
1528 
1529 /* /sys/devices/ */
1530 struct kset *devices_kset;
1531 
1532 /**
1533  * devices_kset_move_before - Move device in the devices_kset's list.
1534  * @deva: Device to move.
1535  * @devb: Device @deva should come before.
1536  */
1537 static void devices_kset_move_before(struct device *deva, struct device *devb)
1538 {
1539 	if (!devices_kset)
1540 		return;
1541 	pr_debug("devices_kset: Moving %s before %s\n",
1542 		 dev_name(deva), dev_name(devb));
1543 	spin_lock(&devices_kset->list_lock);
1544 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1545 	spin_unlock(&devices_kset->list_lock);
1546 }
1547 
1548 /**
1549  * devices_kset_move_after - Move device in the devices_kset's list.
1550  * @deva: Device to move
1551  * @devb: Device @deva should come after.
1552  */
1553 static void devices_kset_move_after(struct device *deva, struct device *devb)
1554 {
1555 	if (!devices_kset)
1556 		return;
1557 	pr_debug("devices_kset: Moving %s after %s\n",
1558 		 dev_name(deva), dev_name(devb));
1559 	spin_lock(&devices_kset->list_lock);
1560 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1561 	spin_unlock(&devices_kset->list_lock);
1562 }
1563 
1564 /**
1565  * devices_kset_move_last - move the device to the end of devices_kset's list.
1566  * @dev: device to move
1567  */
1568 void devices_kset_move_last(struct device *dev)
1569 {
1570 	if (!devices_kset)
1571 		return;
1572 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1573 	spin_lock(&devices_kset->list_lock);
1574 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1575 	spin_unlock(&devices_kset->list_lock);
1576 }
1577 
1578 /**
1579  * device_create_file - create sysfs attribute file for device.
1580  * @dev: device.
1581  * @attr: device attribute descriptor.
1582  */
1583 int device_create_file(struct device *dev,
1584 		       const struct device_attribute *attr)
1585 {
1586 	int error = 0;
1587 
1588 	if (dev) {
1589 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1590 			"Attribute %s: write permission without 'store'\n",
1591 			attr->attr.name);
1592 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1593 			"Attribute %s: read permission without 'show'\n",
1594 			attr->attr.name);
1595 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1596 	}
1597 
1598 	return error;
1599 }
1600 EXPORT_SYMBOL_GPL(device_create_file);
1601 
1602 /**
1603  * device_remove_file - remove sysfs attribute file.
1604  * @dev: device.
1605  * @attr: device attribute descriptor.
1606  */
1607 void device_remove_file(struct device *dev,
1608 			const struct device_attribute *attr)
1609 {
1610 	if (dev)
1611 		sysfs_remove_file(&dev->kobj, &attr->attr);
1612 }
1613 EXPORT_SYMBOL_GPL(device_remove_file);
1614 
1615 /**
1616  * device_remove_file_self - remove sysfs attribute file from its own method.
1617  * @dev: device.
1618  * @attr: device attribute descriptor.
1619  *
1620  * See kernfs_remove_self() for details.
1621  */
1622 bool device_remove_file_self(struct device *dev,
1623 			     const struct device_attribute *attr)
1624 {
1625 	if (dev)
1626 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1627 	else
1628 		return false;
1629 }
1630 EXPORT_SYMBOL_GPL(device_remove_file_self);
1631 
1632 /**
1633  * device_create_bin_file - create sysfs binary attribute file for device.
1634  * @dev: device.
1635  * @attr: device binary attribute descriptor.
1636  */
1637 int device_create_bin_file(struct device *dev,
1638 			   const struct bin_attribute *attr)
1639 {
1640 	int error = -EINVAL;
1641 	if (dev)
1642 		error = sysfs_create_bin_file(&dev->kobj, attr);
1643 	return error;
1644 }
1645 EXPORT_SYMBOL_GPL(device_create_bin_file);
1646 
1647 /**
1648  * device_remove_bin_file - remove sysfs binary attribute file
1649  * @dev: device.
1650  * @attr: device binary attribute descriptor.
1651  */
1652 void device_remove_bin_file(struct device *dev,
1653 			    const struct bin_attribute *attr)
1654 {
1655 	if (dev)
1656 		sysfs_remove_bin_file(&dev->kobj, attr);
1657 }
1658 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1659 
1660 static void klist_children_get(struct klist_node *n)
1661 {
1662 	struct device_private *p = to_device_private_parent(n);
1663 	struct device *dev = p->device;
1664 
1665 	get_device(dev);
1666 }
1667 
1668 static void klist_children_put(struct klist_node *n)
1669 {
1670 	struct device_private *p = to_device_private_parent(n);
1671 	struct device *dev = p->device;
1672 
1673 	put_device(dev);
1674 }
1675 
1676 /**
1677  * device_initialize - init device structure.
1678  * @dev: device.
1679  *
1680  * This prepares the device for use by other layers by initializing
1681  * its fields.
1682  * It is the first half of device_register(), if called by
1683  * that function, though it can also be called separately, so one
1684  * may use @dev's fields. In particular, get_device()/put_device()
1685  * may be used for reference counting of @dev after calling this
1686  * function.
1687  *
1688  * All fields in @dev must be initialized by the caller to 0, except
1689  * for those explicitly set to some other value.  The simplest
1690  * approach is to use kzalloc() to allocate the structure containing
1691  * @dev.
1692  *
1693  * NOTE: Use put_device() to give up your reference instead of freeing
1694  * @dev directly once you have called this function.
1695  */
1696 void device_initialize(struct device *dev)
1697 {
1698 	dev->kobj.kset = devices_kset;
1699 	kobject_init(&dev->kobj, &device_ktype);
1700 	INIT_LIST_HEAD(&dev->dma_pools);
1701 	mutex_init(&dev->mutex);
1702 #ifdef CONFIG_PROVE_LOCKING
1703 	mutex_init(&dev->lockdep_mutex);
1704 #endif
1705 	lockdep_set_novalidate_class(&dev->mutex);
1706 	spin_lock_init(&dev->devres_lock);
1707 	INIT_LIST_HEAD(&dev->devres_head);
1708 	device_pm_init(dev);
1709 	set_dev_node(dev, -1);
1710 #ifdef CONFIG_GENERIC_MSI_IRQ
1711 	INIT_LIST_HEAD(&dev->msi_list);
1712 #endif
1713 	INIT_LIST_HEAD(&dev->links.consumers);
1714 	INIT_LIST_HEAD(&dev->links.suppliers);
1715 	dev->links.status = DL_DEV_NO_DRIVER;
1716 }
1717 EXPORT_SYMBOL_GPL(device_initialize);
1718 
1719 struct kobject *virtual_device_parent(struct device *dev)
1720 {
1721 	static struct kobject *virtual_dir = NULL;
1722 
1723 	if (!virtual_dir)
1724 		virtual_dir = kobject_create_and_add("virtual",
1725 						     &devices_kset->kobj);
1726 
1727 	return virtual_dir;
1728 }
1729 
1730 struct class_dir {
1731 	struct kobject kobj;
1732 	struct class *class;
1733 };
1734 
1735 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1736 
1737 static void class_dir_release(struct kobject *kobj)
1738 {
1739 	struct class_dir *dir = to_class_dir(kobj);
1740 	kfree(dir);
1741 }
1742 
1743 static const
1744 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1745 {
1746 	struct class_dir *dir = to_class_dir(kobj);
1747 	return dir->class->ns_type;
1748 }
1749 
1750 static struct kobj_type class_dir_ktype = {
1751 	.release	= class_dir_release,
1752 	.sysfs_ops	= &kobj_sysfs_ops,
1753 	.child_ns_type	= class_dir_child_ns_type
1754 };
1755 
1756 static struct kobject *
1757 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1758 {
1759 	struct class_dir *dir;
1760 	int retval;
1761 
1762 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1763 	if (!dir)
1764 		return ERR_PTR(-ENOMEM);
1765 
1766 	dir->class = class;
1767 	kobject_init(&dir->kobj, &class_dir_ktype);
1768 
1769 	dir->kobj.kset = &class->p->glue_dirs;
1770 
1771 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1772 	if (retval < 0) {
1773 		kobject_put(&dir->kobj);
1774 		return ERR_PTR(retval);
1775 	}
1776 	return &dir->kobj;
1777 }
1778 
1779 static DEFINE_MUTEX(gdp_mutex);
1780 
1781 static struct kobject *get_device_parent(struct device *dev,
1782 					 struct device *parent)
1783 {
1784 	if (dev->class) {
1785 		struct kobject *kobj = NULL;
1786 		struct kobject *parent_kobj;
1787 		struct kobject *k;
1788 
1789 #ifdef CONFIG_BLOCK
1790 		/* block disks show up in /sys/block */
1791 		if (sysfs_deprecated && dev->class == &block_class) {
1792 			if (parent && parent->class == &block_class)
1793 				return &parent->kobj;
1794 			return &block_class.p->subsys.kobj;
1795 		}
1796 #endif
1797 
1798 		/*
1799 		 * If we have no parent, we live in "virtual".
1800 		 * Class-devices with a non class-device as parent, live
1801 		 * in a "glue" directory to prevent namespace collisions.
1802 		 */
1803 		if (parent == NULL)
1804 			parent_kobj = virtual_device_parent(dev);
1805 		else if (parent->class && !dev->class->ns_type)
1806 			return &parent->kobj;
1807 		else
1808 			parent_kobj = &parent->kobj;
1809 
1810 		mutex_lock(&gdp_mutex);
1811 
1812 		/* find our class-directory at the parent and reference it */
1813 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1814 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1815 			if (k->parent == parent_kobj) {
1816 				kobj = kobject_get(k);
1817 				break;
1818 			}
1819 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1820 		if (kobj) {
1821 			mutex_unlock(&gdp_mutex);
1822 			return kobj;
1823 		}
1824 
1825 		/* or create a new class-directory at the parent device */
1826 		k = class_dir_create_and_add(dev->class, parent_kobj);
1827 		/* do not emit an uevent for this simple "glue" directory */
1828 		mutex_unlock(&gdp_mutex);
1829 		return k;
1830 	}
1831 
1832 	/* subsystems can specify a default root directory for their devices */
1833 	if (!parent && dev->bus && dev->bus->dev_root)
1834 		return &dev->bus->dev_root->kobj;
1835 
1836 	if (parent)
1837 		return &parent->kobj;
1838 	return NULL;
1839 }
1840 
1841 static inline bool live_in_glue_dir(struct kobject *kobj,
1842 				    struct device *dev)
1843 {
1844 	if (!kobj || !dev->class ||
1845 	    kobj->kset != &dev->class->p->glue_dirs)
1846 		return false;
1847 	return true;
1848 }
1849 
1850 static inline struct kobject *get_glue_dir(struct device *dev)
1851 {
1852 	return dev->kobj.parent;
1853 }
1854 
1855 /*
1856  * make sure cleaning up dir as the last step, we need to make
1857  * sure .release handler of kobject is run with holding the
1858  * global lock
1859  */
1860 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1861 {
1862 	unsigned int ref;
1863 
1864 	/* see if we live in a "glue" directory */
1865 	if (!live_in_glue_dir(glue_dir, dev))
1866 		return;
1867 
1868 	mutex_lock(&gdp_mutex);
1869 	/**
1870 	 * There is a race condition between removing glue directory
1871 	 * and adding a new device under the glue directory.
1872 	 *
1873 	 * CPU1:                                         CPU2:
1874 	 *
1875 	 * device_add()
1876 	 *   get_device_parent()
1877 	 *     class_dir_create_and_add()
1878 	 *       kobject_add_internal()
1879 	 *         create_dir()    // create glue_dir
1880 	 *
1881 	 *                                               device_add()
1882 	 *                                                 get_device_parent()
1883 	 *                                                   kobject_get() // get glue_dir
1884 	 *
1885 	 * device_del()
1886 	 *   cleanup_glue_dir()
1887 	 *     kobject_del(glue_dir)
1888 	 *
1889 	 *                                               kobject_add()
1890 	 *                                                 kobject_add_internal()
1891 	 *                                                   create_dir() // in glue_dir
1892 	 *                                                     sysfs_create_dir_ns()
1893 	 *                                                       kernfs_create_dir_ns(sd)
1894 	 *
1895 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1896 	 *       sysfs_put()        // free glue_dir->sd
1897 	 *
1898 	 *                                                         // sd is freed
1899 	 *                                                         kernfs_new_node(sd)
1900 	 *                                                           kernfs_get(glue_dir)
1901 	 *                                                           kernfs_add_one()
1902 	 *                                                           kernfs_put()
1903 	 *
1904 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1905 	 * a new device under glue dir, the glue_dir kobject reference count
1906 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1907 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1908 	 * and sysfs_put(). This result in glue_dir->sd is freed.
1909 	 *
1910 	 * Then the CPU2 will see a stale "empty" but still potentially used
1911 	 * glue dir around in kernfs_new_node().
1912 	 *
1913 	 * In order to avoid this happening, we also should make sure that
1914 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1915 	 * for glue_dir kobj is 1.
1916 	 */
1917 	ref = kref_read(&glue_dir->kref);
1918 	if (!kobject_has_children(glue_dir) && !--ref)
1919 		kobject_del(glue_dir);
1920 	kobject_put(glue_dir);
1921 	mutex_unlock(&gdp_mutex);
1922 }
1923 
1924 static int device_add_class_symlinks(struct device *dev)
1925 {
1926 	struct device_node *of_node = dev_of_node(dev);
1927 	int error;
1928 
1929 	if (of_node) {
1930 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1931 		if (error)
1932 			dev_warn(dev, "Error %d creating of_node link\n",error);
1933 		/* An error here doesn't warrant bringing down the device */
1934 	}
1935 
1936 	if (!dev->class)
1937 		return 0;
1938 
1939 	error = sysfs_create_link(&dev->kobj,
1940 				  &dev->class->p->subsys.kobj,
1941 				  "subsystem");
1942 	if (error)
1943 		goto out_devnode;
1944 
1945 	if (dev->parent && device_is_not_partition(dev)) {
1946 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1947 					  "device");
1948 		if (error)
1949 			goto out_subsys;
1950 	}
1951 
1952 #ifdef CONFIG_BLOCK
1953 	/* /sys/block has directories and does not need symlinks */
1954 	if (sysfs_deprecated && dev->class == &block_class)
1955 		return 0;
1956 #endif
1957 
1958 	/* link in the class directory pointing to the device */
1959 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1960 				  &dev->kobj, dev_name(dev));
1961 	if (error)
1962 		goto out_device;
1963 
1964 	return 0;
1965 
1966 out_device:
1967 	sysfs_remove_link(&dev->kobj, "device");
1968 
1969 out_subsys:
1970 	sysfs_remove_link(&dev->kobj, "subsystem");
1971 out_devnode:
1972 	sysfs_remove_link(&dev->kobj, "of_node");
1973 	return error;
1974 }
1975 
1976 static void device_remove_class_symlinks(struct device *dev)
1977 {
1978 	if (dev_of_node(dev))
1979 		sysfs_remove_link(&dev->kobj, "of_node");
1980 
1981 	if (!dev->class)
1982 		return;
1983 
1984 	if (dev->parent && device_is_not_partition(dev))
1985 		sysfs_remove_link(&dev->kobj, "device");
1986 	sysfs_remove_link(&dev->kobj, "subsystem");
1987 #ifdef CONFIG_BLOCK
1988 	if (sysfs_deprecated && dev->class == &block_class)
1989 		return;
1990 #endif
1991 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1992 }
1993 
1994 /**
1995  * dev_set_name - set a device name
1996  * @dev: device
1997  * @fmt: format string for the device's name
1998  */
1999 int dev_set_name(struct device *dev, const char *fmt, ...)
2000 {
2001 	va_list vargs;
2002 	int err;
2003 
2004 	va_start(vargs, fmt);
2005 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2006 	va_end(vargs);
2007 	return err;
2008 }
2009 EXPORT_SYMBOL_GPL(dev_set_name);
2010 
2011 /**
2012  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2013  * @dev: device
2014  *
2015  * By default we select char/ for new entries.  Setting class->dev_obj
2016  * to NULL prevents an entry from being created.  class->dev_kobj must
2017  * be set (or cleared) before any devices are registered to the class
2018  * otherwise device_create_sys_dev_entry() and
2019  * device_remove_sys_dev_entry() will disagree about the presence of
2020  * the link.
2021  */
2022 static struct kobject *device_to_dev_kobj(struct device *dev)
2023 {
2024 	struct kobject *kobj;
2025 
2026 	if (dev->class)
2027 		kobj = dev->class->dev_kobj;
2028 	else
2029 		kobj = sysfs_dev_char_kobj;
2030 
2031 	return kobj;
2032 }
2033 
2034 static int device_create_sys_dev_entry(struct device *dev)
2035 {
2036 	struct kobject *kobj = device_to_dev_kobj(dev);
2037 	int error = 0;
2038 	char devt_str[15];
2039 
2040 	if (kobj) {
2041 		format_dev_t(devt_str, dev->devt);
2042 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2043 	}
2044 
2045 	return error;
2046 }
2047 
2048 static void device_remove_sys_dev_entry(struct device *dev)
2049 {
2050 	struct kobject *kobj = device_to_dev_kobj(dev);
2051 	char devt_str[15];
2052 
2053 	if (kobj) {
2054 		format_dev_t(devt_str, dev->devt);
2055 		sysfs_remove_link(kobj, devt_str);
2056 	}
2057 }
2058 
2059 static int device_private_init(struct device *dev)
2060 {
2061 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2062 	if (!dev->p)
2063 		return -ENOMEM;
2064 	dev->p->device = dev;
2065 	klist_init(&dev->p->klist_children, klist_children_get,
2066 		   klist_children_put);
2067 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2068 	return 0;
2069 }
2070 
2071 /**
2072  * device_add - add device to device hierarchy.
2073  * @dev: device.
2074  *
2075  * This is part 2 of device_register(), though may be called
2076  * separately _iff_ device_initialize() has been called separately.
2077  *
2078  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2079  * to the global and sibling lists for the device, then
2080  * adds it to the other relevant subsystems of the driver model.
2081  *
2082  * Do not call this routine or device_register() more than once for
2083  * any device structure.  The driver model core is not designed to work
2084  * with devices that get unregistered and then spring back to life.
2085  * (Among other things, it's very hard to guarantee that all references
2086  * to the previous incarnation of @dev have been dropped.)  Allocate
2087  * and register a fresh new struct device instead.
2088  *
2089  * NOTE: _Never_ directly free @dev after calling this function, even
2090  * if it returned an error! Always use put_device() to give up your
2091  * reference instead.
2092  *
2093  * Rule of thumb is: if device_add() succeeds, you should call
2094  * device_del() when you want to get rid of it. If device_add() has
2095  * *not* succeeded, use *only* put_device() to drop the reference
2096  * count.
2097  */
2098 int device_add(struct device *dev)
2099 {
2100 	struct device *parent;
2101 	struct kobject *kobj;
2102 	struct class_interface *class_intf;
2103 	int error = -EINVAL;
2104 	struct kobject *glue_dir = NULL;
2105 
2106 	dev = get_device(dev);
2107 	if (!dev)
2108 		goto done;
2109 
2110 	if (!dev->p) {
2111 		error = device_private_init(dev);
2112 		if (error)
2113 			goto done;
2114 	}
2115 
2116 	/*
2117 	 * for statically allocated devices, which should all be converted
2118 	 * some day, we need to initialize the name. We prevent reading back
2119 	 * the name, and force the use of dev_name()
2120 	 */
2121 	if (dev->init_name) {
2122 		dev_set_name(dev, "%s", dev->init_name);
2123 		dev->init_name = NULL;
2124 	}
2125 
2126 	/* subsystems can specify simple device enumeration */
2127 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2128 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2129 
2130 	if (!dev_name(dev)) {
2131 		error = -EINVAL;
2132 		goto name_error;
2133 	}
2134 
2135 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2136 
2137 	parent = get_device(dev->parent);
2138 	kobj = get_device_parent(dev, parent);
2139 	if (IS_ERR(kobj)) {
2140 		error = PTR_ERR(kobj);
2141 		goto parent_error;
2142 	}
2143 	if (kobj)
2144 		dev->kobj.parent = kobj;
2145 
2146 	/* use parent numa_node */
2147 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2148 		set_dev_node(dev, dev_to_node(parent));
2149 
2150 	/* first, register with generic layer. */
2151 	/* we require the name to be set before, and pass NULL */
2152 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2153 	if (error) {
2154 		glue_dir = get_glue_dir(dev);
2155 		goto Error;
2156 	}
2157 
2158 	/* notify platform of device entry */
2159 	error = device_platform_notify(dev, KOBJ_ADD);
2160 	if (error)
2161 		goto platform_error;
2162 
2163 	error = device_create_file(dev, &dev_attr_uevent);
2164 	if (error)
2165 		goto attrError;
2166 
2167 	error = device_add_class_symlinks(dev);
2168 	if (error)
2169 		goto SymlinkError;
2170 	error = device_add_attrs(dev);
2171 	if (error)
2172 		goto AttrsError;
2173 	error = bus_add_device(dev);
2174 	if (error)
2175 		goto BusError;
2176 	error = dpm_sysfs_add(dev);
2177 	if (error)
2178 		goto DPMError;
2179 	device_pm_add(dev);
2180 
2181 	if (MAJOR(dev->devt)) {
2182 		error = device_create_file(dev, &dev_attr_dev);
2183 		if (error)
2184 			goto DevAttrError;
2185 
2186 		error = device_create_sys_dev_entry(dev);
2187 		if (error)
2188 			goto SysEntryError;
2189 
2190 		devtmpfs_create_node(dev);
2191 	}
2192 
2193 	/* Notify clients of device addition.  This call must come
2194 	 * after dpm_sysfs_add() and before kobject_uevent().
2195 	 */
2196 	if (dev->bus)
2197 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2198 					     BUS_NOTIFY_ADD_DEVICE, dev);
2199 
2200 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2201 	bus_probe_device(dev);
2202 	if (parent)
2203 		klist_add_tail(&dev->p->knode_parent,
2204 			       &parent->p->klist_children);
2205 
2206 	if (dev->class) {
2207 		mutex_lock(&dev->class->p->mutex);
2208 		/* tie the class to the device */
2209 		klist_add_tail(&dev->p->knode_class,
2210 			       &dev->class->p->klist_devices);
2211 
2212 		/* notify any interfaces that the device is here */
2213 		list_for_each_entry(class_intf,
2214 				    &dev->class->p->interfaces, node)
2215 			if (class_intf->add_dev)
2216 				class_intf->add_dev(dev, class_intf);
2217 		mutex_unlock(&dev->class->p->mutex);
2218 	}
2219 done:
2220 	put_device(dev);
2221 	return error;
2222  SysEntryError:
2223 	if (MAJOR(dev->devt))
2224 		device_remove_file(dev, &dev_attr_dev);
2225  DevAttrError:
2226 	device_pm_remove(dev);
2227 	dpm_sysfs_remove(dev);
2228  DPMError:
2229 	bus_remove_device(dev);
2230  BusError:
2231 	device_remove_attrs(dev);
2232  AttrsError:
2233 	device_remove_class_symlinks(dev);
2234  SymlinkError:
2235 	device_remove_file(dev, &dev_attr_uevent);
2236  attrError:
2237 	device_platform_notify(dev, KOBJ_REMOVE);
2238 platform_error:
2239 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2240 	glue_dir = get_glue_dir(dev);
2241 	kobject_del(&dev->kobj);
2242  Error:
2243 	cleanup_glue_dir(dev, glue_dir);
2244 parent_error:
2245 	put_device(parent);
2246 name_error:
2247 	kfree(dev->p);
2248 	dev->p = NULL;
2249 	goto done;
2250 }
2251 EXPORT_SYMBOL_GPL(device_add);
2252 
2253 /**
2254  * device_register - register a device with the system.
2255  * @dev: pointer to the device structure
2256  *
2257  * This happens in two clean steps - initialize the device
2258  * and add it to the system. The two steps can be called
2259  * separately, but this is the easiest and most common.
2260  * I.e. you should only call the two helpers separately if
2261  * have a clearly defined need to use and refcount the device
2262  * before it is added to the hierarchy.
2263  *
2264  * For more information, see the kerneldoc for device_initialize()
2265  * and device_add().
2266  *
2267  * NOTE: _Never_ directly free @dev after calling this function, even
2268  * if it returned an error! Always use put_device() to give up the
2269  * reference initialized in this function instead.
2270  */
2271 int device_register(struct device *dev)
2272 {
2273 	device_initialize(dev);
2274 	return device_add(dev);
2275 }
2276 EXPORT_SYMBOL_GPL(device_register);
2277 
2278 /**
2279  * get_device - increment reference count for device.
2280  * @dev: device.
2281  *
2282  * This simply forwards the call to kobject_get(), though
2283  * we do take care to provide for the case that we get a NULL
2284  * pointer passed in.
2285  */
2286 struct device *get_device(struct device *dev)
2287 {
2288 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2289 }
2290 EXPORT_SYMBOL_GPL(get_device);
2291 
2292 /**
2293  * put_device - decrement reference count.
2294  * @dev: device in question.
2295  */
2296 void put_device(struct device *dev)
2297 {
2298 	/* might_sleep(); */
2299 	if (dev)
2300 		kobject_put(&dev->kobj);
2301 }
2302 EXPORT_SYMBOL_GPL(put_device);
2303 
2304 bool kill_device(struct device *dev)
2305 {
2306 	/*
2307 	 * Require the device lock and set the "dead" flag to guarantee that
2308 	 * the update behavior is consistent with the other bitfields near
2309 	 * it and that we cannot have an asynchronous probe routine trying
2310 	 * to run while we are tearing out the bus/class/sysfs from
2311 	 * underneath the device.
2312 	 */
2313 	lockdep_assert_held(&dev->mutex);
2314 
2315 	if (dev->p->dead)
2316 		return false;
2317 	dev->p->dead = true;
2318 	return true;
2319 }
2320 EXPORT_SYMBOL_GPL(kill_device);
2321 
2322 /**
2323  * device_del - delete device from system.
2324  * @dev: device.
2325  *
2326  * This is the first part of the device unregistration
2327  * sequence. This removes the device from the lists we control
2328  * from here, has it removed from the other driver model
2329  * subsystems it was added to in device_add(), and removes it
2330  * from the kobject hierarchy.
2331  *
2332  * NOTE: this should be called manually _iff_ device_add() was
2333  * also called manually.
2334  */
2335 void device_del(struct device *dev)
2336 {
2337 	struct device *parent = dev->parent;
2338 	struct kobject *glue_dir = NULL;
2339 	struct class_interface *class_intf;
2340 
2341 	device_lock(dev);
2342 	kill_device(dev);
2343 	device_unlock(dev);
2344 
2345 	/* Notify clients of device removal.  This call must come
2346 	 * before dpm_sysfs_remove().
2347 	 */
2348 	if (dev->bus)
2349 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2350 					     BUS_NOTIFY_DEL_DEVICE, dev);
2351 
2352 	dpm_sysfs_remove(dev);
2353 	if (parent)
2354 		klist_del(&dev->p->knode_parent);
2355 	if (MAJOR(dev->devt)) {
2356 		devtmpfs_delete_node(dev);
2357 		device_remove_sys_dev_entry(dev);
2358 		device_remove_file(dev, &dev_attr_dev);
2359 	}
2360 	if (dev->class) {
2361 		device_remove_class_symlinks(dev);
2362 
2363 		mutex_lock(&dev->class->p->mutex);
2364 		/* notify any interfaces that the device is now gone */
2365 		list_for_each_entry(class_intf,
2366 				    &dev->class->p->interfaces, node)
2367 			if (class_intf->remove_dev)
2368 				class_intf->remove_dev(dev, class_intf);
2369 		/* remove the device from the class list */
2370 		klist_del(&dev->p->knode_class);
2371 		mutex_unlock(&dev->class->p->mutex);
2372 	}
2373 	device_remove_file(dev, &dev_attr_uevent);
2374 	device_remove_attrs(dev);
2375 	bus_remove_device(dev);
2376 	device_pm_remove(dev);
2377 	driver_deferred_probe_del(dev);
2378 	device_platform_notify(dev, KOBJ_REMOVE);
2379 	device_remove_properties(dev);
2380 	device_links_purge(dev);
2381 
2382 	if (dev->bus)
2383 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2384 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2385 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2386 	glue_dir = get_glue_dir(dev);
2387 	kobject_del(&dev->kobj);
2388 	cleanup_glue_dir(dev, glue_dir);
2389 	put_device(parent);
2390 }
2391 EXPORT_SYMBOL_GPL(device_del);
2392 
2393 /**
2394  * device_unregister - unregister device from system.
2395  * @dev: device going away.
2396  *
2397  * We do this in two parts, like we do device_register(). First,
2398  * we remove it from all the subsystems with device_del(), then
2399  * we decrement the reference count via put_device(). If that
2400  * is the final reference count, the device will be cleaned up
2401  * via device_release() above. Otherwise, the structure will
2402  * stick around until the final reference to the device is dropped.
2403  */
2404 void device_unregister(struct device *dev)
2405 {
2406 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2407 	device_del(dev);
2408 	put_device(dev);
2409 }
2410 EXPORT_SYMBOL_GPL(device_unregister);
2411 
2412 static struct device *prev_device(struct klist_iter *i)
2413 {
2414 	struct klist_node *n = klist_prev(i);
2415 	struct device *dev = NULL;
2416 	struct device_private *p;
2417 
2418 	if (n) {
2419 		p = to_device_private_parent(n);
2420 		dev = p->device;
2421 	}
2422 	return dev;
2423 }
2424 
2425 static struct device *next_device(struct klist_iter *i)
2426 {
2427 	struct klist_node *n = klist_next(i);
2428 	struct device *dev = NULL;
2429 	struct device_private *p;
2430 
2431 	if (n) {
2432 		p = to_device_private_parent(n);
2433 		dev = p->device;
2434 	}
2435 	return dev;
2436 }
2437 
2438 /**
2439  * device_get_devnode - path of device node file
2440  * @dev: device
2441  * @mode: returned file access mode
2442  * @uid: returned file owner
2443  * @gid: returned file group
2444  * @tmp: possibly allocated string
2445  *
2446  * Return the relative path of a possible device node.
2447  * Non-default names may need to allocate a memory to compose
2448  * a name. This memory is returned in tmp and needs to be
2449  * freed by the caller.
2450  */
2451 const char *device_get_devnode(struct device *dev,
2452 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2453 			       const char **tmp)
2454 {
2455 	char *s;
2456 
2457 	*tmp = NULL;
2458 
2459 	/* the device type may provide a specific name */
2460 	if (dev->type && dev->type->devnode)
2461 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2462 	if (*tmp)
2463 		return *tmp;
2464 
2465 	/* the class may provide a specific name */
2466 	if (dev->class && dev->class->devnode)
2467 		*tmp = dev->class->devnode(dev, mode);
2468 	if (*tmp)
2469 		return *tmp;
2470 
2471 	/* return name without allocation, tmp == NULL */
2472 	if (strchr(dev_name(dev), '!') == NULL)
2473 		return dev_name(dev);
2474 
2475 	/* replace '!' in the name with '/' */
2476 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2477 	if (!s)
2478 		return NULL;
2479 	strreplace(s, '!', '/');
2480 	return *tmp = s;
2481 }
2482 
2483 /**
2484  * device_for_each_child - device child iterator.
2485  * @parent: parent struct device.
2486  * @fn: function to be called for each device.
2487  * @data: data for the callback.
2488  *
2489  * Iterate over @parent's child devices, and call @fn for each,
2490  * passing it @data.
2491  *
2492  * We check the return of @fn each time. If it returns anything
2493  * other than 0, we break out and return that value.
2494  */
2495 int device_for_each_child(struct device *parent, void *data,
2496 			  int (*fn)(struct device *dev, void *data))
2497 {
2498 	struct klist_iter i;
2499 	struct device *child;
2500 	int error = 0;
2501 
2502 	if (!parent->p)
2503 		return 0;
2504 
2505 	klist_iter_init(&parent->p->klist_children, &i);
2506 	while (!error && (child = next_device(&i)))
2507 		error = fn(child, data);
2508 	klist_iter_exit(&i);
2509 	return error;
2510 }
2511 EXPORT_SYMBOL_GPL(device_for_each_child);
2512 
2513 /**
2514  * device_for_each_child_reverse - device child iterator in reversed order.
2515  * @parent: parent struct device.
2516  * @fn: function to be called for each device.
2517  * @data: data for the callback.
2518  *
2519  * Iterate over @parent's child devices, and call @fn for each,
2520  * passing it @data.
2521  *
2522  * We check the return of @fn each time. If it returns anything
2523  * other than 0, we break out and return that value.
2524  */
2525 int device_for_each_child_reverse(struct device *parent, void *data,
2526 				  int (*fn)(struct device *dev, void *data))
2527 {
2528 	struct klist_iter i;
2529 	struct device *child;
2530 	int error = 0;
2531 
2532 	if (!parent->p)
2533 		return 0;
2534 
2535 	klist_iter_init(&parent->p->klist_children, &i);
2536 	while ((child = prev_device(&i)) && !error)
2537 		error = fn(child, data);
2538 	klist_iter_exit(&i);
2539 	return error;
2540 }
2541 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2542 
2543 /**
2544  * device_find_child - device iterator for locating a particular device.
2545  * @parent: parent struct device
2546  * @match: Callback function to check device
2547  * @data: Data to pass to match function
2548  *
2549  * This is similar to the device_for_each_child() function above, but it
2550  * returns a reference to a device that is 'found' for later use, as
2551  * determined by the @match callback.
2552  *
2553  * The callback should return 0 if the device doesn't match and non-zero
2554  * if it does.  If the callback returns non-zero and a reference to the
2555  * current device can be obtained, this function will return to the caller
2556  * and not iterate over any more devices.
2557  *
2558  * NOTE: you will need to drop the reference with put_device() after use.
2559  */
2560 struct device *device_find_child(struct device *parent, void *data,
2561 				 int (*match)(struct device *dev, void *data))
2562 {
2563 	struct klist_iter i;
2564 	struct device *child;
2565 
2566 	if (!parent)
2567 		return NULL;
2568 
2569 	klist_iter_init(&parent->p->klist_children, &i);
2570 	while ((child = next_device(&i)))
2571 		if (match(child, data) && get_device(child))
2572 			break;
2573 	klist_iter_exit(&i);
2574 	return child;
2575 }
2576 EXPORT_SYMBOL_GPL(device_find_child);
2577 
2578 /**
2579  * device_find_child_by_name - device iterator for locating a child device.
2580  * @parent: parent struct device
2581  * @name: name of the child device
2582  *
2583  * This is similar to the device_find_child() function above, but it
2584  * returns a reference to a device that has the name @name.
2585  *
2586  * NOTE: you will need to drop the reference with put_device() after use.
2587  */
2588 struct device *device_find_child_by_name(struct device *parent,
2589 					 const char *name)
2590 {
2591 	struct klist_iter i;
2592 	struct device *child;
2593 
2594 	if (!parent)
2595 		return NULL;
2596 
2597 	klist_iter_init(&parent->p->klist_children, &i);
2598 	while ((child = next_device(&i)))
2599 		if (!strcmp(dev_name(child), name) && get_device(child))
2600 			break;
2601 	klist_iter_exit(&i);
2602 	return child;
2603 }
2604 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2605 
2606 int __init devices_init(void)
2607 {
2608 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2609 	if (!devices_kset)
2610 		return -ENOMEM;
2611 	dev_kobj = kobject_create_and_add("dev", NULL);
2612 	if (!dev_kobj)
2613 		goto dev_kobj_err;
2614 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2615 	if (!sysfs_dev_block_kobj)
2616 		goto block_kobj_err;
2617 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2618 	if (!sysfs_dev_char_kobj)
2619 		goto char_kobj_err;
2620 
2621 	return 0;
2622 
2623  char_kobj_err:
2624 	kobject_put(sysfs_dev_block_kobj);
2625  block_kobj_err:
2626 	kobject_put(dev_kobj);
2627  dev_kobj_err:
2628 	kset_unregister(devices_kset);
2629 	return -ENOMEM;
2630 }
2631 
2632 static int device_check_offline(struct device *dev, void *not_used)
2633 {
2634 	int ret;
2635 
2636 	ret = device_for_each_child(dev, NULL, device_check_offline);
2637 	if (ret)
2638 		return ret;
2639 
2640 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2641 }
2642 
2643 /**
2644  * device_offline - Prepare the device for hot-removal.
2645  * @dev: Device to be put offline.
2646  *
2647  * Execute the device bus type's .offline() callback, if present, to prepare
2648  * the device for a subsequent hot-removal.  If that succeeds, the device must
2649  * not be used until either it is removed or its bus type's .online() callback
2650  * is executed.
2651  *
2652  * Call under device_hotplug_lock.
2653  */
2654 int device_offline(struct device *dev)
2655 {
2656 	int ret;
2657 
2658 	if (dev->offline_disabled)
2659 		return -EPERM;
2660 
2661 	ret = device_for_each_child(dev, NULL, device_check_offline);
2662 	if (ret)
2663 		return ret;
2664 
2665 	device_lock(dev);
2666 	if (device_supports_offline(dev)) {
2667 		if (dev->offline) {
2668 			ret = 1;
2669 		} else {
2670 			ret = dev->bus->offline(dev);
2671 			if (!ret) {
2672 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2673 				dev->offline = true;
2674 			}
2675 		}
2676 	}
2677 	device_unlock(dev);
2678 
2679 	return ret;
2680 }
2681 
2682 /**
2683  * device_online - Put the device back online after successful device_offline().
2684  * @dev: Device to be put back online.
2685  *
2686  * If device_offline() has been successfully executed for @dev, but the device
2687  * has not been removed subsequently, execute its bus type's .online() callback
2688  * to indicate that the device can be used again.
2689  *
2690  * Call under device_hotplug_lock.
2691  */
2692 int device_online(struct device *dev)
2693 {
2694 	int ret = 0;
2695 
2696 	device_lock(dev);
2697 	if (device_supports_offline(dev)) {
2698 		if (dev->offline) {
2699 			ret = dev->bus->online(dev);
2700 			if (!ret) {
2701 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2702 				dev->offline = false;
2703 			}
2704 		} else {
2705 			ret = 1;
2706 		}
2707 	}
2708 	device_unlock(dev);
2709 
2710 	return ret;
2711 }
2712 
2713 struct root_device {
2714 	struct device dev;
2715 	struct module *owner;
2716 };
2717 
2718 static inline struct root_device *to_root_device(struct device *d)
2719 {
2720 	return container_of(d, struct root_device, dev);
2721 }
2722 
2723 static void root_device_release(struct device *dev)
2724 {
2725 	kfree(to_root_device(dev));
2726 }
2727 
2728 /**
2729  * __root_device_register - allocate and register a root device
2730  * @name: root device name
2731  * @owner: owner module of the root device, usually THIS_MODULE
2732  *
2733  * This function allocates a root device and registers it
2734  * using device_register(). In order to free the returned
2735  * device, use root_device_unregister().
2736  *
2737  * Root devices are dummy devices which allow other devices
2738  * to be grouped under /sys/devices. Use this function to
2739  * allocate a root device and then use it as the parent of
2740  * any device which should appear under /sys/devices/{name}
2741  *
2742  * The /sys/devices/{name} directory will also contain a
2743  * 'module' symlink which points to the @owner directory
2744  * in sysfs.
2745  *
2746  * Returns &struct device pointer on success, or ERR_PTR() on error.
2747  *
2748  * Note: You probably want to use root_device_register().
2749  */
2750 struct device *__root_device_register(const char *name, struct module *owner)
2751 {
2752 	struct root_device *root;
2753 	int err = -ENOMEM;
2754 
2755 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2756 	if (!root)
2757 		return ERR_PTR(err);
2758 
2759 	err = dev_set_name(&root->dev, "%s", name);
2760 	if (err) {
2761 		kfree(root);
2762 		return ERR_PTR(err);
2763 	}
2764 
2765 	root->dev.release = root_device_release;
2766 
2767 	err = device_register(&root->dev);
2768 	if (err) {
2769 		put_device(&root->dev);
2770 		return ERR_PTR(err);
2771 	}
2772 
2773 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2774 	if (owner) {
2775 		struct module_kobject *mk = &owner->mkobj;
2776 
2777 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2778 		if (err) {
2779 			device_unregister(&root->dev);
2780 			return ERR_PTR(err);
2781 		}
2782 		root->owner = owner;
2783 	}
2784 #endif
2785 
2786 	return &root->dev;
2787 }
2788 EXPORT_SYMBOL_GPL(__root_device_register);
2789 
2790 /**
2791  * root_device_unregister - unregister and free a root device
2792  * @dev: device going away
2793  *
2794  * This function unregisters and cleans up a device that was created by
2795  * root_device_register().
2796  */
2797 void root_device_unregister(struct device *dev)
2798 {
2799 	struct root_device *root = to_root_device(dev);
2800 
2801 	if (root->owner)
2802 		sysfs_remove_link(&root->dev.kobj, "module");
2803 
2804 	device_unregister(dev);
2805 }
2806 EXPORT_SYMBOL_GPL(root_device_unregister);
2807 
2808 
2809 static void device_create_release(struct device *dev)
2810 {
2811 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2812 	kfree(dev);
2813 }
2814 
2815 static __printf(6, 0) struct device *
2816 device_create_groups_vargs(struct class *class, struct device *parent,
2817 			   dev_t devt, void *drvdata,
2818 			   const struct attribute_group **groups,
2819 			   const char *fmt, va_list args)
2820 {
2821 	struct device *dev = NULL;
2822 	int retval = -ENODEV;
2823 
2824 	if (class == NULL || IS_ERR(class))
2825 		goto error;
2826 
2827 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2828 	if (!dev) {
2829 		retval = -ENOMEM;
2830 		goto error;
2831 	}
2832 
2833 	device_initialize(dev);
2834 	dev->devt = devt;
2835 	dev->class = class;
2836 	dev->parent = parent;
2837 	dev->groups = groups;
2838 	dev->release = device_create_release;
2839 	dev_set_drvdata(dev, drvdata);
2840 
2841 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2842 	if (retval)
2843 		goto error;
2844 
2845 	retval = device_add(dev);
2846 	if (retval)
2847 		goto error;
2848 
2849 	return dev;
2850 
2851 error:
2852 	put_device(dev);
2853 	return ERR_PTR(retval);
2854 }
2855 
2856 /**
2857  * device_create_vargs - creates a device and registers it with sysfs
2858  * @class: pointer to the struct class that this device should be registered to
2859  * @parent: pointer to the parent struct device of this new device, if any
2860  * @devt: the dev_t for the char device to be added
2861  * @drvdata: the data to be added to the device for callbacks
2862  * @fmt: string for the device's name
2863  * @args: va_list for the device's name
2864  *
2865  * This function can be used by char device classes.  A struct device
2866  * will be created in sysfs, registered to the specified class.
2867  *
2868  * A "dev" file will be created, showing the dev_t for the device, if
2869  * the dev_t is not 0,0.
2870  * If a pointer to a parent struct device is passed in, the newly created
2871  * struct device will be a child of that device in sysfs.
2872  * The pointer to the struct device will be returned from the call.
2873  * Any further sysfs files that might be required can be created using this
2874  * pointer.
2875  *
2876  * Returns &struct device pointer on success, or ERR_PTR() on error.
2877  *
2878  * Note: the struct class passed to this function must have previously
2879  * been created with a call to class_create().
2880  */
2881 struct device *device_create_vargs(struct class *class, struct device *parent,
2882 				   dev_t devt, void *drvdata, const char *fmt,
2883 				   va_list args)
2884 {
2885 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2886 					  fmt, args);
2887 }
2888 EXPORT_SYMBOL_GPL(device_create_vargs);
2889 
2890 /**
2891  * device_create - creates a device and registers it with sysfs
2892  * @class: pointer to the struct class that this device should be registered to
2893  * @parent: pointer to the parent struct device of this new device, if any
2894  * @devt: the dev_t for the char device to be added
2895  * @drvdata: the data to be added to the device for callbacks
2896  * @fmt: string for the device's name
2897  *
2898  * This function can be used by char device classes.  A struct device
2899  * will be created in sysfs, registered to the specified class.
2900  *
2901  * A "dev" file will be created, showing the dev_t for the device, if
2902  * the dev_t is not 0,0.
2903  * If a pointer to a parent struct device is passed in, the newly created
2904  * struct device will be a child of that device in sysfs.
2905  * The pointer to the struct device will be returned from the call.
2906  * Any further sysfs files that might be required can be created using this
2907  * pointer.
2908  *
2909  * Returns &struct device pointer on success, or ERR_PTR() on error.
2910  *
2911  * Note: the struct class passed to this function must have previously
2912  * been created with a call to class_create().
2913  */
2914 struct device *device_create(struct class *class, struct device *parent,
2915 			     dev_t devt, void *drvdata, const char *fmt, ...)
2916 {
2917 	va_list vargs;
2918 	struct device *dev;
2919 
2920 	va_start(vargs, fmt);
2921 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2922 	va_end(vargs);
2923 	return dev;
2924 }
2925 EXPORT_SYMBOL_GPL(device_create);
2926 
2927 /**
2928  * device_create_with_groups - creates a device and registers it with sysfs
2929  * @class: pointer to the struct class that this device should be registered to
2930  * @parent: pointer to the parent struct device of this new device, if any
2931  * @devt: the dev_t for the char device to be added
2932  * @drvdata: the data to be added to the device for callbacks
2933  * @groups: NULL-terminated list of attribute groups to be created
2934  * @fmt: string for the device's name
2935  *
2936  * This function can be used by char device classes.  A struct device
2937  * will be created in sysfs, registered to the specified class.
2938  * Additional attributes specified in the groups parameter will also
2939  * be created automatically.
2940  *
2941  * A "dev" file will be created, showing the dev_t for the device, if
2942  * the dev_t is not 0,0.
2943  * If a pointer to a parent struct device is passed in, the newly created
2944  * struct device will be a child of that device in sysfs.
2945  * The pointer to the struct device will be returned from the call.
2946  * Any further sysfs files that might be required can be created using this
2947  * pointer.
2948  *
2949  * Returns &struct device pointer on success, or ERR_PTR() on error.
2950  *
2951  * Note: the struct class passed to this function must have previously
2952  * been created with a call to class_create().
2953  */
2954 struct device *device_create_with_groups(struct class *class,
2955 					 struct device *parent, dev_t devt,
2956 					 void *drvdata,
2957 					 const struct attribute_group **groups,
2958 					 const char *fmt, ...)
2959 {
2960 	va_list vargs;
2961 	struct device *dev;
2962 
2963 	va_start(vargs, fmt);
2964 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2965 					 fmt, vargs);
2966 	va_end(vargs);
2967 	return dev;
2968 }
2969 EXPORT_SYMBOL_GPL(device_create_with_groups);
2970 
2971 /**
2972  * device_destroy - removes a device that was created with device_create()
2973  * @class: pointer to the struct class that this device was registered with
2974  * @devt: the dev_t of the device that was previously registered
2975  *
2976  * This call unregisters and cleans up a device that was created with a
2977  * call to device_create().
2978  */
2979 void device_destroy(struct class *class, dev_t devt)
2980 {
2981 	struct device *dev;
2982 
2983 	dev = class_find_device_by_devt(class, devt);
2984 	if (dev) {
2985 		put_device(dev);
2986 		device_unregister(dev);
2987 	}
2988 }
2989 EXPORT_SYMBOL_GPL(device_destroy);
2990 
2991 /**
2992  * device_rename - renames a device
2993  * @dev: the pointer to the struct device to be renamed
2994  * @new_name: the new name of the device
2995  *
2996  * It is the responsibility of the caller to provide mutual
2997  * exclusion between two different calls of device_rename
2998  * on the same device to ensure that new_name is valid and
2999  * won't conflict with other devices.
3000  *
3001  * Note: Don't call this function.  Currently, the networking layer calls this
3002  * function, but that will change.  The following text from Kay Sievers offers
3003  * some insight:
3004  *
3005  * Renaming devices is racy at many levels, symlinks and other stuff are not
3006  * replaced atomically, and you get a "move" uevent, but it's not easy to
3007  * connect the event to the old and new device. Device nodes are not renamed at
3008  * all, there isn't even support for that in the kernel now.
3009  *
3010  * In the meantime, during renaming, your target name might be taken by another
3011  * driver, creating conflicts. Or the old name is taken directly after you
3012  * renamed it -- then you get events for the same DEVPATH, before you even see
3013  * the "move" event. It's just a mess, and nothing new should ever rely on
3014  * kernel device renaming. Besides that, it's not even implemented now for
3015  * other things than (driver-core wise very simple) network devices.
3016  *
3017  * We are currently about to change network renaming in udev to completely
3018  * disallow renaming of devices in the same namespace as the kernel uses,
3019  * because we can't solve the problems properly, that arise with swapping names
3020  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3021  * be allowed to some other name than eth[0-9]*, for the aforementioned
3022  * reasons.
3023  *
3024  * Make up a "real" name in the driver before you register anything, or add
3025  * some other attributes for userspace to find the device, or use udev to add
3026  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3027  * don't even want to get into that and try to implement the missing pieces in
3028  * the core. We really have other pieces to fix in the driver core mess. :)
3029  */
3030 int device_rename(struct device *dev, const char *new_name)
3031 {
3032 	struct kobject *kobj = &dev->kobj;
3033 	char *old_device_name = NULL;
3034 	int error;
3035 
3036 	dev = get_device(dev);
3037 	if (!dev)
3038 		return -EINVAL;
3039 
3040 	dev_dbg(dev, "renaming to %s\n", new_name);
3041 
3042 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3043 	if (!old_device_name) {
3044 		error = -ENOMEM;
3045 		goto out;
3046 	}
3047 
3048 	if (dev->class) {
3049 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3050 					     kobj, old_device_name,
3051 					     new_name, kobject_namespace(kobj));
3052 		if (error)
3053 			goto out;
3054 	}
3055 
3056 	error = kobject_rename(kobj, new_name);
3057 	if (error)
3058 		goto out;
3059 
3060 out:
3061 	put_device(dev);
3062 
3063 	kfree(old_device_name);
3064 
3065 	return error;
3066 }
3067 EXPORT_SYMBOL_GPL(device_rename);
3068 
3069 static int device_move_class_links(struct device *dev,
3070 				   struct device *old_parent,
3071 				   struct device *new_parent)
3072 {
3073 	int error = 0;
3074 
3075 	if (old_parent)
3076 		sysfs_remove_link(&dev->kobj, "device");
3077 	if (new_parent)
3078 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3079 					  "device");
3080 	return error;
3081 }
3082 
3083 /**
3084  * device_move - moves a device to a new parent
3085  * @dev: the pointer to the struct device to be moved
3086  * @new_parent: the new parent of the device (can be NULL)
3087  * @dpm_order: how to reorder the dpm_list
3088  */
3089 int device_move(struct device *dev, struct device *new_parent,
3090 		enum dpm_order dpm_order)
3091 {
3092 	int error;
3093 	struct device *old_parent;
3094 	struct kobject *new_parent_kobj;
3095 
3096 	dev = get_device(dev);
3097 	if (!dev)
3098 		return -EINVAL;
3099 
3100 	device_pm_lock();
3101 	new_parent = get_device(new_parent);
3102 	new_parent_kobj = get_device_parent(dev, new_parent);
3103 	if (IS_ERR(new_parent_kobj)) {
3104 		error = PTR_ERR(new_parent_kobj);
3105 		put_device(new_parent);
3106 		goto out;
3107 	}
3108 
3109 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3110 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3111 	error = kobject_move(&dev->kobj, new_parent_kobj);
3112 	if (error) {
3113 		cleanup_glue_dir(dev, new_parent_kobj);
3114 		put_device(new_parent);
3115 		goto out;
3116 	}
3117 	old_parent = dev->parent;
3118 	dev->parent = new_parent;
3119 	if (old_parent)
3120 		klist_remove(&dev->p->knode_parent);
3121 	if (new_parent) {
3122 		klist_add_tail(&dev->p->knode_parent,
3123 			       &new_parent->p->klist_children);
3124 		set_dev_node(dev, dev_to_node(new_parent));
3125 	}
3126 
3127 	if (dev->class) {
3128 		error = device_move_class_links(dev, old_parent, new_parent);
3129 		if (error) {
3130 			/* We ignore errors on cleanup since we're hosed anyway... */
3131 			device_move_class_links(dev, new_parent, old_parent);
3132 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3133 				if (new_parent)
3134 					klist_remove(&dev->p->knode_parent);
3135 				dev->parent = old_parent;
3136 				if (old_parent) {
3137 					klist_add_tail(&dev->p->knode_parent,
3138 						       &old_parent->p->klist_children);
3139 					set_dev_node(dev, dev_to_node(old_parent));
3140 				}
3141 			}
3142 			cleanup_glue_dir(dev, new_parent_kobj);
3143 			put_device(new_parent);
3144 			goto out;
3145 		}
3146 	}
3147 	switch (dpm_order) {
3148 	case DPM_ORDER_NONE:
3149 		break;
3150 	case DPM_ORDER_DEV_AFTER_PARENT:
3151 		device_pm_move_after(dev, new_parent);
3152 		devices_kset_move_after(dev, new_parent);
3153 		break;
3154 	case DPM_ORDER_PARENT_BEFORE_DEV:
3155 		device_pm_move_before(new_parent, dev);
3156 		devices_kset_move_before(new_parent, dev);
3157 		break;
3158 	case DPM_ORDER_DEV_LAST:
3159 		device_pm_move_last(dev);
3160 		devices_kset_move_last(dev);
3161 		break;
3162 	}
3163 
3164 	put_device(old_parent);
3165 out:
3166 	device_pm_unlock();
3167 	put_device(dev);
3168 	return error;
3169 }
3170 EXPORT_SYMBOL_GPL(device_move);
3171 
3172 /**
3173  * device_shutdown - call ->shutdown() on each device to shutdown.
3174  */
3175 void device_shutdown(void)
3176 {
3177 	struct device *dev, *parent;
3178 
3179 	wait_for_device_probe();
3180 	device_block_probing();
3181 
3182 	spin_lock(&devices_kset->list_lock);
3183 	/*
3184 	 * Walk the devices list backward, shutting down each in turn.
3185 	 * Beware that device unplug events may also start pulling
3186 	 * devices offline, even as the system is shutting down.
3187 	 */
3188 	while (!list_empty(&devices_kset->list)) {
3189 		dev = list_entry(devices_kset->list.prev, struct device,
3190 				kobj.entry);
3191 
3192 		/*
3193 		 * hold reference count of device's parent to
3194 		 * prevent it from being freed because parent's
3195 		 * lock is to be held
3196 		 */
3197 		parent = get_device(dev->parent);
3198 		get_device(dev);
3199 		/*
3200 		 * Make sure the device is off the kset list, in the
3201 		 * event that dev->*->shutdown() doesn't remove it.
3202 		 */
3203 		list_del_init(&dev->kobj.entry);
3204 		spin_unlock(&devices_kset->list_lock);
3205 
3206 		/* hold lock to avoid race with probe/release */
3207 		if (parent)
3208 			device_lock(parent);
3209 		device_lock(dev);
3210 
3211 		/* Don't allow any more runtime suspends */
3212 		pm_runtime_get_noresume(dev);
3213 		pm_runtime_barrier(dev);
3214 
3215 		if (dev->class && dev->class->shutdown_pre) {
3216 			if (initcall_debug)
3217 				dev_info(dev, "shutdown_pre\n");
3218 			dev->class->shutdown_pre(dev);
3219 		}
3220 		if (dev->bus && dev->bus->shutdown) {
3221 			if (initcall_debug)
3222 				dev_info(dev, "shutdown\n");
3223 			dev->bus->shutdown(dev);
3224 		} else if (dev->driver && dev->driver->shutdown) {
3225 			if (initcall_debug)
3226 				dev_info(dev, "shutdown\n");
3227 			dev->driver->shutdown(dev);
3228 		}
3229 
3230 		device_unlock(dev);
3231 		if (parent)
3232 			device_unlock(parent);
3233 
3234 		put_device(dev);
3235 		put_device(parent);
3236 
3237 		spin_lock(&devices_kset->list_lock);
3238 	}
3239 	spin_unlock(&devices_kset->list_lock);
3240 }
3241 
3242 /*
3243  * Device logging functions
3244  */
3245 
3246 #ifdef CONFIG_PRINTK
3247 static int
3248 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3249 {
3250 	const char *subsys;
3251 	size_t pos = 0;
3252 
3253 	if (dev->class)
3254 		subsys = dev->class->name;
3255 	else if (dev->bus)
3256 		subsys = dev->bus->name;
3257 	else
3258 		return 0;
3259 
3260 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3261 	if (pos >= hdrlen)
3262 		goto overflow;
3263 
3264 	/*
3265 	 * Add device identifier DEVICE=:
3266 	 *   b12:8         block dev_t
3267 	 *   c127:3        char dev_t
3268 	 *   n8            netdev ifindex
3269 	 *   +sound:card0  subsystem:devname
3270 	 */
3271 	if (MAJOR(dev->devt)) {
3272 		char c;
3273 
3274 		if (strcmp(subsys, "block") == 0)
3275 			c = 'b';
3276 		else
3277 			c = 'c';
3278 		pos++;
3279 		pos += snprintf(hdr + pos, hdrlen - pos,
3280 				"DEVICE=%c%u:%u",
3281 				c, MAJOR(dev->devt), MINOR(dev->devt));
3282 	} else if (strcmp(subsys, "net") == 0) {
3283 		struct net_device *net = to_net_dev(dev);
3284 
3285 		pos++;
3286 		pos += snprintf(hdr + pos, hdrlen - pos,
3287 				"DEVICE=n%u", net->ifindex);
3288 	} else {
3289 		pos++;
3290 		pos += snprintf(hdr + pos, hdrlen - pos,
3291 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3292 	}
3293 
3294 	if (pos >= hdrlen)
3295 		goto overflow;
3296 
3297 	return pos;
3298 
3299 overflow:
3300 	dev_WARN(dev, "device/subsystem name too long");
3301 	return 0;
3302 }
3303 
3304 int dev_vprintk_emit(int level, const struct device *dev,
3305 		     const char *fmt, va_list args)
3306 {
3307 	char hdr[128];
3308 	size_t hdrlen;
3309 
3310 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3311 
3312 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3313 }
3314 EXPORT_SYMBOL(dev_vprintk_emit);
3315 
3316 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3317 {
3318 	va_list args;
3319 	int r;
3320 
3321 	va_start(args, fmt);
3322 
3323 	r = dev_vprintk_emit(level, dev, fmt, args);
3324 
3325 	va_end(args);
3326 
3327 	return r;
3328 }
3329 EXPORT_SYMBOL(dev_printk_emit);
3330 
3331 static void __dev_printk(const char *level, const struct device *dev,
3332 			struct va_format *vaf)
3333 {
3334 	if (dev)
3335 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3336 				dev_driver_string(dev), dev_name(dev), vaf);
3337 	else
3338 		printk("%s(NULL device *): %pV", level, vaf);
3339 }
3340 
3341 void dev_printk(const char *level, const struct device *dev,
3342 		const char *fmt, ...)
3343 {
3344 	struct va_format vaf;
3345 	va_list args;
3346 
3347 	va_start(args, fmt);
3348 
3349 	vaf.fmt = fmt;
3350 	vaf.va = &args;
3351 
3352 	__dev_printk(level, dev, &vaf);
3353 
3354 	va_end(args);
3355 }
3356 EXPORT_SYMBOL(dev_printk);
3357 
3358 #define define_dev_printk_level(func, kern_level)		\
3359 void func(const struct device *dev, const char *fmt, ...)	\
3360 {								\
3361 	struct va_format vaf;					\
3362 	va_list args;						\
3363 								\
3364 	va_start(args, fmt);					\
3365 								\
3366 	vaf.fmt = fmt;						\
3367 	vaf.va = &args;						\
3368 								\
3369 	__dev_printk(kern_level, dev, &vaf);			\
3370 								\
3371 	va_end(args);						\
3372 }								\
3373 EXPORT_SYMBOL(func);
3374 
3375 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3376 define_dev_printk_level(_dev_alert, KERN_ALERT);
3377 define_dev_printk_level(_dev_crit, KERN_CRIT);
3378 define_dev_printk_level(_dev_err, KERN_ERR);
3379 define_dev_printk_level(_dev_warn, KERN_WARNING);
3380 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3381 define_dev_printk_level(_dev_info, KERN_INFO);
3382 
3383 #endif
3384 
3385 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3386 {
3387 	return fwnode && !IS_ERR(fwnode->secondary);
3388 }
3389 
3390 /**
3391  * set_primary_fwnode - Change the primary firmware node of a given device.
3392  * @dev: Device to handle.
3393  * @fwnode: New primary firmware node of the device.
3394  *
3395  * Set the device's firmware node pointer to @fwnode, but if a secondary
3396  * firmware node of the device is present, preserve it.
3397  */
3398 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3399 {
3400 	if (fwnode) {
3401 		struct fwnode_handle *fn = dev->fwnode;
3402 
3403 		if (fwnode_is_primary(fn))
3404 			fn = fn->secondary;
3405 
3406 		if (fn) {
3407 			WARN_ON(fwnode->secondary);
3408 			fwnode->secondary = fn;
3409 		}
3410 		dev->fwnode = fwnode;
3411 	} else {
3412 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3413 			dev->fwnode->secondary : NULL;
3414 	}
3415 }
3416 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3417 
3418 /**
3419  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3420  * @dev: Device to handle.
3421  * @fwnode: New secondary firmware node of the device.
3422  *
3423  * If a primary firmware node of the device is present, set its secondary
3424  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3425  * @fwnode.
3426  */
3427 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3428 {
3429 	if (fwnode)
3430 		fwnode->secondary = ERR_PTR(-ENODEV);
3431 
3432 	if (fwnode_is_primary(dev->fwnode))
3433 		dev->fwnode->secondary = fwnode;
3434 	else
3435 		dev->fwnode = fwnode;
3436 }
3437 
3438 /**
3439  * device_set_of_node_from_dev - reuse device-tree node of another device
3440  * @dev: device whose device-tree node is being set
3441  * @dev2: device whose device-tree node is being reused
3442  *
3443  * Takes another reference to the new device-tree node after first dropping
3444  * any reference held to the old node.
3445  */
3446 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3447 {
3448 	of_node_put(dev->of_node);
3449 	dev->of_node = of_node_get(dev2->of_node);
3450 	dev->of_node_reused = true;
3451 }
3452 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3453 
3454 int device_match_name(struct device *dev, const void *name)
3455 {
3456 	return sysfs_streq(dev_name(dev), name);
3457 }
3458 EXPORT_SYMBOL_GPL(device_match_name);
3459 
3460 int device_match_of_node(struct device *dev, const void *np)
3461 {
3462 	return dev->of_node == np;
3463 }
3464 EXPORT_SYMBOL_GPL(device_match_of_node);
3465 
3466 int device_match_fwnode(struct device *dev, const void *fwnode)
3467 {
3468 	return dev_fwnode(dev) == fwnode;
3469 }
3470 EXPORT_SYMBOL_GPL(device_match_fwnode);
3471 
3472 int device_match_devt(struct device *dev, const void *pdevt)
3473 {
3474 	return dev->devt == *(dev_t *)pdevt;
3475 }
3476 EXPORT_SYMBOL_GPL(device_match_devt);
3477 
3478 int device_match_acpi_dev(struct device *dev, const void *adev)
3479 {
3480 	return ACPI_COMPANION(dev) == adev;
3481 }
3482 EXPORT_SYMBOL(device_match_acpi_dev);
3483 
3484 int device_match_any(struct device *dev, const void *unused)
3485 {
3486 	return 1;
3487 }
3488 EXPORT_SYMBOL_GPL(device_match_any);
3489