xref: /linux/drivers/base/core.c (revision a9c9a6f741cdaa2fa9ba24a790db8d07295761e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static DEFINE_MUTEX(fwnode_link_lock);
53 static bool fw_devlink_is_permissive(void);
54 static bool fw_devlink_drv_reg_done;
55 
56 /**
57  * fwnode_link_add - Create a link between two fwnode_handles.
58  * @con: Consumer end of the link.
59  * @sup: Supplier end of the link.
60  *
61  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62  * represents the detail that the firmware lists @sup fwnode as supplying a
63  * resource to @con.
64  *
65  * The driver core will use the fwnode link to create a device link between the
66  * two device objects corresponding to @con and @sup when they are created. The
67  * driver core will automatically delete the fwnode link between @con and @sup
68  * after doing that.
69  *
70  * Attempts to create duplicate links between the same pair of fwnode handles
71  * are ignored and there is no reference counting.
72  */
73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74 {
75 	struct fwnode_link *link;
76 	int ret = 0;
77 
78 	mutex_lock(&fwnode_link_lock);
79 
80 	list_for_each_entry(link, &sup->consumers, s_hook)
81 		if (link->consumer == con)
82 			goto out;
83 
84 	link = kzalloc(sizeof(*link), GFP_KERNEL);
85 	if (!link) {
86 		ret = -ENOMEM;
87 		goto out;
88 	}
89 
90 	link->supplier = sup;
91 	INIT_LIST_HEAD(&link->s_hook);
92 	link->consumer = con;
93 	INIT_LIST_HEAD(&link->c_hook);
94 
95 	list_add(&link->s_hook, &sup->consumers);
96 	list_add(&link->c_hook, &con->suppliers);
97 out:
98 	mutex_unlock(&fwnode_link_lock);
99 
100 	return ret;
101 }
102 
103 /**
104  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105  * @fwnode: fwnode whose supplier links need to be deleted
106  *
107  * Deletes all supplier links connecting directly to @fwnode.
108  */
109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110 {
111 	struct fwnode_link *link, *tmp;
112 
113 	mutex_lock(&fwnode_link_lock);
114 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 		list_del(&link->s_hook);
116 		list_del(&link->c_hook);
117 		kfree(link);
118 	}
119 	mutex_unlock(&fwnode_link_lock);
120 }
121 
122 /**
123  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124  * @fwnode: fwnode whose consumer links need to be deleted
125  *
126  * Deletes all consumer links connecting directly to @fwnode.
127  */
128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129 {
130 	struct fwnode_link *link, *tmp;
131 
132 	mutex_lock(&fwnode_link_lock);
133 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 		list_del(&link->s_hook);
135 		list_del(&link->c_hook);
136 		kfree(link);
137 	}
138 	mutex_unlock(&fwnode_link_lock);
139 }
140 
141 /**
142  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143  * @fwnode: fwnode whose links needs to be deleted
144  *
145  * Deletes all links connecting directly to a fwnode.
146  */
147 void fwnode_links_purge(struct fwnode_handle *fwnode)
148 {
149 	fwnode_links_purge_suppliers(fwnode);
150 	fwnode_links_purge_consumers(fwnode);
151 }
152 
153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154 {
155 	struct fwnode_handle *child;
156 
157 	/* Don't purge consumer links of an added child */
158 	if (fwnode->dev)
159 		return;
160 
161 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 	fwnode_links_purge_consumers(fwnode);
163 
164 	fwnode_for_each_available_child_node(fwnode, child)
165 		fw_devlink_purge_absent_suppliers(child);
166 }
167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
168 
169 #ifdef CONFIG_SRCU
170 static DEFINE_MUTEX(device_links_lock);
171 DEFINE_STATIC_SRCU(device_links_srcu);
172 
173 static inline void device_links_write_lock(void)
174 {
175 	mutex_lock(&device_links_lock);
176 }
177 
178 static inline void device_links_write_unlock(void)
179 {
180 	mutex_unlock(&device_links_lock);
181 }
182 
183 int device_links_read_lock(void) __acquires(&device_links_srcu)
184 {
185 	return srcu_read_lock(&device_links_srcu);
186 }
187 
188 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
189 {
190 	srcu_read_unlock(&device_links_srcu, idx);
191 }
192 
193 int device_links_read_lock_held(void)
194 {
195 	return srcu_read_lock_held(&device_links_srcu);
196 }
197 
198 static void device_link_synchronize_removal(void)
199 {
200 	synchronize_srcu(&device_links_srcu);
201 }
202 
203 static void device_link_remove_from_lists(struct device_link *link)
204 {
205 	list_del_rcu(&link->s_node);
206 	list_del_rcu(&link->c_node);
207 }
208 #else /* !CONFIG_SRCU */
209 static DECLARE_RWSEM(device_links_lock);
210 
211 static inline void device_links_write_lock(void)
212 {
213 	down_write(&device_links_lock);
214 }
215 
216 static inline void device_links_write_unlock(void)
217 {
218 	up_write(&device_links_lock);
219 }
220 
221 int device_links_read_lock(void)
222 {
223 	down_read(&device_links_lock);
224 	return 0;
225 }
226 
227 void device_links_read_unlock(int not_used)
228 {
229 	up_read(&device_links_lock);
230 }
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 int device_links_read_lock_held(void)
234 {
235 	return lockdep_is_held(&device_links_lock);
236 }
237 #endif
238 
239 static inline void device_link_synchronize_removal(void)
240 {
241 }
242 
243 static void device_link_remove_from_lists(struct device_link *link)
244 {
245 	list_del(&link->s_node);
246 	list_del(&link->c_node);
247 }
248 #endif /* !CONFIG_SRCU */
249 
250 static bool device_is_ancestor(struct device *dev, struct device *target)
251 {
252 	while (target->parent) {
253 		target = target->parent;
254 		if (dev == target)
255 			return true;
256 	}
257 	return false;
258 }
259 
260 /**
261  * device_is_dependent - Check if one device depends on another one
262  * @dev: Device to check dependencies for.
263  * @target: Device to check against.
264  *
265  * Check if @target depends on @dev or any device dependent on it (its child or
266  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
267  */
268 int device_is_dependent(struct device *dev, void *target)
269 {
270 	struct device_link *link;
271 	int ret;
272 
273 	/*
274 	 * The "ancestors" check is needed to catch the case when the target
275 	 * device has not been completely initialized yet and it is still
276 	 * missing from the list of children of its parent device.
277 	 */
278 	if (dev == target || device_is_ancestor(dev, target))
279 		return 1;
280 
281 	ret = device_for_each_child(dev, target, device_is_dependent);
282 	if (ret)
283 		return ret;
284 
285 	list_for_each_entry(link, &dev->links.consumers, s_node) {
286 		if ((link->flags & ~DL_FLAG_INFERRED) ==
287 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
288 			continue;
289 
290 		if (link->consumer == target)
291 			return 1;
292 
293 		ret = device_is_dependent(link->consumer, target);
294 		if (ret)
295 			break;
296 	}
297 	return ret;
298 }
299 
300 static void device_link_init_status(struct device_link *link,
301 				    struct device *consumer,
302 				    struct device *supplier)
303 {
304 	switch (supplier->links.status) {
305 	case DL_DEV_PROBING:
306 		switch (consumer->links.status) {
307 		case DL_DEV_PROBING:
308 			/*
309 			 * A consumer driver can create a link to a supplier
310 			 * that has not completed its probing yet as long as it
311 			 * knows that the supplier is already functional (for
312 			 * example, it has just acquired some resources from the
313 			 * supplier).
314 			 */
315 			link->status = DL_STATE_CONSUMER_PROBE;
316 			break;
317 		default:
318 			link->status = DL_STATE_DORMANT;
319 			break;
320 		}
321 		break;
322 	case DL_DEV_DRIVER_BOUND:
323 		switch (consumer->links.status) {
324 		case DL_DEV_PROBING:
325 			link->status = DL_STATE_CONSUMER_PROBE;
326 			break;
327 		case DL_DEV_DRIVER_BOUND:
328 			link->status = DL_STATE_ACTIVE;
329 			break;
330 		default:
331 			link->status = DL_STATE_AVAILABLE;
332 			break;
333 		}
334 		break;
335 	case DL_DEV_UNBINDING:
336 		link->status = DL_STATE_SUPPLIER_UNBIND;
337 		break;
338 	default:
339 		link->status = DL_STATE_DORMANT;
340 		break;
341 	}
342 }
343 
344 static int device_reorder_to_tail(struct device *dev, void *not_used)
345 {
346 	struct device_link *link;
347 
348 	/*
349 	 * Devices that have not been registered yet will be put to the ends
350 	 * of the lists during the registration, so skip them here.
351 	 */
352 	if (device_is_registered(dev))
353 		devices_kset_move_last(dev);
354 
355 	if (device_pm_initialized(dev))
356 		device_pm_move_last(dev);
357 
358 	device_for_each_child(dev, NULL, device_reorder_to_tail);
359 	list_for_each_entry(link, &dev->links.consumers, s_node) {
360 		if ((link->flags & ~DL_FLAG_INFERRED) ==
361 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
362 			continue;
363 		device_reorder_to_tail(link->consumer, NULL);
364 	}
365 
366 	return 0;
367 }
368 
369 /**
370  * device_pm_move_to_tail - Move set of devices to the end of device lists
371  * @dev: Device to move
372  *
373  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
374  *
375  * It moves the @dev along with all of its children and all of its consumers
376  * to the ends of the device_kset and dpm_list, recursively.
377  */
378 void device_pm_move_to_tail(struct device *dev)
379 {
380 	int idx;
381 
382 	idx = device_links_read_lock();
383 	device_pm_lock();
384 	device_reorder_to_tail(dev, NULL);
385 	device_pm_unlock();
386 	device_links_read_unlock(idx);
387 }
388 
389 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
390 
391 static ssize_t status_show(struct device *dev,
392 			   struct device_attribute *attr, char *buf)
393 {
394 	const char *output;
395 
396 	switch (to_devlink(dev)->status) {
397 	case DL_STATE_NONE:
398 		output = "not tracked";
399 		break;
400 	case DL_STATE_DORMANT:
401 		output = "dormant";
402 		break;
403 	case DL_STATE_AVAILABLE:
404 		output = "available";
405 		break;
406 	case DL_STATE_CONSUMER_PROBE:
407 		output = "consumer probing";
408 		break;
409 	case DL_STATE_ACTIVE:
410 		output = "active";
411 		break;
412 	case DL_STATE_SUPPLIER_UNBIND:
413 		output = "supplier unbinding";
414 		break;
415 	default:
416 		output = "unknown";
417 		break;
418 	}
419 
420 	return sysfs_emit(buf, "%s\n", output);
421 }
422 static DEVICE_ATTR_RO(status);
423 
424 static ssize_t auto_remove_on_show(struct device *dev,
425 				   struct device_attribute *attr, char *buf)
426 {
427 	struct device_link *link = to_devlink(dev);
428 	const char *output;
429 
430 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
431 		output = "supplier unbind";
432 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
433 		output = "consumer unbind";
434 	else
435 		output = "never";
436 
437 	return sysfs_emit(buf, "%s\n", output);
438 }
439 static DEVICE_ATTR_RO(auto_remove_on);
440 
441 static ssize_t runtime_pm_show(struct device *dev,
442 			       struct device_attribute *attr, char *buf)
443 {
444 	struct device_link *link = to_devlink(dev);
445 
446 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
447 }
448 static DEVICE_ATTR_RO(runtime_pm);
449 
450 static ssize_t sync_state_only_show(struct device *dev,
451 				    struct device_attribute *attr, char *buf)
452 {
453 	struct device_link *link = to_devlink(dev);
454 
455 	return sysfs_emit(buf, "%d\n",
456 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
457 }
458 static DEVICE_ATTR_RO(sync_state_only);
459 
460 static struct attribute *devlink_attrs[] = {
461 	&dev_attr_status.attr,
462 	&dev_attr_auto_remove_on.attr,
463 	&dev_attr_runtime_pm.attr,
464 	&dev_attr_sync_state_only.attr,
465 	NULL,
466 };
467 ATTRIBUTE_GROUPS(devlink);
468 
469 static void device_link_release_fn(struct work_struct *work)
470 {
471 	struct device_link *link = container_of(work, struct device_link, rm_work);
472 
473 	/* Ensure that all references to the link object have been dropped. */
474 	device_link_synchronize_removal();
475 
476 	while (refcount_dec_not_one(&link->rpm_active))
477 		pm_runtime_put(link->supplier);
478 
479 	put_device(link->consumer);
480 	put_device(link->supplier);
481 	kfree(link);
482 }
483 
484 static void devlink_dev_release(struct device *dev)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	INIT_WORK(&link->rm_work, device_link_release_fn);
489 	/*
490 	 * It may take a while to complete this work because of the SRCU
491 	 * synchronization in device_link_release_fn() and if the consumer or
492 	 * supplier devices get deleted when it runs, so put it into the "long"
493 	 * workqueue.
494 	 */
495 	queue_work(system_long_wq, &link->rm_work);
496 }
497 
498 static struct class devlink_class = {
499 	.name = "devlink",
500 	.owner = THIS_MODULE,
501 	.dev_groups = devlink_groups,
502 	.dev_release = devlink_dev_release,
503 };
504 
505 static int devlink_add_symlinks(struct device *dev,
506 				struct class_interface *class_intf)
507 {
508 	int ret;
509 	size_t len;
510 	struct device_link *link = to_devlink(dev);
511 	struct device *sup = link->supplier;
512 	struct device *con = link->consumer;
513 	char *buf;
514 
515 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
516 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
517 	len += strlen(":");
518 	len += strlen("supplier:") + 1;
519 	buf = kzalloc(len, GFP_KERNEL);
520 	if (!buf)
521 		return -ENOMEM;
522 
523 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
524 	if (ret)
525 		goto out;
526 
527 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
528 	if (ret)
529 		goto err_con;
530 
531 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
532 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
533 	if (ret)
534 		goto err_con_dev;
535 
536 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
537 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
538 	if (ret)
539 		goto err_sup_dev;
540 
541 	goto out;
542 
543 err_sup_dev:
544 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
545 	sysfs_remove_link(&sup->kobj, buf);
546 err_con_dev:
547 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
548 err_con:
549 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
550 out:
551 	kfree(buf);
552 	return ret;
553 }
554 
555 static void devlink_remove_symlinks(struct device *dev,
556 				   struct class_interface *class_intf)
557 {
558 	struct device_link *link = to_devlink(dev);
559 	size_t len;
560 	struct device *sup = link->supplier;
561 	struct device *con = link->consumer;
562 	char *buf;
563 
564 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
565 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
566 
567 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
568 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
569 	len += strlen(":");
570 	len += strlen("supplier:") + 1;
571 	buf = kzalloc(len, GFP_KERNEL);
572 	if (!buf) {
573 		WARN(1, "Unable to properly free device link symlinks!\n");
574 		return;
575 	}
576 
577 	if (device_is_registered(con)) {
578 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
579 		sysfs_remove_link(&con->kobj, buf);
580 	}
581 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
582 	sysfs_remove_link(&sup->kobj, buf);
583 	kfree(buf);
584 }
585 
586 static struct class_interface devlink_class_intf = {
587 	.class = &devlink_class,
588 	.add_dev = devlink_add_symlinks,
589 	.remove_dev = devlink_remove_symlinks,
590 };
591 
592 static int __init devlink_class_init(void)
593 {
594 	int ret;
595 
596 	ret = class_register(&devlink_class);
597 	if (ret)
598 		return ret;
599 
600 	ret = class_interface_register(&devlink_class_intf);
601 	if (ret)
602 		class_unregister(&devlink_class);
603 
604 	return ret;
605 }
606 postcore_initcall(devlink_class_init);
607 
608 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
609 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
610 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
611 			       DL_FLAG_SYNC_STATE_ONLY | \
612 			       DL_FLAG_INFERRED)
613 
614 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
615 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
616 
617 /**
618  * device_link_add - Create a link between two devices.
619  * @consumer: Consumer end of the link.
620  * @supplier: Supplier end of the link.
621  * @flags: Link flags.
622  *
623  * The caller is responsible for the proper synchronization of the link creation
624  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
625  * runtime PM framework to take the link into account.  Second, if the
626  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
627  * be forced into the active meta state and reference-counted upon the creation
628  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
629  * ignored.
630  *
631  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
632  * expected to release the link returned by it directly with the help of either
633  * device_link_del() or device_link_remove().
634  *
635  * If that flag is not set, however, the caller of this function is handing the
636  * management of the link over to the driver core entirely and its return value
637  * can only be used to check whether or not the link is present.  In that case,
638  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
639  * flags can be used to indicate to the driver core when the link can be safely
640  * deleted.  Namely, setting one of them in @flags indicates to the driver core
641  * that the link is not going to be used (by the given caller of this function)
642  * after unbinding the consumer or supplier driver, respectively, from its
643  * device, so the link can be deleted at that point.  If none of them is set,
644  * the link will be maintained until one of the devices pointed to by it (either
645  * the consumer or the supplier) is unregistered.
646  *
647  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
648  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
649  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
650  * be used to request the driver core to automatically probe for a consumer
651  * driver after successfully binding a driver to the supplier device.
652  *
653  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
654  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
655  * the same time is invalid and will cause NULL to be returned upfront.
656  * However, if a device link between the given @consumer and @supplier pair
657  * exists already when this function is called for them, the existing link will
658  * be returned regardless of its current type and status (the link's flags may
659  * be modified then).  The caller of this function is then expected to treat
660  * the link as though it has just been created, so (in particular) if
661  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
662  * explicitly when not needed any more (as stated above).
663  *
664  * A side effect of the link creation is re-ordering of dpm_list and the
665  * devices_kset list by moving the consumer device and all devices depending
666  * on it to the ends of these lists (that does not happen to devices that have
667  * not been registered when this function is called).
668  *
669  * The supplier device is required to be registered when this function is called
670  * and NULL will be returned if that is not the case.  The consumer device need
671  * not be registered, however.
672  */
673 struct device_link *device_link_add(struct device *consumer,
674 				    struct device *supplier, u32 flags)
675 {
676 	struct device_link *link;
677 
678 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
679 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
680 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
681 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
682 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
683 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
684 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
685 		return NULL;
686 
687 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
688 		if (pm_runtime_get_sync(supplier) < 0) {
689 			pm_runtime_put_noidle(supplier);
690 			return NULL;
691 		}
692 	}
693 
694 	if (!(flags & DL_FLAG_STATELESS))
695 		flags |= DL_FLAG_MANAGED;
696 
697 	device_links_write_lock();
698 	device_pm_lock();
699 
700 	/*
701 	 * If the supplier has not been fully registered yet or there is a
702 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
703 	 * the supplier already in the graph, return NULL. If the link is a
704 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
705 	 * because it only affects sync_state() callbacks.
706 	 */
707 	if (!device_pm_initialized(supplier)
708 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
709 		  device_is_dependent(consumer, supplier))) {
710 		link = NULL;
711 		goto out;
712 	}
713 
714 	/*
715 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
716 	 * So, only create it if the consumer hasn't probed yet.
717 	 */
718 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
719 	    consumer->links.status != DL_DEV_NO_DRIVER &&
720 	    consumer->links.status != DL_DEV_PROBING) {
721 		link = NULL;
722 		goto out;
723 	}
724 
725 	/*
726 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
727 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
728 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
729 	 */
730 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
731 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
732 
733 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
734 		if (link->consumer != consumer)
735 			continue;
736 
737 		if (link->flags & DL_FLAG_INFERRED &&
738 		    !(flags & DL_FLAG_INFERRED))
739 			link->flags &= ~DL_FLAG_INFERRED;
740 
741 		if (flags & DL_FLAG_PM_RUNTIME) {
742 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
743 				pm_runtime_new_link(consumer);
744 				link->flags |= DL_FLAG_PM_RUNTIME;
745 			}
746 			if (flags & DL_FLAG_RPM_ACTIVE)
747 				refcount_inc(&link->rpm_active);
748 		}
749 
750 		if (flags & DL_FLAG_STATELESS) {
751 			kref_get(&link->kref);
752 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
753 			    !(link->flags & DL_FLAG_STATELESS)) {
754 				link->flags |= DL_FLAG_STATELESS;
755 				goto reorder;
756 			} else {
757 				link->flags |= DL_FLAG_STATELESS;
758 				goto out;
759 			}
760 		}
761 
762 		/*
763 		 * If the life time of the link following from the new flags is
764 		 * longer than indicated by the flags of the existing link,
765 		 * update the existing link to stay around longer.
766 		 */
767 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
768 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
769 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
770 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
771 			}
772 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
773 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
774 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
775 		}
776 		if (!(link->flags & DL_FLAG_MANAGED)) {
777 			kref_get(&link->kref);
778 			link->flags |= DL_FLAG_MANAGED;
779 			device_link_init_status(link, consumer, supplier);
780 		}
781 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
782 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
783 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
784 			goto reorder;
785 		}
786 
787 		goto out;
788 	}
789 
790 	link = kzalloc(sizeof(*link), GFP_KERNEL);
791 	if (!link)
792 		goto out;
793 
794 	refcount_set(&link->rpm_active, 1);
795 
796 	get_device(supplier);
797 	link->supplier = supplier;
798 	INIT_LIST_HEAD(&link->s_node);
799 	get_device(consumer);
800 	link->consumer = consumer;
801 	INIT_LIST_HEAD(&link->c_node);
802 	link->flags = flags;
803 	kref_init(&link->kref);
804 
805 	link->link_dev.class = &devlink_class;
806 	device_set_pm_not_required(&link->link_dev);
807 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
808 		     dev_bus_name(supplier), dev_name(supplier),
809 		     dev_bus_name(consumer), dev_name(consumer));
810 	if (device_register(&link->link_dev)) {
811 		put_device(consumer);
812 		put_device(supplier);
813 		kfree(link);
814 		link = NULL;
815 		goto out;
816 	}
817 
818 	if (flags & DL_FLAG_PM_RUNTIME) {
819 		if (flags & DL_FLAG_RPM_ACTIVE)
820 			refcount_inc(&link->rpm_active);
821 
822 		pm_runtime_new_link(consumer);
823 	}
824 
825 	/* Determine the initial link state. */
826 	if (flags & DL_FLAG_STATELESS)
827 		link->status = DL_STATE_NONE;
828 	else
829 		device_link_init_status(link, consumer, supplier);
830 
831 	/*
832 	 * Some callers expect the link creation during consumer driver probe to
833 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
834 	 */
835 	if (link->status == DL_STATE_CONSUMER_PROBE &&
836 	    flags & DL_FLAG_PM_RUNTIME)
837 		pm_runtime_resume(supplier);
838 
839 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
840 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
841 
842 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
843 		dev_dbg(consumer,
844 			"Linked as a sync state only consumer to %s\n",
845 			dev_name(supplier));
846 		goto out;
847 	}
848 
849 reorder:
850 	/*
851 	 * Move the consumer and all of the devices depending on it to the end
852 	 * of dpm_list and the devices_kset list.
853 	 *
854 	 * It is necessary to hold dpm_list locked throughout all that or else
855 	 * we may end up suspending with a wrong ordering of it.
856 	 */
857 	device_reorder_to_tail(consumer, NULL);
858 
859 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
860 
861 out:
862 	device_pm_unlock();
863 	device_links_write_unlock();
864 
865 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
866 		pm_runtime_put(supplier);
867 
868 	return link;
869 }
870 EXPORT_SYMBOL_GPL(device_link_add);
871 
872 static void __device_link_del(struct kref *kref)
873 {
874 	struct device_link *link = container_of(kref, struct device_link, kref);
875 
876 	dev_dbg(link->consumer, "Dropping the link to %s\n",
877 		dev_name(link->supplier));
878 
879 	pm_runtime_drop_link(link);
880 
881 	device_link_remove_from_lists(link);
882 	device_unregister(&link->link_dev);
883 }
884 
885 static void device_link_put_kref(struct device_link *link)
886 {
887 	if (link->flags & DL_FLAG_STATELESS)
888 		kref_put(&link->kref, __device_link_del);
889 	else if (!device_is_registered(link->consumer))
890 		__device_link_del(&link->kref);
891 	else
892 		WARN(1, "Unable to drop a managed device link reference\n");
893 }
894 
895 /**
896  * device_link_del - Delete a stateless link between two devices.
897  * @link: Device link to delete.
898  *
899  * The caller must ensure proper synchronization of this function with runtime
900  * PM.  If the link was added multiple times, it needs to be deleted as often.
901  * Care is required for hotplugged devices:  Their links are purged on removal
902  * and calling device_link_del() is then no longer allowed.
903  */
904 void device_link_del(struct device_link *link)
905 {
906 	device_links_write_lock();
907 	device_link_put_kref(link);
908 	device_links_write_unlock();
909 }
910 EXPORT_SYMBOL_GPL(device_link_del);
911 
912 /**
913  * device_link_remove - Delete a stateless link between two devices.
914  * @consumer: Consumer end of the link.
915  * @supplier: Supplier end of the link.
916  *
917  * The caller must ensure proper synchronization of this function with runtime
918  * PM.
919  */
920 void device_link_remove(void *consumer, struct device *supplier)
921 {
922 	struct device_link *link;
923 
924 	if (WARN_ON(consumer == supplier))
925 		return;
926 
927 	device_links_write_lock();
928 
929 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
930 		if (link->consumer == consumer) {
931 			device_link_put_kref(link);
932 			break;
933 		}
934 	}
935 
936 	device_links_write_unlock();
937 }
938 EXPORT_SYMBOL_GPL(device_link_remove);
939 
940 static void device_links_missing_supplier(struct device *dev)
941 {
942 	struct device_link *link;
943 
944 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
945 		if (link->status != DL_STATE_CONSUMER_PROBE)
946 			continue;
947 
948 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
949 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
950 		} else {
951 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
952 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
953 		}
954 	}
955 }
956 
957 /**
958  * device_links_check_suppliers - Check presence of supplier drivers.
959  * @dev: Consumer device.
960  *
961  * Check links from this device to any suppliers.  Walk the list of the device's
962  * links to suppliers and see if all of them are available.  If not, simply
963  * return -EPROBE_DEFER.
964  *
965  * We need to guarantee that the supplier will not go away after the check has
966  * been positive here.  It only can go away in __device_release_driver() and
967  * that function  checks the device's links to consumers.  This means we need to
968  * mark the link as "consumer probe in progress" to make the supplier removal
969  * wait for us to complete (or bad things may happen).
970  *
971  * Links without the DL_FLAG_MANAGED flag set are ignored.
972  */
973 int device_links_check_suppliers(struct device *dev)
974 {
975 	struct device_link *link;
976 	int ret = 0;
977 
978 	/*
979 	 * Device waiting for supplier to become available is not allowed to
980 	 * probe.
981 	 */
982 	mutex_lock(&fwnode_link_lock);
983 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
984 	    !fw_devlink_is_permissive()) {
985 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
986 			list_first_entry(&dev->fwnode->suppliers,
987 			struct fwnode_link,
988 			c_hook)->supplier);
989 		mutex_unlock(&fwnode_link_lock);
990 		return -EPROBE_DEFER;
991 	}
992 	mutex_unlock(&fwnode_link_lock);
993 
994 	device_links_write_lock();
995 
996 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
997 		if (!(link->flags & DL_FLAG_MANAGED))
998 			continue;
999 
1000 		if (link->status != DL_STATE_AVAILABLE &&
1001 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1002 			device_links_missing_supplier(dev);
1003 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1004 				dev_name(link->supplier));
1005 			ret = -EPROBE_DEFER;
1006 			break;
1007 		}
1008 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1009 	}
1010 	dev->links.status = DL_DEV_PROBING;
1011 
1012 	device_links_write_unlock();
1013 	return ret;
1014 }
1015 
1016 /**
1017  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1018  * @dev: Device to call sync_state() on
1019  * @list: List head to queue the @dev on
1020  *
1021  * Queues a device for a sync_state() callback when the device links write lock
1022  * isn't held. This allows the sync_state() execution flow to use device links
1023  * APIs.  The caller must ensure this function is called with
1024  * device_links_write_lock() held.
1025  *
1026  * This function does a get_device() to make sure the device is not freed while
1027  * on this list.
1028  *
1029  * So the caller must also ensure that device_links_flush_sync_list() is called
1030  * as soon as the caller releases device_links_write_lock().  This is necessary
1031  * to make sure the sync_state() is called in a timely fashion and the
1032  * put_device() is called on this device.
1033  */
1034 static void __device_links_queue_sync_state(struct device *dev,
1035 					    struct list_head *list)
1036 {
1037 	struct device_link *link;
1038 
1039 	if (!dev_has_sync_state(dev))
1040 		return;
1041 	if (dev->state_synced)
1042 		return;
1043 
1044 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1045 		if (!(link->flags & DL_FLAG_MANAGED))
1046 			continue;
1047 		if (link->status != DL_STATE_ACTIVE)
1048 			return;
1049 	}
1050 
1051 	/*
1052 	 * Set the flag here to avoid adding the same device to a list more
1053 	 * than once. This can happen if new consumers get added to the device
1054 	 * and probed before the list is flushed.
1055 	 */
1056 	dev->state_synced = true;
1057 
1058 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1059 		return;
1060 
1061 	get_device(dev);
1062 	list_add_tail(&dev->links.defer_sync, list);
1063 }
1064 
1065 /**
1066  * device_links_flush_sync_list - Call sync_state() on a list of devices
1067  * @list: List of devices to call sync_state() on
1068  * @dont_lock_dev: Device for which lock is already held by the caller
1069  *
1070  * Calls sync_state() on all the devices that have been queued for it. This
1071  * function is used in conjunction with __device_links_queue_sync_state(). The
1072  * @dont_lock_dev parameter is useful when this function is called from a
1073  * context where a device lock is already held.
1074  */
1075 static void device_links_flush_sync_list(struct list_head *list,
1076 					 struct device *dont_lock_dev)
1077 {
1078 	struct device *dev, *tmp;
1079 
1080 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1081 		list_del_init(&dev->links.defer_sync);
1082 
1083 		if (dev != dont_lock_dev)
1084 			device_lock(dev);
1085 
1086 		if (dev->bus->sync_state)
1087 			dev->bus->sync_state(dev);
1088 		else if (dev->driver && dev->driver->sync_state)
1089 			dev->driver->sync_state(dev);
1090 
1091 		if (dev != dont_lock_dev)
1092 			device_unlock(dev);
1093 
1094 		put_device(dev);
1095 	}
1096 }
1097 
1098 void device_links_supplier_sync_state_pause(void)
1099 {
1100 	device_links_write_lock();
1101 	defer_sync_state_count++;
1102 	device_links_write_unlock();
1103 }
1104 
1105 void device_links_supplier_sync_state_resume(void)
1106 {
1107 	struct device *dev, *tmp;
1108 	LIST_HEAD(sync_list);
1109 
1110 	device_links_write_lock();
1111 	if (!defer_sync_state_count) {
1112 		WARN(true, "Unmatched sync_state pause/resume!");
1113 		goto out;
1114 	}
1115 	defer_sync_state_count--;
1116 	if (defer_sync_state_count)
1117 		goto out;
1118 
1119 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1120 		/*
1121 		 * Delete from deferred_sync list before queuing it to
1122 		 * sync_list because defer_sync is used for both lists.
1123 		 */
1124 		list_del_init(&dev->links.defer_sync);
1125 		__device_links_queue_sync_state(dev, &sync_list);
1126 	}
1127 out:
1128 	device_links_write_unlock();
1129 
1130 	device_links_flush_sync_list(&sync_list, NULL);
1131 }
1132 
1133 static int sync_state_resume_initcall(void)
1134 {
1135 	device_links_supplier_sync_state_resume();
1136 	return 0;
1137 }
1138 late_initcall(sync_state_resume_initcall);
1139 
1140 static void __device_links_supplier_defer_sync(struct device *sup)
1141 {
1142 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1143 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1144 }
1145 
1146 static void device_link_drop_managed(struct device_link *link)
1147 {
1148 	link->flags &= ~DL_FLAG_MANAGED;
1149 	WRITE_ONCE(link->status, DL_STATE_NONE);
1150 	kref_put(&link->kref, __device_link_del);
1151 }
1152 
1153 static ssize_t waiting_for_supplier_show(struct device *dev,
1154 					 struct device_attribute *attr,
1155 					 char *buf)
1156 {
1157 	bool val;
1158 
1159 	device_lock(dev);
1160 	val = !list_empty(&dev->fwnode->suppliers);
1161 	device_unlock(dev);
1162 	return sysfs_emit(buf, "%u\n", val);
1163 }
1164 static DEVICE_ATTR_RO(waiting_for_supplier);
1165 
1166 /**
1167  * device_links_force_bind - Prepares device to be force bound
1168  * @dev: Consumer device.
1169  *
1170  * device_bind_driver() force binds a device to a driver without calling any
1171  * driver probe functions. So the consumer really isn't going to wait for any
1172  * supplier before it's bound to the driver. We still want the device link
1173  * states to be sensible when this happens.
1174  *
1175  * In preparation for device_bind_driver(), this function goes through each
1176  * supplier device links and checks if the supplier is bound. If it is, then
1177  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1178  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1179  */
1180 void device_links_force_bind(struct device *dev)
1181 {
1182 	struct device_link *link, *ln;
1183 
1184 	device_links_write_lock();
1185 
1186 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1187 		if (!(link->flags & DL_FLAG_MANAGED))
1188 			continue;
1189 
1190 		if (link->status != DL_STATE_AVAILABLE) {
1191 			device_link_drop_managed(link);
1192 			continue;
1193 		}
1194 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1195 	}
1196 	dev->links.status = DL_DEV_PROBING;
1197 
1198 	device_links_write_unlock();
1199 }
1200 
1201 /**
1202  * device_links_driver_bound - Update device links after probing its driver.
1203  * @dev: Device to update the links for.
1204  *
1205  * The probe has been successful, so update links from this device to any
1206  * consumers by changing their status to "available".
1207  *
1208  * Also change the status of @dev's links to suppliers to "active".
1209  *
1210  * Links without the DL_FLAG_MANAGED flag set are ignored.
1211  */
1212 void device_links_driver_bound(struct device *dev)
1213 {
1214 	struct device_link *link, *ln;
1215 	LIST_HEAD(sync_list);
1216 
1217 	/*
1218 	 * If a device binds successfully, it's expected to have created all
1219 	 * the device links it needs to or make new device links as it needs
1220 	 * them. So, fw_devlink no longer needs to create device links to any
1221 	 * of the device's suppliers.
1222 	 *
1223 	 * Also, if a child firmware node of this bound device is not added as
1224 	 * a device by now, assume it is never going to be added and make sure
1225 	 * other devices don't defer probe indefinitely by waiting for such a
1226 	 * child device.
1227 	 */
1228 	if (dev->fwnode && dev->fwnode->dev == dev) {
1229 		struct fwnode_handle *child;
1230 		fwnode_links_purge_suppliers(dev->fwnode);
1231 		fwnode_for_each_available_child_node(dev->fwnode, child)
1232 			fw_devlink_purge_absent_suppliers(child);
1233 	}
1234 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1235 
1236 	device_links_write_lock();
1237 
1238 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1239 		if (!(link->flags & DL_FLAG_MANAGED))
1240 			continue;
1241 
1242 		/*
1243 		 * Links created during consumer probe may be in the "consumer
1244 		 * probe" state to start with if the supplier is still probing
1245 		 * when they are created and they may become "active" if the
1246 		 * consumer probe returns first.  Skip them here.
1247 		 */
1248 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1249 		    link->status == DL_STATE_ACTIVE)
1250 			continue;
1251 
1252 		WARN_ON(link->status != DL_STATE_DORMANT);
1253 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1254 
1255 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1256 			driver_deferred_probe_add(link->consumer);
1257 	}
1258 
1259 	if (defer_sync_state_count)
1260 		__device_links_supplier_defer_sync(dev);
1261 	else
1262 		__device_links_queue_sync_state(dev, &sync_list);
1263 
1264 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1265 		struct device *supplier;
1266 
1267 		if (!(link->flags & DL_FLAG_MANAGED))
1268 			continue;
1269 
1270 		supplier = link->supplier;
1271 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1272 			/*
1273 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1274 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1275 			 * save to drop the managed link completely.
1276 			 */
1277 			device_link_drop_managed(link);
1278 		} else {
1279 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1280 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1281 		}
1282 
1283 		/*
1284 		 * This needs to be done even for the deleted
1285 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1286 		 * device link that was preventing the supplier from getting a
1287 		 * sync_state() call.
1288 		 */
1289 		if (defer_sync_state_count)
1290 			__device_links_supplier_defer_sync(supplier);
1291 		else
1292 			__device_links_queue_sync_state(supplier, &sync_list);
1293 	}
1294 
1295 	dev->links.status = DL_DEV_DRIVER_BOUND;
1296 
1297 	device_links_write_unlock();
1298 
1299 	device_links_flush_sync_list(&sync_list, dev);
1300 }
1301 
1302 /**
1303  * __device_links_no_driver - Update links of a device without a driver.
1304  * @dev: Device without a drvier.
1305  *
1306  * Delete all non-persistent links from this device to any suppliers.
1307  *
1308  * Persistent links stay around, but their status is changed to "available",
1309  * unless they already are in the "supplier unbind in progress" state in which
1310  * case they need not be updated.
1311  *
1312  * Links without the DL_FLAG_MANAGED flag set are ignored.
1313  */
1314 static void __device_links_no_driver(struct device *dev)
1315 {
1316 	struct device_link *link, *ln;
1317 
1318 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1319 		if (!(link->flags & DL_FLAG_MANAGED))
1320 			continue;
1321 
1322 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1323 			device_link_drop_managed(link);
1324 			continue;
1325 		}
1326 
1327 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1328 		    link->status != DL_STATE_ACTIVE)
1329 			continue;
1330 
1331 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1332 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1333 		} else {
1334 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1335 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1336 		}
1337 	}
1338 
1339 	dev->links.status = DL_DEV_NO_DRIVER;
1340 }
1341 
1342 /**
1343  * device_links_no_driver - Update links after failing driver probe.
1344  * @dev: Device whose driver has just failed to probe.
1345  *
1346  * Clean up leftover links to consumers for @dev and invoke
1347  * %__device_links_no_driver() to update links to suppliers for it as
1348  * appropriate.
1349  *
1350  * Links without the DL_FLAG_MANAGED flag set are ignored.
1351  */
1352 void device_links_no_driver(struct device *dev)
1353 {
1354 	struct device_link *link;
1355 
1356 	device_links_write_lock();
1357 
1358 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1359 		if (!(link->flags & DL_FLAG_MANAGED))
1360 			continue;
1361 
1362 		/*
1363 		 * The probe has failed, so if the status of the link is
1364 		 * "consumer probe" or "active", it must have been added by
1365 		 * a probing consumer while this device was still probing.
1366 		 * Change its state to "dormant", as it represents a valid
1367 		 * relationship, but it is not functionally meaningful.
1368 		 */
1369 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1370 		    link->status == DL_STATE_ACTIVE)
1371 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1372 	}
1373 
1374 	__device_links_no_driver(dev);
1375 
1376 	device_links_write_unlock();
1377 }
1378 
1379 /**
1380  * device_links_driver_cleanup - Update links after driver removal.
1381  * @dev: Device whose driver has just gone away.
1382  *
1383  * Update links to consumers for @dev by changing their status to "dormant" and
1384  * invoke %__device_links_no_driver() to update links to suppliers for it as
1385  * appropriate.
1386  *
1387  * Links without the DL_FLAG_MANAGED flag set are ignored.
1388  */
1389 void device_links_driver_cleanup(struct device *dev)
1390 {
1391 	struct device_link *link, *ln;
1392 
1393 	device_links_write_lock();
1394 
1395 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1396 		if (!(link->flags & DL_FLAG_MANAGED))
1397 			continue;
1398 
1399 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1400 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1401 
1402 		/*
1403 		 * autoremove the links between this @dev and its consumer
1404 		 * devices that are not active, i.e. where the link state
1405 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1406 		 */
1407 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1408 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1409 			device_link_drop_managed(link);
1410 
1411 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1412 	}
1413 
1414 	list_del_init(&dev->links.defer_sync);
1415 	__device_links_no_driver(dev);
1416 
1417 	device_links_write_unlock();
1418 }
1419 
1420 /**
1421  * device_links_busy - Check if there are any busy links to consumers.
1422  * @dev: Device to check.
1423  *
1424  * Check each consumer of the device and return 'true' if its link's status
1425  * is one of "consumer probe" or "active" (meaning that the given consumer is
1426  * probing right now or its driver is present).  Otherwise, change the link
1427  * state to "supplier unbind" to prevent the consumer from being probed
1428  * successfully going forward.
1429  *
1430  * Return 'false' if there are no probing or active consumers.
1431  *
1432  * Links without the DL_FLAG_MANAGED flag set are ignored.
1433  */
1434 bool device_links_busy(struct device *dev)
1435 {
1436 	struct device_link *link;
1437 	bool ret = false;
1438 
1439 	device_links_write_lock();
1440 
1441 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1442 		if (!(link->flags & DL_FLAG_MANAGED))
1443 			continue;
1444 
1445 		if (link->status == DL_STATE_CONSUMER_PROBE
1446 		    || link->status == DL_STATE_ACTIVE) {
1447 			ret = true;
1448 			break;
1449 		}
1450 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1451 	}
1452 
1453 	dev->links.status = DL_DEV_UNBINDING;
1454 
1455 	device_links_write_unlock();
1456 	return ret;
1457 }
1458 
1459 /**
1460  * device_links_unbind_consumers - Force unbind consumers of the given device.
1461  * @dev: Device to unbind the consumers of.
1462  *
1463  * Walk the list of links to consumers for @dev and if any of them is in the
1464  * "consumer probe" state, wait for all device probes in progress to complete
1465  * and start over.
1466  *
1467  * If that's not the case, change the status of the link to "supplier unbind"
1468  * and check if the link was in the "active" state.  If so, force the consumer
1469  * driver to unbind and start over (the consumer will not re-probe as we have
1470  * changed the state of the link already).
1471  *
1472  * Links without the DL_FLAG_MANAGED flag set are ignored.
1473  */
1474 void device_links_unbind_consumers(struct device *dev)
1475 {
1476 	struct device_link *link;
1477 
1478  start:
1479 	device_links_write_lock();
1480 
1481 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1482 		enum device_link_state status;
1483 
1484 		if (!(link->flags & DL_FLAG_MANAGED) ||
1485 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1486 			continue;
1487 
1488 		status = link->status;
1489 		if (status == DL_STATE_CONSUMER_PROBE) {
1490 			device_links_write_unlock();
1491 
1492 			wait_for_device_probe();
1493 			goto start;
1494 		}
1495 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1496 		if (status == DL_STATE_ACTIVE) {
1497 			struct device *consumer = link->consumer;
1498 
1499 			get_device(consumer);
1500 
1501 			device_links_write_unlock();
1502 
1503 			device_release_driver_internal(consumer, NULL,
1504 						       consumer->parent);
1505 			put_device(consumer);
1506 			goto start;
1507 		}
1508 	}
1509 
1510 	device_links_write_unlock();
1511 }
1512 
1513 /**
1514  * device_links_purge - Delete existing links to other devices.
1515  * @dev: Target device.
1516  */
1517 static void device_links_purge(struct device *dev)
1518 {
1519 	struct device_link *link, *ln;
1520 
1521 	if (dev->class == &devlink_class)
1522 		return;
1523 
1524 	/*
1525 	 * Delete all of the remaining links from this device to any other
1526 	 * devices (either consumers or suppliers).
1527 	 */
1528 	device_links_write_lock();
1529 
1530 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1531 		WARN_ON(link->status == DL_STATE_ACTIVE);
1532 		__device_link_del(&link->kref);
1533 	}
1534 
1535 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1536 		WARN_ON(link->status != DL_STATE_DORMANT &&
1537 			link->status != DL_STATE_NONE);
1538 		__device_link_del(&link->kref);
1539 	}
1540 
1541 	device_links_write_unlock();
1542 }
1543 
1544 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1545 					 DL_FLAG_SYNC_STATE_ONLY)
1546 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1547 					 DL_FLAG_AUTOPROBE_CONSUMER)
1548 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1549 					 DL_FLAG_PM_RUNTIME)
1550 
1551 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1552 static int __init fw_devlink_setup(char *arg)
1553 {
1554 	if (!arg)
1555 		return -EINVAL;
1556 
1557 	if (strcmp(arg, "off") == 0) {
1558 		fw_devlink_flags = 0;
1559 	} else if (strcmp(arg, "permissive") == 0) {
1560 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1561 	} else if (strcmp(arg, "on") == 0) {
1562 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1563 	} else if (strcmp(arg, "rpm") == 0) {
1564 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1565 	}
1566 	return 0;
1567 }
1568 early_param("fw_devlink", fw_devlink_setup);
1569 
1570 static bool fw_devlink_strict;
1571 static int __init fw_devlink_strict_setup(char *arg)
1572 {
1573 	return strtobool(arg, &fw_devlink_strict);
1574 }
1575 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1576 
1577 u32 fw_devlink_get_flags(void)
1578 {
1579 	return fw_devlink_flags;
1580 }
1581 
1582 static bool fw_devlink_is_permissive(void)
1583 {
1584 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1585 }
1586 
1587 bool fw_devlink_is_strict(void)
1588 {
1589 	return fw_devlink_strict && !fw_devlink_is_permissive();
1590 }
1591 
1592 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1593 {
1594 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1595 		return;
1596 
1597 	fwnode_call_int_op(fwnode, add_links);
1598 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1599 }
1600 
1601 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1602 {
1603 	struct fwnode_handle *child = NULL;
1604 
1605 	fw_devlink_parse_fwnode(fwnode);
1606 
1607 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1608 		fw_devlink_parse_fwtree(child);
1609 }
1610 
1611 static void fw_devlink_relax_link(struct device_link *link)
1612 {
1613 	if (!(link->flags & DL_FLAG_INFERRED))
1614 		return;
1615 
1616 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1617 		return;
1618 
1619 	pm_runtime_drop_link(link);
1620 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1621 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1622 		dev_name(link->supplier));
1623 }
1624 
1625 static int fw_devlink_no_driver(struct device *dev, void *data)
1626 {
1627 	struct device_link *link = to_devlink(dev);
1628 
1629 	if (!link->supplier->can_match)
1630 		fw_devlink_relax_link(link);
1631 
1632 	return 0;
1633 }
1634 
1635 void fw_devlink_drivers_done(void)
1636 {
1637 	fw_devlink_drv_reg_done = true;
1638 	device_links_write_lock();
1639 	class_for_each_device(&devlink_class, NULL, NULL,
1640 			      fw_devlink_no_driver);
1641 	device_links_write_unlock();
1642 }
1643 
1644 static void fw_devlink_unblock_consumers(struct device *dev)
1645 {
1646 	struct device_link *link;
1647 
1648 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1649 		return;
1650 
1651 	device_links_write_lock();
1652 	list_for_each_entry(link, &dev->links.consumers, s_node)
1653 		fw_devlink_relax_link(link);
1654 	device_links_write_unlock();
1655 }
1656 
1657 /**
1658  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1659  * @con: Device to check dependencies for.
1660  * @sup: Device to check against.
1661  *
1662  * Check if @sup depends on @con or any device dependent on it (its child or
1663  * its consumer etc).  When such a cyclic dependency is found, convert all
1664  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1665  * This is the equivalent of doing fw_devlink=permissive just between the
1666  * devices in the cycle. We need to do this because, at this point, fw_devlink
1667  * can't tell which of these dependencies is not a real dependency.
1668  *
1669  * Return 1 if a cycle is found. Otherwise, return 0.
1670  */
1671 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1672 {
1673 	struct device_link *link;
1674 	int ret;
1675 
1676 	if (con == sup)
1677 		return 1;
1678 
1679 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1680 	if (ret)
1681 		return ret;
1682 
1683 	list_for_each_entry(link, &con->links.consumers, s_node) {
1684 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1685 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1686 			continue;
1687 
1688 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1689 			continue;
1690 
1691 		ret = 1;
1692 
1693 		fw_devlink_relax_link(link);
1694 	}
1695 	return ret;
1696 }
1697 
1698 /**
1699  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1700  * @con: consumer device for the device link
1701  * @sup_handle: fwnode handle of supplier
1702  * @flags: devlink flags
1703  *
1704  * This function will try to create a device link between the consumer device
1705  * @con and the supplier device represented by @sup_handle.
1706  *
1707  * The supplier has to be provided as a fwnode because incorrect cycles in
1708  * fwnode links can sometimes cause the supplier device to never be created.
1709  * This function detects such cases and returns an error if it cannot create a
1710  * device link from the consumer to a missing supplier.
1711  *
1712  * Returns,
1713  * 0 on successfully creating a device link
1714  * -EINVAL if the device link cannot be created as expected
1715  * -EAGAIN if the device link cannot be created right now, but it may be
1716  *  possible to do that in the future
1717  */
1718 static int fw_devlink_create_devlink(struct device *con,
1719 				     struct fwnode_handle *sup_handle, u32 flags)
1720 {
1721 	struct device *sup_dev;
1722 	int ret = 0;
1723 
1724 	sup_dev = get_dev_from_fwnode(sup_handle);
1725 	if (sup_dev) {
1726 		/*
1727 		 * If it's one of those drivers that don't actually bind to
1728 		 * their device using driver core, then don't wait on this
1729 		 * supplier device indefinitely.
1730 		 */
1731 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1732 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1733 			ret = -EINVAL;
1734 			goto out;
1735 		}
1736 
1737 		/*
1738 		 * If this fails, it is due to cycles in device links.  Just
1739 		 * give up on this link and treat it as invalid.
1740 		 */
1741 		if (!device_link_add(con, sup_dev, flags) &&
1742 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1743 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1744 				 dev_name(sup_dev));
1745 			device_links_write_lock();
1746 			fw_devlink_relax_cycle(con, sup_dev);
1747 			device_links_write_unlock();
1748 			device_link_add(con, sup_dev,
1749 					FW_DEVLINK_FLAGS_PERMISSIVE);
1750 			ret = -EINVAL;
1751 		}
1752 
1753 		goto out;
1754 	}
1755 
1756 	/* Supplier that's already initialized without a struct device. */
1757 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1758 		return -EINVAL;
1759 
1760 	/*
1761 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1762 	 * cycles. So cycle detection isn't necessary and shouldn't be
1763 	 * done.
1764 	 */
1765 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1766 		return -EAGAIN;
1767 
1768 	/*
1769 	 * If we can't find the supplier device from its fwnode, it might be
1770 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1771 	 * be broken by applying logic. Check for these types of cycles and
1772 	 * break them so that devices in the cycle probe properly.
1773 	 *
1774 	 * If the supplier's parent is dependent on the consumer, then
1775 	 * the consumer-supplier dependency is a false dependency. So,
1776 	 * treat it as an invalid link.
1777 	 */
1778 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1779 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1780 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1781 			sup_handle);
1782 		ret = -EINVAL;
1783 	} else {
1784 		/*
1785 		 * Can't check for cycles or no cycles. So let's try
1786 		 * again later.
1787 		 */
1788 		ret = -EAGAIN;
1789 	}
1790 
1791 out:
1792 	put_device(sup_dev);
1793 	return ret;
1794 }
1795 
1796 /**
1797  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1798  * @dev: Device that needs to be linked to its consumers
1799  *
1800  * This function looks at all the consumer fwnodes of @dev and creates device
1801  * links between the consumer device and @dev (supplier).
1802  *
1803  * If the consumer device has not been added yet, then this function creates a
1804  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1805  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1806  * sync_state() callback before the real consumer device gets to be added and
1807  * then probed.
1808  *
1809  * Once device links are created from the real consumer to @dev (supplier), the
1810  * fwnode links are deleted.
1811  */
1812 static void __fw_devlink_link_to_consumers(struct device *dev)
1813 {
1814 	struct fwnode_handle *fwnode = dev->fwnode;
1815 	struct fwnode_link *link, *tmp;
1816 
1817 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1818 		u32 dl_flags = fw_devlink_get_flags();
1819 		struct device *con_dev;
1820 		bool own_link = true;
1821 		int ret;
1822 
1823 		con_dev = get_dev_from_fwnode(link->consumer);
1824 		/*
1825 		 * If consumer device is not available yet, make a "proxy"
1826 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1827 		 * the supplier device. This is necessary to make sure the
1828 		 * supplier doesn't get a sync_state() callback before the real
1829 		 * consumer can create a device link to the supplier.
1830 		 *
1831 		 * This proxy link step is needed to handle the case where the
1832 		 * consumer's parent device is added before the supplier.
1833 		 */
1834 		if (!con_dev) {
1835 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1836 			/*
1837 			 * However, if the consumer's parent device is also the
1838 			 * parent of the supplier, don't create a
1839 			 * consumer-supplier link from the parent to its child
1840 			 * device. Such a dependency is impossible.
1841 			 */
1842 			if (con_dev &&
1843 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1844 				put_device(con_dev);
1845 				con_dev = NULL;
1846 			} else {
1847 				own_link = false;
1848 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1849 			}
1850 		}
1851 
1852 		if (!con_dev)
1853 			continue;
1854 
1855 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1856 		put_device(con_dev);
1857 		if (!own_link || ret == -EAGAIN)
1858 			continue;
1859 
1860 		list_del(&link->s_hook);
1861 		list_del(&link->c_hook);
1862 		kfree(link);
1863 	}
1864 }
1865 
1866 /**
1867  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1868  * @dev: The consumer device that needs to be linked to its suppliers
1869  * @fwnode: Root of the fwnode tree that is used to create device links
1870  *
1871  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1872  * @fwnode and creates device links between @dev (consumer) and all the
1873  * supplier devices of the entire fwnode tree at @fwnode.
1874  *
1875  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1876  * and the real suppliers of @dev. Once these device links are created, the
1877  * fwnode links are deleted. When such device links are successfully created,
1878  * this function is called recursively on those supplier devices. This is
1879  * needed to detect and break some invalid cycles in fwnode links.  See
1880  * fw_devlink_create_devlink() for more details.
1881  *
1882  * In addition, it also looks at all the suppliers of the entire fwnode tree
1883  * because some of the child devices of @dev that have not been added yet
1884  * (because @dev hasn't probed) might already have their suppliers added to
1885  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1886  * @dev (consumer) and these suppliers to make sure they don't execute their
1887  * sync_state() callbacks before these child devices have a chance to create
1888  * their device links. The fwnode links that correspond to the child devices
1889  * aren't delete because they are needed later to create the device links
1890  * between the real consumer and supplier devices.
1891  */
1892 static void __fw_devlink_link_to_suppliers(struct device *dev,
1893 					   struct fwnode_handle *fwnode)
1894 {
1895 	bool own_link = (dev->fwnode == fwnode);
1896 	struct fwnode_link *link, *tmp;
1897 	struct fwnode_handle *child = NULL;
1898 	u32 dl_flags;
1899 
1900 	if (own_link)
1901 		dl_flags = fw_devlink_get_flags();
1902 	else
1903 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1904 
1905 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1906 		int ret;
1907 		struct device *sup_dev;
1908 		struct fwnode_handle *sup = link->supplier;
1909 
1910 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1911 		if (!own_link || ret == -EAGAIN)
1912 			continue;
1913 
1914 		list_del(&link->s_hook);
1915 		list_del(&link->c_hook);
1916 		kfree(link);
1917 
1918 		/* If no device link was created, nothing more to do. */
1919 		if (ret)
1920 			continue;
1921 
1922 		/*
1923 		 * If a device link was successfully created to a supplier, we
1924 		 * now need to try and link the supplier to all its suppliers.
1925 		 *
1926 		 * This is needed to detect and delete false dependencies in
1927 		 * fwnode links that haven't been converted to a device link
1928 		 * yet. See comments in fw_devlink_create_devlink() for more
1929 		 * details on the false dependency.
1930 		 *
1931 		 * Without deleting these false dependencies, some devices will
1932 		 * never probe because they'll keep waiting for their false
1933 		 * dependency fwnode links to be converted to device links.
1934 		 */
1935 		sup_dev = get_dev_from_fwnode(sup);
1936 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1937 		put_device(sup_dev);
1938 	}
1939 
1940 	/*
1941 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1942 	 * all the descendants. This proxy link step is needed to handle the
1943 	 * case where the supplier is added before the consumer's parent device
1944 	 * (@dev).
1945 	 */
1946 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1947 		__fw_devlink_link_to_suppliers(dev, child);
1948 }
1949 
1950 static void fw_devlink_link_device(struct device *dev)
1951 {
1952 	struct fwnode_handle *fwnode = dev->fwnode;
1953 
1954 	if (!fw_devlink_flags)
1955 		return;
1956 
1957 	fw_devlink_parse_fwtree(fwnode);
1958 
1959 	mutex_lock(&fwnode_link_lock);
1960 	__fw_devlink_link_to_consumers(dev);
1961 	__fw_devlink_link_to_suppliers(dev, fwnode);
1962 	mutex_unlock(&fwnode_link_lock);
1963 }
1964 
1965 /* Device links support end. */
1966 
1967 int (*platform_notify)(struct device *dev) = NULL;
1968 int (*platform_notify_remove)(struct device *dev) = NULL;
1969 static struct kobject *dev_kobj;
1970 struct kobject *sysfs_dev_char_kobj;
1971 struct kobject *sysfs_dev_block_kobj;
1972 
1973 static DEFINE_MUTEX(device_hotplug_lock);
1974 
1975 void lock_device_hotplug(void)
1976 {
1977 	mutex_lock(&device_hotplug_lock);
1978 }
1979 
1980 void unlock_device_hotplug(void)
1981 {
1982 	mutex_unlock(&device_hotplug_lock);
1983 }
1984 
1985 int lock_device_hotplug_sysfs(void)
1986 {
1987 	if (mutex_trylock(&device_hotplug_lock))
1988 		return 0;
1989 
1990 	/* Avoid busy looping (5 ms of sleep should do). */
1991 	msleep(5);
1992 	return restart_syscall();
1993 }
1994 
1995 #ifdef CONFIG_BLOCK
1996 static inline int device_is_not_partition(struct device *dev)
1997 {
1998 	return !(dev->type == &part_type);
1999 }
2000 #else
2001 static inline int device_is_not_partition(struct device *dev)
2002 {
2003 	return 1;
2004 }
2005 #endif
2006 
2007 static void device_platform_notify(struct device *dev)
2008 {
2009 	acpi_device_notify(dev);
2010 
2011 	software_node_notify(dev);
2012 
2013 	if (platform_notify)
2014 		platform_notify(dev);
2015 }
2016 
2017 static void device_platform_notify_remove(struct device *dev)
2018 {
2019 	acpi_device_notify_remove(dev);
2020 
2021 	software_node_notify_remove(dev);
2022 
2023 	if (platform_notify_remove)
2024 		platform_notify_remove(dev);
2025 }
2026 
2027 /**
2028  * dev_driver_string - Return a device's driver name, if at all possible
2029  * @dev: struct device to get the name of
2030  *
2031  * Will return the device's driver's name if it is bound to a device.  If
2032  * the device is not bound to a driver, it will return the name of the bus
2033  * it is attached to.  If it is not attached to a bus either, an empty
2034  * string will be returned.
2035  */
2036 const char *dev_driver_string(const struct device *dev)
2037 {
2038 	struct device_driver *drv;
2039 
2040 	/* dev->driver can change to NULL underneath us because of unbinding,
2041 	 * so be careful about accessing it.  dev->bus and dev->class should
2042 	 * never change once they are set, so they don't need special care.
2043 	 */
2044 	drv = READ_ONCE(dev->driver);
2045 	return drv ? drv->name : dev_bus_name(dev);
2046 }
2047 EXPORT_SYMBOL(dev_driver_string);
2048 
2049 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2050 
2051 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2052 			     char *buf)
2053 {
2054 	struct device_attribute *dev_attr = to_dev_attr(attr);
2055 	struct device *dev = kobj_to_dev(kobj);
2056 	ssize_t ret = -EIO;
2057 
2058 	if (dev_attr->show)
2059 		ret = dev_attr->show(dev, dev_attr, buf);
2060 	if (ret >= (ssize_t)PAGE_SIZE) {
2061 		printk("dev_attr_show: %pS returned bad count\n",
2062 				dev_attr->show);
2063 	}
2064 	return ret;
2065 }
2066 
2067 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2068 			      const char *buf, size_t count)
2069 {
2070 	struct device_attribute *dev_attr = to_dev_attr(attr);
2071 	struct device *dev = kobj_to_dev(kobj);
2072 	ssize_t ret = -EIO;
2073 
2074 	if (dev_attr->store)
2075 		ret = dev_attr->store(dev, dev_attr, buf, count);
2076 	return ret;
2077 }
2078 
2079 static const struct sysfs_ops dev_sysfs_ops = {
2080 	.show	= dev_attr_show,
2081 	.store	= dev_attr_store,
2082 };
2083 
2084 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2085 
2086 ssize_t device_store_ulong(struct device *dev,
2087 			   struct device_attribute *attr,
2088 			   const char *buf, size_t size)
2089 {
2090 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2091 	int ret;
2092 	unsigned long new;
2093 
2094 	ret = kstrtoul(buf, 0, &new);
2095 	if (ret)
2096 		return ret;
2097 	*(unsigned long *)(ea->var) = new;
2098 	/* Always return full write size even if we didn't consume all */
2099 	return size;
2100 }
2101 EXPORT_SYMBOL_GPL(device_store_ulong);
2102 
2103 ssize_t device_show_ulong(struct device *dev,
2104 			  struct device_attribute *attr,
2105 			  char *buf)
2106 {
2107 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2108 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2109 }
2110 EXPORT_SYMBOL_GPL(device_show_ulong);
2111 
2112 ssize_t device_store_int(struct device *dev,
2113 			 struct device_attribute *attr,
2114 			 const char *buf, size_t size)
2115 {
2116 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2117 	int ret;
2118 	long new;
2119 
2120 	ret = kstrtol(buf, 0, &new);
2121 	if (ret)
2122 		return ret;
2123 
2124 	if (new > INT_MAX || new < INT_MIN)
2125 		return -EINVAL;
2126 	*(int *)(ea->var) = new;
2127 	/* Always return full write size even if we didn't consume all */
2128 	return size;
2129 }
2130 EXPORT_SYMBOL_GPL(device_store_int);
2131 
2132 ssize_t device_show_int(struct device *dev,
2133 			struct device_attribute *attr,
2134 			char *buf)
2135 {
2136 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2137 
2138 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2139 }
2140 EXPORT_SYMBOL_GPL(device_show_int);
2141 
2142 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2143 			  const char *buf, size_t size)
2144 {
2145 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2146 
2147 	if (strtobool(buf, ea->var) < 0)
2148 		return -EINVAL;
2149 
2150 	return size;
2151 }
2152 EXPORT_SYMBOL_GPL(device_store_bool);
2153 
2154 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2155 			 char *buf)
2156 {
2157 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2158 
2159 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2160 }
2161 EXPORT_SYMBOL_GPL(device_show_bool);
2162 
2163 /**
2164  * device_release - free device structure.
2165  * @kobj: device's kobject.
2166  *
2167  * This is called once the reference count for the object
2168  * reaches 0. We forward the call to the device's release
2169  * method, which should handle actually freeing the structure.
2170  */
2171 static void device_release(struct kobject *kobj)
2172 {
2173 	struct device *dev = kobj_to_dev(kobj);
2174 	struct device_private *p = dev->p;
2175 
2176 	/*
2177 	 * Some platform devices are driven without driver attached
2178 	 * and managed resources may have been acquired.  Make sure
2179 	 * all resources are released.
2180 	 *
2181 	 * Drivers still can add resources into device after device
2182 	 * is deleted but alive, so release devres here to avoid
2183 	 * possible memory leak.
2184 	 */
2185 	devres_release_all(dev);
2186 
2187 	kfree(dev->dma_range_map);
2188 
2189 	if (dev->release)
2190 		dev->release(dev);
2191 	else if (dev->type && dev->type->release)
2192 		dev->type->release(dev);
2193 	else if (dev->class && dev->class->dev_release)
2194 		dev->class->dev_release(dev);
2195 	else
2196 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2197 			dev_name(dev));
2198 	kfree(p);
2199 }
2200 
2201 static const void *device_namespace(struct kobject *kobj)
2202 {
2203 	struct device *dev = kobj_to_dev(kobj);
2204 	const void *ns = NULL;
2205 
2206 	if (dev->class && dev->class->ns_type)
2207 		ns = dev->class->namespace(dev);
2208 
2209 	return ns;
2210 }
2211 
2212 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2213 {
2214 	struct device *dev = kobj_to_dev(kobj);
2215 
2216 	if (dev->class && dev->class->get_ownership)
2217 		dev->class->get_ownership(dev, uid, gid);
2218 }
2219 
2220 static struct kobj_type device_ktype = {
2221 	.release	= device_release,
2222 	.sysfs_ops	= &dev_sysfs_ops,
2223 	.namespace	= device_namespace,
2224 	.get_ownership	= device_get_ownership,
2225 };
2226 
2227 
2228 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2229 {
2230 	struct kobj_type *ktype = get_ktype(kobj);
2231 
2232 	if (ktype == &device_ktype) {
2233 		struct device *dev = kobj_to_dev(kobj);
2234 		if (dev->bus)
2235 			return 1;
2236 		if (dev->class)
2237 			return 1;
2238 	}
2239 	return 0;
2240 }
2241 
2242 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2243 {
2244 	struct device *dev = kobj_to_dev(kobj);
2245 
2246 	if (dev->bus)
2247 		return dev->bus->name;
2248 	if (dev->class)
2249 		return dev->class->name;
2250 	return NULL;
2251 }
2252 
2253 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2254 		      struct kobj_uevent_env *env)
2255 {
2256 	struct device *dev = kobj_to_dev(kobj);
2257 	int retval = 0;
2258 
2259 	/* add device node properties if present */
2260 	if (MAJOR(dev->devt)) {
2261 		const char *tmp;
2262 		const char *name;
2263 		umode_t mode = 0;
2264 		kuid_t uid = GLOBAL_ROOT_UID;
2265 		kgid_t gid = GLOBAL_ROOT_GID;
2266 
2267 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2268 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2269 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2270 		if (name) {
2271 			add_uevent_var(env, "DEVNAME=%s", name);
2272 			if (mode)
2273 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2274 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2275 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2276 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2277 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2278 			kfree(tmp);
2279 		}
2280 	}
2281 
2282 	if (dev->type && dev->type->name)
2283 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2284 
2285 	if (dev->driver)
2286 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2287 
2288 	/* Add common DT information about the device */
2289 	of_device_uevent(dev, env);
2290 
2291 	/* have the bus specific function add its stuff */
2292 	if (dev->bus && dev->bus->uevent) {
2293 		retval = dev->bus->uevent(dev, env);
2294 		if (retval)
2295 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2296 				 dev_name(dev), __func__, retval);
2297 	}
2298 
2299 	/* have the class specific function add its stuff */
2300 	if (dev->class && dev->class->dev_uevent) {
2301 		retval = dev->class->dev_uevent(dev, env);
2302 		if (retval)
2303 			pr_debug("device: '%s': %s: class uevent() "
2304 				 "returned %d\n", dev_name(dev),
2305 				 __func__, retval);
2306 	}
2307 
2308 	/* have the device type specific function add its stuff */
2309 	if (dev->type && dev->type->uevent) {
2310 		retval = dev->type->uevent(dev, env);
2311 		if (retval)
2312 			pr_debug("device: '%s': %s: dev_type uevent() "
2313 				 "returned %d\n", dev_name(dev),
2314 				 __func__, retval);
2315 	}
2316 
2317 	return retval;
2318 }
2319 
2320 static const struct kset_uevent_ops device_uevent_ops = {
2321 	.filter =	dev_uevent_filter,
2322 	.name =		dev_uevent_name,
2323 	.uevent =	dev_uevent,
2324 };
2325 
2326 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2327 			   char *buf)
2328 {
2329 	struct kobject *top_kobj;
2330 	struct kset *kset;
2331 	struct kobj_uevent_env *env = NULL;
2332 	int i;
2333 	int len = 0;
2334 	int retval;
2335 
2336 	/* search the kset, the device belongs to */
2337 	top_kobj = &dev->kobj;
2338 	while (!top_kobj->kset && top_kobj->parent)
2339 		top_kobj = top_kobj->parent;
2340 	if (!top_kobj->kset)
2341 		goto out;
2342 
2343 	kset = top_kobj->kset;
2344 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2345 		goto out;
2346 
2347 	/* respect filter */
2348 	if (kset->uevent_ops && kset->uevent_ops->filter)
2349 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2350 			goto out;
2351 
2352 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2353 	if (!env)
2354 		return -ENOMEM;
2355 
2356 	/* let the kset specific function add its keys */
2357 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2358 	if (retval)
2359 		goto out;
2360 
2361 	/* copy keys to file */
2362 	for (i = 0; i < env->envp_idx; i++)
2363 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2364 out:
2365 	kfree(env);
2366 	return len;
2367 }
2368 
2369 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2370 			    const char *buf, size_t count)
2371 {
2372 	int rc;
2373 
2374 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2375 
2376 	if (rc) {
2377 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2378 		return rc;
2379 	}
2380 
2381 	return count;
2382 }
2383 static DEVICE_ATTR_RW(uevent);
2384 
2385 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2386 			   char *buf)
2387 {
2388 	bool val;
2389 
2390 	device_lock(dev);
2391 	val = !dev->offline;
2392 	device_unlock(dev);
2393 	return sysfs_emit(buf, "%u\n", val);
2394 }
2395 
2396 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2397 			    const char *buf, size_t count)
2398 {
2399 	bool val;
2400 	int ret;
2401 
2402 	ret = strtobool(buf, &val);
2403 	if (ret < 0)
2404 		return ret;
2405 
2406 	ret = lock_device_hotplug_sysfs();
2407 	if (ret)
2408 		return ret;
2409 
2410 	ret = val ? device_online(dev) : device_offline(dev);
2411 	unlock_device_hotplug();
2412 	return ret < 0 ? ret : count;
2413 }
2414 static DEVICE_ATTR_RW(online);
2415 
2416 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2417 			      char *buf)
2418 {
2419 	const char *loc;
2420 
2421 	switch (dev->removable) {
2422 	case DEVICE_REMOVABLE:
2423 		loc = "removable";
2424 		break;
2425 	case DEVICE_FIXED:
2426 		loc = "fixed";
2427 		break;
2428 	default:
2429 		loc = "unknown";
2430 	}
2431 	return sysfs_emit(buf, "%s\n", loc);
2432 }
2433 static DEVICE_ATTR_RO(removable);
2434 
2435 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2436 {
2437 	return sysfs_create_groups(&dev->kobj, groups);
2438 }
2439 EXPORT_SYMBOL_GPL(device_add_groups);
2440 
2441 void device_remove_groups(struct device *dev,
2442 			  const struct attribute_group **groups)
2443 {
2444 	sysfs_remove_groups(&dev->kobj, groups);
2445 }
2446 EXPORT_SYMBOL_GPL(device_remove_groups);
2447 
2448 union device_attr_group_devres {
2449 	const struct attribute_group *group;
2450 	const struct attribute_group **groups;
2451 };
2452 
2453 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2454 {
2455 	return ((union device_attr_group_devres *)res)->group == data;
2456 }
2457 
2458 static void devm_attr_group_remove(struct device *dev, void *res)
2459 {
2460 	union device_attr_group_devres *devres = res;
2461 	const struct attribute_group *group = devres->group;
2462 
2463 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2464 	sysfs_remove_group(&dev->kobj, group);
2465 }
2466 
2467 static void devm_attr_groups_remove(struct device *dev, void *res)
2468 {
2469 	union device_attr_group_devres *devres = res;
2470 	const struct attribute_group **groups = devres->groups;
2471 
2472 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2473 	sysfs_remove_groups(&dev->kobj, groups);
2474 }
2475 
2476 /**
2477  * devm_device_add_group - given a device, create a managed attribute group
2478  * @dev:	The device to create the group for
2479  * @grp:	The attribute group to create
2480  *
2481  * This function creates a group for the first time.  It will explicitly
2482  * warn and error if any of the attribute files being created already exist.
2483  *
2484  * Returns 0 on success or error code on failure.
2485  */
2486 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2487 {
2488 	union device_attr_group_devres *devres;
2489 	int error;
2490 
2491 	devres = devres_alloc(devm_attr_group_remove,
2492 			      sizeof(*devres), GFP_KERNEL);
2493 	if (!devres)
2494 		return -ENOMEM;
2495 
2496 	error = sysfs_create_group(&dev->kobj, grp);
2497 	if (error) {
2498 		devres_free(devres);
2499 		return error;
2500 	}
2501 
2502 	devres->group = grp;
2503 	devres_add(dev, devres);
2504 	return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(devm_device_add_group);
2507 
2508 /**
2509  * devm_device_remove_group: remove a managed group from a device
2510  * @dev:	device to remove the group from
2511  * @grp:	group to remove
2512  *
2513  * This function removes a group of attributes from a device. The attributes
2514  * previously have to have been created for this group, otherwise it will fail.
2515  */
2516 void devm_device_remove_group(struct device *dev,
2517 			      const struct attribute_group *grp)
2518 {
2519 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2520 			       devm_attr_group_match,
2521 			       /* cast away const */ (void *)grp));
2522 }
2523 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2524 
2525 /**
2526  * devm_device_add_groups - create a bunch of managed attribute groups
2527  * @dev:	The device to create the group for
2528  * @groups:	The attribute groups to create, NULL terminated
2529  *
2530  * This function creates a bunch of managed attribute groups.  If an error
2531  * occurs when creating a group, all previously created groups will be
2532  * removed, unwinding everything back to the original state when this
2533  * function was called.  It will explicitly warn and error if any of the
2534  * attribute files being created already exist.
2535  *
2536  * Returns 0 on success or error code from sysfs_create_group on failure.
2537  */
2538 int devm_device_add_groups(struct device *dev,
2539 			   const struct attribute_group **groups)
2540 {
2541 	union device_attr_group_devres *devres;
2542 	int error;
2543 
2544 	devres = devres_alloc(devm_attr_groups_remove,
2545 			      sizeof(*devres), GFP_KERNEL);
2546 	if (!devres)
2547 		return -ENOMEM;
2548 
2549 	error = sysfs_create_groups(&dev->kobj, groups);
2550 	if (error) {
2551 		devres_free(devres);
2552 		return error;
2553 	}
2554 
2555 	devres->groups = groups;
2556 	devres_add(dev, devres);
2557 	return 0;
2558 }
2559 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2560 
2561 /**
2562  * devm_device_remove_groups - remove a list of managed groups
2563  *
2564  * @dev:	The device for the groups to be removed from
2565  * @groups:	NULL terminated list of groups to be removed
2566  *
2567  * If groups is not NULL, remove the specified groups from the device.
2568  */
2569 void devm_device_remove_groups(struct device *dev,
2570 			       const struct attribute_group **groups)
2571 {
2572 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2573 			       devm_attr_group_match,
2574 			       /* cast away const */ (void *)groups));
2575 }
2576 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2577 
2578 static int device_add_attrs(struct device *dev)
2579 {
2580 	struct class *class = dev->class;
2581 	const struct device_type *type = dev->type;
2582 	int error;
2583 
2584 	if (class) {
2585 		error = device_add_groups(dev, class->dev_groups);
2586 		if (error)
2587 			return error;
2588 	}
2589 
2590 	if (type) {
2591 		error = device_add_groups(dev, type->groups);
2592 		if (error)
2593 			goto err_remove_class_groups;
2594 	}
2595 
2596 	error = device_add_groups(dev, dev->groups);
2597 	if (error)
2598 		goto err_remove_type_groups;
2599 
2600 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2601 		error = device_create_file(dev, &dev_attr_online);
2602 		if (error)
2603 			goto err_remove_dev_groups;
2604 	}
2605 
2606 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2607 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2608 		if (error)
2609 			goto err_remove_dev_online;
2610 	}
2611 
2612 	if (dev_removable_is_valid(dev)) {
2613 		error = device_create_file(dev, &dev_attr_removable);
2614 		if (error)
2615 			goto err_remove_dev_waiting_for_supplier;
2616 	}
2617 
2618 	return 0;
2619 
2620  err_remove_dev_waiting_for_supplier:
2621 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2622  err_remove_dev_online:
2623 	device_remove_file(dev, &dev_attr_online);
2624  err_remove_dev_groups:
2625 	device_remove_groups(dev, dev->groups);
2626  err_remove_type_groups:
2627 	if (type)
2628 		device_remove_groups(dev, type->groups);
2629  err_remove_class_groups:
2630 	if (class)
2631 		device_remove_groups(dev, class->dev_groups);
2632 
2633 	return error;
2634 }
2635 
2636 static void device_remove_attrs(struct device *dev)
2637 {
2638 	struct class *class = dev->class;
2639 	const struct device_type *type = dev->type;
2640 
2641 	device_remove_file(dev, &dev_attr_removable);
2642 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2643 	device_remove_file(dev, &dev_attr_online);
2644 	device_remove_groups(dev, dev->groups);
2645 
2646 	if (type)
2647 		device_remove_groups(dev, type->groups);
2648 
2649 	if (class)
2650 		device_remove_groups(dev, class->dev_groups);
2651 }
2652 
2653 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2654 			char *buf)
2655 {
2656 	return print_dev_t(buf, dev->devt);
2657 }
2658 static DEVICE_ATTR_RO(dev);
2659 
2660 /* /sys/devices/ */
2661 struct kset *devices_kset;
2662 
2663 /**
2664  * devices_kset_move_before - Move device in the devices_kset's list.
2665  * @deva: Device to move.
2666  * @devb: Device @deva should come before.
2667  */
2668 static void devices_kset_move_before(struct device *deva, struct device *devb)
2669 {
2670 	if (!devices_kset)
2671 		return;
2672 	pr_debug("devices_kset: Moving %s before %s\n",
2673 		 dev_name(deva), dev_name(devb));
2674 	spin_lock(&devices_kset->list_lock);
2675 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2676 	spin_unlock(&devices_kset->list_lock);
2677 }
2678 
2679 /**
2680  * devices_kset_move_after - Move device in the devices_kset's list.
2681  * @deva: Device to move
2682  * @devb: Device @deva should come after.
2683  */
2684 static void devices_kset_move_after(struct device *deva, struct device *devb)
2685 {
2686 	if (!devices_kset)
2687 		return;
2688 	pr_debug("devices_kset: Moving %s after %s\n",
2689 		 dev_name(deva), dev_name(devb));
2690 	spin_lock(&devices_kset->list_lock);
2691 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2692 	spin_unlock(&devices_kset->list_lock);
2693 }
2694 
2695 /**
2696  * devices_kset_move_last - move the device to the end of devices_kset's list.
2697  * @dev: device to move
2698  */
2699 void devices_kset_move_last(struct device *dev)
2700 {
2701 	if (!devices_kset)
2702 		return;
2703 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2704 	spin_lock(&devices_kset->list_lock);
2705 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2706 	spin_unlock(&devices_kset->list_lock);
2707 }
2708 
2709 /**
2710  * device_create_file - create sysfs attribute file for device.
2711  * @dev: device.
2712  * @attr: device attribute descriptor.
2713  */
2714 int device_create_file(struct device *dev,
2715 		       const struct device_attribute *attr)
2716 {
2717 	int error = 0;
2718 
2719 	if (dev) {
2720 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2721 			"Attribute %s: write permission without 'store'\n",
2722 			attr->attr.name);
2723 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2724 			"Attribute %s: read permission without 'show'\n",
2725 			attr->attr.name);
2726 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2727 	}
2728 
2729 	return error;
2730 }
2731 EXPORT_SYMBOL_GPL(device_create_file);
2732 
2733 /**
2734  * device_remove_file - remove sysfs attribute file.
2735  * @dev: device.
2736  * @attr: device attribute descriptor.
2737  */
2738 void device_remove_file(struct device *dev,
2739 			const struct device_attribute *attr)
2740 {
2741 	if (dev)
2742 		sysfs_remove_file(&dev->kobj, &attr->attr);
2743 }
2744 EXPORT_SYMBOL_GPL(device_remove_file);
2745 
2746 /**
2747  * device_remove_file_self - remove sysfs attribute file from its own method.
2748  * @dev: device.
2749  * @attr: device attribute descriptor.
2750  *
2751  * See kernfs_remove_self() for details.
2752  */
2753 bool device_remove_file_self(struct device *dev,
2754 			     const struct device_attribute *attr)
2755 {
2756 	if (dev)
2757 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2758 	else
2759 		return false;
2760 }
2761 EXPORT_SYMBOL_GPL(device_remove_file_self);
2762 
2763 /**
2764  * device_create_bin_file - create sysfs binary attribute file for device.
2765  * @dev: device.
2766  * @attr: device binary attribute descriptor.
2767  */
2768 int device_create_bin_file(struct device *dev,
2769 			   const struct bin_attribute *attr)
2770 {
2771 	int error = -EINVAL;
2772 	if (dev)
2773 		error = sysfs_create_bin_file(&dev->kobj, attr);
2774 	return error;
2775 }
2776 EXPORT_SYMBOL_GPL(device_create_bin_file);
2777 
2778 /**
2779  * device_remove_bin_file - remove sysfs binary attribute file
2780  * @dev: device.
2781  * @attr: device binary attribute descriptor.
2782  */
2783 void device_remove_bin_file(struct device *dev,
2784 			    const struct bin_attribute *attr)
2785 {
2786 	if (dev)
2787 		sysfs_remove_bin_file(&dev->kobj, attr);
2788 }
2789 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2790 
2791 static void klist_children_get(struct klist_node *n)
2792 {
2793 	struct device_private *p = to_device_private_parent(n);
2794 	struct device *dev = p->device;
2795 
2796 	get_device(dev);
2797 }
2798 
2799 static void klist_children_put(struct klist_node *n)
2800 {
2801 	struct device_private *p = to_device_private_parent(n);
2802 	struct device *dev = p->device;
2803 
2804 	put_device(dev);
2805 }
2806 
2807 /**
2808  * device_initialize - init device structure.
2809  * @dev: device.
2810  *
2811  * This prepares the device for use by other layers by initializing
2812  * its fields.
2813  * It is the first half of device_register(), if called by
2814  * that function, though it can also be called separately, so one
2815  * may use @dev's fields. In particular, get_device()/put_device()
2816  * may be used for reference counting of @dev after calling this
2817  * function.
2818  *
2819  * All fields in @dev must be initialized by the caller to 0, except
2820  * for those explicitly set to some other value.  The simplest
2821  * approach is to use kzalloc() to allocate the structure containing
2822  * @dev.
2823  *
2824  * NOTE: Use put_device() to give up your reference instead of freeing
2825  * @dev directly once you have called this function.
2826  */
2827 void device_initialize(struct device *dev)
2828 {
2829 	dev->kobj.kset = devices_kset;
2830 	kobject_init(&dev->kobj, &device_ktype);
2831 	INIT_LIST_HEAD(&dev->dma_pools);
2832 	mutex_init(&dev->mutex);
2833 #ifdef CONFIG_PROVE_LOCKING
2834 	mutex_init(&dev->lockdep_mutex);
2835 #endif
2836 	lockdep_set_novalidate_class(&dev->mutex);
2837 	spin_lock_init(&dev->devres_lock);
2838 	INIT_LIST_HEAD(&dev->devres_head);
2839 	device_pm_init(dev);
2840 	set_dev_node(dev, -1);
2841 #ifdef CONFIG_GENERIC_MSI_IRQ
2842 	raw_spin_lock_init(&dev->msi_lock);
2843 	INIT_LIST_HEAD(&dev->msi_list);
2844 #endif
2845 	INIT_LIST_HEAD(&dev->links.consumers);
2846 	INIT_LIST_HEAD(&dev->links.suppliers);
2847 	INIT_LIST_HEAD(&dev->links.defer_sync);
2848 	dev->links.status = DL_DEV_NO_DRIVER;
2849 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2850     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2851     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2852 	dev->dma_coherent = dma_default_coherent;
2853 #endif
2854 }
2855 EXPORT_SYMBOL_GPL(device_initialize);
2856 
2857 struct kobject *virtual_device_parent(struct device *dev)
2858 {
2859 	static struct kobject *virtual_dir = NULL;
2860 
2861 	if (!virtual_dir)
2862 		virtual_dir = kobject_create_and_add("virtual",
2863 						     &devices_kset->kobj);
2864 
2865 	return virtual_dir;
2866 }
2867 
2868 struct class_dir {
2869 	struct kobject kobj;
2870 	struct class *class;
2871 };
2872 
2873 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2874 
2875 static void class_dir_release(struct kobject *kobj)
2876 {
2877 	struct class_dir *dir = to_class_dir(kobj);
2878 	kfree(dir);
2879 }
2880 
2881 static const
2882 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2883 {
2884 	struct class_dir *dir = to_class_dir(kobj);
2885 	return dir->class->ns_type;
2886 }
2887 
2888 static struct kobj_type class_dir_ktype = {
2889 	.release	= class_dir_release,
2890 	.sysfs_ops	= &kobj_sysfs_ops,
2891 	.child_ns_type	= class_dir_child_ns_type
2892 };
2893 
2894 static struct kobject *
2895 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2896 {
2897 	struct class_dir *dir;
2898 	int retval;
2899 
2900 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2901 	if (!dir)
2902 		return ERR_PTR(-ENOMEM);
2903 
2904 	dir->class = class;
2905 	kobject_init(&dir->kobj, &class_dir_ktype);
2906 
2907 	dir->kobj.kset = &class->p->glue_dirs;
2908 
2909 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2910 	if (retval < 0) {
2911 		kobject_put(&dir->kobj);
2912 		return ERR_PTR(retval);
2913 	}
2914 	return &dir->kobj;
2915 }
2916 
2917 static DEFINE_MUTEX(gdp_mutex);
2918 
2919 static struct kobject *get_device_parent(struct device *dev,
2920 					 struct device *parent)
2921 {
2922 	if (dev->class) {
2923 		struct kobject *kobj = NULL;
2924 		struct kobject *parent_kobj;
2925 		struct kobject *k;
2926 
2927 #ifdef CONFIG_BLOCK
2928 		/* block disks show up in /sys/block */
2929 		if (sysfs_deprecated && dev->class == &block_class) {
2930 			if (parent && parent->class == &block_class)
2931 				return &parent->kobj;
2932 			return &block_class.p->subsys.kobj;
2933 		}
2934 #endif
2935 
2936 		/*
2937 		 * If we have no parent, we live in "virtual".
2938 		 * Class-devices with a non class-device as parent, live
2939 		 * in a "glue" directory to prevent namespace collisions.
2940 		 */
2941 		if (parent == NULL)
2942 			parent_kobj = virtual_device_parent(dev);
2943 		else if (parent->class && !dev->class->ns_type)
2944 			return &parent->kobj;
2945 		else
2946 			parent_kobj = &parent->kobj;
2947 
2948 		mutex_lock(&gdp_mutex);
2949 
2950 		/* find our class-directory at the parent and reference it */
2951 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2952 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2953 			if (k->parent == parent_kobj) {
2954 				kobj = kobject_get(k);
2955 				break;
2956 			}
2957 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2958 		if (kobj) {
2959 			mutex_unlock(&gdp_mutex);
2960 			return kobj;
2961 		}
2962 
2963 		/* or create a new class-directory at the parent device */
2964 		k = class_dir_create_and_add(dev->class, parent_kobj);
2965 		/* do not emit an uevent for this simple "glue" directory */
2966 		mutex_unlock(&gdp_mutex);
2967 		return k;
2968 	}
2969 
2970 	/* subsystems can specify a default root directory for their devices */
2971 	if (!parent && dev->bus && dev->bus->dev_root)
2972 		return &dev->bus->dev_root->kobj;
2973 
2974 	if (parent)
2975 		return &parent->kobj;
2976 	return NULL;
2977 }
2978 
2979 static inline bool live_in_glue_dir(struct kobject *kobj,
2980 				    struct device *dev)
2981 {
2982 	if (!kobj || !dev->class ||
2983 	    kobj->kset != &dev->class->p->glue_dirs)
2984 		return false;
2985 	return true;
2986 }
2987 
2988 static inline struct kobject *get_glue_dir(struct device *dev)
2989 {
2990 	return dev->kobj.parent;
2991 }
2992 
2993 /*
2994  * make sure cleaning up dir as the last step, we need to make
2995  * sure .release handler of kobject is run with holding the
2996  * global lock
2997  */
2998 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2999 {
3000 	unsigned int ref;
3001 
3002 	/* see if we live in a "glue" directory */
3003 	if (!live_in_glue_dir(glue_dir, dev))
3004 		return;
3005 
3006 	mutex_lock(&gdp_mutex);
3007 	/**
3008 	 * There is a race condition between removing glue directory
3009 	 * and adding a new device under the glue directory.
3010 	 *
3011 	 * CPU1:                                         CPU2:
3012 	 *
3013 	 * device_add()
3014 	 *   get_device_parent()
3015 	 *     class_dir_create_and_add()
3016 	 *       kobject_add_internal()
3017 	 *         create_dir()    // create glue_dir
3018 	 *
3019 	 *                                               device_add()
3020 	 *                                                 get_device_parent()
3021 	 *                                                   kobject_get() // get glue_dir
3022 	 *
3023 	 * device_del()
3024 	 *   cleanup_glue_dir()
3025 	 *     kobject_del(glue_dir)
3026 	 *
3027 	 *                                               kobject_add()
3028 	 *                                                 kobject_add_internal()
3029 	 *                                                   create_dir() // in glue_dir
3030 	 *                                                     sysfs_create_dir_ns()
3031 	 *                                                       kernfs_create_dir_ns(sd)
3032 	 *
3033 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3034 	 *       sysfs_put()        // free glue_dir->sd
3035 	 *
3036 	 *                                                         // sd is freed
3037 	 *                                                         kernfs_new_node(sd)
3038 	 *                                                           kernfs_get(glue_dir)
3039 	 *                                                           kernfs_add_one()
3040 	 *                                                           kernfs_put()
3041 	 *
3042 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3043 	 * a new device under glue dir, the glue_dir kobject reference count
3044 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3045 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3046 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3047 	 *
3048 	 * Then the CPU2 will see a stale "empty" but still potentially used
3049 	 * glue dir around in kernfs_new_node().
3050 	 *
3051 	 * In order to avoid this happening, we also should make sure that
3052 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3053 	 * for glue_dir kobj is 1.
3054 	 */
3055 	ref = kref_read(&glue_dir->kref);
3056 	if (!kobject_has_children(glue_dir) && !--ref)
3057 		kobject_del(glue_dir);
3058 	kobject_put(glue_dir);
3059 	mutex_unlock(&gdp_mutex);
3060 }
3061 
3062 static int device_add_class_symlinks(struct device *dev)
3063 {
3064 	struct device_node *of_node = dev_of_node(dev);
3065 	int error;
3066 
3067 	if (of_node) {
3068 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3069 		if (error)
3070 			dev_warn(dev, "Error %d creating of_node link\n",error);
3071 		/* An error here doesn't warrant bringing down the device */
3072 	}
3073 
3074 	if (!dev->class)
3075 		return 0;
3076 
3077 	error = sysfs_create_link(&dev->kobj,
3078 				  &dev->class->p->subsys.kobj,
3079 				  "subsystem");
3080 	if (error)
3081 		goto out_devnode;
3082 
3083 	if (dev->parent && device_is_not_partition(dev)) {
3084 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3085 					  "device");
3086 		if (error)
3087 			goto out_subsys;
3088 	}
3089 
3090 #ifdef CONFIG_BLOCK
3091 	/* /sys/block has directories and does not need symlinks */
3092 	if (sysfs_deprecated && dev->class == &block_class)
3093 		return 0;
3094 #endif
3095 
3096 	/* link in the class directory pointing to the device */
3097 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3098 				  &dev->kobj, dev_name(dev));
3099 	if (error)
3100 		goto out_device;
3101 
3102 	return 0;
3103 
3104 out_device:
3105 	sysfs_remove_link(&dev->kobj, "device");
3106 
3107 out_subsys:
3108 	sysfs_remove_link(&dev->kobj, "subsystem");
3109 out_devnode:
3110 	sysfs_remove_link(&dev->kobj, "of_node");
3111 	return error;
3112 }
3113 
3114 static void device_remove_class_symlinks(struct device *dev)
3115 {
3116 	if (dev_of_node(dev))
3117 		sysfs_remove_link(&dev->kobj, "of_node");
3118 
3119 	if (!dev->class)
3120 		return;
3121 
3122 	if (dev->parent && device_is_not_partition(dev))
3123 		sysfs_remove_link(&dev->kobj, "device");
3124 	sysfs_remove_link(&dev->kobj, "subsystem");
3125 #ifdef CONFIG_BLOCK
3126 	if (sysfs_deprecated && dev->class == &block_class)
3127 		return;
3128 #endif
3129 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3130 }
3131 
3132 /**
3133  * dev_set_name - set a device name
3134  * @dev: device
3135  * @fmt: format string for the device's name
3136  */
3137 int dev_set_name(struct device *dev, const char *fmt, ...)
3138 {
3139 	va_list vargs;
3140 	int err;
3141 
3142 	va_start(vargs, fmt);
3143 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3144 	va_end(vargs);
3145 	return err;
3146 }
3147 EXPORT_SYMBOL_GPL(dev_set_name);
3148 
3149 /**
3150  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3151  * @dev: device
3152  *
3153  * By default we select char/ for new entries.  Setting class->dev_obj
3154  * to NULL prevents an entry from being created.  class->dev_kobj must
3155  * be set (or cleared) before any devices are registered to the class
3156  * otherwise device_create_sys_dev_entry() and
3157  * device_remove_sys_dev_entry() will disagree about the presence of
3158  * the link.
3159  */
3160 static struct kobject *device_to_dev_kobj(struct device *dev)
3161 {
3162 	struct kobject *kobj;
3163 
3164 	if (dev->class)
3165 		kobj = dev->class->dev_kobj;
3166 	else
3167 		kobj = sysfs_dev_char_kobj;
3168 
3169 	return kobj;
3170 }
3171 
3172 static int device_create_sys_dev_entry(struct device *dev)
3173 {
3174 	struct kobject *kobj = device_to_dev_kobj(dev);
3175 	int error = 0;
3176 	char devt_str[15];
3177 
3178 	if (kobj) {
3179 		format_dev_t(devt_str, dev->devt);
3180 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3181 	}
3182 
3183 	return error;
3184 }
3185 
3186 static void device_remove_sys_dev_entry(struct device *dev)
3187 {
3188 	struct kobject *kobj = device_to_dev_kobj(dev);
3189 	char devt_str[15];
3190 
3191 	if (kobj) {
3192 		format_dev_t(devt_str, dev->devt);
3193 		sysfs_remove_link(kobj, devt_str);
3194 	}
3195 }
3196 
3197 static int device_private_init(struct device *dev)
3198 {
3199 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3200 	if (!dev->p)
3201 		return -ENOMEM;
3202 	dev->p->device = dev;
3203 	klist_init(&dev->p->klist_children, klist_children_get,
3204 		   klist_children_put);
3205 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3206 	return 0;
3207 }
3208 
3209 /**
3210  * device_add - add device to device hierarchy.
3211  * @dev: device.
3212  *
3213  * This is part 2 of device_register(), though may be called
3214  * separately _iff_ device_initialize() has been called separately.
3215  *
3216  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3217  * to the global and sibling lists for the device, then
3218  * adds it to the other relevant subsystems of the driver model.
3219  *
3220  * Do not call this routine or device_register() more than once for
3221  * any device structure.  The driver model core is not designed to work
3222  * with devices that get unregistered and then spring back to life.
3223  * (Among other things, it's very hard to guarantee that all references
3224  * to the previous incarnation of @dev have been dropped.)  Allocate
3225  * and register a fresh new struct device instead.
3226  *
3227  * NOTE: _Never_ directly free @dev after calling this function, even
3228  * if it returned an error! Always use put_device() to give up your
3229  * reference instead.
3230  *
3231  * Rule of thumb is: if device_add() succeeds, you should call
3232  * device_del() when you want to get rid of it. If device_add() has
3233  * *not* succeeded, use *only* put_device() to drop the reference
3234  * count.
3235  */
3236 int device_add(struct device *dev)
3237 {
3238 	struct device *parent;
3239 	struct kobject *kobj;
3240 	struct class_interface *class_intf;
3241 	int error = -EINVAL;
3242 	struct kobject *glue_dir = NULL;
3243 
3244 	dev = get_device(dev);
3245 	if (!dev)
3246 		goto done;
3247 
3248 	if (!dev->p) {
3249 		error = device_private_init(dev);
3250 		if (error)
3251 			goto done;
3252 	}
3253 
3254 	/*
3255 	 * for statically allocated devices, which should all be converted
3256 	 * some day, we need to initialize the name. We prevent reading back
3257 	 * the name, and force the use of dev_name()
3258 	 */
3259 	if (dev->init_name) {
3260 		dev_set_name(dev, "%s", dev->init_name);
3261 		dev->init_name = NULL;
3262 	}
3263 
3264 	/* subsystems can specify simple device enumeration */
3265 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3266 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3267 
3268 	if (!dev_name(dev)) {
3269 		error = -EINVAL;
3270 		goto name_error;
3271 	}
3272 
3273 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3274 
3275 	parent = get_device(dev->parent);
3276 	kobj = get_device_parent(dev, parent);
3277 	if (IS_ERR(kobj)) {
3278 		error = PTR_ERR(kobj);
3279 		goto parent_error;
3280 	}
3281 	if (kobj)
3282 		dev->kobj.parent = kobj;
3283 
3284 	/* use parent numa_node */
3285 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3286 		set_dev_node(dev, dev_to_node(parent));
3287 
3288 	/* first, register with generic layer. */
3289 	/* we require the name to be set before, and pass NULL */
3290 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3291 	if (error) {
3292 		glue_dir = get_glue_dir(dev);
3293 		goto Error;
3294 	}
3295 
3296 	/* notify platform of device entry */
3297 	device_platform_notify(dev);
3298 
3299 	error = device_create_file(dev, &dev_attr_uevent);
3300 	if (error)
3301 		goto attrError;
3302 
3303 	error = device_add_class_symlinks(dev);
3304 	if (error)
3305 		goto SymlinkError;
3306 	error = device_add_attrs(dev);
3307 	if (error)
3308 		goto AttrsError;
3309 	error = bus_add_device(dev);
3310 	if (error)
3311 		goto BusError;
3312 	error = dpm_sysfs_add(dev);
3313 	if (error)
3314 		goto DPMError;
3315 	device_pm_add(dev);
3316 
3317 	if (MAJOR(dev->devt)) {
3318 		error = device_create_file(dev, &dev_attr_dev);
3319 		if (error)
3320 			goto DevAttrError;
3321 
3322 		error = device_create_sys_dev_entry(dev);
3323 		if (error)
3324 			goto SysEntryError;
3325 
3326 		devtmpfs_create_node(dev);
3327 	}
3328 
3329 	/* Notify clients of device addition.  This call must come
3330 	 * after dpm_sysfs_add() and before kobject_uevent().
3331 	 */
3332 	if (dev->bus)
3333 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3334 					     BUS_NOTIFY_ADD_DEVICE, dev);
3335 
3336 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3337 
3338 	/*
3339 	 * Check if any of the other devices (consumers) have been waiting for
3340 	 * this device (supplier) to be added so that they can create a device
3341 	 * link to it.
3342 	 *
3343 	 * This needs to happen after device_pm_add() because device_link_add()
3344 	 * requires the supplier be registered before it's called.
3345 	 *
3346 	 * But this also needs to happen before bus_probe_device() to make sure
3347 	 * waiting consumers can link to it before the driver is bound to the
3348 	 * device and the driver sync_state callback is called for this device.
3349 	 */
3350 	if (dev->fwnode && !dev->fwnode->dev) {
3351 		dev->fwnode->dev = dev;
3352 		fw_devlink_link_device(dev);
3353 	}
3354 
3355 	bus_probe_device(dev);
3356 
3357 	/*
3358 	 * If all driver registration is done and a newly added device doesn't
3359 	 * match with any driver, don't block its consumers from probing in
3360 	 * case the consumer device is able to operate without this supplier.
3361 	 */
3362 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3363 		fw_devlink_unblock_consumers(dev);
3364 
3365 	if (parent)
3366 		klist_add_tail(&dev->p->knode_parent,
3367 			       &parent->p->klist_children);
3368 
3369 	if (dev->class) {
3370 		mutex_lock(&dev->class->p->mutex);
3371 		/* tie the class to the device */
3372 		klist_add_tail(&dev->p->knode_class,
3373 			       &dev->class->p->klist_devices);
3374 
3375 		/* notify any interfaces that the device is here */
3376 		list_for_each_entry(class_intf,
3377 				    &dev->class->p->interfaces, node)
3378 			if (class_intf->add_dev)
3379 				class_intf->add_dev(dev, class_intf);
3380 		mutex_unlock(&dev->class->p->mutex);
3381 	}
3382 done:
3383 	put_device(dev);
3384 	return error;
3385  SysEntryError:
3386 	if (MAJOR(dev->devt))
3387 		device_remove_file(dev, &dev_attr_dev);
3388  DevAttrError:
3389 	device_pm_remove(dev);
3390 	dpm_sysfs_remove(dev);
3391  DPMError:
3392 	bus_remove_device(dev);
3393  BusError:
3394 	device_remove_attrs(dev);
3395  AttrsError:
3396 	device_remove_class_symlinks(dev);
3397  SymlinkError:
3398 	device_remove_file(dev, &dev_attr_uevent);
3399  attrError:
3400 	device_platform_notify_remove(dev);
3401 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3402 	glue_dir = get_glue_dir(dev);
3403 	kobject_del(&dev->kobj);
3404  Error:
3405 	cleanup_glue_dir(dev, glue_dir);
3406 parent_error:
3407 	put_device(parent);
3408 name_error:
3409 	kfree(dev->p);
3410 	dev->p = NULL;
3411 	goto done;
3412 }
3413 EXPORT_SYMBOL_GPL(device_add);
3414 
3415 /**
3416  * device_register - register a device with the system.
3417  * @dev: pointer to the device structure
3418  *
3419  * This happens in two clean steps - initialize the device
3420  * and add it to the system. The two steps can be called
3421  * separately, but this is the easiest and most common.
3422  * I.e. you should only call the two helpers separately if
3423  * have a clearly defined need to use and refcount the device
3424  * before it is added to the hierarchy.
3425  *
3426  * For more information, see the kerneldoc for device_initialize()
3427  * and device_add().
3428  *
3429  * NOTE: _Never_ directly free @dev after calling this function, even
3430  * if it returned an error! Always use put_device() to give up the
3431  * reference initialized in this function instead.
3432  */
3433 int device_register(struct device *dev)
3434 {
3435 	device_initialize(dev);
3436 	return device_add(dev);
3437 }
3438 EXPORT_SYMBOL_GPL(device_register);
3439 
3440 /**
3441  * get_device - increment reference count for device.
3442  * @dev: device.
3443  *
3444  * This simply forwards the call to kobject_get(), though
3445  * we do take care to provide for the case that we get a NULL
3446  * pointer passed in.
3447  */
3448 struct device *get_device(struct device *dev)
3449 {
3450 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3451 }
3452 EXPORT_SYMBOL_GPL(get_device);
3453 
3454 /**
3455  * put_device - decrement reference count.
3456  * @dev: device in question.
3457  */
3458 void put_device(struct device *dev)
3459 {
3460 	/* might_sleep(); */
3461 	if (dev)
3462 		kobject_put(&dev->kobj);
3463 }
3464 EXPORT_SYMBOL_GPL(put_device);
3465 
3466 bool kill_device(struct device *dev)
3467 {
3468 	/*
3469 	 * Require the device lock and set the "dead" flag to guarantee that
3470 	 * the update behavior is consistent with the other bitfields near
3471 	 * it and that we cannot have an asynchronous probe routine trying
3472 	 * to run while we are tearing out the bus/class/sysfs from
3473 	 * underneath the device.
3474 	 */
3475 	device_lock_assert(dev);
3476 
3477 	if (dev->p->dead)
3478 		return false;
3479 	dev->p->dead = true;
3480 	return true;
3481 }
3482 EXPORT_SYMBOL_GPL(kill_device);
3483 
3484 /**
3485  * device_del - delete device from system.
3486  * @dev: device.
3487  *
3488  * This is the first part of the device unregistration
3489  * sequence. This removes the device from the lists we control
3490  * from here, has it removed from the other driver model
3491  * subsystems it was added to in device_add(), and removes it
3492  * from the kobject hierarchy.
3493  *
3494  * NOTE: this should be called manually _iff_ device_add() was
3495  * also called manually.
3496  */
3497 void device_del(struct device *dev)
3498 {
3499 	struct device *parent = dev->parent;
3500 	struct kobject *glue_dir = NULL;
3501 	struct class_interface *class_intf;
3502 	unsigned int noio_flag;
3503 
3504 	device_lock(dev);
3505 	kill_device(dev);
3506 	device_unlock(dev);
3507 
3508 	if (dev->fwnode && dev->fwnode->dev == dev)
3509 		dev->fwnode->dev = NULL;
3510 
3511 	/* Notify clients of device removal.  This call must come
3512 	 * before dpm_sysfs_remove().
3513 	 */
3514 	noio_flag = memalloc_noio_save();
3515 	if (dev->bus)
3516 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3517 					     BUS_NOTIFY_DEL_DEVICE, dev);
3518 
3519 	dpm_sysfs_remove(dev);
3520 	if (parent)
3521 		klist_del(&dev->p->knode_parent);
3522 	if (MAJOR(dev->devt)) {
3523 		devtmpfs_delete_node(dev);
3524 		device_remove_sys_dev_entry(dev);
3525 		device_remove_file(dev, &dev_attr_dev);
3526 	}
3527 	if (dev->class) {
3528 		device_remove_class_symlinks(dev);
3529 
3530 		mutex_lock(&dev->class->p->mutex);
3531 		/* notify any interfaces that the device is now gone */
3532 		list_for_each_entry(class_intf,
3533 				    &dev->class->p->interfaces, node)
3534 			if (class_intf->remove_dev)
3535 				class_intf->remove_dev(dev, class_intf);
3536 		/* remove the device from the class list */
3537 		klist_del(&dev->p->knode_class);
3538 		mutex_unlock(&dev->class->p->mutex);
3539 	}
3540 	device_remove_file(dev, &dev_attr_uevent);
3541 	device_remove_attrs(dev);
3542 	bus_remove_device(dev);
3543 	device_pm_remove(dev);
3544 	driver_deferred_probe_del(dev);
3545 	device_platform_notify_remove(dev);
3546 	device_remove_properties(dev);
3547 	device_links_purge(dev);
3548 
3549 	if (dev->bus)
3550 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3551 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3552 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3553 	glue_dir = get_glue_dir(dev);
3554 	kobject_del(&dev->kobj);
3555 	cleanup_glue_dir(dev, glue_dir);
3556 	memalloc_noio_restore(noio_flag);
3557 	put_device(parent);
3558 }
3559 EXPORT_SYMBOL_GPL(device_del);
3560 
3561 /**
3562  * device_unregister - unregister device from system.
3563  * @dev: device going away.
3564  *
3565  * We do this in two parts, like we do device_register(). First,
3566  * we remove it from all the subsystems with device_del(), then
3567  * we decrement the reference count via put_device(). If that
3568  * is the final reference count, the device will be cleaned up
3569  * via device_release() above. Otherwise, the structure will
3570  * stick around until the final reference to the device is dropped.
3571  */
3572 void device_unregister(struct device *dev)
3573 {
3574 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3575 	device_del(dev);
3576 	put_device(dev);
3577 }
3578 EXPORT_SYMBOL_GPL(device_unregister);
3579 
3580 static struct device *prev_device(struct klist_iter *i)
3581 {
3582 	struct klist_node *n = klist_prev(i);
3583 	struct device *dev = NULL;
3584 	struct device_private *p;
3585 
3586 	if (n) {
3587 		p = to_device_private_parent(n);
3588 		dev = p->device;
3589 	}
3590 	return dev;
3591 }
3592 
3593 static struct device *next_device(struct klist_iter *i)
3594 {
3595 	struct klist_node *n = klist_next(i);
3596 	struct device *dev = NULL;
3597 	struct device_private *p;
3598 
3599 	if (n) {
3600 		p = to_device_private_parent(n);
3601 		dev = p->device;
3602 	}
3603 	return dev;
3604 }
3605 
3606 /**
3607  * device_get_devnode - path of device node file
3608  * @dev: device
3609  * @mode: returned file access mode
3610  * @uid: returned file owner
3611  * @gid: returned file group
3612  * @tmp: possibly allocated string
3613  *
3614  * Return the relative path of a possible device node.
3615  * Non-default names may need to allocate a memory to compose
3616  * a name. This memory is returned in tmp and needs to be
3617  * freed by the caller.
3618  */
3619 const char *device_get_devnode(struct device *dev,
3620 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3621 			       const char **tmp)
3622 {
3623 	char *s;
3624 
3625 	*tmp = NULL;
3626 
3627 	/* the device type may provide a specific name */
3628 	if (dev->type && dev->type->devnode)
3629 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3630 	if (*tmp)
3631 		return *tmp;
3632 
3633 	/* the class may provide a specific name */
3634 	if (dev->class && dev->class->devnode)
3635 		*tmp = dev->class->devnode(dev, mode);
3636 	if (*tmp)
3637 		return *tmp;
3638 
3639 	/* return name without allocation, tmp == NULL */
3640 	if (strchr(dev_name(dev), '!') == NULL)
3641 		return dev_name(dev);
3642 
3643 	/* replace '!' in the name with '/' */
3644 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3645 	if (!s)
3646 		return NULL;
3647 	strreplace(s, '!', '/');
3648 	return *tmp = s;
3649 }
3650 
3651 /**
3652  * device_for_each_child - device child iterator.
3653  * @parent: parent struct device.
3654  * @fn: function to be called for each device.
3655  * @data: data for the callback.
3656  *
3657  * Iterate over @parent's child devices, and call @fn for each,
3658  * passing it @data.
3659  *
3660  * We check the return of @fn each time. If it returns anything
3661  * other than 0, we break out and return that value.
3662  */
3663 int device_for_each_child(struct device *parent, void *data,
3664 			  int (*fn)(struct device *dev, void *data))
3665 {
3666 	struct klist_iter i;
3667 	struct device *child;
3668 	int error = 0;
3669 
3670 	if (!parent->p)
3671 		return 0;
3672 
3673 	klist_iter_init(&parent->p->klist_children, &i);
3674 	while (!error && (child = next_device(&i)))
3675 		error = fn(child, data);
3676 	klist_iter_exit(&i);
3677 	return error;
3678 }
3679 EXPORT_SYMBOL_GPL(device_for_each_child);
3680 
3681 /**
3682  * device_for_each_child_reverse - device child iterator in reversed order.
3683  * @parent: parent struct device.
3684  * @fn: function to be called for each device.
3685  * @data: data for the callback.
3686  *
3687  * Iterate over @parent's child devices, and call @fn for each,
3688  * passing it @data.
3689  *
3690  * We check the return of @fn each time. If it returns anything
3691  * other than 0, we break out and return that value.
3692  */
3693 int device_for_each_child_reverse(struct device *parent, void *data,
3694 				  int (*fn)(struct device *dev, void *data))
3695 {
3696 	struct klist_iter i;
3697 	struct device *child;
3698 	int error = 0;
3699 
3700 	if (!parent->p)
3701 		return 0;
3702 
3703 	klist_iter_init(&parent->p->klist_children, &i);
3704 	while ((child = prev_device(&i)) && !error)
3705 		error = fn(child, data);
3706 	klist_iter_exit(&i);
3707 	return error;
3708 }
3709 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3710 
3711 /**
3712  * device_find_child - device iterator for locating a particular device.
3713  * @parent: parent struct device
3714  * @match: Callback function to check device
3715  * @data: Data to pass to match function
3716  *
3717  * This is similar to the device_for_each_child() function above, but it
3718  * returns a reference to a device that is 'found' for later use, as
3719  * determined by the @match callback.
3720  *
3721  * The callback should return 0 if the device doesn't match and non-zero
3722  * if it does.  If the callback returns non-zero and a reference to the
3723  * current device can be obtained, this function will return to the caller
3724  * and not iterate over any more devices.
3725  *
3726  * NOTE: you will need to drop the reference with put_device() after use.
3727  */
3728 struct device *device_find_child(struct device *parent, void *data,
3729 				 int (*match)(struct device *dev, void *data))
3730 {
3731 	struct klist_iter i;
3732 	struct device *child;
3733 
3734 	if (!parent)
3735 		return NULL;
3736 
3737 	klist_iter_init(&parent->p->klist_children, &i);
3738 	while ((child = next_device(&i)))
3739 		if (match(child, data) && get_device(child))
3740 			break;
3741 	klist_iter_exit(&i);
3742 	return child;
3743 }
3744 EXPORT_SYMBOL_GPL(device_find_child);
3745 
3746 /**
3747  * device_find_child_by_name - device iterator for locating a child device.
3748  * @parent: parent struct device
3749  * @name: name of the child device
3750  *
3751  * This is similar to the device_find_child() function above, but it
3752  * returns a reference to a device that has the name @name.
3753  *
3754  * NOTE: you will need to drop the reference with put_device() after use.
3755  */
3756 struct device *device_find_child_by_name(struct device *parent,
3757 					 const char *name)
3758 {
3759 	struct klist_iter i;
3760 	struct device *child;
3761 
3762 	if (!parent)
3763 		return NULL;
3764 
3765 	klist_iter_init(&parent->p->klist_children, &i);
3766 	while ((child = next_device(&i)))
3767 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3768 			break;
3769 	klist_iter_exit(&i);
3770 	return child;
3771 }
3772 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3773 
3774 int __init devices_init(void)
3775 {
3776 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3777 	if (!devices_kset)
3778 		return -ENOMEM;
3779 	dev_kobj = kobject_create_and_add("dev", NULL);
3780 	if (!dev_kobj)
3781 		goto dev_kobj_err;
3782 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3783 	if (!sysfs_dev_block_kobj)
3784 		goto block_kobj_err;
3785 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3786 	if (!sysfs_dev_char_kobj)
3787 		goto char_kobj_err;
3788 
3789 	return 0;
3790 
3791  char_kobj_err:
3792 	kobject_put(sysfs_dev_block_kobj);
3793  block_kobj_err:
3794 	kobject_put(dev_kobj);
3795  dev_kobj_err:
3796 	kset_unregister(devices_kset);
3797 	return -ENOMEM;
3798 }
3799 
3800 static int device_check_offline(struct device *dev, void *not_used)
3801 {
3802 	int ret;
3803 
3804 	ret = device_for_each_child(dev, NULL, device_check_offline);
3805 	if (ret)
3806 		return ret;
3807 
3808 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3809 }
3810 
3811 /**
3812  * device_offline - Prepare the device for hot-removal.
3813  * @dev: Device to be put offline.
3814  *
3815  * Execute the device bus type's .offline() callback, if present, to prepare
3816  * the device for a subsequent hot-removal.  If that succeeds, the device must
3817  * not be used until either it is removed or its bus type's .online() callback
3818  * is executed.
3819  *
3820  * Call under device_hotplug_lock.
3821  */
3822 int device_offline(struct device *dev)
3823 {
3824 	int ret;
3825 
3826 	if (dev->offline_disabled)
3827 		return -EPERM;
3828 
3829 	ret = device_for_each_child(dev, NULL, device_check_offline);
3830 	if (ret)
3831 		return ret;
3832 
3833 	device_lock(dev);
3834 	if (device_supports_offline(dev)) {
3835 		if (dev->offline) {
3836 			ret = 1;
3837 		} else {
3838 			ret = dev->bus->offline(dev);
3839 			if (!ret) {
3840 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3841 				dev->offline = true;
3842 			}
3843 		}
3844 	}
3845 	device_unlock(dev);
3846 
3847 	return ret;
3848 }
3849 
3850 /**
3851  * device_online - Put the device back online after successful device_offline().
3852  * @dev: Device to be put back online.
3853  *
3854  * If device_offline() has been successfully executed for @dev, but the device
3855  * has not been removed subsequently, execute its bus type's .online() callback
3856  * to indicate that the device can be used again.
3857  *
3858  * Call under device_hotplug_lock.
3859  */
3860 int device_online(struct device *dev)
3861 {
3862 	int ret = 0;
3863 
3864 	device_lock(dev);
3865 	if (device_supports_offline(dev)) {
3866 		if (dev->offline) {
3867 			ret = dev->bus->online(dev);
3868 			if (!ret) {
3869 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3870 				dev->offline = false;
3871 			}
3872 		} else {
3873 			ret = 1;
3874 		}
3875 	}
3876 	device_unlock(dev);
3877 
3878 	return ret;
3879 }
3880 
3881 struct root_device {
3882 	struct device dev;
3883 	struct module *owner;
3884 };
3885 
3886 static inline struct root_device *to_root_device(struct device *d)
3887 {
3888 	return container_of(d, struct root_device, dev);
3889 }
3890 
3891 static void root_device_release(struct device *dev)
3892 {
3893 	kfree(to_root_device(dev));
3894 }
3895 
3896 /**
3897  * __root_device_register - allocate and register a root device
3898  * @name: root device name
3899  * @owner: owner module of the root device, usually THIS_MODULE
3900  *
3901  * This function allocates a root device and registers it
3902  * using device_register(). In order to free the returned
3903  * device, use root_device_unregister().
3904  *
3905  * Root devices are dummy devices which allow other devices
3906  * to be grouped under /sys/devices. Use this function to
3907  * allocate a root device and then use it as the parent of
3908  * any device which should appear under /sys/devices/{name}
3909  *
3910  * The /sys/devices/{name} directory will also contain a
3911  * 'module' symlink which points to the @owner directory
3912  * in sysfs.
3913  *
3914  * Returns &struct device pointer on success, or ERR_PTR() on error.
3915  *
3916  * Note: You probably want to use root_device_register().
3917  */
3918 struct device *__root_device_register(const char *name, struct module *owner)
3919 {
3920 	struct root_device *root;
3921 	int err = -ENOMEM;
3922 
3923 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3924 	if (!root)
3925 		return ERR_PTR(err);
3926 
3927 	err = dev_set_name(&root->dev, "%s", name);
3928 	if (err) {
3929 		kfree(root);
3930 		return ERR_PTR(err);
3931 	}
3932 
3933 	root->dev.release = root_device_release;
3934 
3935 	err = device_register(&root->dev);
3936 	if (err) {
3937 		put_device(&root->dev);
3938 		return ERR_PTR(err);
3939 	}
3940 
3941 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3942 	if (owner) {
3943 		struct module_kobject *mk = &owner->mkobj;
3944 
3945 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3946 		if (err) {
3947 			device_unregister(&root->dev);
3948 			return ERR_PTR(err);
3949 		}
3950 		root->owner = owner;
3951 	}
3952 #endif
3953 
3954 	return &root->dev;
3955 }
3956 EXPORT_SYMBOL_GPL(__root_device_register);
3957 
3958 /**
3959  * root_device_unregister - unregister and free a root device
3960  * @dev: device going away
3961  *
3962  * This function unregisters and cleans up a device that was created by
3963  * root_device_register().
3964  */
3965 void root_device_unregister(struct device *dev)
3966 {
3967 	struct root_device *root = to_root_device(dev);
3968 
3969 	if (root->owner)
3970 		sysfs_remove_link(&root->dev.kobj, "module");
3971 
3972 	device_unregister(dev);
3973 }
3974 EXPORT_SYMBOL_GPL(root_device_unregister);
3975 
3976 
3977 static void device_create_release(struct device *dev)
3978 {
3979 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3980 	kfree(dev);
3981 }
3982 
3983 static __printf(6, 0) struct device *
3984 device_create_groups_vargs(struct class *class, struct device *parent,
3985 			   dev_t devt, void *drvdata,
3986 			   const struct attribute_group **groups,
3987 			   const char *fmt, va_list args)
3988 {
3989 	struct device *dev = NULL;
3990 	int retval = -ENODEV;
3991 
3992 	if (class == NULL || IS_ERR(class))
3993 		goto error;
3994 
3995 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3996 	if (!dev) {
3997 		retval = -ENOMEM;
3998 		goto error;
3999 	}
4000 
4001 	device_initialize(dev);
4002 	dev->devt = devt;
4003 	dev->class = class;
4004 	dev->parent = parent;
4005 	dev->groups = groups;
4006 	dev->release = device_create_release;
4007 	dev_set_drvdata(dev, drvdata);
4008 
4009 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4010 	if (retval)
4011 		goto error;
4012 
4013 	retval = device_add(dev);
4014 	if (retval)
4015 		goto error;
4016 
4017 	return dev;
4018 
4019 error:
4020 	put_device(dev);
4021 	return ERR_PTR(retval);
4022 }
4023 
4024 /**
4025  * device_create - creates a device and registers it with sysfs
4026  * @class: pointer to the struct class that this device should be registered to
4027  * @parent: pointer to the parent struct device of this new device, if any
4028  * @devt: the dev_t for the char device to be added
4029  * @drvdata: the data to be added to the device for callbacks
4030  * @fmt: string for the device's name
4031  *
4032  * This function can be used by char device classes.  A struct device
4033  * will be created in sysfs, registered to the specified class.
4034  *
4035  * A "dev" file will be created, showing the dev_t for the device, if
4036  * the dev_t is not 0,0.
4037  * If a pointer to a parent struct device is passed in, the newly created
4038  * struct device will be a child of that device in sysfs.
4039  * The pointer to the struct device will be returned from the call.
4040  * Any further sysfs files that might be required can be created using this
4041  * pointer.
4042  *
4043  * Returns &struct device pointer on success, or ERR_PTR() on error.
4044  *
4045  * Note: the struct class passed to this function must have previously
4046  * been created with a call to class_create().
4047  */
4048 struct device *device_create(struct class *class, struct device *parent,
4049 			     dev_t devt, void *drvdata, const char *fmt, ...)
4050 {
4051 	va_list vargs;
4052 	struct device *dev;
4053 
4054 	va_start(vargs, fmt);
4055 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4056 					  fmt, vargs);
4057 	va_end(vargs);
4058 	return dev;
4059 }
4060 EXPORT_SYMBOL_GPL(device_create);
4061 
4062 /**
4063  * device_create_with_groups - creates a device and registers it with sysfs
4064  * @class: pointer to the struct class that this device should be registered to
4065  * @parent: pointer to the parent struct device of this new device, if any
4066  * @devt: the dev_t for the char device to be added
4067  * @drvdata: the data to be added to the device for callbacks
4068  * @groups: NULL-terminated list of attribute groups to be created
4069  * @fmt: string for the device's name
4070  *
4071  * This function can be used by char device classes.  A struct device
4072  * will be created in sysfs, registered to the specified class.
4073  * Additional attributes specified in the groups parameter will also
4074  * be created automatically.
4075  *
4076  * A "dev" file will be created, showing the dev_t for the device, if
4077  * the dev_t is not 0,0.
4078  * If a pointer to a parent struct device is passed in, the newly created
4079  * struct device will be a child of that device in sysfs.
4080  * The pointer to the struct device will be returned from the call.
4081  * Any further sysfs files that might be required can be created using this
4082  * pointer.
4083  *
4084  * Returns &struct device pointer on success, or ERR_PTR() on error.
4085  *
4086  * Note: the struct class passed to this function must have previously
4087  * been created with a call to class_create().
4088  */
4089 struct device *device_create_with_groups(struct class *class,
4090 					 struct device *parent, dev_t devt,
4091 					 void *drvdata,
4092 					 const struct attribute_group **groups,
4093 					 const char *fmt, ...)
4094 {
4095 	va_list vargs;
4096 	struct device *dev;
4097 
4098 	va_start(vargs, fmt);
4099 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4100 					 fmt, vargs);
4101 	va_end(vargs);
4102 	return dev;
4103 }
4104 EXPORT_SYMBOL_GPL(device_create_with_groups);
4105 
4106 /**
4107  * device_destroy - removes a device that was created with device_create()
4108  * @class: pointer to the struct class that this device was registered with
4109  * @devt: the dev_t of the device that was previously registered
4110  *
4111  * This call unregisters and cleans up a device that was created with a
4112  * call to device_create().
4113  */
4114 void device_destroy(struct class *class, dev_t devt)
4115 {
4116 	struct device *dev;
4117 
4118 	dev = class_find_device_by_devt(class, devt);
4119 	if (dev) {
4120 		put_device(dev);
4121 		device_unregister(dev);
4122 	}
4123 }
4124 EXPORT_SYMBOL_GPL(device_destroy);
4125 
4126 /**
4127  * device_rename - renames a device
4128  * @dev: the pointer to the struct device to be renamed
4129  * @new_name: the new name of the device
4130  *
4131  * It is the responsibility of the caller to provide mutual
4132  * exclusion between two different calls of device_rename
4133  * on the same device to ensure that new_name is valid and
4134  * won't conflict with other devices.
4135  *
4136  * Note: Don't call this function.  Currently, the networking layer calls this
4137  * function, but that will change.  The following text from Kay Sievers offers
4138  * some insight:
4139  *
4140  * Renaming devices is racy at many levels, symlinks and other stuff are not
4141  * replaced atomically, and you get a "move" uevent, but it's not easy to
4142  * connect the event to the old and new device. Device nodes are not renamed at
4143  * all, there isn't even support for that in the kernel now.
4144  *
4145  * In the meantime, during renaming, your target name might be taken by another
4146  * driver, creating conflicts. Or the old name is taken directly after you
4147  * renamed it -- then you get events for the same DEVPATH, before you even see
4148  * the "move" event. It's just a mess, and nothing new should ever rely on
4149  * kernel device renaming. Besides that, it's not even implemented now for
4150  * other things than (driver-core wise very simple) network devices.
4151  *
4152  * We are currently about to change network renaming in udev to completely
4153  * disallow renaming of devices in the same namespace as the kernel uses,
4154  * because we can't solve the problems properly, that arise with swapping names
4155  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4156  * be allowed to some other name than eth[0-9]*, for the aforementioned
4157  * reasons.
4158  *
4159  * Make up a "real" name in the driver before you register anything, or add
4160  * some other attributes for userspace to find the device, or use udev to add
4161  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4162  * don't even want to get into that and try to implement the missing pieces in
4163  * the core. We really have other pieces to fix in the driver core mess. :)
4164  */
4165 int device_rename(struct device *dev, const char *new_name)
4166 {
4167 	struct kobject *kobj = &dev->kobj;
4168 	char *old_device_name = NULL;
4169 	int error;
4170 
4171 	dev = get_device(dev);
4172 	if (!dev)
4173 		return -EINVAL;
4174 
4175 	dev_dbg(dev, "renaming to %s\n", new_name);
4176 
4177 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4178 	if (!old_device_name) {
4179 		error = -ENOMEM;
4180 		goto out;
4181 	}
4182 
4183 	if (dev->class) {
4184 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4185 					     kobj, old_device_name,
4186 					     new_name, kobject_namespace(kobj));
4187 		if (error)
4188 			goto out;
4189 	}
4190 
4191 	error = kobject_rename(kobj, new_name);
4192 	if (error)
4193 		goto out;
4194 
4195 out:
4196 	put_device(dev);
4197 
4198 	kfree(old_device_name);
4199 
4200 	return error;
4201 }
4202 EXPORT_SYMBOL_GPL(device_rename);
4203 
4204 static int device_move_class_links(struct device *dev,
4205 				   struct device *old_parent,
4206 				   struct device *new_parent)
4207 {
4208 	int error = 0;
4209 
4210 	if (old_parent)
4211 		sysfs_remove_link(&dev->kobj, "device");
4212 	if (new_parent)
4213 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4214 					  "device");
4215 	return error;
4216 }
4217 
4218 /**
4219  * device_move - moves a device to a new parent
4220  * @dev: the pointer to the struct device to be moved
4221  * @new_parent: the new parent of the device (can be NULL)
4222  * @dpm_order: how to reorder the dpm_list
4223  */
4224 int device_move(struct device *dev, struct device *new_parent,
4225 		enum dpm_order dpm_order)
4226 {
4227 	int error;
4228 	struct device *old_parent;
4229 	struct kobject *new_parent_kobj;
4230 
4231 	dev = get_device(dev);
4232 	if (!dev)
4233 		return -EINVAL;
4234 
4235 	device_pm_lock();
4236 	new_parent = get_device(new_parent);
4237 	new_parent_kobj = get_device_parent(dev, new_parent);
4238 	if (IS_ERR(new_parent_kobj)) {
4239 		error = PTR_ERR(new_parent_kobj);
4240 		put_device(new_parent);
4241 		goto out;
4242 	}
4243 
4244 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4245 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4246 	error = kobject_move(&dev->kobj, new_parent_kobj);
4247 	if (error) {
4248 		cleanup_glue_dir(dev, new_parent_kobj);
4249 		put_device(new_parent);
4250 		goto out;
4251 	}
4252 	old_parent = dev->parent;
4253 	dev->parent = new_parent;
4254 	if (old_parent)
4255 		klist_remove(&dev->p->knode_parent);
4256 	if (new_parent) {
4257 		klist_add_tail(&dev->p->knode_parent,
4258 			       &new_parent->p->klist_children);
4259 		set_dev_node(dev, dev_to_node(new_parent));
4260 	}
4261 
4262 	if (dev->class) {
4263 		error = device_move_class_links(dev, old_parent, new_parent);
4264 		if (error) {
4265 			/* We ignore errors on cleanup since we're hosed anyway... */
4266 			device_move_class_links(dev, new_parent, old_parent);
4267 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4268 				if (new_parent)
4269 					klist_remove(&dev->p->knode_parent);
4270 				dev->parent = old_parent;
4271 				if (old_parent) {
4272 					klist_add_tail(&dev->p->knode_parent,
4273 						       &old_parent->p->klist_children);
4274 					set_dev_node(dev, dev_to_node(old_parent));
4275 				}
4276 			}
4277 			cleanup_glue_dir(dev, new_parent_kobj);
4278 			put_device(new_parent);
4279 			goto out;
4280 		}
4281 	}
4282 	switch (dpm_order) {
4283 	case DPM_ORDER_NONE:
4284 		break;
4285 	case DPM_ORDER_DEV_AFTER_PARENT:
4286 		device_pm_move_after(dev, new_parent);
4287 		devices_kset_move_after(dev, new_parent);
4288 		break;
4289 	case DPM_ORDER_PARENT_BEFORE_DEV:
4290 		device_pm_move_before(new_parent, dev);
4291 		devices_kset_move_before(new_parent, dev);
4292 		break;
4293 	case DPM_ORDER_DEV_LAST:
4294 		device_pm_move_last(dev);
4295 		devices_kset_move_last(dev);
4296 		break;
4297 	}
4298 
4299 	put_device(old_parent);
4300 out:
4301 	device_pm_unlock();
4302 	put_device(dev);
4303 	return error;
4304 }
4305 EXPORT_SYMBOL_GPL(device_move);
4306 
4307 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4308 				     kgid_t kgid)
4309 {
4310 	struct kobject *kobj = &dev->kobj;
4311 	struct class *class = dev->class;
4312 	const struct device_type *type = dev->type;
4313 	int error;
4314 
4315 	if (class) {
4316 		/*
4317 		 * Change the device groups of the device class for @dev to
4318 		 * @kuid/@kgid.
4319 		 */
4320 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4321 						  kgid);
4322 		if (error)
4323 			return error;
4324 	}
4325 
4326 	if (type) {
4327 		/*
4328 		 * Change the device groups of the device type for @dev to
4329 		 * @kuid/@kgid.
4330 		 */
4331 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4332 						  kgid);
4333 		if (error)
4334 			return error;
4335 	}
4336 
4337 	/* Change the device groups of @dev to @kuid/@kgid. */
4338 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4339 	if (error)
4340 		return error;
4341 
4342 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4343 		/* Change online device attributes of @dev to @kuid/@kgid. */
4344 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4345 						kuid, kgid);
4346 		if (error)
4347 			return error;
4348 	}
4349 
4350 	return 0;
4351 }
4352 
4353 /**
4354  * device_change_owner - change the owner of an existing device.
4355  * @dev: device.
4356  * @kuid: new owner's kuid
4357  * @kgid: new owner's kgid
4358  *
4359  * This changes the owner of @dev and its corresponding sysfs entries to
4360  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4361  * core.
4362  *
4363  * Returns 0 on success or error code on failure.
4364  */
4365 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4366 {
4367 	int error;
4368 	struct kobject *kobj = &dev->kobj;
4369 
4370 	dev = get_device(dev);
4371 	if (!dev)
4372 		return -EINVAL;
4373 
4374 	/*
4375 	 * Change the kobject and the default attributes and groups of the
4376 	 * ktype associated with it to @kuid/@kgid.
4377 	 */
4378 	error = sysfs_change_owner(kobj, kuid, kgid);
4379 	if (error)
4380 		goto out;
4381 
4382 	/*
4383 	 * Change the uevent file for @dev to the new owner. The uevent file
4384 	 * was created in a separate step when @dev got added and we mirror
4385 	 * that step here.
4386 	 */
4387 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4388 					kgid);
4389 	if (error)
4390 		goto out;
4391 
4392 	/*
4393 	 * Change the device groups, the device groups associated with the
4394 	 * device class, and the groups associated with the device type of @dev
4395 	 * to @kuid/@kgid.
4396 	 */
4397 	error = device_attrs_change_owner(dev, kuid, kgid);
4398 	if (error)
4399 		goto out;
4400 
4401 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4402 	if (error)
4403 		goto out;
4404 
4405 #ifdef CONFIG_BLOCK
4406 	if (sysfs_deprecated && dev->class == &block_class)
4407 		goto out;
4408 #endif
4409 
4410 	/*
4411 	 * Change the owner of the symlink located in the class directory of
4412 	 * the device class associated with @dev which points to the actual
4413 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4414 	 * symlink shows the same permissions as its target.
4415 	 */
4416 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4417 					dev_name(dev), kuid, kgid);
4418 	if (error)
4419 		goto out;
4420 
4421 out:
4422 	put_device(dev);
4423 	return error;
4424 }
4425 EXPORT_SYMBOL_GPL(device_change_owner);
4426 
4427 /**
4428  * device_shutdown - call ->shutdown() on each device to shutdown.
4429  */
4430 void device_shutdown(void)
4431 {
4432 	struct device *dev, *parent;
4433 
4434 	wait_for_device_probe();
4435 	device_block_probing();
4436 
4437 	cpufreq_suspend();
4438 
4439 	spin_lock(&devices_kset->list_lock);
4440 	/*
4441 	 * Walk the devices list backward, shutting down each in turn.
4442 	 * Beware that device unplug events may also start pulling
4443 	 * devices offline, even as the system is shutting down.
4444 	 */
4445 	while (!list_empty(&devices_kset->list)) {
4446 		dev = list_entry(devices_kset->list.prev, struct device,
4447 				kobj.entry);
4448 
4449 		/*
4450 		 * hold reference count of device's parent to
4451 		 * prevent it from being freed because parent's
4452 		 * lock is to be held
4453 		 */
4454 		parent = get_device(dev->parent);
4455 		get_device(dev);
4456 		/*
4457 		 * Make sure the device is off the kset list, in the
4458 		 * event that dev->*->shutdown() doesn't remove it.
4459 		 */
4460 		list_del_init(&dev->kobj.entry);
4461 		spin_unlock(&devices_kset->list_lock);
4462 
4463 		/* hold lock to avoid race with probe/release */
4464 		if (parent)
4465 			device_lock(parent);
4466 		device_lock(dev);
4467 
4468 		/* Don't allow any more runtime suspends */
4469 		pm_runtime_get_noresume(dev);
4470 		pm_runtime_barrier(dev);
4471 
4472 		if (dev->class && dev->class->shutdown_pre) {
4473 			if (initcall_debug)
4474 				dev_info(dev, "shutdown_pre\n");
4475 			dev->class->shutdown_pre(dev);
4476 		}
4477 		if (dev->bus && dev->bus->shutdown) {
4478 			if (initcall_debug)
4479 				dev_info(dev, "shutdown\n");
4480 			dev->bus->shutdown(dev);
4481 		} else if (dev->driver && dev->driver->shutdown) {
4482 			if (initcall_debug)
4483 				dev_info(dev, "shutdown\n");
4484 			dev->driver->shutdown(dev);
4485 		}
4486 
4487 		device_unlock(dev);
4488 		if (parent)
4489 			device_unlock(parent);
4490 
4491 		put_device(dev);
4492 		put_device(parent);
4493 
4494 		spin_lock(&devices_kset->list_lock);
4495 	}
4496 	spin_unlock(&devices_kset->list_lock);
4497 }
4498 
4499 /*
4500  * Device logging functions
4501  */
4502 
4503 #ifdef CONFIG_PRINTK
4504 static void
4505 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4506 {
4507 	const char *subsys;
4508 
4509 	memset(dev_info, 0, sizeof(*dev_info));
4510 
4511 	if (dev->class)
4512 		subsys = dev->class->name;
4513 	else if (dev->bus)
4514 		subsys = dev->bus->name;
4515 	else
4516 		return;
4517 
4518 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4519 
4520 	/*
4521 	 * Add device identifier DEVICE=:
4522 	 *   b12:8         block dev_t
4523 	 *   c127:3        char dev_t
4524 	 *   n8            netdev ifindex
4525 	 *   +sound:card0  subsystem:devname
4526 	 */
4527 	if (MAJOR(dev->devt)) {
4528 		char c;
4529 
4530 		if (strcmp(subsys, "block") == 0)
4531 			c = 'b';
4532 		else
4533 			c = 'c';
4534 
4535 		snprintf(dev_info->device, sizeof(dev_info->device),
4536 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4537 	} else if (strcmp(subsys, "net") == 0) {
4538 		struct net_device *net = to_net_dev(dev);
4539 
4540 		snprintf(dev_info->device, sizeof(dev_info->device),
4541 			 "n%u", net->ifindex);
4542 	} else {
4543 		snprintf(dev_info->device, sizeof(dev_info->device),
4544 			 "+%s:%s", subsys, dev_name(dev));
4545 	}
4546 }
4547 
4548 int dev_vprintk_emit(int level, const struct device *dev,
4549 		     const char *fmt, va_list args)
4550 {
4551 	struct dev_printk_info dev_info;
4552 
4553 	set_dev_info(dev, &dev_info);
4554 
4555 	return vprintk_emit(0, level, &dev_info, fmt, args);
4556 }
4557 EXPORT_SYMBOL(dev_vprintk_emit);
4558 
4559 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4560 {
4561 	va_list args;
4562 	int r;
4563 
4564 	va_start(args, fmt);
4565 
4566 	r = dev_vprintk_emit(level, dev, fmt, args);
4567 
4568 	va_end(args);
4569 
4570 	return r;
4571 }
4572 EXPORT_SYMBOL(dev_printk_emit);
4573 
4574 static void __dev_printk(const char *level, const struct device *dev,
4575 			struct va_format *vaf)
4576 {
4577 	if (dev)
4578 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4579 				dev_driver_string(dev), dev_name(dev), vaf);
4580 	else
4581 		printk("%s(NULL device *): %pV", level, vaf);
4582 }
4583 
4584 void _dev_printk(const char *level, const struct device *dev,
4585 		 const char *fmt, ...)
4586 {
4587 	struct va_format vaf;
4588 	va_list args;
4589 
4590 	va_start(args, fmt);
4591 
4592 	vaf.fmt = fmt;
4593 	vaf.va = &args;
4594 
4595 	__dev_printk(level, dev, &vaf);
4596 
4597 	va_end(args);
4598 }
4599 EXPORT_SYMBOL(_dev_printk);
4600 
4601 #define define_dev_printk_level(func, kern_level)		\
4602 void func(const struct device *dev, const char *fmt, ...)	\
4603 {								\
4604 	struct va_format vaf;					\
4605 	va_list args;						\
4606 								\
4607 	va_start(args, fmt);					\
4608 								\
4609 	vaf.fmt = fmt;						\
4610 	vaf.va = &args;						\
4611 								\
4612 	__dev_printk(kern_level, dev, &vaf);			\
4613 								\
4614 	va_end(args);						\
4615 }								\
4616 EXPORT_SYMBOL(func);
4617 
4618 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4619 define_dev_printk_level(_dev_alert, KERN_ALERT);
4620 define_dev_printk_level(_dev_crit, KERN_CRIT);
4621 define_dev_printk_level(_dev_err, KERN_ERR);
4622 define_dev_printk_level(_dev_warn, KERN_WARNING);
4623 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4624 define_dev_printk_level(_dev_info, KERN_INFO);
4625 
4626 #endif
4627 
4628 /**
4629  * dev_err_probe - probe error check and log helper
4630  * @dev: the pointer to the struct device
4631  * @err: error value to test
4632  * @fmt: printf-style format string
4633  * @...: arguments as specified in the format string
4634  *
4635  * This helper implements common pattern present in probe functions for error
4636  * checking: print debug or error message depending if the error value is
4637  * -EPROBE_DEFER and propagate error upwards.
4638  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4639  * checked later by reading devices_deferred debugfs attribute.
4640  * It replaces code sequence::
4641  *
4642  * 	if (err != -EPROBE_DEFER)
4643  * 		dev_err(dev, ...);
4644  * 	else
4645  * 		dev_dbg(dev, ...);
4646  * 	return err;
4647  *
4648  * with::
4649  *
4650  * 	return dev_err_probe(dev, err, ...);
4651  *
4652  * Returns @err.
4653  *
4654  */
4655 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4656 {
4657 	struct va_format vaf;
4658 	va_list args;
4659 
4660 	va_start(args, fmt);
4661 	vaf.fmt = fmt;
4662 	vaf.va = &args;
4663 
4664 	if (err != -EPROBE_DEFER) {
4665 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4666 	} else {
4667 		device_set_deferred_probe_reason(dev, &vaf);
4668 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4669 	}
4670 
4671 	va_end(args);
4672 
4673 	return err;
4674 }
4675 EXPORT_SYMBOL_GPL(dev_err_probe);
4676 
4677 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4678 {
4679 	return fwnode && !IS_ERR(fwnode->secondary);
4680 }
4681 
4682 /**
4683  * set_primary_fwnode - Change the primary firmware node of a given device.
4684  * @dev: Device to handle.
4685  * @fwnode: New primary firmware node of the device.
4686  *
4687  * Set the device's firmware node pointer to @fwnode, but if a secondary
4688  * firmware node of the device is present, preserve it.
4689  *
4690  * Valid fwnode cases are:
4691  *  - primary --> secondary --> -ENODEV
4692  *  - primary --> NULL
4693  *  - secondary --> -ENODEV
4694  *  - NULL
4695  */
4696 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4697 {
4698 	struct device *parent = dev->parent;
4699 	struct fwnode_handle *fn = dev->fwnode;
4700 
4701 	if (fwnode) {
4702 		if (fwnode_is_primary(fn))
4703 			fn = fn->secondary;
4704 
4705 		if (fn) {
4706 			WARN_ON(fwnode->secondary);
4707 			fwnode->secondary = fn;
4708 		}
4709 		dev->fwnode = fwnode;
4710 	} else {
4711 		if (fwnode_is_primary(fn)) {
4712 			dev->fwnode = fn->secondary;
4713 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4714 			if (!(parent && fn == parent->fwnode))
4715 				fn->secondary = NULL;
4716 		} else {
4717 			dev->fwnode = NULL;
4718 		}
4719 	}
4720 }
4721 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4722 
4723 /**
4724  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4725  * @dev: Device to handle.
4726  * @fwnode: New secondary firmware node of the device.
4727  *
4728  * If a primary firmware node of the device is present, set its secondary
4729  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4730  * @fwnode.
4731  */
4732 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4733 {
4734 	if (fwnode)
4735 		fwnode->secondary = ERR_PTR(-ENODEV);
4736 
4737 	if (fwnode_is_primary(dev->fwnode))
4738 		dev->fwnode->secondary = fwnode;
4739 	else
4740 		dev->fwnode = fwnode;
4741 }
4742 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4743 
4744 /**
4745  * device_set_of_node_from_dev - reuse device-tree node of another device
4746  * @dev: device whose device-tree node is being set
4747  * @dev2: device whose device-tree node is being reused
4748  *
4749  * Takes another reference to the new device-tree node after first dropping
4750  * any reference held to the old node.
4751  */
4752 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4753 {
4754 	of_node_put(dev->of_node);
4755 	dev->of_node = of_node_get(dev2->of_node);
4756 	dev->of_node_reused = true;
4757 }
4758 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4759 
4760 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4761 {
4762 	dev->fwnode = fwnode;
4763 	dev->of_node = to_of_node(fwnode);
4764 }
4765 EXPORT_SYMBOL_GPL(device_set_node);
4766 
4767 int device_match_name(struct device *dev, const void *name)
4768 {
4769 	return sysfs_streq(dev_name(dev), name);
4770 }
4771 EXPORT_SYMBOL_GPL(device_match_name);
4772 
4773 int device_match_of_node(struct device *dev, const void *np)
4774 {
4775 	return dev->of_node == np;
4776 }
4777 EXPORT_SYMBOL_GPL(device_match_of_node);
4778 
4779 int device_match_fwnode(struct device *dev, const void *fwnode)
4780 {
4781 	return dev_fwnode(dev) == fwnode;
4782 }
4783 EXPORT_SYMBOL_GPL(device_match_fwnode);
4784 
4785 int device_match_devt(struct device *dev, const void *pdevt)
4786 {
4787 	return dev->devt == *(dev_t *)pdevt;
4788 }
4789 EXPORT_SYMBOL_GPL(device_match_devt);
4790 
4791 int device_match_acpi_dev(struct device *dev, const void *adev)
4792 {
4793 	return ACPI_COMPANION(dev) == adev;
4794 }
4795 EXPORT_SYMBOL(device_match_acpi_dev);
4796 
4797 int device_match_any(struct device *dev, const void *unused)
4798 {
4799 	return 1;
4800 }
4801 EXPORT_SYMBOL_GPL(device_match_any);
4802