xref: /linux/drivers/base/core.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 
48 /**
49  * __fwnode_link_add - Create a link between two fwnode_handles.
50  * @con: Consumer end of the link.
51  * @sup: Supplier end of the link.
52  * @flags: Link flags.
53  *
54  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55  * represents the detail that the firmware lists @sup fwnode as supplying a
56  * resource to @con.
57  *
58  * The driver core will use the fwnode link to create a device link between the
59  * two device objects corresponding to @con and @sup when they are created. The
60  * driver core will automatically delete the fwnode link between @con and @sup
61  * after doing that.
62  *
63  * Attempts to create duplicate links between the same pair of fwnode handles
64  * are ignored and there is no reference counting.
65  */
66 static int __fwnode_link_add(struct fwnode_handle *con,
67 			     struct fwnode_handle *sup, u8 flags)
68 {
69 	struct fwnode_link *link;
70 
71 	list_for_each_entry(link, &sup->consumers, s_hook)
72 		if (link->consumer == con) {
73 			link->flags |= flags;
74 			return 0;
75 		}
76 
77 	link = kzalloc(sizeof(*link), GFP_KERNEL);
78 	if (!link)
79 		return -ENOMEM;
80 
81 	link->supplier = sup;
82 	INIT_LIST_HEAD(&link->s_hook);
83 	link->consumer = con;
84 	INIT_LIST_HEAD(&link->c_hook);
85 	link->flags = flags;
86 
87 	list_add(&link->s_hook, &sup->consumers);
88 	list_add(&link->c_hook, &con->suppliers);
89 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 		 con, sup);
91 
92 	return 0;
93 }
94 
95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
96 		    u8 flags)
97 {
98 	int ret;
99 
100 	mutex_lock(&fwnode_link_lock);
101 	ret = __fwnode_link_add(con, sup, flags);
102 	mutex_unlock(&fwnode_link_lock);
103 	return ret;
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
123  * @link: the fwnode_link to be marked
124  *
125  * The fwnode_link_lock needs to be held when this function is called.
126  */
127 static void __fwnode_link_cycle(struct fwnode_link *link)
128 {
129 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
130 		 link->consumer, link->supplier);
131 	link->flags |= FWLINK_FLAG_CYCLE;
132 }
133 
134 /**
135  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
136  * @fwnode: fwnode whose supplier links need to be deleted
137  *
138  * Deletes all supplier links connecting directly to @fwnode.
139  */
140 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
141 {
142 	struct fwnode_link *link, *tmp;
143 
144 	mutex_lock(&fwnode_link_lock);
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 	mutex_unlock(&fwnode_link_lock);
148 }
149 
150 /**
151  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
152  * @fwnode: fwnode whose consumer links need to be deleted
153  *
154  * Deletes all consumer links connecting directly to @fwnode.
155  */
156 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
157 {
158 	struct fwnode_link *link, *tmp;
159 
160 	mutex_lock(&fwnode_link_lock);
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 	mutex_unlock(&fwnode_link_lock);
164 }
165 
166 /**
167  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
168  * @fwnode: fwnode whose links needs to be deleted
169  *
170  * Deletes all links connecting directly to a fwnode.
171  */
172 void fwnode_links_purge(struct fwnode_handle *fwnode)
173 {
174 	fwnode_links_purge_suppliers(fwnode);
175 	fwnode_links_purge_consumers(fwnode);
176 }
177 
178 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
179 {
180 	struct fwnode_handle *child;
181 
182 	/* Don't purge consumer links of an added child */
183 	if (fwnode->dev)
184 		return;
185 
186 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
187 	fwnode_links_purge_consumers(fwnode);
188 
189 	fwnode_for_each_available_child_node(fwnode, child)
190 		fw_devlink_purge_absent_suppliers(child);
191 }
192 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
193 
194 /**
195  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
196  * @from: move consumers away from this fwnode
197  * @to: move consumers to this fwnode
198  *
199  * Move all consumer links from @from fwnode to @to fwnode.
200  */
201 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
202 					  struct fwnode_handle *to)
203 {
204 	struct fwnode_link *link, *tmp;
205 
206 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
207 		__fwnode_link_add(link->consumer, to, link->flags);
208 		__fwnode_link_del(link);
209 	}
210 }
211 
212 /**
213  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
214  * @fwnode: fwnode from which to pick up dangling consumers
215  * @new_sup: fwnode of new supplier
216  *
217  * If the @fwnode has a corresponding struct device and the device supports
218  * probing (that is, added to a bus), then we want to let fw_devlink create
219  * MANAGED device links to this device, so leave @fwnode and its descendant's
220  * fwnode links alone.
221  *
222  * Otherwise, move its consumers to the new supplier @new_sup.
223  */
224 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
225 						   struct fwnode_handle *new_sup)
226 {
227 	struct fwnode_handle *child;
228 
229 	if (fwnode->dev && fwnode->dev->bus)
230 		return;
231 
232 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
233 	__fwnode_links_move_consumers(fwnode, new_sup);
234 
235 	fwnode_for_each_available_child_node(fwnode, child)
236 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
237 }
238 
239 static DEFINE_MUTEX(device_links_lock);
240 DEFINE_STATIC_SRCU(device_links_srcu);
241 
242 static inline void device_links_write_lock(void)
243 {
244 	mutex_lock(&device_links_lock);
245 }
246 
247 static inline void device_links_write_unlock(void)
248 {
249 	mutex_unlock(&device_links_lock);
250 }
251 
252 int device_links_read_lock(void) __acquires(&device_links_srcu)
253 {
254 	return srcu_read_lock(&device_links_srcu);
255 }
256 
257 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
258 {
259 	srcu_read_unlock(&device_links_srcu, idx);
260 }
261 
262 int device_links_read_lock_held(void)
263 {
264 	return srcu_read_lock_held(&device_links_srcu);
265 }
266 
267 static void device_link_synchronize_removal(void)
268 {
269 	synchronize_srcu(&device_links_srcu);
270 }
271 
272 static void device_link_remove_from_lists(struct device_link *link)
273 {
274 	list_del_rcu(&link->s_node);
275 	list_del_rcu(&link->c_node);
276 }
277 
278 static bool device_is_ancestor(struct device *dev, struct device *target)
279 {
280 	while (target->parent) {
281 		target = target->parent;
282 		if (dev == target)
283 			return true;
284 	}
285 	return false;
286 }
287 
288 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
289 				 DL_FLAG_CYCLE | \
290 				 DL_FLAG_MANAGED)
291 static inline bool device_link_flag_is_sync_state_only(u32 flags)
292 {
293 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
294 }
295 
296 /**
297  * device_is_dependent - Check if one device depends on another one
298  * @dev: Device to check dependencies for.
299  * @target: Device to check against.
300  *
301  * Check if @target depends on @dev or any device dependent on it (its child or
302  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
303  */
304 static int device_is_dependent(struct device *dev, void *target)
305 {
306 	struct device_link *link;
307 	int ret;
308 
309 	/*
310 	 * The "ancestors" check is needed to catch the case when the target
311 	 * device has not been completely initialized yet and it is still
312 	 * missing from the list of children of its parent device.
313 	 */
314 	if (dev == target || device_is_ancestor(dev, target))
315 		return 1;
316 
317 	ret = device_for_each_child(dev, target, device_is_dependent);
318 	if (ret)
319 		return ret;
320 
321 	list_for_each_entry(link, &dev->links.consumers, s_node) {
322 		if (device_link_flag_is_sync_state_only(link->flags))
323 			continue;
324 
325 		if (link->consumer == target)
326 			return 1;
327 
328 		ret = device_is_dependent(link->consumer, target);
329 		if (ret)
330 			break;
331 	}
332 	return ret;
333 }
334 
335 static void device_link_init_status(struct device_link *link,
336 				    struct device *consumer,
337 				    struct device *supplier)
338 {
339 	switch (supplier->links.status) {
340 	case DL_DEV_PROBING:
341 		switch (consumer->links.status) {
342 		case DL_DEV_PROBING:
343 			/*
344 			 * A consumer driver can create a link to a supplier
345 			 * that has not completed its probing yet as long as it
346 			 * knows that the supplier is already functional (for
347 			 * example, it has just acquired some resources from the
348 			 * supplier).
349 			 */
350 			link->status = DL_STATE_CONSUMER_PROBE;
351 			break;
352 		default:
353 			link->status = DL_STATE_DORMANT;
354 			break;
355 		}
356 		break;
357 	case DL_DEV_DRIVER_BOUND:
358 		switch (consumer->links.status) {
359 		case DL_DEV_PROBING:
360 			link->status = DL_STATE_CONSUMER_PROBE;
361 			break;
362 		case DL_DEV_DRIVER_BOUND:
363 			link->status = DL_STATE_ACTIVE;
364 			break;
365 		default:
366 			link->status = DL_STATE_AVAILABLE;
367 			break;
368 		}
369 		break;
370 	case DL_DEV_UNBINDING:
371 		link->status = DL_STATE_SUPPLIER_UNBIND;
372 		break;
373 	default:
374 		link->status = DL_STATE_DORMANT;
375 		break;
376 	}
377 }
378 
379 static int device_reorder_to_tail(struct device *dev, void *not_used)
380 {
381 	struct device_link *link;
382 
383 	/*
384 	 * Devices that have not been registered yet will be put to the ends
385 	 * of the lists during the registration, so skip them here.
386 	 */
387 	if (device_is_registered(dev))
388 		devices_kset_move_last(dev);
389 
390 	if (device_pm_initialized(dev))
391 		device_pm_move_last(dev);
392 
393 	device_for_each_child(dev, NULL, device_reorder_to_tail);
394 	list_for_each_entry(link, &dev->links.consumers, s_node) {
395 		if (device_link_flag_is_sync_state_only(link->flags))
396 			continue;
397 		device_reorder_to_tail(link->consumer, NULL);
398 	}
399 
400 	return 0;
401 }
402 
403 /**
404  * device_pm_move_to_tail - Move set of devices to the end of device lists
405  * @dev: Device to move
406  *
407  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
408  *
409  * It moves the @dev along with all of its children and all of its consumers
410  * to the ends of the device_kset and dpm_list, recursively.
411  */
412 void device_pm_move_to_tail(struct device *dev)
413 {
414 	int idx;
415 
416 	idx = device_links_read_lock();
417 	device_pm_lock();
418 	device_reorder_to_tail(dev, NULL);
419 	device_pm_unlock();
420 	device_links_read_unlock(idx);
421 }
422 
423 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
424 
425 static ssize_t status_show(struct device *dev,
426 			   struct device_attribute *attr, char *buf)
427 {
428 	const char *output;
429 
430 	switch (to_devlink(dev)->status) {
431 	case DL_STATE_NONE:
432 		output = "not tracked";
433 		break;
434 	case DL_STATE_DORMANT:
435 		output = "dormant";
436 		break;
437 	case DL_STATE_AVAILABLE:
438 		output = "available";
439 		break;
440 	case DL_STATE_CONSUMER_PROBE:
441 		output = "consumer probing";
442 		break;
443 	case DL_STATE_ACTIVE:
444 		output = "active";
445 		break;
446 	case DL_STATE_SUPPLIER_UNBIND:
447 		output = "supplier unbinding";
448 		break;
449 	default:
450 		output = "unknown";
451 		break;
452 	}
453 
454 	return sysfs_emit(buf, "%s\n", output);
455 }
456 static DEVICE_ATTR_RO(status);
457 
458 static ssize_t auto_remove_on_show(struct device *dev,
459 				   struct device_attribute *attr, char *buf)
460 {
461 	struct device_link *link = to_devlink(dev);
462 	const char *output;
463 
464 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
465 		output = "supplier unbind";
466 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
467 		output = "consumer unbind";
468 	else
469 		output = "never";
470 
471 	return sysfs_emit(buf, "%s\n", output);
472 }
473 static DEVICE_ATTR_RO(auto_remove_on);
474 
475 static ssize_t runtime_pm_show(struct device *dev,
476 			       struct device_attribute *attr, char *buf)
477 {
478 	struct device_link *link = to_devlink(dev);
479 
480 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
481 }
482 static DEVICE_ATTR_RO(runtime_pm);
483 
484 static ssize_t sync_state_only_show(struct device *dev,
485 				    struct device_attribute *attr, char *buf)
486 {
487 	struct device_link *link = to_devlink(dev);
488 
489 	return sysfs_emit(buf, "%d\n",
490 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
491 }
492 static DEVICE_ATTR_RO(sync_state_only);
493 
494 static struct attribute *devlink_attrs[] = {
495 	&dev_attr_status.attr,
496 	&dev_attr_auto_remove_on.attr,
497 	&dev_attr_runtime_pm.attr,
498 	&dev_attr_sync_state_only.attr,
499 	NULL,
500 };
501 ATTRIBUTE_GROUPS(devlink);
502 
503 static void device_link_release_fn(struct work_struct *work)
504 {
505 	struct device_link *link = container_of(work, struct device_link, rm_work);
506 
507 	/* Ensure that all references to the link object have been dropped. */
508 	device_link_synchronize_removal();
509 
510 	pm_runtime_release_supplier(link);
511 	/*
512 	 * If supplier_preactivated is set, the link has been dropped between
513 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
514 	 * in __driver_probe_device().  In that case, drop the supplier's
515 	 * PM-runtime usage counter to remove the reference taken by
516 	 * pm_runtime_get_suppliers().
517 	 */
518 	if (link->supplier_preactivated)
519 		pm_runtime_put_noidle(link->supplier);
520 
521 	pm_request_idle(link->supplier);
522 
523 	put_device(link->consumer);
524 	put_device(link->supplier);
525 	kfree(link);
526 }
527 
528 static void devlink_dev_release(struct device *dev)
529 {
530 	struct device_link *link = to_devlink(dev);
531 
532 	INIT_WORK(&link->rm_work, device_link_release_fn);
533 	/*
534 	 * It may take a while to complete this work because of the SRCU
535 	 * synchronization in device_link_release_fn() and if the consumer or
536 	 * supplier devices get deleted when it runs, so put it into the "long"
537 	 * workqueue.
538 	 */
539 	queue_work(system_long_wq, &link->rm_work);
540 }
541 
542 static struct class devlink_class = {
543 	.name = "devlink",
544 	.dev_groups = devlink_groups,
545 	.dev_release = devlink_dev_release,
546 };
547 
548 static int devlink_add_symlinks(struct device *dev)
549 {
550 	int ret;
551 	size_t len;
552 	struct device_link *link = to_devlink(dev);
553 	struct device *sup = link->supplier;
554 	struct device *con = link->consumer;
555 	char *buf;
556 
557 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
558 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
559 	len += strlen(":");
560 	len += strlen("supplier:") + 1;
561 	buf = kzalloc(len, GFP_KERNEL);
562 	if (!buf)
563 		return -ENOMEM;
564 
565 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
566 	if (ret)
567 		goto out;
568 
569 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
570 	if (ret)
571 		goto err_con;
572 
573 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
574 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
575 	if (ret)
576 		goto err_con_dev;
577 
578 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
579 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
580 	if (ret)
581 		goto err_sup_dev;
582 
583 	goto out;
584 
585 err_sup_dev:
586 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
587 	sysfs_remove_link(&sup->kobj, buf);
588 err_con_dev:
589 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
590 err_con:
591 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
592 out:
593 	kfree(buf);
594 	return ret;
595 }
596 
597 static void devlink_remove_symlinks(struct device *dev)
598 {
599 	struct device_link *link = to_devlink(dev);
600 	size_t len;
601 	struct device *sup = link->supplier;
602 	struct device *con = link->consumer;
603 	char *buf;
604 
605 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
606 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
607 
608 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
609 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
610 	len += strlen(":");
611 	len += strlen("supplier:") + 1;
612 	buf = kzalloc(len, GFP_KERNEL);
613 	if (!buf) {
614 		WARN(1, "Unable to properly free device link symlinks!\n");
615 		return;
616 	}
617 
618 	if (device_is_registered(con)) {
619 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
620 		sysfs_remove_link(&con->kobj, buf);
621 	}
622 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
623 	sysfs_remove_link(&sup->kobj, buf);
624 	kfree(buf);
625 }
626 
627 static struct class_interface devlink_class_intf = {
628 	.class = &devlink_class,
629 	.add_dev = devlink_add_symlinks,
630 	.remove_dev = devlink_remove_symlinks,
631 };
632 
633 static int __init devlink_class_init(void)
634 {
635 	int ret;
636 
637 	ret = class_register(&devlink_class);
638 	if (ret)
639 		return ret;
640 
641 	ret = class_interface_register(&devlink_class_intf);
642 	if (ret)
643 		class_unregister(&devlink_class);
644 
645 	return ret;
646 }
647 postcore_initcall(devlink_class_init);
648 
649 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
650 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
651 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
652 			       DL_FLAG_SYNC_STATE_ONLY | \
653 			       DL_FLAG_INFERRED | \
654 			       DL_FLAG_CYCLE)
655 
656 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
657 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
658 
659 /**
660  * device_link_add - Create a link between two devices.
661  * @consumer: Consumer end of the link.
662  * @supplier: Supplier end of the link.
663  * @flags: Link flags.
664  *
665  * The caller is responsible for the proper synchronization of the link creation
666  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
667  * runtime PM framework to take the link into account.  Second, if the
668  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
669  * be forced into the active meta state and reference-counted upon the creation
670  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
671  * ignored.
672  *
673  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
674  * expected to release the link returned by it directly with the help of either
675  * device_link_del() or device_link_remove().
676  *
677  * If that flag is not set, however, the caller of this function is handing the
678  * management of the link over to the driver core entirely and its return value
679  * can only be used to check whether or not the link is present.  In that case,
680  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
681  * flags can be used to indicate to the driver core when the link can be safely
682  * deleted.  Namely, setting one of them in @flags indicates to the driver core
683  * that the link is not going to be used (by the given caller of this function)
684  * after unbinding the consumer or supplier driver, respectively, from its
685  * device, so the link can be deleted at that point.  If none of them is set,
686  * the link will be maintained until one of the devices pointed to by it (either
687  * the consumer or the supplier) is unregistered.
688  *
689  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
690  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
691  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
692  * be used to request the driver core to automatically probe for a consumer
693  * driver after successfully binding a driver to the supplier device.
694  *
695  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
696  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
697  * the same time is invalid and will cause NULL to be returned upfront.
698  * However, if a device link between the given @consumer and @supplier pair
699  * exists already when this function is called for them, the existing link will
700  * be returned regardless of its current type and status (the link's flags may
701  * be modified then).  The caller of this function is then expected to treat
702  * the link as though it has just been created, so (in particular) if
703  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
704  * explicitly when not needed any more (as stated above).
705  *
706  * A side effect of the link creation is re-ordering of dpm_list and the
707  * devices_kset list by moving the consumer device and all devices depending
708  * on it to the ends of these lists (that does not happen to devices that have
709  * not been registered when this function is called).
710  *
711  * The supplier device is required to be registered when this function is called
712  * and NULL will be returned if that is not the case.  The consumer device need
713  * not be registered, however.
714  */
715 struct device_link *device_link_add(struct device *consumer,
716 				    struct device *supplier, u32 flags)
717 {
718 	struct device_link *link;
719 
720 	if (!consumer || !supplier || consumer == supplier ||
721 	    flags & ~DL_ADD_VALID_FLAGS ||
722 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
723 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
724 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
725 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
726 		return NULL;
727 
728 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
729 		if (pm_runtime_get_sync(supplier) < 0) {
730 			pm_runtime_put_noidle(supplier);
731 			return NULL;
732 		}
733 	}
734 
735 	if (!(flags & DL_FLAG_STATELESS))
736 		flags |= DL_FLAG_MANAGED;
737 
738 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
739 	    !device_link_flag_is_sync_state_only(flags))
740 		return NULL;
741 
742 	device_links_write_lock();
743 	device_pm_lock();
744 
745 	/*
746 	 * If the supplier has not been fully registered yet or there is a
747 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
748 	 * the supplier already in the graph, return NULL. If the link is a
749 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
750 	 * because it only affects sync_state() callbacks.
751 	 */
752 	if (!device_pm_initialized(supplier)
753 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
754 		  device_is_dependent(consumer, supplier))) {
755 		link = NULL;
756 		goto out;
757 	}
758 
759 	/*
760 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
761 	 * So, only create it if the consumer hasn't probed yet.
762 	 */
763 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
764 	    consumer->links.status != DL_DEV_NO_DRIVER &&
765 	    consumer->links.status != DL_DEV_PROBING) {
766 		link = NULL;
767 		goto out;
768 	}
769 
770 	/*
771 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
772 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
773 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
774 	 */
775 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
776 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
777 
778 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
779 		if (link->consumer != consumer)
780 			continue;
781 
782 		if (link->flags & DL_FLAG_INFERRED &&
783 		    !(flags & DL_FLAG_INFERRED))
784 			link->flags &= ~DL_FLAG_INFERRED;
785 
786 		if (flags & DL_FLAG_PM_RUNTIME) {
787 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
788 				pm_runtime_new_link(consumer);
789 				link->flags |= DL_FLAG_PM_RUNTIME;
790 			}
791 			if (flags & DL_FLAG_RPM_ACTIVE)
792 				refcount_inc(&link->rpm_active);
793 		}
794 
795 		if (flags & DL_FLAG_STATELESS) {
796 			kref_get(&link->kref);
797 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
798 			    !(link->flags & DL_FLAG_STATELESS)) {
799 				link->flags |= DL_FLAG_STATELESS;
800 				goto reorder;
801 			} else {
802 				link->flags |= DL_FLAG_STATELESS;
803 				goto out;
804 			}
805 		}
806 
807 		/*
808 		 * If the life time of the link following from the new flags is
809 		 * longer than indicated by the flags of the existing link,
810 		 * update the existing link to stay around longer.
811 		 */
812 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
813 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
814 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
815 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
816 			}
817 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
818 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
819 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
820 		}
821 		if (!(link->flags & DL_FLAG_MANAGED)) {
822 			kref_get(&link->kref);
823 			link->flags |= DL_FLAG_MANAGED;
824 			device_link_init_status(link, consumer, supplier);
825 		}
826 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
827 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
828 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
829 			goto reorder;
830 		}
831 
832 		goto out;
833 	}
834 
835 	link = kzalloc(sizeof(*link), GFP_KERNEL);
836 	if (!link)
837 		goto out;
838 
839 	refcount_set(&link->rpm_active, 1);
840 
841 	get_device(supplier);
842 	link->supplier = supplier;
843 	INIT_LIST_HEAD(&link->s_node);
844 	get_device(consumer);
845 	link->consumer = consumer;
846 	INIT_LIST_HEAD(&link->c_node);
847 	link->flags = flags;
848 	kref_init(&link->kref);
849 
850 	link->link_dev.class = &devlink_class;
851 	device_set_pm_not_required(&link->link_dev);
852 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
853 		     dev_bus_name(supplier), dev_name(supplier),
854 		     dev_bus_name(consumer), dev_name(consumer));
855 	if (device_register(&link->link_dev)) {
856 		put_device(&link->link_dev);
857 		link = NULL;
858 		goto out;
859 	}
860 
861 	if (flags & DL_FLAG_PM_RUNTIME) {
862 		if (flags & DL_FLAG_RPM_ACTIVE)
863 			refcount_inc(&link->rpm_active);
864 
865 		pm_runtime_new_link(consumer);
866 	}
867 
868 	/* Determine the initial link state. */
869 	if (flags & DL_FLAG_STATELESS)
870 		link->status = DL_STATE_NONE;
871 	else
872 		device_link_init_status(link, consumer, supplier);
873 
874 	/*
875 	 * Some callers expect the link creation during consumer driver probe to
876 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
877 	 */
878 	if (link->status == DL_STATE_CONSUMER_PROBE &&
879 	    flags & DL_FLAG_PM_RUNTIME)
880 		pm_runtime_resume(supplier);
881 
882 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
883 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
884 
885 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
886 		dev_dbg(consumer,
887 			"Linked as a sync state only consumer to %s\n",
888 			dev_name(supplier));
889 		goto out;
890 	}
891 
892 reorder:
893 	/*
894 	 * Move the consumer and all of the devices depending on it to the end
895 	 * of dpm_list and the devices_kset list.
896 	 *
897 	 * It is necessary to hold dpm_list locked throughout all that or else
898 	 * we may end up suspending with a wrong ordering of it.
899 	 */
900 	device_reorder_to_tail(consumer, NULL);
901 
902 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
903 
904 out:
905 	device_pm_unlock();
906 	device_links_write_unlock();
907 
908 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
909 		pm_runtime_put(supplier);
910 
911 	return link;
912 }
913 EXPORT_SYMBOL_GPL(device_link_add);
914 
915 static void __device_link_del(struct kref *kref)
916 {
917 	struct device_link *link = container_of(kref, struct device_link, kref);
918 
919 	dev_dbg(link->consumer, "Dropping the link to %s\n",
920 		dev_name(link->supplier));
921 
922 	pm_runtime_drop_link(link);
923 
924 	device_link_remove_from_lists(link);
925 	device_unregister(&link->link_dev);
926 }
927 
928 static void device_link_put_kref(struct device_link *link)
929 {
930 	if (link->flags & DL_FLAG_STATELESS)
931 		kref_put(&link->kref, __device_link_del);
932 	else if (!device_is_registered(link->consumer))
933 		__device_link_del(&link->kref);
934 	else
935 		WARN(1, "Unable to drop a managed device link reference\n");
936 }
937 
938 /**
939  * device_link_del - Delete a stateless link between two devices.
940  * @link: Device link to delete.
941  *
942  * The caller must ensure proper synchronization of this function with runtime
943  * PM.  If the link was added multiple times, it needs to be deleted as often.
944  * Care is required for hotplugged devices:  Their links are purged on removal
945  * and calling device_link_del() is then no longer allowed.
946  */
947 void device_link_del(struct device_link *link)
948 {
949 	device_links_write_lock();
950 	device_link_put_kref(link);
951 	device_links_write_unlock();
952 }
953 EXPORT_SYMBOL_GPL(device_link_del);
954 
955 /**
956  * device_link_remove - Delete a stateless link between two devices.
957  * @consumer: Consumer end of the link.
958  * @supplier: Supplier end of the link.
959  *
960  * The caller must ensure proper synchronization of this function with runtime
961  * PM.
962  */
963 void device_link_remove(void *consumer, struct device *supplier)
964 {
965 	struct device_link *link;
966 
967 	if (WARN_ON(consumer == supplier))
968 		return;
969 
970 	device_links_write_lock();
971 
972 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
973 		if (link->consumer == consumer) {
974 			device_link_put_kref(link);
975 			break;
976 		}
977 	}
978 
979 	device_links_write_unlock();
980 }
981 EXPORT_SYMBOL_GPL(device_link_remove);
982 
983 static void device_links_missing_supplier(struct device *dev)
984 {
985 	struct device_link *link;
986 
987 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
988 		if (link->status != DL_STATE_CONSUMER_PROBE)
989 			continue;
990 
991 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
992 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
993 		} else {
994 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
995 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
996 		}
997 	}
998 }
999 
1000 static bool dev_is_best_effort(struct device *dev)
1001 {
1002 	return (fw_devlink_best_effort && dev->can_match) ||
1003 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1004 }
1005 
1006 static struct fwnode_handle *fwnode_links_check_suppliers(
1007 						struct fwnode_handle *fwnode)
1008 {
1009 	struct fwnode_link *link;
1010 
1011 	if (!fwnode || fw_devlink_is_permissive())
1012 		return NULL;
1013 
1014 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1015 		if (!(link->flags &
1016 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1017 			return link->supplier;
1018 
1019 	return NULL;
1020 }
1021 
1022 /**
1023  * device_links_check_suppliers - Check presence of supplier drivers.
1024  * @dev: Consumer device.
1025  *
1026  * Check links from this device to any suppliers.  Walk the list of the device's
1027  * links to suppliers and see if all of them are available.  If not, simply
1028  * return -EPROBE_DEFER.
1029  *
1030  * We need to guarantee that the supplier will not go away after the check has
1031  * been positive here.  It only can go away in __device_release_driver() and
1032  * that function  checks the device's links to consumers.  This means we need to
1033  * mark the link as "consumer probe in progress" to make the supplier removal
1034  * wait for us to complete (or bad things may happen).
1035  *
1036  * Links without the DL_FLAG_MANAGED flag set are ignored.
1037  */
1038 int device_links_check_suppliers(struct device *dev)
1039 {
1040 	struct device_link *link;
1041 	int ret = 0, fwnode_ret = 0;
1042 	struct fwnode_handle *sup_fw;
1043 
1044 	/*
1045 	 * Device waiting for supplier to become available is not allowed to
1046 	 * probe.
1047 	 */
1048 	mutex_lock(&fwnode_link_lock);
1049 	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1050 	if (sup_fw) {
1051 		if (!dev_is_best_effort(dev)) {
1052 			fwnode_ret = -EPROBE_DEFER;
1053 			dev_err_probe(dev, -EPROBE_DEFER,
1054 				    "wait for supplier %pfwf\n", sup_fw);
1055 		} else {
1056 			fwnode_ret = -EAGAIN;
1057 		}
1058 	}
1059 	mutex_unlock(&fwnode_link_lock);
1060 	if (fwnode_ret == -EPROBE_DEFER)
1061 		return fwnode_ret;
1062 
1063 	device_links_write_lock();
1064 
1065 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1066 		if (!(link->flags & DL_FLAG_MANAGED))
1067 			continue;
1068 
1069 		if (link->status != DL_STATE_AVAILABLE &&
1070 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1071 
1072 			if (dev_is_best_effort(dev) &&
1073 			    link->flags & DL_FLAG_INFERRED &&
1074 			    !link->supplier->can_match) {
1075 				ret = -EAGAIN;
1076 				continue;
1077 			}
1078 
1079 			device_links_missing_supplier(dev);
1080 			dev_err_probe(dev, -EPROBE_DEFER,
1081 				      "supplier %s not ready\n",
1082 				      dev_name(link->supplier));
1083 			ret = -EPROBE_DEFER;
1084 			break;
1085 		}
1086 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1087 	}
1088 	dev->links.status = DL_DEV_PROBING;
1089 
1090 	device_links_write_unlock();
1091 
1092 	return ret ? ret : fwnode_ret;
1093 }
1094 
1095 /**
1096  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1097  * @dev: Device to call sync_state() on
1098  * @list: List head to queue the @dev on
1099  *
1100  * Queues a device for a sync_state() callback when the device links write lock
1101  * isn't held. This allows the sync_state() execution flow to use device links
1102  * APIs.  The caller must ensure this function is called with
1103  * device_links_write_lock() held.
1104  *
1105  * This function does a get_device() to make sure the device is not freed while
1106  * on this list.
1107  *
1108  * So the caller must also ensure that device_links_flush_sync_list() is called
1109  * as soon as the caller releases device_links_write_lock().  This is necessary
1110  * to make sure the sync_state() is called in a timely fashion and the
1111  * put_device() is called on this device.
1112  */
1113 static void __device_links_queue_sync_state(struct device *dev,
1114 					    struct list_head *list)
1115 {
1116 	struct device_link *link;
1117 
1118 	if (!dev_has_sync_state(dev))
1119 		return;
1120 	if (dev->state_synced)
1121 		return;
1122 
1123 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1124 		if (!(link->flags & DL_FLAG_MANAGED))
1125 			continue;
1126 		if (link->status != DL_STATE_ACTIVE)
1127 			return;
1128 	}
1129 
1130 	/*
1131 	 * Set the flag here to avoid adding the same device to a list more
1132 	 * than once. This can happen if new consumers get added to the device
1133 	 * and probed before the list is flushed.
1134 	 */
1135 	dev->state_synced = true;
1136 
1137 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1138 		return;
1139 
1140 	get_device(dev);
1141 	list_add_tail(&dev->links.defer_sync, list);
1142 }
1143 
1144 /**
1145  * device_links_flush_sync_list - Call sync_state() on a list of devices
1146  * @list: List of devices to call sync_state() on
1147  * @dont_lock_dev: Device for which lock is already held by the caller
1148  *
1149  * Calls sync_state() on all the devices that have been queued for it. This
1150  * function is used in conjunction with __device_links_queue_sync_state(). The
1151  * @dont_lock_dev parameter is useful when this function is called from a
1152  * context where a device lock is already held.
1153  */
1154 static void device_links_flush_sync_list(struct list_head *list,
1155 					 struct device *dont_lock_dev)
1156 {
1157 	struct device *dev, *tmp;
1158 
1159 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1160 		list_del_init(&dev->links.defer_sync);
1161 
1162 		if (dev != dont_lock_dev)
1163 			device_lock(dev);
1164 
1165 		dev_sync_state(dev);
1166 
1167 		if (dev != dont_lock_dev)
1168 			device_unlock(dev);
1169 
1170 		put_device(dev);
1171 	}
1172 }
1173 
1174 void device_links_supplier_sync_state_pause(void)
1175 {
1176 	device_links_write_lock();
1177 	defer_sync_state_count++;
1178 	device_links_write_unlock();
1179 }
1180 
1181 void device_links_supplier_sync_state_resume(void)
1182 {
1183 	struct device *dev, *tmp;
1184 	LIST_HEAD(sync_list);
1185 
1186 	device_links_write_lock();
1187 	if (!defer_sync_state_count) {
1188 		WARN(true, "Unmatched sync_state pause/resume!");
1189 		goto out;
1190 	}
1191 	defer_sync_state_count--;
1192 	if (defer_sync_state_count)
1193 		goto out;
1194 
1195 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1196 		/*
1197 		 * Delete from deferred_sync list before queuing it to
1198 		 * sync_list because defer_sync is used for both lists.
1199 		 */
1200 		list_del_init(&dev->links.defer_sync);
1201 		__device_links_queue_sync_state(dev, &sync_list);
1202 	}
1203 out:
1204 	device_links_write_unlock();
1205 
1206 	device_links_flush_sync_list(&sync_list, NULL);
1207 }
1208 
1209 static int sync_state_resume_initcall(void)
1210 {
1211 	device_links_supplier_sync_state_resume();
1212 	return 0;
1213 }
1214 late_initcall(sync_state_resume_initcall);
1215 
1216 static void __device_links_supplier_defer_sync(struct device *sup)
1217 {
1218 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1219 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1220 }
1221 
1222 static void device_link_drop_managed(struct device_link *link)
1223 {
1224 	link->flags &= ~DL_FLAG_MANAGED;
1225 	WRITE_ONCE(link->status, DL_STATE_NONE);
1226 	kref_put(&link->kref, __device_link_del);
1227 }
1228 
1229 static ssize_t waiting_for_supplier_show(struct device *dev,
1230 					 struct device_attribute *attr,
1231 					 char *buf)
1232 {
1233 	bool val;
1234 
1235 	device_lock(dev);
1236 	mutex_lock(&fwnode_link_lock);
1237 	val = !!fwnode_links_check_suppliers(dev->fwnode);
1238 	mutex_unlock(&fwnode_link_lock);
1239 	device_unlock(dev);
1240 	return sysfs_emit(buf, "%u\n", val);
1241 }
1242 static DEVICE_ATTR_RO(waiting_for_supplier);
1243 
1244 /**
1245  * device_links_force_bind - Prepares device to be force bound
1246  * @dev: Consumer device.
1247  *
1248  * device_bind_driver() force binds a device to a driver without calling any
1249  * driver probe functions. So the consumer really isn't going to wait for any
1250  * supplier before it's bound to the driver. We still want the device link
1251  * states to be sensible when this happens.
1252  *
1253  * In preparation for device_bind_driver(), this function goes through each
1254  * supplier device links and checks if the supplier is bound. If it is, then
1255  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1256  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1257  */
1258 void device_links_force_bind(struct device *dev)
1259 {
1260 	struct device_link *link, *ln;
1261 
1262 	device_links_write_lock();
1263 
1264 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1265 		if (!(link->flags & DL_FLAG_MANAGED))
1266 			continue;
1267 
1268 		if (link->status != DL_STATE_AVAILABLE) {
1269 			device_link_drop_managed(link);
1270 			continue;
1271 		}
1272 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1273 	}
1274 	dev->links.status = DL_DEV_PROBING;
1275 
1276 	device_links_write_unlock();
1277 }
1278 
1279 /**
1280  * device_links_driver_bound - Update device links after probing its driver.
1281  * @dev: Device to update the links for.
1282  *
1283  * The probe has been successful, so update links from this device to any
1284  * consumers by changing their status to "available".
1285  *
1286  * Also change the status of @dev's links to suppliers to "active".
1287  *
1288  * Links without the DL_FLAG_MANAGED flag set are ignored.
1289  */
1290 void device_links_driver_bound(struct device *dev)
1291 {
1292 	struct device_link *link, *ln;
1293 	LIST_HEAD(sync_list);
1294 
1295 	/*
1296 	 * If a device binds successfully, it's expected to have created all
1297 	 * the device links it needs to or make new device links as it needs
1298 	 * them. So, fw_devlink no longer needs to create device links to any
1299 	 * of the device's suppliers.
1300 	 *
1301 	 * Also, if a child firmware node of this bound device is not added as a
1302 	 * device by now, assume it is never going to be added. Make this bound
1303 	 * device the fallback supplier to the dangling consumers of the child
1304 	 * firmware node because this bound device is probably implementing the
1305 	 * child firmware node functionality and we don't want the dangling
1306 	 * consumers to defer probe indefinitely waiting for a device for the
1307 	 * child firmware node.
1308 	 */
1309 	if (dev->fwnode && dev->fwnode->dev == dev) {
1310 		struct fwnode_handle *child;
1311 		fwnode_links_purge_suppliers(dev->fwnode);
1312 		mutex_lock(&fwnode_link_lock);
1313 		fwnode_for_each_available_child_node(dev->fwnode, child)
1314 			__fw_devlink_pickup_dangling_consumers(child,
1315 							       dev->fwnode);
1316 		__fw_devlink_link_to_consumers(dev);
1317 		mutex_unlock(&fwnode_link_lock);
1318 	}
1319 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1320 
1321 	device_links_write_lock();
1322 
1323 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1324 		if (!(link->flags & DL_FLAG_MANAGED))
1325 			continue;
1326 
1327 		/*
1328 		 * Links created during consumer probe may be in the "consumer
1329 		 * probe" state to start with if the supplier is still probing
1330 		 * when they are created and they may become "active" if the
1331 		 * consumer probe returns first.  Skip them here.
1332 		 */
1333 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1334 		    link->status == DL_STATE_ACTIVE)
1335 			continue;
1336 
1337 		WARN_ON(link->status != DL_STATE_DORMANT);
1338 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1339 
1340 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1341 			driver_deferred_probe_add(link->consumer);
1342 	}
1343 
1344 	if (defer_sync_state_count)
1345 		__device_links_supplier_defer_sync(dev);
1346 	else
1347 		__device_links_queue_sync_state(dev, &sync_list);
1348 
1349 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1350 		struct device *supplier;
1351 
1352 		if (!(link->flags & DL_FLAG_MANAGED))
1353 			continue;
1354 
1355 		supplier = link->supplier;
1356 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1357 			/*
1358 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1359 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1360 			 * save to drop the managed link completely.
1361 			 */
1362 			device_link_drop_managed(link);
1363 		} else if (dev_is_best_effort(dev) &&
1364 			   link->flags & DL_FLAG_INFERRED &&
1365 			   link->status != DL_STATE_CONSUMER_PROBE &&
1366 			   !link->supplier->can_match) {
1367 			/*
1368 			 * When dev_is_best_effort() is true, we ignore device
1369 			 * links to suppliers that don't have a driver.  If the
1370 			 * consumer device still managed to probe, there's no
1371 			 * point in maintaining a device link in a weird state
1372 			 * (consumer probed before supplier). So delete it.
1373 			 */
1374 			device_link_drop_managed(link);
1375 		} else {
1376 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1377 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1378 		}
1379 
1380 		/*
1381 		 * This needs to be done even for the deleted
1382 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1383 		 * device link that was preventing the supplier from getting a
1384 		 * sync_state() call.
1385 		 */
1386 		if (defer_sync_state_count)
1387 			__device_links_supplier_defer_sync(supplier);
1388 		else
1389 			__device_links_queue_sync_state(supplier, &sync_list);
1390 	}
1391 
1392 	dev->links.status = DL_DEV_DRIVER_BOUND;
1393 
1394 	device_links_write_unlock();
1395 
1396 	device_links_flush_sync_list(&sync_list, dev);
1397 }
1398 
1399 /**
1400  * __device_links_no_driver - Update links of a device without a driver.
1401  * @dev: Device without a drvier.
1402  *
1403  * Delete all non-persistent links from this device to any suppliers.
1404  *
1405  * Persistent links stay around, but their status is changed to "available",
1406  * unless they already are in the "supplier unbind in progress" state in which
1407  * case they need not be updated.
1408  *
1409  * Links without the DL_FLAG_MANAGED flag set are ignored.
1410  */
1411 static void __device_links_no_driver(struct device *dev)
1412 {
1413 	struct device_link *link, *ln;
1414 
1415 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1416 		if (!(link->flags & DL_FLAG_MANAGED))
1417 			continue;
1418 
1419 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1420 			device_link_drop_managed(link);
1421 			continue;
1422 		}
1423 
1424 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1425 		    link->status != DL_STATE_ACTIVE)
1426 			continue;
1427 
1428 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1429 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1430 		} else {
1431 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1432 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1433 		}
1434 	}
1435 
1436 	dev->links.status = DL_DEV_NO_DRIVER;
1437 }
1438 
1439 /**
1440  * device_links_no_driver - Update links after failing driver probe.
1441  * @dev: Device whose driver has just failed to probe.
1442  *
1443  * Clean up leftover links to consumers for @dev and invoke
1444  * %__device_links_no_driver() to update links to suppliers for it as
1445  * appropriate.
1446  *
1447  * Links without the DL_FLAG_MANAGED flag set are ignored.
1448  */
1449 void device_links_no_driver(struct device *dev)
1450 {
1451 	struct device_link *link;
1452 
1453 	device_links_write_lock();
1454 
1455 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1456 		if (!(link->flags & DL_FLAG_MANAGED))
1457 			continue;
1458 
1459 		/*
1460 		 * The probe has failed, so if the status of the link is
1461 		 * "consumer probe" or "active", it must have been added by
1462 		 * a probing consumer while this device was still probing.
1463 		 * Change its state to "dormant", as it represents a valid
1464 		 * relationship, but it is not functionally meaningful.
1465 		 */
1466 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1467 		    link->status == DL_STATE_ACTIVE)
1468 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1469 	}
1470 
1471 	__device_links_no_driver(dev);
1472 
1473 	device_links_write_unlock();
1474 }
1475 
1476 /**
1477  * device_links_driver_cleanup - Update links after driver removal.
1478  * @dev: Device whose driver has just gone away.
1479  *
1480  * Update links to consumers for @dev by changing their status to "dormant" and
1481  * invoke %__device_links_no_driver() to update links to suppliers for it as
1482  * appropriate.
1483  *
1484  * Links without the DL_FLAG_MANAGED flag set are ignored.
1485  */
1486 void device_links_driver_cleanup(struct device *dev)
1487 {
1488 	struct device_link *link, *ln;
1489 
1490 	device_links_write_lock();
1491 
1492 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1493 		if (!(link->flags & DL_FLAG_MANAGED))
1494 			continue;
1495 
1496 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1497 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1498 
1499 		/*
1500 		 * autoremove the links between this @dev and its consumer
1501 		 * devices that are not active, i.e. where the link state
1502 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1503 		 */
1504 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1505 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1506 			device_link_drop_managed(link);
1507 
1508 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1509 	}
1510 
1511 	list_del_init(&dev->links.defer_sync);
1512 	__device_links_no_driver(dev);
1513 
1514 	device_links_write_unlock();
1515 }
1516 
1517 /**
1518  * device_links_busy - Check if there are any busy links to consumers.
1519  * @dev: Device to check.
1520  *
1521  * Check each consumer of the device and return 'true' if its link's status
1522  * is one of "consumer probe" or "active" (meaning that the given consumer is
1523  * probing right now or its driver is present).  Otherwise, change the link
1524  * state to "supplier unbind" to prevent the consumer from being probed
1525  * successfully going forward.
1526  *
1527  * Return 'false' if there are no probing or active consumers.
1528  *
1529  * Links without the DL_FLAG_MANAGED flag set are ignored.
1530  */
1531 bool device_links_busy(struct device *dev)
1532 {
1533 	struct device_link *link;
1534 	bool ret = false;
1535 
1536 	device_links_write_lock();
1537 
1538 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1539 		if (!(link->flags & DL_FLAG_MANAGED))
1540 			continue;
1541 
1542 		if (link->status == DL_STATE_CONSUMER_PROBE
1543 		    || link->status == DL_STATE_ACTIVE) {
1544 			ret = true;
1545 			break;
1546 		}
1547 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1548 	}
1549 
1550 	dev->links.status = DL_DEV_UNBINDING;
1551 
1552 	device_links_write_unlock();
1553 	return ret;
1554 }
1555 
1556 /**
1557  * device_links_unbind_consumers - Force unbind consumers of the given device.
1558  * @dev: Device to unbind the consumers of.
1559  *
1560  * Walk the list of links to consumers for @dev and if any of them is in the
1561  * "consumer probe" state, wait for all device probes in progress to complete
1562  * and start over.
1563  *
1564  * If that's not the case, change the status of the link to "supplier unbind"
1565  * and check if the link was in the "active" state.  If so, force the consumer
1566  * driver to unbind and start over (the consumer will not re-probe as we have
1567  * changed the state of the link already).
1568  *
1569  * Links without the DL_FLAG_MANAGED flag set are ignored.
1570  */
1571 void device_links_unbind_consumers(struct device *dev)
1572 {
1573 	struct device_link *link;
1574 
1575  start:
1576 	device_links_write_lock();
1577 
1578 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1579 		enum device_link_state status;
1580 
1581 		if (!(link->flags & DL_FLAG_MANAGED) ||
1582 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1583 			continue;
1584 
1585 		status = link->status;
1586 		if (status == DL_STATE_CONSUMER_PROBE) {
1587 			device_links_write_unlock();
1588 
1589 			wait_for_device_probe();
1590 			goto start;
1591 		}
1592 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1593 		if (status == DL_STATE_ACTIVE) {
1594 			struct device *consumer = link->consumer;
1595 
1596 			get_device(consumer);
1597 
1598 			device_links_write_unlock();
1599 
1600 			device_release_driver_internal(consumer, NULL,
1601 						       consumer->parent);
1602 			put_device(consumer);
1603 			goto start;
1604 		}
1605 	}
1606 
1607 	device_links_write_unlock();
1608 }
1609 
1610 /**
1611  * device_links_purge - Delete existing links to other devices.
1612  * @dev: Target device.
1613  */
1614 static void device_links_purge(struct device *dev)
1615 {
1616 	struct device_link *link, *ln;
1617 
1618 	if (dev->class == &devlink_class)
1619 		return;
1620 
1621 	/*
1622 	 * Delete all of the remaining links from this device to any other
1623 	 * devices (either consumers or suppliers).
1624 	 */
1625 	device_links_write_lock();
1626 
1627 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1628 		WARN_ON(link->status == DL_STATE_ACTIVE);
1629 		__device_link_del(&link->kref);
1630 	}
1631 
1632 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1633 		WARN_ON(link->status != DL_STATE_DORMANT &&
1634 			link->status != DL_STATE_NONE);
1635 		__device_link_del(&link->kref);
1636 	}
1637 
1638 	device_links_write_unlock();
1639 }
1640 
1641 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1642 					 DL_FLAG_SYNC_STATE_ONLY)
1643 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1644 					 DL_FLAG_AUTOPROBE_CONSUMER)
1645 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1646 					 DL_FLAG_PM_RUNTIME)
1647 
1648 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1649 static int __init fw_devlink_setup(char *arg)
1650 {
1651 	if (!arg)
1652 		return -EINVAL;
1653 
1654 	if (strcmp(arg, "off") == 0) {
1655 		fw_devlink_flags = 0;
1656 	} else if (strcmp(arg, "permissive") == 0) {
1657 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1658 	} else if (strcmp(arg, "on") == 0) {
1659 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1660 	} else if (strcmp(arg, "rpm") == 0) {
1661 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1662 	}
1663 	return 0;
1664 }
1665 early_param("fw_devlink", fw_devlink_setup);
1666 
1667 static bool fw_devlink_strict;
1668 static int __init fw_devlink_strict_setup(char *arg)
1669 {
1670 	return kstrtobool(arg, &fw_devlink_strict);
1671 }
1672 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1673 
1674 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1675 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1676 
1677 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1678 static int fw_devlink_sync_state;
1679 #else
1680 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1681 #endif
1682 
1683 static int __init fw_devlink_sync_state_setup(char *arg)
1684 {
1685 	if (!arg)
1686 		return -EINVAL;
1687 
1688 	if (strcmp(arg, "strict") == 0) {
1689 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1690 		return 0;
1691 	} else if (strcmp(arg, "timeout") == 0) {
1692 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1693 		return 0;
1694 	}
1695 	return -EINVAL;
1696 }
1697 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1698 
1699 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1700 {
1701 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1702 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1703 
1704 	return fw_devlink_flags;
1705 }
1706 
1707 static bool fw_devlink_is_permissive(void)
1708 {
1709 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1710 }
1711 
1712 bool fw_devlink_is_strict(void)
1713 {
1714 	return fw_devlink_strict && !fw_devlink_is_permissive();
1715 }
1716 
1717 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1718 {
1719 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1720 		return;
1721 
1722 	fwnode_call_int_op(fwnode, add_links);
1723 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1724 }
1725 
1726 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1727 {
1728 	struct fwnode_handle *child = NULL;
1729 
1730 	fw_devlink_parse_fwnode(fwnode);
1731 
1732 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1733 		fw_devlink_parse_fwtree(child);
1734 }
1735 
1736 static void fw_devlink_relax_link(struct device_link *link)
1737 {
1738 	if (!(link->flags & DL_FLAG_INFERRED))
1739 		return;
1740 
1741 	if (device_link_flag_is_sync_state_only(link->flags))
1742 		return;
1743 
1744 	pm_runtime_drop_link(link);
1745 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1746 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1747 		dev_name(link->supplier));
1748 }
1749 
1750 static int fw_devlink_no_driver(struct device *dev, void *data)
1751 {
1752 	struct device_link *link = to_devlink(dev);
1753 
1754 	if (!link->supplier->can_match)
1755 		fw_devlink_relax_link(link);
1756 
1757 	return 0;
1758 }
1759 
1760 void fw_devlink_drivers_done(void)
1761 {
1762 	fw_devlink_drv_reg_done = true;
1763 	device_links_write_lock();
1764 	class_for_each_device(&devlink_class, NULL, NULL,
1765 			      fw_devlink_no_driver);
1766 	device_links_write_unlock();
1767 }
1768 
1769 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1770 {
1771 	struct device_link *link = to_devlink(dev);
1772 	struct device *sup = link->supplier;
1773 
1774 	if (!(link->flags & DL_FLAG_MANAGED) ||
1775 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1776 	    !dev_has_sync_state(sup))
1777 		return 0;
1778 
1779 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1780 		dev_warn(sup, "sync_state() pending due to %s\n",
1781 			 dev_name(link->consumer));
1782 		return 0;
1783 	}
1784 
1785 	if (!list_empty(&sup->links.defer_sync))
1786 		return 0;
1787 
1788 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1789 	sup->state_synced = true;
1790 	get_device(sup);
1791 	list_add_tail(&sup->links.defer_sync, data);
1792 
1793 	return 0;
1794 }
1795 
1796 void fw_devlink_probing_done(void)
1797 {
1798 	LIST_HEAD(sync_list);
1799 
1800 	device_links_write_lock();
1801 	class_for_each_device(&devlink_class, NULL, &sync_list,
1802 			      fw_devlink_dev_sync_state);
1803 	device_links_write_unlock();
1804 	device_links_flush_sync_list(&sync_list, NULL);
1805 }
1806 
1807 /**
1808  * wait_for_init_devices_probe - Try to probe any device needed for init
1809  *
1810  * Some devices might need to be probed and bound successfully before the kernel
1811  * boot sequence can finish and move on to init/userspace. For example, a
1812  * network interface might need to be bound to be able to mount a NFS rootfs.
1813  *
1814  * With fw_devlink=on by default, some of these devices might be blocked from
1815  * probing because they are waiting on a optional supplier that doesn't have a
1816  * driver. While fw_devlink will eventually identify such devices and unblock
1817  * the probing automatically, it might be too late by the time it unblocks the
1818  * probing of devices. For example, the IP4 autoconfig might timeout before
1819  * fw_devlink unblocks probing of the network interface.
1820  *
1821  * This function is available to temporarily try and probe all devices that have
1822  * a driver even if some of their suppliers haven't been added or don't have
1823  * drivers.
1824  *
1825  * The drivers can then decide which of the suppliers are optional vs mandatory
1826  * and probe the device if possible. By the time this function returns, all such
1827  * "best effort" probes are guaranteed to be completed. If a device successfully
1828  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1829  * device where the supplier hasn't yet probed successfully because they have to
1830  * be optional dependencies.
1831  *
1832  * Any devices that didn't successfully probe go back to being treated as if
1833  * this function was never called.
1834  *
1835  * This also means that some devices that aren't needed for init and could have
1836  * waited for their optional supplier to probe (when the supplier's module is
1837  * loaded later on) would end up probing prematurely with limited functionality.
1838  * So call this function only when boot would fail without it.
1839  */
1840 void __init wait_for_init_devices_probe(void)
1841 {
1842 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1843 		return;
1844 
1845 	/*
1846 	 * Wait for all ongoing probes to finish so that the "best effort" is
1847 	 * only applied to devices that can't probe otherwise.
1848 	 */
1849 	wait_for_device_probe();
1850 
1851 	pr_info("Trying to probe devices needed for running init ...\n");
1852 	fw_devlink_best_effort = true;
1853 	driver_deferred_probe_trigger();
1854 
1855 	/*
1856 	 * Wait for all "best effort" probes to finish before going back to
1857 	 * normal enforcement.
1858 	 */
1859 	wait_for_device_probe();
1860 	fw_devlink_best_effort = false;
1861 }
1862 
1863 static void fw_devlink_unblock_consumers(struct device *dev)
1864 {
1865 	struct device_link *link;
1866 
1867 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1868 		return;
1869 
1870 	device_links_write_lock();
1871 	list_for_each_entry(link, &dev->links.consumers, s_node)
1872 		fw_devlink_relax_link(link);
1873 	device_links_write_unlock();
1874 }
1875 
1876 #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1877 
1878 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1879 {
1880 	struct device *dev;
1881 	bool ret;
1882 
1883 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1884 		return false;
1885 
1886 	dev = get_dev_from_fwnode(fwnode);
1887 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1888 	put_device(dev);
1889 
1890 	return ret;
1891 }
1892 
1893 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1894 {
1895 	struct fwnode_handle *parent;
1896 
1897 	fwnode_for_each_parent_node(fwnode, parent) {
1898 		if (fwnode_init_without_drv(parent)) {
1899 			fwnode_handle_put(parent);
1900 			return true;
1901 		}
1902 	}
1903 
1904 	return false;
1905 }
1906 
1907 /**
1908  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1909  * @ancestor: Firmware which is tested for being an ancestor
1910  * @child: Firmware which is tested for being the child
1911  *
1912  * A node is considered an ancestor of itself too.
1913  *
1914  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1915  */
1916 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1917 				  const struct fwnode_handle *child)
1918 {
1919 	struct fwnode_handle *parent;
1920 
1921 	if (IS_ERR_OR_NULL(ancestor))
1922 		return false;
1923 
1924 	if (child == ancestor)
1925 		return true;
1926 
1927 	fwnode_for_each_parent_node(child, parent) {
1928 		if (parent == ancestor) {
1929 			fwnode_handle_put(parent);
1930 			return true;
1931 		}
1932 	}
1933 	return false;
1934 }
1935 
1936 /**
1937  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1938  * @fwnode: firmware node
1939  *
1940  * Given a firmware node (@fwnode), this function finds its closest ancestor
1941  * firmware node that has a corresponding struct device and returns that struct
1942  * device.
1943  *
1944  * The caller is responsible for calling put_device() on the returned device
1945  * pointer.
1946  *
1947  * Return: a pointer to the device of the @fwnode's closest ancestor.
1948  */
1949 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1950 {
1951 	struct fwnode_handle *parent;
1952 	struct device *dev;
1953 
1954 	fwnode_for_each_parent_node(fwnode, parent) {
1955 		dev = get_dev_from_fwnode(parent);
1956 		if (dev) {
1957 			fwnode_handle_put(parent);
1958 			return dev;
1959 		}
1960 	}
1961 	return NULL;
1962 }
1963 
1964 /**
1965  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1966  * @con: Potential consumer device.
1967  * @sup_handle: Potential supplier's fwnode.
1968  *
1969  * Needs to be called with fwnode_lock and device link lock held.
1970  *
1971  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1972  * depend on @con. This function can detect multiple cyles between @sup_handle
1973  * and @con. When such dependency cycles are found, convert all device links
1974  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1975  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1976  * converted into a device link in the future, they are created as
1977  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1978  * fw_devlink=permissive just between the devices in the cycle. We need to do
1979  * this because, at this point, fw_devlink can't tell which of these
1980  * dependencies is not a real dependency.
1981  *
1982  * Return true if one or more cycles were found. Otherwise, return false.
1983  */
1984 static bool __fw_devlink_relax_cycles(struct device *con,
1985 				 struct fwnode_handle *sup_handle)
1986 {
1987 	struct device *sup_dev = NULL, *par_dev = NULL;
1988 	struct fwnode_link *link;
1989 	struct device_link *dev_link;
1990 	bool ret = false;
1991 
1992 	if (!sup_handle)
1993 		return false;
1994 
1995 	/*
1996 	 * We aren't trying to find all cycles. Just a cycle between con and
1997 	 * sup_handle.
1998 	 */
1999 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2000 		return false;
2001 
2002 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2003 
2004 	sup_dev = get_dev_from_fwnode(sup_handle);
2005 
2006 	/* Termination condition. */
2007 	if (sup_dev == con) {
2008 		pr_debug("----- cycle: start -----\n");
2009 		ret = true;
2010 		goto out;
2011 	}
2012 
2013 	/*
2014 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2015 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2016 	 * further.
2017 	 */
2018 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2019 	    con->links.status == DL_DEV_NO_DRIVER) {
2020 		ret = false;
2021 		goto out;
2022 	}
2023 
2024 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2025 		if (link->flags & FWLINK_FLAG_IGNORE)
2026 			continue;
2027 
2028 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
2029 			__fwnode_link_cycle(link);
2030 			ret = true;
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * Give priority to device parent over fwnode parent to account for any
2036 	 * quirks in how fwnodes are converted to devices.
2037 	 */
2038 	if (sup_dev)
2039 		par_dev = get_device(sup_dev->parent);
2040 	else
2041 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2042 
2043 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2044 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2045 			 par_dev->fwnode);
2046 		ret = true;
2047 	}
2048 
2049 	if (!sup_dev)
2050 		goto out;
2051 
2052 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2053 		/*
2054 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2055 		 * such due to a cycle.
2056 		 */
2057 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2058 		    !(dev_link->flags & DL_FLAG_CYCLE))
2059 			continue;
2060 
2061 		if (__fw_devlink_relax_cycles(con,
2062 					      dev_link->supplier->fwnode)) {
2063 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2064 				 dev_link->supplier->fwnode);
2065 			fw_devlink_relax_link(dev_link);
2066 			dev_link->flags |= DL_FLAG_CYCLE;
2067 			ret = true;
2068 		}
2069 	}
2070 
2071 out:
2072 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2073 	put_device(sup_dev);
2074 	put_device(par_dev);
2075 	return ret;
2076 }
2077 
2078 /**
2079  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2080  * @con: consumer device for the device link
2081  * @sup_handle: fwnode handle of supplier
2082  * @link: fwnode link that's being converted to a device link
2083  *
2084  * This function will try to create a device link between the consumer device
2085  * @con and the supplier device represented by @sup_handle.
2086  *
2087  * The supplier has to be provided as a fwnode because incorrect cycles in
2088  * fwnode links can sometimes cause the supplier device to never be created.
2089  * This function detects such cases and returns an error if it cannot create a
2090  * device link from the consumer to a missing supplier.
2091  *
2092  * Returns,
2093  * 0 on successfully creating a device link
2094  * -EINVAL if the device link cannot be created as expected
2095  * -EAGAIN if the device link cannot be created right now, but it may be
2096  *  possible to do that in the future
2097  */
2098 static int fw_devlink_create_devlink(struct device *con,
2099 				     struct fwnode_handle *sup_handle,
2100 				     struct fwnode_link *link)
2101 {
2102 	struct device *sup_dev;
2103 	int ret = 0;
2104 	u32 flags;
2105 
2106 	if (link->flags & FWLINK_FLAG_IGNORE)
2107 		return 0;
2108 
2109 	if (con->fwnode == link->consumer)
2110 		flags = fw_devlink_get_flags(link->flags);
2111 	else
2112 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2113 
2114 	/*
2115 	 * In some cases, a device P might also be a supplier to its child node
2116 	 * C. However, this would defer the probe of C until the probe of P
2117 	 * completes successfully. This is perfectly fine in the device driver
2118 	 * model. device_add() doesn't guarantee probe completion of the device
2119 	 * by the time it returns.
2120 	 *
2121 	 * However, there are a few drivers that assume C will finish probing
2122 	 * as soon as it's added and before P finishes probing. So, we provide
2123 	 * a flag to let fw_devlink know not to delay the probe of C until the
2124 	 * probe of P completes successfully.
2125 	 *
2126 	 * When such a flag is set, we can't create device links where P is the
2127 	 * supplier of C as that would delay the probe of C.
2128 	 */
2129 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2130 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2131 		return -EINVAL;
2132 
2133 	/*
2134 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2135 	 * So, one might expect that cycle detection isn't necessary for them.
2136 	 * However, if the device link was marked as SYNC_STATE_ONLY because
2137 	 * it's part of a cycle, then we still need to do cycle detection. This
2138 	 * is because the consumer and supplier might be part of multiple cycles
2139 	 * and we need to detect all those cycles.
2140 	 */
2141 	if (!device_link_flag_is_sync_state_only(flags) ||
2142 	    flags & DL_FLAG_CYCLE) {
2143 		device_links_write_lock();
2144 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2145 			__fwnode_link_cycle(link);
2146 			flags = fw_devlink_get_flags(link->flags);
2147 			pr_debug("----- cycle: end -----\n");
2148 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2149 				 sup_handle);
2150 		}
2151 		device_links_write_unlock();
2152 	}
2153 
2154 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2155 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2156 	else
2157 		sup_dev = get_dev_from_fwnode(sup_handle);
2158 
2159 	if (sup_dev) {
2160 		/*
2161 		 * If it's one of those drivers that don't actually bind to
2162 		 * their device using driver core, then don't wait on this
2163 		 * supplier device indefinitely.
2164 		 */
2165 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2166 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2167 			dev_dbg(con,
2168 				"Not linking %pfwf - dev might never probe\n",
2169 				sup_handle);
2170 			ret = -EINVAL;
2171 			goto out;
2172 		}
2173 
2174 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2175 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2176 				flags, dev_name(sup_dev));
2177 			ret = -EINVAL;
2178 		}
2179 
2180 		goto out;
2181 	}
2182 
2183 	/*
2184 	 * Supplier or supplier's ancestor already initialized without a struct
2185 	 * device or being probed by a driver.
2186 	 */
2187 	if (fwnode_init_without_drv(sup_handle) ||
2188 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2189 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2190 			sup_handle);
2191 		return -EINVAL;
2192 	}
2193 
2194 	ret = -EAGAIN;
2195 out:
2196 	put_device(sup_dev);
2197 	return ret;
2198 }
2199 
2200 /**
2201  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2202  * @dev: Device that needs to be linked to its consumers
2203  *
2204  * This function looks at all the consumer fwnodes of @dev and creates device
2205  * links between the consumer device and @dev (supplier).
2206  *
2207  * If the consumer device has not been added yet, then this function creates a
2208  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2209  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2210  * sync_state() callback before the real consumer device gets to be added and
2211  * then probed.
2212  *
2213  * Once device links are created from the real consumer to @dev (supplier), the
2214  * fwnode links are deleted.
2215  */
2216 static void __fw_devlink_link_to_consumers(struct device *dev)
2217 {
2218 	struct fwnode_handle *fwnode = dev->fwnode;
2219 	struct fwnode_link *link, *tmp;
2220 
2221 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2222 		struct device *con_dev;
2223 		bool own_link = true;
2224 		int ret;
2225 
2226 		con_dev = get_dev_from_fwnode(link->consumer);
2227 		/*
2228 		 * If consumer device is not available yet, make a "proxy"
2229 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2230 		 * the supplier device. This is necessary to make sure the
2231 		 * supplier doesn't get a sync_state() callback before the real
2232 		 * consumer can create a device link to the supplier.
2233 		 *
2234 		 * This proxy link step is needed to handle the case where the
2235 		 * consumer's parent device is added before the supplier.
2236 		 */
2237 		if (!con_dev) {
2238 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2239 			/*
2240 			 * However, if the consumer's parent device is also the
2241 			 * parent of the supplier, don't create a
2242 			 * consumer-supplier link from the parent to its child
2243 			 * device. Such a dependency is impossible.
2244 			 */
2245 			if (con_dev &&
2246 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2247 				put_device(con_dev);
2248 				con_dev = NULL;
2249 			} else {
2250 				own_link = false;
2251 			}
2252 		}
2253 
2254 		if (!con_dev)
2255 			continue;
2256 
2257 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2258 		put_device(con_dev);
2259 		if (!own_link || ret == -EAGAIN)
2260 			continue;
2261 
2262 		__fwnode_link_del(link);
2263 	}
2264 }
2265 
2266 /**
2267  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2268  * @dev: The consumer device that needs to be linked to its suppliers
2269  * @fwnode: Root of the fwnode tree that is used to create device links
2270  *
2271  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2272  * @fwnode and creates device links between @dev (consumer) and all the
2273  * supplier devices of the entire fwnode tree at @fwnode.
2274  *
2275  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2276  * and the real suppliers of @dev. Once these device links are created, the
2277  * fwnode links are deleted.
2278  *
2279  * In addition, it also looks at all the suppliers of the entire fwnode tree
2280  * because some of the child devices of @dev that have not been added yet
2281  * (because @dev hasn't probed) might already have their suppliers added to
2282  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2283  * @dev (consumer) and these suppliers to make sure they don't execute their
2284  * sync_state() callbacks before these child devices have a chance to create
2285  * their device links. The fwnode links that correspond to the child devices
2286  * aren't delete because they are needed later to create the device links
2287  * between the real consumer and supplier devices.
2288  */
2289 static void __fw_devlink_link_to_suppliers(struct device *dev,
2290 					   struct fwnode_handle *fwnode)
2291 {
2292 	bool own_link = (dev->fwnode == fwnode);
2293 	struct fwnode_link *link, *tmp;
2294 	struct fwnode_handle *child = NULL;
2295 
2296 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2297 		int ret;
2298 		struct fwnode_handle *sup = link->supplier;
2299 
2300 		ret = fw_devlink_create_devlink(dev, sup, link);
2301 		if (!own_link || ret == -EAGAIN)
2302 			continue;
2303 
2304 		__fwnode_link_del(link);
2305 	}
2306 
2307 	/*
2308 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2309 	 * all the descendants. This proxy link step is needed to handle the
2310 	 * case where the supplier is added before the consumer's parent device
2311 	 * (@dev).
2312 	 */
2313 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2314 		__fw_devlink_link_to_suppliers(dev, child);
2315 }
2316 
2317 static void fw_devlink_link_device(struct device *dev)
2318 {
2319 	struct fwnode_handle *fwnode = dev->fwnode;
2320 
2321 	if (!fw_devlink_flags)
2322 		return;
2323 
2324 	fw_devlink_parse_fwtree(fwnode);
2325 
2326 	mutex_lock(&fwnode_link_lock);
2327 	__fw_devlink_link_to_consumers(dev);
2328 	__fw_devlink_link_to_suppliers(dev, fwnode);
2329 	mutex_unlock(&fwnode_link_lock);
2330 }
2331 
2332 /* Device links support end. */
2333 
2334 int (*platform_notify)(struct device *dev) = NULL;
2335 int (*platform_notify_remove)(struct device *dev) = NULL;
2336 static struct kobject *dev_kobj;
2337 
2338 /* /sys/dev/char */
2339 static struct kobject *sysfs_dev_char_kobj;
2340 
2341 /* /sys/dev/block */
2342 static struct kobject *sysfs_dev_block_kobj;
2343 
2344 static DEFINE_MUTEX(device_hotplug_lock);
2345 
2346 void lock_device_hotplug(void)
2347 {
2348 	mutex_lock(&device_hotplug_lock);
2349 }
2350 
2351 void unlock_device_hotplug(void)
2352 {
2353 	mutex_unlock(&device_hotplug_lock);
2354 }
2355 
2356 int lock_device_hotplug_sysfs(void)
2357 {
2358 	if (mutex_trylock(&device_hotplug_lock))
2359 		return 0;
2360 
2361 	/* Avoid busy looping (5 ms of sleep should do). */
2362 	msleep(5);
2363 	return restart_syscall();
2364 }
2365 
2366 #ifdef CONFIG_BLOCK
2367 static inline int device_is_not_partition(struct device *dev)
2368 {
2369 	return !(dev->type == &part_type);
2370 }
2371 #else
2372 static inline int device_is_not_partition(struct device *dev)
2373 {
2374 	return 1;
2375 }
2376 #endif
2377 
2378 static void device_platform_notify(struct device *dev)
2379 {
2380 	acpi_device_notify(dev);
2381 
2382 	software_node_notify(dev);
2383 
2384 	if (platform_notify)
2385 		platform_notify(dev);
2386 }
2387 
2388 static void device_platform_notify_remove(struct device *dev)
2389 {
2390 	if (platform_notify_remove)
2391 		platform_notify_remove(dev);
2392 
2393 	software_node_notify_remove(dev);
2394 
2395 	acpi_device_notify_remove(dev);
2396 }
2397 
2398 /**
2399  * dev_driver_string - Return a device's driver name, if at all possible
2400  * @dev: struct device to get the name of
2401  *
2402  * Will return the device's driver's name if it is bound to a device.  If
2403  * the device is not bound to a driver, it will return the name of the bus
2404  * it is attached to.  If it is not attached to a bus either, an empty
2405  * string will be returned.
2406  */
2407 const char *dev_driver_string(const struct device *dev)
2408 {
2409 	struct device_driver *drv;
2410 
2411 	/* dev->driver can change to NULL underneath us because of unbinding,
2412 	 * so be careful about accessing it.  dev->bus and dev->class should
2413 	 * never change once they are set, so they don't need special care.
2414 	 */
2415 	drv = READ_ONCE(dev->driver);
2416 	return drv ? drv->name : dev_bus_name(dev);
2417 }
2418 EXPORT_SYMBOL(dev_driver_string);
2419 
2420 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2421 
2422 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2423 			     char *buf)
2424 {
2425 	struct device_attribute *dev_attr = to_dev_attr(attr);
2426 	struct device *dev = kobj_to_dev(kobj);
2427 	ssize_t ret = -EIO;
2428 
2429 	if (dev_attr->show)
2430 		ret = dev_attr->show(dev, dev_attr, buf);
2431 	if (ret >= (ssize_t)PAGE_SIZE) {
2432 		printk("dev_attr_show: %pS returned bad count\n",
2433 				dev_attr->show);
2434 	}
2435 	return ret;
2436 }
2437 
2438 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2439 			      const char *buf, size_t count)
2440 {
2441 	struct device_attribute *dev_attr = to_dev_attr(attr);
2442 	struct device *dev = kobj_to_dev(kobj);
2443 	ssize_t ret = -EIO;
2444 
2445 	if (dev_attr->store)
2446 		ret = dev_attr->store(dev, dev_attr, buf, count);
2447 	return ret;
2448 }
2449 
2450 static const struct sysfs_ops dev_sysfs_ops = {
2451 	.show	= dev_attr_show,
2452 	.store	= dev_attr_store,
2453 };
2454 
2455 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2456 
2457 ssize_t device_store_ulong(struct device *dev,
2458 			   struct device_attribute *attr,
2459 			   const char *buf, size_t size)
2460 {
2461 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2462 	int ret;
2463 	unsigned long new;
2464 
2465 	ret = kstrtoul(buf, 0, &new);
2466 	if (ret)
2467 		return ret;
2468 	*(unsigned long *)(ea->var) = new;
2469 	/* Always return full write size even if we didn't consume all */
2470 	return size;
2471 }
2472 EXPORT_SYMBOL_GPL(device_store_ulong);
2473 
2474 ssize_t device_show_ulong(struct device *dev,
2475 			  struct device_attribute *attr,
2476 			  char *buf)
2477 {
2478 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2479 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2480 }
2481 EXPORT_SYMBOL_GPL(device_show_ulong);
2482 
2483 ssize_t device_store_int(struct device *dev,
2484 			 struct device_attribute *attr,
2485 			 const char *buf, size_t size)
2486 {
2487 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2488 	int ret;
2489 	long new;
2490 
2491 	ret = kstrtol(buf, 0, &new);
2492 	if (ret)
2493 		return ret;
2494 
2495 	if (new > INT_MAX || new < INT_MIN)
2496 		return -EINVAL;
2497 	*(int *)(ea->var) = new;
2498 	/* Always return full write size even if we didn't consume all */
2499 	return size;
2500 }
2501 EXPORT_SYMBOL_GPL(device_store_int);
2502 
2503 ssize_t device_show_int(struct device *dev,
2504 			struct device_attribute *attr,
2505 			char *buf)
2506 {
2507 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2508 
2509 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2510 }
2511 EXPORT_SYMBOL_GPL(device_show_int);
2512 
2513 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2514 			  const char *buf, size_t size)
2515 {
2516 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2517 
2518 	if (kstrtobool(buf, ea->var) < 0)
2519 		return -EINVAL;
2520 
2521 	return size;
2522 }
2523 EXPORT_SYMBOL_GPL(device_store_bool);
2524 
2525 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2526 			 char *buf)
2527 {
2528 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2529 
2530 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2531 }
2532 EXPORT_SYMBOL_GPL(device_show_bool);
2533 
2534 /**
2535  * device_release - free device structure.
2536  * @kobj: device's kobject.
2537  *
2538  * This is called once the reference count for the object
2539  * reaches 0. We forward the call to the device's release
2540  * method, which should handle actually freeing the structure.
2541  */
2542 static void device_release(struct kobject *kobj)
2543 {
2544 	struct device *dev = kobj_to_dev(kobj);
2545 	struct device_private *p = dev->p;
2546 
2547 	/*
2548 	 * Some platform devices are driven without driver attached
2549 	 * and managed resources may have been acquired.  Make sure
2550 	 * all resources are released.
2551 	 *
2552 	 * Drivers still can add resources into device after device
2553 	 * is deleted but alive, so release devres here to avoid
2554 	 * possible memory leak.
2555 	 */
2556 	devres_release_all(dev);
2557 
2558 	kfree(dev->dma_range_map);
2559 
2560 	if (dev->release)
2561 		dev->release(dev);
2562 	else if (dev->type && dev->type->release)
2563 		dev->type->release(dev);
2564 	else if (dev->class && dev->class->dev_release)
2565 		dev->class->dev_release(dev);
2566 	else
2567 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2568 			dev_name(dev));
2569 	kfree(p);
2570 }
2571 
2572 static const void *device_namespace(const struct kobject *kobj)
2573 {
2574 	const struct device *dev = kobj_to_dev(kobj);
2575 	const void *ns = NULL;
2576 
2577 	if (dev->class && dev->class->ns_type)
2578 		ns = dev->class->namespace(dev);
2579 
2580 	return ns;
2581 }
2582 
2583 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2584 {
2585 	const struct device *dev = kobj_to_dev(kobj);
2586 
2587 	if (dev->class && dev->class->get_ownership)
2588 		dev->class->get_ownership(dev, uid, gid);
2589 }
2590 
2591 static const struct kobj_type device_ktype = {
2592 	.release	= device_release,
2593 	.sysfs_ops	= &dev_sysfs_ops,
2594 	.namespace	= device_namespace,
2595 	.get_ownership	= device_get_ownership,
2596 };
2597 
2598 
2599 static int dev_uevent_filter(const struct kobject *kobj)
2600 {
2601 	const struct kobj_type *ktype = get_ktype(kobj);
2602 
2603 	if (ktype == &device_ktype) {
2604 		const struct device *dev = kobj_to_dev(kobj);
2605 		if (dev->bus)
2606 			return 1;
2607 		if (dev->class)
2608 			return 1;
2609 	}
2610 	return 0;
2611 }
2612 
2613 static const char *dev_uevent_name(const struct kobject *kobj)
2614 {
2615 	const struct device *dev = kobj_to_dev(kobj);
2616 
2617 	if (dev->bus)
2618 		return dev->bus->name;
2619 	if (dev->class)
2620 		return dev->class->name;
2621 	return NULL;
2622 }
2623 
2624 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2625 {
2626 	const struct device *dev = kobj_to_dev(kobj);
2627 	int retval = 0;
2628 
2629 	/* add device node properties if present */
2630 	if (MAJOR(dev->devt)) {
2631 		const char *tmp;
2632 		const char *name;
2633 		umode_t mode = 0;
2634 		kuid_t uid = GLOBAL_ROOT_UID;
2635 		kgid_t gid = GLOBAL_ROOT_GID;
2636 
2637 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2638 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2639 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2640 		if (name) {
2641 			add_uevent_var(env, "DEVNAME=%s", name);
2642 			if (mode)
2643 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2644 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2645 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2646 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2647 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2648 			kfree(tmp);
2649 		}
2650 	}
2651 
2652 	if (dev->type && dev->type->name)
2653 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2654 
2655 	if (dev->driver)
2656 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2657 
2658 	/* Add common DT information about the device */
2659 	of_device_uevent(dev, env);
2660 
2661 	/* have the bus specific function add its stuff */
2662 	if (dev->bus && dev->bus->uevent) {
2663 		retval = dev->bus->uevent(dev, env);
2664 		if (retval)
2665 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2666 				 dev_name(dev), __func__, retval);
2667 	}
2668 
2669 	/* have the class specific function add its stuff */
2670 	if (dev->class && dev->class->dev_uevent) {
2671 		retval = dev->class->dev_uevent(dev, env);
2672 		if (retval)
2673 			pr_debug("device: '%s': %s: class uevent() "
2674 				 "returned %d\n", dev_name(dev),
2675 				 __func__, retval);
2676 	}
2677 
2678 	/* have the device type specific function add its stuff */
2679 	if (dev->type && dev->type->uevent) {
2680 		retval = dev->type->uevent(dev, env);
2681 		if (retval)
2682 			pr_debug("device: '%s': %s: dev_type uevent() "
2683 				 "returned %d\n", dev_name(dev),
2684 				 __func__, retval);
2685 	}
2686 
2687 	return retval;
2688 }
2689 
2690 static const struct kset_uevent_ops device_uevent_ops = {
2691 	.filter =	dev_uevent_filter,
2692 	.name =		dev_uevent_name,
2693 	.uevent =	dev_uevent,
2694 };
2695 
2696 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2697 			   char *buf)
2698 {
2699 	struct kobject *top_kobj;
2700 	struct kset *kset;
2701 	struct kobj_uevent_env *env = NULL;
2702 	int i;
2703 	int len = 0;
2704 	int retval;
2705 
2706 	/* search the kset, the device belongs to */
2707 	top_kobj = &dev->kobj;
2708 	while (!top_kobj->kset && top_kobj->parent)
2709 		top_kobj = top_kobj->parent;
2710 	if (!top_kobj->kset)
2711 		goto out;
2712 
2713 	kset = top_kobj->kset;
2714 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2715 		goto out;
2716 
2717 	/* respect filter */
2718 	if (kset->uevent_ops && kset->uevent_ops->filter)
2719 		if (!kset->uevent_ops->filter(&dev->kobj))
2720 			goto out;
2721 
2722 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2723 	if (!env)
2724 		return -ENOMEM;
2725 
2726 	/* let the kset specific function add its keys */
2727 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2728 	if (retval)
2729 		goto out;
2730 
2731 	/* copy keys to file */
2732 	for (i = 0; i < env->envp_idx; i++)
2733 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2734 out:
2735 	kfree(env);
2736 	return len;
2737 }
2738 
2739 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2740 			    const char *buf, size_t count)
2741 {
2742 	int rc;
2743 
2744 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2745 
2746 	if (rc) {
2747 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2748 		return rc;
2749 	}
2750 
2751 	return count;
2752 }
2753 static DEVICE_ATTR_RW(uevent);
2754 
2755 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2756 			   char *buf)
2757 {
2758 	bool val;
2759 
2760 	device_lock(dev);
2761 	val = !dev->offline;
2762 	device_unlock(dev);
2763 	return sysfs_emit(buf, "%u\n", val);
2764 }
2765 
2766 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2767 			    const char *buf, size_t count)
2768 {
2769 	bool val;
2770 	int ret;
2771 
2772 	ret = kstrtobool(buf, &val);
2773 	if (ret < 0)
2774 		return ret;
2775 
2776 	ret = lock_device_hotplug_sysfs();
2777 	if (ret)
2778 		return ret;
2779 
2780 	ret = val ? device_online(dev) : device_offline(dev);
2781 	unlock_device_hotplug();
2782 	return ret < 0 ? ret : count;
2783 }
2784 static DEVICE_ATTR_RW(online);
2785 
2786 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2787 			      char *buf)
2788 {
2789 	const char *loc;
2790 
2791 	switch (dev->removable) {
2792 	case DEVICE_REMOVABLE:
2793 		loc = "removable";
2794 		break;
2795 	case DEVICE_FIXED:
2796 		loc = "fixed";
2797 		break;
2798 	default:
2799 		loc = "unknown";
2800 	}
2801 	return sysfs_emit(buf, "%s\n", loc);
2802 }
2803 static DEVICE_ATTR_RO(removable);
2804 
2805 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2806 {
2807 	return sysfs_create_groups(&dev->kobj, groups);
2808 }
2809 EXPORT_SYMBOL_GPL(device_add_groups);
2810 
2811 void device_remove_groups(struct device *dev,
2812 			  const struct attribute_group **groups)
2813 {
2814 	sysfs_remove_groups(&dev->kobj, groups);
2815 }
2816 EXPORT_SYMBOL_GPL(device_remove_groups);
2817 
2818 union device_attr_group_devres {
2819 	const struct attribute_group *group;
2820 	const struct attribute_group **groups;
2821 };
2822 
2823 static void devm_attr_group_remove(struct device *dev, void *res)
2824 {
2825 	union device_attr_group_devres *devres = res;
2826 	const struct attribute_group *group = devres->group;
2827 
2828 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2829 	sysfs_remove_group(&dev->kobj, group);
2830 }
2831 
2832 static void devm_attr_groups_remove(struct device *dev, void *res)
2833 {
2834 	union device_attr_group_devres *devres = res;
2835 	const struct attribute_group **groups = devres->groups;
2836 
2837 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2838 	sysfs_remove_groups(&dev->kobj, groups);
2839 }
2840 
2841 /**
2842  * devm_device_add_group - given a device, create a managed attribute group
2843  * @dev:	The device to create the group for
2844  * @grp:	The attribute group to create
2845  *
2846  * This function creates a group for the first time.  It will explicitly
2847  * warn and error if any of the attribute files being created already exist.
2848  *
2849  * Returns 0 on success or error code on failure.
2850  */
2851 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2852 {
2853 	union device_attr_group_devres *devres;
2854 	int error;
2855 
2856 	devres = devres_alloc(devm_attr_group_remove,
2857 			      sizeof(*devres), GFP_KERNEL);
2858 	if (!devres)
2859 		return -ENOMEM;
2860 
2861 	error = sysfs_create_group(&dev->kobj, grp);
2862 	if (error) {
2863 		devres_free(devres);
2864 		return error;
2865 	}
2866 
2867 	devres->group = grp;
2868 	devres_add(dev, devres);
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL_GPL(devm_device_add_group);
2872 
2873 /**
2874  * devm_device_add_groups - create a bunch of managed attribute groups
2875  * @dev:	The device to create the group for
2876  * @groups:	The attribute groups to create, NULL terminated
2877  *
2878  * This function creates a bunch of managed attribute groups.  If an error
2879  * occurs when creating a group, all previously created groups will be
2880  * removed, unwinding everything back to the original state when this
2881  * function was called.  It will explicitly warn and error if any of the
2882  * attribute files being created already exist.
2883  *
2884  * Returns 0 on success or error code from sysfs_create_group on failure.
2885  */
2886 int devm_device_add_groups(struct device *dev,
2887 			   const struct attribute_group **groups)
2888 {
2889 	union device_attr_group_devres *devres;
2890 	int error;
2891 
2892 	devres = devres_alloc(devm_attr_groups_remove,
2893 			      sizeof(*devres), GFP_KERNEL);
2894 	if (!devres)
2895 		return -ENOMEM;
2896 
2897 	error = sysfs_create_groups(&dev->kobj, groups);
2898 	if (error) {
2899 		devres_free(devres);
2900 		return error;
2901 	}
2902 
2903 	devres->groups = groups;
2904 	devres_add(dev, devres);
2905 	return 0;
2906 }
2907 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2908 
2909 static int device_add_attrs(struct device *dev)
2910 {
2911 	const struct class *class = dev->class;
2912 	const struct device_type *type = dev->type;
2913 	int error;
2914 
2915 	if (class) {
2916 		error = device_add_groups(dev, class->dev_groups);
2917 		if (error)
2918 			return error;
2919 	}
2920 
2921 	if (type) {
2922 		error = device_add_groups(dev, type->groups);
2923 		if (error)
2924 			goto err_remove_class_groups;
2925 	}
2926 
2927 	error = device_add_groups(dev, dev->groups);
2928 	if (error)
2929 		goto err_remove_type_groups;
2930 
2931 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2932 		error = device_create_file(dev, &dev_attr_online);
2933 		if (error)
2934 			goto err_remove_dev_groups;
2935 	}
2936 
2937 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2938 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2939 		if (error)
2940 			goto err_remove_dev_online;
2941 	}
2942 
2943 	if (dev_removable_is_valid(dev)) {
2944 		error = device_create_file(dev, &dev_attr_removable);
2945 		if (error)
2946 			goto err_remove_dev_waiting_for_supplier;
2947 	}
2948 
2949 	if (dev_add_physical_location(dev)) {
2950 		error = device_add_group(dev,
2951 			&dev_attr_physical_location_group);
2952 		if (error)
2953 			goto err_remove_dev_removable;
2954 	}
2955 
2956 	return 0;
2957 
2958  err_remove_dev_removable:
2959 	device_remove_file(dev, &dev_attr_removable);
2960  err_remove_dev_waiting_for_supplier:
2961 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2962  err_remove_dev_online:
2963 	device_remove_file(dev, &dev_attr_online);
2964  err_remove_dev_groups:
2965 	device_remove_groups(dev, dev->groups);
2966  err_remove_type_groups:
2967 	if (type)
2968 		device_remove_groups(dev, type->groups);
2969  err_remove_class_groups:
2970 	if (class)
2971 		device_remove_groups(dev, class->dev_groups);
2972 
2973 	return error;
2974 }
2975 
2976 static void device_remove_attrs(struct device *dev)
2977 {
2978 	const struct class *class = dev->class;
2979 	const struct device_type *type = dev->type;
2980 
2981 	if (dev->physical_location) {
2982 		device_remove_group(dev, &dev_attr_physical_location_group);
2983 		kfree(dev->physical_location);
2984 	}
2985 
2986 	device_remove_file(dev, &dev_attr_removable);
2987 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2988 	device_remove_file(dev, &dev_attr_online);
2989 	device_remove_groups(dev, dev->groups);
2990 
2991 	if (type)
2992 		device_remove_groups(dev, type->groups);
2993 
2994 	if (class)
2995 		device_remove_groups(dev, class->dev_groups);
2996 }
2997 
2998 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2999 			char *buf)
3000 {
3001 	return print_dev_t(buf, dev->devt);
3002 }
3003 static DEVICE_ATTR_RO(dev);
3004 
3005 /* /sys/devices/ */
3006 struct kset *devices_kset;
3007 
3008 /**
3009  * devices_kset_move_before - Move device in the devices_kset's list.
3010  * @deva: Device to move.
3011  * @devb: Device @deva should come before.
3012  */
3013 static void devices_kset_move_before(struct device *deva, struct device *devb)
3014 {
3015 	if (!devices_kset)
3016 		return;
3017 	pr_debug("devices_kset: Moving %s before %s\n",
3018 		 dev_name(deva), dev_name(devb));
3019 	spin_lock(&devices_kset->list_lock);
3020 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3021 	spin_unlock(&devices_kset->list_lock);
3022 }
3023 
3024 /**
3025  * devices_kset_move_after - Move device in the devices_kset's list.
3026  * @deva: Device to move
3027  * @devb: Device @deva should come after.
3028  */
3029 static void devices_kset_move_after(struct device *deva, struct device *devb)
3030 {
3031 	if (!devices_kset)
3032 		return;
3033 	pr_debug("devices_kset: Moving %s after %s\n",
3034 		 dev_name(deva), dev_name(devb));
3035 	spin_lock(&devices_kset->list_lock);
3036 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3037 	spin_unlock(&devices_kset->list_lock);
3038 }
3039 
3040 /**
3041  * devices_kset_move_last - move the device to the end of devices_kset's list.
3042  * @dev: device to move
3043  */
3044 void devices_kset_move_last(struct device *dev)
3045 {
3046 	if (!devices_kset)
3047 		return;
3048 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3049 	spin_lock(&devices_kset->list_lock);
3050 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3051 	spin_unlock(&devices_kset->list_lock);
3052 }
3053 
3054 /**
3055  * device_create_file - create sysfs attribute file for device.
3056  * @dev: device.
3057  * @attr: device attribute descriptor.
3058  */
3059 int device_create_file(struct device *dev,
3060 		       const struct device_attribute *attr)
3061 {
3062 	int error = 0;
3063 
3064 	if (dev) {
3065 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3066 			"Attribute %s: write permission without 'store'\n",
3067 			attr->attr.name);
3068 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3069 			"Attribute %s: read permission without 'show'\n",
3070 			attr->attr.name);
3071 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3072 	}
3073 
3074 	return error;
3075 }
3076 EXPORT_SYMBOL_GPL(device_create_file);
3077 
3078 /**
3079  * device_remove_file - remove sysfs attribute file.
3080  * @dev: device.
3081  * @attr: device attribute descriptor.
3082  */
3083 void device_remove_file(struct device *dev,
3084 			const struct device_attribute *attr)
3085 {
3086 	if (dev)
3087 		sysfs_remove_file(&dev->kobj, &attr->attr);
3088 }
3089 EXPORT_SYMBOL_GPL(device_remove_file);
3090 
3091 /**
3092  * device_remove_file_self - remove sysfs attribute file from its own method.
3093  * @dev: device.
3094  * @attr: device attribute descriptor.
3095  *
3096  * See kernfs_remove_self() for details.
3097  */
3098 bool device_remove_file_self(struct device *dev,
3099 			     const struct device_attribute *attr)
3100 {
3101 	if (dev)
3102 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3103 	else
3104 		return false;
3105 }
3106 EXPORT_SYMBOL_GPL(device_remove_file_self);
3107 
3108 /**
3109  * device_create_bin_file - create sysfs binary attribute file for device.
3110  * @dev: device.
3111  * @attr: device binary attribute descriptor.
3112  */
3113 int device_create_bin_file(struct device *dev,
3114 			   const struct bin_attribute *attr)
3115 {
3116 	int error = -EINVAL;
3117 	if (dev)
3118 		error = sysfs_create_bin_file(&dev->kobj, attr);
3119 	return error;
3120 }
3121 EXPORT_SYMBOL_GPL(device_create_bin_file);
3122 
3123 /**
3124  * device_remove_bin_file - remove sysfs binary attribute file
3125  * @dev: device.
3126  * @attr: device binary attribute descriptor.
3127  */
3128 void device_remove_bin_file(struct device *dev,
3129 			    const struct bin_attribute *attr)
3130 {
3131 	if (dev)
3132 		sysfs_remove_bin_file(&dev->kobj, attr);
3133 }
3134 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3135 
3136 static void klist_children_get(struct klist_node *n)
3137 {
3138 	struct device_private *p = to_device_private_parent(n);
3139 	struct device *dev = p->device;
3140 
3141 	get_device(dev);
3142 }
3143 
3144 static void klist_children_put(struct klist_node *n)
3145 {
3146 	struct device_private *p = to_device_private_parent(n);
3147 	struct device *dev = p->device;
3148 
3149 	put_device(dev);
3150 }
3151 
3152 /**
3153  * device_initialize - init device structure.
3154  * @dev: device.
3155  *
3156  * This prepares the device for use by other layers by initializing
3157  * its fields.
3158  * It is the first half of device_register(), if called by
3159  * that function, though it can also be called separately, so one
3160  * may use @dev's fields. In particular, get_device()/put_device()
3161  * may be used for reference counting of @dev after calling this
3162  * function.
3163  *
3164  * All fields in @dev must be initialized by the caller to 0, except
3165  * for those explicitly set to some other value.  The simplest
3166  * approach is to use kzalloc() to allocate the structure containing
3167  * @dev.
3168  *
3169  * NOTE: Use put_device() to give up your reference instead of freeing
3170  * @dev directly once you have called this function.
3171  */
3172 void device_initialize(struct device *dev)
3173 {
3174 	dev->kobj.kset = devices_kset;
3175 	kobject_init(&dev->kobj, &device_ktype);
3176 	INIT_LIST_HEAD(&dev->dma_pools);
3177 	mutex_init(&dev->mutex);
3178 	lockdep_set_novalidate_class(&dev->mutex);
3179 	spin_lock_init(&dev->devres_lock);
3180 	INIT_LIST_HEAD(&dev->devres_head);
3181 	device_pm_init(dev);
3182 	set_dev_node(dev, NUMA_NO_NODE);
3183 	INIT_LIST_HEAD(&dev->links.consumers);
3184 	INIT_LIST_HEAD(&dev->links.suppliers);
3185 	INIT_LIST_HEAD(&dev->links.defer_sync);
3186 	dev->links.status = DL_DEV_NO_DRIVER;
3187 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3188     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3189     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3190 	dev->dma_coherent = dma_default_coherent;
3191 #endif
3192 	swiotlb_dev_init(dev);
3193 }
3194 EXPORT_SYMBOL_GPL(device_initialize);
3195 
3196 struct kobject *virtual_device_parent(struct device *dev)
3197 {
3198 	static struct kobject *virtual_dir = NULL;
3199 
3200 	if (!virtual_dir)
3201 		virtual_dir = kobject_create_and_add("virtual",
3202 						     &devices_kset->kobj);
3203 
3204 	return virtual_dir;
3205 }
3206 
3207 struct class_dir {
3208 	struct kobject kobj;
3209 	const struct class *class;
3210 };
3211 
3212 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3213 
3214 static void class_dir_release(struct kobject *kobj)
3215 {
3216 	struct class_dir *dir = to_class_dir(kobj);
3217 	kfree(dir);
3218 }
3219 
3220 static const
3221 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3222 {
3223 	const struct class_dir *dir = to_class_dir(kobj);
3224 	return dir->class->ns_type;
3225 }
3226 
3227 static const struct kobj_type class_dir_ktype = {
3228 	.release	= class_dir_release,
3229 	.sysfs_ops	= &kobj_sysfs_ops,
3230 	.child_ns_type	= class_dir_child_ns_type
3231 };
3232 
3233 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3234 						struct kobject *parent_kobj)
3235 {
3236 	struct class_dir *dir;
3237 	int retval;
3238 
3239 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3240 	if (!dir)
3241 		return ERR_PTR(-ENOMEM);
3242 
3243 	dir->class = sp->class;
3244 	kobject_init(&dir->kobj, &class_dir_ktype);
3245 
3246 	dir->kobj.kset = &sp->glue_dirs;
3247 
3248 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3249 	if (retval < 0) {
3250 		kobject_put(&dir->kobj);
3251 		return ERR_PTR(retval);
3252 	}
3253 	return &dir->kobj;
3254 }
3255 
3256 static DEFINE_MUTEX(gdp_mutex);
3257 
3258 static struct kobject *get_device_parent(struct device *dev,
3259 					 struct device *parent)
3260 {
3261 	struct subsys_private *sp = class_to_subsys(dev->class);
3262 	struct kobject *kobj = NULL;
3263 
3264 	if (sp) {
3265 		struct kobject *parent_kobj;
3266 		struct kobject *k;
3267 
3268 		/*
3269 		 * If we have no parent, we live in "virtual".
3270 		 * Class-devices with a non class-device as parent, live
3271 		 * in a "glue" directory to prevent namespace collisions.
3272 		 */
3273 		if (parent == NULL)
3274 			parent_kobj = virtual_device_parent(dev);
3275 		else if (parent->class && !dev->class->ns_type) {
3276 			subsys_put(sp);
3277 			return &parent->kobj;
3278 		} else {
3279 			parent_kobj = &parent->kobj;
3280 		}
3281 
3282 		mutex_lock(&gdp_mutex);
3283 
3284 		/* find our class-directory at the parent and reference it */
3285 		spin_lock(&sp->glue_dirs.list_lock);
3286 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3287 			if (k->parent == parent_kobj) {
3288 				kobj = kobject_get(k);
3289 				break;
3290 			}
3291 		spin_unlock(&sp->glue_dirs.list_lock);
3292 		if (kobj) {
3293 			mutex_unlock(&gdp_mutex);
3294 			subsys_put(sp);
3295 			return kobj;
3296 		}
3297 
3298 		/* or create a new class-directory at the parent device */
3299 		k = class_dir_create_and_add(sp, parent_kobj);
3300 		/* do not emit an uevent for this simple "glue" directory */
3301 		mutex_unlock(&gdp_mutex);
3302 		subsys_put(sp);
3303 		return k;
3304 	}
3305 
3306 	/* subsystems can specify a default root directory for their devices */
3307 	if (!parent && dev->bus) {
3308 		struct device *dev_root = bus_get_dev_root(dev->bus);
3309 
3310 		if (dev_root) {
3311 			kobj = &dev_root->kobj;
3312 			put_device(dev_root);
3313 			return kobj;
3314 		}
3315 	}
3316 
3317 	if (parent)
3318 		return &parent->kobj;
3319 	return NULL;
3320 }
3321 
3322 static inline bool live_in_glue_dir(struct kobject *kobj,
3323 				    struct device *dev)
3324 {
3325 	struct subsys_private *sp;
3326 	bool retval;
3327 
3328 	if (!kobj || !dev->class)
3329 		return false;
3330 
3331 	sp = class_to_subsys(dev->class);
3332 	if (!sp)
3333 		return false;
3334 
3335 	if (kobj->kset == &sp->glue_dirs)
3336 		retval = true;
3337 	else
3338 		retval = false;
3339 
3340 	subsys_put(sp);
3341 	return retval;
3342 }
3343 
3344 static inline struct kobject *get_glue_dir(struct device *dev)
3345 {
3346 	return dev->kobj.parent;
3347 }
3348 
3349 /**
3350  * kobject_has_children - Returns whether a kobject has children.
3351  * @kobj: the object to test
3352  *
3353  * This will return whether a kobject has other kobjects as children.
3354  *
3355  * It does NOT account for the presence of attribute files, only sub
3356  * directories. It also assumes there is no concurrent addition or
3357  * removal of such children, and thus relies on external locking.
3358  */
3359 static inline bool kobject_has_children(struct kobject *kobj)
3360 {
3361 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3362 
3363 	return kobj->sd && kobj->sd->dir.subdirs;
3364 }
3365 
3366 /*
3367  * make sure cleaning up dir as the last step, we need to make
3368  * sure .release handler of kobject is run with holding the
3369  * global lock
3370  */
3371 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3372 {
3373 	unsigned int ref;
3374 
3375 	/* see if we live in a "glue" directory */
3376 	if (!live_in_glue_dir(glue_dir, dev))
3377 		return;
3378 
3379 	mutex_lock(&gdp_mutex);
3380 	/**
3381 	 * There is a race condition between removing glue directory
3382 	 * and adding a new device under the glue directory.
3383 	 *
3384 	 * CPU1:                                         CPU2:
3385 	 *
3386 	 * device_add()
3387 	 *   get_device_parent()
3388 	 *     class_dir_create_and_add()
3389 	 *       kobject_add_internal()
3390 	 *         create_dir()    // create glue_dir
3391 	 *
3392 	 *                                               device_add()
3393 	 *                                                 get_device_parent()
3394 	 *                                                   kobject_get() // get glue_dir
3395 	 *
3396 	 * device_del()
3397 	 *   cleanup_glue_dir()
3398 	 *     kobject_del(glue_dir)
3399 	 *
3400 	 *                                               kobject_add()
3401 	 *                                                 kobject_add_internal()
3402 	 *                                                   create_dir() // in glue_dir
3403 	 *                                                     sysfs_create_dir_ns()
3404 	 *                                                       kernfs_create_dir_ns(sd)
3405 	 *
3406 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3407 	 *       sysfs_put()        // free glue_dir->sd
3408 	 *
3409 	 *                                                         // sd is freed
3410 	 *                                                         kernfs_new_node(sd)
3411 	 *                                                           kernfs_get(glue_dir)
3412 	 *                                                           kernfs_add_one()
3413 	 *                                                           kernfs_put()
3414 	 *
3415 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3416 	 * a new device under glue dir, the glue_dir kobject reference count
3417 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3418 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3419 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3420 	 *
3421 	 * Then the CPU2 will see a stale "empty" but still potentially used
3422 	 * glue dir around in kernfs_new_node().
3423 	 *
3424 	 * In order to avoid this happening, we also should make sure that
3425 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3426 	 * for glue_dir kobj is 1.
3427 	 */
3428 	ref = kref_read(&glue_dir->kref);
3429 	if (!kobject_has_children(glue_dir) && !--ref)
3430 		kobject_del(glue_dir);
3431 	kobject_put(glue_dir);
3432 	mutex_unlock(&gdp_mutex);
3433 }
3434 
3435 static int device_add_class_symlinks(struct device *dev)
3436 {
3437 	struct device_node *of_node = dev_of_node(dev);
3438 	struct subsys_private *sp;
3439 	int error;
3440 
3441 	if (of_node) {
3442 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3443 		if (error)
3444 			dev_warn(dev, "Error %d creating of_node link\n",error);
3445 		/* An error here doesn't warrant bringing down the device */
3446 	}
3447 
3448 	sp = class_to_subsys(dev->class);
3449 	if (!sp)
3450 		return 0;
3451 
3452 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3453 	if (error)
3454 		goto out_devnode;
3455 
3456 	if (dev->parent && device_is_not_partition(dev)) {
3457 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3458 					  "device");
3459 		if (error)
3460 			goto out_subsys;
3461 	}
3462 
3463 	/* link in the class directory pointing to the device */
3464 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3465 	if (error)
3466 		goto out_device;
3467 	goto exit;
3468 
3469 out_device:
3470 	sysfs_remove_link(&dev->kobj, "device");
3471 out_subsys:
3472 	sysfs_remove_link(&dev->kobj, "subsystem");
3473 out_devnode:
3474 	sysfs_remove_link(&dev->kobj, "of_node");
3475 exit:
3476 	subsys_put(sp);
3477 	return error;
3478 }
3479 
3480 static void device_remove_class_symlinks(struct device *dev)
3481 {
3482 	struct subsys_private *sp = class_to_subsys(dev->class);
3483 
3484 	if (dev_of_node(dev))
3485 		sysfs_remove_link(&dev->kobj, "of_node");
3486 
3487 	if (!sp)
3488 		return;
3489 
3490 	if (dev->parent && device_is_not_partition(dev))
3491 		sysfs_remove_link(&dev->kobj, "device");
3492 	sysfs_remove_link(&dev->kobj, "subsystem");
3493 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3494 	subsys_put(sp);
3495 }
3496 
3497 /**
3498  * dev_set_name - set a device name
3499  * @dev: device
3500  * @fmt: format string for the device's name
3501  */
3502 int dev_set_name(struct device *dev, const char *fmt, ...)
3503 {
3504 	va_list vargs;
3505 	int err;
3506 
3507 	va_start(vargs, fmt);
3508 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3509 	va_end(vargs);
3510 	return err;
3511 }
3512 EXPORT_SYMBOL_GPL(dev_set_name);
3513 
3514 /* select a /sys/dev/ directory for the device */
3515 static struct kobject *device_to_dev_kobj(struct device *dev)
3516 {
3517 	if (is_blockdev(dev))
3518 		return sysfs_dev_block_kobj;
3519 	else
3520 		return sysfs_dev_char_kobj;
3521 }
3522 
3523 static int device_create_sys_dev_entry(struct device *dev)
3524 {
3525 	struct kobject *kobj = device_to_dev_kobj(dev);
3526 	int error = 0;
3527 	char devt_str[15];
3528 
3529 	if (kobj) {
3530 		format_dev_t(devt_str, dev->devt);
3531 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3532 	}
3533 
3534 	return error;
3535 }
3536 
3537 static void device_remove_sys_dev_entry(struct device *dev)
3538 {
3539 	struct kobject *kobj = device_to_dev_kobj(dev);
3540 	char devt_str[15];
3541 
3542 	if (kobj) {
3543 		format_dev_t(devt_str, dev->devt);
3544 		sysfs_remove_link(kobj, devt_str);
3545 	}
3546 }
3547 
3548 static int device_private_init(struct device *dev)
3549 {
3550 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3551 	if (!dev->p)
3552 		return -ENOMEM;
3553 	dev->p->device = dev;
3554 	klist_init(&dev->p->klist_children, klist_children_get,
3555 		   klist_children_put);
3556 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3557 	return 0;
3558 }
3559 
3560 /**
3561  * device_add - add device to device hierarchy.
3562  * @dev: device.
3563  *
3564  * This is part 2 of device_register(), though may be called
3565  * separately _iff_ device_initialize() has been called separately.
3566  *
3567  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3568  * to the global and sibling lists for the device, then
3569  * adds it to the other relevant subsystems of the driver model.
3570  *
3571  * Do not call this routine or device_register() more than once for
3572  * any device structure.  The driver model core is not designed to work
3573  * with devices that get unregistered and then spring back to life.
3574  * (Among other things, it's very hard to guarantee that all references
3575  * to the previous incarnation of @dev have been dropped.)  Allocate
3576  * and register a fresh new struct device instead.
3577  *
3578  * NOTE: _Never_ directly free @dev after calling this function, even
3579  * if it returned an error! Always use put_device() to give up your
3580  * reference instead.
3581  *
3582  * Rule of thumb is: if device_add() succeeds, you should call
3583  * device_del() when you want to get rid of it. If device_add() has
3584  * *not* succeeded, use *only* put_device() to drop the reference
3585  * count.
3586  */
3587 int device_add(struct device *dev)
3588 {
3589 	struct subsys_private *sp;
3590 	struct device *parent;
3591 	struct kobject *kobj;
3592 	struct class_interface *class_intf;
3593 	int error = -EINVAL;
3594 	struct kobject *glue_dir = NULL;
3595 
3596 	dev = get_device(dev);
3597 	if (!dev)
3598 		goto done;
3599 
3600 	if (!dev->p) {
3601 		error = device_private_init(dev);
3602 		if (error)
3603 			goto done;
3604 	}
3605 
3606 	/*
3607 	 * for statically allocated devices, which should all be converted
3608 	 * some day, we need to initialize the name. We prevent reading back
3609 	 * the name, and force the use of dev_name()
3610 	 */
3611 	if (dev->init_name) {
3612 		error = dev_set_name(dev, "%s", dev->init_name);
3613 		dev->init_name = NULL;
3614 	}
3615 
3616 	if (dev_name(dev))
3617 		error = 0;
3618 	/* subsystems can specify simple device enumeration */
3619 	else if (dev->bus && dev->bus->dev_name)
3620 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3621 	else
3622 		error = -EINVAL;
3623 	if (error)
3624 		goto name_error;
3625 
3626 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3627 
3628 	parent = get_device(dev->parent);
3629 	kobj = get_device_parent(dev, parent);
3630 	if (IS_ERR(kobj)) {
3631 		error = PTR_ERR(kobj);
3632 		goto parent_error;
3633 	}
3634 	if (kobj)
3635 		dev->kobj.parent = kobj;
3636 
3637 	/* use parent numa_node */
3638 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3639 		set_dev_node(dev, dev_to_node(parent));
3640 
3641 	/* first, register with generic layer. */
3642 	/* we require the name to be set before, and pass NULL */
3643 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3644 	if (error) {
3645 		glue_dir = kobj;
3646 		goto Error;
3647 	}
3648 
3649 	/* notify platform of device entry */
3650 	device_platform_notify(dev);
3651 
3652 	error = device_create_file(dev, &dev_attr_uevent);
3653 	if (error)
3654 		goto attrError;
3655 
3656 	error = device_add_class_symlinks(dev);
3657 	if (error)
3658 		goto SymlinkError;
3659 	error = device_add_attrs(dev);
3660 	if (error)
3661 		goto AttrsError;
3662 	error = bus_add_device(dev);
3663 	if (error)
3664 		goto BusError;
3665 	error = dpm_sysfs_add(dev);
3666 	if (error)
3667 		goto DPMError;
3668 	device_pm_add(dev);
3669 
3670 	if (MAJOR(dev->devt)) {
3671 		error = device_create_file(dev, &dev_attr_dev);
3672 		if (error)
3673 			goto DevAttrError;
3674 
3675 		error = device_create_sys_dev_entry(dev);
3676 		if (error)
3677 			goto SysEntryError;
3678 
3679 		devtmpfs_create_node(dev);
3680 	}
3681 
3682 	/* Notify clients of device addition.  This call must come
3683 	 * after dpm_sysfs_add() and before kobject_uevent().
3684 	 */
3685 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3686 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3687 
3688 	/*
3689 	 * Check if any of the other devices (consumers) have been waiting for
3690 	 * this device (supplier) to be added so that they can create a device
3691 	 * link to it.
3692 	 *
3693 	 * This needs to happen after device_pm_add() because device_link_add()
3694 	 * requires the supplier be registered before it's called.
3695 	 *
3696 	 * But this also needs to happen before bus_probe_device() to make sure
3697 	 * waiting consumers can link to it before the driver is bound to the
3698 	 * device and the driver sync_state callback is called for this device.
3699 	 */
3700 	if (dev->fwnode && !dev->fwnode->dev) {
3701 		dev->fwnode->dev = dev;
3702 		fw_devlink_link_device(dev);
3703 	}
3704 
3705 	bus_probe_device(dev);
3706 
3707 	/*
3708 	 * If all driver registration is done and a newly added device doesn't
3709 	 * match with any driver, don't block its consumers from probing in
3710 	 * case the consumer device is able to operate without this supplier.
3711 	 */
3712 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3713 		fw_devlink_unblock_consumers(dev);
3714 
3715 	if (parent)
3716 		klist_add_tail(&dev->p->knode_parent,
3717 			       &parent->p->klist_children);
3718 
3719 	sp = class_to_subsys(dev->class);
3720 	if (sp) {
3721 		mutex_lock(&sp->mutex);
3722 		/* tie the class to the device */
3723 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3724 
3725 		/* notify any interfaces that the device is here */
3726 		list_for_each_entry(class_intf, &sp->interfaces, node)
3727 			if (class_intf->add_dev)
3728 				class_intf->add_dev(dev);
3729 		mutex_unlock(&sp->mutex);
3730 		subsys_put(sp);
3731 	}
3732 done:
3733 	put_device(dev);
3734 	return error;
3735  SysEntryError:
3736 	if (MAJOR(dev->devt))
3737 		device_remove_file(dev, &dev_attr_dev);
3738  DevAttrError:
3739 	device_pm_remove(dev);
3740 	dpm_sysfs_remove(dev);
3741  DPMError:
3742 	dev->driver = NULL;
3743 	bus_remove_device(dev);
3744  BusError:
3745 	device_remove_attrs(dev);
3746  AttrsError:
3747 	device_remove_class_symlinks(dev);
3748  SymlinkError:
3749 	device_remove_file(dev, &dev_attr_uevent);
3750  attrError:
3751 	device_platform_notify_remove(dev);
3752 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3753 	glue_dir = get_glue_dir(dev);
3754 	kobject_del(&dev->kobj);
3755  Error:
3756 	cleanup_glue_dir(dev, glue_dir);
3757 parent_error:
3758 	put_device(parent);
3759 name_error:
3760 	kfree(dev->p);
3761 	dev->p = NULL;
3762 	goto done;
3763 }
3764 EXPORT_SYMBOL_GPL(device_add);
3765 
3766 /**
3767  * device_register - register a device with the system.
3768  * @dev: pointer to the device structure
3769  *
3770  * This happens in two clean steps - initialize the device
3771  * and add it to the system. The two steps can be called
3772  * separately, but this is the easiest and most common.
3773  * I.e. you should only call the two helpers separately if
3774  * have a clearly defined need to use and refcount the device
3775  * before it is added to the hierarchy.
3776  *
3777  * For more information, see the kerneldoc for device_initialize()
3778  * and device_add().
3779  *
3780  * NOTE: _Never_ directly free @dev after calling this function, even
3781  * if it returned an error! Always use put_device() to give up the
3782  * reference initialized in this function instead.
3783  */
3784 int device_register(struct device *dev)
3785 {
3786 	device_initialize(dev);
3787 	return device_add(dev);
3788 }
3789 EXPORT_SYMBOL_GPL(device_register);
3790 
3791 /**
3792  * get_device - increment reference count for device.
3793  * @dev: device.
3794  *
3795  * This simply forwards the call to kobject_get(), though
3796  * we do take care to provide for the case that we get a NULL
3797  * pointer passed in.
3798  */
3799 struct device *get_device(struct device *dev)
3800 {
3801 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3802 }
3803 EXPORT_SYMBOL_GPL(get_device);
3804 
3805 /**
3806  * put_device - decrement reference count.
3807  * @dev: device in question.
3808  */
3809 void put_device(struct device *dev)
3810 {
3811 	/* might_sleep(); */
3812 	if (dev)
3813 		kobject_put(&dev->kobj);
3814 }
3815 EXPORT_SYMBOL_GPL(put_device);
3816 
3817 bool kill_device(struct device *dev)
3818 {
3819 	/*
3820 	 * Require the device lock and set the "dead" flag to guarantee that
3821 	 * the update behavior is consistent with the other bitfields near
3822 	 * it and that we cannot have an asynchronous probe routine trying
3823 	 * to run while we are tearing out the bus/class/sysfs from
3824 	 * underneath the device.
3825 	 */
3826 	device_lock_assert(dev);
3827 
3828 	if (dev->p->dead)
3829 		return false;
3830 	dev->p->dead = true;
3831 	return true;
3832 }
3833 EXPORT_SYMBOL_GPL(kill_device);
3834 
3835 /**
3836  * device_del - delete device from system.
3837  * @dev: device.
3838  *
3839  * This is the first part of the device unregistration
3840  * sequence. This removes the device from the lists we control
3841  * from here, has it removed from the other driver model
3842  * subsystems it was added to in device_add(), and removes it
3843  * from the kobject hierarchy.
3844  *
3845  * NOTE: this should be called manually _iff_ device_add() was
3846  * also called manually.
3847  */
3848 void device_del(struct device *dev)
3849 {
3850 	struct subsys_private *sp;
3851 	struct device *parent = dev->parent;
3852 	struct kobject *glue_dir = NULL;
3853 	struct class_interface *class_intf;
3854 	unsigned int noio_flag;
3855 
3856 	device_lock(dev);
3857 	kill_device(dev);
3858 	device_unlock(dev);
3859 
3860 	if (dev->fwnode && dev->fwnode->dev == dev)
3861 		dev->fwnode->dev = NULL;
3862 
3863 	/* Notify clients of device removal.  This call must come
3864 	 * before dpm_sysfs_remove().
3865 	 */
3866 	noio_flag = memalloc_noio_save();
3867 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3868 
3869 	dpm_sysfs_remove(dev);
3870 	if (parent)
3871 		klist_del(&dev->p->knode_parent);
3872 	if (MAJOR(dev->devt)) {
3873 		devtmpfs_delete_node(dev);
3874 		device_remove_sys_dev_entry(dev);
3875 		device_remove_file(dev, &dev_attr_dev);
3876 	}
3877 
3878 	sp = class_to_subsys(dev->class);
3879 	if (sp) {
3880 		device_remove_class_symlinks(dev);
3881 
3882 		mutex_lock(&sp->mutex);
3883 		/* notify any interfaces that the device is now gone */
3884 		list_for_each_entry(class_intf, &sp->interfaces, node)
3885 			if (class_intf->remove_dev)
3886 				class_intf->remove_dev(dev);
3887 		/* remove the device from the class list */
3888 		klist_del(&dev->p->knode_class);
3889 		mutex_unlock(&sp->mutex);
3890 		subsys_put(sp);
3891 	}
3892 	device_remove_file(dev, &dev_attr_uevent);
3893 	device_remove_attrs(dev);
3894 	bus_remove_device(dev);
3895 	device_pm_remove(dev);
3896 	driver_deferred_probe_del(dev);
3897 	device_platform_notify_remove(dev);
3898 	device_links_purge(dev);
3899 
3900 	/*
3901 	 * If a device does not have a driver attached, we need to clean
3902 	 * up any managed resources. We do this in device_release(), but
3903 	 * it's never called (and we leak the device) if a managed
3904 	 * resource holds a reference to the device. So release all
3905 	 * managed resources here, like we do in driver_detach(). We
3906 	 * still need to do so again in device_release() in case someone
3907 	 * adds a new resource after this point, though.
3908 	 */
3909 	devres_release_all(dev);
3910 
3911 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3912 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3913 	glue_dir = get_glue_dir(dev);
3914 	kobject_del(&dev->kobj);
3915 	cleanup_glue_dir(dev, glue_dir);
3916 	memalloc_noio_restore(noio_flag);
3917 	put_device(parent);
3918 }
3919 EXPORT_SYMBOL_GPL(device_del);
3920 
3921 /**
3922  * device_unregister - unregister device from system.
3923  * @dev: device going away.
3924  *
3925  * We do this in two parts, like we do device_register(). First,
3926  * we remove it from all the subsystems with device_del(), then
3927  * we decrement the reference count via put_device(). If that
3928  * is the final reference count, the device will be cleaned up
3929  * via device_release() above. Otherwise, the structure will
3930  * stick around until the final reference to the device is dropped.
3931  */
3932 void device_unregister(struct device *dev)
3933 {
3934 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3935 	device_del(dev);
3936 	put_device(dev);
3937 }
3938 EXPORT_SYMBOL_GPL(device_unregister);
3939 
3940 static struct device *prev_device(struct klist_iter *i)
3941 {
3942 	struct klist_node *n = klist_prev(i);
3943 	struct device *dev = NULL;
3944 	struct device_private *p;
3945 
3946 	if (n) {
3947 		p = to_device_private_parent(n);
3948 		dev = p->device;
3949 	}
3950 	return dev;
3951 }
3952 
3953 static struct device *next_device(struct klist_iter *i)
3954 {
3955 	struct klist_node *n = klist_next(i);
3956 	struct device *dev = NULL;
3957 	struct device_private *p;
3958 
3959 	if (n) {
3960 		p = to_device_private_parent(n);
3961 		dev = p->device;
3962 	}
3963 	return dev;
3964 }
3965 
3966 /**
3967  * device_get_devnode - path of device node file
3968  * @dev: device
3969  * @mode: returned file access mode
3970  * @uid: returned file owner
3971  * @gid: returned file group
3972  * @tmp: possibly allocated string
3973  *
3974  * Return the relative path of a possible device node.
3975  * Non-default names may need to allocate a memory to compose
3976  * a name. This memory is returned in tmp and needs to be
3977  * freed by the caller.
3978  */
3979 const char *device_get_devnode(const struct device *dev,
3980 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3981 			       const char **tmp)
3982 {
3983 	char *s;
3984 
3985 	*tmp = NULL;
3986 
3987 	/* the device type may provide a specific name */
3988 	if (dev->type && dev->type->devnode)
3989 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3990 	if (*tmp)
3991 		return *tmp;
3992 
3993 	/* the class may provide a specific name */
3994 	if (dev->class && dev->class->devnode)
3995 		*tmp = dev->class->devnode(dev, mode);
3996 	if (*tmp)
3997 		return *tmp;
3998 
3999 	/* return name without allocation, tmp == NULL */
4000 	if (strchr(dev_name(dev), '!') == NULL)
4001 		return dev_name(dev);
4002 
4003 	/* replace '!' in the name with '/' */
4004 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
4005 	if (!s)
4006 		return NULL;
4007 	return *tmp = s;
4008 }
4009 
4010 /**
4011  * device_for_each_child - device child iterator.
4012  * @parent: parent struct device.
4013  * @fn: function to be called for each device.
4014  * @data: data for the callback.
4015  *
4016  * Iterate over @parent's child devices, and call @fn for each,
4017  * passing it @data.
4018  *
4019  * We check the return of @fn each time. If it returns anything
4020  * other than 0, we break out and return that value.
4021  */
4022 int device_for_each_child(struct device *parent, void *data,
4023 			  int (*fn)(struct device *dev, void *data))
4024 {
4025 	struct klist_iter i;
4026 	struct device *child;
4027 	int error = 0;
4028 
4029 	if (!parent->p)
4030 		return 0;
4031 
4032 	klist_iter_init(&parent->p->klist_children, &i);
4033 	while (!error && (child = next_device(&i)))
4034 		error = fn(child, data);
4035 	klist_iter_exit(&i);
4036 	return error;
4037 }
4038 EXPORT_SYMBOL_GPL(device_for_each_child);
4039 
4040 /**
4041  * device_for_each_child_reverse - device child iterator in reversed order.
4042  * @parent: parent struct device.
4043  * @fn: function to be called for each device.
4044  * @data: data for the callback.
4045  *
4046  * Iterate over @parent's child devices, and call @fn for each,
4047  * passing it @data.
4048  *
4049  * We check the return of @fn each time. If it returns anything
4050  * other than 0, we break out and return that value.
4051  */
4052 int device_for_each_child_reverse(struct device *parent, void *data,
4053 				  int (*fn)(struct device *dev, void *data))
4054 {
4055 	struct klist_iter i;
4056 	struct device *child;
4057 	int error = 0;
4058 
4059 	if (!parent->p)
4060 		return 0;
4061 
4062 	klist_iter_init(&parent->p->klist_children, &i);
4063 	while ((child = prev_device(&i)) && !error)
4064 		error = fn(child, data);
4065 	klist_iter_exit(&i);
4066 	return error;
4067 }
4068 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4069 
4070 /**
4071  * device_find_child - device iterator for locating a particular device.
4072  * @parent: parent struct device
4073  * @match: Callback function to check device
4074  * @data: Data to pass to match function
4075  *
4076  * This is similar to the device_for_each_child() function above, but it
4077  * returns a reference to a device that is 'found' for later use, as
4078  * determined by the @match callback.
4079  *
4080  * The callback should return 0 if the device doesn't match and non-zero
4081  * if it does.  If the callback returns non-zero and a reference to the
4082  * current device can be obtained, this function will return to the caller
4083  * and not iterate over any more devices.
4084  *
4085  * NOTE: you will need to drop the reference with put_device() after use.
4086  */
4087 struct device *device_find_child(struct device *parent, void *data,
4088 				 int (*match)(struct device *dev, void *data))
4089 {
4090 	struct klist_iter i;
4091 	struct device *child;
4092 
4093 	if (!parent)
4094 		return NULL;
4095 
4096 	klist_iter_init(&parent->p->klist_children, &i);
4097 	while ((child = next_device(&i)))
4098 		if (match(child, data) && get_device(child))
4099 			break;
4100 	klist_iter_exit(&i);
4101 	return child;
4102 }
4103 EXPORT_SYMBOL_GPL(device_find_child);
4104 
4105 /**
4106  * device_find_child_by_name - device iterator for locating a child device.
4107  * @parent: parent struct device
4108  * @name: name of the child device
4109  *
4110  * This is similar to the device_find_child() function above, but it
4111  * returns a reference to a device that has the name @name.
4112  *
4113  * NOTE: you will need to drop the reference with put_device() after use.
4114  */
4115 struct device *device_find_child_by_name(struct device *parent,
4116 					 const char *name)
4117 {
4118 	struct klist_iter i;
4119 	struct device *child;
4120 
4121 	if (!parent)
4122 		return NULL;
4123 
4124 	klist_iter_init(&parent->p->klist_children, &i);
4125 	while ((child = next_device(&i)))
4126 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4127 			break;
4128 	klist_iter_exit(&i);
4129 	return child;
4130 }
4131 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4132 
4133 static int match_any(struct device *dev, void *unused)
4134 {
4135 	return 1;
4136 }
4137 
4138 /**
4139  * device_find_any_child - device iterator for locating a child device, if any.
4140  * @parent: parent struct device
4141  *
4142  * This is similar to the device_find_child() function above, but it
4143  * returns a reference to a child device, if any.
4144  *
4145  * NOTE: you will need to drop the reference with put_device() after use.
4146  */
4147 struct device *device_find_any_child(struct device *parent)
4148 {
4149 	return device_find_child(parent, NULL, match_any);
4150 }
4151 EXPORT_SYMBOL_GPL(device_find_any_child);
4152 
4153 int __init devices_init(void)
4154 {
4155 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4156 	if (!devices_kset)
4157 		return -ENOMEM;
4158 	dev_kobj = kobject_create_and_add("dev", NULL);
4159 	if (!dev_kobj)
4160 		goto dev_kobj_err;
4161 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4162 	if (!sysfs_dev_block_kobj)
4163 		goto block_kobj_err;
4164 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4165 	if (!sysfs_dev_char_kobj)
4166 		goto char_kobj_err;
4167 
4168 	return 0;
4169 
4170  char_kobj_err:
4171 	kobject_put(sysfs_dev_block_kobj);
4172  block_kobj_err:
4173 	kobject_put(dev_kobj);
4174  dev_kobj_err:
4175 	kset_unregister(devices_kset);
4176 	return -ENOMEM;
4177 }
4178 
4179 static int device_check_offline(struct device *dev, void *not_used)
4180 {
4181 	int ret;
4182 
4183 	ret = device_for_each_child(dev, NULL, device_check_offline);
4184 	if (ret)
4185 		return ret;
4186 
4187 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4188 }
4189 
4190 /**
4191  * device_offline - Prepare the device for hot-removal.
4192  * @dev: Device to be put offline.
4193  *
4194  * Execute the device bus type's .offline() callback, if present, to prepare
4195  * the device for a subsequent hot-removal.  If that succeeds, the device must
4196  * not be used until either it is removed or its bus type's .online() callback
4197  * is executed.
4198  *
4199  * Call under device_hotplug_lock.
4200  */
4201 int device_offline(struct device *dev)
4202 {
4203 	int ret;
4204 
4205 	if (dev->offline_disabled)
4206 		return -EPERM;
4207 
4208 	ret = device_for_each_child(dev, NULL, device_check_offline);
4209 	if (ret)
4210 		return ret;
4211 
4212 	device_lock(dev);
4213 	if (device_supports_offline(dev)) {
4214 		if (dev->offline) {
4215 			ret = 1;
4216 		} else {
4217 			ret = dev->bus->offline(dev);
4218 			if (!ret) {
4219 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4220 				dev->offline = true;
4221 			}
4222 		}
4223 	}
4224 	device_unlock(dev);
4225 
4226 	return ret;
4227 }
4228 
4229 /**
4230  * device_online - Put the device back online after successful device_offline().
4231  * @dev: Device to be put back online.
4232  *
4233  * If device_offline() has been successfully executed for @dev, but the device
4234  * has not been removed subsequently, execute its bus type's .online() callback
4235  * to indicate that the device can be used again.
4236  *
4237  * Call under device_hotplug_lock.
4238  */
4239 int device_online(struct device *dev)
4240 {
4241 	int ret = 0;
4242 
4243 	device_lock(dev);
4244 	if (device_supports_offline(dev)) {
4245 		if (dev->offline) {
4246 			ret = dev->bus->online(dev);
4247 			if (!ret) {
4248 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4249 				dev->offline = false;
4250 			}
4251 		} else {
4252 			ret = 1;
4253 		}
4254 	}
4255 	device_unlock(dev);
4256 
4257 	return ret;
4258 }
4259 
4260 struct root_device {
4261 	struct device dev;
4262 	struct module *owner;
4263 };
4264 
4265 static inline struct root_device *to_root_device(struct device *d)
4266 {
4267 	return container_of(d, struct root_device, dev);
4268 }
4269 
4270 static void root_device_release(struct device *dev)
4271 {
4272 	kfree(to_root_device(dev));
4273 }
4274 
4275 /**
4276  * __root_device_register - allocate and register a root device
4277  * @name: root device name
4278  * @owner: owner module of the root device, usually THIS_MODULE
4279  *
4280  * This function allocates a root device and registers it
4281  * using device_register(). In order to free the returned
4282  * device, use root_device_unregister().
4283  *
4284  * Root devices are dummy devices which allow other devices
4285  * to be grouped under /sys/devices. Use this function to
4286  * allocate a root device and then use it as the parent of
4287  * any device which should appear under /sys/devices/{name}
4288  *
4289  * The /sys/devices/{name} directory will also contain a
4290  * 'module' symlink which points to the @owner directory
4291  * in sysfs.
4292  *
4293  * Returns &struct device pointer on success, or ERR_PTR() on error.
4294  *
4295  * Note: You probably want to use root_device_register().
4296  */
4297 struct device *__root_device_register(const char *name, struct module *owner)
4298 {
4299 	struct root_device *root;
4300 	int err = -ENOMEM;
4301 
4302 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4303 	if (!root)
4304 		return ERR_PTR(err);
4305 
4306 	err = dev_set_name(&root->dev, "%s", name);
4307 	if (err) {
4308 		kfree(root);
4309 		return ERR_PTR(err);
4310 	}
4311 
4312 	root->dev.release = root_device_release;
4313 
4314 	err = device_register(&root->dev);
4315 	if (err) {
4316 		put_device(&root->dev);
4317 		return ERR_PTR(err);
4318 	}
4319 
4320 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4321 	if (owner) {
4322 		struct module_kobject *mk = &owner->mkobj;
4323 
4324 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4325 		if (err) {
4326 			device_unregister(&root->dev);
4327 			return ERR_PTR(err);
4328 		}
4329 		root->owner = owner;
4330 	}
4331 #endif
4332 
4333 	return &root->dev;
4334 }
4335 EXPORT_SYMBOL_GPL(__root_device_register);
4336 
4337 /**
4338  * root_device_unregister - unregister and free a root device
4339  * @dev: device going away
4340  *
4341  * This function unregisters and cleans up a device that was created by
4342  * root_device_register().
4343  */
4344 void root_device_unregister(struct device *dev)
4345 {
4346 	struct root_device *root = to_root_device(dev);
4347 
4348 	if (root->owner)
4349 		sysfs_remove_link(&root->dev.kobj, "module");
4350 
4351 	device_unregister(dev);
4352 }
4353 EXPORT_SYMBOL_GPL(root_device_unregister);
4354 
4355 
4356 static void device_create_release(struct device *dev)
4357 {
4358 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4359 	kfree(dev);
4360 }
4361 
4362 static __printf(6, 0) struct device *
4363 device_create_groups_vargs(const struct class *class, struct device *parent,
4364 			   dev_t devt, void *drvdata,
4365 			   const struct attribute_group **groups,
4366 			   const char *fmt, va_list args)
4367 {
4368 	struct device *dev = NULL;
4369 	int retval = -ENODEV;
4370 
4371 	if (IS_ERR_OR_NULL(class))
4372 		goto error;
4373 
4374 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4375 	if (!dev) {
4376 		retval = -ENOMEM;
4377 		goto error;
4378 	}
4379 
4380 	device_initialize(dev);
4381 	dev->devt = devt;
4382 	dev->class = class;
4383 	dev->parent = parent;
4384 	dev->groups = groups;
4385 	dev->release = device_create_release;
4386 	dev_set_drvdata(dev, drvdata);
4387 
4388 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4389 	if (retval)
4390 		goto error;
4391 
4392 	retval = device_add(dev);
4393 	if (retval)
4394 		goto error;
4395 
4396 	return dev;
4397 
4398 error:
4399 	put_device(dev);
4400 	return ERR_PTR(retval);
4401 }
4402 
4403 /**
4404  * device_create - creates a device and registers it with sysfs
4405  * @class: pointer to the struct class that this device should be registered to
4406  * @parent: pointer to the parent struct device of this new device, if any
4407  * @devt: the dev_t for the char device to be added
4408  * @drvdata: the data to be added to the device for callbacks
4409  * @fmt: string for the device's name
4410  *
4411  * This function can be used by char device classes.  A struct device
4412  * will be created in sysfs, registered to the specified class.
4413  *
4414  * A "dev" file will be created, showing the dev_t for the device, if
4415  * the dev_t is not 0,0.
4416  * If a pointer to a parent struct device is passed in, the newly created
4417  * struct device will be a child of that device in sysfs.
4418  * The pointer to the struct device will be returned from the call.
4419  * Any further sysfs files that might be required can be created using this
4420  * pointer.
4421  *
4422  * Returns &struct device pointer on success, or ERR_PTR() on error.
4423  */
4424 struct device *device_create(const struct class *class, struct device *parent,
4425 			     dev_t devt, void *drvdata, const char *fmt, ...)
4426 {
4427 	va_list vargs;
4428 	struct device *dev;
4429 
4430 	va_start(vargs, fmt);
4431 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4432 					  fmt, vargs);
4433 	va_end(vargs);
4434 	return dev;
4435 }
4436 EXPORT_SYMBOL_GPL(device_create);
4437 
4438 /**
4439  * device_create_with_groups - creates a device and registers it with sysfs
4440  * @class: pointer to the struct class that this device should be registered to
4441  * @parent: pointer to the parent struct device of this new device, if any
4442  * @devt: the dev_t for the char device to be added
4443  * @drvdata: the data to be added to the device for callbacks
4444  * @groups: NULL-terminated list of attribute groups to be created
4445  * @fmt: string for the device's name
4446  *
4447  * This function can be used by char device classes.  A struct device
4448  * will be created in sysfs, registered to the specified class.
4449  * Additional attributes specified in the groups parameter will also
4450  * be created automatically.
4451  *
4452  * A "dev" file will be created, showing the dev_t for the device, if
4453  * the dev_t is not 0,0.
4454  * If a pointer to a parent struct device is passed in, the newly created
4455  * struct device will be a child of that device in sysfs.
4456  * The pointer to the struct device will be returned from the call.
4457  * Any further sysfs files that might be required can be created using this
4458  * pointer.
4459  *
4460  * Returns &struct device pointer on success, or ERR_PTR() on error.
4461  */
4462 struct device *device_create_with_groups(const struct class *class,
4463 					 struct device *parent, dev_t devt,
4464 					 void *drvdata,
4465 					 const struct attribute_group **groups,
4466 					 const char *fmt, ...)
4467 {
4468 	va_list vargs;
4469 	struct device *dev;
4470 
4471 	va_start(vargs, fmt);
4472 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4473 					 fmt, vargs);
4474 	va_end(vargs);
4475 	return dev;
4476 }
4477 EXPORT_SYMBOL_GPL(device_create_with_groups);
4478 
4479 /**
4480  * device_destroy - removes a device that was created with device_create()
4481  * @class: pointer to the struct class that this device was registered with
4482  * @devt: the dev_t of the device that was previously registered
4483  *
4484  * This call unregisters and cleans up a device that was created with a
4485  * call to device_create().
4486  */
4487 void device_destroy(const struct class *class, dev_t devt)
4488 {
4489 	struct device *dev;
4490 
4491 	dev = class_find_device_by_devt(class, devt);
4492 	if (dev) {
4493 		put_device(dev);
4494 		device_unregister(dev);
4495 	}
4496 }
4497 EXPORT_SYMBOL_GPL(device_destroy);
4498 
4499 /**
4500  * device_rename - renames a device
4501  * @dev: the pointer to the struct device to be renamed
4502  * @new_name: the new name of the device
4503  *
4504  * It is the responsibility of the caller to provide mutual
4505  * exclusion between two different calls of device_rename
4506  * on the same device to ensure that new_name is valid and
4507  * won't conflict with other devices.
4508  *
4509  * Note: given that some subsystems (networking and infiniband) use this
4510  * function, with no immediate plans for this to change, we cannot assume or
4511  * require that this function not be called at all.
4512  *
4513  * However, if you're writing new code, do not call this function. The following
4514  * text from Kay Sievers offers some insight:
4515  *
4516  * Renaming devices is racy at many levels, symlinks and other stuff are not
4517  * replaced atomically, and you get a "move" uevent, but it's not easy to
4518  * connect the event to the old and new device. Device nodes are not renamed at
4519  * all, there isn't even support for that in the kernel now.
4520  *
4521  * In the meantime, during renaming, your target name might be taken by another
4522  * driver, creating conflicts. Or the old name is taken directly after you
4523  * renamed it -- then you get events for the same DEVPATH, before you even see
4524  * the "move" event. It's just a mess, and nothing new should ever rely on
4525  * kernel device renaming. Besides that, it's not even implemented now for
4526  * other things than (driver-core wise very simple) network devices.
4527  *
4528  * Make up a "real" name in the driver before you register anything, or add
4529  * some other attributes for userspace to find the device, or use udev to add
4530  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4531  * don't even want to get into that and try to implement the missing pieces in
4532  * the core. We really have other pieces to fix in the driver core mess. :)
4533  */
4534 int device_rename(struct device *dev, const char *new_name)
4535 {
4536 	struct kobject *kobj = &dev->kobj;
4537 	char *old_device_name = NULL;
4538 	int error;
4539 
4540 	dev = get_device(dev);
4541 	if (!dev)
4542 		return -EINVAL;
4543 
4544 	dev_dbg(dev, "renaming to %s\n", new_name);
4545 
4546 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4547 	if (!old_device_name) {
4548 		error = -ENOMEM;
4549 		goto out;
4550 	}
4551 
4552 	if (dev->class) {
4553 		struct subsys_private *sp = class_to_subsys(dev->class);
4554 
4555 		if (!sp) {
4556 			error = -EINVAL;
4557 			goto out;
4558 		}
4559 
4560 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4561 					     new_name, kobject_namespace(kobj));
4562 		subsys_put(sp);
4563 		if (error)
4564 			goto out;
4565 	}
4566 
4567 	error = kobject_rename(kobj, new_name);
4568 	if (error)
4569 		goto out;
4570 
4571 out:
4572 	put_device(dev);
4573 
4574 	kfree(old_device_name);
4575 
4576 	return error;
4577 }
4578 EXPORT_SYMBOL_GPL(device_rename);
4579 
4580 static int device_move_class_links(struct device *dev,
4581 				   struct device *old_parent,
4582 				   struct device *new_parent)
4583 {
4584 	int error = 0;
4585 
4586 	if (old_parent)
4587 		sysfs_remove_link(&dev->kobj, "device");
4588 	if (new_parent)
4589 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4590 					  "device");
4591 	return error;
4592 }
4593 
4594 /**
4595  * device_move - moves a device to a new parent
4596  * @dev: the pointer to the struct device to be moved
4597  * @new_parent: the new parent of the device (can be NULL)
4598  * @dpm_order: how to reorder the dpm_list
4599  */
4600 int device_move(struct device *dev, struct device *new_parent,
4601 		enum dpm_order dpm_order)
4602 {
4603 	int error;
4604 	struct device *old_parent;
4605 	struct kobject *new_parent_kobj;
4606 
4607 	dev = get_device(dev);
4608 	if (!dev)
4609 		return -EINVAL;
4610 
4611 	device_pm_lock();
4612 	new_parent = get_device(new_parent);
4613 	new_parent_kobj = get_device_parent(dev, new_parent);
4614 	if (IS_ERR(new_parent_kobj)) {
4615 		error = PTR_ERR(new_parent_kobj);
4616 		put_device(new_parent);
4617 		goto out;
4618 	}
4619 
4620 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4621 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4622 	error = kobject_move(&dev->kobj, new_parent_kobj);
4623 	if (error) {
4624 		cleanup_glue_dir(dev, new_parent_kobj);
4625 		put_device(new_parent);
4626 		goto out;
4627 	}
4628 	old_parent = dev->parent;
4629 	dev->parent = new_parent;
4630 	if (old_parent)
4631 		klist_remove(&dev->p->knode_parent);
4632 	if (new_parent) {
4633 		klist_add_tail(&dev->p->knode_parent,
4634 			       &new_parent->p->klist_children);
4635 		set_dev_node(dev, dev_to_node(new_parent));
4636 	}
4637 
4638 	if (dev->class) {
4639 		error = device_move_class_links(dev, old_parent, new_parent);
4640 		if (error) {
4641 			/* We ignore errors on cleanup since we're hosed anyway... */
4642 			device_move_class_links(dev, new_parent, old_parent);
4643 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4644 				if (new_parent)
4645 					klist_remove(&dev->p->knode_parent);
4646 				dev->parent = old_parent;
4647 				if (old_parent) {
4648 					klist_add_tail(&dev->p->knode_parent,
4649 						       &old_parent->p->klist_children);
4650 					set_dev_node(dev, dev_to_node(old_parent));
4651 				}
4652 			}
4653 			cleanup_glue_dir(dev, new_parent_kobj);
4654 			put_device(new_parent);
4655 			goto out;
4656 		}
4657 	}
4658 	switch (dpm_order) {
4659 	case DPM_ORDER_NONE:
4660 		break;
4661 	case DPM_ORDER_DEV_AFTER_PARENT:
4662 		device_pm_move_after(dev, new_parent);
4663 		devices_kset_move_after(dev, new_parent);
4664 		break;
4665 	case DPM_ORDER_PARENT_BEFORE_DEV:
4666 		device_pm_move_before(new_parent, dev);
4667 		devices_kset_move_before(new_parent, dev);
4668 		break;
4669 	case DPM_ORDER_DEV_LAST:
4670 		device_pm_move_last(dev);
4671 		devices_kset_move_last(dev);
4672 		break;
4673 	}
4674 
4675 	put_device(old_parent);
4676 out:
4677 	device_pm_unlock();
4678 	put_device(dev);
4679 	return error;
4680 }
4681 EXPORT_SYMBOL_GPL(device_move);
4682 
4683 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4684 				     kgid_t kgid)
4685 {
4686 	struct kobject *kobj = &dev->kobj;
4687 	const struct class *class = dev->class;
4688 	const struct device_type *type = dev->type;
4689 	int error;
4690 
4691 	if (class) {
4692 		/*
4693 		 * Change the device groups of the device class for @dev to
4694 		 * @kuid/@kgid.
4695 		 */
4696 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4697 						  kgid);
4698 		if (error)
4699 			return error;
4700 	}
4701 
4702 	if (type) {
4703 		/*
4704 		 * Change the device groups of the device type for @dev to
4705 		 * @kuid/@kgid.
4706 		 */
4707 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4708 						  kgid);
4709 		if (error)
4710 			return error;
4711 	}
4712 
4713 	/* Change the device groups of @dev to @kuid/@kgid. */
4714 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4715 	if (error)
4716 		return error;
4717 
4718 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4719 		/* Change online device attributes of @dev to @kuid/@kgid. */
4720 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4721 						kuid, kgid);
4722 		if (error)
4723 			return error;
4724 	}
4725 
4726 	return 0;
4727 }
4728 
4729 /**
4730  * device_change_owner - change the owner of an existing device.
4731  * @dev: device.
4732  * @kuid: new owner's kuid
4733  * @kgid: new owner's kgid
4734  *
4735  * This changes the owner of @dev and its corresponding sysfs entries to
4736  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4737  * core.
4738  *
4739  * Returns 0 on success or error code on failure.
4740  */
4741 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4742 {
4743 	int error;
4744 	struct kobject *kobj = &dev->kobj;
4745 	struct subsys_private *sp;
4746 
4747 	dev = get_device(dev);
4748 	if (!dev)
4749 		return -EINVAL;
4750 
4751 	/*
4752 	 * Change the kobject and the default attributes and groups of the
4753 	 * ktype associated with it to @kuid/@kgid.
4754 	 */
4755 	error = sysfs_change_owner(kobj, kuid, kgid);
4756 	if (error)
4757 		goto out;
4758 
4759 	/*
4760 	 * Change the uevent file for @dev to the new owner. The uevent file
4761 	 * was created in a separate step when @dev got added and we mirror
4762 	 * that step here.
4763 	 */
4764 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4765 					kgid);
4766 	if (error)
4767 		goto out;
4768 
4769 	/*
4770 	 * Change the device groups, the device groups associated with the
4771 	 * device class, and the groups associated with the device type of @dev
4772 	 * to @kuid/@kgid.
4773 	 */
4774 	error = device_attrs_change_owner(dev, kuid, kgid);
4775 	if (error)
4776 		goto out;
4777 
4778 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4779 	if (error)
4780 		goto out;
4781 
4782 	/*
4783 	 * Change the owner of the symlink located in the class directory of
4784 	 * the device class associated with @dev which points to the actual
4785 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4786 	 * symlink shows the same permissions as its target.
4787 	 */
4788 	sp = class_to_subsys(dev->class);
4789 	if (!sp) {
4790 		error = -EINVAL;
4791 		goto out;
4792 	}
4793 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4794 	subsys_put(sp);
4795 
4796 out:
4797 	put_device(dev);
4798 	return error;
4799 }
4800 EXPORT_SYMBOL_GPL(device_change_owner);
4801 
4802 /**
4803  * device_shutdown - call ->shutdown() on each device to shutdown.
4804  */
4805 void device_shutdown(void)
4806 {
4807 	struct device *dev, *parent;
4808 
4809 	wait_for_device_probe();
4810 	device_block_probing();
4811 
4812 	cpufreq_suspend();
4813 
4814 	spin_lock(&devices_kset->list_lock);
4815 	/*
4816 	 * Walk the devices list backward, shutting down each in turn.
4817 	 * Beware that device unplug events may also start pulling
4818 	 * devices offline, even as the system is shutting down.
4819 	 */
4820 	while (!list_empty(&devices_kset->list)) {
4821 		dev = list_entry(devices_kset->list.prev, struct device,
4822 				kobj.entry);
4823 
4824 		/*
4825 		 * hold reference count of device's parent to
4826 		 * prevent it from being freed because parent's
4827 		 * lock is to be held
4828 		 */
4829 		parent = get_device(dev->parent);
4830 		get_device(dev);
4831 		/*
4832 		 * Make sure the device is off the kset list, in the
4833 		 * event that dev->*->shutdown() doesn't remove it.
4834 		 */
4835 		list_del_init(&dev->kobj.entry);
4836 		spin_unlock(&devices_kset->list_lock);
4837 
4838 		/* hold lock to avoid race with probe/release */
4839 		if (parent)
4840 			device_lock(parent);
4841 		device_lock(dev);
4842 
4843 		/* Don't allow any more runtime suspends */
4844 		pm_runtime_get_noresume(dev);
4845 		pm_runtime_barrier(dev);
4846 
4847 		if (dev->class && dev->class->shutdown_pre) {
4848 			if (initcall_debug)
4849 				dev_info(dev, "shutdown_pre\n");
4850 			dev->class->shutdown_pre(dev);
4851 		}
4852 		if (dev->bus && dev->bus->shutdown) {
4853 			if (initcall_debug)
4854 				dev_info(dev, "shutdown\n");
4855 			dev->bus->shutdown(dev);
4856 		} else if (dev->driver && dev->driver->shutdown) {
4857 			if (initcall_debug)
4858 				dev_info(dev, "shutdown\n");
4859 			dev->driver->shutdown(dev);
4860 		}
4861 
4862 		device_unlock(dev);
4863 		if (parent)
4864 			device_unlock(parent);
4865 
4866 		put_device(dev);
4867 		put_device(parent);
4868 
4869 		spin_lock(&devices_kset->list_lock);
4870 	}
4871 	spin_unlock(&devices_kset->list_lock);
4872 }
4873 
4874 /*
4875  * Device logging functions
4876  */
4877 
4878 #ifdef CONFIG_PRINTK
4879 static void
4880 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4881 {
4882 	const char *subsys;
4883 
4884 	memset(dev_info, 0, sizeof(*dev_info));
4885 
4886 	if (dev->class)
4887 		subsys = dev->class->name;
4888 	else if (dev->bus)
4889 		subsys = dev->bus->name;
4890 	else
4891 		return;
4892 
4893 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4894 
4895 	/*
4896 	 * Add device identifier DEVICE=:
4897 	 *   b12:8         block dev_t
4898 	 *   c127:3        char dev_t
4899 	 *   n8            netdev ifindex
4900 	 *   +sound:card0  subsystem:devname
4901 	 */
4902 	if (MAJOR(dev->devt)) {
4903 		char c;
4904 
4905 		if (strcmp(subsys, "block") == 0)
4906 			c = 'b';
4907 		else
4908 			c = 'c';
4909 
4910 		snprintf(dev_info->device, sizeof(dev_info->device),
4911 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4912 	} else if (strcmp(subsys, "net") == 0) {
4913 		struct net_device *net = to_net_dev(dev);
4914 
4915 		snprintf(dev_info->device, sizeof(dev_info->device),
4916 			 "n%u", net->ifindex);
4917 	} else {
4918 		snprintf(dev_info->device, sizeof(dev_info->device),
4919 			 "+%s:%s", subsys, dev_name(dev));
4920 	}
4921 }
4922 
4923 int dev_vprintk_emit(int level, const struct device *dev,
4924 		     const char *fmt, va_list args)
4925 {
4926 	struct dev_printk_info dev_info;
4927 
4928 	set_dev_info(dev, &dev_info);
4929 
4930 	return vprintk_emit(0, level, &dev_info, fmt, args);
4931 }
4932 EXPORT_SYMBOL(dev_vprintk_emit);
4933 
4934 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4935 {
4936 	va_list args;
4937 	int r;
4938 
4939 	va_start(args, fmt);
4940 
4941 	r = dev_vprintk_emit(level, dev, fmt, args);
4942 
4943 	va_end(args);
4944 
4945 	return r;
4946 }
4947 EXPORT_SYMBOL(dev_printk_emit);
4948 
4949 static void __dev_printk(const char *level, const struct device *dev,
4950 			struct va_format *vaf)
4951 {
4952 	if (dev)
4953 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4954 				dev_driver_string(dev), dev_name(dev), vaf);
4955 	else
4956 		printk("%s(NULL device *): %pV", level, vaf);
4957 }
4958 
4959 void _dev_printk(const char *level, const struct device *dev,
4960 		 const char *fmt, ...)
4961 {
4962 	struct va_format vaf;
4963 	va_list args;
4964 
4965 	va_start(args, fmt);
4966 
4967 	vaf.fmt = fmt;
4968 	vaf.va = &args;
4969 
4970 	__dev_printk(level, dev, &vaf);
4971 
4972 	va_end(args);
4973 }
4974 EXPORT_SYMBOL(_dev_printk);
4975 
4976 #define define_dev_printk_level(func, kern_level)		\
4977 void func(const struct device *dev, const char *fmt, ...)	\
4978 {								\
4979 	struct va_format vaf;					\
4980 	va_list args;						\
4981 								\
4982 	va_start(args, fmt);					\
4983 								\
4984 	vaf.fmt = fmt;						\
4985 	vaf.va = &args;						\
4986 								\
4987 	__dev_printk(kern_level, dev, &vaf);			\
4988 								\
4989 	va_end(args);						\
4990 }								\
4991 EXPORT_SYMBOL(func);
4992 
4993 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4994 define_dev_printk_level(_dev_alert, KERN_ALERT);
4995 define_dev_printk_level(_dev_crit, KERN_CRIT);
4996 define_dev_printk_level(_dev_err, KERN_ERR);
4997 define_dev_printk_level(_dev_warn, KERN_WARNING);
4998 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4999 define_dev_printk_level(_dev_info, KERN_INFO);
5000 
5001 #endif
5002 
5003 /**
5004  * dev_err_probe - probe error check and log helper
5005  * @dev: the pointer to the struct device
5006  * @err: error value to test
5007  * @fmt: printf-style format string
5008  * @...: arguments as specified in the format string
5009  *
5010  * This helper implements common pattern present in probe functions for error
5011  * checking: print debug or error message depending if the error value is
5012  * -EPROBE_DEFER and propagate error upwards.
5013  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5014  * checked later by reading devices_deferred debugfs attribute.
5015  * It replaces code sequence::
5016  *
5017  * 	if (err != -EPROBE_DEFER)
5018  * 		dev_err(dev, ...);
5019  * 	else
5020  * 		dev_dbg(dev, ...);
5021  * 	return err;
5022  *
5023  * with::
5024  *
5025  * 	return dev_err_probe(dev, err, ...);
5026  *
5027  * Using this helper in your probe function is totally fine even if @err is
5028  * known to never be -EPROBE_DEFER.
5029  * The benefit compared to a normal dev_err() is the standardized format
5030  * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5031  * instead of "-35") and the fact that the error code is returned which allows
5032  * more compact error paths.
5033  *
5034  * Returns @err.
5035  */
5036 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5037 {
5038 	struct va_format vaf;
5039 	va_list args;
5040 
5041 	va_start(args, fmt);
5042 	vaf.fmt = fmt;
5043 	vaf.va = &args;
5044 
5045 	if (err != -EPROBE_DEFER) {
5046 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5047 	} else {
5048 		device_set_deferred_probe_reason(dev, &vaf);
5049 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5050 	}
5051 
5052 	va_end(args);
5053 
5054 	return err;
5055 }
5056 EXPORT_SYMBOL_GPL(dev_err_probe);
5057 
5058 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5059 {
5060 	return fwnode && !IS_ERR(fwnode->secondary);
5061 }
5062 
5063 /**
5064  * set_primary_fwnode - Change the primary firmware node of a given device.
5065  * @dev: Device to handle.
5066  * @fwnode: New primary firmware node of the device.
5067  *
5068  * Set the device's firmware node pointer to @fwnode, but if a secondary
5069  * firmware node of the device is present, preserve it.
5070  *
5071  * Valid fwnode cases are:
5072  *  - primary --> secondary --> -ENODEV
5073  *  - primary --> NULL
5074  *  - secondary --> -ENODEV
5075  *  - NULL
5076  */
5077 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5078 {
5079 	struct device *parent = dev->parent;
5080 	struct fwnode_handle *fn = dev->fwnode;
5081 
5082 	if (fwnode) {
5083 		if (fwnode_is_primary(fn))
5084 			fn = fn->secondary;
5085 
5086 		if (fn) {
5087 			WARN_ON(fwnode->secondary);
5088 			fwnode->secondary = fn;
5089 		}
5090 		dev->fwnode = fwnode;
5091 	} else {
5092 		if (fwnode_is_primary(fn)) {
5093 			dev->fwnode = fn->secondary;
5094 
5095 			/* Skip nullifying fn->secondary if the primary is shared */
5096 			if (parent && fn == parent->fwnode)
5097 				return;
5098 
5099 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5100 			fn->secondary = NULL;
5101 		} else {
5102 			dev->fwnode = NULL;
5103 		}
5104 	}
5105 }
5106 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5107 
5108 /**
5109  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5110  * @dev: Device to handle.
5111  * @fwnode: New secondary firmware node of the device.
5112  *
5113  * If a primary firmware node of the device is present, set its secondary
5114  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5115  * @fwnode.
5116  */
5117 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5118 {
5119 	if (fwnode)
5120 		fwnode->secondary = ERR_PTR(-ENODEV);
5121 
5122 	if (fwnode_is_primary(dev->fwnode))
5123 		dev->fwnode->secondary = fwnode;
5124 	else
5125 		dev->fwnode = fwnode;
5126 }
5127 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5128 
5129 /**
5130  * device_set_of_node_from_dev - reuse device-tree node of another device
5131  * @dev: device whose device-tree node is being set
5132  * @dev2: device whose device-tree node is being reused
5133  *
5134  * Takes another reference to the new device-tree node after first dropping
5135  * any reference held to the old node.
5136  */
5137 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5138 {
5139 	of_node_put(dev->of_node);
5140 	dev->of_node = of_node_get(dev2->of_node);
5141 	dev->of_node_reused = true;
5142 }
5143 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5144 
5145 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5146 {
5147 	dev->fwnode = fwnode;
5148 	dev->of_node = to_of_node(fwnode);
5149 }
5150 EXPORT_SYMBOL_GPL(device_set_node);
5151 
5152 int device_match_name(struct device *dev, const void *name)
5153 {
5154 	return sysfs_streq(dev_name(dev), name);
5155 }
5156 EXPORT_SYMBOL_GPL(device_match_name);
5157 
5158 int device_match_of_node(struct device *dev, const void *np)
5159 {
5160 	return dev->of_node == np;
5161 }
5162 EXPORT_SYMBOL_GPL(device_match_of_node);
5163 
5164 int device_match_fwnode(struct device *dev, const void *fwnode)
5165 {
5166 	return dev_fwnode(dev) == fwnode;
5167 }
5168 EXPORT_SYMBOL_GPL(device_match_fwnode);
5169 
5170 int device_match_devt(struct device *dev, const void *pdevt)
5171 {
5172 	return dev->devt == *(dev_t *)pdevt;
5173 }
5174 EXPORT_SYMBOL_GPL(device_match_devt);
5175 
5176 int device_match_acpi_dev(struct device *dev, const void *adev)
5177 {
5178 	return ACPI_COMPANION(dev) == adev;
5179 }
5180 EXPORT_SYMBOL(device_match_acpi_dev);
5181 
5182 int device_match_acpi_handle(struct device *dev, const void *handle)
5183 {
5184 	return ACPI_HANDLE(dev) == handle;
5185 }
5186 EXPORT_SYMBOL(device_match_acpi_handle);
5187 
5188 int device_match_any(struct device *dev, const void *unused)
5189 {
5190 	return 1;
5191 }
5192 EXPORT_SYMBOL_GPL(device_match_any);
5193