1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/swiotlb.h> 31 #include <linux/sysfs.h> 32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 33 34 #include "base.h" 35 #include "power/power.h" 36 37 #ifdef CONFIG_SYSFS_DEPRECATED 38 #ifdef CONFIG_SYSFS_DEPRECATED_V2 39 long sysfs_deprecated = 1; 40 #else 41 long sysfs_deprecated = 0; 42 #endif 43 static int __init sysfs_deprecated_setup(char *arg) 44 { 45 return kstrtol(arg, 10, &sysfs_deprecated); 46 } 47 early_param("sysfs.deprecated", sysfs_deprecated_setup); 48 #endif 49 50 /* Device links support. */ 51 static LIST_HEAD(deferred_sync); 52 static unsigned int defer_sync_state_count = 1; 53 static DEFINE_MUTEX(fwnode_link_lock); 54 static bool fw_devlink_is_permissive(void); 55 static bool fw_devlink_drv_reg_done; 56 57 /** 58 * fwnode_link_add - Create a link between two fwnode_handles. 59 * @con: Consumer end of the link. 60 * @sup: Supplier end of the link. 61 * 62 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 63 * represents the detail that the firmware lists @sup fwnode as supplying a 64 * resource to @con. 65 * 66 * The driver core will use the fwnode link to create a device link between the 67 * two device objects corresponding to @con and @sup when they are created. The 68 * driver core will automatically delete the fwnode link between @con and @sup 69 * after doing that. 70 * 71 * Attempts to create duplicate links between the same pair of fwnode handles 72 * are ignored and there is no reference counting. 73 */ 74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 75 { 76 struct fwnode_link *link; 77 int ret = 0; 78 79 mutex_lock(&fwnode_link_lock); 80 81 list_for_each_entry(link, &sup->consumers, s_hook) 82 if (link->consumer == con) 83 goto out; 84 85 link = kzalloc(sizeof(*link), GFP_KERNEL); 86 if (!link) { 87 ret = -ENOMEM; 88 goto out; 89 } 90 91 link->supplier = sup; 92 INIT_LIST_HEAD(&link->s_hook); 93 link->consumer = con; 94 INIT_LIST_HEAD(&link->c_hook); 95 96 list_add(&link->s_hook, &sup->consumers); 97 list_add(&link->c_hook, &con->suppliers); 98 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n", 99 con, sup); 100 out: 101 mutex_unlock(&fwnode_link_lock); 102 103 return ret; 104 } 105 106 /** 107 * __fwnode_link_del - Delete a link between two fwnode_handles. 108 * @link: the fwnode_link to be deleted 109 * 110 * The fwnode_link_lock needs to be held when this function is called. 111 */ 112 static void __fwnode_link_del(struct fwnode_link *link) 113 { 114 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n", 115 link->consumer, link->supplier); 116 list_del(&link->s_hook); 117 list_del(&link->c_hook); 118 kfree(link); 119 } 120 121 /** 122 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 123 * @fwnode: fwnode whose supplier links need to be deleted 124 * 125 * Deletes all supplier links connecting directly to @fwnode. 126 */ 127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 128 { 129 struct fwnode_link *link, *tmp; 130 131 mutex_lock(&fwnode_link_lock); 132 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 133 __fwnode_link_del(link); 134 mutex_unlock(&fwnode_link_lock); 135 } 136 137 /** 138 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 139 * @fwnode: fwnode whose consumer links need to be deleted 140 * 141 * Deletes all consumer links connecting directly to @fwnode. 142 */ 143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 144 { 145 struct fwnode_link *link, *tmp; 146 147 mutex_lock(&fwnode_link_lock); 148 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 149 __fwnode_link_del(link); 150 mutex_unlock(&fwnode_link_lock); 151 } 152 153 /** 154 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 155 * @fwnode: fwnode whose links needs to be deleted 156 * 157 * Deletes all links connecting directly to a fwnode. 158 */ 159 void fwnode_links_purge(struct fwnode_handle *fwnode) 160 { 161 fwnode_links_purge_suppliers(fwnode); 162 fwnode_links_purge_consumers(fwnode); 163 } 164 165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 166 { 167 struct fwnode_handle *child; 168 169 /* Don't purge consumer links of an added child */ 170 if (fwnode->dev) 171 return; 172 173 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 174 fwnode_links_purge_consumers(fwnode); 175 176 fwnode_for_each_available_child_node(fwnode, child) 177 fw_devlink_purge_absent_suppliers(child); 178 } 179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 180 181 #ifdef CONFIG_SRCU 182 static DEFINE_MUTEX(device_links_lock); 183 DEFINE_STATIC_SRCU(device_links_srcu); 184 185 static inline void device_links_write_lock(void) 186 { 187 mutex_lock(&device_links_lock); 188 } 189 190 static inline void device_links_write_unlock(void) 191 { 192 mutex_unlock(&device_links_lock); 193 } 194 195 int device_links_read_lock(void) __acquires(&device_links_srcu) 196 { 197 return srcu_read_lock(&device_links_srcu); 198 } 199 200 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 201 { 202 srcu_read_unlock(&device_links_srcu, idx); 203 } 204 205 int device_links_read_lock_held(void) 206 { 207 return srcu_read_lock_held(&device_links_srcu); 208 } 209 210 static void device_link_synchronize_removal(void) 211 { 212 synchronize_srcu(&device_links_srcu); 213 } 214 215 static void device_link_remove_from_lists(struct device_link *link) 216 { 217 list_del_rcu(&link->s_node); 218 list_del_rcu(&link->c_node); 219 } 220 #else /* !CONFIG_SRCU */ 221 static DECLARE_RWSEM(device_links_lock); 222 223 static inline void device_links_write_lock(void) 224 { 225 down_write(&device_links_lock); 226 } 227 228 static inline void device_links_write_unlock(void) 229 { 230 up_write(&device_links_lock); 231 } 232 233 int device_links_read_lock(void) 234 { 235 down_read(&device_links_lock); 236 return 0; 237 } 238 239 void device_links_read_unlock(int not_used) 240 { 241 up_read(&device_links_lock); 242 } 243 244 #ifdef CONFIG_DEBUG_LOCK_ALLOC 245 int device_links_read_lock_held(void) 246 { 247 return lockdep_is_held(&device_links_lock); 248 } 249 #endif 250 251 static inline void device_link_synchronize_removal(void) 252 { 253 } 254 255 static void device_link_remove_from_lists(struct device_link *link) 256 { 257 list_del(&link->s_node); 258 list_del(&link->c_node); 259 } 260 #endif /* !CONFIG_SRCU */ 261 262 static bool device_is_ancestor(struct device *dev, struct device *target) 263 { 264 while (target->parent) { 265 target = target->parent; 266 if (dev == target) 267 return true; 268 } 269 return false; 270 } 271 272 /** 273 * device_is_dependent - Check if one device depends on another one 274 * @dev: Device to check dependencies for. 275 * @target: Device to check against. 276 * 277 * Check if @target depends on @dev or any device dependent on it (its child or 278 * its consumer etc). Return 1 if that is the case or 0 otherwise. 279 */ 280 int device_is_dependent(struct device *dev, void *target) 281 { 282 struct device_link *link; 283 int ret; 284 285 /* 286 * The "ancestors" check is needed to catch the case when the target 287 * device has not been completely initialized yet and it is still 288 * missing from the list of children of its parent device. 289 */ 290 if (dev == target || device_is_ancestor(dev, target)) 291 return 1; 292 293 ret = device_for_each_child(dev, target, device_is_dependent); 294 if (ret) 295 return ret; 296 297 list_for_each_entry(link, &dev->links.consumers, s_node) { 298 if ((link->flags & ~DL_FLAG_INFERRED) == 299 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 300 continue; 301 302 if (link->consumer == target) 303 return 1; 304 305 ret = device_is_dependent(link->consumer, target); 306 if (ret) 307 break; 308 } 309 return ret; 310 } 311 312 static void device_link_init_status(struct device_link *link, 313 struct device *consumer, 314 struct device *supplier) 315 { 316 switch (supplier->links.status) { 317 case DL_DEV_PROBING: 318 switch (consumer->links.status) { 319 case DL_DEV_PROBING: 320 /* 321 * A consumer driver can create a link to a supplier 322 * that has not completed its probing yet as long as it 323 * knows that the supplier is already functional (for 324 * example, it has just acquired some resources from the 325 * supplier). 326 */ 327 link->status = DL_STATE_CONSUMER_PROBE; 328 break; 329 default: 330 link->status = DL_STATE_DORMANT; 331 break; 332 } 333 break; 334 case DL_DEV_DRIVER_BOUND: 335 switch (consumer->links.status) { 336 case DL_DEV_PROBING: 337 link->status = DL_STATE_CONSUMER_PROBE; 338 break; 339 case DL_DEV_DRIVER_BOUND: 340 link->status = DL_STATE_ACTIVE; 341 break; 342 default: 343 link->status = DL_STATE_AVAILABLE; 344 break; 345 } 346 break; 347 case DL_DEV_UNBINDING: 348 link->status = DL_STATE_SUPPLIER_UNBIND; 349 break; 350 default: 351 link->status = DL_STATE_DORMANT; 352 break; 353 } 354 } 355 356 static int device_reorder_to_tail(struct device *dev, void *not_used) 357 { 358 struct device_link *link; 359 360 /* 361 * Devices that have not been registered yet will be put to the ends 362 * of the lists during the registration, so skip them here. 363 */ 364 if (device_is_registered(dev)) 365 devices_kset_move_last(dev); 366 367 if (device_pm_initialized(dev)) 368 device_pm_move_last(dev); 369 370 device_for_each_child(dev, NULL, device_reorder_to_tail); 371 list_for_each_entry(link, &dev->links.consumers, s_node) { 372 if ((link->flags & ~DL_FLAG_INFERRED) == 373 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 374 continue; 375 device_reorder_to_tail(link->consumer, NULL); 376 } 377 378 return 0; 379 } 380 381 /** 382 * device_pm_move_to_tail - Move set of devices to the end of device lists 383 * @dev: Device to move 384 * 385 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 386 * 387 * It moves the @dev along with all of its children and all of its consumers 388 * to the ends of the device_kset and dpm_list, recursively. 389 */ 390 void device_pm_move_to_tail(struct device *dev) 391 { 392 int idx; 393 394 idx = device_links_read_lock(); 395 device_pm_lock(); 396 device_reorder_to_tail(dev, NULL); 397 device_pm_unlock(); 398 device_links_read_unlock(idx); 399 } 400 401 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 402 403 static ssize_t status_show(struct device *dev, 404 struct device_attribute *attr, char *buf) 405 { 406 const char *output; 407 408 switch (to_devlink(dev)->status) { 409 case DL_STATE_NONE: 410 output = "not tracked"; 411 break; 412 case DL_STATE_DORMANT: 413 output = "dormant"; 414 break; 415 case DL_STATE_AVAILABLE: 416 output = "available"; 417 break; 418 case DL_STATE_CONSUMER_PROBE: 419 output = "consumer probing"; 420 break; 421 case DL_STATE_ACTIVE: 422 output = "active"; 423 break; 424 case DL_STATE_SUPPLIER_UNBIND: 425 output = "supplier unbinding"; 426 break; 427 default: 428 output = "unknown"; 429 break; 430 } 431 432 return sysfs_emit(buf, "%s\n", output); 433 } 434 static DEVICE_ATTR_RO(status); 435 436 static ssize_t auto_remove_on_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct device_link *link = to_devlink(dev); 440 const char *output; 441 442 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 443 output = "supplier unbind"; 444 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 445 output = "consumer unbind"; 446 else 447 output = "never"; 448 449 return sysfs_emit(buf, "%s\n", output); 450 } 451 static DEVICE_ATTR_RO(auto_remove_on); 452 453 static ssize_t runtime_pm_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct device_link *link = to_devlink(dev); 457 458 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 459 } 460 static DEVICE_ATTR_RO(runtime_pm); 461 462 static ssize_t sync_state_only_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct device_link *link = to_devlink(dev); 466 467 return sysfs_emit(buf, "%d\n", 468 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 469 } 470 static DEVICE_ATTR_RO(sync_state_only); 471 472 static struct attribute *devlink_attrs[] = { 473 &dev_attr_status.attr, 474 &dev_attr_auto_remove_on.attr, 475 &dev_attr_runtime_pm.attr, 476 &dev_attr_sync_state_only.attr, 477 NULL, 478 }; 479 ATTRIBUTE_GROUPS(devlink); 480 481 static void device_link_release_fn(struct work_struct *work) 482 { 483 struct device_link *link = container_of(work, struct device_link, rm_work); 484 485 /* Ensure that all references to the link object have been dropped. */ 486 device_link_synchronize_removal(); 487 488 while (refcount_dec_not_one(&link->rpm_active)) 489 pm_runtime_put(link->supplier); 490 491 put_device(link->consumer); 492 put_device(link->supplier); 493 kfree(link); 494 } 495 496 static void devlink_dev_release(struct device *dev) 497 { 498 struct device_link *link = to_devlink(dev); 499 500 INIT_WORK(&link->rm_work, device_link_release_fn); 501 /* 502 * It may take a while to complete this work because of the SRCU 503 * synchronization in device_link_release_fn() and if the consumer or 504 * supplier devices get deleted when it runs, so put it into the "long" 505 * workqueue. 506 */ 507 queue_work(system_long_wq, &link->rm_work); 508 } 509 510 static struct class devlink_class = { 511 .name = "devlink", 512 .owner = THIS_MODULE, 513 .dev_groups = devlink_groups, 514 .dev_release = devlink_dev_release, 515 }; 516 517 static int devlink_add_symlinks(struct device *dev, 518 struct class_interface *class_intf) 519 { 520 int ret; 521 size_t len; 522 struct device_link *link = to_devlink(dev); 523 struct device *sup = link->supplier; 524 struct device *con = link->consumer; 525 char *buf; 526 527 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 528 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 529 len += strlen(":"); 530 len += strlen("supplier:") + 1; 531 buf = kzalloc(len, GFP_KERNEL); 532 if (!buf) 533 return -ENOMEM; 534 535 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 536 if (ret) 537 goto out; 538 539 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 540 if (ret) 541 goto err_con; 542 543 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 544 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 545 if (ret) 546 goto err_con_dev; 547 548 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 549 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 550 if (ret) 551 goto err_sup_dev; 552 553 goto out; 554 555 err_sup_dev: 556 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 557 sysfs_remove_link(&sup->kobj, buf); 558 err_con_dev: 559 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 560 err_con: 561 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 562 out: 563 kfree(buf); 564 return ret; 565 } 566 567 static void devlink_remove_symlinks(struct device *dev, 568 struct class_interface *class_intf) 569 { 570 struct device_link *link = to_devlink(dev); 571 size_t len; 572 struct device *sup = link->supplier; 573 struct device *con = link->consumer; 574 char *buf; 575 576 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 577 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 578 579 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 580 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 581 len += strlen(":"); 582 len += strlen("supplier:") + 1; 583 buf = kzalloc(len, GFP_KERNEL); 584 if (!buf) { 585 WARN(1, "Unable to properly free device link symlinks!\n"); 586 return; 587 } 588 589 if (device_is_registered(con)) { 590 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 591 sysfs_remove_link(&con->kobj, buf); 592 } 593 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 594 sysfs_remove_link(&sup->kobj, buf); 595 kfree(buf); 596 } 597 598 static struct class_interface devlink_class_intf = { 599 .class = &devlink_class, 600 .add_dev = devlink_add_symlinks, 601 .remove_dev = devlink_remove_symlinks, 602 }; 603 604 static int __init devlink_class_init(void) 605 { 606 int ret; 607 608 ret = class_register(&devlink_class); 609 if (ret) 610 return ret; 611 612 ret = class_interface_register(&devlink_class_intf); 613 if (ret) 614 class_unregister(&devlink_class); 615 616 return ret; 617 } 618 postcore_initcall(devlink_class_init); 619 620 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 621 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 622 DL_FLAG_AUTOPROBE_CONSUMER | \ 623 DL_FLAG_SYNC_STATE_ONLY | \ 624 DL_FLAG_INFERRED) 625 626 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 627 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 628 629 /** 630 * device_link_add - Create a link between two devices. 631 * @consumer: Consumer end of the link. 632 * @supplier: Supplier end of the link. 633 * @flags: Link flags. 634 * 635 * The caller is responsible for the proper synchronization of the link creation 636 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 637 * runtime PM framework to take the link into account. Second, if the 638 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 639 * be forced into the active meta state and reference-counted upon the creation 640 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 641 * ignored. 642 * 643 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 644 * expected to release the link returned by it directly with the help of either 645 * device_link_del() or device_link_remove(). 646 * 647 * If that flag is not set, however, the caller of this function is handing the 648 * management of the link over to the driver core entirely and its return value 649 * can only be used to check whether or not the link is present. In that case, 650 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 651 * flags can be used to indicate to the driver core when the link can be safely 652 * deleted. Namely, setting one of them in @flags indicates to the driver core 653 * that the link is not going to be used (by the given caller of this function) 654 * after unbinding the consumer or supplier driver, respectively, from its 655 * device, so the link can be deleted at that point. If none of them is set, 656 * the link will be maintained until one of the devices pointed to by it (either 657 * the consumer or the supplier) is unregistered. 658 * 659 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 660 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 661 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 662 * be used to request the driver core to automatically probe for a consumer 663 * driver after successfully binding a driver to the supplier device. 664 * 665 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 666 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 667 * the same time is invalid and will cause NULL to be returned upfront. 668 * However, if a device link between the given @consumer and @supplier pair 669 * exists already when this function is called for them, the existing link will 670 * be returned regardless of its current type and status (the link's flags may 671 * be modified then). The caller of this function is then expected to treat 672 * the link as though it has just been created, so (in particular) if 673 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 674 * explicitly when not needed any more (as stated above). 675 * 676 * A side effect of the link creation is re-ordering of dpm_list and the 677 * devices_kset list by moving the consumer device and all devices depending 678 * on it to the ends of these lists (that does not happen to devices that have 679 * not been registered when this function is called). 680 * 681 * The supplier device is required to be registered when this function is called 682 * and NULL will be returned if that is not the case. The consumer device need 683 * not be registered, however. 684 */ 685 struct device_link *device_link_add(struct device *consumer, 686 struct device *supplier, u32 flags) 687 { 688 struct device_link *link; 689 690 if (!consumer || !supplier || consumer == supplier || 691 flags & ~DL_ADD_VALID_FLAGS || 692 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 693 (flags & DL_FLAG_SYNC_STATE_ONLY && 694 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 695 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 696 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 697 DL_FLAG_AUTOREMOVE_SUPPLIER))) 698 return NULL; 699 700 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 701 if (pm_runtime_get_sync(supplier) < 0) { 702 pm_runtime_put_noidle(supplier); 703 return NULL; 704 } 705 } 706 707 if (!(flags & DL_FLAG_STATELESS)) 708 flags |= DL_FLAG_MANAGED; 709 710 device_links_write_lock(); 711 device_pm_lock(); 712 713 /* 714 * If the supplier has not been fully registered yet or there is a 715 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 716 * the supplier already in the graph, return NULL. If the link is a 717 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 718 * because it only affects sync_state() callbacks. 719 */ 720 if (!device_pm_initialized(supplier) 721 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 722 device_is_dependent(consumer, supplier))) { 723 link = NULL; 724 goto out; 725 } 726 727 /* 728 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 729 * So, only create it if the consumer hasn't probed yet. 730 */ 731 if (flags & DL_FLAG_SYNC_STATE_ONLY && 732 consumer->links.status != DL_DEV_NO_DRIVER && 733 consumer->links.status != DL_DEV_PROBING) { 734 link = NULL; 735 goto out; 736 } 737 738 /* 739 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 740 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 741 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 742 */ 743 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 744 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 745 746 list_for_each_entry(link, &supplier->links.consumers, s_node) { 747 if (link->consumer != consumer) 748 continue; 749 750 if (link->flags & DL_FLAG_INFERRED && 751 !(flags & DL_FLAG_INFERRED)) 752 link->flags &= ~DL_FLAG_INFERRED; 753 754 if (flags & DL_FLAG_PM_RUNTIME) { 755 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 756 pm_runtime_new_link(consumer); 757 link->flags |= DL_FLAG_PM_RUNTIME; 758 } 759 if (flags & DL_FLAG_RPM_ACTIVE) 760 refcount_inc(&link->rpm_active); 761 } 762 763 if (flags & DL_FLAG_STATELESS) { 764 kref_get(&link->kref); 765 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 766 !(link->flags & DL_FLAG_STATELESS)) { 767 link->flags |= DL_FLAG_STATELESS; 768 goto reorder; 769 } else { 770 link->flags |= DL_FLAG_STATELESS; 771 goto out; 772 } 773 } 774 775 /* 776 * If the life time of the link following from the new flags is 777 * longer than indicated by the flags of the existing link, 778 * update the existing link to stay around longer. 779 */ 780 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 781 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 782 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 783 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 784 } 785 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 786 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 787 DL_FLAG_AUTOREMOVE_SUPPLIER); 788 } 789 if (!(link->flags & DL_FLAG_MANAGED)) { 790 kref_get(&link->kref); 791 link->flags |= DL_FLAG_MANAGED; 792 device_link_init_status(link, consumer, supplier); 793 } 794 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 795 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 796 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 797 goto reorder; 798 } 799 800 goto out; 801 } 802 803 link = kzalloc(sizeof(*link), GFP_KERNEL); 804 if (!link) 805 goto out; 806 807 refcount_set(&link->rpm_active, 1); 808 809 get_device(supplier); 810 link->supplier = supplier; 811 INIT_LIST_HEAD(&link->s_node); 812 get_device(consumer); 813 link->consumer = consumer; 814 INIT_LIST_HEAD(&link->c_node); 815 link->flags = flags; 816 kref_init(&link->kref); 817 818 link->link_dev.class = &devlink_class; 819 device_set_pm_not_required(&link->link_dev); 820 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 821 dev_bus_name(supplier), dev_name(supplier), 822 dev_bus_name(consumer), dev_name(consumer)); 823 if (device_register(&link->link_dev)) { 824 put_device(&link->link_dev); 825 link = NULL; 826 goto out; 827 } 828 829 if (flags & DL_FLAG_PM_RUNTIME) { 830 if (flags & DL_FLAG_RPM_ACTIVE) 831 refcount_inc(&link->rpm_active); 832 833 pm_runtime_new_link(consumer); 834 } 835 836 /* Determine the initial link state. */ 837 if (flags & DL_FLAG_STATELESS) 838 link->status = DL_STATE_NONE; 839 else 840 device_link_init_status(link, consumer, supplier); 841 842 /* 843 * Some callers expect the link creation during consumer driver probe to 844 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 845 */ 846 if (link->status == DL_STATE_CONSUMER_PROBE && 847 flags & DL_FLAG_PM_RUNTIME) 848 pm_runtime_resume(supplier); 849 850 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 851 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 852 853 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 854 dev_dbg(consumer, 855 "Linked as a sync state only consumer to %s\n", 856 dev_name(supplier)); 857 goto out; 858 } 859 860 reorder: 861 /* 862 * Move the consumer and all of the devices depending on it to the end 863 * of dpm_list and the devices_kset list. 864 * 865 * It is necessary to hold dpm_list locked throughout all that or else 866 * we may end up suspending with a wrong ordering of it. 867 */ 868 device_reorder_to_tail(consumer, NULL); 869 870 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 871 872 out: 873 device_pm_unlock(); 874 device_links_write_unlock(); 875 876 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 877 pm_runtime_put(supplier); 878 879 return link; 880 } 881 EXPORT_SYMBOL_GPL(device_link_add); 882 883 static void __device_link_del(struct kref *kref) 884 { 885 struct device_link *link = container_of(kref, struct device_link, kref); 886 887 dev_dbg(link->consumer, "Dropping the link to %s\n", 888 dev_name(link->supplier)); 889 890 pm_runtime_drop_link(link); 891 892 device_link_remove_from_lists(link); 893 device_unregister(&link->link_dev); 894 } 895 896 static void device_link_put_kref(struct device_link *link) 897 { 898 if (link->flags & DL_FLAG_STATELESS) 899 kref_put(&link->kref, __device_link_del); 900 else if (!device_is_registered(link->consumer)) 901 __device_link_del(&link->kref); 902 else 903 WARN(1, "Unable to drop a managed device link reference\n"); 904 } 905 906 /** 907 * device_link_del - Delete a stateless link between two devices. 908 * @link: Device link to delete. 909 * 910 * The caller must ensure proper synchronization of this function with runtime 911 * PM. If the link was added multiple times, it needs to be deleted as often. 912 * Care is required for hotplugged devices: Their links are purged on removal 913 * and calling device_link_del() is then no longer allowed. 914 */ 915 void device_link_del(struct device_link *link) 916 { 917 device_links_write_lock(); 918 device_link_put_kref(link); 919 device_links_write_unlock(); 920 } 921 EXPORT_SYMBOL_GPL(device_link_del); 922 923 /** 924 * device_link_remove - Delete a stateless link between two devices. 925 * @consumer: Consumer end of the link. 926 * @supplier: Supplier end of the link. 927 * 928 * The caller must ensure proper synchronization of this function with runtime 929 * PM. 930 */ 931 void device_link_remove(void *consumer, struct device *supplier) 932 { 933 struct device_link *link; 934 935 if (WARN_ON(consumer == supplier)) 936 return; 937 938 device_links_write_lock(); 939 940 list_for_each_entry(link, &supplier->links.consumers, s_node) { 941 if (link->consumer == consumer) { 942 device_link_put_kref(link); 943 break; 944 } 945 } 946 947 device_links_write_unlock(); 948 } 949 EXPORT_SYMBOL_GPL(device_link_remove); 950 951 static void device_links_missing_supplier(struct device *dev) 952 { 953 struct device_link *link; 954 955 list_for_each_entry(link, &dev->links.suppliers, c_node) { 956 if (link->status != DL_STATE_CONSUMER_PROBE) 957 continue; 958 959 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 960 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 961 } else { 962 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 963 WRITE_ONCE(link->status, DL_STATE_DORMANT); 964 } 965 } 966 } 967 968 /** 969 * device_links_check_suppliers - Check presence of supplier drivers. 970 * @dev: Consumer device. 971 * 972 * Check links from this device to any suppliers. Walk the list of the device's 973 * links to suppliers and see if all of them are available. If not, simply 974 * return -EPROBE_DEFER. 975 * 976 * We need to guarantee that the supplier will not go away after the check has 977 * been positive here. It only can go away in __device_release_driver() and 978 * that function checks the device's links to consumers. This means we need to 979 * mark the link as "consumer probe in progress" to make the supplier removal 980 * wait for us to complete (or bad things may happen). 981 * 982 * Links without the DL_FLAG_MANAGED flag set are ignored. 983 */ 984 int device_links_check_suppliers(struct device *dev) 985 { 986 struct device_link *link; 987 int ret = 0; 988 struct fwnode_handle *sup_fw; 989 990 /* 991 * Device waiting for supplier to become available is not allowed to 992 * probe. 993 */ 994 mutex_lock(&fwnode_link_lock); 995 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 996 !fw_devlink_is_permissive()) { 997 sup_fw = list_first_entry(&dev->fwnode->suppliers, 998 struct fwnode_link, 999 c_hook)->supplier; 1000 dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n", 1001 sup_fw); 1002 mutex_unlock(&fwnode_link_lock); 1003 return -EPROBE_DEFER; 1004 } 1005 mutex_unlock(&fwnode_link_lock); 1006 1007 device_links_write_lock(); 1008 1009 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1010 if (!(link->flags & DL_FLAG_MANAGED)) 1011 continue; 1012 1013 if (link->status != DL_STATE_AVAILABLE && 1014 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1015 device_links_missing_supplier(dev); 1016 dev_err_probe(dev, -EPROBE_DEFER, 1017 "supplier %s not ready\n", 1018 dev_name(link->supplier)); 1019 ret = -EPROBE_DEFER; 1020 break; 1021 } 1022 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1023 } 1024 dev->links.status = DL_DEV_PROBING; 1025 1026 device_links_write_unlock(); 1027 return ret; 1028 } 1029 1030 /** 1031 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1032 * @dev: Device to call sync_state() on 1033 * @list: List head to queue the @dev on 1034 * 1035 * Queues a device for a sync_state() callback when the device links write lock 1036 * isn't held. This allows the sync_state() execution flow to use device links 1037 * APIs. The caller must ensure this function is called with 1038 * device_links_write_lock() held. 1039 * 1040 * This function does a get_device() to make sure the device is not freed while 1041 * on this list. 1042 * 1043 * So the caller must also ensure that device_links_flush_sync_list() is called 1044 * as soon as the caller releases device_links_write_lock(). This is necessary 1045 * to make sure the sync_state() is called in a timely fashion and the 1046 * put_device() is called on this device. 1047 */ 1048 static void __device_links_queue_sync_state(struct device *dev, 1049 struct list_head *list) 1050 { 1051 struct device_link *link; 1052 1053 if (!dev_has_sync_state(dev)) 1054 return; 1055 if (dev->state_synced) 1056 return; 1057 1058 list_for_each_entry(link, &dev->links.consumers, s_node) { 1059 if (!(link->flags & DL_FLAG_MANAGED)) 1060 continue; 1061 if (link->status != DL_STATE_ACTIVE) 1062 return; 1063 } 1064 1065 /* 1066 * Set the flag here to avoid adding the same device to a list more 1067 * than once. This can happen if new consumers get added to the device 1068 * and probed before the list is flushed. 1069 */ 1070 dev->state_synced = true; 1071 1072 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1073 return; 1074 1075 get_device(dev); 1076 list_add_tail(&dev->links.defer_sync, list); 1077 } 1078 1079 /** 1080 * device_links_flush_sync_list - Call sync_state() on a list of devices 1081 * @list: List of devices to call sync_state() on 1082 * @dont_lock_dev: Device for which lock is already held by the caller 1083 * 1084 * Calls sync_state() on all the devices that have been queued for it. This 1085 * function is used in conjunction with __device_links_queue_sync_state(). The 1086 * @dont_lock_dev parameter is useful when this function is called from a 1087 * context where a device lock is already held. 1088 */ 1089 static void device_links_flush_sync_list(struct list_head *list, 1090 struct device *dont_lock_dev) 1091 { 1092 struct device *dev, *tmp; 1093 1094 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1095 list_del_init(&dev->links.defer_sync); 1096 1097 if (dev != dont_lock_dev) 1098 device_lock(dev); 1099 1100 if (dev->bus->sync_state) 1101 dev->bus->sync_state(dev); 1102 else if (dev->driver && dev->driver->sync_state) 1103 dev->driver->sync_state(dev); 1104 1105 if (dev != dont_lock_dev) 1106 device_unlock(dev); 1107 1108 put_device(dev); 1109 } 1110 } 1111 1112 void device_links_supplier_sync_state_pause(void) 1113 { 1114 device_links_write_lock(); 1115 defer_sync_state_count++; 1116 device_links_write_unlock(); 1117 } 1118 1119 void device_links_supplier_sync_state_resume(void) 1120 { 1121 struct device *dev, *tmp; 1122 LIST_HEAD(sync_list); 1123 1124 device_links_write_lock(); 1125 if (!defer_sync_state_count) { 1126 WARN(true, "Unmatched sync_state pause/resume!"); 1127 goto out; 1128 } 1129 defer_sync_state_count--; 1130 if (defer_sync_state_count) 1131 goto out; 1132 1133 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1134 /* 1135 * Delete from deferred_sync list before queuing it to 1136 * sync_list because defer_sync is used for both lists. 1137 */ 1138 list_del_init(&dev->links.defer_sync); 1139 __device_links_queue_sync_state(dev, &sync_list); 1140 } 1141 out: 1142 device_links_write_unlock(); 1143 1144 device_links_flush_sync_list(&sync_list, NULL); 1145 } 1146 1147 static int sync_state_resume_initcall(void) 1148 { 1149 device_links_supplier_sync_state_resume(); 1150 return 0; 1151 } 1152 late_initcall(sync_state_resume_initcall); 1153 1154 static void __device_links_supplier_defer_sync(struct device *sup) 1155 { 1156 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1157 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1158 } 1159 1160 static void device_link_drop_managed(struct device_link *link) 1161 { 1162 link->flags &= ~DL_FLAG_MANAGED; 1163 WRITE_ONCE(link->status, DL_STATE_NONE); 1164 kref_put(&link->kref, __device_link_del); 1165 } 1166 1167 static ssize_t waiting_for_supplier_show(struct device *dev, 1168 struct device_attribute *attr, 1169 char *buf) 1170 { 1171 bool val; 1172 1173 device_lock(dev); 1174 val = !list_empty(&dev->fwnode->suppliers); 1175 device_unlock(dev); 1176 return sysfs_emit(buf, "%u\n", val); 1177 } 1178 static DEVICE_ATTR_RO(waiting_for_supplier); 1179 1180 /** 1181 * device_links_force_bind - Prepares device to be force bound 1182 * @dev: Consumer device. 1183 * 1184 * device_bind_driver() force binds a device to a driver without calling any 1185 * driver probe functions. So the consumer really isn't going to wait for any 1186 * supplier before it's bound to the driver. We still want the device link 1187 * states to be sensible when this happens. 1188 * 1189 * In preparation for device_bind_driver(), this function goes through each 1190 * supplier device links and checks if the supplier is bound. If it is, then 1191 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1192 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1193 */ 1194 void device_links_force_bind(struct device *dev) 1195 { 1196 struct device_link *link, *ln; 1197 1198 device_links_write_lock(); 1199 1200 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1201 if (!(link->flags & DL_FLAG_MANAGED)) 1202 continue; 1203 1204 if (link->status != DL_STATE_AVAILABLE) { 1205 device_link_drop_managed(link); 1206 continue; 1207 } 1208 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1209 } 1210 dev->links.status = DL_DEV_PROBING; 1211 1212 device_links_write_unlock(); 1213 } 1214 1215 /** 1216 * device_links_driver_bound - Update device links after probing its driver. 1217 * @dev: Device to update the links for. 1218 * 1219 * The probe has been successful, so update links from this device to any 1220 * consumers by changing their status to "available". 1221 * 1222 * Also change the status of @dev's links to suppliers to "active". 1223 * 1224 * Links without the DL_FLAG_MANAGED flag set are ignored. 1225 */ 1226 void device_links_driver_bound(struct device *dev) 1227 { 1228 struct device_link *link, *ln; 1229 LIST_HEAD(sync_list); 1230 1231 /* 1232 * If a device binds successfully, it's expected to have created all 1233 * the device links it needs to or make new device links as it needs 1234 * them. So, fw_devlink no longer needs to create device links to any 1235 * of the device's suppliers. 1236 * 1237 * Also, if a child firmware node of this bound device is not added as 1238 * a device by now, assume it is never going to be added and make sure 1239 * other devices don't defer probe indefinitely by waiting for such a 1240 * child device. 1241 */ 1242 if (dev->fwnode && dev->fwnode->dev == dev) { 1243 struct fwnode_handle *child; 1244 fwnode_links_purge_suppliers(dev->fwnode); 1245 fwnode_for_each_available_child_node(dev->fwnode, child) 1246 fw_devlink_purge_absent_suppliers(child); 1247 } 1248 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1249 1250 device_links_write_lock(); 1251 1252 list_for_each_entry(link, &dev->links.consumers, s_node) { 1253 if (!(link->flags & DL_FLAG_MANAGED)) 1254 continue; 1255 1256 /* 1257 * Links created during consumer probe may be in the "consumer 1258 * probe" state to start with if the supplier is still probing 1259 * when they are created and they may become "active" if the 1260 * consumer probe returns first. Skip them here. 1261 */ 1262 if (link->status == DL_STATE_CONSUMER_PROBE || 1263 link->status == DL_STATE_ACTIVE) 1264 continue; 1265 1266 WARN_ON(link->status != DL_STATE_DORMANT); 1267 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1268 1269 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1270 driver_deferred_probe_add(link->consumer); 1271 } 1272 1273 if (defer_sync_state_count) 1274 __device_links_supplier_defer_sync(dev); 1275 else 1276 __device_links_queue_sync_state(dev, &sync_list); 1277 1278 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1279 struct device *supplier; 1280 1281 if (!(link->flags & DL_FLAG_MANAGED)) 1282 continue; 1283 1284 supplier = link->supplier; 1285 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1286 /* 1287 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1288 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1289 * save to drop the managed link completely. 1290 */ 1291 device_link_drop_managed(link); 1292 } else { 1293 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1294 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1295 } 1296 1297 /* 1298 * This needs to be done even for the deleted 1299 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1300 * device link that was preventing the supplier from getting a 1301 * sync_state() call. 1302 */ 1303 if (defer_sync_state_count) 1304 __device_links_supplier_defer_sync(supplier); 1305 else 1306 __device_links_queue_sync_state(supplier, &sync_list); 1307 } 1308 1309 dev->links.status = DL_DEV_DRIVER_BOUND; 1310 1311 device_links_write_unlock(); 1312 1313 device_links_flush_sync_list(&sync_list, dev); 1314 } 1315 1316 /** 1317 * __device_links_no_driver - Update links of a device without a driver. 1318 * @dev: Device without a drvier. 1319 * 1320 * Delete all non-persistent links from this device to any suppliers. 1321 * 1322 * Persistent links stay around, but their status is changed to "available", 1323 * unless they already are in the "supplier unbind in progress" state in which 1324 * case they need not be updated. 1325 * 1326 * Links without the DL_FLAG_MANAGED flag set are ignored. 1327 */ 1328 static void __device_links_no_driver(struct device *dev) 1329 { 1330 struct device_link *link, *ln; 1331 1332 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1333 if (!(link->flags & DL_FLAG_MANAGED)) 1334 continue; 1335 1336 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1337 device_link_drop_managed(link); 1338 continue; 1339 } 1340 1341 if (link->status != DL_STATE_CONSUMER_PROBE && 1342 link->status != DL_STATE_ACTIVE) 1343 continue; 1344 1345 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1347 } else { 1348 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1349 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1350 } 1351 } 1352 1353 dev->links.status = DL_DEV_NO_DRIVER; 1354 } 1355 1356 /** 1357 * device_links_no_driver - Update links after failing driver probe. 1358 * @dev: Device whose driver has just failed to probe. 1359 * 1360 * Clean up leftover links to consumers for @dev and invoke 1361 * %__device_links_no_driver() to update links to suppliers for it as 1362 * appropriate. 1363 * 1364 * Links without the DL_FLAG_MANAGED flag set are ignored. 1365 */ 1366 void device_links_no_driver(struct device *dev) 1367 { 1368 struct device_link *link; 1369 1370 device_links_write_lock(); 1371 1372 list_for_each_entry(link, &dev->links.consumers, s_node) { 1373 if (!(link->flags & DL_FLAG_MANAGED)) 1374 continue; 1375 1376 /* 1377 * The probe has failed, so if the status of the link is 1378 * "consumer probe" or "active", it must have been added by 1379 * a probing consumer while this device was still probing. 1380 * Change its state to "dormant", as it represents a valid 1381 * relationship, but it is not functionally meaningful. 1382 */ 1383 if (link->status == DL_STATE_CONSUMER_PROBE || 1384 link->status == DL_STATE_ACTIVE) 1385 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1386 } 1387 1388 __device_links_no_driver(dev); 1389 1390 device_links_write_unlock(); 1391 } 1392 1393 /** 1394 * device_links_driver_cleanup - Update links after driver removal. 1395 * @dev: Device whose driver has just gone away. 1396 * 1397 * Update links to consumers for @dev by changing their status to "dormant" and 1398 * invoke %__device_links_no_driver() to update links to suppliers for it as 1399 * appropriate. 1400 * 1401 * Links without the DL_FLAG_MANAGED flag set are ignored. 1402 */ 1403 void device_links_driver_cleanup(struct device *dev) 1404 { 1405 struct device_link *link, *ln; 1406 1407 device_links_write_lock(); 1408 1409 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1410 if (!(link->flags & DL_FLAG_MANAGED)) 1411 continue; 1412 1413 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1414 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1415 1416 /* 1417 * autoremove the links between this @dev and its consumer 1418 * devices that are not active, i.e. where the link state 1419 * has moved to DL_STATE_SUPPLIER_UNBIND. 1420 */ 1421 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1422 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1423 device_link_drop_managed(link); 1424 1425 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1426 } 1427 1428 list_del_init(&dev->links.defer_sync); 1429 __device_links_no_driver(dev); 1430 1431 device_links_write_unlock(); 1432 } 1433 1434 /** 1435 * device_links_busy - Check if there are any busy links to consumers. 1436 * @dev: Device to check. 1437 * 1438 * Check each consumer of the device and return 'true' if its link's status 1439 * is one of "consumer probe" or "active" (meaning that the given consumer is 1440 * probing right now or its driver is present). Otherwise, change the link 1441 * state to "supplier unbind" to prevent the consumer from being probed 1442 * successfully going forward. 1443 * 1444 * Return 'false' if there are no probing or active consumers. 1445 * 1446 * Links without the DL_FLAG_MANAGED flag set are ignored. 1447 */ 1448 bool device_links_busy(struct device *dev) 1449 { 1450 struct device_link *link; 1451 bool ret = false; 1452 1453 device_links_write_lock(); 1454 1455 list_for_each_entry(link, &dev->links.consumers, s_node) { 1456 if (!(link->flags & DL_FLAG_MANAGED)) 1457 continue; 1458 1459 if (link->status == DL_STATE_CONSUMER_PROBE 1460 || link->status == DL_STATE_ACTIVE) { 1461 ret = true; 1462 break; 1463 } 1464 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1465 } 1466 1467 dev->links.status = DL_DEV_UNBINDING; 1468 1469 device_links_write_unlock(); 1470 return ret; 1471 } 1472 1473 /** 1474 * device_links_unbind_consumers - Force unbind consumers of the given device. 1475 * @dev: Device to unbind the consumers of. 1476 * 1477 * Walk the list of links to consumers for @dev and if any of them is in the 1478 * "consumer probe" state, wait for all device probes in progress to complete 1479 * and start over. 1480 * 1481 * If that's not the case, change the status of the link to "supplier unbind" 1482 * and check if the link was in the "active" state. If so, force the consumer 1483 * driver to unbind and start over (the consumer will not re-probe as we have 1484 * changed the state of the link already). 1485 * 1486 * Links without the DL_FLAG_MANAGED flag set are ignored. 1487 */ 1488 void device_links_unbind_consumers(struct device *dev) 1489 { 1490 struct device_link *link; 1491 1492 start: 1493 device_links_write_lock(); 1494 1495 list_for_each_entry(link, &dev->links.consumers, s_node) { 1496 enum device_link_state status; 1497 1498 if (!(link->flags & DL_FLAG_MANAGED) || 1499 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1500 continue; 1501 1502 status = link->status; 1503 if (status == DL_STATE_CONSUMER_PROBE) { 1504 device_links_write_unlock(); 1505 1506 wait_for_device_probe(); 1507 goto start; 1508 } 1509 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1510 if (status == DL_STATE_ACTIVE) { 1511 struct device *consumer = link->consumer; 1512 1513 get_device(consumer); 1514 1515 device_links_write_unlock(); 1516 1517 device_release_driver_internal(consumer, NULL, 1518 consumer->parent); 1519 put_device(consumer); 1520 goto start; 1521 } 1522 } 1523 1524 device_links_write_unlock(); 1525 } 1526 1527 /** 1528 * device_links_purge - Delete existing links to other devices. 1529 * @dev: Target device. 1530 */ 1531 static void device_links_purge(struct device *dev) 1532 { 1533 struct device_link *link, *ln; 1534 1535 if (dev->class == &devlink_class) 1536 return; 1537 1538 /* 1539 * Delete all of the remaining links from this device to any other 1540 * devices (either consumers or suppliers). 1541 */ 1542 device_links_write_lock(); 1543 1544 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1545 WARN_ON(link->status == DL_STATE_ACTIVE); 1546 __device_link_del(&link->kref); 1547 } 1548 1549 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1550 WARN_ON(link->status != DL_STATE_DORMANT && 1551 link->status != DL_STATE_NONE); 1552 __device_link_del(&link->kref); 1553 } 1554 1555 device_links_write_unlock(); 1556 } 1557 1558 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1559 DL_FLAG_SYNC_STATE_ONLY) 1560 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1561 DL_FLAG_AUTOPROBE_CONSUMER) 1562 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1563 DL_FLAG_PM_RUNTIME) 1564 1565 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1566 static int __init fw_devlink_setup(char *arg) 1567 { 1568 if (!arg) 1569 return -EINVAL; 1570 1571 if (strcmp(arg, "off") == 0) { 1572 fw_devlink_flags = 0; 1573 } else if (strcmp(arg, "permissive") == 0) { 1574 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1575 } else if (strcmp(arg, "on") == 0) { 1576 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1577 } else if (strcmp(arg, "rpm") == 0) { 1578 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1579 } 1580 return 0; 1581 } 1582 early_param("fw_devlink", fw_devlink_setup); 1583 1584 static bool fw_devlink_strict; 1585 static int __init fw_devlink_strict_setup(char *arg) 1586 { 1587 return strtobool(arg, &fw_devlink_strict); 1588 } 1589 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1590 1591 u32 fw_devlink_get_flags(void) 1592 { 1593 return fw_devlink_flags; 1594 } 1595 1596 static bool fw_devlink_is_permissive(void) 1597 { 1598 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1599 } 1600 1601 bool fw_devlink_is_strict(void) 1602 { 1603 return fw_devlink_strict && !fw_devlink_is_permissive(); 1604 } 1605 1606 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1607 { 1608 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1609 return; 1610 1611 fwnode_call_int_op(fwnode, add_links); 1612 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1613 } 1614 1615 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1616 { 1617 struct fwnode_handle *child = NULL; 1618 1619 fw_devlink_parse_fwnode(fwnode); 1620 1621 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1622 fw_devlink_parse_fwtree(child); 1623 } 1624 1625 static void fw_devlink_relax_link(struct device_link *link) 1626 { 1627 if (!(link->flags & DL_FLAG_INFERRED)) 1628 return; 1629 1630 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1631 return; 1632 1633 pm_runtime_drop_link(link); 1634 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1635 dev_dbg(link->consumer, "Relaxing link with %s\n", 1636 dev_name(link->supplier)); 1637 } 1638 1639 static int fw_devlink_no_driver(struct device *dev, void *data) 1640 { 1641 struct device_link *link = to_devlink(dev); 1642 1643 if (!link->supplier->can_match) 1644 fw_devlink_relax_link(link); 1645 1646 return 0; 1647 } 1648 1649 void fw_devlink_drivers_done(void) 1650 { 1651 fw_devlink_drv_reg_done = true; 1652 device_links_write_lock(); 1653 class_for_each_device(&devlink_class, NULL, NULL, 1654 fw_devlink_no_driver); 1655 device_links_write_unlock(); 1656 } 1657 1658 static void fw_devlink_unblock_consumers(struct device *dev) 1659 { 1660 struct device_link *link; 1661 1662 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1663 return; 1664 1665 device_links_write_lock(); 1666 list_for_each_entry(link, &dev->links.consumers, s_node) 1667 fw_devlink_relax_link(link); 1668 device_links_write_unlock(); 1669 } 1670 1671 /** 1672 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1673 * @con: Device to check dependencies for. 1674 * @sup: Device to check against. 1675 * 1676 * Check if @sup depends on @con or any device dependent on it (its child or 1677 * its consumer etc). When such a cyclic dependency is found, convert all 1678 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1679 * This is the equivalent of doing fw_devlink=permissive just between the 1680 * devices in the cycle. We need to do this because, at this point, fw_devlink 1681 * can't tell which of these dependencies is not a real dependency. 1682 * 1683 * Return 1 if a cycle is found. Otherwise, return 0. 1684 */ 1685 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1686 { 1687 struct device_link *link; 1688 int ret; 1689 1690 if (con == sup) 1691 return 1; 1692 1693 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1694 if (ret) 1695 return ret; 1696 1697 list_for_each_entry(link, &con->links.consumers, s_node) { 1698 if ((link->flags & ~DL_FLAG_INFERRED) == 1699 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1700 continue; 1701 1702 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1703 continue; 1704 1705 ret = 1; 1706 1707 fw_devlink_relax_link(link); 1708 } 1709 return ret; 1710 } 1711 1712 /** 1713 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1714 * @con: consumer device for the device link 1715 * @sup_handle: fwnode handle of supplier 1716 * @flags: devlink flags 1717 * 1718 * This function will try to create a device link between the consumer device 1719 * @con and the supplier device represented by @sup_handle. 1720 * 1721 * The supplier has to be provided as a fwnode because incorrect cycles in 1722 * fwnode links can sometimes cause the supplier device to never be created. 1723 * This function detects such cases and returns an error if it cannot create a 1724 * device link from the consumer to a missing supplier. 1725 * 1726 * Returns, 1727 * 0 on successfully creating a device link 1728 * -EINVAL if the device link cannot be created as expected 1729 * -EAGAIN if the device link cannot be created right now, but it may be 1730 * possible to do that in the future 1731 */ 1732 static int fw_devlink_create_devlink(struct device *con, 1733 struct fwnode_handle *sup_handle, u32 flags) 1734 { 1735 struct device *sup_dev; 1736 int ret = 0; 1737 1738 /* 1739 * In some cases, a device P might also be a supplier to its child node 1740 * C. However, this would defer the probe of C until the probe of P 1741 * completes successfully. This is perfectly fine in the device driver 1742 * model. device_add() doesn't guarantee probe completion of the device 1743 * by the time it returns. 1744 * 1745 * However, there are a few drivers that assume C will finish probing 1746 * as soon as it's added and before P finishes probing. So, we provide 1747 * a flag to let fw_devlink know not to delay the probe of C until the 1748 * probe of P completes successfully. 1749 * 1750 * When such a flag is set, we can't create device links where P is the 1751 * supplier of C as that would delay the probe of C. 1752 */ 1753 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 1754 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 1755 return -EINVAL; 1756 1757 sup_dev = get_dev_from_fwnode(sup_handle); 1758 if (sup_dev) { 1759 /* 1760 * If it's one of those drivers that don't actually bind to 1761 * their device using driver core, then don't wait on this 1762 * supplier device indefinitely. 1763 */ 1764 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1765 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1766 ret = -EINVAL; 1767 goto out; 1768 } 1769 1770 /* 1771 * If this fails, it is due to cycles in device links. Just 1772 * give up on this link and treat it as invalid. 1773 */ 1774 if (!device_link_add(con, sup_dev, flags) && 1775 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1776 dev_info(con, "Fixing up cyclic dependency with %s\n", 1777 dev_name(sup_dev)); 1778 device_links_write_lock(); 1779 fw_devlink_relax_cycle(con, sup_dev); 1780 device_links_write_unlock(); 1781 device_link_add(con, sup_dev, 1782 FW_DEVLINK_FLAGS_PERMISSIVE); 1783 ret = -EINVAL; 1784 } 1785 1786 goto out; 1787 } 1788 1789 /* Supplier that's already initialized without a struct device. */ 1790 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1791 return -EINVAL; 1792 1793 /* 1794 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1795 * cycles. So cycle detection isn't necessary and shouldn't be 1796 * done. 1797 */ 1798 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1799 return -EAGAIN; 1800 1801 /* 1802 * If we can't find the supplier device from its fwnode, it might be 1803 * due to a cyclic dependency between fwnodes. Some of these cycles can 1804 * be broken by applying logic. Check for these types of cycles and 1805 * break them so that devices in the cycle probe properly. 1806 * 1807 * If the supplier's parent is dependent on the consumer, then the 1808 * consumer and supplier have a cyclic dependency. Since fw_devlink 1809 * can't tell which of the inferred dependencies are incorrect, don't 1810 * enforce probe ordering between any of the devices in this cyclic 1811 * dependency. Do this by relaxing all the fw_devlink device links in 1812 * this cycle and by treating the fwnode link between the consumer and 1813 * the supplier as an invalid dependency. 1814 */ 1815 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1816 if (sup_dev && device_is_dependent(con, sup_dev)) { 1817 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n", 1818 sup_handle, dev_name(sup_dev)); 1819 device_links_write_lock(); 1820 fw_devlink_relax_cycle(con, sup_dev); 1821 device_links_write_unlock(); 1822 ret = -EINVAL; 1823 } else { 1824 /* 1825 * Can't check for cycles or no cycles. So let's try 1826 * again later. 1827 */ 1828 ret = -EAGAIN; 1829 } 1830 1831 out: 1832 put_device(sup_dev); 1833 return ret; 1834 } 1835 1836 /** 1837 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1838 * @dev: Device that needs to be linked to its consumers 1839 * 1840 * This function looks at all the consumer fwnodes of @dev and creates device 1841 * links between the consumer device and @dev (supplier). 1842 * 1843 * If the consumer device has not been added yet, then this function creates a 1844 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1845 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1846 * sync_state() callback before the real consumer device gets to be added and 1847 * then probed. 1848 * 1849 * Once device links are created from the real consumer to @dev (supplier), the 1850 * fwnode links are deleted. 1851 */ 1852 static void __fw_devlink_link_to_consumers(struct device *dev) 1853 { 1854 struct fwnode_handle *fwnode = dev->fwnode; 1855 struct fwnode_link *link, *tmp; 1856 1857 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1858 u32 dl_flags = fw_devlink_get_flags(); 1859 struct device *con_dev; 1860 bool own_link = true; 1861 int ret; 1862 1863 con_dev = get_dev_from_fwnode(link->consumer); 1864 /* 1865 * If consumer device is not available yet, make a "proxy" 1866 * SYNC_STATE_ONLY link from the consumer's parent device to 1867 * the supplier device. This is necessary to make sure the 1868 * supplier doesn't get a sync_state() callback before the real 1869 * consumer can create a device link to the supplier. 1870 * 1871 * This proxy link step is needed to handle the case where the 1872 * consumer's parent device is added before the supplier. 1873 */ 1874 if (!con_dev) { 1875 con_dev = fwnode_get_next_parent_dev(link->consumer); 1876 /* 1877 * However, if the consumer's parent device is also the 1878 * parent of the supplier, don't create a 1879 * consumer-supplier link from the parent to its child 1880 * device. Such a dependency is impossible. 1881 */ 1882 if (con_dev && 1883 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1884 put_device(con_dev); 1885 con_dev = NULL; 1886 } else { 1887 own_link = false; 1888 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1889 } 1890 } 1891 1892 if (!con_dev) 1893 continue; 1894 1895 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1896 put_device(con_dev); 1897 if (!own_link || ret == -EAGAIN) 1898 continue; 1899 1900 __fwnode_link_del(link); 1901 } 1902 } 1903 1904 /** 1905 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1906 * @dev: The consumer device that needs to be linked to its suppliers 1907 * @fwnode: Root of the fwnode tree that is used to create device links 1908 * 1909 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1910 * @fwnode and creates device links between @dev (consumer) and all the 1911 * supplier devices of the entire fwnode tree at @fwnode. 1912 * 1913 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1914 * and the real suppliers of @dev. Once these device links are created, the 1915 * fwnode links are deleted. When such device links are successfully created, 1916 * this function is called recursively on those supplier devices. This is 1917 * needed to detect and break some invalid cycles in fwnode links. See 1918 * fw_devlink_create_devlink() for more details. 1919 * 1920 * In addition, it also looks at all the suppliers of the entire fwnode tree 1921 * because some of the child devices of @dev that have not been added yet 1922 * (because @dev hasn't probed) might already have their suppliers added to 1923 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1924 * @dev (consumer) and these suppliers to make sure they don't execute their 1925 * sync_state() callbacks before these child devices have a chance to create 1926 * their device links. The fwnode links that correspond to the child devices 1927 * aren't delete because they are needed later to create the device links 1928 * between the real consumer and supplier devices. 1929 */ 1930 static void __fw_devlink_link_to_suppliers(struct device *dev, 1931 struct fwnode_handle *fwnode) 1932 { 1933 bool own_link = (dev->fwnode == fwnode); 1934 struct fwnode_link *link, *tmp; 1935 struct fwnode_handle *child = NULL; 1936 u32 dl_flags; 1937 1938 if (own_link) 1939 dl_flags = fw_devlink_get_flags(); 1940 else 1941 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1942 1943 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1944 int ret; 1945 struct device *sup_dev; 1946 struct fwnode_handle *sup = link->supplier; 1947 1948 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1949 if (!own_link || ret == -EAGAIN) 1950 continue; 1951 1952 __fwnode_link_del(link); 1953 1954 /* If no device link was created, nothing more to do. */ 1955 if (ret) 1956 continue; 1957 1958 /* 1959 * If a device link was successfully created to a supplier, we 1960 * now need to try and link the supplier to all its suppliers. 1961 * 1962 * This is needed to detect and delete false dependencies in 1963 * fwnode links that haven't been converted to a device link 1964 * yet. See comments in fw_devlink_create_devlink() for more 1965 * details on the false dependency. 1966 * 1967 * Without deleting these false dependencies, some devices will 1968 * never probe because they'll keep waiting for their false 1969 * dependency fwnode links to be converted to device links. 1970 */ 1971 sup_dev = get_dev_from_fwnode(sup); 1972 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1973 put_device(sup_dev); 1974 } 1975 1976 /* 1977 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1978 * all the descendants. This proxy link step is needed to handle the 1979 * case where the supplier is added before the consumer's parent device 1980 * (@dev). 1981 */ 1982 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1983 __fw_devlink_link_to_suppliers(dev, child); 1984 } 1985 1986 static void fw_devlink_link_device(struct device *dev) 1987 { 1988 struct fwnode_handle *fwnode = dev->fwnode; 1989 1990 if (!fw_devlink_flags) 1991 return; 1992 1993 fw_devlink_parse_fwtree(fwnode); 1994 1995 mutex_lock(&fwnode_link_lock); 1996 __fw_devlink_link_to_consumers(dev); 1997 __fw_devlink_link_to_suppliers(dev, fwnode); 1998 mutex_unlock(&fwnode_link_lock); 1999 } 2000 2001 /* Device links support end. */ 2002 2003 int (*platform_notify)(struct device *dev) = NULL; 2004 int (*platform_notify_remove)(struct device *dev) = NULL; 2005 static struct kobject *dev_kobj; 2006 struct kobject *sysfs_dev_char_kobj; 2007 struct kobject *sysfs_dev_block_kobj; 2008 2009 static DEFINE_MUTEX(device_hotplug_lock); 2010 2011 void lock_device_hotplug(void) 2012 { 2013 mutex_lock(&device_hotplug_lock); 2014 } 2015 2016 void unlock_device_hotplug(void) 2017 { 2018 mutex_unlock(&device_hotplug_lock); 2019 } 2020 2021 int lock_device_hotplug_sysfs(void) 2022 { 2023 if (mutex_trylock(&device_hotplug_lock)) 2024 return 0; 2025 2026 /* Avoid busy looping (5 ms of sleep should do). */ 2027 msleep(5); 2028 return restart_syscall(); 2029 } 2030 2031 #ifdef CONFIG_BLOCK 2032 static inline int device_is_not_partition(struct device *dev) 2033 { 2034 return !(dev->type == &part_type); 2035 } 2036 #else 2037 static inline int device_is_not_partition(struct device *dev) 2038 { 2039 return 1; 2040 } 2041 #endif 2042 2043 static void device_platform_notify(struct device *dev) 2044 { 2045 acpi_device_notify(dev); 2046 2047 software_node_notify(dev); 2048 2049 if (platform_notify) 2050 platform_notify(dev); 2051 } 2052 2053 static void device_platform_notify_remove(struct device *dev) 2054 { 2055 acpi_device_notify_remove(dev); 2056 2057 software_node_notify_remove(dev); 2058 2059 if (platform_notify_remove) 2060 platform_notify_remove(dev); 2061 } 2062 2063 /** 2064 * dev_driver_string - Return a device's driver name, if at all possible 2065 * @dev: struct device to get the name of 2066 * 2067 * Will return the device's driver's name if it is bound to a device. If 2068 * the device is not bound to a driver, it will return the name of the bus 2069 * it is attached to. If it is not attached to a bus either, an empty 2070 * string will be returned. 2071 */ 2072 const char *dev_driver_string(const struct device *dev) 2073 { 2074 struct device_driver *drv; 2075 2076 /* dev->driver can change to NULL underneath us because of unbinding, 2077 * so be careful about accessing it. dev->bus and dev->class should 2078 * never change once they are set, so they don't need special care. 2079 */ 2080 drv = READ_ONCE(dev->driver); 2081 return drv ? drv->name : dev_bus_name(dev); 2082 } 2083 EXPORT_SYMBOL(dev_driver_string); 2084 2085 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2086 2087 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2088 char *buf) 2089 { 2090 struct device_attribute *dev_attr = to_dev_attr(attr); 2091 struct device *dev = kobj_to_dev(kobj); 2092 ssize_t ret = -EIO; 2093 2094 if (dev_attr->show) 2095 ret = dev_attr->show(dev, dev_attr, buf); 2096 if (ret >= (ssize_t)PAGE_SIZE) { 2097 printk("dev_attr_show: %pS returned bad count\n", 2098 dev_attr->show); 2099 } 2100 return ret; 2101 } 2102 2103 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2104 const char *buf, size_t count) 2105 { 2106 struct device_attribute *dev_attr = to_dev_attr(attr); 2107 struct device *dev = kobj_to_dev(kobj); 2108 ssize_t ret = -EIO; 2109 2110 if (dev_attr->store) 2111 ret = dev_attr->store(dev, dev_attr, buf, count); 2112 return ret; 2113 } 2114 2115 static const struct sysfs_ops dev_sysfs_ops = { 2116 .show = dev_attr_show, 2117 .store = dev_attr_store, 2118 }; 2119 2120 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2121 2122 ssize_t device_store_ulong(struct device *dev, 2123 struct device_attribute *attr, 2124 const char *buf, size_t size) 2125 { 2126 struct dev_ext_attribute *ea = to_ext_attr(attr); 2127 int ret; 2128 unsigned long new; 2129 2130 ret = kstrtoul(buf, 0, &new); 2131 if (ret) 2132 return ret; 2133 *(unsigned long *)(ea->var) = new; 2134 /* Always return full write size even if we didn't consume all */ 2135 return size; 2136 } 2137 EXPORT_SYMBOL_GPL(device_store_ulong); 2138 2139 ssize_t device_show_ulong(struct device *dev, 2140 struct device_attribute *attr, 2141 char *buf) 2142 { 2143 struct dev_ext_attribute *ea = to_ext_attr(attr); 2144 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2145 } 2146 EXPORT_SYMBOL_GPL(device_show_ulong); 2147 2148 ssize_t device_store_int(struct device *dev, 2149 struct device_attribute *attr, 2150 const char *buf, size_t size) 2151 { 2152 struct dev_ext_attribute *ea = to_ext_attr(attr); 2153 int ret; 2154 long new; 2155 2156 ret = kstrtol(buf, 0, &new); 2157 if (ret) 2158 return ret; 2159 2160 if (new > INT_MAX || new < INT_MIN) 2161 return -EINVAL; 2162 *(int *)(ea->var) = new; 2163 /* Always return full write size even if we didn't consume all */ 2164 return size; 2165 } 2166 EXPORT_SYMBOL_GPL(device_store_int); 2167 2168 ssize_t device_show_int(struct device *dev, 2169 struct device_attribute *attr, 2170 char *buf) 2171 { 2172 struct dev_ext_attribute *ea = to_ext_attr(attr); 2173 2174 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2175 } 2176 EXPORT_SYMBOL_GPL(device_show_int); 2177 2178 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2179 const char *buf, size_t size) 2180 { 2181 struct dev_ext_attribute *ea = to_ext_attr(attr); 2182 2183 if (strtobool(buf, ea->var) < 0) 2184 return -EINVAL; 2185 2186 return size; 2187 } 2188 EXPORT_SYMBOL_GPL(device_store_bool); 2189 2190 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2191 char *buf) 2192 { 2193 struct dev_ext_attribute *ea = to_ext_attr(attr); 2194 2195 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2196 } 2197 EXPORT_SYMBOL_GPL(device_show_bool); 2198 2199 /** 2200 * device_release - free device structure. 2201 * @kobj: device's kobject. 2202 * 2203 * This is called once the reference count for the object 2204 * reaches 0. We forward the call to the device's release 2205 * method, which should handle actually freeing the structure. 2206 */ 2207 static void device_release(struct kobject *kobj) 2208 { 2209 struct device *dev = kobj_to_dev(kobj); 2210 struct device_private *p = dev->p; 2211 2212 /* 2213 * Some platform devices are driven without driver attached 2214 * and managed resources may have been acquired. Make sure 2215 * all resources are released. 2216 * 2217 * Drivers still can add resources into device after device 2218 * is deleted but alive, so release devres here to avoid 2219 * possible memory leak. 2220 */ 2221 devres_release_all(dev); 2222 2223 kfree(dev->dma_range_map); 2224 2225 if (dev->release) 2226 dev->release(dev); 2227 else if (dev->type && dev->type->release) 2228 dev->type->release(dev); 2229 else if (dev->class && dev->class->dev_release) 2230 dev->class->dev_release(dev); 2231 else 2232 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2233 dev_name(dev)); 2234 kfree(p); 2235 } 2236 2237 static const void *device_namespace(struct kobject *kobj) 2238 { 2239 struct device *dev = kobj_to_dev(kobj); 2240 const void *ns = NULL; 2241 2242 if (dev->class && dev->class->ns_type) 2243 ns = dev->class->namespace(dev); 2244 2245 return ns; 2246 } 2247 2248 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2249 { 2250 struct device *dev = kobj_to_dev(kobj); 2251 2252 if (dev->class && dev->class->get_ownership) 2253 dev->class->get_ownership(dev, uid, gid); 2254 } 2255 2256 static struct kobj_type device_ktype = { 2257 .release = device_release, 2258 .sysfs_ops = &dev_sysfs_ops, 2259 .namespace = device_namespace, 2260 .get_ownership = device_get_ownership, 2261 }; 2262 2263 2264 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2265 { 2266 struct kobj_type *ktype = get_ktype(kobj); 2267 2268 if (ktype == &device_ktype) { 2269 struct device *dev = kobj_to_dev(kobj); 2270 if (dev->bus) 2271 return 1; 2272 if (dev->class) 2273 return 1; 2274 } 2275 return 0; 2276 } 2277 2278 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2279 { 2280 struct device *dev = kobj_to_dev(kobj); 2281 2282 if (dev->bus) 2283 return dev->bus->name; 2284 if (dev->class) 2285 return dev->class->name; 2286 return NULL; 2287 } 2288 2289 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2290 struct kobj_uevent_env *env) 2291 { 2292 struct device *dev = kobj_to_dev(kobj); 2293 int retval = 0; 2294 2295 /* add device node properties if present */ 2296 if (MAJOR(dev->devt)) { 2297 const char *tmp; 2298 const char *name; 2299 umode_t mode = 0; 2300 kuid_t uid = GLOBAL_ROOT_UID; 2301 kgid_t gid = GLOBAL_ROOT_GID; 2302 2303 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2304 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2305 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2306 if (name) { 2307 add_uevent_var(env, "DEVNAME=%s", name); 2308 if (mode) 2309 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2310 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2311 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2312 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2313 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2314 kfree(tmp); 2315 } 2316 } 2317 2318 if (dev->type && dev->type->name) 2319 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2320 2321 if (dev->driver) 2322 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2323 2324 /* Add common DT information about the device */ 2325 of_device_uevent(dev, env); 2326 2327 /* have the bus specific function add its stuff */ 2328 if (dev->bus && dev->bus->uevent) { 2329 retval = dev->bus->uevent(dev, env); 2330 if (retval) 2331 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2332 dev_name(dev), __func__, retval); 2333 } 2334 2335 /* have the class specific function add its stuff */ 2336 if (dev->class && dev->class->dev_uevent) { 2337 retval = dev->class->dev_uevent(dev, env); 2338 if (retval) 2339 pr_debug("device: '%s': %s: class uevent() " 2340 "returned %d\n", dev_name(dev), 2341 __func__, retval); 2342 } 2343 2344 /* have the device type specific function add its stuff */ 2345 if (dev->type && dev->type->uevent) { 2346 retval = dev->type->uevent(dev, env); 2347 if (retval) 2348 pr_debug("device: '%s': %s: dev_type uevent() " 2349 "returned %d\n", dev_name(dev), 2350 __func__, retval); 2351 } 2352 2353 return retval; 2354 } 2355 2356 static const struct kset_uevent_ops device_uevent_ops = { 2357 .filter = dev_uevent_filter, 2358 .name = dev_uevent_name, 2359 .uevent = dev_uevent, 2360 }; 2361 2362 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2363 char *buf) 2364 { 2365 struct kobject *top_kobj; 2366 struct kset *kset; 2367 struct kobj_uevent_env *env = NULL; 2368 int i; 2369 int len = 0; 2370 int retval; 2371 2372 /* search the kset, the device belongs to */ 2373 top_kobj = &dev->kobj; 2374 while (!top_kobj->kset && top_kobj->parent) 2375 top_kobj = top_kobj->parent; 2376 if (!top_kobj->kset) 2377 goto out; 2378 2379 kset = top_kobj->kset; 2380 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2381 goto out; 2382 2383 /* respect filter */ 2384 if (kset->uevent_ops && kset->uevent_ops->filter) 2385 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2386 goto out; 2387 2388 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2389 if (!env) 2390 return -ENOMEM; 2391 2392 /* let the kset specific function add its keys */ 2393 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2394 if (retval) 2395 goto out; 2396 2397 /* copy keys to file */ 2398 for (i = 0; i < env->envp_idx; i++) 2399 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2400 out: 2401 kfree(env); 2402 return len; 2403 } 2404 2405 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2406 const char *buf, size_t count) 2407 { 2408 int rc; 2409 2410 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2411 2412 if (rc) { 2413 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2414 return rc; 2415 } 2416 2417 return count; 2418 } 2419 static DEVICE_ATTR_RW(uevent); 2420 2421 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2422 char *buf) 2423 { 2424 bool val; 2425 2426 device_lock(dev); 2427 val = !dev->offline; 2428 device_unlock(dev); 2429 return sysfs_emit(buf, "%u\n", val); 2430 } 2431 2432 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2433 const char *buf, size_t count) 2434 { 2435 bool val; 2436 int ret; 2437 2438 ret = strtobool(buf, &val); 2439 if (ret < 0) 2440 return ret; 2441 2442 ret = lock_device_hotplug_sysfs(); 2443 if (ret) 2444 return ret; 2445 2446 ret = val ? device_online(dev) : device_offline(dev); 2447 unlock_device_hotplug(); 2448 return ret < 0 ? ret : count; 2449 } 2450 static DEVICE_ATTR_RW(online); 2451 2452 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2453 char *buf) 2454 { 2455 const char *loc; 2456 2457 switch (dev->removable) { 2458 case DEVICE_REMOVABLE: 2459 loc = "removable"; 2460 break; 2461 case DEVICE_FIXED: 2462 loc = "fixed"; 2463 break; 2464 default: 2465 loc = "unknown"; 2466 } 2467 return sysfs_emit(buf, "%s\n", loc); 2468 } 2469 static DEVICE_ATTR_RO(removable); 2470 2471 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2472 { 2473 return sysfs_create_groups(&dev->kobj, groups); 2474 } 2475 EXPORT_SYMBOL_GPL(device_add_groups); 2476 2477 void device_remove_groups(struct device *dev, 2478 const struct attribute_group **groups) 2479 { 2480 sysfs_remove_groups(&dev->kobj, groups); 2481 } 2482 EXPORT_SYMBOL_GPL(device_remove_groups); 2483 2484 union device_attr_group_devres { 2485 const struct attribute_group *group; 2486 const struct attribute_group **groups; 2487 }; 2488 2489 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2490 { 2491 return ((union device_attr_group_devres *)res)->group == data; 2492 } 2493 2494 static void devm_attr_group_remove(struct device *dev, void *res) 2495 { 2496 union device_attr_group_devres *devres = res; 2497 const struct attribute_group *group = devres->group; 2498 2499 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2500 sysfs_remove_group(&dev->kobj, group); 2501 } 2502 2503 static void devm_attr_groups_remove(struct device *dev, void *res) 2504 { 2505 union device_attr_group_devres *devres = res; 2506 const struct attribute_group **groups = devres->groups; 2507 2508 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2509 sysfs_remove_groups(&dev->kobj, groups); 2510 } 2511 2512 /** 2513 * devm_device_add_group - given a device, create a managed attribute group 2514 * @dev: The device to create the group for 2515 * @grp: The attribute group to create 2516 * 2517 * This function creates a group for the first time. It will explicitly 2518 * warn and error if any of the attribute files being created already exist. 2519 * 2520 * Returns 0 on success or error code on failure. 2521 */ 2522 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2523 { 2524 union device_attr_group_devres *devres; 2525 int error; 2526 2527 devres = devres_alloc(devm_attr_group_remove, 2528 sizeof(*devres), GFP_KERNEL); 2529 if (!devres) 2530 return -ENOMEM; 2531 2532 error = sysfs_create_group(&dev->kobj, grp); 2533 if (error) { 2534 devres_free(devres); 2535 return error; 2536 } 2537 2538 devres->group = grp; 2539 devres_add(dev, devres); 2540 return 0; 2541 } 2542 EXPORT_SYMBOL_GPL(devm_device_add_group); 2543 2544 /** 2545 * devm_device_remove_group: remove a managed group from a device 2546 * @dev: device to remove the group from 2547 * @grp: group to remove 2548 * 2549 * This function removes a group of attributes from a device. The attributes 2550 * previously have to have been created for this group, otherwise it will fail. 2551 */ 2552 void devm_device_remove_group(struct device *dev, 2553 const struct attribute_group *grp) 2554 { 2555 WARN_ON(devres_release(dev, devm_attr_group_remove, 2556 devm_attr_group_match, 2557 /* cast away const */ (void *)grp)); 2558 } 2559 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2560 2561 /** 2562 * devm_device_add_groups - create a bunch of managed attribute groups 2563 * @dev: The device to create the group for 2564 * @groups: The attribute groups to create, NULL terminated 2565 * 2566 * This function creates a bunch of managed attribute groups. If an error 2567 * occurs when creating a group, all previously created groups will be 2568 * removed, unwinding everything back to the original state when this 2569 * function was called. It will explicitly warn and error if any of the 2570 * attribute files being created already exist. 2571 * 2572 * Returns 0 on success or error code from sysfs_create_group on failure. 2573 */ 2574 int devm_device_add_groups(struct device *dev, 2575 const struct attribute_group **groups) 2576 { 2577 union device_attr_group_devres *devres; 2578 int error; 2579 2580 devres = devres_alloc(devm_attr_groups_remove, 2581 sizeof(*devres), GFP_KERNEL); 2582 if (!devres) 2583 return -ENOMEM; 2584 2585 error = sysfs_create_groups(&dev->kobj, groups); 2586 if (error) { 2587 devres_free(devres); 2588 return error; 2589 } 2590 2591 devres->groups = groups; 2592 devres_add(dev, devres); 2593 return 0; 2594 } 2595 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2596 2597 /** 2598 * devm_device_remove_groups - remove a list of managed groups 2599 * 2600 * @dev: The device for the groups to be removed from 2601 * @groups: NULL terminated list of groups to be removed 2602 * 2603 * If groups is not NULL, remove the specified groups from the device. 2604 */ 2605 void devm_device_remove_groups(struct device *dev, 2606 const struct attribute_group **groups) 2607 { 2608 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2609 devm_attr_group_match, 2610 /* cast away const */ (void *)groups)); 2611 } 2612 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2613 2614 static int device_add_attrs(struct device *dev) 2615 { 2616 struct class *class = dev->class; 2617 const struct device_type *type = dev->type; 2618 int error; 2619 2620 if (class) { 2621 error = device_add_groups(dev, class->dev_groups); 2622 if (error) 2623 return error; 2624 } 2625 2626 if (type) { 2627 error = device_add_groups(dev, type->groups); 2628 if (error) 2629 goto err_remove_class_groups; 2630 } 2631 2632 error = device_add_groups(dev, dev->groups); 2633 if (error) 2634 goto err_remove_type_groups; 2635 2636 if (device_supports_offline(dev) && !dev->offline_disabled) { 2637 error = device_create_file(dev, &dev_attr_online); 2638 if (error) 2639 goto err_remove_dev_groups; 2640 } 2641 2642 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2643 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2644 if (error) 2645 goto err_remove_dev_online; 2646 } 2647 2648 if (dev_removable_is_valid(dev)) { 2649 error = device_create_file(dev, &dev_attr_removable); 2650 if (error) 2651 goto err_remove_dev_waiting_for_supplier; 2652 } 2653 2654 return 0; 2655 2656 err_remove_dev_waiting_for_supplier: 2657 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2658 err_remove_dev_online: 2659 device_remove_file(dev, &dev_attr_online); 2660 err_remove_dev_groups: 2661 device_remove_groups(dev, dev->groups); 2662 err_remove_type_groups: 2663 if (type) 2664 device_remove_groups(dev, type->groups); 2665 err_remove_class_groups: 2666 if (class) 2667 device_remove_groups(dev, class->dev_groups); 2668 2669 return error; 2670 } 2671 2672 static void device_remove_attrs(struct device *dev) 2673 { 2674 struct class *class = dev->class; 2675 const struct device_type *type = dev->type; 2676 2677 device_remove_file(dev, &dev_attr_removable); 2678 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2679 device_remove_file(dev, &dev_attr_online); 2680 device_remove_groups(dev, dev->groups); 2681 2682 if (type) 2683 device_remove_groups(dev, type->groups); 2684 2685 if (class) 2686 device_remove_groups(dev, class->dev_groups); 2687 } 2688 2689 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2690 char *buf) 2691 { 2692 return print_dev_t(buf, dev->devt); 2693 } 2694 static DEVICE_ATTR_RO(dev); 2695 2696 /* /sys/devices/ */ 2697 struct kset *devices_kset; 2698 2699 /** 2700 * devices_kset_move_before - Move device in the devices_kset's list. 2701 * @deva: Device to move. 2702 * @devb: Device @deva should come before. 2703 */ 2704 static void devices_kset_move_before(struct device *deva, struct device *devb) 2705 { 2706 if (!devices_kset) 2707 return; 2708 pr_debug("devices_kset: Moving %s before %s\n", 2709 dev_name(deva), dev_name(devb)); 2710 spin_lock(&devices_kset->list_lock); 2711 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2712 spin_unlock(&devices_kset->list_lock); 2713 } 2714 2715 /** 2716 * devices_kset_move_after - Move device in the devices_kset's list. 2717 * @deva: Device to move 2718 * @devb: Device @deva should come after. 2719 */ 2720 static void devices_kset_move_after(struct device *deva, struct device *devb) 2721 { 2722 if (!devices_kset) 2723 return; 2724 pr_debug("devices_kset: Moving %s after %s\n", 2725 dev_name(deva), dev_name(devb)); 2726 spin_lock(&devices_kset->list_lock); 2727 list_move(&deva->kobj.entry, &devb->kobj.entry); 2728 spin_unlock(&devices_kset->list_lock); 2729 } 2730 2731 /** 2732 * devices_kset_move_last - move the device to the end of devices_kset's list. 2733 * @dev: device to move 2734 */ 2735 void devices_kset_move_last(struct device *dev) 2736 { 2737 if (!devices_kset) 2738 return; 2739 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2740 spin_lock(&devices_kset->list_lock); 2741 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2742 spin_unlock(&devices_kset->list_lock); 2743 } 2744 2745 /** 2746 * device_create_file - create sysfs attribute file for device. 2747 * @dev: device. 2748 * @attr: device attribute descriptor. 2749 */ 2750 int device_create_file(struct device *dev, 2751 const struct device_attribute *attr) 2752 { 2753 int error = 0; 2754 2755 if (dev) { 2756 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2757 "Attribute %s: write permission without 'store'\n", 2758 attr->attr.name); 2759 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2760 "Attribute %s: read permission without 'show'\n", 2761 attr->attr.name); 2762 error = sysfs_create_file(&dev->kobj, &attr->attr); 2763 } 2764 2765 return error; 2766 } 2767 EXPORT_SYMBOL_GPL(device_create_file); 2768 2769 /** 2770 * device_remove_file - remove sysfs attribute file. 2771 * @dev: device. 2772 * @attr: device attribute descriptor. 2773 */ 2774 void device_remove_file(struct device *dev, 2775 const struct device_attribute *attr) 2776 { 2777 if (dev) 2778 sysfs_remove_file(&dev->kobj, &attr->attr); 2779 } 2780 EXPORT_SYMBOL_GPL(device_remove_file); 2781 2782 /** 2783 * device_remove_file_self - remove sysfs attribute file from its own method. 2784 * @dev: device. 2785 * @attr: device attribute descriptor. 2786 * 2787 * See kernfs_remove_self() for details. 2788 */ 2789 bool device_remove_file_self(struct device *dev, 2790 const struct device_attribute *attr) 2791 { 2792 if (dev) 2793 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2794 else 2795 return false; 2796 } 2797 EXPORT_SYMBOL_GPL(device_remove_file_self); 2798 2799 /** 2800 * device_create_bin_file - create sysfs binary attribute file for device. 2801 * @dev: device. 2802 * @attr: device binary attribute descriptor. 2803 */ 2804 int device_create_bin_file(struct device *dev, 2805 const struct bin_attribute *attr) 2806 { 2807 int error = -EINVAL; 2808 if (dev) 2809 error = sysfs_create_bin_file(&dev->kobj, attr); 2810 return error; 2811 } 2812 EXPORT_SYMBOL_GPL(device_create_bin_file); 2813 2814 /** 2815 * device_remove_bin_file - remove sysfs binary attribute file 2816 * @dev: device. 2817 * @attr: device binary attribute descriptor. 2818 */ 2819 void device_remove_bin_file(struct device *dev, 2820 const struct bin_attribute *attr) 2821 { 2822 if (dev) 2823 sysfs_remove_bin_file(&dev->kobj, attr); 2824 } 2825 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2826 2827 static void klist_children_get(struct klist_node *n) 2828 { 2829 struct device_private *p = to_device_private_parent(n); 2830 struct device *dev = p->device; 2831 2832 get_device(dev); 2833 } 2834 2835 static void klist_children_put(struct klist_node *n) 2836 { 2837 struct device_private *p = to_device_private_parent(n); 2838 struct device *dev = p->device; 2839 2840 put_device(dev); 2841 } 2842 2843 /** 2844 * device_initialize - init device structure. 2845 * @dev: device. 2846 * 2847 * This prepares the device for use by other layers by initializing 2848 * its fields. 2849 * It is the first half of device_register(), if called by 2850 * that function, though it can also be called separately, so one 2851 * may use @dev's fields. In particular, get_device()/put_device() 2852 * may be used for reference counting of @dev after calling this 2853 * function. 2854 * 2855 * All fields in @dev must be initialized by the caller to 0, except 2856 * for those explicitly set to some other value. The simplest 2857 * approach is to use kzalloc() to allocate the structure containing 2858 * @dev. 2859 * 2860 * NOTE: Use put_device() to give up your reference instead of freeing 2861 * @dev directly once you have called this function. 2862 */ 2863 void device_initialize(struct device *dev) 2864 { 2865 dev->kobj.kset = devices_kset; 2866 kobject_init(&dev->kobj, &device_ktype); 2867 INIT_LIST_HEAD(&dev->dma_pools); 2868 mutex_init(&dev->mutex); 2869 #ifdef CONFIG_PROVE_LOCKING 2870 mutex_init(&dev->lockdep_mutex); 2871 #endif 2872 lockdep_set_novalidate_class(&dev->mutex); 2873 spin_lock_init(&dev->devres_lock); 2874 INIT_LIST_HEAD(&dev->devres_head); 2875 device_pm_init(dev); 2876 set_dev_node(dev, NUMA_NO_NODE); 2877 #ifdef CONFIG_GENERIC_MSI_IRQ 2878 raw_spin_lock_init(&dev->msi_lock); 2879 INIT_LIST_HEAD(&dev->msi_list); 2880 #endif 2881 INIT_LIST_HEAD(&dev->links.consumers); 2882 INIT_LIST_HEAD(&dev->links.suppliers); 2883 INIT_LIST_HEAD(&dev->links.defer_sync); 2884 dev->links.status = DL_DEV_NO_DRIVER; 2885 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2886 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2887 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2888 dev->dma_coherent = dma_default_coherent; 2889 #endif 2890 #ifdef CONFIG_SWIOTLB 2891 dev->dma_io_tlb_mem = &io_tlb_default_mem; 2892 #endif 2893 } 2894 EXPORT_SYMBOL_GPL(device_initialize); 2895 2896 struct kobject *virtual_device_parent(struct device *dev) 2897 { 2898 static struct kobject *virtual_dir = NULL; 2899 2900 if (!virtual_dir) 2901 virtual_dir = kobject_create_and_add("virtual", 2902 &devices_kset->kobj); 2903 2904 return virtual_dir; 2905 } 2906 2907 struct class_dir { 2908 struct kobject kobj; 2909 struct class *class; 2910 }; 2911 2912 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2913 2914 static void class_dir_release(struct kobject *kobj) 2915 { 2916 struct class_dir *dir = to_class_dir(kobj); 2917 kfree(dir); 2918 } 2919 2920 static const 2921 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2922 { 2923 struct class_dir *dir = to_class_dir(kobj); 2924 return dir->class->ns_type; 2925 } 2926 2927 static struct kobj_type class_dir_ktype = { 2928 .release = class_dir_release, 2929 .sysfs_ops = &kobj_sysfs_ops, 2930 .child_ns_type = class_dir_child_ns_type 2931 }; 2932 2933 static struct kobject * 2934 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2935 { 2936 struct class_dir *dir; 2937 int retval; 2938 2939 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2940 if (!dir) 2941 return ERR_PTR(-ENOMEM); 2942 2943 dir->class = class; 2944 kobject_init(&dir->kobj, &class_dir_ktype); 2945 2946 dir->kobj.kset = &class->p->glue_dirs; 2947 2948 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2949 if (retval < 0) { 2950 kobject_put(&dir->kobj); 2951 return ERR_PTR(retval); 2952 } 2953 return &dir->kobj; 2954 } 2955 2956 static DEFINE_MUTEX(gdp_mutex); 2957 2958 static struct kobject *get_device_parent(struct device *dev, 2959 struct device *parent) 2960 { 2961 if (dev->class) { 2962 struct kobject *kobj = NULL; 2963 struct kobject *parent_kobj; 2964 struct kobject *k; 2965 2966 #ifdef CONFIG_BLOCK 2967 /* block disks show up in /sys/block */ 2968 if (sysfs_deprecated && dev->class == &block_class) { 2969 if (parent && parent->class == &block_class) 2970 return &parent->kobj; 2971 return &block_class.p->subsys.kobj; 2972 } 2973 #endif 2974 2975 /* 2976 * If we have no parent, we live in "virtual". 2977 * Class-devices with a non class-device as parent, live 2978 * in a "glue" directory to prevent namespace collisions. 2979 */ 2980 if (parent == NULL) 2981 parent_kobj = virtual_device_parent(dev); 2982 else if (parent->class && !dev->class->ns_type) 2983 return &parent->kobj; 2984 else 2985 parent_kobj = &parent->kobj; 2986 2987 mutex_lock(&gdp_mutex); 2988 2989 /* find our class-directory at the parent and reference it */ 2990 spin_lock(&dev->class->p->glue_dirs.list_lock); 2991 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2992 if (k->parent == parent_kobj) { 2993 kobj = kobject_get(k); 2994 break; 2995 } 2996 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2997 if (kobj) { 2998 mutex_unlock(&gdp_mutex); 2999 return kobj; 3000 } 3001 3002 /* or create a new class-directory at the parent device */ 3003 k = class_dir_create_and_add(dev->class, parent_kobj); 3004 /* do not emit an uevent for this simple "glue" directory */ 3005 mutex_unlock(&gdp_mutex); 3006 return k; 3007 } 3008 3009 /* subsystems can specify a default root directory for their devices */ 3010 if (!parent && dev->bus && dev->bus->dev_root) 3011 return &dev->bus->dev_root->kobj; 3012 3013 if (parent) 3014 return &parent->kobj; 3015 return NULL; 3016 } 3017 3018 static inline bool live_in_glue_dir(struct kobject *kobj, 3019 struct device *dev) 3020 { 3021 if (!kobj || !dev->class || 3022 kobj->kset != &dev->class->p->glue_dirs) 3023 return false; 3024 return true; 3025 } 3026 3027 static inline struct kobject *get_glue_dir(struct device *dev) 3028 { 3029 return dev->kobj.parent; 3030 } 3031 3032 /* 3033 * make sure cleaning up dir as the last step, we need to make 3034 * sure .release handler of kobject is run with holding the 3035 * global lock 3036 */ 3037 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3038 { 3039 unsigned int ref; 3040 3041 /* see if we live in a "glue" directory */ 3042 if (!live_in_glue_dir(glue_dir, dev)) 3043 return; 3044 3045 mutex_lock(&gdp_mutex); 3046 /** 3047 * There is a race condition between removing glue directory 3048 * and adding a new device under the glue directory. 3049 * 3050 * CPU1: CPU2: 3051 * 3052 * device_add() 3053 * get_device_parent() 3054 * class_dir_create_and_add() 3055 * kobject_add_internal() 3056 * create_dir() // create glue_dir 3057 * 3058 * device_add() 3059 * get_device_parent() 3060 * kobject_get() // get glue_dir 3061 * 3062 * device_del() 3063 * cleanup_glue_dir() 3064 * kobject_del(glue_dir) 3065 * 3066 * kobject_add() 3067 * kobject_add_internal() 3068 * create_dir() // in glue_dir 3069 * sysfs_create_dir_ns() 3070 * kernfs_create_dir_ns(sd) 3071 * 3072 * sysfs_remove_dir() // glue_dir->sd=NULL 3073 * sysfs_put() // free glue_dir->sd 3074 * 3075 * // sd is freed 3076 * kernfs_new_node(sd) 3077 * kernfs_get(glue_dir) 3078 * kernfs_add_one() 3079 * kernfs_put() 3080 * 3081 * Before CPU1 remove last child device under glue dir, if CPU2 add 3082 * a new device under glue dir, the glue_dir kobject reference count 3083 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3084 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3085 * and sysfs_put(). This result in glue_dir->sd is freed. 3086 * 3087 * Then the CPU2 will see a stale "empty" but still potentially used 3088 * glue dir around in kernfs_new_node(). 3089 * 3090 * In order to avoid this happening, we also should make sure that 3091 * kernfs_node for glue_dir is released in CPU1 only when refcount 3092 * for glue_dir kobj is 1. 3093 */ 3094 ref = kref_read(&glue_dir->kref); 3095 if (!kobject_has_children(glue_dir) && !--ref) 3096 kobject_del(glue_dir); 3097 kobject_put(glue_dir); 3098 mutex_unlock(&gdp_mutex); 3099 } 3100 3101 static int device_add_class_symlinks(struct device *dev) 3102 { 3103 struct device_node *of_node = dev_of_node(dev); 3104 int error; 3105 3106 if (of_node) { 3107 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3108 if (error) 3109 dev_warn(dev, "Error %d creating of_node link\n",error); 3110 /* An error here doesn't warrant bringing down the device */ 3111 } 3112 3113 if (!dev->class) 3114 return 0; 3115 3116 error = sysfs_create_link(&dev->kobj, 3117 &dev->class->p->subsys.kobj, 3118 "subsystem"); 3119 if (error) 3120 goto out_devnode; 3121 3122 if (dev->parent && device_is_not_partition(dev)) { 3123 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3124 "device"); 3125 if (error) 3126 goto out_subsys; 3127 } 3128 3129 #ifdef CONFIG_BLOCK 3130 /* /sys/block has directories and does not need symlinks */ 3131 if (sysfs_deprecated && dev->class == &block_class) 3132 return 0; 3133 #endif 3134 3135 /* link in the class directory pointing to the device */ 3136 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3137 &dev->kobj, dev_name(dev)); 3138 if (error) 3139 goto out_device; 3140 3141 return 0; 3142 3143 out_device: 3144 sysfs_remove_link(&dev->kobj, "device"); 3145 3146 out_subsys: 3147 sysfs_remove_link(&dev->kobj, "subsystem"); 3148 out_devnode: 3149 sysfs_remove_link(&dev->kobj, "of_node"); 3150 return error; 3151 } 3152 3153 static void device_remove_class_symlinks(struct device *dev) 3154 { 3155 if (dev_of_node(dev)) 3156 sysfs_remove_link(&dev->kobj, "of_node"); 3157 3158 if (!dev->class) 3159 return; 3160 3161 if (dev->parent && device_is_not_partition(dev)) 3162 sysfs_remove_link(&dev->kobj, "device"); 3163 sysfs_remove_link(&dev->kobj, "subsystem"); 3164 #ifdef CONFIG_BLOCK 3165 if (sysfs_deprecated && dev->class == &block_class) 3166 return; 3167 #endif 3168 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3169 } 3170 3171 /** 3172 * dev_set_name - set a device name 3173 * @dev: device 3174 * @fmt: format string for the device's name 3175 */ 3176 int dev_set_name(struct device *dev, const char *fmt, ...) 3177 { 3178 va_list vargs; 3179 int err; 3180 3181 va_start(vargs, fmt); 3182 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3183 va_end(vargs); 3184 return err; 3185 } 3186 EXPORT_SYMBOL_GPL(dev_set_name); 3187 3188 /** 3189 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3190 * @dev: device 3191 * 3192 * By default we select char/ for new entries. Setting class->dev_obj 3193 * to NULL prevents an entry from being created. class->dev_kobj must 3194 * be set (or cleared) before any devices are registered to the class 3195 * otherwise device_create_sys_dev_entry() and 3196 * device_remove_sys_dev_entry() will disagree about the presence of 3197 * the link. 3198 */ 3199 static struct kobject *device_to_dev_kobj(struct device *dev) 3200 { 3201 struct kobject *kobj; 3202 3203 if (dev->class) 3204 kobj = dev->class->dev_kobj; 3205 else 3206 kobj = sysfs_dev_char_kobj; 3207 3208 return kobj; 3209 } 3210 3211 static int device_create_sys_dev_entry(struct device *dev) 3212 { 3213 struct kobject *kobj = device_to_dev_kobj(dev); 3214 int error = 0; 3215 char devt_str[15]; 3216 3217 if (kobj) { 3218 format_dev_t(devt_str, dev->devt); 3219 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3220 } 3221 3222 return error; 3223 } 3224 3225 static void device_remove_sys_dev_entry(struct device *dev) 3226 { 3227 struct kobject *kobj = device_to_dev_kobj(dev); 3228 char devt_str[15]; 3229 3230 if (kobj) { 3231 format_dev_t(devt_str, dev->devt); 3232 sysfs_remove_link(kobj, devt_str); 3233 } 3234 } 3235 3236 static int device_private_init(struct device *dev) 3237 { 3238 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3239 if (!dev->p) 3240 return -ENOMEM; 3241 dev->p->device = dev; 3242 klist_init(&dev->p->klist_children, klist_children_get, 3243 klist_children_put); 3244 INIT_LIST_HEAD(&dev->p->deferred_probe); 3245 return 0; 3246 } 3247 3248 /** 3249 * device_add - add device to device hierarchy. 3250 * @dev: device. 3251 * 3252 * This is part 2 of device_register(), though may be called 3253 * separately _iff_ device_initialize() has been called separately. 3254 * 3255 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3256 * to the global and sibling lists for the device, then 3257 * adds it to the other relevant subsystems of the driver model. 3258 * 3259 * Do not call this routine or device_register() more than once for 3260 * any device structure. The driver model core is not designed to work 3261 * with devices that get unregistered and then spring back to life. 3262 * (Among other things, it's very hard to guarantee that all references 3263 * to the previous incarnation of @dev have been dropped.) Allocate 3264 * and register a fresh new struct device instead. 3265 * 3266 * NOTE: _Never_ directly free @dev after calling this function, even 3267 * if it returned an error! Always use put_device() to give up your 3268 * reference instead. 3269 * 3270 * Rule of thumb is: if device_add() succeeds, you should call 3271 * device_del() when you want to get rid of it. If device_add() has 3272 * *not* succeeded, use *only* put_device() to drop the reference 3273 * count. 3274 */ 3275 int device_add(struct device *dev) 3276 { 3277 struct device *parent; 3278 struct kobject *kobj; 3279 struct class_interface *class_intf; 3280 int error = -EINVAL; 3281 struct kobject *glue_dir = NULL; 3282 3283 dev = get_device(dev); 3284 if (!dev) 3285 goto done; 3286 3287 if (!dev->p) { 3288 error = device_private_init(dev); 3289 if (error) 3290 goto done; 3291 } 3292 3293 /* 3294 * for statically allocated devices, which should all be converted 3295 * some day, we need to initialize the name. We prevent reading back 3296 * the name, and force the use of dev_name() 3297 */ 3298 if (dev->init_name) { 3299 dev_set_name(dev, "%s", dev->init_name); 3300 dev->init_name = NULL; 3301 } 3302 3303 /* subsystems can specify simple device enumeration */ 3304 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3305 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3306 3307 if (!dev_name(dev)) { 3308 error = -EINVAL; 3309 goto name_error; 3310 } 3311 3312 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3313 3314 parent = get_device(dev->parent); 3315 kobj = get_device_parent(dev, parent); 3316 if (IS_ERR(kobj)) { 3317 error = PTR_ERR(kobj); 3318 goto parent_error; 3319 } 3320 if (kobj) 3321 dev->kobj.parent = kobj; 3322 3323 /* use parent numa_node */ 3324 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3325 set_dev_node(dev, dev_to_node(parent)); 3326 3327 /* first, register with generic layer. */ 3328 /* we require the name to be set before, and pass NULL */ 3329 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3330 if (error) { 3331 glue_dir = get_glue_dir(dev); 3332 goto Error; 3333 } 3334 3335 /* notify platform of device entry */ 3336 device_platform_notify(dev); 3337 3338 error = device_create_file(dev, &dev_attr_uevent); 3339 if (error) 3340 goto attrError; 3341 3342 error = device_add_class_symlinks(dev); 3343 if (error) 3344 goto SymlinkError; 3345 error = device_add_attrs(dev); 3346 if (error) 3347 goto AttrsError; 3348 error = bus_add_device(dev); 3349 if (error) 3350 goto BusError; 3351 error = dpm_sysfs_add(dev); 3352 if (error) 3353 goto DPMError; 3354 device_pm_add(dev); 3355 3356 if (MAJOR(dev->devt)) { 3357 error = device_create_file(dev, &dev_attr_dev); 3358 if (error) 3359 goto DevAttrError; 3360 3361 error = device_create_sys_dev_entry(dev); 3362 if (error) 3363 goto SysEntryError; 3364 3365 devtmpfs_create_node(dev); 3366 } 3367 3368 /* Notify clients of device addition. This call must come 3369 * after dpm_sysfs_add() and before kobject_uevent(). 3370 */ 3371 if (dev->bus) 3372 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3373 BUS_NOTIFY_ADD_DEVICE, dev); 3374 3375 kobject_uevent(&dev->kobj, KOBJ_ADD); 3376 3377 /* 3378 * Check if any of the other devices (consumers) have been waiting for 3379 * this device (supplier) to be added so that they can create a device 3380 * link to it. 3381 * 3382 * This needs to happen after device_pm_add() because device_link_add() 3383 * requires the supplier be registered before it's called. 3384 * 3385 * But this also needs to happen before bus_probe_device() to make sure 3386 * waiting consumers can link to it before the driver is bound to the 3387 * device and the driver sync_state callback is called for this device. 3388 */ 3389 if (dev->fwnode && !dev->fwnode->dev) { 3390 dev->fwnode->dev = dev; 3391 fw_devlink_link_device(dev); 3392 } 3393 3394 bus_probe_device(dev); 3395 3396 /* 3397 * If all driver registration is done and a newly added device doesn't 3398 * match with any driver, don't block its consumers from probing in 3399 * case the consumer device is able to operate without this supplier. 3400 */ 3401 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3402 fw_devlink_unblock_consumers(dev); 3403 3404 if (parent) 3405 klist_add_tail(&dev->p->knode_parent, 3406 &parent->p->klist_children); 3407 3408 if (dev->class) { 3409 mutex_lock(&dev->class->p->mutex); 3410 /* tie the class to the device */ 3411 klist_add_tail(&dev->p->knode_class, 3412 &dev->class->p->klist_devices); 3413 3414 /* notify any interfaces that the device is here */ 3415 list_for_each_entry(class_intf, 3416 &dev->class->p->interfaces, node) 3417 if (class_intf->add_dev) 3418 class_intf->add_dev(dev, class_intf); 3419 mutex_unlock(&dev->class->p->mutex); 3420 } 3421 done: 3422 put_device(dev); 3423 return error; 3424 SysEntryError: 3425 if (MAJOR(dev->devt)) 3426 device_remove_file(dev, &dev_attr_dev); 3427 DevAttrError: 3428 device_pm_remove(dev); 3429 dpm_sysfs_remove(dev); 3430 DPMError: 3431 bus_remove_device(dev); 3432 BusError: 3433 device_remove_attrs(dev); 3434 AttrsError: 3435 device_remove_class_symlinks(dev); 3436 SymlinkError: 3437 device_remove_file(dev, &dev_attr_uevent); 3438 attrError: 3439 device_platform_notify_remove(dev); 3440 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3441 glue_dir = get_glue_dir(dev); 3442 kobject_del(&dev->kobj); 3443 Error: 3444 cleanup_glue_dir(dev, glue_dir); 3445 parent_error: 3446 put_device(parent); 3447 name_error: 3448 kfree(dev->p); 3449 dev->p = NULL; 3450 goto done; 3451 } 3452 EXPORT_SYMBOL_GPL(device_add); 3453 3454 /** 3455 * device_register - register a device with the system. 3456 * @dev: pointer to the device structure 3457 * 3458 * This happens in two clean steps - initialize the device 3459 * and add it to the system. The two steps can be called 3460 * separately, but this is the easiest and most common. 3461 * I.e. you should only call the two helpers separately if 3462 * have a clearly defined need to use and refcount the device 3463 * before it is added to the hierarchy. 3464 * 3465 * For more information, see the kerneldoc for device_initialize() 3466 * and device_add(). 3467 * 3468 * NOTE: _Never_ directly free @dev after calling this function, even 3469 * if it returned an error! Always use put_device() to give up the 3470 * reference initialized in this function instead. 3471 */ 3472 int device_register(struct device *dev) 3473 { 3474 device_initialize(dev); 3475 return device_add(dev); 3476 } 3477 EXPORT_SYMBOL_GPL(device_register); 3478 3479 /** 3480 * get_device - increment reference count for device. 3481 * @dev: device. 3482 * 3483 * This simply forwards the call to kobject_get(), though 3484 * we do take care to provide for the case that we get a NULL 3485 * pointer passed in. 3486 */ 3487 struct device *get_device(struct device *dev) 3488 { 3489 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3490 } 3491 EXPORT_SYMBOL_GPL(get_device); 3492 3493 /** 3494 * put_device - decrement reference count. 3495 * @dev: device in question. 3496 */ 3497 void put_device(struct device *dev) 3498 { 3499 /* might_sleep(); */ 3500 if (dev) 3501 kobject_put(&dev->kobj); 3502 } 3503 EXPORT_SYMBOL_GPL(put_device); 3504 3505 bool kill_device(struct device *dev) 3506 { 3507 /* 3508 * Require the device lock and set the "dead" flag to guarantee that 3509 * the update behavior is consistent with the other bitfields near 3510 * it and that we cannot have an asynchronous probe routine trying 3511 * to run while we are tearing out the bus/class/sysfs from 3512 * underneath the device. 3513 */ 3514 device_lock_assert(dev); 3515 3516 if (dev->p->dead) 3517 return false; 3518 dev->p->dead = true; 3519 return true; 3520 } 3521 EXPORT_SYMBOL_GPL(kill_device); 3522 3523 /** 3524 * device_del - delete device from system. 3525 * @dev: device. 3526 * 3527 * This is the first part of the device unregistration 3528 * sequence. This removes the device from the lists we control 3529 * from here, has it removed from the other driver model 3530 * subsystems it was added to in device_add(), and removes it 3531 * from the kobject hierarchy. 3532 * 3533 * NOTE: this should be called manually _iff_ device_add() was 3534 * also called manually. 3535 */ 3536 void device_del(struct device *dev) 3537 { 3538 struct device *parent = dev->parent; 3539 struct kobject *glue_dir = NULL; 3540 struct class_interface *class_intf; 3541 unsigned int noio_flag; 3542 3543 device_lock(dev); 3544 kill_device(dev); 3545 device_unlock(dev); 3546 3547 if (dev->fwnode && dev->fwnode->dev == dev) 3548 dev->fwnode->dev = NULL; 3549 3550 /* Notify clients of device removal. This call must come 3551 * before dpm_sysfs_remove(). 3552 */ 3553 noio_flag = memalloc_noio_save(); 3554 if (dev->bus) 3555 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3556 BUS_NOTIFY_DEL_DEVICE, dev); 3557 3558 dpm_sysfs_remove(dev); 3559 if (parent) 3560 klist_del(&dev->p->knode_parent); 3561 if (MAJOR(dev->devt)) { 3562 devtmpfs_delete_node(dev); 3563 device_remove_sys_dev_entry(dev); 3564 device_remove_file(dev, &dev_attr_dev); 3565 } 3566 if (dev->class) { 3567 device_remove_class_symlinks(dev); 3568 3569 mutex_lock(&dev->class->p->mutex); 3570 /* notify any interfaces that the device is now gone */ 3571 list_for_each_entry(class_intf, 3572 &dev->class->p->interfaces, node) 3573 if (class_intf->remove_dev) 3574 class_intf->remove_dev(dev, class_intf); 3575 /* remove the device from the class list */ 3576 klist_del(&dev->p->knode_class); 3577 mutex_unlock(&dev->class->p->mutex); 3578 } 3579 device_remove_file(dev, &dev_attr_uevent); 3580 device_remove_attrs(dev); 3581 bus_remove_device(dev); 3582 device_pm_remove(dev); 3583 driver_deferred_probe_del(dev); 3584 device_platform_notify_remove(dev); 3585 device_remove_properties(dev); 3586 device_links_purge(dev); 3587 3588 if (dev->bus) 3589 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3590 BUS_NOTIFY_REMOVED_DEVICE, dev); 3591 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3592 glue_dir = get_glue_dir(dev); 3593 kobject_del(&dev->kobj); 3594 cleanup_glue_dir(dev, glue_dir); 3595 memalloc_noio_restore(noio_flag); 3596 put_device(parent); 3597 } 3598 EXPORT_SYMBOL_GPL(device_del); 3599 3600 /** 3601 * device_unregister - unregister device from system. 3602 * @dev: device going away. 3603 * 3604 * We do this in two parts, like we do device_register(). First, 3605 * we remove it from all the subsystems with device_del(), then 3606 * we decrement the reference count via put_device(). If that 3607 * is the final reference count, the device will be cleaned up 3608 * via device_release() above. Otherwise, the structure will 3609 * stick around until the final reference to the device is dropped. 3610 */ 3611 void device_unregister(struct device *dev) 3612 { 3613 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3614 device_del(dev); 3615 put_device(dev); 3616 } 3617 EXPORT_SYMBOL_GPL(device_unregister); 3618 3619 static struct device *prev_device(struct klist_iter *i) 3620 { 3621 struct klist_node *n = klist_prev(i); 3622 struct device *dev = NULL; 3623 struct device_private *p; 3624 3625 if (n) { 3626 p = to_device_private_parent(n); 3627 dev = p->device; 3628 } 3629 return dev; 3630 } 3631 3632 static struct device *next_device(struct klist_iter *i) 3633 { 3634 struct klist_node *n = klist_next(i); 3635 struct device *dev = NULL; 3636 struct device_private *p; 3637 3638 if (n) { 3639 p = to_device_private_parent(n); 3640 dev = p->device; 3641 } 3642 return dev; 3643 } 3644 3645 /** 3646 * device_get_devnode - path of device node file 3647 * @dev: device 3648 * @mode: returned file access mode 3649 * @uid: returned file owner 3650 * @gid: returned file group 3651 * @tmp: possibly allocated string 3652 * 3653 * Return the relative path of a possible device node. 3654 * Non-default names may need to allocate a memory to compose 3655 * a name. This memory is returned in tmp and needs to be 3656 * freed by the caller. 3657 */ 3658 const char *device_get_devnode(struct device *dev, 3659 umode_t *mode, kuid_t *uid, kgid_t *gid, 3660 const char **tmp) 3661 { 3662 char *s; 3663 3664 *tmp = NULL; 3665 3666 /* the device type may provide a specific name */ 3667 if (dev->type && dev->type->devnode) 3668 *tmp = dev->type->devnode(dev, mode, uid, gid); 3669 if (*tmp) 3670 return *tmp; 3671 3672 /* the class may provide a specific name */ 3673 if (dev->class && dev->class->devnode) 3674 *tmp = dev->class->devnode(dev, mode); 3675 if (*tmp) 3676 return *tmp; 3677 3678 /* return name without allocation, tmp == NULL */ 3679 if (strchr(dev_name(dev), '!') == NULL) 3680 return dev_name(dev); 3681 3682 /* replace '!' in the name with '/' */ 3683 s = kstrdup(dev_name(dev), GFP_KERNEL); 3684 if (!s) 3685 return NULL; 3686 strreplace(s, '!', '/'); 3687 return *tmp = s; 3688 } 3689 3690 /** 3691 * device_for_each_child - device child iterator. 3692 * @parent: parent struct device. 3693 * @fn: function to be called for each device. 3694 * @data: data for the callback. 3695 * 3696 * Iterate over @parent's child devices, and call @fn for each, 3697 * passing it @data. 3698 * 3699 * We check the return of @fn each time. If it returns anything 3700 * other than 0, we break out and return that value. 3701 */ 3702 int device_for_each_child(struct device *parent, void *data, 3703 int (*fn)(struct device *dev, void *data)) 3704 { 3705 struct klist_iter i; 3706 struct device *child; 3707 int error = 0; 3708 3709 if (!parent->p) 3710 return 0; 3711 3712 klist_iter_init(&parent->p->klist_children, &i); 3713 while (!error && (child = next_device(&i))) 3714 error = fn(child, data); 3715 klist_iter_exit(&i); 3716 return error; 3717 } 3718 EXPORT_SYMBOL_GPL(device_for_each_child); 3719 3720 /** 3721 * device_for_each_child_reverse - device child iterator in reversed order. 3722 * @parent: parent struct device. 3723 * @fn: function to be called for each device. 3724 * @data: data for the callback. 3725 * 3726 * Iterate over @parent's child devices, and call @fn for each, 3727 * passing it @data. 3728 * 3729 * We check the return of @fn each time. If it returns anything 3730 * other than 0, we break out and return that value. 3731 */ 3732 int device_for_each_child_reverse(struct device *parent, void *data, 3733 int (*fn)(struct device *dev, void *data)) 3734 { 3735 struct klist_iter i; 3736 struct device *child; 3737 int error = 0; 3738 3739 if (!parent->p) 3740 return 0; 3741 3742 klist_iter_init(&parent->p->klist_children, &i); 3743 while ((child = prev_device(&i)) && !error) 3744 error = fn(child, data); 3745 klist_iter_exit(&i); 3746 return error; 3747 } 3748 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3749 3750 /** 3751 * device_find_child - device iterator for locating a particular device. 3752 * @parent: parent struct device 3753 * @match: Callback function to check device 3754 * @data: Data to pass to match function 3755 * 3756 * This is similar to the device_for_each_child() function above, but it 3757 * returns a reference to a device that is 'found' for later use, as 3758 * determined by the @match callback. 3759 * 3760 * The callback should return 0 if the device doesn't match and non-zero 3761 * if it does. If the callback returns non-zero and a reference to the 3762 * current device can be obtained, this function will return to the caller 3763 * and not iterate over any more devices. 3764 * 3765 * NOTE: you will need to drop the reference with put_device() after use. 3766 */ 3767 struct device *device_find_child(struct device *parent, void *data, 3768 int (*match)(struct device *dev, void *data)) 3769 { 3770 struct klist_iter i; 3771 struct device *child; 3772 3773 if (!parent) 3774 return NULL; 3775 3776 klist_iter_init(&parent->p->klist_children, &i); 3777 while ((child = next_device(&i))) 3778 if (match(child, data) && get_device(child)) 3779 break; 3780 klist_iter_exit(&i); 3781 return child; 3782 } 3783 EXPORT_SYMBOL_GPL(device_find_child); 3784 3785 /** 3786 * device_find_child_by_name - device iterator for locating a child device. 3787 * @parent: parent struct device 3788 * @name: name of the child device 3789 * 3790 * This is similar to the device_find_child() function above, but it 3791 * returns a reference to a device that has the name @name. 3792 * 3793 * NOTE: you will need to drop the reference with put_device() after use. 3794 */ 3795 struct device *device_find_child_by_name(struct device *parent, 3796 const char *name) 3797 { 3798 struct klist_iter i; 3799 struct device *child; 3800 3801 if (!parent) 3802 return NULL; 3803 3804 klist_iter_init(&parent->p->klist_children, &i); 3805 while ((child = next_device(&i))) 3806 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3807 break; 3808 klist_iter_exit(&i); 3809 return child; 3810 } 3811 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3812 3813 int __init devices_init(void) 3814 { 3815 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3816 if (!devices_kset) 3817 return -ENOMEM; 3818 dev_kobj = kobject_create_and_add("dev", NULL); 3819 if (!dev_kobj) 3820 goto dev_kobj_err; 3821 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3822 if (!sysfs_dev_block_kobj) 3823 goto block_kobj_err; 3824 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3825 if (!sysfs_dev_char_kobj) 3826 goto char_kobj_err; 3827 3828 return 0; 3829 3830 char_kobj_err: 3831 kobject_put(sysfs_dev_block_kobj); 3832 block_kobj_err: 3833 kobject_put(dev_kobj); 3834 dev_kobj_err: 3835 kset_unregister(devices_kset); 3836 return -ENOMEM; 3837 } 3838 3839 static int device_check_offline(struct device *dev, void *not_used) 3840 { 3841 int ret; 3842 3843 ret = device_for_each_child(dev, NULL, device_check_offline); 3844 if (ret) 3845 return ret; 3846 3847 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3848 } 3849 3850 /** 3851 * device_offline - Prepare the device for hot-removal. 3852 * @dev: Device to be put offline. 3853 * 3854 * Execute the device bus type's .offline() callback, if present, to prepare 3855 * the device for a subsequent hot-removal. If that succeeds, the device must 3856 * not be used until either it is removed or its bus type's .online() callback 3857 * is executed. 3858 * 3859 * Call under device_hotplug_lock. 3860 */ 3861 int device_offline(struct device *dev) 3862 { 3863 int ret; 3864 3865 if (dev->offline_disabled) 3866 return -EPERM; 3867 3868 ret = device_for_each_child(dev, NULL, device_check_offline); 3869 if (ret) 3870 return ret; 3871 3872 device_lock(dev); 3873 if (device_supports_offline(dev)) { 3874 if (dev->offline) { 3875 ret = 1; 3876 } else { 3877 ret = dev->bus->offline(dev); 3878 if (!ret) { 3879 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3880 dev->offline = true; 3881 } 3882 } 3883 } 3884 device_unlock(dev); 3885 3886 return ret; 3887 } 3888 3889 /** 3890 * device_online - Put the device back online after successful device_offline(). 3891 * @dev: Device to be put back online. 3892 * 3893 * If device_offline() has been successfully executed for @dev, but the device 3894 * has not been removed subsequently, execute its bus type's .online() callback 3895 * to indicate that the device can be used again. 3896 * 3897 * Call under device_hotplug_lock. 3898 */ 3899 int device_online(struct device *dev) 3900 { 3901 int ret = 0; 3902 3903 device_lock(dev); 3904 if (device_supports_offline(dev)) { 3905 if (dev->offline) { 3906 ret = dev->bus->online(dev); 3907 if (!ret) { 3908 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3909 dev->offline = false; 3910 } 3911 } else { 3912 ret = 1; 3913 } 3914 } 3915 device_unlock(dev); 3916 3917 return ret; 3918 } 3919 3920 struct root_device { 3921 struct device dev; 3922 struct module *owner; 3923 }; 3924 3925 static inline struct root_device *to_root_device(struct device *d) 3926 { 3927 return container_of(d, struct root_device, dev); 3928 } 3929 3930 static void root_device_release(struct device *dev) 3931 { 3932 kfree(to_root_device(dev)); 3933 } 3934 3935 /** 3936 * __root_device_register - allocate and register a root device 3937 * @name: root device name 3938 * @owner: owner module of the root device, usually THIS_MODULE 3939 * 3940 * This function allocates a root device and registers it 3941 * using device_register(). In order to free the returned 3942 * device, use root_device_unregister(). 3943 * 3944 * Root devices are dummy devices which allow other devices 3945 * to be grouped under /sys/devices. Use this function to 3946 * allocate a root device and then use it as the parent of 3947 * any device which should appear under /sys/devices/{name} 3948 * 3949 * The /sys/devices/{name} directory will also contain a 3950 * 'module' symlink which points to the @owner directory 3951 * in sysfs. 3952 * 3953 * Returns &struct device pointer on success, or ERR_PTR() on error. 3954 * 3955 * Note: You probably want to use root_device_register(). 3956 */ 3957 struct device *__root_device_register(const char *name, struct module *owner) 3958 { 3959 struct root_device *root; 3960 int err = -ENOMEM; 3961 3962 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3963 if (!root) 3964 return ERR_PTR(err); 3965 3966 err = dev_set_name(&root->dev, "%s", name); 3967 if (err) { 3968 kfree(root); 3969 return ERR_PTR(err); 3970 } 3971 3972 root->dev.release = root_device_release; 3973 3974 err = device_register(&root->dev); 3975 if (err) { 3976 put_device(&root->dev); 3977 return ERR_PTR(err); 3978 } 3979 3980 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3981 if (owner) { 3982 struct module_kobject *mk = &owner->mkobj; 3983 3984 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3985 if (err) { 3986 device_unregister(&root->dev); 3987 return ERR_PTR(err); 3988 } 3989 root->owner = owner; 3990 } 3991 #endif 3992 3993 return &root->dev; 3994 } 3995 EXPORT_SYMBOL_GPL(__root_device_register); 3996 3997 /** 3998 * root_device_unregister - unregister and free a root device 3999 * @dev: device going away 4000 * 4001 * This function unregisters and cleans up a device that was created by 4002 * root_device_register(). 4003 */ 4004 void root_device_unregister(struct device *dev) 4005 { 4006 struct root_device *root = to_root_device(dev); 4007 4008 if (root->owner) 4009 sysfs_remove_link(&root->dev.kobj, "module"); 4010 4011 device_unregister(dev); 4012 } 4013 EXPORT_SYMBOL_GPL(root_device_unregister); 4014 4015 4016 static void device_create_release(struct device *dev) 4017 { 4018 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4019 kfree(dev); 4020 } 4021 4022 static __printf(6, 0) struct device * 4023 device_create_groups_vargs(struct class *class, struct device *parent, 4024 dev_t devt, void *drvdata, 4025 const struct attribute_group **groups, 4026 const char *fmt, va_list args) 4027 { 4028 struct device *dev = NULL; 4029 int retval = -ENODEV; 4030 4031 if (class == NULL || IS_ERR(class)) 4032 goto error; 4033 4034 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4035 if (!dev) { 4036 retval = -ENOMEM; 4037 goto error; 4038 } 4039 4040 device_initialize(dev); 4041 dev->devt = devt; 4042 dev->class = class; 4043 dev->parent = parent; 4044 dev->groups = groups; 4045 dev->release = device_create_release; 4046 dev_set_drvdata(dev, drvdata); 4047 4048 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4049 if (retval) 4050 goto error; 4051 4052 retval = device_add(dev); 4053 if (retval) 4054 goto error; 4055 4056 return dev; 4057 4058 error: 4059 put_device(dev); 4060 return ERR_PTR(retval); 4061 } 4062 4063 /** 4064 * device_create - creates a device and registers it with sysfs 4065 * @class: pointer to the struct class that this device should be registered to 4066 * @parent: pointer to the parent struct device of this new device, if any 4067 * @devt: the dev_t for the char device to be added 4068 * @drvdata: the data to be added to the device for callbacks 4069 * @fmt: string for the device's name 4070 * 4071 * This function can be used by char device classes. A struct device 4072 * will be created in sysfs, registered to the specified class. 4073 * 4074 * A "dev" file will be created, showing the dev_t for the device, if 4075 * the dev_t is not 0,0. 4076 * If a pointer to a parent struct device is passed in, the newly created 4077 * struct device will be a child of that device in sysfs. 4078 * The pointer to the struct device will be returned from the call. 4079 * Any further sysfs files that might be required can be created using this 4080 * pointer. 4081 * 4082 * Returns &struct device pointer on success, or ERR_PTR() on error. 4083 * 4084 * Note: the struct class passed to this function must have previously 4085 * been created with a call to class_create(). 4086 */ 4087 struct device *device_create(struct class *class, struct device *parent, 4088 dev_t devt, void *drvdata, const char *fmt, ...) 4089 { 4090 va_list vargs; 4091 struct device *dev; 4092 4093 va_start(vargs, fmt); 4094 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4095 fmt, vargs); 4096 va_end(vargs); 4097 return dev; 4098 } 4099 EXPORT_SYMBOL_GPL(device_create); 4100 4101 /** 4102 * device_create_with_groups - creates a device and registers it with sysfs 4103 * @class: pointer to the struct class that this device should be registered to 4104 * @parent: pointer to the parent struct device of this new device, if any 4105 * @devt: the dev_t for the char device to be added 4106 * @drvdata: the data to be added to the device for callbacks 4107 * @groups: NULL-terminated list of attribute groups to be created 4108 * @fmt: string for the device's name 4109 * 4110 * This function can be used by char device classes. A struct device 4111 * will be created in sysfs, registered to the specified class. 4112 * Additional attributes specified in the groups parameter will also 4113 * be created automatically. 4114 * 4115 * A "dev" file will be created, showing the dev_t for the device, if 4116 * the dev_t is not 0,0. 4117 * If a pointer to a parent struct device is passed in, the newly created 4118 * struct device will be a child of that device in sysfs. 4119 * The pointer to the struct device will be returned from the call. 4120 * Any further sysfs files that might be required can be created using this 4121 * pointer. 4122 * 4123 * Returns &struct device pointer on success, or ERR_PTR() on error. 4124 * 4125 * Note: the struct class passed to this function must have previously 4126 * been created with a call to class_create(). 4127 */ 4128 struct device *device_create_with_groups(struct class *class, 4129 struct device *parent, dev_t devt, 4130 void *drvdata, 4131 const struct attribute_group **groups, 4132 const char *fmt, ...) 4133 { 4134 va_list vargs; 4135 struct device *dev; 4136 4137 va_start(vargs, fmt); 4138 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4139 fmt, vargs); 4140 va_end(vargs); 4141 return dev; 4142 } 4143 EXPORT_SYMBOL_GPL(device_create_with_groups); 4144 4145 /** 4146 * device_destroy - removes a device that was created with device_create() 4147 * @class: pointer to the struct class that this device was registered with 4148 * @devt: the dev_t of the device that was previously registered 4149 * 4150 * This call unregisters and cleans up a device that was created with a 4151 * call to device_create(). 4152 */ 4153 void device_destroy(struct class *class, dev_t devt) 4154 { 4155 struct device *dev; 4156 4157 dev = class_find_device_by_devt(class, devt); 4158 if (dev) { 4159 put_device(dev); 4160 device_unregister(dev); 4161 } 4162 } 4163 EXPORT_SYMBOL_GPL(device_destroy); 4164 4165 /** 4166 * device_rename - renames a device 4167 * @dev: the pointer to the struct device to be renamed 4168 * @new_name: the new name of the device 4169 * 4170 * It is the responsibility of the caller to provide mutual 4171 * exclusion between two different calls of device_rename 4172 * on the same device to ensure that new_name is valid and 4173 * won't conflict with other devices. 4174 * 4175 * Note: Don't call this function. Currently, the networking layer calls this 4176 * function, but that will change. The following text from Kay Sievers offers 4177 * some insight: 4178 * 4179 * Renaming devices is racy at many levels, symlinks and other stuff are not 4180 * replaced atomically, and you get a "move" uevent, but it's not easy to 4181 * connect the event to the old and new device. Device nodes are not renamed at 4182 * all, there isn't even support for that in the kernel now. 4183 * 4184 * In the meantime, during renaming, your target name might be taken by another 4185 * driver, creating conflicts. Or the old name is taken directly after you 4186 * renamed it -- then you get events for the same DEVPATH, before you even see 4187 * the "move" event. It's just a mess, and nothing new should ever rely on 4188 * kernel device renaming. Besides that, it's not even implemented now for 4189 * other things than (driver-core wise very simple) network devices. 4190 * 4191 * We are currently about to change network renaming in udev to completely 4192 * disallow renaming of devices in the same namespace as the kernel uses, 4193 * because we can't solve the problems properly, that arise with swapping names 4194 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4195 * be allowed to some other name than eth[0-9]*, for the aforementioned 4196 * reasons. 4197 * 4198 * Make up a "real" name in the driver before you register anything, or add 4199 * some other attributes for userspace to find the device, or use udev to add 4200 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4201 * don't even want to get into that and try to implement the missing pieces in 4202 * the core. We really have other pieces to fix in the driver core mess. :) 4203 */ 4204 int device_rename(struct device *dev, const char *new_name) 4205 { 4206 struct kobject *kobj = &dev->kobj; 4207 char *old_device_name = NULL; 4208 int error; 4209 4210 dev = get_device(dev); 4211 if (!dev) 4212 return -EINVAL; 4213 4214 dev_dbg(dev, "renaming to %s\n", new_name); 4215 4216 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4217 if (!old_device_name) { 4218 error = -ENOMEM; 4219 goto out; 4220 } 4221 4222 if (dev->class) { 4223 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4224 kobj, old_device_name, 4225 new_name, kobject_namespace(kobj)); 4226 if (error) 4227 goto out; 4228 } 4229 4230 error = kobject_rename(kobj, new_name); 4231 if (error) 4232 goto out; 4233 4234 out: 4235 put_device(dev); 4236 4237 kfree(old_device_name); 4238 4239 return error; 4240 } 4241 EXPORT_SYMBOL_GPL(device_rename); 4242 4243 static int device_move_class_links(struct device *dev, 4244 struct device *old_parent, 4245 struct device *new_parent) 4246 { 4247 int error = 0; 4248 4249 if (old_parent) 4250 sysfs_remove_link(&dev->kobj, "device"); 4251 if (new_parent) 4252 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4253 "device"); 4254 return error; 4255 } 4256 4257 /** 4258 * device_move - moves a device to a new parent 4259 * @dev: the pointer to the struct device to be moved 4260 * @new_parent: the new parent of the device (can be NULL) 4261 * @dpm_order: how to reorder the dpm_list 4262 */ 4263 int device_move(struct device *dev, struct device *new_parent, 4264 enum dpm_order dpm_order) 4265 { 4266 int error; 4267 struct device *old_parent; 4268 struct kobject *new_parent_kobj; 4269 4270 dev = get_device(dev); 4271 if (!dev) 4272 return -EINVAL; 4273 4274 device_pm_lock(); 4275 new_parent = get_device(new_parent); 4276 new_parent_kobj = get_device_parent(dev, new_parent); 4277 if (IS_ERR(new_parent_kobj)) { 4278 error = PTR_ERR(new_parent_kobj); 4279 put_device(new_parent); 4280 goto out; 4281 } 4282 4283 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4284 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4285 error = kobject_move(&dev->kobj, new_parent_kobj); 4286 if (error) { 4287 cleanup_glue_dir(dev, new_parent_kobj); 4288 put_device(new_parent); 4289 goto out; 4290 } 4291 old_parent = dev->parent; 4292 dev->parent = new_parent; 4293 if (old_parent) 4294 klist_remove(&dev->p->knode_parent); 4295 if (new_parent) { 4296 klist_add_tail(&dev->p->knode_parent, 4297 &new_parent->p->klist_children); 4298 set_dev_node(dev, dev_to_node(new_parent)); 4299 } 4300 4301 if (dev->class) { 4302 error = device_move_class_links(dev, old_parent, new_parent); 4303 if (error) { 4304 /* We ignore errors on cleanup since we're hosed anyway... */ 4305 device_move_class_links(dev, new_parent, old_parent); 4306 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4307 if (new_parent) 4308 klist_remove(&dev->p->knode_parent); 4309 dev->parent = old_parent; 4310 if (old_parent) { 4311 klist_add_tail(&dev->p->knode_parent, 4312 &old_parent->p->klist_children); 4313 set_dev_node(dev, dev_to_node(old_parent)); 4314 } 4315 } 4316 cleanup_glue_dir(dev, new_parent_kobj); 4317 put_device(new_parent); 4318 goto out; 4319 } 4320 } 4321 switch (dpm_order) { 4322 case DPM_ORDER_NONE: 4323 break; 4324 case DPM_ORDER_DEV_AFTER_PARENT: 4325 device_pm_move_after(dev, new_parent); 4326 devices_kset_move_after(dev, new_parent); 4327 break; 4328 case DPM_ORDER_PARENT_BEFORE_DEV: 4329 device_pm_move_before(new_parent, dev); 4330 devices_kset_move_before(new_parent, dev); 4331 break; 4332 case DPM_ORDER_DEV_LAST: 4333 device_pm_move_last(dev); 4334 devices_kset_move_last(dev); 4335 break; 4336 } 4337 4338 put_device(old_parent); 4339 out: 4340 device_pm_unlock(); 4341 put_device(dev); 4342 return error; 4343 } 4344 EXPORT_SYMBOL_GPL(device_move); 4345 4346 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4347 kgid_t kgid) 4348 { 4349 struct kobject *kobj = &dev->kobj; 4350 struct class *class = dev->class; 4351 const struct device_type *type = dev->type; 4352 int error; 4353 4354 if (class) { 4355 /* 4356 * Change the device groups of the device class for @dev to 4357 * @kuid/@kgid. 4358 */ 4359 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4360 kgid); 4361 if (error) 4362 return error; 4363 } 4364 4365 if (type) { 4366 /* 4367 * Change the device groups of the device type for @dev to 4368 * @kuid/@kgid. 4369 */ 4370 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4371 kgid); 4372 if (error) 4373 return error; 4374 } 4375 4376 /* Change the device groups of @dev to @kuid/@kgid. */ 4377 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4378 if (error) 4379 return error; 4380 4381 if (device_supports_offline(dev) && !dev->offline_disabled) { 4382 /* Change online device attributes of @dev to @kuid/@kgid. */ 4383 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4384 kuid, kgid); 4385 if (error) 4386 return error; 4387 } 4388 4389 return 0; 4390 } 4391 4392 /** 4393 * device_change_owner - change the owner of an existing device. 4394 * @dev: device. 4395 * @kuid: new owner's kuid 4396 * @kgid: new owner's kgid 4397 * 4398 * This changes the owner of @dev and its corresponding sysfs entries to 4399 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4400 * core. 4401 * 4402 * Returns 0 on success or error code on failure. 4403 */ 4404 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4405 { 4406 int error; 4407 struct kobject *kobj = &dev->kobj; 4408 4409 dev = get_device(dev); 4410 if (!dev) 4411 return -EINVAL; 4412 4413 /* 4414 * Change the kobject and the default attributes and groups of the 4415 * ktype associated with it to @kuid/@kgid. 4416 */ 4417 error = sysfs_change_owner(kobj, kuid, kgid); 4418 if (error) 4419 goto out; 4420 4421 /* 4422 * Change the uevent file for @dev to the new owner. The uevent file 4423 * was created in a separate step when @dev got added and we mirror 4424 * that step here. 4425 */ 4426 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4427 kgid); 4428 if (error) 4429 goto out; 4430 4431 /* 4432 * Change the device groups, the device groups associated with the 4433 * device class, and the groups associated with the device type of @dev 4434 * to @kuid/@kgid. 4435 */ 4436 error = device_attrs_change_owner(dev, kuid, kgid); 4437 if (error) 4438 goto out; 4439 4440 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4441 if (error) 4442 goto out; 4443 4444 #ifdef CONFIG_BLOCK 4445 if (sysfs_deprecated && dev->class == &block_class) 4446 goto out; 4447 #endif 4448 4449 /* 4450 * Change the owner of the symlink located in the class directory of 4451 * the device class associated with @dev which points to the actual 4452 * directory entry for @dev to @kuid/@kgid. This ensures that the 4453 * symlink shows the same permissions as its target. 4454 */ 4455 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4456 dev_name(dev), kuid, kgid); 4457 if (error) 4458 goto out; 4459 4460 out: 4461 put_device(dev); 4462 return error; 4463 } 4464 EXPORT_SYMBOL_GPL(device_change_owner); 4465 4466 /** 4467 * device_shutdown - call ->shutdown() on each device to shutdown. 4468 */ 4469 void device_shutdown(void) 4470 { 4471 struct device *dev, *parent; 4472 4473 wait_for_device_probe(); 4474 device_block_probing(); 4475 4476 cpufreq_suspend(); 4477 4478 spin_lock(&devices_kset->list_lock); 4479 /* 4480 * Walk the devices list backward, shutting down each in turn. 4481 * Beware that device unplug events may also start pulling 4482 * devices offline, even as the system is shutting down. 4483 */ 4484 while (!list_empty(&devices_kset->list)) { 4485 dev = list_entry(devices_kset->list.prev, struct device, 4486 kobj.entry); 4487 4488 /* 4489 * hold reference count of device's parent to 4490 * prevent it from being freed because parent's 4491 * lock is to be held 4492 */ 4493 parent = get_device(dev->parent); 4494 get_device(dev); 4495 /* 4496 * Make sure the device is off the kset list, in the 4497 * event that dev->*->shutdown() doesn't remove it. 4498 */ 4499 list_del_init(&dev->kobj.entry); 4500 spin_unlock(&devices_kset->list_lock); 4501 4502 /* hold lock to avoid race with probe/release */ 4503 if (parent) 4504 device_lock(parent); 4505 device_lock(dev); 4506 4507 /* Don't allow any more runtime suspends */ 4508 pm_runtime_get_noresume(dev); 4509 pm_runtime_barrier(dev); 4510 4511 if (dev->class && dev->class->shutdown_pre) { 4512 if (initcall_debug) 4513 dev_info(dev, "shutdown_pre\n"); 4514 dev->class->shutdown_pre(dev); 4515 } 4516 if (dev->bus && dev->bus->shutdown) { 4517 if (initcall_debug) 4518 dev_info(dev, "shutdown\n"); 4519 dev->bus->shutdown(dev); 4520 } else if (dev->driver && dev->driver->shutdown) { 4521 if (initcall_debug) 4522 dev_info(dev, "shutdown\n"); 4523 dev->driver->shutdown(dev); 4524 } 4525 4526 device_unlock(dev); 4527 if (parent) 4528 device_unlock(parent); 4529 4530 put_device(dev); 4531 put_device(parent); 4532 4533 spin_lock(&devices_kset->list_lock); 4534 } 4535 spin_unlock(&devices_kset->list_lock); 4536 } 4537 4538 /* 4539 * Device logging functions 4540 */ 4541 4542 #ifdef CONFIG_PRINTK 4543 static void 4544 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4545 { 4546 const char *subsys; 4547 4548 memset(dev_info, 0, sizeof(*dev_info)); 4549 4550 if (dev->class) 4551 subsys = dev->class->name; 4552 else if (dev->bus) 4553 subsys = dev->bus->name; 4554 else 4555 return; 4556 4557 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4558 4559 /* 4560 * Add device identifier DEVICE=: 4561 * b12:8 block dev_t 4562 * c127:3 char dev_t 4563 * n8 netdev ifindex 4564 * +sound:card0 subsystem:devname 4565 */ 4566 if (MAJOR(dev->devt)) { 4567 char c; 4568 4569 if (strcmp(subsys, "block") == 0) 4570 c = 'b'; 4571 else 4572 c = 'c'; 4573 4574 snprintf(dev_info->device, sizeof(dev_info->device), 4575 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4576 } else if (strcmp(subsys, "net") == 0) { 4577 struct net_device *net = to_net_dev(dev); 4578 4579 snprintf(dev_info->device, sizeof(dev_info->device), 4580 "n%u", net->ifindex); 4581 } else { 4582 snprintf(dev_info->device, sizeof(dev_info->device), 4583 "+%s:%s", subsys, dev_name(dev)); 4584 } 4585 } 4586 4587 int dev_vprintk_emit(int level, const struct device *dev, 4588 const char *fmt, va_list args) 4589 { 4590 struct dev_printk_info dev_info; 4591 4592 set_dev_info(dev, &dev_info); 4593 4594 return vprintk_emit(0, level, &dev_info, fmt, args); 4595 } 4596 EXPORT_SYMBOL(dev_vprintk_emit); 4597 4598 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4599 { 4600 va_list args; 4601 int r; 4602 4603 va_start(args, fmt); 4604 4605 r = dev_vprintk_emit(level, dev, fmt, args); 4606 4607 va_end(args); 4608 4609 return r; 4610 } 4611 EXPORT_SYMBOL(dev_printk_emit); 4612 4613 static void __dev_printk(const char *level, const struct device *dev, 4614 struct va_format *vaf) 4615 { 4616 if (dev) 4617 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4618 dev_driver_string(dev), dev_name(dev), vaf); 4619 else 4620 printk("%s(NULL device *): %pV", level, vaf); 4621 } 4622 4623 void _dev_printk(const char *level, const struct device *dev, 4624 const char *fmt, ...) 4625 { 4626 struct va_format vaf; 4627 va_list args; 4628 4629 va_start(args, fmt); 4630 4631 vaf.fmt = fmt; 4632 vaf.va = &args; 4633 4634 __dev_printk(level, dev, &vaf); 4635 4636 va_end(args); 4637 } 4638 EXPORT_SYMBOL(_dev_printk); 4639 4640 #define define_dev_printk_level(func, kern_level) \ 4641 void func(const struct device *dev, const char *fmt, ...) \ 4642 { \ 4643 struct va_format vaf; \ 4644 va_list args; \ 4645 \ 4646 va_start(args, fmt); \ 4647 \ 4648 vaf.fmt = fmt; \ 4649 vaf.va = &args; \ 4650 \ 4651 __dev_printk(kern_level, dev, &vaf); \ 4652 \ 4653 va_end(args); \ 4654 } \ 4655 EXPORT_SYMBOL(func); 4656 4657 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4658 define_dev_printk_level(_dev_alert, KERN_ALERT); 4659 define_dev_printk_level(_dev_crit, KERN_CRIT); 4660 define_dev_printk_level(_dev_err, KERN_ERR); 4661 define_dev_printk_level(_dev_warn, KERN_WARNING); 4662 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4663 define_dev_printk_level(_dev_info, KERN_INFO); 4664 4665 #endif 4666 4667 /** 4668 * dev_err_probe - probe error check and log helper 4669 * @dev: the pointer to the struct device 4670 * @err: error value to test 4671 * @fmt: printf-style format string 4672 * @...: arguments as specified in the format string 4673 * 4674 * This helper implements common pattern present in probe functions for error 4675 * checking: print debug or error message depending if the error value is 4676 * -EPROBE_DEFER and propagate error upwards. 4677 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4678 * checked later by reading devices_deferred debugfs attribute. 4679 * It replaces code sequence:: 4680 * 4681 * if (err != -EPROBE_DEFER) 4682 * dev_err(dev, ...); 4683 * else 4684 * dev_dbg(dev, ...); 4685 * return err; 4686 * 4687 * with:: 4688 * 4689 * return dev_err_probe(dev, err, ...); 4690 * 4691 * Note that it is deemed acceptable to use this function for error 4692 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4693 * The benefit compared to a normal dev_err() is the standardized format 4694 * of the error code and the fact that the error code is returned. 4695 * 4696 * Returns @err. 4697 * 4698 */ 4699 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4700 { 4701 struct va_format vaf; 4702 va_list args; 4703 4704 va_start(args, fmt); 4705 vaf.fmt = fmt; 4706 vaf.va = &args; 4707 4708 if (err != -EPROBE_DEFER) { 4709 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4710 } else { 4711 device_set_deferred_probe_reason(dev, &vaf); 4712 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4713 } 4714 4715 va_end(args); 4716 4717 return err; 4718 } 4719 EXPORT_SYMBOL_GPL(dev_err_probe); 4720 4721 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4722 { 4723 return fwnode && !IS_ERR(fwnode->secondary); 4724 } 4725 4726 /** 4727 * set_primary_fwnode - Change the primary firmware node of a given device. 4728 * @dev: Device to handle. 4729 * @fwnode: New primary firmware node of the device. 4730 * 4731 * Set the device's firmware node pointer to @fwnode, but if a secondary 4732 * firmware node of the device is present, preserve it. 4733 * 4734 * Valid fwnode cases are: 4735 * - primary --> secondary --> -ENODEV 4736 * - primary --> NULL 4737 * - secondary --> -ENODEV 4738 * - NULL 4739 */ 4740 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4741 { 4742 struct device *parent = dev->parent; 4743 struct fwnode_handle *fn = dev->fwnode; 4744 4745 if (fwnode) { 4746 if (fwnode_is_primary(fn)) 4747 fn = fn->secondary; 4748 4749 if (fn) { 4750 WARN_ON(fwnode->secondary); 4751 fwnode->secondary = fn; 4752 } 4753 dev->fwnode = fwnode; 4754 } else { 4755 if (fwnode_is_primary(fn)) { 4756 dev->fwnode = fn->secondary; 4757 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4758 if (!(parent && fn == parent->fwnode)) 4759 fn->secondary = NULL; 4760 } else { 4761 dev->fwnode = NULL; 4762 } 4763 } 4764 } 4765 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4766 4767 /** 4768 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4769 * @dev: Device to handle. 4770 * @fwnode: New secondary firmware node of the device. 4771 * 4772 * If a primary firmware node of the device is present, set its secondary 4773 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4774 * @fwnode. 4775 */ 4776 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4777 { 4778 if (fwnode) 4779 fwnode->secondary = ERR_PTR(-ENODEV); 4780 4781 if (fwnode_is_primary(dev->fwnode)) 4782 dev->fwnode->secondary = fwnode; 4783 else 4784 dev->fwnode = fwnode; 4785 } 4786 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4787 4788 /** 4789 * device_set_of_node_from_dev - reuse device-tree node of another device 4790 * @dev: device whose device-tree node is being set 4791 * @dev2: device whose device-tree node is being reused 4792 * 4793 * Takes another reference to the new device-tree node after first dropping 4794 * any reference held to the old node. 4795 */ 4796 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4797 { 4798 of_node_put(dev->of_node); 4799 dev->of_node = of_node_get(dev2->of_node); 4800 dev->of_node_reused = true; 4801 } 4802 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4803 4804 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4805 { 4806 dev->fwnode = fwnode; 4807 dev->of_node = to_of_node(fwnode); 4808 } 4809 EXPORT_SYMBOL_GPL(device_set_node); 4810 4811 int device_match_name(struct device *dev, const void *name) 4812 { 4813 return sysfs_streq(dev_name(dev), name); 4814 } 4815 EXPORT_SYMBOL_GPL(device_match_name); 4816 4817 int device_match_of_node(struct device *dev, const void *np) 4818 { 4819 return dev->of_node == np; 4820 } 4821 EXPORT_SYMBOL_GPL(device_match_of_node); 4822 4823 int device_match_fwnode(struct device *dev, const void *fwnode) 4824 { 4825 return dev_fwnode(dev) == fwnode; 4826 } 4827 EXPORT_SYMBOL_GPL(device_match_fwnode); 4828 4829 int device_match_devt(struct device *dev, const void *pdevt) 4830 { 4831 return dev->devt == *(dev_t *)pdevt; 4832 } 4833 EXPORT_SYMBOL_GPL(device_match_devt); 4834 4835 int device_match_acpi_dev(struct device *dev, const void *adev) 4836 { 4837 return ACPI_COMPANION(dev) == adev; 4838 } 4839 EXPORT_SYMBOL(device_match_acpi_dev); 4840 4841 int device_match_acpi_handle(struct device *dev, const void *handle) 4842 { 4843 return ACPI_HANDLE(dev) == handle; 4844 } 4845 EXPORT_SYMBOL(device_match_acpi_handle); 4846 4847 int device_match_any(struct device *dev, const void *unused) 4848 { 4849 return 1; 4850 } 4851 EXPORT_SYMBOL_GPL(device_match_any); 4852