xref: /linux/drivers/base/core.c (revision 83869019c74cc2d01c96a3be2463a4eebe362224)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "power/power.h"
36 
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 	return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49 
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56 
57 /**
58  * fwnode_link_add - Create a link between two fwnode_handles.
59  * @con: Consumer end of the link.
60  * @sup: Supplier end of the link.
61  *
62  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63  * represents the detail that the firmware lists @sup fwnode as supplying a
64  * resource to @con.
65  *
66  * The driver core will use the fwnode link to create a device link between the
67  * two device objects corresponding to @con and @sup when they are created. The
68  * driver core will automatically delete the fwnode link between @con and @sup
69  * after doing that.
70  *
71  * Attempts to create duplicate links between the same pair of fwnode handles
72  * are ignored and there is no reference counting.
73  */
74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 	struct fwnode_link *link;
77 	int ret = 0;
78 
79 	mutex_lock(&fwnode_link_lock);
80 
81 	list_for_each_entry(link, &sup->consumers, s_hook)
82 		if (link->consumer == con)
83 			goto out;
84 
85 	link = kzalloc(sizeof(*link), GFP_KERNEL);
86 	if (!link) {
87 		ret = -ENOMEM;
88 		goto out;
89 	}
90 
91 	link->supplier = sup;
92 	INIT_LIST_HEAD(&link->s_hook);
93 	link->consumer = con;
94 	INIT_LIST_HEAD(&link->c_hook);
95 
96 	list_add(&link->s_hook, &sup->consumers);
97 	list_add(&link->c_hook, &con->suppliers);
98 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
99 		 con, sup);
100 out:
101 	mutex_unlock(&fwnode_link_lock);
102 
103 	return ret;
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
123  * @fwnode: fwnode whose supplier links need to be deleted
124  *
125  * Deletes all supplier links connecting directly to @fwnode.
126  */
127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
128 {
129 	struct fwnode_link *link, *tmp;
130 
131 	mutex_lock(&fwnode_link_lock);
132 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
133 		__fwnode_link_del(link);
134 	mutex_unlock(&fwnode_link_lock);
135 }
136 
137 /**
138  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
139  * @fwnode: fwnode whose consumer links need to be deleted
140  *
141  * Deletes all consumer links connecting directly to @fwnode.
142  */
143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
144 {
145 	struct fwnode_link *link, *tmp;
146 
147 	mutex_lock(&fwnode_link_lock);
148 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
149 		__fwnode_link_del(link);
150 	mutex_unlock(&fwnode_link_lock);
151 }
152 
153 /**
154  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
155  * @fwnode: fwnode whose links needs to be deleted
156  *
157  * Deletes all links connecting directly to a fwnode.
158  */
159 void fwnode_links_purge(struct fwnode_handle *fwnode)
160 {
161 	fwnode_links_purge_suppliers(fwnode);
162 	fwnode_links_purge_consumers(fwnode);
163 }
164 
165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
166 {
167 	struct fwnode_handle *child;
168 
169 	/* Don't purge consumer links of an added child */
170 	if (fwnode->dev)
171 		return;
172 
173 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
174 	fwnode_links_purge_consumers(fwnode);
175 
176 	fwnode_for_each_available_child_node(fwnode, child)
177 		fw_devlink_purge_absent_suppliers(child);
178 }
179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
180 
181 #ifdef CONFIG_SRCU
182 static DEFINE_MUTEX(device_links_lock);
183 DEFINE_STATIC_SRCU(device_links_srcu);
184 
185 static inline void device_links_write_lock(void)
186 {
187 	mutex_lock(&device_links_lock);
188 }
189 
190 static inline void device_links_write_unlock(void)
191 {
192 	mutex_unlock(&device_links_lock);
193 }
194 
195 int device_links_read_lock(void) __acquires(&device_links_srcu)
196 {
197 	return srcu_read_lock(&device_links_srcu);
198 }
199 
200 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
201 {
202 	srcu_read_unlock(&device_links_srcu, idx);
203 }
204 
205 int device_links_read_lock_held(void)
206 {
207 	return srcu_read_lock_held(&device_links_srcu);
208 }
209 
210 static void device_link_synchronize_removal(void)
211 {
212 	synchronize_srcu(&device_links_srcu);
213 }
214 
215 static void device_link_remove_from_lists(struct device_link *link)
216 {
217 	list_del_rcu(&link->s_node);
218 	list_del_rcu(&link->c_node);
219 }
220 #else /* !CONFIG_SRCU */
221 static DECLARE_RWSEM(device_links_lock);
222 
223 static inline void device_links_write_lock(void)
224 {
225 	down_write(&device_links_lock);
226 }
227 
228 static inline void device_links_write_unlock(void)
229 {
230 	up_write(&device_links_lock);
231 }
232 
233 int device_links_read_lock(void)
234 {
235 	down_read(&device_links_lock);
236 	return 0;
237 }
238 
239 void device_links_read_unlock(int not_used)
240 {
241 	up_read(&device_links_lock);
242 }
243 
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245 int device_links_read_lock_held(void)
246 {
247 	return lockdep_is_held(&device_links_lock);
248 }
249 #endif
250 
251 static inline void device_link_synchronize_removal(void)
252 {
253 }
254 
255 static void device_link_remove_from_lists(struct device_link *link)
256 {
257 	list_del(&link->s_node);
258 	list_del(&link->c_node);
259 }
260 #endif /* !CONFIG_SRCU */
261 
262 static bool device_is_ancestor(struct device *dev, struct device *target)
263 {
264 	while (target->parent) {
265 		target = target->parent;
266 		if (dev == target)
267 			return true;
268 	}
269 	return false;
270 }
271 
272 /**
273  * device_is_dependent - Check if one device depends on another one
274  * @dev: Device to check dependencies for.
275  * @target: Device to check against.
276  *
277  * Check if @target depends on @dev or any device dependent on it (its child or
278  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
279  */
280 int device_is_dependent(struct device *dev, void *target)
281 {
282 	struct device_link *link;
283 	int ret;
284 
285 	/*
286 	 * The "ancestors" check is needed to catch the case when the target
287 	 * device has not been completely initialized yet and it is still
288 	 * missing from the list of children of its parent device.
289 	 */
290 	if (dev == target || device_is_ancestor(dev, target))
291 		return 1;
292 
293 	ret = device_for_each_child(dev, target, device_is_dependent);
294 	if (ret)
295 		return ret;
296 
297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
298 		if ((link->flags & ~DL_FLAG_INFERRED) ==
299 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
300 			continue;
301 
302 		if (link->consumer == target)
303 			return 1;
304 
305 		ret = device_is_dependent(link->consumer, target);
306 		if (ret)
307 			break;
308 	}
309 	return ret;
310 }
311 
312 static void device_link_init_status(struct device_link *link,
313 				    struct device *consumer,
314 				    struct device *supplier)
315 {
316 	switch (supplier->links.status) {
317 	case DL_DEV_PROBING:
318 		switch (consumer->links.status) {
319 		case DL_DEV_PROBING:
320 			/*
321 			 * A consumer driver can create a link to a supplier
322 			 * that has not completed its probing yet as long as it
323 			 * knows that the supplier is already functional (for
324 			 * example, it has just acquired some resources from the
325 			 * supplier).
326 			 */
327 			link->status = DL_STATE_CONSUMER_PROBE;
328 			break;
329 		default:
330 			link->status = DL_STATE_DORMANT;
331 			break;
332 		}
333 		break;
334 	case DL_DEV_DRIVER_BOUND:
335 		switch (consumer->links.status) {
336 		case DL_DEV_PROBING:
337 			link->status = DL_STATE_CONSUMER_PROBE;
338 			break;
339 		case DL_DEV_DRIVER_BOUND:
340 			link->status = DL_STATE_ACTIVE;
341 			break;
342 		default:
343 			link->status = DL_STATE_AVAILABLE;
344 			break;
345 		}
346 		break;
347 	case DL_DEV_UNBINDING:
348 		link->status = DL_STATE_SUPPLIER_UNBIND;
349 		break;
350 	default:
351 		link->status = DL_STATE_DORMANT;
352 		break;
353 	}
354 }
355 
356 static int device_reorder_to_tail(struct device *dev, void *not_used)
357 {
358 	struct device_link *link;
359 
360 	/*
361 	 * Devices that have not been registered yet will be put to the ends
362 	 * of the lists during the registration, so skip them here.
363 	 */
364 	if (device_is_registered(dev))
365 		devices_kset_move_last(dev);
366 
367 	if (device_pm_initialized(dev))
368 		device_pm_move_last(dev);
369 
370 	device_for_each_child(dev, NULL, device_reorder_to_tail);
371 	list_for_each_entry(link, &dev->links.consumers, s_node) {
372 		if ((link->flags & ~DL_FLAG_INFERRED) ==
373 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
374 			continue;
375 		device_reorder_to_tail(link->consumer, NULL);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * device_pm_move_to_tail - Move set of devices to the end of device lists
383  * @dev: Device to move
384  *
385  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
386  *
387  * It moves the @dev along with all of its children and all of its consumers
388  * to the ends of the device_kset and dpm_list, recursively.
389  */
390 void device_pm_move_to_tail(struct device *dev)
391 {
392 	int idx;
393 
394 	idx = device_links_read_lock();
395 	device_pm_lock();
396 	device_reorder_to_tail(dev, NULL);
397 	device_pm_unlock();
398 	device_links_read_unlock(idx);
399 }
400 
401 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
402 
403 static ssize_t status_show(struct device *dev,
404 			   struct device_attribute *attr, char *buf)
405 {
406 	const char *output;
407 
408 	switch (to_devlink(dev)->status) {
409 	case DL_STATE_NONE:
410 		output = "not tracked";
411 		break;
412 	case DL_STATE_DORMANT:
413 		output = "dormant";
414 		break;
415 	case DL_STATE_AVAILABLE:
416 		output = "available";
417 		break;
418 	case DL_STATE_CONSUMER_PROBE:
419 		output = "consumer probing";
420 		break;
421 	case DL_STATE_ACTIVE:
422 		output = "active";
423 		break;
424 	case DL_STATE_SUPPLIER_UNBIND:
425 		output = "supplier unbinding";
426 		break;
427 	default:
428 		output = "unknown";
429 		break;
430 	}
431 
432 	return sysfs_emit(buf, "%s\n", output);
433 }
434 static DEVICE_ATTR_RO(status);
435 
436 static ssize_t auto_remove_on_show(struct device *dev,
437 				   struct device_attribute *attr, char *buf)
438 {
439 	struct device_link *link = to_devlink(dev);
440 	const char *output;
441 
442 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
443 		output = "supplier unbind";
444 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
445 		output = "consumer unbind";
446 	else
447 		output = "never";
448 
449 	return sysfs_emit(buf, "%s\n", output);
450 }
451 static DEVICE_ATTR_RO(auto_remove_on);
452 
453 static ssize_t runtime_pm_show(struct device *dev,
454 			       struct device_attribute *attr, char *buf)
455 {
456 	struct device_link *link = to_devlink(dev);
457 
458 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
459 }
460 static DEVICE_ATTR_RO(runtime_pm);
461 
462 static ssize_t sync_state_only_show(struct device *dev,
463 				    struct device_attribute *attr, char *buf)
464 {
465 	struct device_link *link = to_devlink(dev);
466 
467 	return sysfs_emit(buf, "%d\n",
468 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
469 }
470 static DEVICE_ATTR_RO(sync_state_only);
471 
472 static struct attribute *devlink_attrs[] = {
473 	&dev_attr_status.attr,
474 	&dev_attr_auto_remove_on.attr,
475 	&dev_attr_runtime_pm.attr,
476 	&dev_attr_sync_state_only.attr,
477 	NULL,
478 };
479 ATTRIBUTE_GROUPS(devlink);
480 
481 static void device_link_release_fn(struct work_struct *work)
482 {
483 	struct device_link *link = container_of(work, struct device_link, rm_work);
484 
485 	/* Ensure that all references to the link object have been dropped. */
486 	device_link_synchronize_removal();
487 
488 	while (refcount_dec_not_one(&link->rpm_active))
489 		pm_runtime_put(link->supplier);
490 
491 	put_device(link->consumer);
492 	put_device(link->supplier);
493 	kfree(link);
494 }
495 
496 static void devlink_dev_release(struct device *dev)
497 {
498 	struct device_link *link = to_devlink(dev);
499 
500 	INIT_WORK(&link->rm_work, device_link_release_fn);
501 	/*
502 	 * It may take a while to complete this work because of the SRCU
503 	 * synchronization in device_link_release_fn() and if the consumer or
504 	 * supplier devices get deleted when it runs, so put it into the "long"
505 	 * workqueue.
506 	 */
507 	queue_work(system_long_wq, &link->rm_work);
508 }
509 
510 static struct class devlink_class = {
511 	.name = "devlink",
512 	.owner = THIS_MODULE,
513 	.dev_groups = devlink_groups,
514 	.dev_release = devlink_dev_release,
515 };
516 
517 static int devlink_add_symlinks(struct device *dev,
518 				struct class_interface *class_intf)
519 {
520 	int ret;
521 	size_t len;
522 	struct device_link *link = to_devlink(dev);
523 	struct device *sup = link->supplier;
524 	struct device *con = link->consumer;
525 	char *buf;
526 
527 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
528 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
529 	len += strlen(":");
530 	len += strlen("supplier:") + 1;
531 	buf = kzalloc(len, GFP_KERNEL);
532 	if (!buf)
533 		return -ENOMEM;
534 
535 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
536 	if (ret)
537 		goto out;
538 
539 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
540 	if (ret)
541 		goto err_con;
542 
543 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
544 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
545 	if (ret)
546 		goto err_con_dev;
547 
548 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
549 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
550 	if (ret)
551 		goto err_sup_dev;
552 
553 	goto out;
554 
555 err_sup_dev:
556 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 	sysfs_remove_link(&sup->kobj, buf);
558 err_con_dev:
559 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
560 err_con:
561 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
562 out:
563 	kfree(buf);
564 	return ret;
565 }
566 
567 static void devlink_remove_symlinks(struct device *dev,
568 				   struct class_interface *class_intf)
569 {
570 	struct device_link *link = to_devlink(dev);
571 	size_t len;
572 	struct device *sup = link->supplier;
573 	struct device *con = link->consumer;
574 	char *buf;
575 
576 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
577 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
578 
579 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
580 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
581 	len += strlen(":");
582 	len += strlen("supplier:") + 1;
583 	buf = kzalloc(len, GFP_KERNEL);
584 	if (!buf) {
585 		WARN(1, "Unable to properly free device link symlinks!\n");
586 		return;
587 	}
588 
589 	if (device_is_registered(con)) {
590 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
591 		sysfs_remove_link(&con->kobj, buf);
592 	}
593 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
594 	sysfs_remove_link(&sup->kobj, buf);
595 	kfree(buf);
596 }
597 
598 static struct class_interface devlink_class_intf = {
599 	.class = &devlink_class,
600 	.add_dev = devlink_add_symlinks,
601 	.remove_dev = devlink_remove_symlinks,
602 };
603 
604 static int __init devlink_class_init(void)
605 {
606 	int ret;
607 
608 	ret = class_register(&devlink_class);
609 	if (ret)
610 		return ret;
611 
612 	ret = class_interface_register(&devlink_class_intf);
613 	if (ret)
614 		class_unregister(&devlink_class);
615 
616 	return ret;
617 }
618 postcore_initcall(devlink_class_init);
619 
620 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
621 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
622 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
623 			       DL_FLAG_SYNC_STATE_ONLY | \
624 			       DL_FLAG_INFERRED)
625 
626 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
627 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
628 
629 /**
630  * device_link_add - Create a link between two devices.
631  * @consumer: Consumer end of the link.
632  * @supplier: Supplier end of the link.
633  * @flags: Link flags.
634  *
635  * The caller is responsible for the proper synchronization of the link creation
636  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
637  * runtime PM framework to take the link into account.  Second, if the
638  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
639  * be forced into the active meta state and reference-counted upon the creation
640  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
641  * ignored.
642  *
643  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
644  * expected to release the link returned by it directly with the help of either
645  * device_link_del() or device_link_remove().
646  *
647  * If that flag is not set, however, the caller of this function is handing the
648  * management of the link over to the driver core entirely and its return value
649  * can only be used to check whether or not the link is present.  In that case,
650  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
651  * flags can be used to indicate to the driver core when the link can be safely
652  * deleted.  Namely, setting one of them in @flags indicates to the driver core
653  * that the link is not going to be used (by the given caller of this function)
654  * after unbinding the consumer or supplier driver, respectively, from its
655  * device, so the link can be deleted at that point.  If none of them is set,
656  * the link will be maintained until one of the devices pointed to by it (either
657  * the consumer or the supplier) is unregistered.
658  *
659  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
660  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
661  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
662  * be used to request the driver core to automatically probe for a consumer
663  * driver after successfully binding a driver to the supplier device.
664  *
665  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
666  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
667  * the same time is invalid and will cause NULL to be returned upfront.
668  * However, if a device link between the given @consumer and @supplier pair
669  * exists already when this function is called for them, the existing link will
670  * be returned regardless of its current type and status (the link's flags may
671  * be modified then).  The caller of this function is then expected to treat
672  * the link as though it has just been created, so (in particular) if
673  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
674  * explicitly when not needed any more (as stated above).
675  *
676  * A side effect of the link creation is re-ordering of dpm_list and the
677  * devices_kset list by moving the consumer device and all devices depending
678  * on it to the ends of these lists (that does not happen to devices that have
679  * not been registered when this function is called).
680  *
681  * The supplier device is required to be registered when this function is called
682  * and NULL will be returned if that is not the case.  The consumer device need
683  * not be registered, however.
684  */
685 struct device_link *device_link_add(struct device *consumer,
686 				    struct device *supplier, u32 flags)
687 {
688 	struct device_link *link;
689 
690 	if (!consumer || !supplier || consumer == supplier ||
691 	    flags & ~DL_ADD_VALID_FLAGS ||
692 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
693 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
694 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
695 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
696 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
697 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
698 		return NULL;
699 
700 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
701 		if (pm_runtime_get_sync(supplier) < 0) {
702 			pm_runtime_put_noidle(supplier);
703 			return NULL;
704 		}
705 	}
706 
707 	if (!(flags & DL_FLAG_STATELESS))
708 		flags |= DL_FLAG_MANAGED;
709 
710 	device_links_write_lock();
711 	device_pm_lock();
712 
713 	/*
714 	 * If the supplier has not been fully registered yet or there is a
715 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
716 	 * the supplier already in the graph, return NULL. If the link is a
717 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
718 	 * because it only affects sync_state() callbacks.
719 	 */
720 	if (!device_pm_initialized(supplier)
721 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
722 		  device_is_dependent(consumer, supplier))) {
723 		link = NULL;
724 		goto out;
725 	}
726 
727 	/*
728 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
729 	 * So, only create it if the consumer hasn't probed yet.
730 	 */
731 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
732 	    consumer->links.status != DL_DEV_NO_DRIVER &&
733 	    consumer->links.status != DL_DEV_PROBING) {
734 		link = NULL;
735 		goto out;
736 	}
737 
738 	/*
739 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
740 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
741 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
742 	 */
743 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
744 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
745 
746 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
747 		if (link->consumer != consumer)
748 			continue;
749 
750 		if (link->flags & DL_FLAG_INFERRED &&
751 		    !(flags & DL_FLAG_INFERRED))
752 			link->flags &= ~DL_FLAG_INFERRED;
753 
754 		if (flags & DL_FLAG_PM_RUNTIME) {
755 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
756 				pm_runtime_new_link(consumer);
757 				link->flags |= DL_FLAG_PM_RUNTIME;
758 			}
759 			if (flags & DL_FLAG_RPM_ACTIVE)
760 				refcount_inc(&link->rpm_active);
761 		}
762 
763 		if (flags & DL_FLAG_STATELESS) {
764 			kref_get(&link->kref);
765 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
766 			    !(link->flags & DL_FLAG_STATELESS)) {
767 				link->flags |= DL_FLAG_STATELESS;
768 				goto reorder;
769 			} else {
770 				link->flags |= DL_FLAG_STATELESS;
771 				goto out;
772 			}
773 		}
774 
775 		/*
776 		 * If the life time of the link following from the new flags is
777 		 * longer than indicated by the flags of the existing link,
778 		 * update the existing link to stay around longer.
779 		 */
780 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
781 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
782 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
783 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
784 			}
785 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
786 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
787 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
788 		}
789 		if (!(link->flags & DL_FLAG_MANAGED)) {
790 			kref_get(&link->kref);
791 			link->flags |= DL_FLAG_MANAGED;
792 			device_link_init_status(link, consumer, supplier);
793 		}
794 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
795 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
796 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
797 			goto reorder;
798 		}
799 
800 		goto out;
801 	}
802 
803 	link = kzalloc(sizeof(*link), GFP_KERNEL);
804 	if (!link)
805 		goto out;
806 
807 	refcount_set(&link->rpm_active, 1);
808 
809 	get_device(supplier);
810 	link->supplier = supplier;
811 	INIT_LIST_HEAD(&link->s_node);
812 	get_device(consumer);
813 	link->consumer = consumer;
814 	INIT_LIST_HEAD(&link->c_node);
815 	link->flags = flags;
816 	kref_init(&link->kref);
817 
818 	link->link_dev.class = &devlink_class;
819 	device_set_pm_not_required(&link->link_dev);
820 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
821 		     dev_bus_name(supplier), dev_name(supplier),
822 		     dev_bus_name(consumer), dev_name(consumer));
823 	if (device_register(&link->link_dev)) {
824 		put_device(&link->link_dev);
825 		link = NULL;
826 		goto out;
827 	}
828 
829 	if (flags & DL_FLAG_PM_RUNTIME) {
830 		if (flags & DL_FLAG_RPM_ACTIVE)
831 			refcount_inc(&link->rpm_active);
832 
833 		pm_runtime_new_link(consumer);
834 	}
835 
836 	/* Determine the initial link state. */
837 	if (flags & DL_FLAG_STATELESS)
838 		link->status = DL_STATE_NONE;
839 	else
840 		device_link_init_status(link, consumer, supplier);
841 
842 	/*
843 	 * Some callers expect the link creation during consumer driver probe to
844 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
845 	 */
846 	if (link->status == DL_STATE_CONSUMER_PROBE &&
847 	    flags & DL_FLAG_PM_RUNTIME)
848 		pm_runtime_resume(supplier);
849 
850 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
851 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
852 
853 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
854 		dev_dbg(consumer,
855 			"Linked as a sync state only consumer to %s\n",
856 			dev_name(supplier));
857 		goto out;
858 	}
859 
860 reorder:
861 	/*
862 	 * Move the consumer and all of the devices depending on it to the end
863 	 * of dpm_list and the devices_kset list.
864 	 *
865 	 * It is necessary to hold dpm_list locked throughout all that or else
866 	 * we may end up suspending with a wrong ordering of it.
867 	 */
868 	device_reorder_to_tail(consumer, NULL);
869 
870 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
871 
872 out:
873 	device_pm_unlock();
874 	device_links_write_unlock();
875 
876 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
877 		pm_runtime_put(supplier);
878 
879 	return link;
880 }
881 EXPORT_SYMBOL_GPL(device_link_add);
882 
883 static void __device_link_del(struct kref *kref)
884 {
885 	struct device_link *link = container_of(kref, struct device_link, kref);
886 
887 	dev_dbg(link->consumer, "Dropping the link to %s\n",
888 		dev_name(link->supplier));
889 
890 	pm_runtime_drop_link(link);
891 
892 	device_link_remove_from_lists(link);
893 	device_unregister(&link->link_dev);
894 }
895 
896 static void device_link_put_kref(struct device_link *link)
897 {
898 	if (link->flags & DL_FLAG_STATELESS)
899 		kref_put(&link->kref, __device_link_del);
900 	else if (!device_is_registered(link->consumer))
901 		__device_link_del(&link->kref);
902 	else
903 		WARN(1, "Unable to drop a managed device link reference\n");
904 }
905 
906 /**
907  * device_link_del - Delete a stateless link between two devices.
908  * @link: Device link to delete.
909  *
910  * The caller must ensure proper synchronization of this function with runtime
911  * PM.  If the link was added multiple times, it needs to be deleted as often.
912  * Care is required for hotplugged devices:  Their links are purged on removal
913  * and calling device_link_del() is then no longer allowed.
914  */
915 void device_link_del(struct device_link *link)
916 {
917 	device_links_write_lock();
918 	device_link_put_kref(link);
919 	device_links_write_unlock();
920 }
921 EXPORT_SYMBOL_GPL(device_link_del);
922 
923 /**
924  * device_link_remove - Delete a stateless link between two devices.
925  * @consumer: Consumer end of the link.
926  * @supplier: Supplier end of the link.
927  *
928  * The caller must ensure proper synchronization of this function with runtime
929  * PM.
930  */
931 void device_link_remove(void *consumer, struct device *supplier)
932 {
933 	struct device_link *link;
934 
935 	if (WARN_ON(consumer == supplier))
936 		return;
937 
938 	device_links_write_lock();
939 
940 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
941 		if (link->consumer == consumer) {
942 			device_link_put_kref(link);
943 			break;
944 		}
945 	}
946 
947 	device_links_write_unlock();
948 }
949 EXPORT_SYMBOL_GPL(device_link_remove);
950 
951 static void device_links_missing_supplier(struct device *dev)
952 {
953 	struct device_link *link;
954 
955 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
956 		if (link->status != DL_STATE_CONSUMER_PROBE)
957 			continue;
958 
959 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
960 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
961 		} else {
962 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
963 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
964 		}
965 	}
966 }
967 
968 /**
969  * device_links_check_suppliers - Check presence of supplier drivers.
970  * @dev: Consumer device.
971  *
972  * Check links from this device to any suppliers.  Walk the list of the device's
973  * links to suppliers and see if all of them are available.  If not, simply
974  * return -EPROBE_DEFER.
975  *
976  * We need to guarantee that the supplier will not go away after the check has
977  * been positive here.  It only can go away in __device_release_driver() and
978  * that function  checks the device's links to consumers.  This means we need to
979  * mark the link as "consumer probe in progress" to make the supplier removal
980  * wait for us to complete (or bad things may happen).
981  *
982  * Links without the DL_FLAG_MANAGED flag set are ignored.
983  */
984 int device_links_check_suppliers(struct device *dev)
985 {
986 	struct device_link *link;
987 	int ret = 0;
988 	struct fwnode_handle *sup_fw;
989 
990 	/*
991 	 * Device waiting for supplier to become available is not allowed to
992 	 * probe.
993 	 */
994 	mutex_lock(&fwnode_link_lock);
995 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
996 	    !fw_devlink_is_permissive()) {
997 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
998 					  struct fwnode_link,
999 					  c_hook)->supplier;
1000 		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1001 			      sup_fw);
1002 		mutex_unlock(&fwnode_link_lock);
1003 		return -EPROBE_DEFER;
1004 	}
1005 	mutex_unlock(&fwnode_link_lock);
1006 
1007 	device_links_write_lock();
1008 
1009 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1010 		if (!(link->flags & DL_FLAG_MANAGED))
1011 			continue;
1012 
1013 		if (link->status != DL_STATE_AVAILABLE &&
1014 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1015 			device_links_missing_supplier(dev);
1016 			dev_err_probe(dev, -EPROBE_DEFER,
1017 				      "supplier %s not ready\n",
1018 				      dev_name(link->supplier));
1019 			ret = -EPROBE_DEFER;
1020 			break;
1021 		}
1022 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1023 	}
1024 	dev->links.status = DL_DEV_PROBING;
1025 
1026 	device_links_write_unlock();
1027 	return ret;
1028 }
1029 
1030 /**
1031  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1032  * @dev: Device to call sync_state() on
1033  * @list: List head to queue the @dev on
1034  *
1035  * Queues a device for a sync_state() callback when the device links write lock
1036  * isn't held. This allows the sync_state() execution flow to use device links
1037  * APIs.  The caller must ensure this function is called with
1038  * device_links_write_lock() held.
1039  *
1040  * This function does a get_device() to make sure the device is not freed while
1041  * on this list.
1042  *
1043  * So the caller must also ensure that device_links_flush_sync_list() is called
1044  * as soon as the caller releases device_links_write_lock().  This is necessary
1045  * to make sure the sync_state() is called in a timely fashion and the
1046  * put_device() is called on this device.
1047  */
1048 static void __device_links_queue_sync_state(struct device *dev,
1049 					    struct list_head *list)
1050 {
1051 	struct device_link *link;
1052 
1053 	if (!dev_has_sync_state(dev))
1054 		return;
1055 	if (dev->state_synced)
1056 		return;
1057 
1058 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1059 		if (!(link->flags & DL_FLAG_MANAGED))
1060 			continue;
1061 		if (link->status != DL_STATE_ACTIVE)
1062 			return;
1063 	}
1064 
1065 	/*
1066 	 * Set the flag here to avoid adding the same device to a list more
1067 	 * than once. This can happen if new consumers get added to the device
1068 	 * and probed before the list is flushed.
1069 	 */
1070 	dev->state_synced = true;
1071 
1072 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1073 		return;
1074 
1075 	get_device(dev);
1076 	list_add_tail(&dev->links.defer_sync, list);
1077 }
1078 
1079 /**
1080  * device_links_flush_sync_list - Call sync_state() on a list of devices
1081  * @list: List of devices to call sync_state() on
1082  * @dont_lock_dev: Device for which lock is already held by the caller
1083  *
1084  * Calls sync_state() on all the devices that have been queued for it. This
1085  * function is used in conjunction with __device_links_queue_sync_state(). The
1086  * @dont_lock_dev parameter is useful when this function is called from a
1087  * context where a device lock is already held.
1088  */
1089 static void device_links_flush_sync_list(struct list_head *list,
1090 					 struct device *dont_lock_dev)
1091 {
1092 	struct device *dev, *tmp;
1093 
1094 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1095 		list_del_init(&dev->links.defer_sync);
1096 
1097 		if (dev != dont_lock_dev)
1098 			device_lock(dev);
1099 
1100 		if (dev->bus->sync_state)
1101 			dev->bus->sync_state(dev);
1102 		else if (dev->driver && dev->driver->sync_state)
1103 			dev->driver->sync_state(dev);
1104 
1105 		if (dev != dont_lock_dev)
1106 			device_unlock(dev);
1107 
1108 		put_device(dev);
1109 	}
1110 }
1111 
1112 void device_links_supplier_sync_state_pause(void)
1113 {
1114 	device_links_write_lock();
1115 	defer_sync_state_count++;
1116 	device_links_write_unlock();
1117 }
1118 
1119 void device_links_supplier_sync_state_resume(void)
1120 {
1121 	struct device *dev, *tmp;
1122 	LIST_HEAD(sync_list);
1123 
1124 	device_links_write_lock();
1125 	if (!defer_sync_state_count) {
1126 		WARN(true, "Unmatched sync_state pause/resume!");
1127 		goto out;
1128 	}
1129 	defer_sync_state_count--;
1130 	if (defer_sync_state_count)
1131 		goto out;
1132 
1133 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1134 		/*
1135 		 * Delete from deferred_sync list before queuing it to
1136 		 * sync_list because defer_sync is used for both lists.
1137 		 */
1138 		list_del_init(&dev->links.defer_sync);
1139 		__device_links_queue_sync_state(dev, &sync_list);
1140 	}
1141 out:
1142 	device_links_write_unlock();
1143 
1144 	device_links_flush_sync_list(&sync_list, NULL);
1145 }
1146 
1147 static int sync_state_resume_initcall(void)
1148 {
1149 	device_links_supplier_sync_state_resume();
1150 	return 0;
1151 }
1152 late_initcall(sync_state_resume_initcall);
1153 
1154 static void __device_links_supplier_defer_sync(struct device *sup)
1155 {
1156 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1157 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1158 }
1159 
1160 static void device_link_drop_managed(struct device_link *link)
1161 {
1162 	link->flags &= ~DL_FLAG_MANAGED;
1163 	WRITE_ONCE(link->status, DL_STATE_NONE);
1164 	kref_put(&link->kref, __device_link_del);
1165 }
1166 
1167 static ssize_t waiting_for_supplier_show(struct device *dev,
1168 					 struct device_attribute *attr,
1169 					 char *buf)
1170 {
1171 	bool val;
1172 
1173 	device_lock(dev);
1174 	val = !list_empty(&dev->fwnode->suppliers);
1175 	device_unlock(dev);
1176 	return sysfs_emit(buf, "%u\n", val);
1177 }
1178 static DEVICE_ATTR_RO(waiting_for_supplier);
1179 
1180 /**
1181  * device_links_force_bind - Prepares device to be force bound
1182  * @dev: Consumer device.
1183  *
1184  * device_bind_driver() force binds a device to a driver without calling any
1185  * driver probe functions. So the consumer really isn't going to wait for any
1186  * supplier before it's bound to the driver. We still want the device link
1187  * states to be sensible when this happens.
1188  *
1189  * In preparation for device_bind_driver(), this function goes through each
1190  * supplier device links and checks if the supplier is bound. If it is, then
1191  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1192  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1193  */
1194 void device_links_force_bind(struct device *dev)
1195 {
1196 	struct device_link *link, *ln;
1197 
1198 	device_links_write_lock();
1199 
1200 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1201 		if (!(link->flags & DL_FLAG_MANAGED))
1202 			continue;
1203 
1204 		if (link->status != DL_STATE_AVAILABLE) {
1205 			device_link_drop_managed(link);
1206 			continue;
1207 		}
1208 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1209 	}
1210 	dev->links.status = DL_DEV_PROBING;
1211 
1212 	device_links_write_unlock();
1213 }
1214 
1215 /**
1216  * device_links_driver_bound - Update device links after probing its driver.
1217  * @dev: Device to update the links for.
1218  *
1219  * The probe has been successful, so update links from this device to any
1220  * consumers by changing their status to "available".
1221  *
1222  * Also change the status of @dev's links to suppliers to "active".
1223  *
1224  * Links without the DL_FLAG_MANAGED flag set are ignored.
1225  */
1226 void device_links_driver_bound(struct device *dev)
1227 {
1228 	struct device_link *link, *ln;
1229 	LIST_HEAD(sync_list);
1230 
1231 	/*
1232 	 * If a device binds successfully, it's expected to have created all
1233 	 * the device links it needs to or make new device links as it needs
1234 	 * them. So, fw_devlink no longer needs to create device links to any
1235 	 * of the device's suppliers.
1236 	 *
1237 	 * Also, if a child firmware node of this bound device is not added as
1238 	 * a device by now, assume it is never going to be added and make sure
1239 	 * other devices don't defer probe indefinitely by waiting for such a
1240 	 * child device.
1241 	 */
1242 	if (dev->fwnode && dev->fwnode->dev == dev) {
1243 		struct fwnode_handle *child;
1244 		fwnode_links_purge_suppliers(dev->fwnode);
1245 		fwnode_for_each_available_child_node(dev->fwnode, child)
1246 			fw_devlink_purge_absent_suppliers(child);
1247 	}
1248 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1249 
1250 	device_links_write_lock();
1251 
1252 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1253 		if (!(link->flags & DL_FLAG_MANAGED))
1254 			continue;
1255 
1256 		/*
1257 		 * Links created during consumer probe may be in the "consumer
1258 		 * probe" state to start with if the supplier is still probing
1259 		 * when they are created and they may become "active" if the
1260 		 * consumer probe returns first.  Skip them here.
1261 		 */
1262 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1263 		    link->status == DL_STATE_ACTIVE)
1264 			continue;
1265 
1266 		WARN_ON(link->status != DL_STATE_DORMANT);
1267 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1268 
1269 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1270 			driver_deferred_probe_add(link->consumer);
1271 	}
1272 
1273 	if (defer_sync_state_count)
1274 		__device_links_supplier_defer_sync(dev);
1275 	else
1276 		__device_links_queue_sync_state(dev, &sync_list);
1277 
1278 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1279 		struct device *supplier;
1280 
1281 		if (!(link->flags & DL_FLAG_MANAGED))
1282 			continue;
1283 
1284 		supplier = link->supplier;
1285 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1286 			/*
1287 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1288 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1289 			 * save to drop the managed link completely.
1290 			 */
1291 			device_link_drop_managed(link);
1292 		} else {
1293 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1294 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1295 		}
1296 
1297 		/*
1298 		 * This needs to be done even for the deleted
1299 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1300 		 * device link that was preventing the supplier from getting a
1301 		 * sync_state() call.
1302 		 */
1303 		if (defer_sync_state_count)
1304 			__device_links_supplier_defer_sync(supplier);
1305 		else
1306 			__device_links_queue_sync_state(supplier, &sync_list);
1307 	}
1308 
1309 	dev->links.status = DL_DEV_DRIVER_BOUND;
1310 
1311 	device_links_write_unlock();
1312 
1313 	device_links_flush_sync_list(&sync_list, dev);
1314 }
1315 
1316 /**
1317  * __device_links_no_driver - Update links of a device without a driver.
1318  * @dev: Device without a drvier.
1319  *
1320  * Delete all non-persistent links from this device to any suppliers.
1321  *
1322  * Persistent links stay around, but their status is changed to "available",
1323  * unless they already are in the "supplier unbind in progress" state in which
1324  * case they need not be updated.
1325  *
1326  * Links without the DL_FLAG_MANAGED flag set are ignored.
1327  */
1328 static void __device_links_no_driver(struct device *dev)
1329 {
1330 	struct device_link *link, *ln;
1331 
1332 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1333 		if (!(link->flags & DL_FLAG_MANAGED))
1334 			continue;
1335 
1336 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1337 			device_link_drop_managed(link);
1338 			continue;
1339 		}
1340 
1341 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1342 		    link->status != DL_STATE_ACTIVE)
1343 			continue;
1344 
1345 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1346 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347 		} else {
1348 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1349 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1350 		}
1351 	}
1352 
1353 	dev->links.status = DL_DEV_NO_DRIVER;
1354 }
1355 
1356 /**
1357  * device_links_no_driver - Update links after failing driver probe.
1358  * @dev: Device whose driver has just failed to probe.
1359  *
1360  * Clean up leftover links to consumers for @dev and invoke
1361  * %__device_links_no_driver() to update links to suppliers for it as
1362  * appropriate.
1363  *
1364  * Links without the DL_FLAG_MANAGED flag set are ignored.
1365  */
1366 void device_links_no_driver(struct device *dev)
1367 {
1368 	struct device_link *link;
1369 
1370 	device_links_write_lock();
1371 
1372 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1373 		if (!(link->flags & DL_FLAG_MANAGED))
1374 			continue;
1375 
1376 		/*
1377 		 * The probe has failed, so if the status of the link is
1378 		 * "consumer probe" or "active", it must have been added by
1379 		 * a probing consumer while this device was still probing.
1380 		 * Change its state to "dormant", as it represents a valid
1381 		 * relationship, but it is not functionally meaningful.
1382 		 */
1383 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1384 		    link->status == DL_STATE_ACTIVE)
1385 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1386 	}
1387 
1388 	__device_links_no_driver(dev);
1389 
1390 	device_links_write_unlock();
1391 }
1392 
1393 /**
1394  * device_links_driver_cleanup - Update links after driver removal.
1395  * @dev: Device whose driver has just gone away.
1396  *
1397  * Update links to consumers for @dev by changing their status to "dormant" and
1398  * invoke %__device_links_no_driver() to update links to suppliers for it as
1399  * appropriate.
1400  *
1401  * Links without the DL_FLAG_MANAGED flag set are ignored.
1402  */
1403 void device_links_driver_cleanup(struct device *dev)
1404 {
1405 	struct device_link *link, *ln;
1406 
1407 	device_links_write_lock();
1408 
1409 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1410 		if (!(link->flags & DL_FLAG_MANAGED))
1411 			continue;
1412 
1413 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1414 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1415 
1416 		/*
1417 		 * autoremove the links between this @dev and its consumer
1418 		 * devices that are not active, i.e. where the link state
1419 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1420 		 */
1421 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1422 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1423 			device_link_drop_managed(link);
1424 
1425 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1426 	}
1427 
1428 	list_del_init(&dev->links.defer_sync);
1429 	__device_links_no_driver(dev);
1430 
1431 	device_links_write_unlock();
1432 }
1433 
1434 /**
1435  * device_links_busy - Check if there are any busy links to consumers.
1436  * @dev: Device to check.
1437  *
1438  * Check each consumer of the device and return 'true' if its link's status
1439  * is one of "consumer probe" or "active" (meaning that the given consumer is
1440  * probing right now or its driver is present).  Otherwise, change the link
1441  * state to "supplier unbind" to prevent the consumer from being probed
1442  * successfully going forward.
1443  *
1444  * Return 'false' if there are no probing or active consumers.
1445  *
1446  * Links without the DL_FLAG_MANAGED flag set are ignored.
1447  */
1448 bool device_links_busy(struct device *dev)
1449 {
1450 	struct device_link *link;
1451 	bool ret = false;
1452 
1453 	device_links_write_lock();
1454 
1455 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1456 		if (!(link->flags & DL_FLAG_MANAGED))
1457 			continue;
1458 
1459 		if (link->status == DL_STATE_CONSUMER_PROBE
1460 		    || link->status == DL_STATE_ACTIVE) {
1461 			ret = true;
1462 			break;
1463 		}
1464 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1465 	}
1466 
1467 	dev->links.status = DL_DEV_UNBINDING;
1468 
1469 	device_links_write_unlock();
1470 	return ret;
1471 }
1472 
1473 /**
1474  * device_links_unbind_consumers - Force unbind consumers of the given device.
1475  * @dev: Device to unbind the consumers of.
1476  *
1477  * Walk the list of links to consumers for @dev and if any of them is in the
1478  * "consumer probe" state, wait for all device probes in progress to complete
1479  * and start over.
1480  *
1481  * If that's not the case, change the status of the link to "supplier unbind"
1482  * and check if the link was in the "active" state.  If so, force the consumer
1483  * driver to unbind and start over (the consumer will not re-probe as we have
1484  * changed the state of the link already).
1485  *
1486  * Links without the DL_FLAG_MANAGED flag set are ignored.
1487  */
1488 void device_links_unbind_consumers(struct device *dev)
1489 {
1490 	struct device_link *link;
1491 
1492  start:
1493 	device_links_write_lock();
1494 
1495 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1496 		enum device_link_state status;
1497 
1498 		if (!(link->flags & DL_FLAG_MANAGED) ||
1499 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1500 			continue;
1501 
1502 		status = link->status;
1503 		if (status == DL_STATE_CONSUMER_PROBE) {
1504 			device_links_write_unlock();
1505 
1506 			wait_for_device_probe();
1507 			goto start;
1508 		}
1509 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510 		if (status == DL_STATE_ACTIVE) {
1511 			struct device *consumer = link->consumer;
1512 
1513 			get_device(consumer);
1514 
1515 			device_links_write_unlock();
1516 
1517 			device_release_driver_internal(consumer, NULL,
1518 						       consumer->parent);
1519 			put_device(consumer);
1520 			goto start;
1521 		}
1522 	}
1523 
1524 	device_links_write_unlock();
1525 }
1526 
1527 /**
1528  * device_links_purge - Delete existing links to other devices.
1529  * @dev: Target device.
1530  */
1531 static void device_links_purge(struct device *dev)
1532 {
1533 	struct device_link *link, *ln;
1534 
1535 	if (dev->class == &devlink_class)
1536 		return;
1537 
1538 	/*
1539 	 * Delete all of the remaining links from this device to any other
1540 	 * devices (either consumers or suppliers).
1541 	 */
1542 	device_links_write_lock();
1543 
1544 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1545 		WARN_ON(link->status == DL_STATE_ACTIVE);
1546 		__device_link_del(&link->kref);
1547 	}
1548 
1549 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1550 		WARN_ON(link->status != DL_STATE_DORMANT &&
1551 			link->status != DL_STATE_NONE);
1552 		__device_link_del(&link->kref);
1553 	}
1554 
1555 	device_links_write_unlock();
1556 }
1557 
1558 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1559 					 DL_FLAG_SYNC_STATE_ONLY)
1560 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1561 					 DL_FLAG_AUTOPROBE_CONSUMER)
1562 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1563 					 DL_FLAG_PM_RUNTIME)
1564 
1565 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1566 static int __init fw_devlink_setup(char *arg)
1567 {
1568 	if (!arg)
1569 		return -EINVAL;
1570 
1571 	if (strcmp(arg, "off") == 0) {
1572 		fw_devlink_flags = 0;
1573 	} else if (strcmp(arg, "permissive") == 0) {
1574 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1575 	} else if (strcmp(arg, "on") == 0) {
1576 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1577 	} else if (strcmp(arg, "rpm") == 0) {
1578 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1579 	}
1580 	return 0;
1581 }
1582 early_param("fw_devlink", fw_devlink_setup);
1583 
1584 static bool fw_devlink_strict;
1585 static int __init fw_devlink_strict_setup(char *arg)
1586 {
1587 	return strtobool(arg, &fw_devlink_strict);
1588 }
1589 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1590 
1591 u32 fw_devlink_get_flags(void)
1592 {
1593 	return fw_devlink_flags;
1594 }
1595 
1596 static bool fw_devlink_is_permissive(void)
1597 {
1598 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1599 }
1600 
1601 bool fw_devlink_is_strict(void)
1602 {
1603 	return fw_devlink_strict && !fw_devlink_is_permissive();
1604 }
1605 
1606 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1607 {
1608 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1609 		return;
1610 
1611 	fwnode_call_int_op(fwnode, add_links);
1612 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1613 }
1614 
1615 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1616 {
1617 	struct fwnode_handle *child = NULL;
1618 
1619 	fw_devlink_parse_fwnode(fwnode);
1620 
1621 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1622 		fw_devlink_parse_fwtree(child);
1623 }
1624 
1625 static void fw_devlink_relax_link(struct device_link *link)
1626 {
1627 	if (!(link->flags & DL_FLAG_INFERRED))
1628 		return;
1629 
1630 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1631 		return;
1632 
1633 	pm_runtime_drop_link(link);
1634 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1635 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1636 		dev_name(link->supplier));
1637 }
1638 
1639 static int fw_devlink_no_driver(struct device *dev, void *data)
1640 {
1641 	struct device_link *link = to_devlink(dev);
1642 
1643 	if (!link->supplier->can_match)
1644 		fw_devlink_relax_link(link);
1645 
1646 	return 0;
1647 }
1648 
1649 void fw_devlink_drivers_done(void)
1650 {
1651 	fw_devlink_drv_reg_done = true;
1652 	device_links_write_lock();
1653 	class_for_each_device(&devlink_class, NULL, NULL,
1654 			      fw_devlink_no_driver);
1655 	device_links_write_unlock();
1656 }
1657 
1658 static void fw_devlink_unblock_consumers(struct device *dev)
1659 {
1660 	struct device_link *link;
1661 
1662 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1663 		return;
1664 
1665 	device_links_write_lock();
1666 	list_for_each_entry(link, &dev->links.consumers, s_node)
1667 		fw_devlink_relax_link(link);
1668 	device_links_write_unlock();
1669 }
1670 
1671 /**
1672  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1673  * @con: Device to check dependencies for.
1674  * @sup: Device to check against.
1675  *
1676  * Check if @sup depends on @con or any device dependent on it (its child or
1677  * its consumer etc).  When such a cyclic dependency is found, convert all
1678  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1679  * This is the equivalent of doing fw_devlink=permissive just between the
1680  * devices in the cycle. We need to do this because, at this point, fw_devlink
1681  * can't tell which of these dependencies is not a real dependency.
1682  *
1683  * Return 1 if a cycle is found. Otherwise, return 0.
1684  */
1685 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1686 {
1687 	struct device_link *link;
1688 	int ret;
1689 
1690 	if (con == sup)
1691 		return 1;
1692 
1693 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1694 	if (ret)
1695 		return ret;
1696 
1697 	list_for_each_entry(link, &con->links.consumers, s_node) {
1698 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1699 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1700 			continue;
1701 
1702 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1703 			continue;
1704 
1705 		ret = 1;
1706 
1707 		fw_devlink_relax_link(link);
1708 	}
1709 	return ret;
1710 }
1711 
1712 /**
1713  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1714  * @con: consumer device for the device link
1715  * @sup_handle: fwnode handle of supplier
1716  * @flags: devlink flags
1717  *
1718  * This function will try to create a device link between the consumer device
1719  * @con and the supplier device represented by @sup_handle.
1720  *
1721  * The supplier has to be provided as a fwnode because incorrect cycles in
1722  * fwnode links can sometimes cause the supplier device to never be created.
1723  * This function detects such cases and returns an error if it cannot create a
1724  * device link from the consumer to a missing supplier.
1725  *
1726  * Returns,
1727  * 0 on successfully creating a device link
1728  * -EINVAL if the device link cannot be created as expected
1729  * -EAGAIN if the device link cannot be created right now, but it may be
1730  *  possible to do that in the future
1731  */
1732 static int fw_devlink_create_devlink(struct device *con,
1733 				     struct fwnode_handle *sup_handle, u32 flags)
1734 {
1735 	struct device *sup_dev;
1736 	int ret = 0;
1737 
1738 	/*
1739 	 * In some cases, a device P might also be a supplier to its child node
1740 	 * C. However, this would defer the probe of C until the probe of P
1741 	 * completes successfully. This is perfectly fine in the device driver
1742 	 * model. device_add() doesn't guarantee probe completion of the device
1743 	 * by the time it returns.
1744 	 *
1745 	 * However, there are a few drivers that assume C will finish probing
1746 	 * as soon as it's added and before P finishes probing. So, we provide
1747 	 * a flag to let fw_devlink know not to delay the probe of C until the
1748 	 * probe of P completes successfully.
1749 	 *
1750 	 * When such a flag is set, we can't create device links where P is the
1751 	 * supplier of C as that would delay the probe of C.
1752 	 */
1753 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1754 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1755 		return -EINVAL;
1756 
1757 	sup_dev = get_dev_from_fwnode(sup_handle);
1758 	if (sup_dev) {
1759 		/*
1760 		 * If it's one of those drivers that don't actually bind to
1761 		 * their device using driver core, then don't wait on this
1762 		 * supplier device indefinitely.
1763 		 */
1764 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1765 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1766 			ret = -EINVAL;
1767 			goto out;
1768 		}
1769 
1770 		/*
1771 		 * If this fails, it is due to cycles in device links.  Just
1772 		 * give up on this link and treat it as invalid.
1773 		 */
1774 		if (!device_link_add(con, sup_dev, flags) &&
1775 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1776 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1777 				 dev_name(sup_dev));
1778 			device_links_write_lock();
1779 			fw_devlink_relax_cycle(con, sup_dev);
1780 			device_links_write_unlock();
1781 			device_link_add(con, sup_dev,
1782 					FW_DEVLINK_FLAGS_PERMISSIVE);
1783 			ret = -EINVAL;
1784 		}
1785 
1786 		goto out;
1787 	}
1788 
1789 	/* Supplier that's already initialized without a struct device. */
1790 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1791 		return -EINVAL;
1792 
1793 	/*
1794 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1795 	 * cycles. So cycle detection isn't necessary and shouldn't be
1796 	 * done.
1797 	 */
1798 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1799 		return -EAGAIN;
1800 
1801 	/*
1802 	 * If we can't find the supplier device from its fwnode, it might be
1803 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1804 	 * be broken by applying logic. Check for these types of cycles and
1805 	 * break them so that devices in the cycle probe properly.
1806 	 *
1807 	 * If the supplier's parent is dependent on the consumer, then the
1808 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1809 	 * can't tell which of the inferred dependencies are incorrect, don't
1810 	 * enforce probe ordering between any of the devices in this cyclic
1811 	 * dependency. Do this by relaxing all the fw_devlink device links in
1812 	 * this cycle and by treating the fwnode link between the consumer and
1813 	 * the supplier as an invalid dependency.
1814 	 */
1815 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1816 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1817 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1818 			 sup_handle, dev_name(sup_dev));
1819 		device_links_write_lock();
1820 		fw_devlink_relax_cycle(con, sup_dev);
1821 		device_links_write_unlock();
1822 		ret = -EINVAL;
1823 	} else {
1824 		/*
1825 		 * Can't check for cycles or no cycles. So let's try
1826 		 * again later.
1827 		 */
1828 		ret = -EAGAIN;
1829 	}
1830 
1831 out:
1832 	put_device(sup_dev);
1833 	return ret;
1834 }
1835 
1836 /**
1837  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1838  * @dev: Device that needs to be linked to its consumers
1839  *
1840  * This function looks at all the consumer fwnodes of @dev and creates device
1841  * links between the consumer device and @dev (supplier).
1842  *
1843  * If the consumer device has not been added yet, then this function creates a
1844  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1845  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1846  * sync_state() callback before the real consumer device gets to be added and
1847  * then probed.
1848  *
1849  * Once device links are created from the real consumer to @dev (supplier), the
1850  * fwnode links are deleted.
1851  */
1852 static void __fw_devlink_link_to_consumers(struct device *dev)
1853 {
1854 	struct fwnode_handle *fwnode = dev->fwnode;
1855 	struct fwnode_link *link, *tmp;
1856 
1857 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1858 		u32 dl_flags = fw_devlink_get_flags();
1859 		struct device *con_dev;
1860 		bool own_link = true;
1861 		int ret;
1862 
1863 		con_dev = get_dev_from_fwnode(link->consumer);
1864 		/*
1865 		 * If consumer device is not available yet, make a "proxy"
1866 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1867 		 * the supplier device. This is necessary to make sure the
1868 		 * supplier doesn't get a sync_state() callback before the real
1869 		 * consumer can create a device link to the supplier.
1870 		 *
1871 		 * This proxy link step is needed to handle the case where the
1872 		 * consumer's parent device is added before the supplier.
1873 		 */
1874 		if (!con_dev) {
1875 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1876 			/*
1877 			 * However, if the consumer's parent device is also the
1878 			 * parent of the supplier, don't create a
1879 			 * consumer-supplier link from the parent to its child
1880 			 * device. Such a dependency is impossible.
1881 			 */
1882 			if (con_dev &&
1883 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1884 				put_device(con_dev);
1885 				con_dev = NULL;
1886 			} else {
1887 				own_link = false;
1888 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1889 			}
1890 		}
1891 
1892 		if (!con_dev)
1893 			continue;
1894 
1895 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1896 		put_device(con_dev);
1897 		if (!own_link || ret == -EAGAIN)
1898 			continue;
1899 
1900 		__fwnode_link_del(link);
1901 	}
1902 }
1903 
1904 /**
1905  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1906  * @dev: The consumer device that needs to be linked to its suppliers
1907  * @fwnode: Root of the fwnode tree that is used to create device links
1908  *
1909  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1910  * @fwnode and creates device links between @dev (consumer) and all the
1911  * supplier devices of the entire fwnode tree at @fwnode.
1912  *
1913  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1914  * and the real suppliers of @dev. Once these device links are created, the
1915  * fwnode links are deleted. When such device links are successfully created,
1916  * this function is called recursively on those supplier devices. This is
1917  * needed to detect and break some invalid cycles in fwnode links.  See
1918  * fw_devlink_create_devlink() for more details.
1919  *
1920  * In addition, it also looks at all the suppliers of the entire fwnode tree
1921  * because some of the child devices of @dev that have not been added yet
1922  * (because @dev hasn't probed) might already have their suppliers added to
1923  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1924  * @dev (consumer) and these suppliers to make sure they don't execute their
1925  * sync_state() callbacks before these child devices have a chance to create
1926  * their device links. The fwnode links that correspond to the child devices
1927  * aren't delete because they are needed later to create the device links
1928  * between the real consumer and supplier devices.
1929  */
1930 static void __fw_devlink_link_to_suppliers(struct device *dev,
1931 					   struct fwnode_handle *fwnode)
1932 {
1933 	bool own_link = (dev->fwnode == fwnode);
1934 	struct fwnode_link *link, *tmp;
1935 	struct fwnode_handle *child = NULL;
1936 	u32 dl_flags;
1937 
1938 	if (own_link)
1939 		dl_flags = fw_devlink_get_flags();
1940 	else
1941 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1942 
1943 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1944 		int ret;
1945 		struct device *sup_dev;
1946 		struct fwnode_handle *sup = link->supplier;
1947 
1948 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1949 		if (!own_link || ret == -EAGAIN)
1950 			continue;
1951 
1952 		__fwnode_link_del(link);
1953 
1954 		/* If no device link was created, nothing more to do. */
1955 		if (ret)
1956 			continue;
1957 
1958 		/*
1959 		 * If a device link was successfully created to a supplier, we
1960 		 * now need to try and link the supplier to all its suppliers.
1961 		 *
1962 		 * This is needed to detect and delete false dependencies in
1963 		 * fwnode links that haven't been converted to a device link
1964 		 * yet. See comments in fw_devlink_create_devlink() for more
1965 		 * details on the false dependency.
1966 		 *
1967 		 * Without deleting these false dependencies, some devices will
1968 		 * never probe because they'll keep waiting for their false
1969 		 * dependency fwnode links to be converted to device links.
1970 		 */
1971 		sup_dev = get_dev_from_fwnode(sup);
1972 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1973 		put_device(sup_dev);
1974 	}
1975 
1976 	/*
1977 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1978 	 * all the descendants. This proxy link step is needed to handle the
1979 	 * case where the supplier is added before the consumer's parent device
1980 	 * (@dev).
1981 	 */
1982 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1983 		__fw_devlink_link_to_suppliers(dev, child);
1984 }
1985 
1986 static void fw_devlink_link_device(struct device *dev)
1987 {
1988 	struct fwnode_handle *fwnode = dev->fwnode;
1989 
1990 	if (!fw_devlink_flags)
1991 		return;
1992 
1993 	fw_devlink_parse_fwtree(fwnode);
1994 
1995 	mutex_lock(&fwnode_link_lock);
1996 	__fw_devlink_link_to_consumers(dev);
1997 	__fw_devlink_link_to_suppliers(dev, fwnode);
1998 	mutex_unlock(&fwnode_link_lock);
1999 }
2000 
2001 /* Device links support end. */
2002 
2003 int (*platform_notify)(struct device *dev) = NULL;
2004 int (*platform_notify_remove)(struct device *dev) = NULL;
2005 static struct kobject *dev_kobj;
2006 struct kobject *sysfs_dev_char_kobj;
2007 struct kobject *sysfs_dev_block_kobj;
2008 
2009 static DEFINE_MUTEX(device_hotplug_lock);
2010 
2011 void lock_device_hotplug(void)
2012 {
2013 	mutex_lock(&device_hotplug_lock);
2014 }
2015 
2016 void unlock_device_hotplug(void)
2017 {
2018 	mutex_unlock(&device_hotplug_lock);
2019 }
2020 
2021 int lock_device_hotplug_sysfs(void)
2022 {
2023 	if (mutex_trylock(&device_hotplug_lock))
2024 		return 0;
2025 
2026 	/* Avoid busy looping (5 ms of sleep should do). */
2027 	msleep(5);
2028 	return restart_syscall();
2029 }
2030 
2031 #ifdef CONFIG_BLOCK
2032 static inline int device_is_not_partition(struct device *dev)
2033 {
2034 	return !(dev->type == &part_type);
2035 }
2036 #else
2037 static inline int device_is_not_partition(struct device *dev)
2038 {
2039 	return 1;
2040 }
2041 #endif
2042 
2043 static void device_platform_notify(struct device *dev)
2044 {
2045 	acpi_device_notify(dev);
2046 
2047 	software_node_notify(dev);
2048 
2049 	if (platform_notify)
2050 		platform_notify(dev);
2051 }
2052 
2053 static void device_platform_notify_remove(struct device *dev)
2054 {
2055 	acpi_device_notify_remove(dev);
2056 
2057 	software_node_notify_remove(dev);
2058 
2059 	if (platform_notify_remove)
2060 		platform_notify_remove(dev);
2061 }
2062 
2063 /**
2064  * dev_driver_string - Return a device's driver name, if at all possible
2065  * @dev: struct device to get the name of
2066  *
2067  * Will return the device's driver's name if it is bound to a device.  If
2068  * the device is not bound to a driver, it will return the name of the bus
2069  * it is attached to.  If it is not attached to a bus either, an empty
2070  * string will be returned.
2071  */
2072 const char *dev_driver_string(const struct device *dev)
2073 {
2074 	struct device_driver *drv;
2075 
2076 	/* dev->driver can change to NULL underneath us because of unbinding,
2077 	 * so be careful about accessing it.  dev->bus and dev->class should
2078 	 * never change once they are set, so they don't need special care.
2079 	 */
2080 	drv = READ_ONCE(dev->driver);
2081 	return drv ? drv->name : dev_bus_name(dev);
2082 }
2083 EXPORT_SYMBOL(dev_driver_string);
2084 
2085 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2086 
2087 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2088 			     char *buf)
2089 {
2090 	struct device_attribute *dev_attr = to_dev_attr(attr);
2091 	struct device *dev = kobj_to_dev(kobj);
2092 	ssize_t ret = -EIO;
2093 
2094 	if (dev_attr->show)
2095 		ret = dev_attr->show(dev, dev_attr, buf);
2096 	if (ret >= (ssize_t)PAGE_SIZE) {
2097 		printk("dev_attr_show: %pS returned bad count\n",
2098 				dev_attr->show);
2099 	}
2100 	return ret;
2101 }
2102 
2103 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2104 			      const char *buf, size_t count)
2105 {
2106 	struct device_attribute *dev_attr = to_dev_attr(attr);
2107 	struct device *dev = kobj_to_dev(kobj);
2108 	ssize_t ret = -EIO;
2109 
2110 	if (dev_attr->store)
2111 		ret = dev_attr->store(dev, dev_attr, buf, count);
2112 	return ret;
2113 }
2114 
2115 static const struct sysfs_ops dev_sysfs_ops = {
2116 	.show	= dev_attr_show,
2117 	.store	= dev_attr_store,
2118 };
2119 
2120 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2121 
2122 ssize_t device_store_ulong(struct device *dev,
2123 			   struct device_attribute *attr,
2124 			   const char *buf, size_t size)
2125 {
2126 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2127 	int ret;
2128 	unsigned long new;
2129 
2130 	ret = kstrtoul(buf, 0, &new);
2131 	if (ret)
2132 		return ret;
2133 	*(unsigned long *)(ea->var) = new;
2134 	/* Always return full write size even if we didn't consume all */
2135 	return size;
2136 }
2137 EXPORT_SYMBOL_GPL(device_store_ulong);
2138 
2139 ssize_t device_show_ulong(struct device *dev,
2140 			  struct device_attribute *attr,
2141 			  char *buf)
2142 {
2143 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2144 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2145 }
2146 EXPORT_SYMBOL_GPL(device_show_ulong);
2147 
2148 ssize_t device_store_int(struct device *dev,
2149 			 struct device_attribute *attr,
2150 			 const char *buf, size_t size)
2151 {
2152 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2153 	int ret;
2154 	long new;
2155 
2156 	ret = kstrtol(buf, 0, &new);
2157 	if (ret)
2158 		return ret;
2159 
2160 	if (new > INT_MAX || new < INT_MIN)
2161 		return -EINVAL;
2162 	*(int *)(ea->var) = new;
2163 	/* Always return full write size even if we didn't consume all */
2164 	return size;
2165 }
2166 EXPORT_SYMBOL_GPL(device_store_int);
2167 
2168 ssize_t device_show_int(struct device *dev,
2169 			struct device_attribute *attr,
2170 			char *buf)
2171 {
2172 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2173 
2174 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2175 }
2176 EXPORT_SYMBOL_GPL(device_show_int);
2177 
2178 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2179 			  const char *buf, size_t size)
2180 {
2181 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2182 
2183 	if (strtobool(buf, ea->var) < 0)
2184 		return -EINVAL;
2185 
2186 	return size;
2187 }
2188 EXPORT_SYMBOL_GPL(device_store_bool);
2189 
2190 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2191 			 char *buf)
2192 {
2193 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2194 
2195 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2196 }
2197 EXPORT_SYMBOL_GPL(device_show_bool);
2198 
2199 /**
2200  * device_release - free device structure.
2201  * @kobj: device's kobject.
2202  *
2203  * This is called once the reference count for the object
2204  * reaches 0. We forward the call to the device's release
2205  * method, which should handle actually freeing the structure.
2206  */
2207 static void device_release(struct kobject *kobj)
2208 {
2209 	struct device *dev = kobj_to_dev(kobj);
2210 	struct device_private *p = dev->p;
2211 
2212 	/*
2213 	 * Some platform devices are driven without driver attached
2214 	 * and managed resources may have been acquired.  Make sure
2215 	 * all resources are released.
2216 	 *
2217 	 * Drivers still can add resources into device after device
2218 	 * is deleted but alive, so release devres here to avoid
2219 	 * possible memory leak.
2220 	 */
2221 	devres_release_all(dev);
2222 
2223 	kfree(dev->dma_range_map);
2224 
2225 	if (dev->release)
2226 		dev->release(dev);
2227 	else if (dev->type && dev->type->release)
2228 		dev->type->release(dev);
2229 	else if (dev->class && dev->class->dev_release)
2230 		dev->class->dev_release(dev);
2231 	else
2232 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2233 			dev_name(dev));
2234 	kfree(p);
2235 }
2236 
2237 static const void *device_namespace(struct kobject *kobj)
2238 {
2239 	struct device *dev = kobj_to_dev(kobj);
2240 	const void *ns = NULL;
2241 
2242 	if (dev->class && dev->class->ns_type)
2243 		ns = dev->class->namespace(dev);
2244 
2245 	return ns;
2246 }
2247 
2248 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2249 {
2250 	struct device *dev = kobj_to_dev(kobj);
2251 
2252 	if (dev->class && dev->class->get_ownership)
2253 		dev->class->get_ownership(dev, uid, gid);
2254 }
2255 
2256 static struct kobj_type device_ktype = {
2257 	.release	= device_release,
2258 	.sysfs_ops	= &dev_sysfs_ops,
2259 	.namespace	= device_namespace,
2260 	.get_ownership	= device_get_ownership,
2261 };
2262 
2263 
2264 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2265 {
2266 	struct kobj_type *ktype = get_ktype(kobj);
2267 
2268 	if (ktype == &device_ktype) {
2269 		struct device *dev = kobj_to_dev(kobj);
2270 		if (dev->bus)
2271 			return 1;
2272 		if (dev->class)
2273 			return 1;
2274 	}
2275 	return 0;
2276 }
2277 
2278 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2279 {
2280 	struct device *dev = kobj_to_dev(kobj);
2281 
2282 	if (dev->bus)
2283 		return dev->bus->name;
2284 	if (dev->class)
2285 		return dev->class->name;
2286 	return NULL;
2287 }
2288 
2289 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2290 		      struct kobj_uevent_env *env)
2291 {
2292 	struct device *dev = kobj_to_dev(kobj);
2293 	int retval = 0;
2294 
2295 	/* add device node properties if present */
2296 	if (MAJOR(dev->devt)) {
2297 		const char *tmp;
2298 		const char *name;
2299 		umode_t mode = 0;
2300 		kuid_t uid = GLOBAL_ROOT_UID;
2301 		kgid_t gid = GLOBAL_ROOT_GID;
2302 
2303 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2304 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2305 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2306 		if (name) {
2307 			add_uevent_var(env, "DEVNAME=%s", name);
2308 			if (mode)
2309 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2310 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2311 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2312 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2313 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2314 			kfree(tmp);
2315 		}
2316 	}
2317 
2318 	if (dev->type && dev->type->name)
2319 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2320 
2321 	if (dev->driver)
2322 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2323 
2324 	/* Add common DT information about the device */
2325 	of_device_uevent(dev, env);
2326 
2327 	/* have the bus specific function add its stuff */
2328 	if (dev->bus && dev->bus->uevent) {
2329 		retval = dev->bus->uevent(dev, env);
2330 		if (retval)
2331 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2332 				 dev_name(dev), __func__, retval);
2333 	}
2334 
2335 	/* have the class specific function add its stuff */
2336 	if (dev->class && dev->class->dev_uevent) {
2337 		retval = dev->class->dev_uevent(dev, env);
2338 		if (retval)
2339 			pr_debug("device: '%s': %s: class uevent() "
2340 				 "returned %d\n", dev_name(dev),
2341 				 __func__, retval);
2342 	}
2343 
2344 	/* have the device type specific function add its stuff */
2345 	if (dev->type && dev->type->uevent) {
2346 		retval = dev->type->uevent(dev, env);
2347 		if (retval)
2348 			pr_debug("device: '%s': %s: dev_type uevent() "
2349 				 "returned %d\n", dev_name(dev),
2350 				 __func__, retval);
2351 	}
2352 
2353 	return retval;
2354 }
2355 
2356 static const struct kset_uevent_ops device_uevent_ops = {
2357 	.filter =	dev_uevent_filter,
2358 	.name =		dev_uevent_name,
2359 	.uevent =	dev_uevent,
2360 };
2361 
2362 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2363 			   char *buf)
2364 {
2365 	struct kobject *top_kobj;
2366 	struct kset *kset;
2367 	struct kobj_uevent_env *env = NULL;
2368 	int i;
2369 	int len = 0;
2370 	int retval;
2371 
2372 	/* search the kset, the device belongs to */
2373 	top_kobj = &dev->kobj;
2374 	while (!top_kobj->kset && top_kobj->parent)
2375 		top_kobj = top_kobj->parent;
2376 	if (!top_kobj->kset)
2377 		goto out;
2378 
2379 	kset = top_kobj->kset;
2380 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2381 		goto out;
2382 
2383 	/* respect filter */
2384 	if (kset->uevent_ops && kset->uevent_ops->filter)
2385 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2386 			goto out;
2387 
2388 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2389 	if (!env)
2390 		return -ENOMEM;
2391 
2392 	/* let the kset specific function add its keys */
2393 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2394 	if (retval)
2395 		goto out;
2396 
2397 	/* copy keys to file */
2398 	for (i = 0; i < env->envp_idx; i++)
2399 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2400 out:
2401 	kfree(env);
2402 	return len;
2403 }
2404 
2405 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2406 			    const char *buf, size_t count)
2407 {
2408 	int rc;
2409 
2410 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2411 
2412 	if (rc) {
2413 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2414 		return rc;
2415 	}
2416 
2417 	return count;
2418 }
2419 static DEVICE_ATTR_RW(uevent);
2420 
2421 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2422 			   char *buf)
2423 {
2424 	bool val;
2425 
2426 	device_lock(dev);
2427 	val = !dev->offline;
2428 	device_unlock(dev);
2429 	return sysfs_emit(buf, "%u\n", val);
2430 }
2431 
2432 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2433 			    const char *buf, size_t count)
2434 {
2435 	bool val;
2436 	int ret;
2437 
2438 	ret = strtobool(buf, &val);
2439 	if (ret < 0)
2440 		return ret;
2441 
2442 	ret = lock_device_hotplug_sysfs();
2443 	if (ret)
2444 		return ret;
2445 
2446 	ret = val ? device_online(dev) : device_offline(dev);
2447 	unlock_device_hotplug();
2448 	return ret < 0 ? ret : count;
2449 }
2450 static DEVICE_ATTR_RW(online);
2451 
2452 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2453 			      char *buf)
2454 {
2455 	const char *loc;
2456 
2457 	switch (dev->removable) {
2458 	case DEVICE_REMOVABLE:
2459 		loc = "removable";
2460 		break;
2461 	case DEVICE_FIXED:
2462 		loc = "fixed";
2463 		break;
2464 	default:
2465 		loc = "unknown";
2466 	}
2467 	return sysfs_emit(buf, "%s\n", loc);
2468 }
2469 static DEVICE_ATTR_RO(removable);
2470 
2471 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2472 {
2473 	return sysfs_create_groups(&dev->kobj, groups);
2474 }
2475 EXPORT_SYMBOL_GPL(device_add_groups);
2476 
2477 void device_remove_groups(struct device *dev,
2478 			  const struct attribute_group **groups)
2479 {
2480 	sysfs_remove_groups(&dev->kobj, groups);
2481 }
2482 EXPORT_SYMBOL_GPL(device_remove_groups);
2483 
2484 union device_attr_group_devres {
2485 	const struct attribute_group *group;
2486 	const struct attribute_group **groups;
2487 };
2488 
2489 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2490 {
2491 	return ((union device_attr_group_devres *)res)->group == data;
2492 }
2493 
2494 static void devm_attr_group_remove(struct device *dev, void *res)
2495 {
2496 	union device_attr_group_devres *devres = res;
2497 	const struct attribute_group *group = devres->group;
2498 
2499 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2500 	sysfs_remove_group(&dev->kobj, group);
2501 }
2502 
2503 static void devm_attr_groups_remove(struct device *dev, void *res)
2504 {
2505 	union device_attr_group_devres *devres = res;
2506 	const struct attribute_group **groups = devres->groups;
2507 
2508 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2509 	sysfs_remove_groups(&dev->kobj, groups);
2510 }
2511 
2512 /**
2513  * devm_device_add_group - given a device, create a managed attribute group
2514  * @dev:	The device to create the group for
2515  * @grp:	The attribute group to create
2516  *
2517  * This function creates a group for the first time.  It will explicitly
2518  * warn and error if any of the attribute files being created already exist.
2519  *
2520  * Returns 0 on success or error code on failure.
2521  */
2522 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2523 {
2524 	union device_attr_group_devres *devres;
2525 	int error;
2526 
2527 	devres = devres_alloc(devm_attr_group_remove,
2528 			      sizeof(*devres), GFP_KERNEL);
2529 	if (!devres)
2530 		return -ENOMEM;
2531 
2532 	error = sysfs_create_group(&dev->kobj, grp);
2533 	if (error) {
2534 		devres_free(devres);
2535 		return error;
2536 	}
2537 
2538 	devres->group = grp;
2539 	devres_add(dev, devres);
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(devm_device_add_group);
2543 
2544 /**
2545  * devm_device_remove_group: remove a managed group from a device
2546  * @dev:	device to remove the group from
2547  * @grp:	group to remove
2548  *
2549  * This function removes a group of attributes from a device. The attributes
2550  * previously have to have been created for this group, otherwise it will fail.
2551  */
2552 void devm_device_remove_group(struct device *dev,
2553 			      const struct attribute_group *grp)
2554 {
2555 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2556 			       devm_attr_group_match,
2557 			       /* cast away const */ (void *)grp));
2558 }
2559 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2560 
2561 /**
2562  * devm_device_add_groups - create a bunch of managed attribute groups
2563  * @dev:	The device to create the group for
2564  * @groups:	The attribute groups to create, NULL terminated
2565  *
2566  * This function creates a bunch of managed attribute groups.  If an error
2567  * occurs when creating a group, all previously created groups will be
2568  * removed, unwinding everything back to the original state when this
2569  * function was called.  It will explicitly warn and error if any of the
2570  * attribute files being created already exist.
2571  *
2572  * Returns 0 on success or error code from sysfs_create_group on failure.
2573  */
2574 int devm_device_add_groups(struct device *dev,
2575 			   const struct attribute_group **groups)
2576 {
2577 	union device_attr_group_devres *devres;
2578 	int error;
2579 
2580 	devres = devres_alloc(devm_attr_groups_remove,
2581 			      sizeof(*devres), GFP_KERNEL);
2582 	if (!devres)
2583 		return -ENOMEM;
2584 
2585 	error = sysfs_create_groups(&dev->kobj, groups);
2586 	if (error) {
2587 		devres_free(devres);
2588 		return error;
2589 	}
2590 
2591 	devres->groups = groups;
2592 	devres_add(dev, devres);
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2596 
2597 /**
2598  * devm_device_remove_groups - remove a list of managed groups
2599  *
2600  * @dev:	The device for the groups to be removed from
2601  * @groups:	NULL terminated list of groups to be removed
2602  *
2603  * If groups is not NULL, remove the specified groups from the device.
2604  */
2605 void devm_device_remove_groups(struct device *dev,
2606 			       const struct attribute_group **groups)
2607 {
2608 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2609 			       devm_attr_group_match,
2610 			       /* cast away const */ (void *)groups));
2611 }
2612 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2613 
2614 static int device_add_attrs(struct device *dev)
2615 {
2616 	struct class *class = dev->class;
2617 	const struct device_type *type = dev->type;
2618 	int error;
2619 
2620 	if (class) {
2621 		error = device_add_groups(dev, class->dev_groups);
2622 		if (error)
2623 			return error;
2624 	}
2625 
2626 	if (type) {
2627 		error = device_add_groups(dev, type->groups);
2628 		if (error)
2629 			goto err_remove_class_groups;
2630 	}
2631 
2632 	error = device_add_groups(dev, dev->groups);
2633 	if (error)
2634 		goto err_remove_type_groups;
2635 
2636 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2637 		error = device_create_file(dev, &dev_attr_online);
2638 		if (error)
2639 			goto err_remove_dev_groups;
2640 	}
2641 
2642 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2643 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2644 		if (error)
2645 			goto err_remove_dev_online;
2646 	}
2647 
2648 	if (dev_removable_is_valid(dev)) {
2649 		error = device_create_file(dev, &dev_attr_removable);
2650 		if (error)
2651 			goto err_remove_dev_waiting_for_supplier;
2652 	}
2653 
2654 	return 0;
2655 
2656  err_remove_dev_waiting_for_supplier:
2657 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2658  err_remove_dev_online:
2659 	device_remove_file(dev, &dev_attr_online);
2660  err_remove_dev_groups:
2661 	device_remove_groups(dev, dev->groups);
2662  err_remove_type_groups:
2663 	if (type)
2664 		device_remove_groups(dev, type->groups);
2665  err_remove_class_groups:
2666 	if (class)
2667 		device_remove_groups(dev, class->dev_groups);
2668 
2669 	return error;
2670 }
2671 
2672 static void device_remove_attrs(struct device *dev)
2673 {
2674 	struct class *class = dev->class;
2675 	const struct device_type *type = dev->type;
2676 
2677 	device_remove_file(dev, &dev_attr_removable);
2678 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2679 	device_remove_file(dev, &dev_attr_online);
2680 	device_remove_groups(dev, dev->groups);
2681 
2682 	if (type)
2683 		device_remove_groups(dev, type->groups);
2684 
2685 	if (class)
2686 		device_remove_groups(dev, class->dev_groups);
2687 }
2688 
2689 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2690 			char *buf)
2691 {
2692 	return print_dev_t(buf, dev->devt);
2693 }
2694 static DEVICE_ATTR_RO(dev);
2695 
2696 /* /sys/devices/ */
2697 struct kset *devices_kset;
2698 
2699 /**
2700  * devices_kset_move_before - Move device in the devices_kset's list.
2701  * @deva: Device to move.
2702  * @devb: Device @deva should come before.
2703  */
2704 static void devices_kset_move_before(struct device *deva, struct device *devb)
2705 {
2706 	if (!devices_kset)
2707 		return;
2708 	pr_debug("devices_kset: Moving %s before %s\n",
2709 		 dev_name(deva), dev_name(devb));
2710 	spin_lock(&devices_kset->list_lock);
2711 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2712 	spin_unlock(&devices_kset->list_lock);
2713 }
2714 
2715 /**
2716  * devices_kset_move_after - Move device in the devices_kset's list.
2717  * @deva: Device to move
2718  * @devb: Device @deva should come after.
2719  */
2720 static void devices_kset_move_after(struct device *deva, struct device *devb)
2721 {
2722 	if (!devices_kset)
2723 		return;
2724 	pr_debug("devices_kset: Moving %s after %s\n",
2725 		 dev_name(deva), dev_name(devb));
2726 	spin_lock(&devices_kset->list_lock);
2727 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2728 	spin_unlock(&devices_kset->list_lock);
2729 }
2730 
2731 /**
2732  * devices_kset_move_last - move the device to the end of devices_kset's list.
2733  * @dev: device to move
2734  */
2735 void devices_kset_move_last(struct device *dev)
2736 {
2737 	if (!devices_kset)
2738 		return;
2739 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2740 	spin_lock(&devices_kset->list_lock);
2741 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2742 	spin_unlock(&devices_kset->list_lock);
2743 }
2744 
2745 /**
2746  * device_create_file - create sysfs attribute file for device.
2747  * @dev: device.
2748  * @attr: device attribute descriptor.
2749  */
2750 int device_create_file(struct device *dev,
2751 		       const struct device_attribute *attr)
2752 {
2753 	int error = 0;
2754 
2755 	if (dev) {
2756 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2757 			"Attribute %s: write permission without 'store'\n",
2758 			attr->attr.name);
2759 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2760 			"Attribute %s: read permission without 'show'\n",
2761 			attr->attr.name);
2762 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2763 	}
2764 
2765 	return error;
2766 }
2767 EXPORT_SYMBOL_GPL(device_create_file);
2768 
2769 /**
2770  * device_remove_file - remove sysfs attribute file.
2771  * @dev: device.
2772  * @attr: device attribute descriptor.
2773  */
2774 void device_remove_file(struct device *dev,
2775 			const struct device_attribute *attr)
2776 {
2777 	if (dev)
2778 		sysfs_remove_file(&dev->kobj, &attr->attr);
2779 }
2780 EXPORT_SYMBOL_GPL(device_remove_file);
2781 
2782 /**
2783  * device_remove_file_self - remove sysfs attribute file from its own method.
2784  * @dev: device.
2785  * @attr: device attribute descriptor.
2786  *
2787  * See kernfs_remove_self() for details.
2788  */
2789 bool device_remove_file_self(struct device *dev,
2790 			     const struct device_attribute *attr)
2791 {
2792 	if (dev)
2793 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2794 	else
2795 		return false;
2796 }
2797 EXPORT_SYMBOL_GPL(device_remove_file_self);
2798 
2799 /**
2800  * device_create_bin_file - create sysfs binary attribute file for device.
2801  * @dev: device.
2802  * @attr: device binary attribute descriptor.
2803  */
2804 int device_create_bin_file(struct device *dev,
2805 			   const struct bin_attribute *attr)
2806 {
2807 	int error = -EINVAL;
2808 	if (dev)
2809 		error = sysfs_create_bin_file(&dev->kobj, attr);
2810 	return error;
2811 }
2812 EXPORT_SYMBOL_GPL(device_create_bin_file);
2813 
2814 /**
2815  * device_remove_bin_file - remove sysfs binary attribute file
2816  * @dev: device.
2817  * @attr: device binary attribute descriptor.
2818  */
2819 void device_remove_bin_file(struct device *dev,
2820 			    const struct bin_attribute *attr)
2821 {
2822 	if (dev)
2823 		sysfs_remove_bin_file(&dev->kobj, attr);
2824 }
2825 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2826 
2827 static void klist_children_get(struct klist_node *n)
2828 {
2829 	struct device_private *p = to_device_private_parent(n);
2830 	struct device *dev = p->device;
2831 
2832 	get_device(dev);
2833 }
2834 
2835 static void klist_children_put(struct klist_node *n)
2836 {
2837 	struct device_private *p = to_device_private_parent(n);
2838 	struct device *dev = p->device;
2839 
2840 	put_device(dev);
2841 }
2842 
2843 /**
2844  * device_initialize - init device structure.
2845  * @dev: device.
2846  *
2847  * This prepares the device for use by other layers by initializing
2848  * its fields.
2849  * It is the first half of device_register(), if called by
2850  * that function, though it can also be called separately, so one
2851  * may use @dev's fields. In particular, get_device()/put_device()
2852  * may be used for reference counting of @dev after calling this
2853  * function.
2854  *
2855  * All fields in @dev must be initialized by the caller to 0, except
2856  * for those explicitly set to some other value.  The simplest
2857  * approach is to use kzalloc() to allocate the structure containing
2858  * @dev.
2859  *
2860  * NOTE: Use put_device() to give up your reference instead of freeing
2861  * @dev directly once you have called this function.
2862  */
2863 void device_initialize(struct device *dev)
2864 {
2865 	dev->kobj.kset = devices_kset;
2866 	kobject_init(&dev->kobj, &device_ktype);
2867 	INIT_LIST_HEAD(&dev->dma_pools);
2868 	mutex_init(&dev->mutex);
2869 #ifdef CONFIG_PROVE_LOCKING
2870 	mutex_init(&dev->lockdep_mutex);
2871 #endif
2872 	lockdep_set_novalidate_class(&dev->mutex);
2873 	spin_lock_init(&dev->devres_lock);
2874 	INIT_LIST_HEAD(&dev->devres_head);
2875 	device_pm_init(dev);
2876 	set_dev_node(dev, NUMA_NO_NODE);
2877 #ifdef CONFIG_GENERIC_MSI_IRQ
2878 	raw_spin_lock_init(&dev->msi_lock);
2879 	INIT_LIST_HEAD(&dev->msi_list);
2880 #endif
2881 	INIT_LIST_HEAD(&dev->links.consumers);
2882 	INIT_LIST_HEAD(&dev->links.suppliers);
2883 	INIT_LIST_HEAD(&dev->links.defer_sync);
2884 	dev->links.status = DL_DEV_NO_DRIVER;
2885 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2886     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2887     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2888 	dev->dma_coherent = dma_default_coherent;
2889 #endif
2890 #ifdef CONFIG_SWIOTLB
2891 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2892 #endif
2893 }
2894 EXPORT_SYMBOL_GPL(device_initialize);
2895 
2896 struct kobject *virtual_device_parent(struct device *dev)
2897 {
2898 	static struct kobject *virtual_dir = NULL;
2899 
2900 	if (!virtual_dir)
2901 		virtual_dir = kobject_create_and_add("virtual",
2902 						     &devices_kset->kobj);
2903 
2904 	return virtual_dir;
2905 }
2906 
2907 struct class_dir {
2908 	struct kobject kobj;
2909 	struct class *class;
2910 };
2911 
2912 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2913 
2914 static void class_dir_release(struct kobject *kobj)
2915 {
2916 	struct class_dir *dir = to_class_dir(kobj);
2917 	kfree(dir);
2918 }
2919 
2920 static const
2921 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2922 {
2923 	struct class_dir *dir = to_class_dir(kobj);
2924 	return dir->class->ns_type;
2925 }
2926 
2927 static struct kobj_type class_dir_ktype = {
2928 	.release	= class_dir_release,
2929 	.sysfs_ops	= &kobj_sysfs_ops,
2930 	.child_ns_type	= class_dir_child_ns_type
2931 };
2932 
2933 static struct kobject *
2934 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2935 {
2936 	struct class_dir *dir;
2937 	int retval;
2938 
2939 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2940 	if (!dir)
2941 		return ERR_PTR(-ENOMEM);
2942 
2943 	dir->class = class;
2944 	kobject_init(&dir->kobj, &class_dir_ktype);
2945 
2946 	dir->kobj.kset = &class->p->glue_dirs;
2947 
2948 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2949 	if (retval < 0) {
2950 		kobject_put(&dir->kobj);
2951 		return ERR_PTR(retval);
2952 	}
2953 	return &dir->kobj;
2954 }
2955 
2956 static DEFINE_MUTEX(gdp_mutex);
2957 
2958 static struct kobject *get_device_parent(struct device *dev,
2959 					 struct device *parent)
2960 {
2961 	if (dev->class) {
2962 		struct kobject *kobj = NULL;
2963 		struct kobject *parent_kobj;
2964 		struct kobject *k;
2965 
2966 #ifdef CONFIG_BLOCK
2967 		/* block disks show up in /sys/block */
2968 		if (sysfs_deprecated && dev->class == &block_class) {
2969 			if (parent && parent->class == &block_class)
2970 				return &parent->kobj;
2971 			return &block_class.p->subsys.kobj;
2972 		}
2973 #endif
2974 
2975 		/*
2976 		 * If we have no parent, we live in "virtual".
2977 		 * Class-devices with a non class-device as parent, live
2978 		 * in a "glue" directory to prevent namespace collisions.
2979 		 */
2980 		if (parent == NULL)
2981 			parent_kobj = virtual_device_parent(dev);
2982 		else if (parent->class && !dev->class->ns_type)
2983 			return &parent->kobj;
2984 		else
2985 			parent_kobj = &parent->kobj;
2986 
2987 		mutex_lock(&gdp_mutex);
2988 
2989 		/* find our class-directory at the parent and reference it */
2990 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2991 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2992 			if (k->parent == parent_kobj) {
2993 				kobj = kobject_get(k);
2994 				break;
2995 			}
2996 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2997 		if (kobj) {
2998 			mutex_unlock(&gdp_mutex);
2999 			return kobj;
3000 		}
3001 
3002 		/* or create a new class-directory at the parent device */
3003 		k = class_dir_create_and_add(dev->class, parent_kobj);
3004 		/* do not emit an uevent for this simple "glue" directory */
3005 		mutex_unlock(&gdp_mutex);
3006 		return k;
3007 	}
3008 
3009 	/* subsystems can specify a default root directory for their devices */
3010 	if (!parent && dev->bus && dev->bus->dev_root)
3011 		return &dev->bus->dev_root->kobj;
3012 
3013 	if (parent)
3014 		return &parent->kobj;
3015 	return NULL;
3016 }
3017 
3018 static inline bool live_in_glue_dir(struct kobject *kobj,
3019 				    struct device *dev)
3020 {
3021 	if (!kobj || !dev->class ||
3022 	    kobj->kset != &dev->class->p->glue_dirs)
3023 		return false;
3024 	return true;
3025 }
3026 
3027 static inline struct kobject *get_glue_dir(struct device *dev)
3028 {
3029 	return dev->kobj.parent;
3030 }
3031 
3032 /*
3033  * make sure cleaning up dir as the last step, we need to make
3034  * sure .release handler of kobject is run with holding the
3035  * global lock
3036  */
3037 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3038 {
3039 	unsigned int ref;
3040 
3041 	/* see if we live in a "glue" directory */
3042 	if (!live_in_glue_dir(glue_dir, dev))
3043 		return;
3044 
3045 	mutex_lock(&gdp_mutex);
3046 	/**
3047 	 * There is a race condition between removing glue directory
3048 	 * and adding a new device under the glue directory.
3049 	 *
3050 	 * CPU1:                                         CPU2:
3051 	 *
3052 	 * device_add()
3053 	 *   get_device_parent()
3054 	 *     class_dir_create_and_add()
3055 	 *       kobject_add_internal()
3056 	 *         create_dir()    // create glue_dir
3057 	 *
3058 	 *                                               device_add()
3059 	 *                                                 get_device_parent()
3060 	 *                                                   kobject_get() // get glue_dir
3061 	 *
3062 	 * device_del()
3063 	 *   cleanup_glue_dir()
3064 	 *     kobject_del(glue_dir)
3065 	 *
3066 	 *                                               kobject_add()
3067 	 *                                                 kobject_add_internal()
3068 	 *                                                   create_dir() // in glue_dir
3069 	 *                                                     sysfs_create_dir_ns()
3070 	 *                                                       kernfs_create_dir_ns(sd)
3071 	 *
3072 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3073 	 *       sysfs_put()        // free glue_dir->sd
3074 	 *
3075 	 *                                                         // sd is freed
3076 	 *                                                         kernfs_new_node(sd)
3077 	 *                                                           kernfs_get(glue_dir)
3078 	 *                                                           kernfs_add_one()
3079 	 *                                                           kernfs_put()
3080 	 *
3081 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3082 	 * a new device under glue dir, the glue_dir kobject reference count
3083 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3084 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3085 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3086 	 *
3087 	 * Then the CPU2 will see a stale "empty" but still potentially used
3088 	 * glue dir around in kernfs_new_node().
3089 	 *
3090 	 * In order to avoid this happening, we also should make sure that
3091 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3092 	 * for glue_dir kobj is 1.
3093 	 */
3094 	ref = kref_read(&glue_dir->kref);
3095 	if (!kobject_has_children(glue_dir) && !--ref)
3096 		kobject_del(glue_dir);
3097 	kobject_put(glue_dir);
3098 	mutex_unlock(&gdp_mutex);
3099 }
3100 
3101 static int device_add_class_symlinks(struct device *dev)
3102 {
3103 	struct device_node *of_node = dev_of_node(dev);
3104 	int error;
3105 
3106 	if (of_node) {
3107 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3108 		if (error)
3109 			dev_warn(dev, "Error %d creating of_node link\n",error);
3110 		/* An error here doesn't warrant bringing down the device */
3111 	}
3112 
3113 	if (!dev->class)
3114 		return 0;
3115 
3116 	error = sysfs_create_link(&dev->kobj,
3117 				  &dev->class->p->subsys.kobj,
3118 				  "subsystem");
3119 	if (error)
3120 		goto out_devnode;
3121 
3122 	if (dev->parent && device_is_not_partition(dev)) {
3123 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3124 					  "device");
3125 		if (error)
3126 			goto out_subsys;
3127 	}
3128 
3129 #ifdef CONFIG_BLOCK
3130 	/* /sys/block has directories and does not need symlinks */
3131 	if (sysfs_deprecated && dev->class == &block_class)
3132 		return 0;
3133 #endif
3134 
3135 	/* link in the class directory pointing to the device */
3136 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3137 				  &dev->kobj, dev_name(dev));
3138 	if (error)
3139 		goto out_device;
3140 
3141 	return 0;
3142 
3143 out_device:
3144 	sysfs_remove_link(&dev->kobj, "device");
3145 
3146 out_subsys:
3147 	sysfs_remove_link(&dev->kobj, "subsystem");
3148 out_devnode:
3149 	sysfs_remove_link(&dev->kobj, "of_node");
3150 	return error;
3151 }
3152 
3153 static void device_remove_class_symlinks(struct device *dev)
3154 {
3155 	if (dev_of_node(dev))
3156 		sysfs_remove_link(&dev->kobj, "of_node");
3157 
3158 	if (!dev->class)
3159 		return;
3160 
3161 	if (dev->parent && device_is_not_partition(dev))
3162 		sysfs_remove_link(&dev->kobj, "device");
3163 	sysfs_remove_link(&dev->kobj, "subsystem");
3164 #ifdef CONFIG_BLOCK
3165 	if (sysfs_deprecated && dev->class == &block_class)
3166 		return;
3167 #endif
3168 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3169 }
3170 
3171 /**
3172  * dev_set_name - set a device name
3173  * @dev: device
3174  * @fmt: format string for the device's name
3175  */
3176 int dev_set_name(struct device *dev, const char *fmt, ...)
3177 {
3178 	va_list vargs;
3179 	int err;
3180 
3181 	va_start(vargs, fmt);
3182 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3183 	va_end(vargs);
3184 	return err;
3185 }
3186 EXPORT_SYMBOL_GPL(dev_set_name);
3187 
3188 /**
3189  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3190  * @dev: device
3191  *
3192  * By default we select char/ for new entries.  Setting class->dev_obj
3193  * to NULL prevents an entry from being created.  class->dev_kobj must
3194  * be set (or cleared) before any devices are registered to the class
3195  * otherwise device_create_sys_dev_entry() and
3196  * device_remove_sys_dev_entry() will disagree about the presence of
3197  * the link.
3198  */
3199 static struct kobject *device_to_dev_kobj(struct device *dev)
3200 {
3201 	struct kobject *kobj;
3202 
3203 	if (dev->class)
3204 		kobj = dev->class->dev_kobj;
3205 	else
3206 		kobj = sysfs_dev_char_kobj;
3207 
3208 	return kobj;
3209 }
3210 
3211 static int device_create_sys_dev_entry(struct device *dev)
3212 {
3213 	struct kobject *kobj = device_to_dev_kobj(dev);
3214 	int error = 0;
3215 	char devt_str[15];
3216 
3217 	if (kobj) {
3218 		format_dev_t(devt_str, dev->devt);
3219 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3220 	}
3221 
3222 	return error;
3223 }
3224 
3225 static void device_remove_sys_dev_entry(struct device *dev)
3226 {
3227 	struct kobject *kobj = device_to_dev_kobj(dev);
3228 	char devt_str[15];
3229 
3230 	if (kobj) {
3231 		format_dev_t(devt_str, dev->devt);
3232 		sysfs_remove_link(kobj, devt_str);
3233 	}
3234 }
3235 
3236 static int device_private_init(struct device *dev)
3237 {
3238 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3239 	if (!dev->p)
3240 		return -ENOMEM;
3241 	dev->p->device = dev;
3242 	klist_init(&dev->p->klist_children, klist_children_get,
3243 		   klist_children_put);
3244 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3245 	return 0;
3246 }
3247 
3248 /**
3249  * device_add - add device to device hierarchy.
3250  * @dev: device.
3251  *
3252  * This is part 2 of device_register(), though may be called
3253  * separately _iff_ device_initialize() has been called separately.
3254  *
3255  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3256  * to the global and sibling lists for the device, then
3257  * adds it to the other relevant subsystems of the driver model.
3258  *
3259  * Do not call this routine or device_register() more than once for
3260  * any device structure.  The driver model core is not designed to work
3261  * with devices that get unregistered and then spring back to life.
3262  * (Among other things, it's very hard to guarantee that all references
3263  * to the previous incarnation of @dev have been dropped.)  Allocate
3264  * and register a fresh new struct device instead.
3265  *
3266  * NOTE: _Never_ directly free @dev after calling this function, even
3267  * if it returned an error! Always use put_device() to give up your
3268  * reference instead.
3269  *
3270  * Rule of thumb is: if device_add() succeeds, you should call
3271  * device_del() when you want to get rid of it. If device_add() has
3272  * *not* succeeded, use *only* put_device() to drop the reference
3273  * count.
3274  */
3275 int device_add(struct device *dev)
3276 {
3277 	struct device *parent;
3278 	struct kobject *kobj;
3279 	struct class_interface *class_intf;
3280 	int error = -EINVAL;
3281 	struct kobject *glue_dir = NULL;
3282 
3283 	dev = get_device(dev);
3284 	if (!dev)
3285 		goto done;
3286 
3287 	if (!dev->p) {
3288 		error = device_private_init(dev);
3289 		if (error)
3290 			goto done;
3291 	}
3292 
3293 	/*
3294 	 * for statically allocated devices, which should all be converted
3295 	 * some day, we need to initialize the name. We prevent reading back
3296 	 * the name, and force the use of dev_name()
3297 	 */
3298 	if (dev->init_name) {
3299 		dev_set_name(dev, "%s", dev->init_name);
3300 		dev->init_name = NULL;
3301 	}
3302 
3303 	/* subsystems can specify simple device enumeration */
3304 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3305 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3306 
3307 	if (!dev_name(dev)) {
3308 		error = -EINVAL;
3309 		goto name_error;
3310 	}
3311 
3312 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3313 
3314 	parent = get_device(dev->parent);
3315 	kobj = get_device_parent(dev, parent);
3316 	if (IS_ERR(kobj)) {
3317 		error = PTR_ERR(kobj);
3318 		goto parent_error;
3319 	}
3320 	if (kobj)
3321 		dev->kobj.parent = kobj;
3322 
3323 	/* use parent numa_node */
3324 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3325 		set_dev_node(dev, dev_to_node(parent));
3326 
3327 	/* first, register with generic layer. */
3328 	/* we require the name to be set before, and pass NULL */
3329 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3330 	if (error) {
3331 		glue_dir = get_glue_dir(dev);
3332 		goto Error;
3333 	}
3334 
3335 	/* notify platform of device entry */
3336 	device_platform_notify(dev);
3337 
3338 	error = device_create_file(dev, &dev_attr_uevent);
3339 	if (error)
3340 		goto attrError;
3341 
3342 	error = device_add_class_symlinks(dev);
3343 	if (error)
3344 		goto SymlinkError;
3345 	error = device_add_attrs(dev);
3346 	if (error)
3347 		goto AttrsError;
3348 	error = bus_add_device(dev);
3349 	if (error)
3350 		goto BusError;
3351 	error = dpm_sysfs_add(dev);
3352 	if (error)
3353 		goto DPMError;
3354 	device_pm_add(dev);
3355 
3356 	if (MAJOR(dev->devt)) {
3357 		error = device_create_file(dev, &dev_attr_dev);
3358 		if (error)
3359 			goto DevAttrError;
3360 
3361 		error = device_create_sys_dev_entry(dev);
3362 		if (error)
3363 			goto SysEntryError;
3364 
3365 		devtmpfs_create_node(dev);
3366 	}
3367 
3368 	/* Notify clients of device addition.  This call must come
3369 	 * after dpm_sysfs_add() and before kobject_uevent().
3370 	 */
3371 	if (dev->bus)
3372 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3373 					     BUS_NOTIFY_ADD_DEVICE, dev);
3374 
3375 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3376 
3377 	/*
3378 	 * Check if any of the other devices (consumers) have been waiting for
3379 	 * this device (supplier) to be added so that they can create a device
3380 	 * link to it.
3381 	 *
3382 	 * This needs to happen after device_pm_add() because device_link_add()
3383 	 * requires the supplier be registered before it's called.
3384 	 *
3385 	 * But this also needs to happen before bus_probe_device() to make sure
3386 	 * waiting consumers can link to it before the driver is bound to the
3387 	 * device and the driver sync_state callback is called for this device.
3388 	 */
3389 	if (dev->fwnode && !dev->fwnode->dev) {
3390 		dev->fwnode->dev = dev;
3391 		fw_devlink_link_device(dev);
3392 	}
3393 
3394 	bus_probe_device(dev);
3395 
3396 	/*
3397 	 * If all driver registration is done and a newly added device doesn't
3398 	 * match with any driver, don't block its consumers from probing in
3399 	 * case the consumer device is able to operate without this supplier.
3400 	 */
3401 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3402 		fw_devlink_unblock_consumers(dev);
3403 
3404 	if (parent)
3405 		klist_add_tail(&dev->p->knode_parent,
3406 			       &parent->p->klist_children);
3407 
3408 	if (dev->class) {
3409 		mutex_lock(&dev->class->p->mutex);
3410 		/* tie the class to the device */
3411 		klist_add_tail(&dev->p->knode_class,
3412 			       &dev->class->p->klist_devices);
3413 
3414 		/* notify any interfaces that the device is here */
3415 		list_for_each_entry(class_intf,
3416 				    &dev->class->p->interfaces, node)
3417 			if (class_intf->add_dev)
3418 				class_intf->add_dev(dev, class_intf);
3419 		mutex_unlock(&dev->class->p->mutex);
3420 	}
3421 done:
3422 	put_device(dev);
3423 	return error;
3424  SysEntryError:
3425 	if (MAJOR(dev->devt))
3426 		device_remove_file(dev, &dev_attr_dev);
3427  DevAttrError:
3428 	device_pm_remove(dev);
3429 	dpm_sysfs_remove(dev);
3430  DPMError:
3431 	bus_remove_device(dev);
3432  BusError:
3433 	device_remove_attrs(dev);
3434  AttrsError:
3435 	device_remove_class_symlinks(dev);
3436  SymlinkError:
3437 	device_remove_file(dev, &dev_attr_uevent);
3438  attrError:
3439 	device_platform_notify_remove(dev);
3440 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3441 	glue_dir = get_glue_dir(dev);
3442 	kobject_del(&dev->kobj);
3443  Error:
3444 	cleanup_glue_dir(dev, glue_dir);
3445 parent_error:
3446 	put_device(parent);
3447 name_error:
3448 	kfree(dev->p);
3449 	dev->p = NULL;
3450 	goto done;
3451 }
3452 EXPORT_SYMBOL_GPL(device_add);
3453 
3454 /**
3455  * device_register - register a device with the system.
3456  * @dev: pointer to the device structure
3457  *
3458  * This happens in two clean steps - initialize the device
3459  * and add it to the system. The two steps can be called
3460  * separately, but this is the easiest and most common.
3461  * I.e. you should only call the two helpers separately if
3462  * have a clearly defined need to use and refcount the device
3463  * before it is added to the hierarchy.
3464  *
3465  * For more information, see the kerneldoc for device_initialize()
3466  * and device_add().
3467  *
3468  * NOTE: _Never_ directly free @dev after calling this function, even
3469  * if it returned an error! Always use put_device() to give up the
3470  * reference initialized in this function instead.
3471  */
3472 int device_register(struct device *dev)
3473 {
3474 	device_initialize(dev);
3475 	return device_add(dev);
3476 }
3477 EXPORT_SYMBOL_GPL(device_register);
3478 
3479 /**
3480  * get_device - increment reference count for device.
3481  * @dev: device.
3482  *
3483  * This simply forwards the call to kobject_get(), though
3484  * we do take care to provide for the case that we get a NULL
3485  * pointer passed in.
3486  */
3487 struct device *get_device(struct device *dev)
3488 {
3489 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3490 }
3491 EXPORT_SYMBOL_GPL(get_device);
3492 
3493 /**
3494  * put_device - decrement reference count.
3495  * @dev: device in question.
3496  */
3497 void put_device(struct device *dev)
3498 {
3499 	/* might_sleep(); */
3500 	if (dev)
3501 		kobject_put(&dev->kobj);
3502 }
3503 EXPORT_SYMBOL_GPL(put_device);
3504 
3505 bool kill_device(struct device *dev)
3506 {
3507 	/*
3508 	 * Require the device lock and set the "dead" flag to guarantee that
3509 	 * the update behavior is consistent with the other bitfields near
3510 	 * it and that we cannot have an asynchronous probe routine trying
3511 	 * to run while we are tearing out the bus/class/sysfs from
3512 	 * underneath the device.
3513 	 */
3514 	device_lock_assert(dev);
3515 
3516 	if (dev->p->dead)
3517 		return false;
3518 	dev->p->dead = true;
3519 	return true;
3520 }
3521 EXPORT_SYMBOL_GPL(kill_device);
3522 
3523 /**
3524  * device_del - delete device from system.
3525  * @dev: device.
3526  *
3527  * This is the first part of the device unregistration
3528  * sequence. This removes the device from the lists we control
3529  * from here, has it removed from the other driver model
3530  * subsystems it was added to in device_add(), and removes it
3531  * from the kobject hierarchy.
3532  *
3533  * NOTE: this should be called manually _iff_ device_add() was
3534  * also called manually.
3535  */
3536 void device_del(struct device *dev)
3537 {
3538 	struct device *parent = dev->parent;
3539 	struct kobject *glue_dir = NULL;
3540 	struct class_interface *class_intf;
3541 	unsigned int noio_flag;
3542 
3543 	device_lock(dev);
3544 	kill_device(dev);
3545 	device_unlock(dev);
3546 
3547 	if (dev->fwnode && dev->fwnode->dev == dev)
3548 		dev->fwnode->dev = NULL;
3549 
3550 	/* Notify clients of device removal.  This call must come
3551 	 * before dpm_sysfs_remove().
3552 	 */
3553 	noio_flag = memalloc_noio_save();
3554 	if (dev->bus)
3555 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3556 					     BUS_NOTIFY_DEL_DEVICE, dev);
3557 
3558 	dpm_sysfs_remove(dev);
3559 	if (parent)
3560 		klist_del(&dev->p->knode_parent);
3561 	if (MAJOR(dev->devt)) {
3562 		devtmpfs_delete_node(dev);
3563 		device_remove_sys_dev_entry(dev);
3564 		device_remove_file(dev, &dev_attr_dev);
3565 	}
3566 	if (dev->class) {
3567 		device_remove_class_symlinks(dev);
3568 
3569 		mutex_lock(&dev->class->p->mutex);
3570 		/* notify any interfaces that the device is now gone */
3571 		list_for_each_entry(class_intf,
3572 				    &dev->class->p->interfaces, node)
3573 			if (class_intf->remove_dev)
3574 				class_intf->remove_dev(dev, class_intf);
3575 		/* remove the device from the class list */
3576 		klist_del(&dev->p->knode_class);
3577 		mutex_unlock(&dev->class->p->mutex);
3578 	}
3579 	device_remove_file(dev, &dev_attr_uevent);
3580 	device_remove_attrs(dev);
3581 	bus_remove_device(dev);
3582 	device_pm_remove(dev);
3583 	driver_deferred_probe_del(dev);
3584 	device_platform_notify_remove(dev);
3585 	device_remove_properties(dev);
3586 	device_links_purge(dev);
3587 
3588 	if (dev->bus)
3589 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3590 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3591 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3592 	glue_dir = get_glue_dir(dev);
3593 	kobject_del(&dev->kobj);
3594 	cleanup_glue_dir(dev, glue_dir);
3595 	memalloc_noio_restore(noio_flag);
3596 	put_device(parent);
3597 }
3598 EXPORT_SYMBOL_GPL(device_del);
3599 
3600 /**
3601  * device_unregister - unregister device from system.
3602  * @dev: device going away.
3603  *
3604  * We do this in two parts, like we do device_register(). First,
3605  * we remove it from all the subsystems with device_del(), then
3606  * we decrement the reference count via put_device(). If that
3607  * is the final reference count, the device will be cleaned up
3608  * via device_release() above. Otherwise, the structure will
3609  * stick around until the final reference to the device is dropped.
3610  */
3611 void device_unregister(struct device *dev)
3612 {
3613 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3614 	device_del(dev);
3615 	put_device(dev);
3616 }
3617 EXPORT_SYMBOL_GPL(device_unregister);
3618 
3619 static struct device *prev_device(struct klist_iter *i)
3620 {
3621 	struct klist_node *n = klist_prev(i);
3622 	struct device *dev = NULL;
3623 	struct device_private *p;
3624 
3625 	if (n) {
3626 		p = to_device_private_parent(n);
3627 		dev = p->device;
3628 	}
3629 	return dev;
3630 }
3631 
3632 static struct device *next_device(struct klist_iter *i)
3633 {
3634 	struct klist_node *n = klist_next(i);
3635 	struct device *dev = NULL;
3636 	struct device_private *p;
3637 
3638 	if (n) {
3639 		p = to_device_private_parent(n);
3640 		dev = p->device;
3641 	}
3642 	return dev;
3643 }
3644 
3645 /**
3646  * device_get_devnode - path of device node file
3647  * @dev: device
3648  * @mode: returned file access mode
3649  * @uid: returned file owner
3650  * @gid: returned file group
3651  * @tmp: possibly allocated string
3652  *
3653  * Return the relative path of a possible device node.
3654  * Non-default names may need to allocate a memory to compose
3655  * a name. This memory is returned in tmp and needs to be
3656  * freed by the caller.
3657  */
3658 const char *device_get_devnode(struct device *dev,
3659 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3660 			       const char **tmp)
3661 {
3662 	char *s;
3663 
3664 	*tmp = NULL;
3665 
3666 	/* the device type may provide a specific name */
3667 	if (dev->type && dev->type->devnode)
3668 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3669 	if (*tmp)
3670 		return *tmp;
3671 
3672 	/* the class may provide a specific name */
3673 	if (dev->class && dev->class->devnode)
3674 		*tmp = dev->class->devnode(dev, mode);
3675 	if (*tmp)
3676 		return *tmp;
3677 
3678 	/* return name without allocation, tmp == NULL */
3679 	if (strchr(dev_name(dev), '!') == NULL)
3680 		return dev_name(dev);
3681 
3682 	/* replace '!' in the name with '/' */
3683 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3684 	if (!s)
3685 		return NULL;
3686 	strreplace(s, '!', '/');
3687 	return *tmp = s;
3688 }
3689 
3690 /**
3691  * device_for_each_child - device child iterator.
3692  * @parent: parent struct device.
3693  * @fn: function to be called for each device.
3694  * @data: data for the callback.
3695  *
3696  * Iterate over @parent's child devices, and call @fn for each,
3697  * passing it @data.
3698  *
3699  * We check the return of @fn each time. If it returns anything
3700  * other than 0, we break out and return that value.
3701  */
3702 int device_for_each_child(struct device *parent, void *data,
3703 			  int (*fn)(struct device *dev, void *data))
3704 {
3705 	struct klist_iter i;
3706 	struct device *child;
3707 	int error = 0;
3708 
3709 	if (!parent->p)
3710 		return 0;
3711 
3712 	klist_iter_init(&parent->p->klist_children, &i);
3713 	while (!error && (child = next_device(&i)))
3714 		error = fn(child, data);
3715 	klist_iter_exit(&i);
3716 	return error;
3717 }
3718 EXPORT_SYMBOL_GPL(device_for_each_child);
3719 
3720 /**
3721  * device_for_each_child_reverse - device child iterator in reversed order.
3722  * @parent: parent struct device.
3723  * @fn: function to be called for each device.
3724  * @data: data for the callback.
3725  *
3726  * Iterate over @parent's child devices, and call @fn for each,
3727  * passing it @data.
3728  *
3729  * We check the return of @fn each time. If it returns anything
3730  * other than 0, we break out and return that value.
3731  */
3732 int device_for_each_child_reverse(struct device *parent, void *data,
3733 				  int (*fn)(struct device *dev, void *data))
3734 {
3735 	struct klist_iter i;
3736 	struct device *child;
3737 	int error = 0;
3738 
3739 	if (!parent->p)
3740 		return 0;
3741 
3742 	klist_iter_init(&parent->p->klist_children, &i);
3743 	while ((child = prev_device(&i)) && !error)
3744 		error = fn(child, data);
3745 	klist_iter_exit(&i);
3746 	return error;
3747 }
3748 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3749 
3750 /**
3751  * device_find_child - device iterator for locating a particular device.
3752  * @parent: parent struct device
3753  * @match: Callback function to check device
3754  * @data: Data to pass to match function
3755  *
3756  * This is similar to the device_for_each_child() function above, but it
3757  * returns a reference to a device that is 'found' for later use, as
3758  * determined by the @match callback.
3759  *
3760  * The callback should return 0 if the device doesn't match and non-zero
3761  * if it does.  If the callback returns non-zero and a reference to the
3762  * current device can be obtained, this function will return to the caller
3763  * and not iterate over any more devices.
3764  *
3765  * NOTE: you will need to drop the reference with put_device() after use.
3766  */
3767 struct device *device_find_child(struct device *parent, void *data,
3768 				 int (*match)(struct device *dev, void *data))
3769 {
3770 	struct klist_iter i;
3771 	struct device *child;
3772 
3773 	if (!parent)
3774 		return NULL;
3775 
3776 	klist_iter_init(&parent->p->klist_children, &i);
3777 	while ((child = next_device(&i)))
3778 		if (match(child, data) && get_device(child))
3779 			break;
3780 	klist_iter_exit(&i);
3781 	return child;
3782 }
3783 EXPORT_SYMBOL_GPL(device_find_child);
3784 
3785 /**
3786  * device_find_child_by_name - device iterator for locating a child device.
3787  * @parent: parent struct device
3788  * @name: name of the child device
3789  *
3790  * This is similar to the device_find_child() function above, but it
3791  * returns a reference to a device that has the name @name.
3792  *
3793  * NOTE: you will need to drop the reference with put_device() after use.
3794  */
3795 struct device *device_find_child_by_name(struct device *parent,
3796 					 const char *name)
3797 {
3798 	struct klist_iter i;
3799 	struct device *child;
3800 
3801 	if (!parent)
3802 		return NULL;
3803 
3804 	klist_iter_init(&parent->p->klist_children, &i);
3805 	while ((child = next_device(&i)))
3806 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3807 			break;
3808 	klist_iter_exit(&i);
3809 	return child;
3810 }
3811 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3812 
3813 int __init devices_init(void)
3814 {
3815 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3816 	if (!devices_kset)
3817 		return -ENOMEM;
3818 	dev_kobj = kobject_create_and_add("dev", NULL);
3819 	if (!dev_kobj)
3820 		goto dev_kobj_err;
3821 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3822 	if (!sysfs_dev_block_kobj)
3823 		goto block_kobj_err;
3824 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3825 	if (!sysfs_dev_char_kobj)
3826 		goto char_kobj_err;
3827 
3828 	return 0;
3829 
3830  char_kobj_err:
3831 	kobject_put(sysfs_dev_block_kobj);
3832  block_kobj_err:
3833 	kobject_put(dev_kobj);
3834  dev_kobj_err:
3835 	kset_unregister(devices_kset);
3836 	return -ENOMEM;
3837 }
3838 
3839 static int device_check_offline(struct device *dev, void *not_used)
3840 {
3841 	int ret;
3842 
3843 	ret = device_for_each_child(dev, NULL, device_check_offline);
3844 	if (ret)
3845 		return ret;
3846 
3847 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3848 }
3849 
3850 /**
3851  * device_offline - Prepare the device for hot-removal.
3852  * @dev: Device to be put offline.
3853  *
3854  * Execute the device bus type's .offline() callback, if present, to prepare
3855  * the device for a subsequent hot-removal.  If that succeeds, the device must
3856  * not be used until either it is removed or its bus type's .online() callback
3857  * is executed.
3858  *
3859  * Call under device_hotplug_lock.
3860  */
3861 int device_offline(struct device *dev)
3862 {
3863 	int ret;
3864 
3865 	if (dev->offline_disabled)
3866 		return -EPERM;
3867 
3868 	ret = device_for_each_child(dev, NULL, device_check_offline);
3869 	if (ret)
3870 		return ret;
3871 
3872 	device_lock(dev);
3873 	if (device_supports_offline(dev)) {
3874 		if (dev->offline) {
3875 			ret = 1;
3876 		} else {
3877 			ret = dev->bus->offline(dev);
3878 			if (!ret) {
3879 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3880 				dev->offline = true;
3881 			}
3882 		}
3883 	}
3884 	device_unlock(dev);
3885 
3886 	return ret;
3887 }
3888 
3889 /**
3890  * device_online - Put the device back online after successful device_offline().
3891  * @dev: Device to be put back online.
3892  *
3893  * If device_offline() has been successfully executed for @dev, but the device
3894  * has not been removed subsequently, execute its bus type's .online() callback
3895  * to indicate that the device can be used again.
3896  *
3897  * Call under device_hotplug_lock.
3898  */
3899 int device_online(struct device *dev)
3900 {
3901 	int ret = 0;
3902 
3903 	device_lock(dev);
3904 	if (device_supports_offline(dev)) {
3905 		if (dev->offline) {
3906 			ret = dev->bus->online(dev);
3907 			if (!ret) {
3908 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3909 				dev->offline = false;
3910 			}
3911 		} else {
3912 			ret = 1;
3913 		}
3914 	}
3915 	device_unlock(dev);
3916 
3917 	return ret;
3918 }
3919 
3920 struct root_device {
3921 	struct device dev;
3922 	struct module *owner;
3923 };
3924 
3925 static inline struct root_device *to_root_device(struct device *d)
3926 {
3927 	return container_of(d, struct root_device, dev);
3928 }
3929 
3930 static void root_device_release(struct device *dev)
3931 {
3932 	kfree(to_root_device(dev));
3933 }
3934 
3935 /**
3936  * __root_device_register - allocate and register a root device
3937  * @name: root device name
3938  * @owner: owner module of the root device, usually THIS_MODULE
3939  *
3940  * This function allocates a root device and registers it
3941  * using device_register(). In order to free the returned
3942  * device, use root_device_unregister().
3943  *
3944  * Root devices are dummy devices which allow other devices
3945  * to be grouped under /sys/devices. Use this function to
3946  * allocate a root device and then use it as the parent of
3947  * any device which should appear under /sys/devices/{name}
3948  *
3949  * The /sys/devices/{name} directory will also contain a
3950  * 'module' symlink which points to the @owner directory
3951  * in sysfs.
3952  *
3953  * Returns &struct device pointer on success, or ERR_PTR() on error.
3954  *
3955  * Note: You probably want to use root_device_register().
3956  */
3957 struct device *__root_device_register(const char *name, struct module *owner)
3958 {
3959 	struct root_device *root;
3960 	int err = -ENOMEM;
3961 
3962 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3963 	if (!root)
3964 		return ERR_PTR(err);
3965 
3966 	err = dev_set_name(&root->dev, "%s", name);
3967 	if (err) {
3968 		kfree(root);
3969 		return ERR_PTR(err);
3970 	}
3971 
3972 	root->dev.release = root_device_release;
3973 
3974 	err = device_register(&root->dev);
3975 	if (err) {
3976 		put_device(&root->dev);
3977 		return ERR_PTR(err);
3978 	}
3979 
3980 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3981 	if (owner) {
3982 		struct module_kobject *mk = &owner->mkobj;
3983 
3984 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3985 		if (err) {
3986 			device_unregister(&root->dev);
3987 			return ERR_PTR(err);
3988 		}
3989 		root->owner = owner;
3990 	}
3991 #endif
3992 
3993 	return &root->dev;
3994 }
3995 EXPORT_SYMBOL_GPL(__root_device_register);
3996 
3997 /**
3998  * root_device_unregister - unregister and free a root device
3999  * @dev: device going away
4000  *
4001  * This function unregisters and cleans up a device that was created by
4002  * root_device_register().
4003  */
4004 void root_device_unregister(struct device *dev)
4005 {
4006 	struct root_device *root = to_root_device(dev);
4007 
4008 	if (root->owner)
4009 		sysfs_remove_link(&root->dev.kobj, "module");
4010 
4011 	device_unregister(dev);
4012 }
4013 EXPORT_SYMBOL_GPL(root_device_unregister);
4014 
4015 
4016 static void device_create_release(struct device *dev)
4017 {
4018 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4019 	kfree(dev);
4020 }
4021 
4022 static __printf(6, 0) struct device *
4023 device_create_groups_vargs(struct class *class, struct device *parent,
4024 			   dev_t devt, void *drvdata,
4025 			   const struct attribute_group **groups,
4026 			   const char *fmt, va_list args)
4027 {
4028 	struct device *dev = NULL;
4029 	int retval = -ENODEV;
4030 
4031 	if (class == NULL || IS_ERR(class))
4032 		goto error;
4033 
4034 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4035 	if (!dev) {
4036 		retval = -ENOMEM;
4037 		goto error;
4038 	}
4039 
4040 	device_initialize(dev);
4041 	dev->devt = devt;
4042 	dev->class = class;
4043 	dev->parent = parent;
4044 	dev->groups = groups;
4045 	dev->release = device_create_release;
4046 	dev_set_drvdata(dev, drvdata);
4047 
4048 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4049 	if (retval)
4050 		goto error;
4051 
4052 	retval = device_add(dev);
4053 	if (retval)
4054 		goto error;
4055 
4056 	return dev;
4057 
4058 error:
4059 	put_device(dev);
4060 	return ERR_PTR(retval);
4061 }
4062 
4063 /**
4064  * device_create - creates a device and registers it with sysfs
4065  * @class: pointer to the struct class that this device should be registered to
4066  * @parent: pointer to the parent struct device of this new device, if any
4067  * @devt: the dev_t for the char device to be added
4068  * @drvdata: the data to be added to the device for callbacks
4069  * @fmt: string for the device's name
4070  *
4071  * This function can be used by char device classes.  A struct device
4072  * will be created in sysfs, registered to the specified class.
4073  *
4074  * A "dev" file will be created, showing the dev_t for the device, if
4075  * the dev_t is not 0,0.
4076  * If a pointer to a parent struct device is passed in, the newly created
4077  * struct device will be a child of that device in sysfs.
4078  * The pointer to the struct device will be returned from the call.
4079  * Any further sysfs files that might be required can be created using this
4080  * pointer.
4081  *
4082  * Returns &struct device pointer on success, or ERR_PTR() on error.
4083  *
4084  * Note: the struct class passed to this function must have previously
4085  * been created with a call to class_create().
4086  */
4087 struct device *device_create(struct class *class, struct device *parent,
4088 			     dev_t devt, void *drvdata, const char *fmt, ...)
4089 {
4090 	va_list vargs;
4091 	struct device *dev;
4092 
4093 	va_start(vargs, fmt);
4094 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4095 					  fmt, vargs);
4096 	va_end(vargs);
4097 	return dev;
4098 }
4099 EXPORT_SYMBOL_GPL(device_create);
4100 
4101 /**
4102  * device_create_with_groups - creates a device and registers it with sysfs
4103  * @class: pointer to the struct class that this device should be registered to
4104  * @parent: pointer to the parent struct device of this new device, if any
4105  * @devt: the dev_t for the char device to be added
4106  * @drvdata: the data to be added to the device for callbacks
4107  * @groups: NULL-terminated list of attribute groups to be created
4108  * @fmt: string for the device's name
4109  *
4110  * This function can be used by char device classes.  A struct device
4111  * will be created in sysfs, registered to the specified class.
4112  * Additional attributes specified in the groups parameter will also
4113  * be created automatically.
4114  *
4115  * A "dev" file will be created, showing the dev_t for the device, if
4116  * the dev_t is not 0,0.
4117  * If a pointer to a parent struct device is passed in, the newly created
4118  * struct device will be a child of that device in sysfs.
4119  * The pointer to the struct device will be returned from the call.
4120  * Any further sysfs files that might be required can be created using this
4121  * pointer.
4122  *
4123  * Returns &struct device pointer on success, or ERR_PTR() on error.
4124  *
4125  * Note: the struct class passed to this function must have previously
4126  * been created with a call to class_create().
4127  */
4128 struct device *device_create_with_groups(struct class *class,
4129 					 struct device *parent, dev_t devt,
4130 					 void *drvdata,
4131 					 const struct attribute_group **groups,
4132 					 const char *fmt, ...)
4133 {
4134 	va_list vargs;
4135 	struct device *dev;
4136 
4137 	va_start(vargs, fmt);
4138 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4139 					 fmt, vargs);
4140 	va_end(vargs);
4141 	return dev;
4142 }
4143 EXPORT_SYMBOL_GPL(device_create_with_groups);
4144 
4145 /**
4146  * device_destroy - removes a device that was created with device_create()
4147  * @class: pointer to the struct class that this device was registered with
4148  * @devt: the dev_t of the device that was previously registered
4149  *
4150  * This call unregisters and cleans up a device that was created with a
4151  * call to device_create().
4152  */
4153 void device_destroy(struct class *class, dev_t devt)
4154 {
4155 	struct device *dev;
4156 
4157 	dev = class_find_device_by_devt(class, devt);
4158 	if (dev) {
4159 		put_device(dev);
4160 		device_unregister(dev);
4161 	}
4162 }
4163 EXPORT_SYMBOL_GPL(device_destroy);
4164 
4165 /**
4166  * device_rename - renames a device
4167  * @dev: the pointer to the struct device to be renamed
4168  * @new_name: the new name of the device
4169  *
4170  * It is the responsibility of the caller to provide mutual
4171  * exclusion between two different calls of device_rename
4172  * on the same device to ensure that new_name is valid and
4173  * won't conflict with other devices.
4174  *
4175  * Note: Don't call this function.  Currently, the networking layer calls this
4176  * function, but that will change.  The following text from Kay Sievers offers
4177  * some insight:
4178  *
4179  * Renaming devices is racy at many levels, symlinks and other stuff are not
4180  * replaced atomically, and you get a "move" uevent, but it's not easy to
4181  * connect the event to the old and new device. Device nodes are not renamed at
4182  * all, there isn't even support for that in the kernel now.
4183  *
4184  * In the meantime, during renaming, your target name might be taken by another
4185  * driver, creating conflicts. Or the old name is taken directly after you
4186  * renamed it -- then you get events for the same DEVPATH, before you even see
4187  * the "move" event. It's just a mess, and nothing new should ever rely on
4188  * kernel device renaming. Besides that, it's not even implemented now for
4189  * other things than (driver-core wise very simple) network devices.
4190  *
4191  * We are currently about to change network renaming in udev to completely
4192  * disallow renaming of devices in the same namespace as the kernel uses,
4193  * because we can't solve the problems properly, that arise with swapping names
4194  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4195  * be allowed to some other name than eth[0-9]*, for the aforementioned
4196  * reasons.
4197  *
4198  * Make up a "real" name in the driver before you register anything, or add
4199  * some other attributes for userspace to find the device, or use udev to add
4200  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4201  * don't even want to get into that and try to implement the missing pieces in
4202  * the core. We really have other pieces to fix in the driver core mess. :)
4203  */
4204 int device_rename(struct device *dev, const char *new_name)
4205 {
4206 	struct kobject *kobj = &dev->kobj;
4207 	char *old_device_name = NULL;
4208 	int error;
4209 
4210 	dev = get_device(dev);
4211 	if (!dev)
4212 		return -EINVAL;
4213 
4214 	dev_dbg(dev, "renaming to %s\n", new_name);
4215 
4216 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4217 	if (!old_device_name) {
4218 		error = -ENOMEM;
4219 		goto out;
4220 	}
4221 
4222 	if (dev->class) {
4223 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4224 					     kobj, old_device_name,
4225 					     new_name, kobject_namespace(kobj));
4226 		if (error)
4227 			goto out;
4228 	}
4229 
4230 	error = kobject_rename(kobj, new_name);
4231 	if (error)
4232 		goto out;
4233 
4234 out:
4235 	put_device(dev);
4236 
4237 	kfree(old_device_name);
4238 
4239 	return error;
4240 }
4241 EXPORT_SYMBOL_GPL(device_rename);
4242 
4243 static int device_move_class_links(struct device *dev,
4244 				   struct device *old_parent,
4245 				   struct device *new_parent)
4246 {
4247 	int error = 0;
4248 
4249 	if (old_parent)
4250 		sysfs_remove_link(&dev->kobj, "device");
4251 	if (new_parent)
4252 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4253 					  "device");
4254 	return error;
4255 }
4256 
4257 /**
4258  * device_move - moves a device to a new parent
4259  * @dev: the pointer to the struct device to be moved
4260  * @new_parent: the new parent of the device (can be NULL)
4261  * @dpm_order: how to reorder the dpm_list
4262  */
4263 int device_move(struct device *dev, struct device *new_parent,
4264 		enum dpm_order dpm_order)
4265 {
4266 	int error;
4267 	struct device *old_parent;
4268 	struct kobject *new_parent_kobj;
4269 
4270 	dev = get_device(dev);
4271 	if (!dev)
4272 		return -EINVAL;
4273 
4274 	device_pm_lock();
4275 	new_parent = get_device(new_parent);
4276 	new_parent_kobj = get_device_parent(dev, new_parent);
4277 	if (IS_ERR(new_parent_kobj)) {
4278 		error = PTR_ERR(new_parent_kobj);
4279 		put_device(new_parent);
4280 		goto out;
4281 	}
4282 
4283 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4284 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4285 	error = kobject_move(&dev->kobj, new_parent_kobj);
4286 	if (error) {
4287 		cleanup_glue_dir(dev, new_parent_kobj);
4288 		put_device(new_parent);
4289 		goto out;
4290 	}
4291 	old_parent = dev->parent;
4292 	dev->parent = new_parent;
4293 	if (old_parent)
4294 		klist_remove(&dev->p->knode_parent);
4295 	if (new_parent) {
4296 		klist_add_tail(&dev->p->knode_parent,
4297 			       &new_parent->p->klist_children);
4298 		set_dev_node(dev, dev_to_node(new_parent));
4299 	}
4300 
4301 	if (dev->class) {
4302 		error = device_move_class_links(dev, old_parent, new_parent);
4303 		if (error) {
4304 			/* We ignore errors on cleanup since we're hosed anyway... */
4305 			device_move_class_links(dev, new_parent, old_parent);
4306 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4307 				if (new_parent)
4308 					klist_remove(&dev->p->knode_parent);
4309 				dev->parent = old_parent;
4310 				if (old_parent) {
4311 					klist_add_tail(&dev->p->knode_parent,
4312 						       &old_parent->p->klist_children);
4313 					set_dev_node(dev, dev_to_node(old_parent));
4314 				}
4315 			}
4316 			cleanup_glue_dir(dev, new_parent_kobj);
4317 			put_device(new_parent);
4318 			goto out;
4319 		}
4320 	}
4321 	switch (dpm_order) {
4322 	case DPM_ORDER_NONE:
4323 		break;
4324 	case DPM_ORDER_DEV_AFTER_PARENT:
4325 		device_pm_move_after(dev, new_parent);
4326 		devices_kset_move_after(dev, new_parent);
4327 		break;
4328 	case DPM_ORDER_PARENT_BEFORE_DEV:
4329 		device_pm_move_before(new_parent, dev);
4330 		devices_kset_move_before(new_parent, dev);
4331 		break;
4332 	case DPM_ORDER_DEV_LAST:
4333 		device_pm_move_last(dev);
4334 		devices_kset_move_last(dev);
4335 		break;
4336 	}
4337 
4338 	put_device(old_parent);
4339 out:
4340 	device_pm_unlock();
4341 	put_device(dev);
4342 	return error;
4343 }
4344 EXPORT_SYMBOL_GPL(device_move);
4345 
4346 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4347 				     kgid_t kgid)
4348 {
4349 	struct kobject *kobj = &dev->kobj;
4350 	struct class *class = dev->class;
4351 	const struct device_type *type = dev->type;
4352 	int error;
4353 
4354 	if (class) {
4355 		/*
4356 		 * Change the device groups of the device class for @dev to
4357 		 * @kuid/@kgid.
4358 		 */
4359 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4360 						  kgid);
4361 		if (error)
4362 			return error;
4363 	}
4364 
4365 	if (type) {
4366 		/*
4367 		 * Change the device groups of the device type for @dev to
4368 		 * @kuid/@kgid.
4369 		 */
4370 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4371 						  kgid);
4372 		if (error)
4373 			return error;
4374 	}
4375 
4376 	/* Change the device groups of @dev to @kuid/@kgid. */
4377 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4378 	if (error)
4379 		return error;
4380 
4381 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4382 		/* Change online device attributes of @dev to @kuid/@kgid. */
4383 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4384 						kuid, kgid);
4385 		if (error)
4386 			return error;
4387 	}
4388 
4389 	return 0;
4390 }
4391 
4392 /**
4393  * device_change_owner - change the owner of an existing device.
4394  * @dev: device.
4395  * @kuid: new owner's kuid
4396  * @kgid: new owner's kgid
4397  *
4398  * This changes the owner of @dev and its corresponding sysfs entries to
4399  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4400  * core.
4401  *
4402  * Returns 0 on success or error code on failure.
4403  */
4404 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4405 {
4406 	int error;
4407 	struct kobject *kobj = &dev->kobj;
4408 
4409 	dev = get_device(dev);
4410 	if (!dev)
4411 		return -EINVAL;
4412 
4413 	/*
4414 	 * Change the kobject and the default attributes and groups of the
4415 	 * ktype associated with it to @kuid/@kgid.
4416 	 */
4417 	error = sysfs_change_owner(kobj, kuid, kgid);
4418 	if (error)
4419 		goto out;
4420 
4421 	/*
4422 	 * Change the uevent file for @dev to the new owner. The uevent file
4423 	 * was created in a separate step when @dev got added and we mirror
4424 	 * that step here.
4425 	 */
4426 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4427 					kgid);
4428 	if (error)
4429 		goto out;
4430 
4431 	/*
4432 	 * Change the device groups, the device groups associated with the
4433 	 * device class, and the groups associated with the device type of @dev
4434 	 * to @kuid/@kgid.
4435 	 */
4436 	error = device_attrs_change_owner(dev, kuid, kgid);
4437 	if (error)
4438 		goto out;
4439 
4440 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4441 	if (error)
4442 		goto out;
4443 
4444 #ifdef CONFIG_BLOCK
4445 	if (sysfs_deprecated && dev->class == &block_class)
4446 		goto out;
4447 #endif
4448 
4449 	/*
4450 	 * Change the owner of the symlink located in the class directory of
4451 	 * the device class associated with @dev which points to the actual
4452 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4453 	 * symlink shows the same permissions as its target.
4454 	 */
4455 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4456 					dev_name(dev), kuid, kgid);
4457 	if (error)
4458 		goto out;
4459 
4460 out:
4461 	put_device(dev);
4462 	return error;
4463 }
4464 EXPORT_SYMBOL_GPL(device_change_owner);
4465 
4466 /**
4467  * device_shutdown - call ->shutdown() on each device to shutdown.
4468  */
4469 void device_shutdown(void)
4470 {
4471 	struct device *dev, *parent;
4472 
4473 	wait_for_device_probe();
4474 	device_block_probing();
4475 
4476 	cpufreq_suspend();
4477 
4478 	spin_lock(&devices_kset->list_lock);
4479 	/*
4480 	 * Walk the devices list backward, shutting down each in turn.
4481 	 * Beware that device unplug events may also start pulling
4482 	 * devices offline, even as the system is shutting down.
4483 	 */
4484 	while (!list_empty(&devices_kset->list)) {
4485 		dev = list_entry(devices_kset->list.prev, struct device,
4486 				kobj.entry);
4487 
4488 		/*
4489 		 * hold reference count of device's parent to
4490 		 * prevent it from being freed because parent's
4491 		 * lock is to be held
4492 		 */
4493 		parent = get_device(dev->parent);
4494 		get_device(dev);
4495 		/*
4496 		 * Make sure the device is off the kset list, in the
4497 		 * event that dev->*->shutdown() doesn't remove it.
4498 		 */
4499 		list_del_init(&dev->kobj.entry);
4500 		spin_unlock(&devices_kset->list_lock);
4501 
4502 		/* hold lock to avoid race with probe/release */
4503 		if (parent)
4504 			device_lock(parent);
4505 		device_lock(dev);
4506 
4507 		/* Don't allow any more runtime suspends */
4508 		pm_runtime_get_noresume(dev);
4509 		pm_runtime_barrier(dev);
4510 
4511 		if (dev->class && dev->class->shutdown_pre) {
4512 			if (initcall_debug)
4513 				dev_info(dev, "shutdown_pre\n");
4514 			dev->class->shutdown_pre(dev);
4515 		}
4516 		if (dev->bus && dev->bus->shutdown) {
4517 			if (initcall_debug)
4518 				dev_info(dev, "shutdown\n");
4519 			dev->bus->shutdown(dev);
4520 		} else if (dev->driver && dev->driver->shutdown) {
4521 			if (initcall_debug)
4522 				dev_info(dev, "shutdown\n");
4523 			dev->driver->shutdown(dev);
4524 		}
4525 
4526 		device_unlock(dev);
4527 		if (parent)
4528 			device_unlock(parent);
4529 
4530 		put_device(dev);
4531 		put_device(parent);
4532 
4533 		spin_lock(&devices_kset->list_lock);
4534 	}
4535 	spin_unlock(&devices_kset->list_lock);
4536 }
4537 
4538 /*
4539  * Device logging functions
4540  */
4541 
4542 #ifdef CONFIG_PRINTK
4543 static void
4544 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4545 {
4546 	const char *subsys;
4547 
4548 	memset(dev_info, 0, sizeof(*dev_info));
4549 
4550 	if (dev->class)
4551 		subsys = dev->class->name;
4552 	else if (dev->bus)
4553 		subsys = dev->bus->name;
4554 	else
4555 		return;
4556 
4557 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4558 
4559 	/*
4560 	 * Add device identifier DEVICE=:
4561 	 *   b12:8         block dev_t
4562 	 *   c127:3        char dev_t
4563 	 *   n8            netdev ifindex
4564 	 *   +sound:card0  subsystem:devname
4565 	 */
4566 	if (MAJOR(dev->devt)) {
4567 		char c;
4568 
4569 		if (strcmp(subsys, "block") == 0)
4570 			c = 'b';
4571 		else
4572 			c = 'c';
4573 
4574 		snprintf(dev_info->device, sizeof(dev_info->device),
4575 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4576 	} else if (strcmp(subsys, "net") == 0) {
4577 		struct net_device *net = to_net_dev(dev);
4578 
4579 		snprintf(dev_info->device, sizeof(dev_info->device),
4580 			 "n%u", net->ifindex);
4581 	} else {
4582 		snprintf(dev_info->device, sizeof(dev_info->device),
4583 			 "+%s:%s", subsys, dev_name(dev));
4584 	}
4585 }
4586 
4587 int dev_vprintk_emit(int level, const struct device *dev,
4588 		     const char *fmt, va_list args)
4589 {
4590 	struct dev_printk_info dev_info;
4591 
4592 	set_dev_info(dev, &dev_info);
4593 
4594 	return vprintk_emit(0, level, &dev_info, fmt, args);
4595 }
4596 EXPORT_SYMBOL(dev_vprintk_emit);
4597 
4598 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4599 {
4600 	va_list args;
4601 	int r;
4602 
4603 	va_start(args, fmt);
4604 
4605 	r = dev_vprintk_emit(level, dev, fmt, args);
4606 
4607 	va_end(args);
4608 
4609 	return r;
4610 }
4611 EXPORT_SYMBOL(dev_printk_emit);
4612 
4613 static void __dev_printk(const char *level, const struct device *dev,
4614 			struct va_format *vaf)
4615 {
4616 	if (dev)
4617 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4618 				dev_driver_string(dev), dev_name(dev), vaf);
4619 	else
4620 		printk("%s(NULL device *): %pV", level, vaf);
4621 }
4622 
4623 void _dev_printk(const char *level, const struct device *dev,
4624 		 const char *fmt, ...)
4625 {
4626 	struct va_format vaf;
4627 	va_list args;
4628 
4629 	va_start(args, fmt);
4630 
4631 	vaf.fmt = fmt;
4632 	vaf.va = &args;
4633 
4634 	__dev_printk(level, dev, &vaf);
4635 
4636 	va_end(args);
4637 }
4638 EXPORT_SYMBOL(_dev_printk);
4639 
4640 #define define_dev_printk_level(func, kern_level)		\
4641 void func(const struct device *dev, const char *fmt, ...)	\
4642 {								\
4643 	struct va_format vaf;					\
4644 	va_list args;						\
4645 								\
4646 	va_start(args, fmt);					\
4647 								\
4648 	vaf.fmt = fmt;						\
4649 	vaf.va = &args;						\
4650 								\
4651 	__dev_printk(kern_level, dev, &vaf);			\
4652 								\
4653 	va_end(args);						\
4654 }								\
4655 EXPORT_SYMBOL(func);
4656 
4657 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4658 define_dev_printk_level(_dev_alert, KERN_ALERT);
4659 define_dev_printk_level(_dev_crit, KERN_CRIT);
4660 define_dev_printk_level(_dev_err, KERN_ERR);
4661 define_dev_printk_level(_dev_warn, KERN_WARNING);
4662 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4663 define_dev_printk_level(_dev_info, KERN_INFO);
4664 
4665 #endif
4666 
4667 /**
4668  * dev_err_probe - probe error check and log helper
4669  * @dev: the pointer to the struct device
4670  * @err: error value to test
4671  * @fmt: printf-style format string
4672  * @...: arguments as specified in the format string
4673  *
4674  * This helper implements common pattern present in probe functions for error
4675  * checking: print debug or error message depending if the error value is
4676  * -EPROBE_DEFER and propagate error upwards.
4677  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4678  * checked later by reading devices_deferred debugfs attribute.
4679  * It replaces code sequence::
4680  *
4681  * 	if (err != -EPROBE_DEFER)
4682  * 		dev_err(dev, ...);
4683  * 	else
4684  * 		dev_dbg(dev, ...);
4685  * 	return err;
4686  *
4687  * with::
4688  *
4689  * 	return dev_err_probe(dev, err, ...);
4690  *
4691  * Note that it is deemed acceptable to use this function for error
4692  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4693  * The benefit compared to a normal dev_err() is the standardized format
4694  * of the error code and the fact that the error code is returned.
4695  *
4696  * Returns @err.
4697  *
4698  */
4699 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4700 {
4701 	struct va_format vaf;
4702 	va_list args;
4703 
4704 	va_start(args, fmt);
4705 	vaf.fmt = fmt;
4706 	vaf.va = &args;
4707 
4708 	if (err != -EPROBE_DEFER) {
4709 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4710 	} else {
4711 		device_set_deferred_probe_reason(dev, &vaf);
4712 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4713 	}
4714 
4715 	va_end(args);
4716 
4717 	return err;
4718 }
4719 EXPORT_SYMBOL_GPL(dev_err_probe);
4720 
4721 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4722 {
4723 	return fwnode && !IS_ERR(fwnode->secondary);
4724 }
4725 
4726 /**
4727  * set_primary_fwnode - Change the primary firmware node of a given device.
4728  * @dev: Device to handle.
4729  * @fwnode: New primary firmware node of the device.
4730  *
4731  * Set the device's firmware node pointer to @fwnode, but if a secondary
4732  * firmware node of the device is present, preserve it.
4733  *
4734  * Valid fwnode cases are:
4735  *  - primary --> secondary --> -ENODEV
4736  *  - primary --> NULL
4737  *  - secondary --> -ENODEV
4738  *  - NULL
4739  */
4740 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4741 {
4742 	struct device *parent = dev->parent;
4743 	struct fwnode_handle *fn = dev->fwnode;
4744 
4745 	if (fwnode) {
4746 		if (fwnode_is_primary(fn))
4747 			fn = fn->secondary;
4748 
4749 		if (fn) {
4750 			WARN_ON(fwnode->secondary);
4751 			fwnode->secondary = fn;
4752 		}
4753 		dev->fwnode = fwnode;
4754 	} else {
4755 		if (fwnode_is_primary(fn)) {
4756 			dev->fwnode = fn->secondary;
4757 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4758 			if (!(parent && fn == parent->fwnode))
4759 				fn->secondary = NULL;
4760 		} else {
4761 			dev->fwnode = NULL;
4762 		}
4763 	}
4764 }
4765 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4766 
4767 /**
4768  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4769  * @dev: Device to handle.
4770  * @fwnode: New secondary firmware node of the device.
4771  *
4772  * If a primary firmware node of the device is present, set its secondary
4773  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4774  * @fwnode.
4775  */
4776 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4777 {
4778 	if (fwnode)
4779 		fwnode->secondary = ERR_PTR(-ENODEV);
4780 
4781 	if (fwnode_is_primary(dev->fwnode))
4782 		dev->fwnode->secondary = fwnode;
4783 	else
4784 		dev->fwnode = fwnode;
4785 }
4786 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4787 
4788 /**
4789  * device_set_of_node_from_dev - reuse device-tree node of another device
4790  * @dev: device whose device-tree node is being set
4791  * @dev2: device whose device-tree node is being reused
4792  *
4793  * Takes another reference to the new device-tree node after first dropping
4794  * any reference held to the old node.
4795  */
4796 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4797 {
4798 	of_node_put(dev->of_node);
4799 	dev->of_node = of_node_get(dev2->of_node);
4800 	dev->of_node_reused = true;
4801 }
4802 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4803 
4804 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4805 {
4806 	dev->fwnode = fwnode;
4807 	dev->of_node = to_of_node(fwnode);
4808 }
4809 EXPORT_SYMBOL_GPL(device_set_node);
4810 
4811 int device_match_name(struct device *dev, const void *name)
4812 {
4813 	return sysfs_streq(dev_name(dev), name);
4814 }
4815 EXPORT_SYMBOL_GPL(device_match_name);
4816 
4817 int device_match_of_node(struct device *dev, const void *np)
4818 {
4819 	return dev->of_node == np;
4820 }
4821 EXPORT_SYMBOL_GPL(device_match_of_node);
4822 
4823 int device_match_fwnode(struct device *dev, const void *fwnode)
4824 {
4825 	return dev_fwnode(dev) == fwnode;
4826 }
4827 EXPORT_SYMBOL_GPL(device_match_fwnode);
4828 
4829 int device_match_devt(struct device *dev, const void *pdevt)
4830 {
4831 	return dev->devt == *(dev_t *)pdevt;
4832 }
4833 EXPORT_SYMBOL_GPL(device_match_devt);
4834 
4835 int device_match_acpi_dev(struct device *dev, const void *adev)
4836 {
4837 	return ACPI_COMPANION(dev) == adev;
4838 }
4839 EXPORT_SYMBOL(device_match_acpi_dev);
4840 
4841 int device_match_acpi_handle(struct device *dev, const void *handle)
4842 {
4843 	return ACPI_HANDLE(dev) == handle;
4844 }
4845 EXPORT_SYMBOL(device_match_acpi_handle);
4846 
4847 int device_match_any(struct device *dev, const void *unused)
4848 {
4849 	return 1;
4850 }
4851 EXPORT_SYMBOL_GPL(device_match_any);
4852