1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/kdev_t.h> 22 #include <linux/notifier.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 #ifdef CONFIG_SYSFS_DEPRECATED 40 #ifdef CONFIG_SYSFS_DEPRECATED_V2 41 long sysfs_deprecated = 1; 42 #else 43 long sysfs_deprecated = 0; 44 #endif 45 static int __init sysfs_deprecated_setup(char *arg) 46 { 47 return kstrtol(arg, 10, &sysfs_deprecated); 48 } 49 early_param("sysfs.deprecated", sysfs_deprecated_setup); 50 #endif 51 52 /* Device links support. */ 53 static LIST_HEAD(deferred_sync); 54 static unsigned int defer_sync_state_count = 1; 55 static DEFINE_MUTEX(fwnode_link_lock); 56 static bool fw_devlink_is_permissive(void); 57 static bool fw_devlink_drv_reg_done; 58 static bool fw_devlink_best_effort; 59 60 /** 61 * fwnode_link_add - Create a link between two fwnode_handles. 62 * @con: Consumer end of the link. 63 * @sup: Supplier end of the link. 64 * 65 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 66 * represents the detail that the firmware lists @sup fwnode as supplying a 67 * resource to @con. 68 * 69 * The driver core will use the fwnode link to create a device link between the 70 * two device objects corresponding to @con and @sup when they are created. The 71 * driver core will automatically delete the fwnode link between @con and @sup 72 * after doing that. 73 * 74 * Attempts to create duplicate links between the same pair of fwnode handles 75 * are ignored and there is no reference counting. 76 */ 77 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 78 { 79 struct fwnode_link *link; 80 int ret = 0; 81 82 mutex_lock(&fwnode_link_lock); 83 84 list_for_each_entry(link, &sup->consumers, s_hook) 85 if (link->consumer == con) 86 goto out; 87 88 link = kzalloc(sizeof(*link), GFP_KERNEL); 89 if (!link) { 90 ret = -ENOMEM; 91 goto out; 92 } 93 94 link->supplier = sup; 95 INIT_LIST_HEAD(&link->s_hook); 96 link->consumer = con; 97 INIT_LIST_HEAD(&link->c_hook); 98 99 list_add(&link->s_hook, &sup->consumers); 100 list_add(&link->c_hook, &con->suppliers); 101 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n", 102 con, sup); 103 out: 104 mutex_unlock(&fwnode_link_lock); 105 106 return ret; 107 } 108 109 /** 110 * __fwnode_link_del - Delete a link between two fwnode_handles. 111 * @link: the fwnode_link to be deleted 112 * 113 * The fwnode_link_lock needs to be held when this function is called. 114 */ 115 static void __fwnode_link_del(struct fwnode_link *link) 116 { 117 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n", 118 link->consumer, link->supplier); 119 list_del(&link->s_hook); 120 list_del(&link->c_hook); 121 kfree(link); 122 } 123 124 /** 125 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 126 * @fwnode: fwnode whose supplier links need to be deleted 127 * 128 * Deletes all supplier links connecting directly to @fwnode. 129 */ 130 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 131 { 132 struct fwnode_link *link, *tmp; 133 134 mutex_lock(&fwnode_link_lock); 135 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 136 __fwnode_link_del(link); 137 mutex_unlock(&fwnode_link_lock); 138 } 139 140 /** 141 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 142 * @fwnode: fwnode whose consumer links need to be deleted 143 * 144 * Deletes all consumer links connecting directly to @fwnode. 145 */ 146 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 147 { 148 struct fwnode_link *link, *tmp; 149 150 mutex_lock(&fwnode_link_lock); 151 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 152 __fwnode_link_del(link); 153 mutex_unlock(&fwnode_link_lock); 154 } 155 156 /** 157 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 158 * @fwnode: fwnode whose links needs to be deleted 159 * 160 * Deletes all links connecting directly to a fwnode. 161 */ 162 void fwnode_links_purge(struct fwnode_handle *fwnode) 163 { 164 fwnode_links_purge_suppliers(fwnode); 165 fwnode_links_purge_consumers(fwnode); 166 } 167 168 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 169 { 170 struct fwnode_handle *child; 171 172 /* Don't purge consumer links of an added child */ 173 if (fwnode->dev) 174 return; 175 176 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 177 fwnode_links_purge_consumers(fwnode); 178 179 fwnode_for_each_available_child_node(fwnode, child) 180 fw_devlink_purge_absent_suppliers(child); 181 } 182 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 183 184 #ifdef CONFIG_SRCU 185 static DEFINE_MUTEX(device_links_lock); 186 DEFINE_STATIC_SRCU(device_links_srcu); 187 188 static inline void device_links_write_lock(void) 189 { 190 mutex_lock(&device_links_lock); 191 } 192 193 static inline void device_links_write_unlock(void) 194 { 195 mutex_unlock(&device_links_lock); 196 } 197 198 int device_links_read_lock(void) __acquires(&device_links_srcu) 199 { 200 return srcu_read_lock(&device_links_srcu); 201 } 202 203 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 204 { 205 srcu_read_unlock(&device_links_srcu, idx); 206 } 207 208 int device_links_read_lock_held(void) 209 { 210 return srcu_read_lock_held(&device_links_srcu); 211 } 212 213 static void device_link_synchronize_removal(void) 214 { 215 synchronize_srcu(&device_links_srcu); 216 } 217 218 static void device_link_remove_from_lists(struct device_link *link) 219 { 220 list_del_rcu(&link->s_node); 221 list_del_rcu(&link->c_node); 222 } 223 #else /* !CONFIG_SRCU */ 224 static DECLARE_RWSEM(device_links_lock); 225 226 static inline void device_links_write_lock(void) 227 { 228 down_write(&device_links_lock); 229 } 230 231 static inline void device_links_write_unlock(void) 232 { 233 up_write(&device_links_lock); 234 } 235 236 int device_links_read_lock(void) 237 { 238 down_read(&device_links_lock); 239 return 0; 240 } 241 242 void device_links_read_unlock(int not_used) 243 { 244 up_read(&device_links_lock); 245 } 246 247 #ifdef CONFIG_DEBUG_LOCK_ALLOC 248 int device_links_read_lock_held(void) 249 { 250 return lockdep_is_held(&device_links_lock); 251 } 252 #endif 253 254 static inline void device_link_synchronize_removal(void) 255 { 256 } 257 258 static void device_link_remove_from_lists(struct device_link *link) 259 { 260 list_del(&link->s_node); 261 list_del(&link->c_node); 262 } 263 #endif /* !CONFIG_SRCU */ 264 265 static bool device_is_ancestor(struct device *dev, struct device *target) 266 { 267 while (target->parent) { 268 target = target->parent; 269 if (dev == target) 270 return true; 271 } 272 return false; 273 } 274 275 /** 276 * device_is_dependent - Check if one device depends on another one 277 * @dev: Device to check dependencies for. 278 * @target: Device to check against. 279 * 280 * Check if @target depends on @dev or any device dependent on it (its child or 281 * its consumer etc). Return 1 if that is the case or 0 otherwise. 282 */ 283 int device_is_dependent(struct device *dev, void *target) 284 { 285 struct device_link *link; 286 int ret; 287 288 /* 289 * The "ancestors" check is needed to catch the case when the target 290 * device has not been completely initialized yet and it is still 291 * missing from the list of children of its parent device. 292 */ 293 if (dev == target || device_is_ancestor(dev, target)) 294 return 1; 295 296 ret = device_for_each_child(dev, target, device_is_dependent); 297 if (ret) 298 return ret; 299 300 list_for_each_entry(link, &dev->links.consumers, s_node) { 301 if ((link->flags & ~DL_FLAG_INFERRED) == 302 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 303 continue; 304 305 if (link->consumer == target) 306 return 1; 307 308 ret = device_is_dependent(link->consumer, target); 309 if (ret) 310 break; 311 } 312 return ret; 313 } 314 315 static void device_link_init_status(struct device_link *link, 316 struct device *consumer, 317 struct device *supplier) 318 { 319 switch (supplier->links.status) { 320 case DL_DEV_PROBING: 321 switch (consumer->links.status) { 322 case DL_DEV_PROBING: 323 /* 324 * A consumer driver can create a link to a supplier 325 * that has not completed its probing yet as long as it 326 * knows that the supplier is already functional (for 327 * example, it has just acquired some resources from the 328 * supplier). 329 */ 330 link->status = DL_STATE_CONSUMER_PROBE; 331 break; 332 default: 333 link->status = DL_STATE_DORMANT; 334 break; 335 } 336 break; 337 case DL_DEV_DRIVER_BOUND: 338 switch (consumer->links.status) { 339 case DL_DEV_PROBING: 340 link->status = DL_STATE_CONSUMER_PROBE; 341 break; 342 case DL_DEV_DRIVER_BOUND: 343 link->status = DL_STATE_ACTIVE; 344 break; 345 default: 346 link->status = DL_STATE_AVAILABLE; 347 break; 348 } 349 break; 350 case DL_DEV_UNBINDING: 351 link->status = DL_STATE_SUPPLIER_UNBIND; 352 break; 353 default: 354 link->status = DL_STATE_DORMANT; 355 break; 356 } 357 } 358 359 static int device_reorder_to_tail(struct device *dev, void *not_used) 360 { 361 struct device_link *link; 362 363 /* 364 * Devices that have not been registered yet will be put to the ends 365 * of the lists during the registration, so skip them here. 366 */ 367 if (device_is_registered(dev)) 368 devices_kset_move_last(dev); 369 370 if (device_pm_initialized(dev)) 371 device_pm_move_last(dev); 372 373 device_for_each_child(dev, NULL, device_reorder_to_tail); 374 list_for_each_entry(link, &dev->links.consumers, s_node) { 375 if ((link->flags & ~DL_FLAG_INFERRED) == 376 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 377 continue; 378 device_reorder_to_tail(link->consumer, NULL); 379 } 380 381 return 0; 382 } 383 384 /** 385 * device_pm_move_to_tail - Move set of devices to the end of device lists 386 * @dev: Device to move 387 * 388 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 389 * 390 * It moves the @dev along with all of its children and all of its consumers 391 * to the ends of the device_kset and dpm_list, recursively. 392 */ 393 void device_pm_move_to_tail(struct device *dev) 394 { 395 int idx; 396 397 idx = device_links_read_lock(); 398 device_pm_lock(); 399 device_reorder_to_tail(dev, NULL); 400 device_pm_unlock(); 401 device_links_read_unlock(idx); 402 } 403 404 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 405 406 static ssize_t status_show(struct device *dev, 407 struct device_attribute *attr, char *buf) 408 { 409 const char *output; 410 411 switch (to_devlink(dev)->status) { 412 case DL_STATE_NONE: 413 output = "not tracked"; 414 break; 415 case DL_STATE_DORMANT: 416 output = "dormant"; 417 break; 418 case DL_STATE_AVAILABLE: 419 output = "available"; 420 break; 421 case DL_STATE_CONSUMER_PROBE: 422 output = "consumer probing"; 423 break; 424 case DL_STATE_ACTIVE: 425 output = "active"; 426 break; 427 case DL_STATE_SUPPLIER_UNBIND: 428 output = "supplier unbinding"; 429 break; 430 default: 431 output = "unknown"; 432 break; 433 } 434 435 return sysfs_emit(buf, "%s\n", output); 436 } 437 static DEVICE_ATTR_RO(status); 438 439 static ssize_t auto_remove_on_show(struct device *dev, 440 struct device_attribute *attr, char *buf) 441 { 442 struct device_link *link = to_devlink(dev); 443 const char *output; 444 445 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 446 output = "supplier unbind"; 447 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 448 output = "consumer unbind"; 449 else 450 output = "never"; 451 452 return sysfs_emit(buf, "%s\n", output); 453 } 454 static DEVICE_ATTR_RO(auto_remove_on); 455 456 static ssize_t runtime_pm_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct device_link *link = to_devlink(dev); 460 461 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 462 } 463 static DEVICE_ATTR_RO(runtime_pm); 464 465 static ssize_t sync_state_only_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct device_link *link = to_devlink(dev); 469 470 return sysfs_emit(buf, "%d\n", 471 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 472 } 473 static DEVICE_ATTR_RO(sync_state_only); 474 475 static struct attribute *devlink_attrs[] = { 476 &dev_attr_status.attr, 477 &dev_attr_auto_remove_on.attr, 478 &dev_attr_runtime_pm.attr, 479 &dev_attr_sync_state_only.attr, 480 NULL, 481 }; 482 ATTRIBUTE_GROUPS(devlink); 483 484 static void device_link_release_fn(struct work_struct *work) 485 { 486 struct device_link *link = container_of(work, struct device_link, rm_work); 487 488 /* Ensure that all references to the link object have been dropped. */ 489 device_link_synchronize_removal(); 490 491 pm_runtime_release_supplier(link); 492 /* 493 * If supplier_preactivated is set, the link has been dropped between 494 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 495 * in __driver_probe_device(). In that case, drop the supplier's 496 * PM-runtime usage counter to remove the reference taken by 497 * pm_runtime_get_suppliers(). 498 */ 499 if (link->supplier_preactivated) 500 pm_runtime_put_noidle(link->supplier); 501 502 pm_request_idle(link->supplier); 503 504 put_device(link->consumer); 505 put_device(link->supplier); 506 kfree(link); 507 } 508 509 static void devlink_dev_release(struct device *dev) 510 { 511 struct device_link *link = to_devlink(dev); 512 513 INIT_WORK(&link->rm_work, device_link_release_fn); 514 /* 515 * It may take a while to complete this work because of the SRCU 516 * synchronization in device_link_release_fn() and if the consumer or 517 * supplier devices get deleted when it runs, so put it into the "long" 518 * workqueue. 519 */ 520 queue_work(system_long_wq, &link->rm_work); 521 } 522 523 static struct class devlink_class = { 524 .name = "devlink", 525 .owner = THIS_MODULE, 526 .dev_groups = devlink_groups, 527 .dev_release = devlink_dev_release, 528 }; 529 530 static int devlink_add_symlinks(struct device *dev, 531 struct class_interface *class_intf) 532 { 533 int ret; 534 size_t len; 535 struct device_link *link = to_devlink(dev); 536 struct device *sup = link->supplier; 537 struct device *con = link->consumer; 538 char *buf; 539 540 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 541 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 542 len += strlen(":"); 543 len += strlen("supplier:") + 1; 544 buf = kzalloc(len, GFP_KERNEL); 545 if (!buf) 546 return -ENOMEM; 547 548 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 549 if (ret) 550 goto out; 551 552 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 553 if (ret) 554 goto err_con; 555 556 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 557 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 558 if (ret) 559 goto err_con_dev; 560 561 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 562 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 563 if (ret) 564 goto err_sup_dev; 565 566 goto out; 567 568 err_sup_dev: 569 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 570 sysfs_remove_link(&sup->kobj, buf); 571 err_con_dev: 572 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 573 err_con: 574 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 575 out: 576 kfree(buf); 577 return ret; 578 } 579 580 static void devlink_remove_symlinks(struct device *dev, 581 struct class_interface *class_intf) 582 { 583 struct device_link *link = to_devlink(dev); 584 size_t len; 585 struct device *sup = link->supplier; 586 struct device *con = link->consumer; 587 char *buf; 588 589 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 590 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 591 592 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 593 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 594 len += strlen(":"); 595 len += strlen("supplier:") + 1; 596 buf = kzalloc(len, GFP_KERNEL); 597 if (!buf) { 598 WARN(1, "Unable to properly free device link symlinks!\n"); 599 return; 600 } 601 602 if (device_is_registered(con)) { 603 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 604 sysfs_remove_link(&con->kobj, buf); 605 } 606 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 607 sysfs_remove_link(&sup->kobj, buf); 608 kfree(buf); 609 } 610 611 static struct class_interface devlink_class_intf = { 612 .class = &devlink_class, 613 .add_dev = devlink_add_symlinks, 614 .remove_dev = devlink_remove_symlinks, 615 }; 616 617 static int __init devlink_class_init(void) 618 { 619 int ret; 620 621 ret = class_register(&devlink_class); 622 if (ret) 623 return ret; 624 625 ret = class_interface_register(&devlink_class_intf); 626 if (ret) 627 class_unregister(&devlink_class); 628 629 return ret; 630 } 631 postcore_initcall(devlink_class_init); 632 633 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 634 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 635 DL_FLAG_AUTOPROBE_CONSUMER | \ 636 DL_FLAG_SYNC_STATE_ONLY | \ 637 DL_FLAG_INFERRED) 638 639 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 640 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 641 642 /** 643 * device_link_add - Create a link between two devices. 644 * @consumer: Consumer end of the link. 645 * @supplier: Supplier end of the link. 646 * @flags: Link flags. 647 * 648 * The caller is responsible for the proper synchronization of the link creation 649 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 650 * runtime PM framework to take the link into account. Second, if the 651 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 652 * be forced into the active meta state and reference-counted upon the creation 653 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 654 * ignored. 655 * 656 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 657 * expected to release the link returned by it directly with the help of either 658 * device_link_del() or device_link_remove(). 659 * 660 * If that flag is not set, however, the caller of this function is handing the 661 * management of the link over to the driver core entirely and its return value 662 * can only be used to check whether or not the link is present. In that case, 663 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 664 * flags can be used to indicate to the driver core when the link can be safely 665 * deleted. Namely, setting one of them in @flags indicates to the driver core 666 * that the link is not going to be used (by the given caller of this function) 667 * after unbinding the consumer or supplier driver, respectively, from its 668 * device, so the link can be deleted at that point. If none of them is set, 669 * the link will be maintained until one of the devices pointed to by it (either 670 * the consumer or the supplier) is unregistered. 671 * 672 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 673 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 674 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 675 * be used to request the driver core to automatically probe for a consumer 676 * driver after successfully binding a driver to the supplier device. 677 * 678 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 679 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 680 * the same time is invalid and will cause NULL to be returned upfront. 681 * However, if a device link between the given @consumer and @supplier pair 682 * exists already when this function is called for them, the existing link will 683 * be returned regardless of its current type and status (the link's flags may 684 * be modified then). The caller of this function is then expected to treat 685 * the link as though it has just been created, so (in particular) if 686 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 687 * explicitly when not needed any more (as stated above). 688 * 689 * A side effect of the link creation is re-ordering of dpm_list and the 690 * devices_kset list by moving the consumer device and all devices depending 691 * on it to the ends of these lists (that does not happen to devices that have 692 * not been registered when this function is called). 693 * 694 * The supplier device is required to be registered when this function is called 695 * and NULL will be returned if that is not the case. The consumer device need 696 * not be registered, however. 697 */ 698 struct device_link *device_link_add(struct device *consumer, 699 struct device *supplier, u32 flags) 700 { 701 struct device_link *link; 702 703 if (!consumer || !supplier || consumer == supplier || 704 flags & ~DL_ADD_VALID_FLAGS || 705 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 706 (flags & DL_FLAG_SYNC_STATE_ONLY && 707 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 708 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 709 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 710 DL_FLAG_AUTOREMOVE_SUPPLIER))) 711 return NULL; 712 713 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 714 if (pm_runtime_get_sync(supplier) < 0) { 715 pm_runtime_put_noidle(supplier); 716 return NULL; 717 } 718 } 719 720 if (!(flags & DL_FLAG_STATELESS)) 721 flags |= DL_FLAG_MANAGED; 722 723 device_links_write_lock(); 724 device_pm_lock(); 725 726 /* 727 * If the supplier has not been fully registered yet or there is a 728 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 729 * the supplier already in the graph, return NULL. If the link is a 730 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 731 * because it only affects sync_state() callbacks. 732 */ 733 if (!device_pm_initialized(supplier) 734 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 735 device_is_dependent(consumer, supplier))) { 736 link = NULL; 737 goto out; 738 } 739 740 /* 741 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 742 * So, only create it if the consumer hasn't probed yet. 743 */ 744 if (flags & DL_FLAG_SYNC_STATE_ONLY && 745 consumer->links.status != DL_DEV_NO_DRIVER && 746 consumer->links.status != DL_DEV_PROBING) { 747 link = NULL; 748 goto out; 749 } 750 751 /* 752 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 753 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 754 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 755 */ 756 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 757 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 758 759 list_for_each_entry(link, &supplier->links.consumers, s_node) { 760 if (link->consumer != consumer) 761 continue; 762 763 if (link->flags & DL_FLAG_INFERRED && 764 !(flags & DL_FLAG_INFERRED)) 765 link->flags &= ~DL_FLAG_INFERRED; 766 767 if (flags & DL_FLAG_PM_RUNTIME) { 768 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 769 pm_runtime_new_link(consumer); 770 link->flags |= DL_FLAG_PM_RUNTIME; 771 } 772 if (flags & DL_FLAG_RPM_ACTIVE) 773 refcount_inc(&link->rpm_active); 774 } 775 776 if (flags & DL_FLAG_STATELESS) { 777 kref_get(&link->kref); 778 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 779 !(link->flags & DL_FLAG_STATELESS)) { 780 link->flags |= DL_FLAG_STATELESS; 781 goto reorder; 782 } else { 783 link->flags |= DL_FLAG_STATELESS; 784 goto out; 785 } 786 } 787 788 /* 789 * If the life time of the link following from the new flags is 790 * longer than indicated by the flags of the existing link, 791 * update the existing link to stay around longer. 792 */ 793 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 794 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 795 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 796 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 797 } 798 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 799 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 800 DL_FLAG_AUTOREMOVE_SUPPLIER); 801 } 802 if (!(link->flags & DL_FLAG_MANAGED)) { 803 kref_get(&link->kref); 804 link->flags |= DL_FLAG_MANAGED; 805 device_link_init_status(link, consumer, supplier); 806 } 807 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 808 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 809 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 810 goto reorder; 811 } 812 813 goto out; 814 } 815 816 link = kzalloc(sizeof(*link), GFP_KERNEL); 817 if (!link) 818 goto out; 819 820 refcount_set(&link->rpm_active, 1); 821 822 get_device(supplier); 823 link->supplier = supplier; 824 INIT_LIST_HEAD(&link->s_node); 825 get_device(consumer); 826 link->consumer = consumer; 827 INIT_LIST_HEAD(&link->c_node); 828 link->flags = flags; 829 kref_init(&link->kref); 830 831 link->link_dev.class = &devlink_class; 832 device_set_pm_not_required(&link->link_dev); 833 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 834 dev_bus_name(supplier), dev_name(supplier), 835 dev_bus_name(consumer), dev_name(consumer)); 836 if (device_register(&link->link_dev)) { 837 put_device(&link->link_dev); 838 link = NULL; 839 goto out; 840 } 841 842 if (flags & DL_FLAG_PM_RUNTIME) { 843 if (flags & DL_FLAG_RPM_ACTIVE) 844 refcount_inc(&link->rpm_active); 845 846 pm_runtime_new_link(consumer); 847 } 848 849 /* Determine the initial link state. */ 850 if (flags & DL_FLAG_STATELESS) 851 link->status = DL_STATE_NONE; 852 else 853 device_link_init_status(link, consumer, supplier); 854 855 /* 856 * Some callers expect the link creation during consumer driver probe to 857 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 858 */ 859 if (link->status == DL_STATE_CONSUMER_PROBE && 860 flags & DL_FLAG_PM_RUNTIME) 861 pm_runtime_resume(supplier); 862 863 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 864 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 865 866 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 867 dev_dbg(consumer, 868 "Linked as a sync state only consumer to %s\n", 869 dev_name(supplier)); 870 goto out; 871 } 872 873 reorder: 874 /* 875 * Move the consumer and all of the devices depending on it to the end 876 * of dpm_list and the devices_kset list. 877 * 878 * It is necessary to hold dpm_list locked throughout all that or else 879 * we may end up suspending with a wrong ordering of it. 880 */ 881 device_reorder_to_tail(consumer, NULL); 882 883 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 884 885 out: 886 device_pm_unlock(); 887 device_links_write_unlock(); 888 889 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 890 pm_runtime_put(supplier); 891 892 return link; 893 } 894 EXPORT_SYMBOL_GPL(device_link_add); 895 896 static void __device_link_del(struct kref *kref) 897 { 898 struct device_link *link = container_of(kref, struct device_link, kref); 899 900 dev_dbg(link->consumer, "Dropping the link to %s\n", 901 dev_name(link->supplier)); 902 903 pm_runtime_drop_link(link); 904 905 device_link_remove_from_lists(link); 906 device_unregister(&link->link_dev); 907 } 908 909 static void device_link_put_kref(struct device_link *link) 910 { 911 if (link->flags & DL_FLAG_STATELESS) 912 kref_put(&link->kref, __device_link_del); 913 else if (!device_is_registered(link->consumer)) 914 __device_link_del(&link->kref); 915 else 916 WARN(1, "Unable to drop a managed device link reference\n"); 917 } 918 919 /** 920 * device_link_del - Delete a stateless link between two devices. 921 * @link: Device link to delete. 922 * 923 * The caller must ensure proper synchronization of this function with runtime 924 * PM. If the link was added multiple times, it needs to be deleted as often. 925 * Care is required for hotplugged devices: Their links are purged on removal 926 * and calling device_link_del() is then no longer allowed. 927 */ 928 void device_link_del(struct device_link *link) 929 { 930 device_links_write_lock(); 931 device_link_put_kref(link); 932 device_links_write_unlock(); 933 } 934 EXPORT_SYMBOL_GPL(device_link_del); 935 936 /** 937 * device_link_remove - Delete a stateless link between two devices. 938 * @consumer: Consumer end of the link. 939 * @supplier: Supplier end of the link. 940 * 941 * The caller must ensure proper synchronization of this function with runtime 942 * PM. 943 */ 944 void device_link_remove(void *consumer, struct device *supplier) 945 { 946 struct device_link *link; 947 948 if (WARN_ON(consumer == supplier)) 949 return; 950 951 device_links_write_lock(); 952 953 list_for_each_entry(link, &supplier->links.consumers, s_node) { 954 if (link->consumer == consumer) { 955 device_link_put_kref(link); 956 break; 957 } 958 } 959 960 device_links_write_unlock(); 961 } 962 EXPORT_SYMBOL_GPL(device_link_remove); 963 964 static void device_links_missing_supplier(struct device *dev) 965 { 966 struct device_link *link; 967 968 list_for_each_entry(link, &dev->links.suppliers, c_node) { 969 if (link->status != DL_STATE_CONSUMER_PROBE) 970 continue; 971 972 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 973 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 974 } else { 975 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 976 WRITE_ONCE(link->status, DL_STATE_DORMANT); 977 } 978 } 979 } 980 981 static bool dev_is_best_effort(struct device *dev) 982 { 983 return (fw_devlink_best_effort && dev->can_match) || 984 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 985 } 986 987 /** 988 * device_links_check_suppliers - Check presence of supplier drivers. 989 * @dev: Consumer device. 990 * 991 * Check links from this device to any suppliers. Walk the list of the device's 992 * links to suppliers and see if all of them are available. If not, simply 993 * return -EPROBE_DEFER. 994 * 995 * We need to guarantee that the supplier will not go away after the check has 996 * been positive here. It only can go away in __device_release_driver() and 997 * that function checks the device's links to consumers. This means we need to 998 * mark the link as "consumer probe in progress" to make the supplier removal 999 * wait for us to complete (or bad things may happen). 1000 * 1001 * Links without the DL_FLAG_MANAGED flag set are ignored. 1002 */ 1003 int device_links_check_suppliers(struct device *dev) 1004 { 1005 struct device_link *link; 1006 int ret = 0, fwnode_ret = 0; 1007 struct fwnode_handle *sup_fw; 1008 1009 /* 1010 * Device waiting for supplier to become available is not allowed to 1011 * probe. 1012 */ 1013 mutex_lock(&fwnode_link_lock); 1014 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 1015 !fw_devlink_is_permissive()) { 1016 sup_fw = list_first_entry(&dev->fwnode->suppliers, 1017 struct fwnode_link, 1018 c_hook)->supplier; 1019 if (!dev_is_best_effort(dev)) { 1020 fwnode_ret = -EPROBE_DEFER; 1021 dev_err_probe(dev, -EPROBE_DEFER, 1022 "wait for supplier %pfwP\n", sup_fw); 1023 } else { 1024 fwnode_ret = -EAGAIN; 1025 } 1026 } 1027 mutex_unlock(&fwnode_link_lock); 1028 if (fwnode_ret == -EPROBE_DEFER) 1029 return fwnode_ret; 1030 1031 device_links_write_lock(); 1032 1033 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1034 if (!(link->flags & DL_FLAG_MANAGED)) 1035 continue; 1036 1037 if (link->status != DL_STATE_AVAILABLE && 1038 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1039 1040 if (dev_is_best_effort(dev) && 1041 link->flags & DL_FLAG_INFERRED && 1042 !link->supplier->can_match) { 1043 ret = -EAGAIN; 1044 continue; 1045 } 1046 1047 device_links_missing_supplier(dev); 1048 dev_err_probe(dev, -EPROBE_DEFER, 1049 "supplier %s not ready\n", 1050 dev_name(link->supplier)); 1051 ret = -EPROBE_DEFER; 1052 break; 1053 } 1054 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1055 } 1056 dev->links.status = DL_DEV_PROBING; 1057 1058 device_links_write_unlock(); 1059 1060 return ret ? ret : fwnode_ret; 1061 } 1062 1063 /** 1064 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1065 * @dev: Device to call sync_state() on 1066 * @list: List head to queue the @dev on 1067 * 1068 * Queues a device for a sync_state() callback when the device links write lock 1069 * isn't held. This allows the sync_state() execution flow to use device links 1070 * APIs. The caller must ensure this function is called with 1071 * device_links_write_lock() held. 1072 * 1073 * This function does a get_device() to make sure the device is not freed while 1074 * on this list. 1075 * 1076 * So the caller must also ensure that device_links_flush_sync_list() is called 1077 * as soon as the caller releases device_links_write_lock(). This is necessary 1078 * to make sure the sync_state() is called in a timely fashion and the 1079 * put_device() is called on this device. 1080 */ 1081 static void __device_links_queue_sync_state(struct device *dev, 1082 struct list_head *list) 1083 { 1084 struct device_link *link; 1085 1086 if (!dev_has_sync_state(dev)) 1087 return; 1088 if (dev->state_synced) 1089 return; 1090 1091 list_for_each_entry(link, &dev->links.consumers, s_node) { 1092 if (!(link->flags & DL_FLAG_MANAGED)) 1093 continue; 1094 if (link->status != DL_STATE_ACTIVE) 1095 return; 1096 } 1097 1098 /* 1099 * Set the flag here to avoid adding the same device to a list more 1100 * than once. This can happen if new consumers get added to the device 1101 * and probed before the list is flushed. 1102 */ 1103 dev->state_synced = true; 1104 1105 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1106 return; 1107 1108 get_device(dev); 1109 list_add_tail(&dev->links.defer_sync, list); 1110 } 1111 1112 /** 1113 * device_links_flush_sync_list - Call sync_state() on a list of devices 1114 * @list: List of devices to call sync_state() on 1115 * @dont_lock_dev: Device for which lock is already held by the caller 1116 * 1117 * Calls sync_state() on all the devices that have been queued for it. This 1118 * function is used in conjunction with __device_links_queue_sync_state(). The 1119 * @dont_lock_dev parameter is useful when this function is called from a 1120 * context where a device lock is already held. 1121 */ 1122 static void device_links_flush_sync_list(struct list_head *list, 1123 struct device *dont_lock_dev) 1124 { 1125 struct device *dev, *tmp; 1126 1127 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1128 list_del_init(&dev->links.defer_sync); 1129 1130 if (dev != dont_lock_dev) 1131 device_lock(dev); 1132 1133 if (dev->bus->sync_state) 1134 dev->bus->sync_state(dev); 1135 else if (dev->driver && dev->driver->sync_state) 1136 dev->driver->sync_state(dev); 1137 1138 if (dev != dont_lock_dev) 1139 device_unlock(dev); 1140 1141 put_device(dev); 1142 } 1143 } 1144 1145 void device_links_supplier_sync_state_pause(void) 1146 { 1147 device_links_write_lock(); 1148 defer_sync_state_count++; 1149 device_links_write_unlock(); 1150 } 1151 1152 void device_links_supplier_sync_state_resume(void) 1153 { 1154 struct device *dev, *tmp; 1155 LIST_HEAD(sync_list); 1156 1157 device_links_write_lock(); 1158 if (!defer_sync_state_count) { 1159 WARN(true, "Unmatched sync_state pause/resume!"); 1160 goto out; 1161 } 1162 defer_sync_state_count--; 1163 if (defer_sync_state_count) 1164 goto out; 1165 1166 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1167 /* 1168 * Delete from deferred_sync list before queuing it to 1169 * sync_list because defer_sync is used for both lists. 1170 */ 1171 list_del_init(&dev->links.defer_sync); 1172 __device_links_queue_sync_state(dev, &sync_list); 1173 } 1174 out: 1175 device_links_write_unlock(); 1176 1177 device_links_flush_sync_list(&sync_list, NULL); 1178 } 1179 1180 static int sync_state_resume_initcall(void) 1181 { 1182 device_links_supplier_sync_state_resume(); 1183 return 0; 1184 } 1185 late_initcall(sync_state_resume_initcall); 1186 1187 static void __device_links_supplier_defer_sync(struct device *sup) 1188 { 1189 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1190 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1191 } 1192 1193 static void device_link_drop_managed(struct device_link *link) 1194 { 1195 link->flags &= ~DL_FLAG_MANAGED; 1196 WRITE_ONCE(link->status, DL_STATE_NONE); 1197 kref_put(&link->kref, __device_link_del); 1198 } 1199 1200 static ssize_t waiting_for_supplier_show(struct device *dev, 1201 struct device_attribute *attr, 1202 char *buf) 1203 { 1204 bool val; 1205 1206 device_lock(dev); 1207 val = !list_empty(&dev->fwnode->suppliers); 1208 device_unlock(dev); 1209 return sysfs_emit(buf, "%u\n", val); 1210 } 1211 static DEVICE_ATTR_RO(waiting_for_supplier); 1212 1213 /** 1214 * device_links_force_bind - Prepares device to be force bound 1215 * @dev: Consumer device. 1216 * 1217 * device_bind_driver() force binds a device to a driver without calling any 1218 * driver probe functions. So the consumer really isn't going to wait for any 1219 * supplier before it's bound to the driver. We still want the device link 1220 * states to be sensible when this happens. 1221 * 1222 * In preparation for device_bind_driver(), this function goes through each 1223 * supplier device links and checks if the supplier is bound. If it is, then 1224 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1225 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1226 */ 1227 void device_links_force_bind(struct device *dev) 1228 { 1229 struct device_link *link, *ln; 1230 1231 device_links_write_lock(); 1232 1233 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1234 if (!(link->flags & DL_FLAG_MANAGED)) 1235 continue; 1236 1237 if (link->status != DL_STATE_AVAILABLE) { 1238 device_link_drop_managed(link); 1239 continue; 1240 } 1241 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1242 } 1243 dev->links.status = DL_DEV_PROBING; 1244 1245 device_links_write_unlock(); 1246 } 1247 1248 /** 1249 * device_links_driver_bound - Update device links after probing its driver. 1250 * @dev: Device to update the links for. 1251 * 1252 * The probe has been successful, so update links from this device to any 1253 * consumers by changing their status to "available". 1254 * 1255 * Also change the status of @dev's links to suppliers to "active". 1256 * 1257 * Links without the DL_FLAG_MANAGED flag set are ignored. 1258 */ 1259 void device_links_driver_bound(struct device *dev) 1260 { 1261 struct device_link *link, *ln; 1262 LIST_HEAD(sync_list); 1263 1264 /* 1265 * If a device binds successfully, it's expected to have created all 1266 * the device links it needs to or make new device links as it needs 1267 * them. So, fw_devlink no longer needs to create device links to any 1268 * of the device's suppliers. 1269 * 1270 * Also, if a child firmware node of this bound device is not added as 1271 * a device by now, assume it is never going to be added and make sure 1272 * other devices don't defer probe indefinitely by waiting for such a 1273 * child device. 1274 */ 1275 if (dev->fwnode && dev->fwnode->dev == dev) { 1276 struct fwnode_handle *child; 1277 fwnode_links_purge_suppliers(dev->fwnode); 1278 fwnode_for_each_available_child_node(dev->fwnode, child) 1279 fw_devlink_purge_absent_suppliers(child); 1280 } 1281 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1282 1283 device_links_write_lock(); 1284 1285 list_for_each_entry(link, &dev->links.consumers, s_node) { 1286 if (!(link->flags & DL_FLAG_MANAGED)) 1287 continue; 1288 1289 /* 1290 * Links created during consumer probe may be in the "consumer 1291 * probe" state to start with if the supplier is still probing 1292 * when they are created and they may become "active" if the 1293 * consumer probe returns first. Skip them here. 1294 */ 1295 if (link->status == DL_STATE_CONSUMER_PROBE || 1296 link->status == DL_STATE_ACTIVE) 1297 continue; 1298 1299 WARN_ON(link->status != DL_STATE_DORMANT); 1300 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1301 1302 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1303 driver_deferred_probe_add(link->consumer); 1304 } 1305 1306 if (defer_sync_state_count) 1307 __device_links_supplier_defer_sync(dev); 1308 else 1309 __device_links_queue_sync_state(dev, &sync_list); 1310 1311 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1312 struct device *supplier; 1313 1314 if (!(link->flags & DL_FLAG_MANAGED)) 1315 continue; 1316 1317 supplier = link->supplier; 1318 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1319 /* 1320 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1321 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1322 * save to drop the managed link completely. 1323 */ 1324 device_link_drop_managed(link); 1325 } else if (dev_is_best_effort(dev) && 1326 link->flags & DL_FLAG_INFERRED && 1327 link->status != DL_STATE_CONSUMER_PROBE && 1328 !link->supplier->can_match) { 1329 /* 1330 * When dev_is_best_effort() is true, we ignore device 1331 * links to suppliers that don't have a driver. If the 1332 * consumer device still managed to probe, there's no 1333 * point in maintaining a device link in a weird state 1334 * (consumer probed before supplier). So delete it. 1335 */ 1336 device_link_drop_managed(link); 1337 } else { 1338 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1339 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1340 } 1341 1342 /* 1343 * This needs to be done even for the deleted 1344 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1345 * device link that was preventing the supplier from getting a 1346 * sync_state() call. 1347 */ 1348 if (defer_sync_state_count) 1349 __device_links_supplier_defer_sync(supplier); 1350 else 1351 __device_links_queue_sync_state(supplier, &sync_list); 1352 } 1353 1354 dev->links.status = DL_DEV_DRIVER_BOUND; 1355 1356 device_links_write_unlock(); 1357 1358 device_links_flush_sync_list(&sync_list, dev); 1359 } 1360 1361 /** 1362 * __device_links_no_driver - Update links of a device without a driver. 1363 * @dev: Device without a drvier. 1364 * 1365 * Delete all non-persistent links from this device to any suppliers. 1366 * 1367 * Persistent links stay around, but their status is changed to "available", 1368 * unless they already are in the "supplier unbind in progress" state in which 1369 * case they need not be updated. 1370 * 1371 * Links without the DL_FLAG_MANAGED flag set are ignored. 1372 */ 1373 static void __device_links_no_driver(struct device *dev) 1374 { 1375 struct device_link *link, *ln; 1376 1377 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1378 if (!(link->flags & DL_FLAG_MANAGED)) 1379 continue; 1380 1381 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1382 device_link_drop_managed(link); 1383 continue; 1384 } 1385 1386 if (link->status != DL_STATE_CONSUMER_PROBE && 1387 link->status != DL_STATE_ACTIVE) 1388 continue; 1389 1390 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1391 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1392 } else { 1393 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1394 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1395 } 1396 } 1397 1398 dev->links.status = DL_DEV_NO_DRIVER; 1399 } 1400 1401 /** 1402 * device_links_no_driver - Update links after failing driver probe. 1403 * @dev: Device whose driver has just failed to probe. 1404 * 1405 * Clean up leftover links to consumers for @dev and invoke 1406 * %__device_links_no_driver() to update links to suppliers for it as 1407 * appropriate. 1408 * 1409 * Links without the DL_FLAG_MANAGED flag set are ignored. 1410 */ 1411 void device_links_no_driver(struct device *dev) 1412 { 1413 struct device_link *link; 1414 1415 device_links_write_lock(); 1416 1417 list_for_each_entry(link, &dev->links.consumers, s_node) { 1418 if (!(link->flags & DL_FLAG_MANAGED)) 1419 continue; 1420 1421 /* 1422 * The probe has failed, so if the status of the link is 1423 * "consumer probe" or "active", it must have been added by 1424 * a probing consumer while this device was still probing. 1425 * Change its state to "dormant", as it represents a valid 1426 * relationship, but it is not functionally meaningful. 1427 */ 1428 if (link->status == DL_STATE_CONSUMER_PROBE || 1429 link->status == DL_STATE_ACTIVE) 1430 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1431 } 1432 1433 __device_links_no_driver(dev); 1434 1435 device_links_write_unlock(); 1436 } 1437 1438 /** 1439 * device_links_driver_cleanup - Update links after driver removal. 1440 * @dev: Device whose driver has just gone away. 1441 * 1442 * Update links to consumers for @dev by changing their status to "dormant" and 1443 * invoke %__device_links_no_driver() to update links to suppliers for it as 1444 * appropriate. 1445 * 1446 * Links without the DL_FLAG_MANAGED flag set are ignored. 1447 */ 1448 void device_links_driver_cleanup(struct device *dev) 1449 { 1450 struct device_link *link, *ln; 1451 1452 device_links_write_lock(); 1453 1454 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1455 if (!(link->flags & DL_FLAG_MANAGED)) 1456 continue; 1457 1458 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1459 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1460 1461 /* 1462 * autoremove the links between this @dev and its consumer 1463 * devices that are not active, i.e. where the link state 1464 * has moved to DL_STATE_SUPPLIER_UNBIND. 1465 */ 1466 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1467 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1468 device_link_drop_managed(link); 1469 1470 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1471 } 1472 1473 list_del_init(&dev->links.defer_sync); 1474 __device_links_no_driver(dev); 1475 1476 device_links_write_unlock(); 1477 } 1478 1479 /** 1480 * device_links_busy - Check if there are any busy links to consumers. 1481 * @dev: Device to check. 1482 * 1483 * Check each consumer of the device and return 'true' if its link's status 1484 * is one of "consumer probe" or "active" (meaning that the given consumer is 1485 * probing right now or its driver is present). Otherwise, change the link 1486 * state to "supplier unbind" to prevent the consumer from being probed 1487 * successfully going forward. 1488 * 1489 * Return 'false' if there are no probing or active consumers. 1490 * 1491 * Links without the DL_FLAG_MANAGED flag set are ignored. 1492 */ 1493 bool device_links_busy(struct device *dev) 1494 { 1495 struct device_link *link; 1496 bool ret = false; 1497 1498 device_links_write_lock(); 1499 1500 list_for_each_entry(link, &dev->links.consumers, s_node) { 1501 if (!(link->flags & DL_FLAG_MANAGED)) 1502 continue; 1503 1504 if (link->status == DL_STATE_CONSUMER_PROBE 1505 || link->status == DL_STATE_ACTIVE) { 1506 ret = true; 1507 break; 1508 } 1509 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1510 } 1511 1512 dev->links.status = DL_DEV_UNBINDING; 1513 1514 device_links_write_unlock(); 1515 return ret; 1516 } 1517 1518 /** 1519 * device_links_unbind_consumers - Force unbind consumers of the given device. 1520 * @dev: Device to unbind the consumers of. 1521 * 1522 * Walk the list of links to consumers for @dev and if any of them is in the 1523 * "consumer probe" state, wait for all device probes in progress to complete 1524 * and start over. 1525 * 1526 * If that's not the case, change the status of the link to "supplier unbind" 1527 * and check if the link was in the "active" state. If so, force the consumer 1528 * driver to unbind and start over (the consumer will not re-probe as we have 1529 * changed the state of the link already). 1530 * 1531 * Links without the DL_FLAG_MANAGED flag set are ignored. 1532 */ 1533 void device_links_unbind_consumers(struct device *dev) 1534 { 1535 struct device_link *link; 1536 1537 start: 1538 device_links_write_lock(); 1539 1540 list_for_each_entry(link, &dev->links.consumers, s_node) { 1541 enum device_link_state status; 1542 1543 if (!(link->flags & DL_FLAG_MANAGED) || 1544 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1545 continue; 1546 1547 status = link->status; 1548 if (status == DL_STATE_CONSUMER_PROBE) { 1549 device_links_write_unlock(); 1550 1551 wait_for_device_probe(); 1552 goto start; 1553 } 1554 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1555 if (status == DL_STATE_ACTIVE) { 1556 struct device *consumer = link->consumer; 1557 1558 get_device(consumer); 1559 1560 device_links_write_unlock(); 1561 1562 device_release_driver_internal(consumer, NULL, 1563 consumer->parent); 1564 put_device(consumer); 1565 goto start; 1566 } 1567 } 1568 1569 device_links_write_unlock(); 1570 } 1571 1572 /** 1573 * device_links_purge - Delete existing links to other devices. 1574 * @dev: Target device. 1575 */ 1576 static void device_links_purge(struct device *dev) 1577 { 1578 struct device_link *link, *ln; 1579 1580 if (dev->class == &devlink_class) 1581 return; 1582 1583 /* 1584 * Delete all of the remaining links from this device to any other 1585 * devices (either consumers or suppliers). 1586 */ 1587 device_links_write_lock(); 1588 1589 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1590 WARN_ON(link->status == DL_STATE_ACTIVE); 1591 __device_link_del(&link->kref); 1592 } 1593 1594 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1595 WARN_ON(link->status != DL_STATE_DORMANT && 1596 link->status != DL_STATE_NONE); 1597 __device_link_del(&link->kref); 1598 } 1599 1600 device_links_write_unlock(); 1601 } 1602 1603 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1604 DL_FLAG_SYNC_STATE_ONLY) 1605 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1606 DL_FLAG_AUTOPROBE_CONSUMER) 1607 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1608 DL_FLAG_PM_RUNTIME) 1609 1610 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1611 static int __init fw_devlink_setup(char *arg) 1612 { 1613 if (!arg) 1614 return -EINVAL; 1615 1616 if (strcmp(arg, "off") == 0) { 1617 fw_devlink_flags = 0; 1618 } else if (strcmp(arg, "permissive") == 0) { 1619 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1620 } else if (strcmp(arg, "on") == 0) { 1621 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1622 } else if (strcmp(arg, "rpm") == 0) { 1623 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1624 } 1625 return 0; 1626 } 1627 early_param("fw_devlink", fw_devlink_setup); 1628 1629 static bool fw_devlink_strict; 1630 static int __init fw_devlink_strict_setup(char *arg) 1631 { 1632 return kstrtobool(arg, &fw_devlink_strict); 1633 } 1634 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1635 1636 u32 fw_devlink_get_flags(void) 1637 { 1638 return fw_devlink_flags; 1639 } 1640 1641 static bool fw_devlink_is_permissive(void) 1642 { 1643 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1644 } 1645 1646 bool fw_devlink_is_strict(void) 1647 { 1648 return fw_devlink_strict && !fw_devlink_is_permissive(); 1649 } 1650 1651 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1652 { 1653 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1654 return; 1655 1656 fwnode_call_int_op(fwnode, add_links); 1657 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1658 } 1659 1660 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1661 { 1662 struct fwnode_handle *child = NULL; 1663 1664 fw_devlink_parse_fwnode(fwnode); 1665 1666 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1667 fw_devlink_parse_fwtree(child); 1668 } 1669 1670 static void fw_devlink_relax_link(struct device_link *link) 1671 { 1672 if (!(link->flags & DL_FLAG_INFERRED)) 1673 return; 1674 1675 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1676 return; 1677 1678 pm_runtime_drop_link(link); 1679 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1680 dev_dbg(link->consumer, "Relaxing link with %s\n", 1681 dev_name(link->supplier)); 1682 } 1683 1684 static int fw_devlink_no_driver(struct device *dev, void *data) 1685 { 1686 struct device_link *link = to_devlink(dev); 1687 1688 if (!link->supplier->can_match) 1689 fw_devlink_relax_link(link); 1690 1691 return 0; 1692 } 1693 1694 void fw_devlink_drivers_done(void) 1695 { 1696 fw_devlink_drv_reg_done = true; 1697 device_links_write_lock(); 1698 class_for_each_device(&devlink_class, NULL, NULL, 1699 fw_devlink_no_driver); 1700 device_links_write_unlock(); 1701 } 1702 1703 /** 1704 * wait_for_init_devices_probe - Try to probe any device needed for init 1705 * 1706 * Some devices might need to be probed and bound successfully before the kernel 1707 * boot sequence can finish and move on to init/userspace. For example, a 1708 * network interface might need to be bound to be able to mount a NFS rootfs. 1709 * 1710 * With fw_devlink=on by default, some of these devices might be blocked from 1711 * probing because they are waiting on a optional supplier that doesn't have a 1712 * driver. While fw_devlink will eventually identify such devices and unblock 1713 * the probing automatically, it might be too late by the time it unblocks the 1714 * probing of devices. For example, the IP4 autoconfig might timeout before 1715 * fw_devlink unblocks probing of the network interface. 1716 * 1717 * This function is available to temporarily try and probe all devices that have 1718 * a driver even if some of their suppliers haven't been added or don't have 1719 * drivers. 1720 * 1721 * The drivers can then decide which of the suppliers are optional vs mandatory 1722 * and probe the device if possible. By the time this function returns, all such 1723 * "best effort" probes are guaranteed to be completed. If a device successfully 1724 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1725 * device where the supplier hasn't yet probed successfully because they have to 1726 * be optional dependencies. 1727 * 1728 * Any devices that didn't successfully probe go back to being treated as if 1729 * this function was never called. 1730 * 1731 * This also means that some devices that aren't needed for init and could have 1732 * waited for their optional supplier to probe (when the supplier's module is 1733 * loaded later on) would end up probing prematurely with limited functionality. 1734 * So call this function only when boot would fail without it. 1735 */ 1736 void __init wait_for_init_devices_probe(void) 1737 { 1738 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1739 return; 1740 1741 /* 1742 * Wait for all ongoing probes to finish so that the "best effort" is 1743 * only applied to devices that can't probe otherwise. 1744 */ 1745 wait_for_device_probe(); 1746 1747 pr_info("Trying to probe devices needed for running init ...\n"); 1748 fw_devlink_best_effort = true; 1749 driver_deferred_probe_trigger(); 1750 1751 /* 1752 * Wait for all "best effort" probes to finish before going back to 1753 * normal enforcement. 1754 */ 1755 wait_for_device_probe(); 1756 fw_devlink_best_effort = false; 1757 } 1758 1759 static void fw_devlink_unblock_consumers(struct device *dev) 1760 { 1761 struct device_link *link; 1762 1763 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1764 return; 1765 1766 device_links_write_lock(); 1767 list_for_each_entry(link, &dev->links.consumers, s_node) 1768 fw_devlink_relax_link(link); 1769 device_links_write_unlock(); 1770 } 1771 1772 /** 1773 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1774 * @con: Device to check dependencies for. 1775 * @sup: Device to check against. 1776 * 1777 * Check if @sup depends on @con or any device dependent on it (its child or 1778 * its consumer etc). When such a cyclic dependency is found, convert all 1779 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1780 * This is the equivalent of doing fw_devlink=permissive just between the 1781 * devices in the cycle. We need to do this because, at this point, fw_devlink 1782 * can't tell which of these dependencies is not a real dependency. 1783 * 1784 * Return 1 if a cycle is found. Otherwise, return 0. 1785 */ 1786 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1787 { 1788 struct device_link *link; 1789 int ret; 1790 1791 if (con == sup) 1792 return 1; 1793 1794 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1795 if (ret) 1796 return ret; 1797 1798 list_for_each_entry(link, &con->links.consumers, s_node) { 1799 if ((link->flags & ~DL_FLAG_INFERRED) == 1800 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1801 continue; 1802 1803 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1804 continue; 1805 1806 ret = 1; 1807 1808 fw_devlink_relax_link(link); 1809 } 1810 return ret; 1811 } 1812 1813 /** 1814 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1815 * @con: consumer device for the device link 1816 * @sup_handle: fwnode handle of supplier 1817 * @flags: devlink flags 1818 * 1819 * This function will try to create a device link between the consumer device 1820 * @con and the supplier device represented by @sup_handle. 1821 * 1822 * The supplier has to be provided as a fwnode because incorrect cycles in 1823 * fwnode links can sometimes cause the supplier device to never be created. 1824 * This function detects such cases and returns an error if it cannot create a 1825 * device link from the consumer to a missing supplier. 1826 * 1827 * Returns, 1828 * 0 on successfully creating a device link 1829 * -EINVAL if the device link cannot be created as expected 1830 * -EAGAIN if the device link cannot be created right now, but it may be 1831 * possible to do that in the future 1832 */ 1833 static int fw_devlink_create_devlink(struct device *con, 1834 struct fwnode_handle *sup_handle, u32 flags) 1835 { 1836 struct device *sup_dev; 1837 int ret = 0; 1838 1839 /* 1840 * In some cases, a device P might also be a supplier to its child node 1841 * C. However, this would defer the probe of C until the probe of P 1842 * completes successfully. This is perfectly fine in the device driver 1843 * model. device_add() doesn't guarantee probe completion of the device 1844 * by the time it returns. 1845 * 1846 * However, there are a few drivers that assume C will finish probing 1847 * as soon as it's added and before P finishes probing. So, we provide 1848 * a flag to let fw_devlink know not to delay the probe of C until the 1849 * probe of P completes successfully. 1850 * 1851 * When such a flag is set, we can't create device links where P is the 1852 * supplier of C as that would delay the probe of C. 1853 */ 1854 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 1855 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 1856 return -EINVAL; 1857 1858 sup_dev = get_dev_from_fwnode(sup_handle); 1859 if (sup_dev) { 1860 /* 1861 * If it's one of those drivers that don't actually bind to 1862 * their device using driver core, then don't wait on this 1863 * supplier device indefinitely. 1864 */ 1865 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1866 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1867 ret = -EINVAL; 1868 goto out; 1869 } 1870 1871 /* 1872 * If this fails, it is due to cycles in device links. Just 1873 * give up on this link and treat it as invalid. 1874 */ 1875 if (!device_link_add(con, sup_dev, flags) && 1876 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1877 dev_info(con, "Fixing up cyclic dependency with %s\n", 1878 dev_name(sup_dev)); 1879 device_links_write_lock(); 1880 fw_devlink_relax_cycle(con, sup_dev); 1881 device_links_write_unlock(); 1882 device_link_add(con, sup_dev, 1883 FW_DEVLINK_FLAGS_PERMISSIVE); 1884 ret = -EINVAL; 1885 } 1886 1887 goto out; 1888 } 1889 1890 /* Supplier that's already initialized without a struct device. */ 1891 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1892 return -EINVAL; 1893 1894 /* 1895 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1896 * cycles. So cycle detection isn't necessary and shouldn't be 1897 * done. 1898 */ 1899 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1900 return -EAGAIN; 1901 1902 /* 1903 * If we can't find the supplier device from its fwnode, it might be 1904 * due to a cyclic dependency between fwnodes. Some of these cycles can 1905 * be broken by applying logic. Check for these types of cycles and 1906 * break them so that devices in the cycle probe properly. 1907 * 1908 * If the supplier's parent is dependent on the consumer, then the 1909 * consumer and supplier have a cyclic dependency. Since fw_devlink 1910 * can't tell which of the inferred dependencies are incorrect, don't 1911 * enforce probe ordering between any of the devices in this cyclic 1912 * dependency. Do this by relaxing all the fw_devlink device links in 1913 * this cycle and by treating the fwnode link between the consumer and 1914 * the supplier as an invalid dependency. 1915 */ 1916 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1917 if (sup_dev && device_is_dependent(con, sup_dev)) { 1918 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n", 1919 sup_handle, dev_name(sup_dev)); 1920 device_links_write_lock(); 1921 fw_devlink_relax_cycle(con, sup_dev); 1922 device_links_write_unlock(); 1923 ret = -EINVAL; 1924 } else { 1925 /* 1926 * Can't check for cycles or no cycles. So let's try 1927 * again later. 1928 */ 1929 ret = -EAGAIN; 1930 } 1931 1932 out: 1933 put_device(sup_dev); 1934 return ret; 1935 } 1936 1937 /** 1938 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1939 * @dev: Device that needs to be linked to its consumers 1940 * 1941 * This function looks at all the consumer fwnodes of @dev and creates device 1942 * links between the consumer device and @dev (supplier). 1943 * 1944 * If the consumer device has not been added yet, then this function creates a 1945 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1946 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1947 * sync_state() callback before the real consumer device gets to be added and 1948 * then probed. 1949 * 1950 * Once device links are created from the real consumer to @dev (supplier), the 1951 * fwnode links are deleted. 1952 */ 1953 static void __fw_devlink_link_to_consumers(struct device *dev) 1954 { 1955 struct fwnode_handle *fwnode = dev->fwnode; 1956 struct fwnode_link *link, *tmp; 1957 1958 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1959 u32 dl_flags = fw_devlink_get_flags(); 1960 struct device *con_dev; 1961 bool own_link = true; 1962 int ret; 1963 1964 con_dev = get_dev_from_fwnode(link->consumer); 1965 /* 1966 * If consumer device is not available yet, make a "proxy" 1967 * SYNC_STATE_ONLY link from the consumer's parent device to 1968 * the supplier device. This is necessary to make sure the 1969 * supplier doesn't get a sync_state() callback before the real 1970 * consumer can create a device link to the supplier. 1971 * 1972 * This proxy link step is needed to handle the case where the 1973 * consumer's parent device is added before the supplier. 1974 */ 1975 if (!con_dev) { 1976 con_dev = fwnode_get_next_parent_dev(link->consumer); 1977 /* 1978 * However, if the consumer's parent device is also the 1979 * parent of the supplier, don't create a 1980 * consumer-supplier link from the parent to its child 1981 * device. Such a dependency is impossible. 1982 */ 1983 if (con_dev && 1984 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1985 put_device(con_dev); 1986 con_dev = NULL; 1987 } else { 1988 own_link = false; 1989 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1990 } 1991 } 1992 1993 if (!con_dev) 1994 continue; 1995 1996 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1997 put_device(con_dev); 1998 if (!own_link || ret == -EAGAIN) 1999 continue; 2000 2001 __fwnode_link_del(link); 2002 } 2003 } 2004 2005 /** 2006 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2007 * @dev: The consumer device that needs to be linked to its suppliers 2008 * @fwnode: Root of the fwnode tree that is used to create device links 2009 * 2010 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2011 * @fwnode and creates device links between @dev (consumer) and all the 2012 * supplier devices of the entire fwnode tree at @fwnode. 2013 * 2014 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2015 * and the real suppliers of @dev. Once these device links are created, the 2016 * fwnode links are deleted. When such device links are successfully created, 2017 * this function is called recursively on those supplier devices. This is 2018 * needed to detect and break some invalid cycles in fwnode links. See 2019 * fw_devlink_create_devlink() for more details. 2020 * 2021 * In addition, it also looks at all the suppliers of the entire fwnode tree 2022 * because some of the child devices of @dev that have not been added yet 2023 * (because @dev hasn't probed) might already have their suppliers added to 2024 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2025 * @dev (consumer) and these suppliers to make sure they don't execute their 2026 * sync_state() callbacks before these child devices have a chance to create 2027 * their device links. The fwnode links that correspond to the child devices 2028 * aren't delete because they are needed later to create the device links 2029 * between the real consumer and supplier devices. 2030 */ 2031 static void __fw_devlink_link_to_suppliers(struct device *dev, 2032 struct fwnode_handle *fwnode) 2033 { 2034 bool own_link = (dev->fwnode == fwnode); 2035 struct fwnode_link *link, *tmp; 2036 struct fwnode_handle *child = NULL; 2037 u32 dl_flags; 2038 2039 if (own_link) 2040 dl_flags = fw_devlink_get_flags(); 2041 else 2042 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2043 2044 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2045 int ret; 2046 struct device *sup_dev; 2047 struct fwnode_handle *sup = link->supplier; 2048 2049 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 2050 if (!own_link || ret == -EAGAIN) 2051 continue; 2052 2053 __fwnode_link_del(link); 2054 2055 /* If no device link was created, nothing more to do. */ 2056 if (ret) 2057 continue; 2058 2059 /* 2060 * If a device link was successfully created to a supplier, we 2061 * now need to try and link the supplier to all its suppliers. 2062 * 2063 * This is needed to detect and delete false dependencies in 2064 * fwnode links that haven't been converted to a device link 2065 * yet. See comments in fw_devlink_create_devlink() for more 2066 * details on the false dependency. 2067 * 2068 * Without deleting these false dependencies, some devices will 2069 * never probe because they'll keep waiting for their false 2070 * dependency fwnode links to be converted to device links. 2071 */ 2072 sup_dev = get_dev_from_fwnode(sup); 2073 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 2074 put_device(sup_dev); 2075 } 2076 2077 /* 2078 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2079 * all the descendants. This proxy link step is needed to handle the 2080 * case where the supplier is added before the consumer's parent device 2081 * (@dev). 2082 */ 2083 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2084 __fw_devlink_link_to_suppliers(dev, child); 2085 } 2086 2087 static void fw_devlink_link_device(struct device *dev) 2088 { 2089 struct fwnode_handle *fwnode = dev->fwnode; 2090 2091 if (!fw_devlink_flags) 2092 return; 2093 2094 fw_devlink_parse_fwtree(fwnode); 2095 2096 mutex_lock(&fwnode_link_lock); 2097 __fw_devlink_link_to_consumers(dev); 2098 __fw_devlink_link_to_suppliers(dev, fwnode); 2099 mutex_unlock(&fwnode_link_lock); 2100 } 2101 2102 /* Device links support end. */ 2103 2104 int (*platform_notify)(struct device *dev) = NULL; 2105 int (*platform_notify_remove)(struct device *dev) = NULL; 2106 static struct kobject *dev_kobj; 2107 struct kobject *sysfs_dev_char_kobj; 2108 struct kobject *sysfs_dev_block_kobj; 2109 2110 static DEFINE_MUTEX(device_hotplug_lock); 2111 2112 void lock_device_hotplug(void) 2113 { 2114 mutex_lock(&device_hotplug_lock); 2115 } 2116 2117 void unlock_device_hotplug(void) 2118 { 2119 mutex_unlock(&device_hotplug_lock); 2120 } 2121 2122 int lock_device_hotplug_sysfs(void) 2123 { 2124 if (mutex_trylock(&device_hotplug_lock)) 2125 return 0; 2126 2127 /* Avoid busy looping (5 ms of sleep should do). */ 2128 msleep(5); 2129 return restart_syscall(); 2130 } 2131 2132 #ifdef CONFIG_BLOCK 2133 static inline int device_is_not_partition(struct device *dev) 2134 { 2135 return !(dev->type == &part_type); 2136 } 2137 #else 2138 static inline int device_is_not_partition(struct device *dev) 2139 { 2140 return 1; 2141 } 2142 #endif 2143 2144 static void device_platform_notify(struct device *dev) 2145 { 2146 acpi_device_notify(dev); 2147 2148 software_node_notify(dev); 2149 2150 if (platform_notify) 2151 platform_notify(dev); 2152 } 2153 2154 static void device_platform_notify_remove(struct device *dev) 2155 { 2156 acpi_device_notify_remove(dev); 2157 2158 software_node_notify_remove(dev); 2159 2160 if (platform_notify_remove) 2161 platform_notify_remove(dev); 2162 } 2163 2164 /** 2165 * dev_driver_string - Return a device's driver name, if at all possible 2166 * @dev: struct device to get the name of 2167 * 2168 * Will return the device's driver's name if it is bound to a device. If 2169 * the device is not bound to a driver, it will return the name of the bus 2170 * it is attached to. If it is not attached to a bus either, an empty 2171 * string will be returned. 2172 */ 2173 const char *dev_driver_string(const struct device *dev) 2174 { 2175 struct device_driver *drv; 2176 2177 /* dev->driver can change to NULL underneath us because of unbinding, 2178 * so be careful about accessing it. dev->bus and dev->class should 2179 * never change once they are set, so they don't need special care. 2180 */ 2181 drv = READ_ONCE(dev->driver); 2182 return drv ? drv->name : dev_bus_name(dev); 2183 } 2184 EXPORT_SYMBOL(dev_driver_string); 2185 2186 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2187 2188 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2189 char *buf) 2190 { 2191 struct device_attribute *dev_attr = to_dev_attr(attr); 2192 struct device *dev = kobj_to_dev(kobj); 2193 ssize_t ret = -EIO; 2194 2195 if (dev_attr->show) 2196 ret = dev_attr->show(dev, dev_attr, buf); 2197 if (ret >= (ssize_t)PAGE_SIZE) { 2198 printk("dev_attr_show: %pS returned bad count\n", 2199 dev_attr->show); 2200 } 2201 return ret; 2202 } 2203 2204 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2205 const char *buf, size_t count) 2206 { 2207 struct device_attribute *dev_attr = to_dev_attr(attr); 2208 struct device *dev = kobj_to_dev(kobj); 2209 ssize_t ret = -EIO; 2210 2211 if (dev_attr->store) 2212 ret = dev_attr->store(dev, dev_attr, buf, count); 2213 return ret; 2214 } 2215 2216 static const struct sysfs_ops dev_sysfs_ops = { 2217 .show = dev_attr_show, 2218 .store = dev_attr_store, 2219 }; 2220 2221 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2222 2223 ssize_t device_store_ulong(struct device *dev, 2224 struct device_attribute *attr, 2225 const char *buf, size_t size) 2226 { 2227 struct dev_ext_attribute *ea = to_ext_attr(attr); 2228 int ret; 2229 unsigned long new; 2230 2231 ret = kstrtoul(buf, 0, &new); 2232 if (ret) 2233 return ret; 2234 *(unsigned long *)(ea->var) = new; 2235 /* Always return full write size even if we didn't consume all */ 2236 return size; 2237 } 2238 EXPORT_SYMBOL_GPL(device_store_ulong); 2239 2240 ssize_t device_show_ulong(struct device *dev, 2241 struct device_attribute *attr, 2242 char *buf) 2243 { 2244 struct dev_ext_attribute *ea = to_ext_attr(attr); 2245 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2246 } 2247 EXPORT_SYMBOL_GPL(device_show_ulong); 2248 2249 ssize_t device_store_int(struct device *dev, 2250 struct device_attribute *attr, 2251 const char *buf, size_t size) 2252 { 2253 struct dev_ext_attribute *ea = to_ext_attr(attr); 2254 int ret; 2255 long new; 2256 2257 ret = kstrtol(buf, 0, &new); 2258 if (ret) 2259 return ret; 2260 2261 if (new > INT_MAX || new < INT_MIN) 2262 return -EINVAL; 2263 *(int *)(ea->var) = new; 2264 /* Always return full write size even if we didn't consume all */ 2265 return size; 2266 } 2267 EXPORT_SYMBOL_GPL(device_store_int); 2268 2269 ssize_t device_show_int(struct device *dev, 2270 struct device_attribute *attr, 2271 char *buf) 2272 { 2273 struct dev_ext_attribute *ea = to_ext_attr(attr); 2274 2275 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2276 } 2277 EXPORT_SYMBOL_GPL(device_show_int); 2278 2279 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2280 const char *buf, size_t size) 2281 { 2282 struct dev_ext_attribute *ea = to_ext_attr(attr); 2283 2284 if (kstrtobool(buf, ea->var) < 0) 2285 return -EINVAL; 2286 2287 return size; 2288 } 2289 EXPORT_SYMBOL_GPL(device_store_bool); 2290 2291 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2292 char *buf) 2293 { 2294 struct dev_ext_attribute *ea = to_ext_attr(attr); 2295 2296 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2297 } 2298 EXPORT_SYMBOL_GPL(device_show_bool); 2299 2300 /** 2301 * device_release - free device structure. 2302 * @kobj: device's kobject. 2303 * 2304 * This is called once the reference count for the object 2305 * reaches 0. We forward the call to the device's release 2306 * method, which should handle actually freeing the structure. 2307 */ 2308 static void device_release(struct kobject *kobj) 2309 { 2310 struct device *dev = kobj_to_dev(kobj); 2311 struct device_private *p = dev->p; 2312 2313 /* 2314 * Some platform devices are driven without driver attached 2315 * and managed resources may have been acquired. Make sure 2316 * all resources are released. 2317 * 2318 * Drivers still can add resources into device after device 2319 * is deleted but alive, so release devres here to avoid 2320 * possible memory leak. 2321 */ 2322 devres_release_all(dev); 2323 2324 kfree(dev->dma_range_map); 2325 2326 if (dev->release) 2327 dev->release(dev); 2328 else if (dev->type && dev->type->release) 2329 dev->type->release(dev); 2330 else if (dev->class && dev->class->dev_release) 2331 dev->class->dev_release(dev); 2332 else 2333 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2334 dev_name(dev)); 2335 kfree(p); 2336 } 2337 2338 static const void *device_namespace(const struct kobject *kobj) 2339 { 2340 const struct device *dev = kobj_to_dev(kobj); 2341 const void *ns = NULL; 2342 2343 if (dev->class && dev->class->ns_type) 2344 ns = dev->class->namespace(dev); 2345 2346 return ns; 2347 } 2348 2349 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2350 { 2351 const struct device *dev = kobj_to_dev(kobj); 2352 2353 if (dev->class && dev->class->get_ownership) 2354 dev->class->get_ownership(dev, uid, gid); 2355 } 2356 2357 static struct kobj_type device_ktype = { 2358 .release = device_release, 2359 .sysfs_ops = &dev_sysfs_ops, 2360 .namespace = device_namespace, 2361 .get_ownership = device_get_ownership, 2362 }; 2363 2364 2365 static int dev_uevent_filter(const struct kobject *kobj) 2366 { 2367 const struct kobj_type *ktype = get_ktype(kobj); 2368 2369 if (ktype == &device_ktype) { 2370 const struct device *dev = kobj_to_dev(kobj); 2371 if (dev->bus) 2372 return 1; 2373 if (dev->class) 2374 return 1; 2375 } 2376 return 0; 2377 } 2378 2379 static const char *dev_uevent_name(const struct kobject *kobj) 2380 { 2381 const struct device *dev = kobj_to_dev(kobj); 2382 2383 if (dev->bus) 2384 return dev->bus->name; 2385 if (dev->class) 2386 return dev->class->name; 2387 return NULL; 2388 } 2389 2390 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env) 2391 { 2392 struct device *dev = kobj_to_dev(kobj); 2393 int retval = 0; 2394 2395 /* add device node properties if present */ 2396 if (MAJOR(dev->devt)) { 2397 const char *tmp; 2398 const char *name; 2399 umode_t mode = 0; 2400 kuid_t uid = GLOBAL_ROOT_UID; 2401 kgid_t gid = GLOBAL_ROOT_GID; 2402 2403 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2404 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2405 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2406 if (name) { 2407 add_uevent_var(env, "DEVNAME=%s", name); 2408 if (mode) 2409 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2410 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2411 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2412 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2413 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2414 kfree(tmp); 2415 } 2416 } 2417 2418 if (dev->type && dev->type->name) 2419 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2420 2421 if (dev->driver) 2422 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2423 2424 /* Add common DT information about the device */ 2425 of_device_uevent(dev, env); 2426 2427 /* have the bus specific function add its stuff */ 2428 if (dev->bus && dev->bus->uevent) { 2429 retval = dev->bus->uevent(dev, env); 2430 if (retval) 2431 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2432 dev_name(dev), __func__, retval); 2433 } 2434 2435 /* have the class specific function add its stuff */ 2436 if (dev->class && dev->class->dev_uevent) { 2437 retval = dev->class->dev_uevent(dev, env); 2438 if (retval) 2439 pr_debug("device: '%s': %s: class uevent() " 2440 "returned %d\n", dev_name(dev), 2441 __func__, retval); 2442 } 2443 2444 /* have the device type specific function add its stuff */ 2445 if (dev->type && dev->type->uevent) { 2446 retval = dev->type->uevent(dev, env); 2447 if (retval) 2448 pr_debug("device: '%s': %s: dev_type uevent() " 2449 "returned %d\n", dev_name(dev), 2450 __func__, retval); 2451 } 2452 2453 return retval; 2454 } 2455 2456 static const struct kset_uevent_ops device_uevent_ops = { 2457 .filter = dev_uevent_filter, 2458 .name = dev_uevent_name, 2459 .uevent = dev_uevent, 2460 }; 2461 2462 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2463 char *buf) 2464 { 2465 struct kobject *top_kobj; 2466 struct kset *kset; 2467 struct kobj_uevent_env *env = NULL; 2468 int i; 2469 int len = 0; 2470 int retval; 2471 2472 /* search the kset, the device belongs to */ 2473 top_kobj = &dev->kobj; 2474 while (!top_kobj->kset && top_kobj->parent) 2475 top_kobj = top_kobj->parent; 2476 if (!top_kobj->kset) 2477 goto out; 2478 2479 kset = top_kobj->kset; 2480 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2481 goto out; 2482 2483 /* respect filter */ 2484 if (kset->uevent_ops && kset->uevent_ops->filter) 2485 if (!kset->uevent_ops->filter(&dev->kobj)) 2486 goto out; 2487 2488 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2489 if (!env) 2490 return -ENOMEM; 2491 2492 /* let the kset specific function add its keys */ 2493 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2494 if (retval) 2495 goto out; 2496 2497 /* copy keys to file */ 2498 for (i = 0; i < env->envp_idx; i++) 2499 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2500 out: 2501 kfree(env); 2502 return len; 2503 } 2504 2505 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2506 const char *buf, size_t count) 2507 { 2508 int rc; 2509 2510 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2511 2512 if (rc) { 2513 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2514 return rc; 2515 } 2516 2517 return count; 2518 } 2519 static DEVICE_ATTR_RW(uevent); 2520 2521 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2522 char *buf) 2523 { 2524 bool val; 2525 2526 device_lock(dev); 2527 val = !dev->offline; 2528 device_unlock(dev); 2529 return sysfs_emit(buf, "%u\n", val); 2530 } 2531 2532 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2533 const char *buf, size_t count) 2534 { 2535 bool val; 2536 int ret; 2537 2538 ret = kstrtobool(buf, &val); 2539 if (ret < 0) 2540 return ret; 2541 2542 ret = lock_device_hotplug_sysfs(); 2543 if (ret) 2544 return ret; 2545 2546 ret = val ? device_online(dev) : device_offline(dev); 2547 unlock_device_hotplug(); 2548 return ret < 0 ? ret : count; 2549 } 2550 static DEVICE_ATTR_RW(online); 2551 2552 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2553 char *buf) 2554 { 2555 const char *loc; 2556 2557 switch (dev->removable) { 2558 case DEVICE_REMOVABLE: 2559 loc = "removable"; 2560 break; 2561 case DEVICE_FIXED: 2562 loc = "fixed"; 2563 break; 2564 default: 2565 loc = "unknown"; 2566 } 2567 return sysfs_emit(buf, "%s\n", loc); 2568 } 2569 static DEVICE_ATTR_RO(removable); 2570 2571 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2572 { 2573 return sysfs_create_groups(&dev->kobj, groups); 2574 } 2575 EXPORT_SYMBOL_GPL(device_add_groups); 2576 2577 void device_remove_groups(struct device *dev, 2578 const struct attribute_group **groups) 2579 { 2580 sysfs_remove_groups(&dev->kobj, groups); 2581 } 2582 EXPORT_SYMBOL_GPL(device_remove_groups); 2583 2584 union device_attr_group_devres { 2585 const struct attribute_group *group; 2586 const struct attribute_group **groups; 2587 }; 2588 2589 static void devm_attr_group_remove(struct device *dev, void *res) 2590 { 2591 union device_attr_group_devres *devres = res; 2592 const struct attribute_group *group = devres->group; 2593 2594 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2595 sysfs_remove_group(&dev->kobj, group); 2596 } 2597 2598 static void devm_attr_groups_remove(struct device *dev, void *res) 2599 { 2600 union device_attr_group_devres *devres = res; 2601 const struct attribute_group **groups = devres->groups; 2602 2603 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2604 sysfs_remove_groups(&dev->kobj, groups); 2605 } 2606 2607 /** 2608 * devm_device_add_group - given a device, create a managed attribute group 2609 * @dev: The device to create the group for 2610 * @grp: The attribute group to create 2611 * 2612 * This function creates a group for the first time. It will explicitly 2613 * warn and error if any of the attribute files being created already exist. 2614 * 2615 * Returns 0 on success or error code on failure. 2616 */ 2617 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2618 { 2619 union device_attr_group_devres *devres; 2620 int error; 2621 2622 devres = devres_alloc(devm_attr_group_remove, 2623 sizeof(*devres), GFP_KERNEL); 2624 if (!devres) 2625 return -ENOMEM; 2626 2627 error = sysfs_create_group(&dev->kobj, grp); 2628 if (error) { 2629 devres_free(devres); 2630 return error; 2631 } 2632 2633 devres->group = grp; 2634 devres_add(dev, devres); 2635 return 0; 2636 } 2637 EXPORT_SYMBOL_GPL(devm_device_add_group); 2638 2639 /** 2640 * devm_device_add_groups - create a bunch of managed attribute groups 2641 * @dev: The device to create the group for 2642 * @groups: The attribute groups to create, NULL terminated 2643 * 2644 * This function creates a bunch of managed attribute groups. If an error 2645 * occurs when creating a group, all previously created groups will be 2646 * removed, unwinding everything back to the original state when this 2647 * function was called. It will explicitly warn and error if any of the 2648 * attribute files being created already exist. 2649 * 2650 * Returns 0 on success or error code from sysfs_create_group on failure. 2651 */ 2652 int devm_device_add_groups(struct device *dev, 2653 const struct attribute_group **groups) 2654 { 2655 union device_attr_group_devres *devres; 2656 int error; 2657 2658 devres = devres_alloc(devm_attr_groups_remove, 2659 sizeof(*devres), GFP_KERNEL); 2660 if (!devres) 2661 return -ENOMEM; 2662 2663 error = sysfs_create_groups(&dev->kobj, groups); 2664 if (error) { 2665 devres_free(devres); 2666 return error; 2667 } 2668 2669 devres->groups = groups; 2670 devres_add(dev, devres); 2671 return 0; 2672 } 2673 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2674 2675 static int device_add_attrs(struct device *dev) 2676 { 2677 struct class *class = dev->class; 2678 const struct device_type *type = dev->type; 2679 int error; 2680 2681 if (class) { 2682 error = device_add_groups(dev, class->dev_groups); 2683 if (error) 2684 return error; 2685 } 2686 2687 if (type) { 2688 error = device_add_groups(dev, type->groups); 2689 if (error) 2690 goto err_remove_class_groups; 2691 } 2692 2693 error = device_add_groups(dev, dev->groups); 2694 if (error) 2695 goto err_remove_type_groups; 2696 2697 if (device_supports_offline(dev) && !dev->offline_disabled) { 2698 error = device_create_file(dev, &dev_attr_online); 2699 if (error) 2700 goto err_remove_dev_groups; 2701 } 2702 2703 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2704 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2705 if (error) 2706 goto err_remove_dev_online; 2707 } 2708 2709 if (dev_removable_is_valid(dev)) { 2710 error = device_create_file(dev, &dev_attr_removable); 2711 if (error) 2712 goto err_remove_dev_waiting_for_supplier; 2713 } 2714 2715 if (dev_add_physical_location(dev)) { 2716 error = device_add_group(dev, 2717 &dev_attr_physical_location_group); 2718 if (error) 2719 goto err_remove_dev_removable; 2720 } 2721 2722 return 0; 2723 2724 err_remove_dev_removable: 2725 device_remove_file(dev, &dev_attr_removable); 2726 err_remove_dev_waiting_for_supplier: 2727 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2728 err_remove_dev_online: 2729 device_remove_file(dev, &dev_attr_online); 2730 err_remove_dev_groups: 2731 device_remove_groups(dev, dev->groups); 2732 err_remove_type_groups: 2733 if (type) 2734 device_remove_groups(dev, type->groups); 2735 err_remove_class_groups: 2736 if (class) 2737 device_remove_groups(dev, class->dev_groups); 2738 2739 return error; 2740 } 2741 2742 static void device_remove_attrs(struct device *dev) 2743 { 2744 struct class *class = dev->class; 2745 const struct device_type *type = dev->type; 2746 2747 if (dev->physical_location) { 2748 device_remove_group(dev, &dev_attr_physical_location_group); 2749 kfree(dev->physical_location); 2750 } 2751 2752 device_remove_file(dev, &dev_attr_removable); 2753 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2754 device_remove_file(dev, &dev_attr_online); 2755 device_remove_groups(dev, dev->groups); 2756 2757 if (type) 2758 device_remove_groups(dev, type->groups); 2759 2760 if (class) 2761 device_remove_groups(dev, class->dev_groups); 2762 } 2763 2764 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2765 char *buf) 2766 { 2767 return print_dev_t(buf, dev->devt); 2768 } 2769 static DEVICE_ATTR_RO(dev); 2770 2771 /* /sys/devices/ */ 2772 struct kset *devices_kset; 2773 2774 /** 2775 * devices_kset_move_before - Move device in the devices_kset's list. 2776 * @deva: Device to move. 2777 * @devb: Device @deva should come before. 2778 */ 2779 static void devices_kset_move_before(struct device *deva, struct device *devb) 2780 { 2781 if (!devices_kset) 2782 return; 2783 pr_debug("devices_kset: Moving %s before %s\n", 2784 dev_name(deva), dev_name(devb)); 2785 spin_lock(&devices_kset->list_lock); 2786 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2787 spin_unlock(&devices_kset->list_lock); 2788 } 2789 2790 /** 2791 * devices_kset_move_after - Move device in the devices_kset's list. 2792 * @deva: Device to move 2793 * @devb: Device @deva should come after. 2794 */ 2795 static void devices_kset_move_after(struct device *deva, struct device *devb) 2796 { 2797 if (!devices_kset) 2798 return; 2799 pr_debug("devices_kset: Moving %s after %s\n", 2800 dev_name(deva), dev_name(devb)); 2801 spin_lock(&devices_kset->list_lock); 2802 list_move(&deva->kobj.entry, &devb->kobj.entry); 2803 spin_unlock(&devices_kset->list_lock); 2804 } 2805 2806 /** 2807 * devices_kset_move_last - move the device to the end of devices_kset's list. 2808 * @dev: device to move 2809 */ 2810 void devices_kset_move_last(struct device *dev) 2811 { 2812 if (!devices_kset) 2813 return; 2814 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2815 spin_lock(&devices_kset->list_lock); 2816 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2817 spin_unlock(&devices_kset->list_lock); 2818 } 2819 2820 /** 2821 * device_create_file - create sysfs attribute file for device. 2822 * @dev: device. 2823 * @attr: device attribute descriptor. 2824 */ 2825 int device_create_file(struct device *dev, 2826 const struct device_attribute *attr) 2827 { 2828 int error = 0; 2829 2830 if (dev) { 2831 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2832 "Attribute %s: write permission without 'store'\n", 2833 attr->attr.name); 2834 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2835 "Attribute %s: read permission without 'show'\n", 2836 attr->attr.name); 2837 error = sysfs_create_file(&dev->kobj, &attr->attr); 2838 } 2839 2840 return error; 2841 } 2842 EXPORT_SYMBOL_GPL(device_create_file); 2843 2844 /** 2845 * device_remove_file - remove sysfs attribute file. 2846 * @dev: device. 2847 * @attr: device attribute descriptor. 2848 */ 2849 void device_remove_file(struct device *dev, 2850 const struct device_attribute *attr) 2851 { 2852 if (dev) 2853 sysfs_remove_file(&dev->kobj, &attr->attr); 2854 } 2855 EXPORT_SYMBOL_GPL(device_remove_file); 2856 2857 /** 2858 * device_remove_file_self - remove sysfs attribute file from its own method. 2859 * @dev: device. 2860 * @attr: device attribute descriptor. 2861 * 2862 * See kernfs_remove_self() for details. 2863 */ 2864 bool device_remove_file_self(struct device *dev, 2865 const struct device_attribute *attr) 2866 { 2867 if (dev) 2868 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2869 else 2870 return false; 2871 } 2872 EXPORT_SYMBOL_GPL(device_remove_file_self); 2873 2874 /** 2875 * device_create_bin_file - create sysfs binary attribute file for device. 2876 * @dev: device. 2877 * @attr: device binary attribute descriptor. 2878 */ 2879 int device_create_bin_file(struct device *dev, 2880 const struct bin_attribute *attr) 2881 { 2882 int error = -EINVAL; 2883 if (dev) 2884 error = sysfs_create_bin_file(&dev->kobj, attr); 2885 return error; 2886 } 2887 EXPORT_SYMBOL_GPL(device_create_bin_file); 2888 2889 /** 2890 * device_remove_bin_file - remove sysfs binary attribute file 2891 * @dev: device. 2892 * @attr: device binary attribute descriptor. 2893 */ 2894 void device_remove_bin_file(struct device *dev, 2895 const struct bin_attribute *attr) 2896 { 2897 if (dev) 2898 sysfs_remove_bin_file(&dev->kobj, attr); 2899 } 2900 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2901 2902 static void klist_children_get(struct klist_node *n) 2903 { 2904 struct device_private *p = to_device_private_parent(n); 2905 struct device *dev = p->device; 2906 2907 get_device(dev); 2908 } 2909 2910 static void klist_children_put(struct klist_node *n) 2911 { 2912 struct device_private *p = to_device_private_parent(n); 2913 struct device *dev = p->device; 2914 2915 put_device(dev); 2916 } 2917 2918 /** 2919 * device_initialize - init device structure. 2920 * @dev: device. 2921 * 2922 * This prepares the device for use by other layers by initializing 2923 * its fields. 2924 * It is the first half of device_register(), if called by 2925 * that function, though it can also be called separately, so one 2926 * may use @dev's fields. In particular, get_device()/put_device() 2927 * may be used for reference counting of @dev after calling this 2928 * function. 2929 * 2930 * All fields in @dev must be initialized by the caller to 0, except 2931 * for those explicitly set to some other value. The simplest 2932 * approach is to use kzalloc() to allocate the structure containing 2933 * @dev. 2934 * 2935 * NOTE: Use put_device() to give up your reference instead of freeing 2936 * @dev directly once you have called this function. 2937 */ 2938 void device_initialize(struct device *dev) 2939 { 2940 dev->kobj.kset = devices_kset; 2941 kobject_init(&dev->kobj, &device_ktype); 2942 INIT_LIST_HEAD(&dev->dma_pools); 2943 mutex_init(&dev->mutex); 2944 lockdep_set_novalidate_class(&dev->mutex); 2945 spin_lock_init(&dev->devres_lock); 2946 INIT_LIST_HEAD(&dev->devres_head); 2947 device_pm_init(dev); 2948 set_dev_node(dev, NUMA_NO_NODE); 2949 INIT_LIST_HEAD(&dev->links.consumers); 2950 INIT_LIST_HEAD(&dev->links.suppliers); 2951 INIT_LIST_HEAD(&dev->links.defer_sync); 2952 dev->links.status = DL_DEV_NO_DRIVER; 2953 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2954 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2955 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2956 dev->dma_coherent = dma_default_coherent; 2957 #endif 2958 #ifdef CONFIG_SWIOTLB 2959 dev->dma_io_tlb_mem = &io_tlb_default_mem; 2960 #endif 2961 } 2962 EXPORT_SYMBOL_GPL(device_initialize); 2963 2964 struct kobject *virtual_device_parent(struct device *dev) 2965 { 2966 static struct kobject *virtual_dir = NULL; 2967 2968 if (!virtual_dir) 2969 virtual_dir = kobject_create_and_add("virtual", 2970 &devices_kset->kobj); 2971 2972 return virtual_dir; 2973 } 2974 2975 struct class_dir { 2976 struct kobject kobj; 2977 struct class *class; 2978 }; 2979 2980 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2981 2982 static void class_dir_release(struct kobject *kobj) 2983 { 2984 struct class_dir *dir = to_class_dir(kobj); 2985 kfree(dir); 2986 } 2987 2988 static const 2989 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 2990 { 2991 const struct class_dir *dir = to_class_dir(kobj); 2992 return dir->class->ns_type; 2993 } 2994 2995 static struct kobj_type class_dir_ktype = { 2996 .release = class_dir_release, 2997 .sysfs_ops = &kobj_sysfs_ops, 2998 .child_ns_type = class_dir_child_ns_type 2999 }; 3000 3001 static struct kobject * 3002 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 3003 { 3004 struct class_dir *dir; 3005 int retval; 3006 3007 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3008 if (!dir) 3009 return ERR_PTR(-ENOMEM); 3010 3011 dir->class = class; 3012 kobject_init(&dir->kobj, &class_dir_ktype); 3013 3014 dir->kobj.kset = &class->p->glue_dirs; 3015 3016 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 3017 if (retval < 0) { 3018 kobject_put(&dir->kobj); 3019 return ERR_PTR(retval); 3020 } 3021 return &dir->kobj; 3022 } 3023 3024 static DEFINE_MUTEX(gdp_mutex); 3025 3026 static struct kobject *get_device_parent(struct device *dev, 3027 struct device *parent) 3028 { 3029 if (dev->class) { 3030 struct kobject *kobj = NULL; 3031 struct kobject *parent_kobj; 3032 struct kobject *k; 3033 3034 #ifdef CONFIG_BLOCK 3035 /* block disks show up in /sys/block */ 3036 if (sysfs_deprecated && dev->class == &block_class) { 3037 if (parent && parent->class == &block_class) 3038 return &parent->kobj; 3039 return &block_class.p->subsys.kobj; 3040 } 3041 #endif 3042 3043 /* 3044 * If we have no parent, we live in "virtual". 3045 * Class-devices with a non class-device as parent, live 3046 * in a "glue" directory to prevent namespace collisions. 3047 */ 3048 if (parent == NULL) 3049 parent_kobj = virtual_device_parent(dev); 3050 else if (parent->class && !dev->class->ns_type) 3051 return &parent->kobj; 3052 else 3053 parent_kobj = &parent->kobj; 3054 3055 mutex_lock(&gdp_mutex); 3056 3057 /* find our class-directory at the parent and reference it */ 3058 spin_lock(&dev->class->p->glue_dirs.list_lock); 3059 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 3060 if (k->parent == parent_kobj) { 3061 kobj = kobject_get(k); 3062 break; 3063 } 3064 spin_unlock(&dev->class->p->glue_dirs.list_lock); 3065 if (kobj) { 3066 mutex_unlock(&gdp_mutex); 3067 return kobj; 3068 } 3069 3070 /* or create a new class-directory at the parent device */ 3071 k = class_dir_create_and_add(dev->class, parent_kobj); 3072 /* do not emit an uevent for this simple "glue" directory */ 3073 mutex_unlock(&gdp_mutex); 3074 return k; 3075 } 3076 3077 /* subsystems can specify a default root directory for their devices */ 3078 if (!parent && dev->bus && dev->bus->dev_root) 3079 return &dev->bus->dev_root->kobj; 3080 3081 if (parent) 3082 return &parent->kobj; 3083 return NULL; 3084 } 3085 3086 static inline bool live_in_glue_dir(struct kobject *kobj, 3087 struct device *dev) 3088 { 3089 if (!kobj || !dev->class || 3090 kobj->kset != &dev->class->p->glue_dirs) 3091 return false; 3092 return true; 3093 } 3094 3095 static inline struct kobject *get_glue_dir(struct device *dev) 3096 { 3097 return dev->kobj.parent; 3098 } 3099 3100 /** 3101 * kobject_has_children - Returns whether a kobject has children. 3102 * @kobj: the object to test 3103 * 3104 * This will return whether a kobject has other kobjects as children. 3105 * 3106 * It does NOT account for the presence of attribute files, only sub 3107 * directories. It also assumes there is no concurrent addition or 3108 * removal of such children, and thus relies on external locking. 3109 */ 3110 static inline bool kobject_has_children(struct kobject *kobj) 3111 { 3112 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3113 3114 return kobj->sd && kobj->sd->dir.subdirs; 3115 } 3116 3117 /* 3118 * make sure cleaning up dir as the last step, we need to make 3119 * sure .release handler of kobject is run with holding the 3120 * global lock 3121 */ 3122 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3123 { 3124 unsigned int ref; 3125 3126 /* see if we live in a "glue" directory */ 3127 if (!live_in_glue_dir(glue_dir, dev)) 3128 return; 3129 3130 mutex_lock(&gdp_mutex); 3131 /** 3132 * There is a race condition between removing glue directory 3133 * and adding a new device under the glue directory. 3134 * 3135 * CPU1: CPU2: 3136 * 3137 * device_add() 3138 * get_device_parent() 3139 * class_dir_create_and_add() 3140 * kobject_add_internal() 3141 * create_dir() // create glue_dir 3142 * 3143 * device_add() 3144 * get_device_parent() 3145 * kobject_get() // get glue_dir 3146 * 3147 * device_del() 3148 * cleanup_glue_dir() 3149 * kobject_del(glue_dir) 3150 * 3151 * kobject_add() 3152 * kobject_add_internal() 3153 * create_dir() // in glue_dir 3154 * sysfs_create_dir_ns() 3155 * kernfs_create_dir_ns(sd) 3156 * 3157 * sysfs_remove_dir() // glue_dir->sd=NULL 3158 * sysfs_put() // free glue_dir->sd 3159 * 3160 * // sd is freed 3161 * kernfs_new_node(sd) 3162 * kernfs_get(glue_dir) 3163 * kernfs_add_one() 3164 * kernfs_put() 3165 * 3166 * Before CPU1 remove last child device under glue dir, if CPU2 add 3167 * a new device under glue dir, the glue_dir kobject reference count 3168 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3169 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3170 * and sysfs_put(). This result in glue_dir->sd is freed. 3171 * 3172 * Then the CPU2 will see a stale "empty" but still potentially used 3173 * glue dir around in kernfs_new_node(). 3174 * 3175 * In order to avoid this happening, we also should make sure that 3176 * kernfs_node for glue_dir is released in CPU1 only when refcount 3177 * for glue_dir kobj is 1. 3178 */ 3179 ref = kref_read(&glue_dir->kref); 3180 if (!kobject_has_children(glue_dir) && !--ref) 3181 kobject_del(glue_dir); 3182 kobject_put(glue_dir); 3183 mutex_unlock(&gdp_mutex); 3184 } 3185 3186 static int device_add_class_symlinks(struct device *dev) 3187 { 3188 struct device_node *of_node = dev_of_node(dev); 3189 int error; 3190 3191 if (of_node) { 3192 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3193 if (error) 3194 dev_warn(dev, "Error %d creating of_node link\n",error); 3195 /* An error here doesn't warrant bringing down the device */ 3196 } 3197 3198 if (!dev->class) 3199 return 0; 3200 3201 error = sysfs_create_link(&dev->kobj, 3202 &dev->class->p->subsys.kobj, 3203 "subsystem"); 3204 if (error) 3205 goto out_devnode; 3206 3207 if (dev->parent && device_is_not_partition(dev)) { 3208 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3209 "device"); 3210 if (error) 3211 goto out_subsys; 3212 } 3213 3214 #ifdef CONFIG_BLOCK 3215 /* /sys/block has directories and does not need symlinks */ 3216 if (sysfs_deprecated && dev->class == &block_class) 3217 return 0; 3218 #endif 3219 3220 /* link in the class directory pointing to the device */ 3221 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3222 &dev->kobj, dev_name(dev)); 3223 if (error) 3224 goto out_device; 3225 3226 return 0; 3227 3228 out_device: 3229 sysfs_remove_link(&dev->kobj, "device"); 3230 3231 out_subsys: 3232 sysfs_remove_link(&dev->kobj, "subsystem"); 3233 out_devnode: 3234 sysfs_remove_link(&dev->kobj, "of_node"); 3235 return error; 3236 } 3237 3238 static void device_remove_class_symlinks(struct device *dev) 3239 { 3240 if (dev_of_node(dev)) 3241 sysfs_remove_link(&dev->kobj, "of_node"); 3242 3243 if (!dev->class) 3244 return; 3245 3246 if (dev->parent && device_is_not_partition(dev)) 3247 sysfs_remove_link(&dev->kobj, "device"); 3248 sysfs_remove_link(&dev->kobj, "subsystem"); 3249 #ifdef CONFIG_BLOCK 3250 if (sysfs_deprecated && dev->class == &block_class) 3251 return; 3252 #endif 3253 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3254 } 3255 3256 /** 3257 * dev_set_name - set a device name 3258 * @dev: device 3259 * @fmt: format string for the device's name 3260 */ 3261 int dev_set_name(struct device *dev, const char *fmt, ...) 3262 { 3263 va_list vargs; 3264 int err; 3265 3266 va_start(vargs, fmt); 3267 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3268 va_end(vargs); 3269 return err; 3270 } 3271 EXPORT_SYMBOL_GPL(dev_set_name); 3272 3273 /** 3274 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3275 * @dev: device 3276 * 3277 * By default we select char/ for new entries. Setting class->dev_obj 3278 * to NULL prevents an entry from being created. class->dev_kobj must 3279 * be set (or cleared) before any devices are registered to the class 3280 * otherwise device_create_sys_dev_entry() and 3281 * device_remove_sys_dev_entry() will disagree about the presence of 3282 * the link. 3283 */ 3284 static struct kobject *device_to_dev_kobj(struct device *dev) 3285 { 3286 struct kobject *kobj; 3287 3288 if (dev->class) 3289 kobj = dev->class->dev_kobj; 3290 else 3291 kobj = sysfs_dev_char_kobj; 3292 3293 return kobj; 3294 } 3295 3296 static int device_create_sys_dev_entry(struct device *dev) 3297 { 3298 struct kobject *kobj = device_to_dev_kobj(dev); 3299 int error = 0; 3300 char devt_str[15]; 3301 3302 if (kobj) { 3303 format_dev_t(devt_str, dev->devt); 3304 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3305 } 3306 3307 return error; 3308 } 3309 3310 static void device_remove_sys_dev_entry(struct device *dev) 3311 { 3312 struct kobject *kobj = device_to_dev_kobj(dev); 3313 char devt_str[15]; 3314 3315 if (kobj) { 3316 format_dev_t(devt_str, dev->devt); 3317 sysfs_remove_link(kobj, devt_str); 3318 } 3319 } 3320 3321 static int device_private_init(struct device *dev) 3322 { 3323 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3324 if (!dev->p) 3325 return -ENOMEM; 3326 dev->p->device = dev; 3327 klist_init(&dev->p->klist_children, klist_children_get, 3328 klist_children_put); 3329 INIT_LIST_HEAD(&dev->p->deferred_probe); 3330 return 0; 3331 } 3332 3333 /** 3334 * device_add - add device to device hierarchy. 3335 * @dev: device. 3336 * 3337 * This is part 2 of device_register(), though may be called 3338 * separately _iff_ device_initialize() has been called separately. 3339 * 3340 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3341 * to the global and sibling lists for the device, then 3342 * adds it to the other relevant subsystems of the driver model. 3343 * 3344 * Do not call this routine or device_register() more than once for 3345 * any device structure. The driver model core is not designed to work 3346 * with devices that get unregistered and then spring back to life. 3347 * (Among other things, it's very hard to guarantee that all references 3348 * to the previous incarnation of @dev have been dropped.) Allocate 3349 * and register a fresh new struct device instead. 3350 * 3351 * NOTE: _Never_ directly free @dev after calling this function, even 3352 * if it returned an error! Always use put_device() to give up your 3353 * reference instead. 3354 * 3355 * Rule of thumb is: if device_add() succeeds, you should call 3356 * device_del() when you want to get rid of it. If device_add() has 3357 * *not* succeeded, use *only* put_device() to drop the reference 3358 * count. 3359 */ 3360 int device_add(struct device *dev) 3361 { 3362 struct device *parent; 3363 struct kobject *kobj; 3364 struct class_interface *class_intf; 3365 int error = -EINVAL; 3366 struct kobject *glue_dir = NULL; 3367 3368 dev = get_device(dev); 3369 if (!dev) 3370 goto done; 3371 3372 if (!dev->p) { 3373 error = device_private_init(dev); 3374 if (error) 3375 goto done; 3376 } 3377 3378 /* 3379 * for statically allocated devices, which should all be converted 3380 * some day, we need to initialize the name. We prevent reading back 3381 * the name, and force the use of dev_name() 3382 */ 3383 if (dev->init_name) { 3384 dev_set_name(dev, "%s", dev->init_name); 3385 dev->init_name = NULL; 3386 } 3387 3388 /* subsystems can specify simple device enumeration */ 3389 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3390 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3391 3392 if (!dev_name(dev)) { 3393 error = -EINVAL; 3394 goto name_error; 3395 } 3396 3397 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3398 3399 parent = get_device(dev->parent); 3400 kobj = get_device_parent(dev, parent); 3401 if (IS_ERR(kobj)) { 3402 error = PTR_ERR(kobj); 3403 goto parent_error; 3404 } 3405 if (kobj) 3406 dev->kobj.parent = kobj; 3407 3408 /* use parent numa_node */ 3409 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3410 set_dev_node(dev, dev_to_node(parent)); 3411 3412 /* first, register with generic layer. */ 3413 /* we require the name to be set before, and pass NULL */ 3414 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3415 if (error) { 3416 glue_dir = get_glue_dir(dev); 3417 goto Error; 3418 } 3419 3420 /* notify platform of device entry */ 3421 device_platform_notify(dev); 3422 3423 error = device_create_file(dev, &dev_attr_uevent); 3424 if (error) 3425 goto attrError; 3426 3427 error = device_add_class_symlinks(dev); 3428 if (error) 3429 goto SymlinkError; 3430 error = device_add_attrs(dev); 3431 if (error) 3432 goto AttrsError; 3433 error = bus_add_device(dev); 3434 if (error) 3435 goto BusError; 3436 error = dpm_sysfs_add(dev); 3437 if (error) 3438 goto DPMError; 3439 device_pm_add(dev); 3440 3441 if (MAJOR(dev->devt)) { 3442 error = device_create_file(dev, &dev_attr_dev); 3443 if (error) 3444 goto DevAttrError; 3445 3446 error = device_create_sys_dev_entry(dev); 3447 if (error) 3448 goto SysEntryError; 3449 3450 devtmpfs_create_node(dev); 3451 } 3452 3453 /* Notify clients of device addition. This call must come 3454 * after dpm_sysfs_add() and before kobject_uevent(). 3455 */ 3456 if (dev->bus) 3457 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3458 BUS_NOTIFY_ADD_DEVICE, dev); 3459 3460 kobject_uevent(&dev->kobj, KOBJ_ADD); 3461 3462 /* 3463 * Check if any of the other devices (consumers) have been waiting for 3464 * this device (supplier) to be added so that they can create a device 3465 * link to it. 3466 * 3467 * This needs to happen after device_pm_add() because device_link_add() 3468 * requires the supplier be registered before it's called. 3469 * 3470 * But this also needs to happen before bus_probe_device() to make sure 3471 * waiting consumers can link to it before the driver is bound to the 3472 * device and the driver sync_state callback is called for this device. 3473 */ 3474 if (dev->fwnode && !dev->fwnode->dev) { 3475 dev->fwnode->dev = dev; 3476 fw_devlink_link_device(dev); 3477 } 3478 3479 bus_probe_device(dev); 3480 3481 /* 3482 * If all driver registration is done and a newly added device doesn't 3483 * match with any driver, don't block its consumers from probing in 3484 * case the consumer device is able to operate without this supplier. 3485 */ 3486 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3487 fw_devlink_unblock_consumers(dev); 3488 3489 if (parent) 3490 klist_add_tail(&dev->p->knode_parent, 3491 &parent->p->klist_children); 3492 3493 if (dev->class) { 3494 mutex_lock(&dev->class->p->mutex); 3495 /* tie the class to the device */ 3496 klist_add_tail(&dev->p->knode_class, 3497 &dev->class->p->klist_devices); 3498 3499 /* notify any interfaces that the device is here */ 3500 list_for_each_entry(class_intf, 3501 &dev->class->p->interfaces, node) 3502 if (class_intf->add_dev) 3503 class_intf->add_dev(dev, class_intf); 3504 mutex_unlock(&dev->class->p->mutex); 3505 } 3506 done: 3507 put_device(dev); 3508 return error; 3509 SysEntryError: 3510 if (MAJOR(dev->devt)) 3511 device_remove_file(dev, &dev_attr_dev); 3512 DevAttrError: 3513 device_pm_remove(dev); 3514 dpm_sysfs_remove(dev); 3515 DPMError: 3516 bus_remove_device(dev); 3517 BusError: 3518 device_remove_attrs(dev); 3519 AttrsError: 3520 device_remove_class_symlinks(dev); 3521 SymlinkError: 3522 device_remove_file(dev, &dev_attr_uevent); 3523 attrError: 3524 device_platform_notify_remove(dev); 3525 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3526 glue_dir = get_glue_dir(dev); 3527 kobject_del(&dev->kobj); 3528 Error: 3529 cleanup_glue_dir(dev, glue_dir); 3530 parent_error: 3531 put_device(parent); 3532 name_error: 3533 kfree(dev->p); 3534 dev->p = NULL; 3535 goto done; 3536 } 3537 EXPORT_SYMBOL_GPL(device_add); 3538 3539 /** 3540 * device_register - register a device with the system. 3541 * @dev: pointer to the device structure 3542 * 3543 * This happens in two clean steps - initialize the device 3544 * and add it to the system. The two steps can be called 3545 * separately, but this is the easiest and most common. 3546 * I.e. you should only call the two helpers separately if 3547 * have a clearly defined need to use and refcount the device 3548 * before it is added to the hierarchy. 3549 * 3550 * For more information, see the kerneldoc for device_initialize() 3551 * and device_add(). 3552 * 3553 * NOTE: _Never_ directly free @dev after calling this function, even 3554 * if it returned an error! Always use put_device() to give up the 3555 * reference initialized in this function instead. 3556 */ 3557 int device_register(struct device *dev) 3558 { 3559 device_initialize(dev); 3560 return device_add(dev); 3561 } 3562 EXPORT_SYMBOL_GPL(device_register); 3563 3564 /** 3565 * get_device - increment reference count for device. 3566 * @dev: device. 3567 * 3568 * This simply forwards the call to kobject_get(), though 3569 * we do take care to provide for the case that we get a NULL 3570 * pointer passed in. 3571 */ 3572 struct device *get_device(struct device *dev) 3573 { 3574 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3575 } 3576 EXPORT_SYMBOL_GPL(get_device); 3577 3578 /** 3579 * put_device - decrement reference count. 3580 * @dev: device in question. 3581 */ 3582 void put_device(struct device *dev) 3583 { 3584 /* might_sleep(); */ 3585 if (dev) 3586 kobject_put(&dev->kobj); 3587 } 3588 EXPORT_SYMBOL_GPL(put_device); 3589 3590 bool kill_device(struct device *dev) 3591 { 3592 /* 3593 * Require the device lock and set the "dead" flag to guarantee that 3594 * the update behavior is consistent with the other bitfields near 3595 * it and that we cannot have an asynchronous probe routine trying 3596 * to run while we are tearing out the bus/class/sysfs from 3597 * underneath the device. 3598 */ 3599 device_lock_assert(dev); 3600 3601 if (dev->p->dead) 3602 return false; 3603 dev->p->dead = true; 3604 return true; 3605 } 3606 EXPORT_SYMBOL_GPL(kill_device); 3607 3608 /** 3609 * device_del - delete device from system. 3610 * @dev: device. 3611 * 3612 * This is the first part of the device unregistration 3613 * sequence. This removes the device from the lists we control 3614 * from here, has it removed from the other driver model 3615 * subsystems it was added to in device_add(), and removes it 3616 * from the kobject hierarchy. 3617 * 3618 * NOTE: this should be called manually _iff_ device_add() was 3619 * also called manually. 3620 */ 3621 void device_del(struct device *dev) 3622 { 3623 struct device *parent = dev->parent; 3624 struct kobject *glue_dir = NULL; 3625 struct class_interface *class_intf; 3626 unsigned int noio_flag; 3627 3628 device_lock(dev); 3629 kill_device(dev); 3630 device_unlock(dev); 3631 3632 if (dev->fwnode && dev->fwnode->dev == dev) 3633 dev->fwnode->dev = NULL; 3634 3635 /* Notify clients of device removal. This call must come 3636 * before dpm_sysfs_remove(). 3637 */ 3638 noio_flag = memalloc_noio_save(); 3639 if (dev->bus) 3640 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3641 BUS_NOTIFY_DEL_DEVICE, dev); 3642 3643 dpm_sysfs_remove(dev); 3644 if (parent) 3645 klist_del(&dev->p->knode_parent); 3646 if (MAJOR(dev->devt)) { 3647 devtmpfs_delete_node(dev); 3648 device_remove_sys_dev_entry(dev); 3649 device_remove_file(dev, &dev_attr_dev); 3650 } 3651 if (dev->class) { 3652 device_remove_class_symlinks(dev); 3653 3654 mutex_lock(&dev->class->p->mutex); 3655 /* notify any interfaces that the device is now gone */ 3656 list_for_each_entry(class_intf, 3657 &dev->class->p->interfaces, node) 3658 if (class_intf->remove_dev) 3659 class_intf->remove_dev(dev, class_intf); 3660 /* remove the device from the class list */ 3661 klist_del(&dev->p->knode_class); 3662 mutex_unlock(&dev->class->p->mutex); 3663 } 3664 device_remove_file(dev, &dev_attr_uevent); 3665 device_remove_attrs(dev); 3666 bus_remove_device(dev); 3667 device_pm_remove(dev); 3668 driver_deferred_probe_del(dev); 3669 device_platform_notify_remove(dev); 3670 device_links_purge(dev); 3671 3672 if (dev->bus) 3673 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3674 BUS_NOTIFY_REMOVED_DEVICE, dev); 3675 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3676 glue_dir = get_glue_dir(dev); 3677 kobject_del(&dev->kobj); 3678 cleanup_glue_dir(dev, glue_dir); 3679 memalloc_noio_restore(noio_flag); 3680 put_device(parent); 3681 } 3682 EXPORT_SYMBOL_GPL(device_del); 3683 3684 /** 3685 * device_unregister - unregister device from system. 3686 * @dev: device going away. 3687 * 3688 * We do this in two parts, like we do device_register(). First, 3689 * we remove it from all the subsystems with device_del(), then 3690 * we decrement the reference count via put_device(). If that 3691 * is the final reference count, the device will be cleaned up 3692 * via device_release() above. Otherwise, the structure will 3693 * stick around until the final reference to the device is dropped. 3694 */ 3695 void device_unregister(struct device *dev) 3696 { 3697 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3698 device_del(dev); 3699 put_device(dev); 3700 } 3701 EXPORT_SYMBOL_GPL(device_unregister); 3702 3703 static struct device *prev_device(struct klist_iter *i) 3704 { 3705 struct klist_node *n = klist_prev(i); 3706 struct device *dev = NULL; 3707 struct device_private *p; 3708 3709 if (n) { 3710 p = to_device_private_parent(n); 3711 dev = p->device; 3712 } 3713 return dev; 3714 } 3715 3716 static struct device *next_device(struct klist_iter *i) 3717 { 3718 struct klist_node *n = klist_next(i); 3719 struct device *dev = NULL; 3720 struct device_private *p; 3721 3722 if (n) { 3723 p = to_device_private_parent(n); 3724 dev = p->device; 3725 } 3726 return dev; 3727 } 3728 3729 /** 3730 * device_get_devnode - path of device node file 3731 * @dev: device 3732 * @mode: returned file access mode 3733 * @uid: returned file owner 3734 * @gid: returned file group 3735 * @tmp: possibly allocated string 3736 * 3737 * Return the relative path of a possible device node. 3738 * Non-default names may need to allocate a memory to compose 3739 * a name. This memory is returned in tmp and needs to be 3740 * freed by the caller. 3741 */ 3742 const char *device_get_devnode(struct device *dev, 3743 umode_t *mode, kuid_t *uid, kgid_t *gid, 3744 const char **tmp) 3745 { 3746 char *s; 3747 3748 *tmp = NULL; 3749 3750 /* the device type may provide a specific name */ 3751 if (dev->type && dev->type->devnode) 3752 *tmp = dev->type->devnode(dev, mode, uid, gid); 3753 if (*tmp) 3754 return *tmp; 3755 3756 /* the class may provide a specific name */ 3757 if (dev->class && dev->class->devnode) 3758 *tmp = dev->class->devnode(dev, mode); 3759 if (*tmp) 3760 return *tmp; 3761 3762 /* return name without allocation, tmp == NULL */ 3763 if (strchr(dev_name(dev), '!') == NULL) 3764 return dev_name(dev); 3765 3766 /* replace '!' in the name with '/' */ 3767 s = kstrdup(dev_name(dev), GFP_KERNEL); 3768 if (!s) 3769 return NULL; 3770 strreplace(s, '!', '/'); 3771 return *tmp = s; 3772 } 3773 3774 /** 3775 * device_for_each_child - device child iterator. 3776 * @parent: parent struct device. 3777 * @fn: function to be called for each device. 3778 * @data: data for the callback. 3779 * 3780 * Iterate over @parent's child devices, and call @fn for each, 3781 * passing it @data. 3782 * 3783 * We check the return of @fn each time. If it returns anything 3784 * other than 0, we break out and return that value. 3785 */ 3786 int device_for_each_child(struct device *parent, void *data, 3787 int (*fn)(struct device *dev, void *data)) 3788 { 3789 struct klist_iter i; 3790 struct device *child; 3791 int error = 0; 3792 3793 if (!parent->p) 3794 return 0; 3795 3796 klist_iter_init(&parent->p->klist_children, &i); 3797 while (!error && (child = next_device(&i))) 3798 error = fn(child, data); 3799 klist_iter_exit(&i); 3800 return error; 3801 } 3802 EXPORT_SYMBOL_GPL(device_for_each_child); 3803 3804 /** 3805 * device_for_each_child_reverse - device child iterator in reversed order. 3806 * @parent: parent struct device. 3807 * @fn: function to be called for each device. 3808 * @data: data for the callback. 3809 * 3810 * Iterate over @parent's child devices, and call @fn for each, 3811 * passing it @data. 3812 * 3813 * We check the return of @fn each time. If it returns anything 3814 * other than 0, we break out and return that value. 3815 */ 3816 int device_for_each_child_reverse(struct device *parent, void *data, 3817 int (*fn)(struct device *dev, void *data)) 3818 { 3819 struct klist_iter i; 3820 struct device *child; 3821 int error = 0; 3822 3823 if (!parent->p) 3824 return 0; 3825 3826 klist_iter_init(&parent->p->klist_children, &i); 3827 while ((child = prev_device(&i)) && !error) 3828 error = fn(child, data); 3829 klist_iter_exit(&i); 3830 return error; 3831 } 3832 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3833 3834 /** 3835 * device_find_child - device iterator for locating a particular device. 3836 * @parent: parent struct device 3837 * @match: Callback function to check device 3838 * @data: Data to pass to match function 3839 * 3840 * This is similar to the device_for_each_child() function above, but it 3841 * returns a reference to a device that is 'found' for later use, as 3842 * determined by the @match callback. 3843 * 3844 * The callback should return 0 if the device doesn't match and non-zero 3845 * if it does. If the callback returns non-zero and a reference to the 3846 * current device can be obtained, this function will return to the caller 3847 * and not iterate over any more devices. 3848 * 3849 * NOTE: you will need to drop the reference with put_device() after use. 3850 */ 3851 struct device *device_find_child(struct device *parent, void *data, 3852 int (*match)(struct device *dev, void *data)) 3853 { 3854 struct klist_iter i; 3855 struct device *child; 3856 3857 if (!parent) 3858 return NULL; 3859 3860 klist_iter_init(&parent->p->klist_children, &i); 3861 while ((child = next_device(&i))) 3862 if (match(child, data) && get_device(child)) 3863 break; 3864 klist_iter_exit(&i); 3865 return child; 3866 } 3867 EXPORT_SYMBOL_GPL(device_find_child); 3868 3869 /** 3870 * device_find_child_by_name - device iterator for locating a child device. 3871 * @parent: parent struct device 3872 * @name: name of the child device 3873 * 3874 * This is similar to the device_find_child() function above, but it 3875 * returns a reference to a device that has the name @name. 3876 * 3877 * NOTE: you will need to drop the reference with put_device() after use. 3878 */ 3879 struct device *device_find_child_by_name(struct device *parent, 3880 const char *name) 3881 { 3882 struct klist_iter i; 3883 struct device *child; 3884 3885 if (!parent) 3886 return NULL; 3887 3888 klist_iter_init(&parent->p->klist_children, &i); 3889 while ((child = next_device(&i))) 3890 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3891 break; 3892 klist_iter_exit(&i); 3893 return child; 3894 } 3895 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3896 3897 static int match_any(struct device *dev, void *unused) 3898 { 3899 return 1; 3900 } 3901 3902 /** 3903 * device_find_any_child - device iterator for locating a child device, if any. 3904 * @parent: parent struct device 3905 * 3906 * This is similar to the device_find_child() function above, but it 3907 * returns a reference to a child device, if any. 3908 * 3909 * NOTE: you will need to drop the reference with put_device() after use. 3910 */ 3911 struct device *device_find_any_child(struct device *parent) 3912 { 3913 return device_find_child(parent, NULL, match_any); 3914 } 3915 EXPORT_SYMBOL_GPL(device_find_any_child); 3916 3917 int __init devices_init(void) 3918 { 3919 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3920 if (!devices_kset) 3921 return -ENOMEM; 3922 dev_kobj = kobject_create_and_add("dev", NULL); 3923 if (!dev_kobj) 3924 goto dev_kobj_err; 3925 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3926 if (!sysfs_dev_block_kobj) 3927 goto block_kobj_err; 3928 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3929 if (!sysfs_dev_char_kobj) 3930 goto char_kobj_err; 3931 3932 return 0; 3933 3934 char_kobj_err: 3935 kobject_put(sysfs_dev_block_kobj); 3936 block_kobj_err: 3937 kobject_put(dev_kobj); 3938 dev_kobj_err: 3939 kset_unregister(devices_kset); 3940 return -ENOMEM; 3941 } 3942 3943 static int device_check_offline(struct device *dev, void *not_used) 3944 { 3945 int ret; 3946 3947 ret = device_for_each_child(dev, NULL, device_check_offline); 3948 if (ret) 3949 return ret; 3950 3951 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3952 } 3953 3954 /** 3955 * device_offline - Prepare the device for hot-removal. 3956 * @dev: Device to be put offline. 3957 * 3958 * Execute the device bus type's .offline() callback, if present, to prepare 3959 * the device for a subsequent hot-removal. If that succeeds, the device must 3960 * not be used until either it is removed or its bus type's .online() callback 3961 * is executed. 3962 * 3963 * Call under device_hotplug_lock. 3964 */ 3965 int device_offline(struct device *dev) 3966 { 3967 int ret; 3968 3969 if (dev->offline_disabled) 3970 return -EPERM; 3971 3972 ret = device_for_each_child(dev, NULL, device_check_offline); 3973 if (ret) 3974 return ret; 3975 3976 device_lock(dev); 3977 if (device_supports_offline(dev)) { 3978 if (dev->offline) { 3979 ret = 1; 3980 } else { 3981 ret = dev->bus->offline(dev); 3982 if (!ret) { 3983 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3984 dev->offline = true; 3985 } 3986 } 3987 } 3988 device_unlock(dev); 3989 3990 return ret; 3991 } 3992 3993 /** 3994 * device_online - Put the device back online after successful device_offline(). 3995 * @dev: Device to be put back online. 3996 * 3997 * If device_offline() has been successfully executed for @dev, but the device 3998 * has not been removed subsequently, execute its bus type's .online() callback 3999 * to indicate that the device can be used again. 4000 * 4001 * Call under device_hotplug_lock. 4002 */ 4003 int device_online(struct device *dev) 4004 { 4005 int ret = 0; 4006 4007 device_lock(dev); 4008 if (device_supports_offline(dev)) { 4009 if (dev->offline) { 4010 ret = dev->bus->online(dev); 4011 if (!ret) { 4012 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4013 dev->offline = false; 4014 } 4015 } else { 4016 ret = 1; 4017 } 4018 } 4019 device_unlock(dev); 4020 4021 return ret; 4022 } 4023 4024 struct root_device { 4025 struct device dev; 4026 struct module *owner; 4027 }; 4028 4029 static inline struct root_device *to_root_device(struct device *d) 4030 { 4031 return container_of(d, struct root_device, dev); 4032 } 4033 4034 static void root_device_release(struct device *dev) 4035 { 4036 kfree(to_root_device(dev)); 4037 } 4038 4039 /** 4040 * __root_device_register - allocate and register a root device 4041 * @name: root device name 4042 * @owner: owner module of the root device, usually THIS_MODULE 4043 * 4044 * This function allocates a root device and registers it 4045 * using device_register(). In order to free the returned 4046 * device, use root_device_unregister(). 4047 * 4048 * Root devices are dummy devices which allow other devices 4049 * to be grouped under /sys/devices. Use this function to 4050 * allocate a root device and then use it as the parent of 4051 * any device which should appear under /sys/devices/{name} 4052 * 4053 * The /sys/devices/{name} directory will also contain a 4054 * 'module' symlink which points to the @owner directory 4055 * in sysfs. 4056 * 4057 * Returns &struct device pointer on success, or ERR_PTR() on error. 4058 * 4059 * Note: You probably want to use root_device_register(). 4060 */ 4061 struct device *__root_device_register(const char *name, struct module *owner) 4062 { 4063 struct root_device *root; 4064 int err = -ENOMEM; 4065 4066 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4067 if (!root) 4068 return ERR_PTR(err); 4069 4070 err = dev_set_name(&root->dev, "%s", name); 4071 if (err) { 4072 kfree(root); 4073 return ERR_PTR(err); 4074 } 4075 4076 root->dev.release = root_device_release; 4077 4078 err = device_register(&root->dev); 4079 if (err) { 4080 put_device(&root->dev); 4081 return ERR_PTR(err); 4082 } 4083 4084 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4085 if (owner) { 4086 struct module_kobject *mk = &owner->mkobj; 4087 4088 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4089 if (err) { 4090 device_unregister(&root->dev); 4091 return ERR_PTR(err); 4092 } 4093 root->owner = owner; 4094 } 4095 #endif 4096 4097 return &root->dev; 4098 } 4099 EXPORT_SYMBOL_GPL(__root_device_register); 4100 4101 /** 4102 * root_device_unregister - unregister and free a root device 4103 * @dev: device going away 4104 * 4105 * This function unregisters and cleans up a device that was created by 4106 * root_device_register(). 4107 */ 4108 void root_device_unregister(struct device *dev) 4109 { 4110 struct root_device *root = to_root_device(dev); 4111 4112 if (root->owner) 4113 sysfs_remove_link(&root->dev.kobj, "module"); 4114 4115 device_unregister(dev); 4116 } 4117 EXPORT_SYMBOL_GPL(root_device_unregister); 4118 4119 4120 static void device_create_release(struct device *dev) 4121 { 4122 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4123 kfree(dev); 4124 } 4125 4126 static __printf(6, 0) struct device * 4127 device_create_groups_vargs(struct class *class, struct device *parent, 4128 dev_t devt, void *drvdata, 4129 const struct attribute_group **groups, 4130 const char *fmt, va_list args) 4131 { 4132 struct device *dev = NULL; 4133 int retval = -ENODEV; 4134 4135 if (IS_ERR_OR_NULL(class)) 4136 goto error; 4137 4138 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4139 if (!dev) { 4140 retval = -ENOMEM; 4141 goto error; 4142 } 4143 4144 device_initialize(dev); 4145 dev->devt = devt; 4146 dev->class = class; 4147 dev->parent = parent; 4148 dev->groups = groups; 4149 dev->release = device_create_release; 4150 dev_set_drvdata(dev, drvdata); 4151 4152 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4153 if (retval) 4154 goto error; 4155 4156 retval = device_add(dev); 4157 if (retval) 4158 goto error; 4159 4160 return dev; 4161 4162 error: 4163 put_device(dev); 4164 return ERR_PTR(retval); 4165 } 4166 4167 /** 4168 * device_create - creates a device and registers it with sysfs 4169 * @class: pointer to the struct class that this device should be registered to 4170 * @parent: pointer to the parent struct device of this new device, if any 4171 * @devt: the dev_t for the char device to be added 4172 * @drvdata: the data to be added to the device for callbacks 4173 * @fmt: string for the device's name 4174 * 4175 * This function can be used by char device classes. A struct device 4176 * will be created in sysfs, registered to the specified class. 4177 * 4178 * A "dev" file will be created, showing the dev_t for the device, if 4179 * the dev_t is not 0,0. 4180 * If a pointer to a parent struct device is passed in, the newly created 4181 * struct device will be a child of that device in sysfs. 4182 * The pointer to the struct device will be returned from the call. 4183 * Any further sysfs files that might be required can be created using this 4184 * pointer. 4185 * 4186 * Returns &struct device pointer on success, or ERR_PTR() on error. 4187 * 4188 * Note: the struct class passed to this function must have previously 4189 * been created with a call to class_create(). 4190 */ 4191 struct device *device_create(struct class *class, struct device *parent, 4192 dev_t devt, void *drvdata, const char *fmt, ...) 4193 { 4194 va_list vargs; 4195 struct device *dev; 4196 4197 va_start(vargs, fmt); 4198 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4199 fmt, vargs); 4200 va_end(vargs); 4201 return dev; 4202 } 4203 EXPORT_SYMBOL_GPL(device_create); 4204 4205 /** 4206 * device_create_with_groups - creates a device and registers it with sysfs 4207 * @class: pointer to the struct class that this device should be registered to 4208 * @parent: pointer to the parent struct device of this new device, if any 4209 * @devt: the dev_t for the char device to be added 4210 * @drvdata: the data to be added to the device for callbacks 4211 * @groups: NULL-terminated list of attribute groups to be created 4212 * @fmt: string for the device's name 4213 * 4214 * This function can be used by char device classes. A struct device 4215 * will be created in sysfs, registered to the specified class. 4216 * Additional attributes specified in the groups parameter will also 4217 * be created automatically. 4218 * 4219 * A "dev" file will be created, showing the dev_t for the device, if 4220 * the dev_t is not 0,0. 4221 * If a pointer to a parent struct device is passed in, the newly created 4222 * struct device will be a child of that device in sysfs. 4223 * The pointer to the struct device will be returned from the call. 4224 * Any further sysfs files that might be required can be created using this 4225 * pointer. 4226 * 4227 * Returns &struct device pointer on success, or ERR_PTR() on error. 4228 * 4229 * Note: the struct class passed to this function must have previously 4230 * been created with a call to class_create(). 4231 */ 4232 struct device *device_create_with_groups(struct class *class, 4233 struct device *parent, dev_t devt, 4234 void *drvdata, 4235 const struct attribute_group **groups, 4236 const char *fmt, ...) 4237 { 4238 va_list vargs; 4239 struct device *dev; 4240 4241 va_start(vargs, fmt); 4242 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4243 fmt, vargs); 4244 va_end(vargs); 4245 return dev; 4246 } 4247 EXPORT_SYMBOL_GPL(device_create_with_groups); 4248 4249 /** 4250 * device_destroy - removes a device that was created with device_create() 4251 * @class: pointer to the struct class that this device was registered with 4252 * @devt: the dev_t of the device that was previously registered 4253 * 4254 * This call unregisters and cleans up a device that was created with a 4255 * call to device_create(). 4256 */ 4257 void device_destroy(struct class *class, dev_t devt) 4258 { 4259 struct device *dev; 4260 4261 dev = class_find_device_by_devt(class, devt); 4262 if (dev) { 4263 put_device(dev); 4264 device_unregister(dev); 4265 } 4266 } 4267 EXPORT_SYMBOL_GPL(device_destroy); 4268 4269 /** 4270 * device_rename - renames a device 4271 * @dev: the pointer to the struct device to be renamed 4272 * @new_name: the new name of the device 4273 * 4274 * It is the responsibility of the caller to provide mutual 4275 * exclusion between two different calls of device_rename 4276 * on the same device to ensure that new_name is valid and 4277 * won't conflict with other devices. 4278 * 4279 * Note: Don't call this function. Currently, the networking layer calls this 4280 * function, but that will change. The following text from Kay Sievers offers 4281 * some insight: 4282 * 4283 * Renaming devices is racy at many levels, symlinks and other stuff are not 4284 * replaced atomically, and you get a "move" uevent, but it's not easy to 4285 * connect the event to the old and new device. Device nodes are not renamed at 4286 * all, there isn't even support for that in the kernel now. 4287 * 4288 * In the meantime, during renaming, your target name might be taken by another 4289 * driver, creating conflicts. Or the old name is taken directly after you 4290 * renamed it -- then you get events for the same DEVPATH, before you even see 4291 * the "move" event. It's just a mess, and nothing new should ever rely on 4292 * kernel device renaming. Besides that, it's not even implemented now for 4293 * other things than (driver-core wise very simple) network devices. 4294 * 4295 * We are currently about to change network renaming in udev to completely 4296 * disallow renaming of devices in the same namespace as the kernel uses, 4297 * because we can't solve the problems properly, that arise with swapping names 4298 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4299 * be allowed to some other name than eth[0-9]*, for the aforementioned 4300 * reasons. 4301 * 4302 * Make up a "real" name in the driver before you register anything, or add 4303 * some other attributes for userspace to find the device, or use udev to add 4304 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4305 * don't even want to get into that and try to implement the missing pieces in 4306 * the core. We really have other pieces to fix in the driver core mess. :) 4307 */ 4308 int device_rename(struct device *dev, const char *new_name) 4309 { 4310 struct kobject *kobj = &dev->kobj; 4311 char *old_device_name = NULL; 4312 int error; 4313 4314 dev = get_device(dev); 4315 if (!dev) 4316 return -EINVAL; 4317 4318 dev_dbg(dev, "renaming to %s\n", new_name); 4319 4320 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4321 if (!old_device_name) { 4322 error = -ENOMEM; 4323 goto out; 4324 } 4325 4326 if (dev->class) { 4327 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4328 kobj, old_device_name, 4329 new_name, kobject_namespace(kobj)); 4330 if (error) 4331 goto out; 4332 } 4333 4334 error = kobject_rename(kobj, new_name); 4335 if (error) 4336 goto out; 4337 4338 out: 4339 put_device(dev); 4340 4341 kfree(old_device_name); 4342 4343 return error; 4344 } 4345 EXPORT_SYMBOL_GPL(device_rename); 4346 4347 static int device_move_class_links(struct device *dev, 4348 struct device *old_parent, 4349 struct device *new_parent) 4350 { 4351 int error = 0; 4352 4353 if (old_parent) 4354 sysfs_remove_link(&dev->kobj, "device"); 4355 if (new_parent) 4356 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4357 "device"); 4358 return error; 4359 } 4360 4361 /** 4362 * device_move - moves a device to a new parent 4363 * @dev: the pointer to the struct device to be moved 4364 * @new_parent: the new parent of the device (can be NULL) 4365 * @dpm_order: how to reorder the dpm_list 4366 */ 4367 int device_move(struct device *dev, struct device *new_parent, 4368 enum dpm_order dpm_order) 4369 { 4370 int error; 4371 struct device *old_parent; 4372 struct kobject *new_parent_kobj; 4373 4374 dev = get_device(dev); 4375 if (!dev) 4376 return -EINVAL; 4377 4378 device_pm_lock(); 4379 new_parent = get_device(new_parent); 4380 new_parent_kobj = get_device_parent(dev, new_parent); 4381 if (IS_ERR(new_parent_kobj)) { 4382 error = PTR_ERR(new_parent_kobj); 4383 put_device(new_parent); 4384 goto out; 4385 } 4386 4387 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4388 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4389 error = kobject_move(&dev->kobj, new_parent_kobj); 4390 if (error) { 4391 cleanup_glue_dir(dev, new_parent_kobj); 4392 put_device(new_parent); 4393 goto out; 4394 } 4395 old_parent = dev->parent; 4396 dev->parent = new_parent; 4397 if (old_parent) 4398 klist_remove(&dev->p->knode_parent); 4399 if (new_parent) { 4400 klist_add_tail(&dev->p->knode_parent, 4401 &new_parent->p->klist_children); 4402 set_dev_node(dev, dev_to_node(new_parent)); 4403 } 4404 4405 if (dev->class) { 4406 error = device_move_class_links(dev, old_parent, new_parent); 4407 if (error) { 4408 /* We ignore errors on cleanup since we're hosed anyway... */ 4409 device_move_class_links(dev, new_parent, old_parent); 4410 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4411 if (new_parent) 4412 klist_remove(&dev->p->knode_parent); 4413 dev->parent = old_parent; 4414 if (old_parent) { 4415 klist_add_tail(&dev->p->knode_parent, 4416 &old_parent->p->klist_children); 4417 set_dev_node(dev, dev_to_node(old_parent)); 4418 } 4419 } 4420 cleanup_glue_dir(dev, new_parent_kobj); 4421 put_device(new_parent); 4422 goto out; 4423 } 4424 } 4425 switch (dpm_order) { 4426 case DPM_ORDER_NONE: 4427 break; 4428 case DPM_ORDER_DEV_AFTER_PARENT: 4429 device_pm_move_after(dev, new_parent); 4430 devices_kset_move_after(dev, new_parent); 4431 break; 4432 case DPM_ORDER_PARENT_BEFORE_DEV: 4433 device_pm_move_before(new_parent, dev); 4434 devices_kset_move_before(new_parent, dev); 4435 break; 4436 case DPM_ORDER_DEV_LAST: 4437 device_pm_move_last(dev); 4438 devices_kset_move_last(dev); 4439 break; 4440 } 4441 4442 put_device(old_parent); 4443 out: 4444 device_pm_unlock(); 4445 put_device(dev); 4446 return error; 4447 } 4448 EXPORT_SYMBOL_GPL(device_move); 4449 4450 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4451 kgid_t kgid) 4452 { 4453 struct kobject *kobj = &dev->kobj; 4454 struct class *class = dev->class; 4455 const struct device_type *type = dev->type; 4456 int error; 4457 4458 if (class) { 4459 /* 4460 * Change the device groups of the device class for @dev to 4461 * @kuid/@kgid. 4462 */ 4463 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4464 kgid); 4465 if (error) 4466 return error; 4467 } 4468 4469 if (type) { 4470 /* 4471 * Change the device groups of the device type for @dev to 4472 * @kuid/@kgid. 4473 */ 4474 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4475 kgid); 4476 if (error) 4477 return error; 4478 } 4479 4480 /* Change the device groups of @dev to @kuid/@kgid. */ 4481 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4482 if (error) 4483 return error; 4484 4485 if (device_supports_offline(dev) && !dev->offline_disabled) { 4486 /* Change online device attributes of @dev to @kuid/@kgid. */ 4487 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4488 kuid, kgid); 4489 if (error) 4490 return error; 4491 } 4492 4493 return 0; 4494 } 4495 4496 /** 4497 * device_change_owner - change the owner of an existing device. 4498 * @dev: device. 4499 * @kuid: new owner's kuid 4500 * @kgid: new owner's kgid 4501 * 4502 * This changes the owner of @dev and its corresponding sysfs entries to 4503 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4504 * core. 4505 * 4506 * Returns 0 on success or error code on failure. 4507 */ 4508 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4509 { 4510 int error; 4511 struct kobject *kobj = &dev->kobj; 4512 4513 dev = get_device(dev); 4514 if (!dev) 4515 return -EINVAL; 4516 4517 /* 4518 * Change the kobject and the default attributes and groups of the 4519 * ktype associated with it to @kuid/@kgid. 4520 */ 4521 error = sysfs_change_owner(kobj, kuid, kgid); 4522 if (error) 4523 goto out; 4524 4525 /* 4526 * Change the uevent file for @dev to the new owner. The uevent file 4527 * was created in a separate step when @dev got added and we mirror 4528 * that step here. 4529 */ 4530 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4531 kgid); 4532 if (error) 4533 goto out; 4534 4535 /* 4536 * Change the device groups, the device groups associated with the 4537 * device class, and the groups associated with the device type of @dev 4538 * to @kuid/@kgid. 4539 */ 4540 error = device_attrs_change_owner(dev, kuid, kgid); 4541 if (error) 4542 goto out; 4543 4544 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4545 if (error) 4546 goto out; 4547 4548 #ifdef CONFIG_BLOCK 4549 if (sysfs_deprecated && dev->class == &block_class) 4550 goto out; 4551 #endif 4552 4553 /* 4554 * Change the owner of the symlink located in the class directory of 4555 * the device class associated with @dev which points to the actual 4556 * directory entry for @dev to @kuid/@kgid. This ensures that the 4557 * symlink shows the same permissions as its target. 4558 */ 4559 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4560 dev_name(dev), kuid, kgid); 4561 if (error) 4562 goto out; 4563 4564 out: 4565 put_device(dev); 4566 return error; 4567 } 4568 EXPORT_SYMBOL_GPL(device_change_owner); 4569 4570 /** 4571 * device_shutdown - call ->shutdown() on each device to shutdown. 4572 */ 4573 void device_shutdown(void) 4574 { 4575 struct device *dev, *parent; 4576 4577 wait_for_device_probe(); 4578 device_block_probing(); 4579 4580 cpufreq_suspend(); 4581 4582 spin_lock(&devices_kset->list_lock); 4583 /* 4584 * Walk the devices list backward, shutting down each in turn. 4585 * Beware that device unplug events may also start pulling 4586 * devices offline, even as the system is shutting down. 4587 */ 4588 while (!list_empty(&devices_kset->list)) { 4589 dev = list_entry(devices_kset->list.prev, struct device, 4590 kobj.entry); 4591 4592 /* 4593 * hold reference count of device's parent to 4594 * prevent it from being freed because parent's 4595 * lock is to be held 4596 */ 4597 parent = get_device(dev->parent); 4598 get_device(dev); 4599 /* 4600 * Make sure the device is off the kset list, in the 4601 * event that dev->*->shutdown() doesn't remove it. 4602 */ 4603 list_del_init(&dev->kobj.entry); 4604 spin_unlock(&devices_kset->list_lock); 4605 4606 /* hold lock to avoid race with probe/release */ 4607 if (parent) 4608 device_lock(parent); 4609 device_lock(dev); 4610 4611 /* Don't allow any more runtime suspends */ 4612 pm_runtime_get_noresume(dev); 4613 pm_runtime_barrier(dev); 4614 4615 if (dev->class && dev->class->shutdown_pre) { 4616 if (initcall_debug) 4617 dev_info(dev, "shutdown_pre\n"); 4618 dev->class->shutdown_pre(dev); 4619 } 4620 if (dev->bus && dev->bus->shutdown) { 4621 if (initcall_debug) 4622 dev_info(dev, "shutdown\n"); 4623 dev->bus->shutdown(dev); 4624 } else if (dev->driver && dev->driver->shutdown) { 4625 if (initcall_debug) 4626 dev_info(dev, "shutdown\n"); 4627 dev->driver->shutdown(dev); 4628 } 4629 4630 device_unlock(dev); 4631 if (parent) 4632 device_unlock(parent); 4633 4634 put_device(dev); 4635 put_device(parent); 4636 4637 spin_lock(&devices_kset->list_lock); 4638 } 4639 spin_unlock(&devices_kset->list_lock); 4640 } 4641 4642 /* 4643 * Device logging functions 4644 */ 4645 4646 #ifdef CONFIG_PRINTK 4647 static void 4648 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4649 { 4650 const char *subsys; 4651 4652 memset(dev_info, 0, sizeof(*dev_info)); 4653 4654 if (dev->class) 4655 subsys = dev->class->name; 4656 else if (dev->bus) 4657 subsys = dev->bus->name; 4658 else 4659 return; 4660 4661 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4662 4663 /* 4664 * Add device identifier DEVICE=: 4665 * b12:8 block dev_t 4666 * c127:3 char dev_t 4667 * n8 netdev ifindex 4668 * +sound:card0 subsystem:devname 4669 */ 4670 if (MAJOR(dev->devt)) { 4671 char c; 4672 4673 if (strcmp(subsys, "block") == 0) 4674 c = 'b'; 4675 else 4676 c = 'c'; 4677 4678 snprintf(dev_info->device, sizeof(dev_info->device), 4679 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4680 } else if (strcmp(subsys, "net") == 0) { 4681 struct net_device *net = to_net_dev(dev); 4682 4683 snprintf(dev_info->device, sizeof(dev_info->device), 4684 "n%u", net->ifindex); 4685 } else { 4686 snprintf(dev_info->device, sizeof(dev_info->device), 4687 "+%s:%s", subsys, dev_name(dev)); 4688 } 4689 } 4690 4691 int dev_vprintk_emit(int level, const struct device *dev, 4692 const char *fmt, va_list args) 4693 { 4694 struct dev_printk_info dev_info; 4695 4696 set_dev_info(dev, &dev_info); 4697 4698 return vprintk_emit(0, level, &dev_info, fmt, args); 4699 } 4700 EXPORT_SYMBOL(dev_vprintk_emit); 4701 4702 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4703 { 4704 va_list args; 4705 int r; 4706 4707 va_start(args, fmt); 4708 4709 r = dev_vprintk_emit(level, dev, fmt, args); 4710 4711 va_end(args); 4712 4713 return r; 4714 } 4715 EXPORT_SYMBOL(dev_printk_emit); 4716 4717 static void __dev_printk(const char *level, const struct device *dev, 4718 struct va_format *vaf) 4719 { 4720 if (dev) 4721 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4722 dev_driver_string(dev), dev_name(dev), vaf); 4723 else 4724 printk("%s(NULL device *): %pV", level, vaf); 4725 } 4726 4727 void _dev_printk(const char *level, const struct device *dev, 4728 const char *fmt, ...) 4729 { 4730 struct va_format vaf; 4731 va_list args; 4732 4733 va_start(args, fmt); 4734 4735 vaf.fmt = fmt; 4736 vaf.va = &args; 4737 4738 __dev_printk(level, dev, &vaf); 4739 4740 va_end(args); 4741 } 4742 EXPORT_SYMBOL(_dev_printk); 4743 4744 #define define_dev_printk_level(func, kern_level) \ 4745 void func(const struct device *dev, const char *fmt, ...) \ 4746 { \ 4747 struct va_format vaf; \ 4748 va_list args; \ 4749 \ 4750 va_start(args, fmt); \ 4751 \ 4752 vaf.fmt = fmt; \ 4753 vaf.va = &args; \ 4754 \ 4755 __dev_printk(kern_level, dev, &vaf); \ 4756 \ 4757 va_end(args); \ 4758 } \ 4759 EXPORT_SYMBOL(func); 4760 4761 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4762 define_dev_printk_level(_dev_alert, KERN_ALERT); 4763 define_dev_printk_level(_dev_crit, KERN_CRIT); 4764 define_dev_printk_level(_dev_err, KERN_ERR); 4765 define_dev_printk_level(_dev_warn, KERN_WARNING); 4766 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4767 define_dev_printk_level(_dev_info, KERN_INFO); 4768 4769 #endif 4770 4771 /** 4772 * dev_err_probe - probe error check and log helper 4773 * @dev: the pointer to the struct device 4774 * @err: error value to test 4775 * @fmt: printf-style format string 4776 * @...: arguments as specified in the format string 4777 * 4778 * This helper implements common pattern present in probe functions for error 4779 * checking: print debug or error message depending if the error value is 4780 * -EPROBE_DEFER and propagate error upwards. 4781 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4782 * checked later by reading devices_deferred debugfs attribute. 4783 * It replaces code sequence:: 4784 * 4785 * if (err != -EPROBE_DEFER) 4786 * dev_err(dev, ...); 4787 * else 4788 * dev_dbg(dev, ...); 4789 * return err; 4790 * 4791 * with:: 4792 * 4793 * return dev_err_probe(dev, err, ...); 4794 * 4795 * Note that it is deemed acceptable to use this function for error 4796 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4797 * The benefit compared to a normal dev_err() is the standardized format 4798 * of the error code and the fact that the error code is returned. 4799 * 4800 * Returns @err. 4801 * 4802 */ 4803 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4804 { 4805 struct va_format vaf; 4806 va_list args; 4807 4808 va_start(args, fmt); 4809 vaf.fmt = fmt; 4810 vaf.va = &args; 4811 4812 if (err != -EPROBE_DEFER) { 4813 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4814 } else { 4815 device_set_deferred_probe_reason(dev, &vaf); 4816 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4817 } 4818 4819 va_end(args); 4820 4821 return err; 4822 } 4823 EXPORT_SYMBOL_GPL(dev_err_probe); 4824 4825 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4826 { 4827 return fwnode && !IS_ERR(fwnode->secondary); 4828 } 4829 4830 /** 4831 * set_primary_fwnode - Change the primary firmware node of a given device. 4832 * @dev: Device to handle. 4833 * @fwnode: New primary firmware node of the device. 4834 * 4835 * Set the device's firmware node pointer to @fwnode, but if a secondary 4836 * firmware node of the device is present, preserve it. 4837 * 4838 * Valid fwnode cases are: 4839 * - primary --> secondary --> -ENODEV 4840 * - primary --> NULL 4841 * - secondary --> -ENODEV 4842 * - NULL 4843 */ 4844 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4845 { 4846 struct device *parent = dev->parent; 4847 struct fwnode_handle *fn = dev->fwnode; 4848 4849 if (fwnode) { 4850 if (fwnode_is_primary(fn)) 4851 fn = fn->secondary; 4852 4853 if (fn) { 4854 WARN_ON(fwnode->secondary); 4855 fwnode->secondary = fn; 4856 } 4857 dev->fwnode = fwnode; 4858 } else { 4859 if (fwnode_is_primary(fn)) { 4860 dev->fwnode = fn->secondary; 4861 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4862 if (!(parent && fn == parent->fwnode)) 4863 fn->secondary = NULL; 4864 } else { 4865 dev->fwnode = NULL; 4866 } 4867 } 4868 } 4869 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4870 4871 /** 4872 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4873 * @dev: Device to handle. 4874 * @fwnode: New secondary firmware node of the device. 4875 * 4876 * If a primary firmware node of the device is present, set its secondary 4877 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4878 * @fwnode. 4879 */ 4880 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4881 { 4882 if (fwnode) 4883 fwnode->secondary = ERR_PTR(-ENODEV); 4884 4885 if (fwnode_is_primary(dev->fwnode)) 4886 dev->fwnode->secondary = fwnode; 4887 else 4888 dev->fwnode = fwnode; 4889 } 4890 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4891 4892 /** 4893 * device_set_of_node_from_dev - reuse device-tree node of another device 4894 * @dev: device whose device-tree node is being set 4895 * @dev2: device whose device-tree node is being reused 4896 * 4897 * Takes another reference to the new device-tree node after first dropping 4898 * any reference held to the old node. 4899 */ 4900 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4901 { 4902 of_node_put(dev->of_node); 4903 dev->of_node = of_node_get(dev2->of_node); 4904 dev->of_node_reused = true; 4905 } 4906 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4907 4908 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4909 { 4910 dev->fwnode = fwnode; 4911 dev->of_node = to_of_node(fwnode); 4912 } 4913 EXPORT_SYMBOL_GPL(device_set_node); 4914 4915 int device_match_name(struct device *dev, const void *name) 4916 { 4917 return sysfs_streq(dev_name(dev), name); 4918 } 4919 EXPORT_SYMBOL_GPL(device_match_name); 4920 4921 int device_match_of_node(struct device *dev, const void *np) 4922 { 4923 return dev->of_node == np; 4924 } 4925 EXPORT_SYMBOL_GPL(device_match_of_node); 4926 4927 int device_match_fwnode(struct device *dev, const void *fwnode) 4928 { 4929 return dev_fwnode(dev) == fwnode; 4930 } 4931 EXPORT_SYMBOL_GPL(device_match_fwnode); 4932 4933 int device_match_devt(struct device *dev, const void *pdevt) 4934 { 4935 return dev->devt == *(dev_t *)pdevt; 4936 } 4937 EXPORT_SYMBOL_GPL(device_match_devt); 4938 4939 int device_match_acpi_dev(struct device *dev, const void *adev) 4940 { 4941 return ACPI_COMPANION(dev) == adev; 4942 } 4943 EXPORT_SYMBOL(device_match_acpi_dev); 4944 4945 int device_match_acpi_handle(struct device *dev, const void *handle) 4946 { 4947 return ACPI_HANDLE(dev) == handle; 4948 } 4949 EXPORT_SYMBOL(device_match_acpi_handle); 4950 4951 int device_match_any(struct device *dev, const void *unused) 4952 { 4953 return 1; 4954 } 4955 EXPORT_SYMBOL_GPL(device_match_any); 4956