xref: /linux/drivers/base/core.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35 
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39 
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49 
50 /**
51  * __fwnode_link_add - Create a link between two fwnode_handles.
52  * @con: Consumer end of the link.
53  * @sup: Supplier end of the link.
54  * @flags: Link flags.
55  *
56  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57  * represents the detail that the firmware lists @sup fwnode as supplying a
58  * resource to @con.
59  *
60  * The driver core will use the fwnode link to create a device link between the
61  * two device objects corresponding to @con and @sup when they are created. The
62  * driver core will automatically delete the fwnode link between @con and @sup
63  * after doing that.
64  *
65  * Attempts to create duplicate links between the same pair of fwnode handles
66  * are ignored and there is no reference counting.
67  */
68 static int __fwnode_link_add(struct fwnode_handle *con,
69 			     struct fwnode_handle *sup, u8 flags)
70 {
71 	struct fwnode_link *link;
72 
73 	list_for_each_entry(link, &sup->consumers, s_hook)
74 		if (link->consumer == con) {
75 			link->flags |= flags;
76 			return 0;
77 		}
78 
79 	link = kzalloc(sizeof(*link), GFP_KERNEL);
80 	if (!link)
81 		return -ENOMEM;
82 
83 	link->supplier = sup;
84 	INIT_LIST_HEAD(&link->s_hook);
85 	link->consumer = con;
86 	INIT_LIST_HEAD(&link->c_hook);
87 	link->flags = flags;
88 
89 	list_add(&link->s_hook, &sup->consumers);
90 	list_add(&link->c_hook, &con->suppliers);
91 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 		 con, sup);
93 
94 	return 0;
95 }
96 
97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 		    u8 flags)
99 {
100 	guard(mutex)(&fwnode_link_lock);
101 
102 	return __fwnode_link_add(con, sup, flags);
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	guard(mutex)(&fwnode_link_lock);
144 
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	guard(mutex)(&fwnode_link_lock);
160 
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 		output = "supplier unbind";
465 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n",
489 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492 
493 static struct attribute *devlink_attrs[] = {
494 	&dev_attr_status.attr,
495 	&dev_attr_auto_remove_on.attr,
496 	&dev_attr_runtime_pm.attr,
497 	&dev_attr_sync_state_only.attr,
498 	NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501 
502 static void device_link_release_fn(struct work_struct *work)
503 {
504 	struct device_link *link = container_of(work, struct device_link, rm_work);
505 
506 	/* Ensure that all references to the link object have been dropped. */
507 	device_link_synchronize_removal();
508 
509 	pm_runtime_release_supplier(link);
510 	/*
511 	 * If supplier_preactivated is set, the link has been dropped between
512 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 	 * in __driver_probe_device().  In that case, drop the supplier's
514 	 * PM-runtime usage counter to remove the reference taken by
515 	 * pm_runtime_get_suppliers().
516 	 */
517 	if (link->supplier_preactivated)
518 		pm_runtime_put_noidle(link->supplier);
519 
520 	pm_request_idle(link->supplier);
521 
522 	put_device(link->consumer);
523 	put_device(link->supplier);
524 	kfree(link);
525 }
526 
527 static void devlink_dev_release(struct device *dev)
528 {
529 	struct device_link *link = to_devlink(dev);
530 
531 	INIT_WORK(&link->rm_work, device_link_release_fn);
532 	/*
533 	 * It may take a while to complete this work because of the SRCU
534 	 * synchronization in device_link_release_fn() and if the consumer or
535 	 * supplier devices get deleted when it runs, so put it into the
536 	 * dedicated workqueue.
537 	 */
538 	queue_work(device_link_wq, &link->rm_work);
539 }
540 
541 /**
542  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543  */
544 void device_link_wait_removal(void)
545 {
546 	/*
547 	 * devlink removal jobs are queued in the dedicated work queue.
548 	 * To be sure that all removal jobs are terminated, ensure that any
549 	 * scheduled work has run to completion.
550 	 */
551 	flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554 
555 static const struct class devlink_class = {
556 	.name = "devlink",
557 	.dev_groups = devlink_groups,
558 	.dev_release = devlink_dev_release,
559 };
560 
561 static int devlink_add_symlinks(struct device *dev)
562 {
563 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 	int ret;
565 	struct device_link *link = to_devlink(dev);
566 	struct device *sup = link->supplier;
567 	struct device *con = link->consumer;
568 
569 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 	if (ret)
571 		goto out;
572 
573 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 	if (ret)
575 		goto err_con;
576 
577 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 	if (!buf_con) {
579 		ret = -ENOMEM;
580 		goto err_con_dev;
581 	}
582 
583 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 	if (ret)
585 		goto err_con_dev;
586 
587 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 	if (!buf_sup) {
589 		ret = -ENOMEM;
590 		goto err_sup_dev;
591 	}
592 
593 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 	if (ret)
595 		goto err_sup_dev;
596 
597 	goto out;
598 
599 err_sup_dev:
600 	sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 	return ret;
607 }
608 
609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 	struct device_link *link = to_devlink(dev);
613 	struct device *sup = link->supplier;
614 	struct device *con = link->consumer;
615 
616 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
618 
619 	if (device_is_registered(con)) {
620 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 		if (!buf_sup)
622 			goto out;
623 		sysfs_remove_link(&con->kobj, buf_sup);
624 	}
625 
626 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 	if (!buf_con)
628 		goto out;
629 	sysfs_remove_link(&sup->kobj, buf_con);
630 
631 	return;
632 
633 out:
634 	WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636 
637 static struct class_interface devlink_class_intf = {
638 	.class = &devlink_class,
639 	.add_dev = devlink_add_symlinks,
640 	.remove_dev = devlink_remove_symlinks,
641 };
642 
643 static int __init devlink_class_init(void)
644 {
645 	int ret;
646 
647 	ret = class_register(&devlink_class);
648 	if (ret)
649 		return ret;
650 
651 	ret = class_interface_register(&devlink_class_intf);
652 	if (ret)
653 		class_unregister(&devlink_class);
654 
655 	return ret;
656 }
657 postcore_initcall(devlink_class_init);
658 
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
662 			       DL_FLAG_SYNC_STATE_ONLY | \
663 			       DL_FLAG_INFERRED | \
664 			       DL_FLAG_CYCLE)
665 
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668 
669 /**
670  * device_link_add - Create a link between two devices.
671  * @consumer: Consumer end of the link.
672  * @supplier: Supplier end of the link.
673  * @flags: Link flags.
674  *
675  * Return: On success, a device_link struct will be returned.
676  *         On error or invalid flag settings, NULL will be returned.
677  *
678  * The caller is responsible for the proper synchronization of the link creation
679  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680  * runtime PM framework to take the link into account.  Second, if the
681  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682  * be forced into the active meta state and reference-counted upon the creation
683  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684  * ignored.
685  *
686  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687  * expected to release the link returned by it directly with the help of either
688  * device_link_del() or device_link_remove().
689  *
690  * If that flag is not set, however, the caller of this function is handing the
691  * management of the link over to the driver core entirely and its return value
692  * can only be used to check whether or not the link is present.  In that case,
693  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694  * flags can be used to indicate to the driver core when the link can be safely
695  * deleted.  Namely, setting one of them in @flags indicates to the driver core
696  * that the link is not going to be used (by the given caller of this function)
697  * after unbinding the consumer or supplier driver, respectively, from its
698  * device, so the link can be deleted at that point.  If none of them is set,
699  * the link will be maintained until one of the devices pointed to by it (either
700  * the consumer or the supplier) is unregistered.
701  *
702  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705  * be used to request the driver core to automatically probe for a consumer
706  * driver after successfully binding a driver to the supplier device.
707  *
708  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710  * the same time is invalid and will cause NULL to be returned upfront.
711  * However, if a device link between the given @consumer and @supplier pair
712  * exists already when this function is called for them, the existing link will
713  * be returned regardless of its current type and status (the link's flags may
714  * be modified then).  The caller of this function is then expected to treat
715  * the link as though it has just been created, so (in particular) if
716  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717  * explicitly when not needed any more (as stated above).
718  *
719  * A side effect of the link creation is re-ordering of dpm_list and the
720  * devices_kset list by moving the consumer device and all devices depending
721  * on it to the ends of these lists (that does not happen to devices that have
722  * not been registered when this function is called).
723  *
724  * The supplier device is required to be registered when this function is called
725  * and NULL will be returned if that is not the case.  The consumer device need
726  * not be registered, however.
727  */
728 struct device_link *device_link_add(struct device *consumer,
729 				    struct device *supplier, u32 flags)
730 {
731 	struct device_link *link;
732 
733 	if (!consumer || !supplier || consumer == supplier ||
734 	    flags & ~DL_ADD_VALID_FLAGS ||
735 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 		return NULL;
740 
741 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 		if (pm_runtime_get_sync(supplier) < 0) {
743 			pm_runtime_put_noidle(supplier);
744 			return NULL;
745 		}
746 	}
747 
748 	if (!(flags & DL_FLAG_STATELESS))
749 		flags |= DL_FLAG_MANAGED;
750 
751 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 	    !device_link_flag_is_sync_state_only(flags))
753 		return NULL;
754 
755 	device_links_write_lock();
756 	device_pm_lock();
757 
758 	/*
759 	 * If the supplier has not been fully registered yet or there is a
760 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 	 * the supplier already in the graph, return NULL. If the link is a
762 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 	 * because it only affects sync_state() callbacks.
764 	 */
765 	if (!device_pm_initialized(supplier)
766 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 		  device_is_dependent(consumer, supplier))) {
768 		link = NULL;
769 		goto out;
770 	}
771 
772 	/*
773 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 	 * So, only create it if the consumer hasn't probed yet.
775 	 */
776 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 	    consumer->links.status != DL_DEV_NO_DRIVER &&
778 	    consumer->links.status != DL_DEV_PROBING) {
779 		link = NULL;
780 		goto out;
781 	}
782 
783 	/*
784 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 	 */
788 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790 
791 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 		if (link->consumer != consumer)
793 			continue;
794 
795 		if (link->flags & DL_FLAG_INFERRED &&
796 		    !(flags & DL_FLAG_INFERRED))
797 			link->flags &= ~DL_FLAG_INFERRED;
798 
799 		if (flags & DL_FLAG_PM_RUNTIME) {
800 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 				pm_runtime_new_link(consumer);
802 				link->flags |= DL_FLAG_PM_RUNTIME;
803 			}
804 			if (flags & DL_FLAG_RPM_ACTIVE)
805 				refcount_inc(&link->rpm_active);
806 		}
807 
808 		if (flags & DL_FLAG_STATELESS) {
809 			kref_get(&link->kref);
810 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 			    !(link->flags & DL_FLAG_STATELESS)) {
812 				link->flags |= DL_FLAG_STATELESS;
813 				goto reorder;
814 			} else {
815 				link->flags |= DL_FLAG_STATELESS;
816 				goto out;
817 			}
818 		}
819 
820 		/*
821 		 * If the life time of the link following from the new flags is
822 		 * longer than indicated by the flags of the existing link,
823 		 * update the existing link to stay around longer.
824 		 */
825 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 			}
830 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 		}
834 		if (!(link->flags & DL_FLAG_MANAGED)) {
835 			kref_get(&link->kref);
836 			link->flags |= DL_FLAG_MANAGED;
837 			device_link_init_status(link, consumer, supplier);
838 		}
839 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 			goto reorder;
843 		}
844 
845 		goto out;
846 	}
847 
848 	link = kzalloc(sizeof(*link), GFP_KERNEL);
849 	if (!link)
850 		goto out;
851 
852 	refcount_set(&link->rpm_active, 1);
853 
854 	get_device(supplier);
855 	link->supplier = supplier;
856 	INIT_LIST_HEAD(&link->s_node);
857 	get_device(consumer);
858 	link->consumer = consumer;
859 	INIT_LIST_HEAD(&link->c_node);
860 	link->flags = flags;
861 	kref_init(&link->kref);
862 
863 	link->link_dev.class = &devlink_class;
864 	device_set_pm_not_required(&link->link_dev);
865 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 		     dev_bus_name(supplier), dev_name(supplier),
867 		     dev_bus_name(consumer), dev_name(consumer));
868 	if (device_register(&link->link_dev)) {
869 		put_device(&link->link_dev);
870 		link = NULL;
871 		goto out;
872 	}
873 
874 	if (flags & DL_FLAG_PM_RUNTIME) {
875 		if (flags & DL_FLAG_RPM_ACTIVE)
876 			refcount_inc(&link->rpm_active);
877 
878 		pm_runtime_new_link(consumer);
879 	}
880 
881 	/* Determine the initial link state. */
882 	if (flags & DL_FLAG_STATELESS)
883 		link->status = DL_STATE_NONE;
884 	else
885 		device_link_init_status(link, consumer, supplier);
886 
887 	/*
888 	 * Some callers expect the link creation during consumer driver probe to
889 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 	 */
891 	if (link->status == DL_STATE_CONSUMER_PROBE &&
892 	    flags & DL_FLAG_PM_RUNTIME)
893 		pm_runtime_resume(supplier);
894 
895 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897 
898 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 		dev_dbg(consumer,
900 			"Linked as a sync state only consumer to %s\n",
901 			dev_name(supplier));
902 		goto out;
903 	}
904 
905 reorder:
906 	/*
907 	 * Move the consumer and all of the devices depending on it to the end
908 	 * of dpm_list and the devices_kset list.
909 	 *
910 	 * It is necessary to hold dpm_list locked throughout all that or else
911 	 * we may end up suspending with a wrong ordering of it.
912 	 */
913 	device_reorder_to_tail(consumer, NULL);
914 
915 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916 
917 out:
918 	device_pm_unlock();
919 	device_links_write_unlock();
920 
921 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 		pm_runtime_put(supplier);
923 
924 	return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927 
928 static void __device_link_del(struct kref *kref)
929 {
930 	struct device_link *link = container_of(kref, struct device_link, kref);
931 
932 	dev_dbg(link->consumer, "Dropping the link to %s\n",
933 		dev_name(link->supplier));
934 
935 	pm_runtime_drop_link(link);
936 
937 	device_link_remove_from_lists(link);
938 	device_unregister(&link->link_dev);
939 }
940 
941 static void device_link_put_kref(struct device_link *link)
942 {
943 	if (link->flags & DL_FLAG_STATELESS)
944 		kref_put(&link->kref, __device_link_del);
945 	else if (!device_is_registered(link->consumer))
946 		__device_link_del(&link->kref);
947 	else
948 		WARN(1, "Unable to drop a managed device link reference\n");
949 }
950 
951 /**
952  * device_link_del - Delete a stateless link between two devices.
953  * @link: Device link to delete.
954  *
955  * The caller must ensure proper synchronization of this function with runtime
956  * PM.  If the link was added multiple times, it needs to be deleted as often.
957  * Care is required for hotplugged devices:  Their links are purged on removal
958  * and calling device_link_del() is then no longer allowed.
959  */
960 void device_link_del(struct device_link *link)
961 {
962 	device_links_write_lock();
963 	device_link_put_kref(link);
964 	device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967 
968 /**
969  * device_link_remove - Delete a stateless link between two devices.
970  * @consumer: Consumer end of the link.
971  * @supplier: Supplier end of the link.
972  *
973  * The caller must ensure proper synchronization of this function with runtime
974  * PM.
975  */
976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 	struct device_link *link;
979 
980 	if (WARN_ON(consumer == supplier))
981 		return;
982 
983 	device_links_write_lock();
984 
985 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 		if (link->consumer == consumer) {
987 			device_link_put_kref(link);
988 			break;
989 		}
990 	}
991 
992 	device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995 
996 static void device_links_missing_supplier(struct device *dev)
997 {
998 	struct device_link *link;
999 
1000 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 		if (link->status != DL_STATE_CONSUMER_PROBE)
1002 			continue;
1003 
1004 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 		} else {
1007 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 		}
1010 	}
1011 }
1012 
1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 	return (fw_devlink_best_effort && dev->can_match) ||
1016 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018 
1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 						struct fwnode_handle *fwnode)
1021 {
1022 	struct fwnode_link *link;
1023 
1024 	if (!fwnode || fw_devlink_is_permissive())
1025 		return NULL;
1026 
1027 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 		if (!(link->flags &
1029 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 			return link->supplier;
1031 
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * device_links_check_suppliers - Check presence of supplier drivers.
1037  * @dev: Consumer device.
1038  *
1039  * Check links from this device to any suppliers.  Walk the list of the device's
1040  * links to suppliers and see if all of them are available.  If not, simply
1041  * return -EPROBE_DEFER.
1042  *
1043  * We need to guarantee that the supplier will not go away after the check has
1044  * been positive here.  It only can go away in __device_release_driver() and
1045  * that function  checks the device's links to consumers.  This means we need to
1046  * mark the link as "consumer probe in progress" to make the supplier removal
1047  * wait for us to complete (or bad things may happen).
1048  *
1049  * Links without the DL_FLAG_MANAGED flag set are ignored.
1050  */
1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 	struct device_link *link;
1054 	int ret = 0, fwnode_ret = 0;
1055 	struct fwnode_handle *sup_fw;
1056 
1057 	/*
1058 	 * Device waiting for supplier to become available is not allowed to
1059 	 * probe.
1060 	 */
1061 	scoped_guard(mutex, &fwnode_link_lock) {
1062 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 		if (sup_fw) {
1064 			if (dev_is_best_effort(dev))
1065 				fwnode_ret = -EAGAIN;
1066 			else
1067 				return dev_err_probe(dev, -EPROBE_DEFER,
1068 						     "wait for supplier %pfwf\n", sup_fw);
1069 		}
1070 	}
1071 
1072 	device_links_write_lock();
1073 
1074 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 		if (!(link->flags & DL_FLAG_MANAGED))
1076 			continue;
1077 
1078 		if (link->status != DL_STATE_AVAILABLE &&
1079 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080 
1081 			if (dev_is_best_effort(dev) &&
1082 			    link->flags & DL_FLAG_INFERRED &&
1083 			    !link->supplier->can_match) {
1084 				ret = -EAGAIN;
1085 				continue;
1086 			}
1087 
1088 			device_links_missing_supplier(dev);
1089 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 					    "supplier %s not ready\n", dev_name(link->supplier));
1091 			break;
1092 		}
1093 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 	}
1095 	dev->links.status = DL_DEV_PROBING;
1096 
1097 	device_links_write_unlock();
1098 
1099 	return ret ? ret : fwnode_ret;
1100 }
1101 
1102 /**
1103  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104  * @dev: Device to call sync_state() on
1105  * @list: List head to queue the @dev on
1106  *
1107  * Queues a device for a sync_state() callback when the device links write lock
1108  * isn't held. This allows the sync_state() execution flow to use device links
1109  * APIs.  The caller must ensure this function is called with
1110  * device_links_write_lock() held.
1111  *
1112  * This function does a get_device() to make sure the device is not freed while
1113  * on this list.
1114  *
1115  * So the caller must also ensure that device_links_flush_sync_list() is called
1116  * as soon as the caller releases device_links_write_lock().  This is necessary
1117  * to make sure the sync_state() is called in a timely fashion and the
1118  * put_device() is called on this device.
1119  */
1120 static void __device_links_queue_sync_state(struct device *dev,
1121 					    struct list_head *list)
1122 {
1123 	struct device_link *link;
1124 
1125 	if (!dev_has_sync_state(dev))
1126 		return;
1127 	if (dev->state_synced)
1128 		return;
1129 
1130 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 		if (!(link->flags & DL_FLAG_MANAGED))
1132 			continue;
1133 		if (link->status != DL_STATE_ACTIVE)
1134 			return;
1135 	}
1136 
1137 	/*
1138 	 * Set the flag here to avoid adding the same device to a list more
1139 	 * than once. This can happen if new consumers get added to the device
1140 	 * and probed before the list is flushed.
1141 	 */
1142 	dev->state_synced = true;
1143 
1144 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 		return;
1146 
1147 	get_device(dev);
1148 	list_add_tail(&dev->links.defer_sync, list);
1149 }
1150 
1151 /**
1152  * device_links_flush_sync_list - Call sync_state() on a list of devices
1153  * @list: List of devices to call sync_state() on
1154  * @dont_lock_dev: Device for which lock is already held by the caller
1155  *
1156  * Calls sync_state() on all the devices that have been queued for it. This
1157  * function is used in conjunction with __device_links_queue_sync_state(). The
1158  * @dont_lock_dev parameter is useful when this function is called from a
1159  * context where a device lock is already held.
1160  */
1161 static void device_links_flush_sync_list(struct list_head *list,
1162 					 struct device *dont_lock_dev)
1163 {
1164 	struct device *dev, *tmp;
1165 
1166 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 		list_del_init(&dev->links.defer_sync);
1168 
1169 		if (dev != dont_lock_dev)
1170 			device_lock(dev);
1171 
1172 		dev_sync_state(dev);
1173 
1174 		if (dev != dont_lock_dev)
1175 			device_unlock(dev);
1176 
1177 		put_device(dev);
1178 	}
1179 }
1180 
1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 	device_links_write_lock();
1184 	defer_sync_state_count++;
1185 	device_links_write_unlock();
1186 }
1187 
1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 	struct device *dev, *tmp;
1191 	LIST_HEAD(sync_list);
1192 
1193 	device_links_write_lock();
1194 	if (!defer_sync_state_count) {
1195 		WARN(true, "Unmatched sync_state pause/resume!");
1196 		goto out;
1197 	}
1198 	defer_sync_state_count--;
1199 	if (defer_sync_state_count)
1200 		goto out;
1201 
1202 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 		/*
1204 		 * Delete from deferred_sync list before queuing it to
1205 		 * sync_list because defer_sync is used for both lists.
1206 		 */
1207 		list_del_init(&dev->links.defer_sync);
1208 		__device_links_queue_sync_state(dev, &sync_list);
1209 	}
1210 out:
1211 	device_links_write_unlock();
1212 
1213 	device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215 
1216 static int sync_state_resume_initcall(void)
1217 {
1218 	device_links_supplier_sync_state_resume();
1219 	return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222 
1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228 
1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 	link->flags &= ~DL_FLAG_MANAGED;
1232 	WRITE_ONCE(link->status, DL_STATE_NONE);
1233 	kref_put(&link->kref, __device_link_del);
1234 }
1235 
1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 					 struct device_attribute *attr,
1238 					 char *buf)
1239 {
1240 	bool val;
1241 
1242 	device_lock(dev);
1243 	scoped_guard(mutex, &fwnode_link_lock)
1244 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 	device_unlock(dev);
1246 	return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249 
1250 /**
1251  * device_links_force_bind - Prepares device to be force bound
1252  * @dev: Consumer device.
1253  *
1254  * device_bind_driver() force binds a device to a driver without calling any
1255  * driver probe functions. So the consumer really isn't going to wait for any
1256  * supplier before it's bound to the driver. We still want the device link
1257  * states to be sensible when this happens.
1258  *
1259  * In preparation for device_bind_driver(), this function goes through each
1260  * supplier device links and checks if the supplier is bound. If it is, then
1261  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263  */
1264 void device_links_force_bind(struct device *dev)
1265 {
1266 	struct device_link *link, *ln;
1267 
1268 	device_links_write_lock();
1269 
1270 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 		if (!(link->flags & DL_FLAG_MANAGED))
1272 			continue;
1273 
1274 		if (link->status != DL_STATE_AVAILABLE) {
1275 			device_link_drop_managed(link);
1276 			continue;
1277 		}
1278 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 	}
1280 	dev->links.status = DL_DEV_PROBING;
1281 
1282 	device_links_write_unlock();
1283 }
1284 
1285 /**
1286  * device_links_driver_bound - Update device links after probing its driver.
1287  * @dev: Device to update the links for.
1288  *
1289  * The probe has been successful, so update links from this device to any
1290  * consumers by changing their status to "available".
1291  *
1292  * Also change the status of @dev's links to suppliers to "active".
1293  *
1294  * Links without the DL_FLAG_MANAGED flag set are ignored.
1295  */
1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 	struct device_link *link, *ln;
1299 	LIST_HEAD(sync_list);
1300 
1301 	/*
1302 	 * If a device binds successfully, it's expected to have created all
1303 	 * the device links it needs to or make new device links as it needs
1304 	 * them. So, fw_devlink no longer needs to create device links to any
1305 	 * of the device's suppliers.
1306 	 *
1307 	 * Also, if a child firmware node of this bound device is not added as a
1308 	 * device by now, assume it is never going to be added. Make this bound
1309 	 * device the fallback supplier to the dangling consumers of the child
1310 	 * firmware node because this bound device is probably implementing the
1311 	 * child firmware node functionality and we don't want the dangling
1312 	 * consumers to defer probe indefinitely waiting for a device for the
1313 	 * child firmware node.
1314 	 */
1315 	if (dev->fwnode && dev->fwnode->dev == dev) {
1316 		struct fwnode_handle *child;
1317 
1318 		fwnode_links_purge_suppliers(dev->fwnode);
1319 
1320 		guard(mutex)(&fwnode_link_lock);
1321 
1322 		fwnode_for_each_available_child_node(dev->fwnode, child)
1323 			__fw_devlink_pickup_dangling_consumers(child,
1324 							       dev->fwnode);
1325 		__fw_devlink_link_to_consumers(dev);
1326 	}
1327 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328 
1329 	device_links_write_lock();
1330 
1331 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 		if (!(link->flags & DL_FLAG_MANAGED))
1333 			continue;
1334 
1335 		/*
1336 		 * Links created during consumer probe may be in the "consumer
1337 		 * probe" state to start with if the supplier is still probing
1338 		 * when they are created and they may become "active" if the
1339 		 * consumer probe returns first.  Skip them here.
1340 		 */
1341 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 		    link->status == DL_STATE_ACTIVE)
1343 			continue;
1344 
1345 		WARN_ON(link->status != DL_STATE_DORMANT);
1346 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347 
1348 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 			driver_deferred_probe_add(link->consumer);
1350 	}
1351 
1352 	if (defer_sync_state_count)
1353 		__device_links_supplier_defer_sync(dev);
1354 	else
1355 		__device_links_queue_sync_state(dev, &sync_list);
1356 
1357 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 		struct device *supplier;
1359 
1360 		if (!(link->flags & DL_FLAG_MANAGED))
1361 			continue;
1362 
1363 		supplier = link->supplier;
1364 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 			/*
1366 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 			 * save to drop the managed link completely.
1369 			 */
1370 			device_link_drop_managed(link);
1371 		} else if (dev_is_best_effort(dev) &&
1372 			   link->flags & DL_FLAG_INFERRED &&
1373 			   link->status != DL_STATE_CONSUMER_PROBE &&
1374 			   !link->supplier->can_match) {
1375 			/*
1376 			 * When dev_is_best_effort() is true, we ignore device
1377 			 * links to suppliers that don't have a driver.  If the
1378 			 * consumer device still managed to probe, there's no
1379 			 * point in maintaining a device link in a weird state
1380 			 * (consumer probed before supplier). So delete it.
1381 			 */
1382 			device_link_drop_managed(link);
1383 		} else {
1384 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 		}
1387 
1388 		/*
1389 		 * This needs to be done even for the deleted
1390 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 		 * device link that was preventing the supplier from getting a
1392 		 * sync_state() call.
1393 		 */
1394 		if (defer_sync_state_count)
1395 			__device_links_supplier_defer_sync(supplier);
1396 		else
1397 			__device_links_queue_sync_state(supplier, &sync_list);
1398 	}
1399 
1400 	dev->links.status = DL_DEV_DRIVER_BOUND;
1401 
1402 	device_links_write_unlock();
1403 
1404 	device_links_flush_sync_list(&sync_list, dev);
1405 }
1406 
1407 /**
1408  * __device_links_no_driver - Update links of a device without a driver.
1409  * @dev: Device without a drvier.
1410  *
1411  * Delete all non-persistent links from this device to any suppliers.
1412  *
1413  * Persistent links stay around, but their status is changed to "available",
1414  * unless they already are in the "supplier unbind in progress" state in which
1415  * case they need not be updated.
1416  *
1417  * Links without the DL_FLAG_MANAGED flag set are ignored.
1418  */
1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 	struct device_link *link, *ln;
1422 
1423 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 		if (!(link->flags & DL_FLAG_MANAGED))
1425 			continue;
1426 
1427 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 			device_link_drop_managed(link);
1429 			continue;
1430 		}
1431 
1432 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 		    link->status != DL_STATE_ACTIVE)
1434 			continue;
1435 
1436 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 		} else {
1439 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 		}
1442 	}
1443 
1444 	dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446 
1447 /**
1448  * device_links_no_driver - Update links after failing driver probe.
1449  * @dev: Device whose driver has just failed to probe.
1450  *
1451  * Clean up leftover links to consumers for @dev and invoke
1452  * %__device_links_no_driver() to update links to suppliers for it as
1453  * appropriate.
1454  *
1455  * Links without the DL_FLAG_MANAGED flag set are ignored.
1456  */
1457 void device_links_no_driver(struct device *dev)
1458 {
1459 	struct device_link *link;
1460 
1461 	device_links_write_lock();
1462 
1463 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 		if (!(link->flags & DL_FLAG_MANAGED))
1465 			continue;
1466 
1467 		/*
1468 		 * The probe has failed, so if the status of the link is
1469 		 * "consumer probe" or "active", it must have been added by
1470 		 * a probing consumer while this device was still probing.
1471 		 * Change its state to "dormant", as it represents a valid
1472 		 * relationship, but it is not functionally meaningful.
1473 		 */
1474 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 		    link->status == DL_STATE_ACTIVE)
1476 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 	}
1478 
1479 	__device_links_no_driver(dev);
1480 
1481 	device_links_write_unlock();
1482 }
1483 
1484 /**
1485  * device_links_driver_cleanup - Update links after driver removal.
1486  * @dev: Device whose driver has just gone away.
1487  *
1488  * Update links to consumers for @dev by changing their status to "dormant" and
1489  * invoke %__device_links_no_driver() to update links to suppliers for it as
1490  * appropriate.
1491  *
1492  * Links without the DL_FLAG_MANAGED flag set are ignored.
1493  */
1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 	struct device_link *link, *ln;
1497 
1498 	device_links_write_lock();
1499 
1500 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 		if (!(link->flags & DL_FLAG_MANAGED))
1502 			continue;
1503 
1504 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506 
1507 		/*
1508 		 * autoremove the links between this @dev and its consumer
1509 		 * devices that are not active, i.e. where the link state
1510 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 		 */
1512 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 			device_link_drop_managed(link);
1515 
1516 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 	}
1518 
1519 	list_del_init(&dev->links.defer_sync);
1520 	__device_links_no_driver(dev);
1521 
1522 	device_links_write_unlock();
1523 }
1524 
1525 /**
1526  * device_links_busy - Check if there are any busy links to consumers.
1527  * @dev: Device to check.
1528  *
1529  * Check each consumer of the device and return 'true' if its link's status
1530  * is one of "consumer probe" or "active" (meaning that the given consumer is
1531  * probing right now or its driver is present).  Otherwise, change the link
1532  * state to "supplier unbind" to prevent the consumer from being probed
1533  * successfully going forward.
1534  *
1535  * Return 'false' if there are no probing or active consumers.
1536  *
1537  * Links without the DL_FLAG_MANAGED flag set are ignored.
1538  */
1539 bool device_links_busy(struct device *dev)
1540 {
1541 	struct device_link *link;
1542 	bool ret = false;
1543 
1544 	device_links_write_lock();
1545 
1546 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 		if (!(link->flags & DL_FLAG_MANAGED))
1548 			continue;
1549 
1550 		if (link->status == DL_STATE_CONSUMER_PROBE
1551 		    || link->status == DL_STATE_ACTIVE) {
1552 			ret = true;
1553 			break;
1554 		}
1555 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 	}
1557 
1558 	dev->links.status = DL_DEV_UNBINDING;
1559 
1560 	device_links_write_unlock();
1561 	return ret;
1562 }
1563 
1564 /**
1565  * device_links_unbind_consumers - Force unbind consumers of the given device.
1566  * @dev: Device to unbind the consumers of.
1567  *
1568  * Walk the list of links to consumers for @dev and if any of them is in the
1569  * "consumer probe" state, wait for all device probes in progress to complete
1570  * and start over.
1571  *
1572  * If that's not the case, change the status of the link to "supplier unbind"
1573  * and check if the link was in the "active" state.  If so, force the consumer
1574  * driver to unbind and start over (the consumer will not re-probe as we have
1575  * changed the state of the link already).
1576  *
1577  * Links without the DL_FLAG_MANAGED flag set are ignored.
1578  */
1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 	struct device_link *link;
1582 
1583  start:
1584 	device_links_write_lock();
1585 
1586 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 		enum device_link_state status;
1588 
1589 		if (!(link->flags & DL_FLAG_MANAGED) ||
1590 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 			continue;
1592 
1593 		status = link->status;
1594 		if (status == DL_STATE_CONSUMER_PROBE) {
1595 			device_links_write_unlock();
1596 
1597 			wait_for_device_probe();
1598 			goto start;
1599 		}
1600 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 		if (status == DL_STATE_ACTIVE) {
1602 			struct device *consumer = link->consumer;
1603 
1604 			get_device(consumer);
1605 
1606 			device_links_write_unlock();
1607 
1608 			device_release_driver_internal(consumer, NULL,
1609 						       consumer->parent);
1610 			put_device(consumer);
1611 			goto start;
1612 		}
1613 	}
1614 
1615 	device_links_write_unlock();
1616 }
1617 
1618 /**
1619  * device_links_purge - Delete existing links to other devices.
1620  * @dev: Target device.
1621  */
1622 static void device_links_purge(struct device *dev)
1623 {
1624 	struct device_link *link, *ln;
1625 
1626 	if (dev->class == &devlink_class)
1627 		return;
1628 
1629 	/*
1630 	 * Delete all of the remaining links from this device to any other
1631 	 * devices (either consumers or suppliers).
1632 	 */
1633 	device_links_write_lock();
1634 
1635 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 		WARN_ON(link->status == DL_STATE_ACTIVE);
1637 		__device_link_del(&link->kref);
1638 	}
1639 
1640 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 		WARN_ON(link->status != DL_STATE_DORMANT &&
1642 			link->status != DL_STATE_NONE);
1643 		__device_link_del(&link->kref);
1644 	}
1645 
1646 	device_links_write_unlock();
1647 }
1648 
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1650 					 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1652 					 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1654 					 DL_FLAG_PM_RUNTIME)
1655 
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 	if (!arg)
1660 		return -EINVAL;
1661 
1662 	if (strcmp(arg, "off") == 0) {
1663 		fw_devlink_flags = 0;
1664 	} else if (strcmp(arg, "permissive") == 0) {
1665 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 	} else if (strcmp(arg, "on") == 0) {
1667 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 	} else if (strcmp(arg, "rpm") == 0) {
1669 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 	}
1671 	return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674 
1675 static bool fw_devlink_strict;
1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 	return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681 
1682 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1684 
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690 
1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 	if (!arg)
1694 		return -EINVAL;
1695 
1696 	if (strcmp(arg, "strict") == 0) {
1697 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 		return 0;
1699 	} else if (strcmp(arg, "timeout") == 0) {
1700 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 		return 0;
1702 	}
1703 	return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706 
1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711 
1712 	return fw_devlink_flags;
1713 }
1714 
1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719 
1720 bool fw_devlink_is_strict(void)
1721 {
1722 	return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724 
1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 		return;
1729 
1730 	fwnode_call_int_op(fwnode, add_links);
1731 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733 
1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 	struct fwnode_handle *child = NULL;
1737 
1738 	fw_devlink_parse_fwnode(fwnode);
1739 
1740 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 		fw_devlink_parse_fwtree(child);
1742 }
1743 
1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 	if (!(link->flags & DL_FLAG_INFERRED))
1747 		return;
1748 
1749 	if (device_link_flag_is_sync_state_only(link->flags))
1750 		return;
1751 
1752 	pm_runtime_drop_link(link);
1753 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 		dev_name(link->supplier));
1756 }
1757 
1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 	struct device_link *link = to_devlink(dev);
1761 
1762 	if (!link->supplier->can_match)
1763 		fw_devlink_relax_link(link);
1764 
1765 	return 0;
1766 }
1767 
1768 void fw_devlink_drivers_done(void)
1769 {
1770 	fw_devlink_drv_reg_done = true;
1771 	device_links_write_lock();
1772 	class_for_each_device(&devlink_class, NULL, NULL,
1773 			      fw_devlink_no_driver);
1774 	device_links_write_unlock();
1775 }
1776 
1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 	struct device_link *link = to_devlink(dev);
1780 	struct device *sup = link->supplier;
1781 
1782 	if (!(link->flags & DL_FLAG_MANAGED) ||
1783 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 	    !dev_has_sync_state(sup))
1785 		return 0;
1786 
1787 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 		dev_warn(sup, "sync_state() pending due to %s\n",
1789 			 dev_name(link->consumer));
1790 		return 0;
1791 	}
1792 
1793 	if (!list_empty(&sup->links.defer_sync))
1794 		return 0;
1795 
1796 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 	sup->state_synced = true;
1798 	get_device(sup);
1799 	list_add_tail(&sup->links.defer_sync, data);
1800 
1801 	return 0;
1802 }
1803 
1804 void fw_devlink_probing_done(void)
1805 {
1806 	LIST_HEAD(sync_list);
1807 
1808 	device_links_write_lock();
1809 	class_for_each_device(&devlink_class, NULL, &sync_list,
1810 			      fw_devlink_dev_sync_state);
1811 	device_links_write_unlock();
1812 	device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814 
1815 /**
1816  * wait_for_init_devices_probe - Try to probe any device needed for init
1817  *
1818  * Some devices might need to be probed and bound successfully before the kernel
1819  * boot sequence can finish and move on to init/userspace. For example, a
1820  * network interface might need to be bound to be able to mount a NFS rootfs.
1821  *
1822  * With fw_devlink=on by default, some of these devices might be blocked from
1823  * probing because they are waiting on a optional supplier that doesn't have a
1824  * driver. While fw_devlink will eventually identify such devices and unblock
1825  * the probing automatically, it might be too late by the time it unblocks the
1826  * probing of devices. For example, the IP4 autoconfig might timeout before
1827  * fw_devlink unblocks probing of the network interface.
1828  *
1829  * This function is available to temporarily try and probe all devices that have
1830  * a driver even if some of their suppliers haven't been added or don't have
1831  * drivers.
1832  *
1833  * The drivers can then decide which of the suppliers are optional vs mandatory
1834  * and probe the device if possible. By the time this function returns, all such
1835  * "best effort" probes are guaranteed to be completed. If a device successfully
1836  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837  * device where the supplier hasn't yet probed successfully because they have to
1838  * be optional dependencies.
1839  *
1840  * Any devices that didn't successfully probe go back to being treated as if
1841  * this function was never called.
1842  *
1843  * This also means that some devices that aren't needed for init and could have
1844  * waited for their optional supplier to probe (when the supplier's module is
1845  * loaded later on) would end up probing prematurely with limited functionality.
1846  * So call this function only when boot would fail without it.
1847  */
1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 		return;
1852 
1853 	/*
1854 	 * Wait for all ongoing probes to finish so that the "best effort" is
1855 	 * only applied to devices that can't probe otherwise.
1856 	 */
1857 	wait_for_device_probe();
1858 
1859 	pr_info("Trying to probe devices needed for running init ...\n");
1860 	fw_devlink_best_effort = true;
1861 	driver_deferred_probe_trigger();
1862 
1863 	/*
1864 	 * Wait for all "best effort" probes to finish before going back to
1865 	 * normal enforcement.
1866 	 */
1867 	wait_for_device_probe();
1868 	fw_devlink_best_effort = false;
1869 }
1870 
1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 	struct device_link *link;
1874 
1875 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 		return;
1877 
1878 	device_links_write_lock();
1879 	list_for_each_entry(link, &dev->links.consumers, s_node)
1880 		fw_devlink_relax_link(link);
1881 	device_links_write_unlock();
1882 }
1883 
1884 #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1885 
1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 	struct device *dev;
1889 	bool ret;
1890 
1891 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 		return false;
1893 
1894 	dev = get_dev_from_fwnode(fwnode);
1895 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 	put_device(dev);
1897 
1898 	return ret;
1899 }
1900 
1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902 {
1903 	struct fwnode_handle *parent;
1904 
1905 	fwnode_for_each_parent_node(fwnode, parent) {
1906 		if (fwnode_init_without_drv(parent)) {
1907 			fwnode_handle_put(parent);
1908 			return true;
1909 		}
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 /**
1916  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917  * @ancestor: Firmware which is tested for being an ancestor
1918  * @child: Firmware which is tested for being the child
1919  *
1920  * A node is considered an ancestor of itself too.
1921  *
1922  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923  */
1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 				  const struct fwnode_handle *child)
1926 {
1927 	struct fwnode_handle *parent;
1928 
1929 	if (IS_ERR_OR_NULL(ancestor))
1930 		return false;
1931 
1932 	if (child == ancestor)
1933 		return true;
1934 
1935 	fwnode_for_each_parent_node(child, parent) {
1936 		if (parent == ancestor) {
1937 			fwnode_handle_put(parent);
1938 			return true;
1939 		}
1940 	}
1941 	return false;
1942 }
1943 
1944 /**
1945  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946  * @fwnode: firmware node
1947  *
1948  * Given a firmware node (@fwnode), this function finds its closest ancestor
1949  * firmware node that has a corresponding struct device and returns that struct
1950  * device.
1951  *
1952  * The caller is responsible for calling put_device() on the returned device
1953  * pointer.
1954  *
1955  * Return: a pointer to the device of the @fwnode's closest ancestor.
1956  */
1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958 {
1959 	struct fwnode_handle *parent;
1960 	struct device *dev;
1961 
1962 	fwnode_for_each_parent_node(fwnode, parent) {
1963 		dev = get_dev_from_fwnode(parent);
1964 		if (dev) {
1965 			fwnode_handle_put(parent);
1966 			return dev;
1967 		}
1968 	}
1969 	return NULL;
1970 }
1971 
1972 /**
1973  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974  * @con_handle: Potential consumer device fwnode.
1975  * @sup_handle: Potential supplier's fwnode.
1976  *
1977  * Needs to be called with fwnode_lock and device link lock held.
1978  *
1979  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980  * depend on @con. This function can detect multiple cyles between @sup_handle
1981  * and @con. When such dependency cycles are found, convert all device links
1982  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984  * converted into a device link in the future, they are created as
1985  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986  * fw_devlink=permissive just between the devices in the cycle. We need to do
1987  * this because, at this point, fw_devlink can't tell which of these
1988  * dependencies is not a real dependency.
1989  *
1990  * Return true if one or more cycles were found. Otherwise, return false.
1991  */
1992 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993 				 struct fwnode_handle *sup_handle)
1994 {
1995 	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996 	struct fwnode_link *link;
1997 	struct device_link *dev_link;
1998 	bool ret = false;
1999 
2000 	if (!sup_handle)
2001 		return false;
2002 
2003 	/*
2004 	 * We aren't trying to find all cycles. Just a cycle between con and
2005 	 * sup_handle.
2006 	 */
2007 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 		return false;
2009 
2010 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2011 
2012 	/* Termination condition. */
2013 	if (sup_handle == con_handle) {
2014 		pr_debug("----- cycle: start -----\n");
2015 		ret = true;
2016 		goto out;
2017 	}
2018 
2019 	sup_dev = get_dev_from_fwnode(sup_handle);
2020 	con_dev = get_dev_from_fwnode(con_handle);
2021 	/*
2022 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 	 * further.
2025 	 */
2026 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2027 	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028 		ret = false;
2029 		goto out;
2030 	}
2031 
2032 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 		if (link->flags & FWLINK_FLAG_IGNORE)
2034 			continue;
2035 
2036 		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037 			__fwnode_link_cycle(link);
2038 			ret = true;
2039 		}
2040 	}
2041 
2042 	/*
2043 	 * Give priority to device parent over fwnode parent to account for any
2044 	 * quirks in how fwnodes are converted to devices.
2045 	 */
2046 	if (sup_dev)
2047 		par_dev = get_device(sup_dev->parent);
2048 	else
2049 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2050 
2051 	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 			 par_dev->fwnode);
2054 		ret = true;
2055 	}
2056 
2057 	if (!sup_dev)
2058 		goto out;
2059 
2060 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 		/*
2062 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 		 * such due to a cycle.
2064 		 */
2065 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 		    !(dev_link->flags & DL_FLAG_CYCLE))
2067 			continue;
2068 
2069 		if (__fw_devlink_relax_cycles(con_handle,
2070 					      dev_link->supplier->fwnode)) {
2071 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 				 dev_link->supplier->fwnode);
2073 			fw_devlink_relax_link(dev_link);
2074 			dev_link->flags |= DL_FLAG_CYCLE;
2075 			ret = true;
2076 		}
2077 	}
2078 
2079 out:
2080 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 	put_device(sup_dev);
2082 	put_device(par_dev);
2083 	return ret;
2084 }
2085 
2086 /**
2087  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2088  * @con: consumer device for the device link
2089  * @sup_handle: fwnode handle of supplier
2090  * @link: fwnode link that's being converted to a device link
2091  *
2092  * This function will try to create a device link between the consumer device
2093  * @con and the supplier device represented by @sup_handle.
2094  *
2095  * The supplier has to be provided as a fwnode because incorrect cycles in
2096  * fwnode links can sometimes cause the supplier device to never be created.
2097  * This function detects such cases and returns an error if it cannot create a
2098  * device link from the consumer to a missing supplier.
2099  *
2100  * Returns,
2101  * 0 on successfully creating a device link
2102  * -EINVAL if the device link cannot be created as expected
2103  * -EAGAIN if the device link cannot be created right now, but it may be
2104  *  possible to do that in the future
2105  */
2106 static int fw_devlink_create_devlink(struct device *con,
2107 				     struct fwnode_handle *sup_handle,
2108 				     struct fwnode_link *link)
2109 {
2110 	struct device *sup_dev;
2111 	int ret = 0;
2112 	u32 flags;
2113 
2114 	if (link->flags & FWLINK_FLAG_IGNORE)
2115 		return 0;
2116 
2117 	/*
2118 	 * In some cases, a device P might also be a supplier to its child node
2119 	 * C. However, this would defer the probe of C until the probe of P
2120 	 * completes successfully. This is perfectly fine in the device driver
2121 	 * model. device_add() doesn't guarantee probe completion of the device
2122 	 * by the time it returns.
2123 	 *
2124 	 * However, there are a few drivers that assume C will finish probing
2125 	 * as soon as it's added and before P finishes probing. So, we provide
2126 	 * a flag to let fw_devlink know not to delay the probe of C until the
2127 	 * probe of P completes successfully.
2128 	 *
2129 	 * When such a flag is set, we can't create device links where P is the
2130 	 * supplier of C as that would delay the probe of C.
2131 	 */
2132 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2133 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2134 		return -EINVAL;
2135 
2136 	/*
2137 	 * Don't try to optimize by not calling the cycle detection logic under
2138 	 * certain conditions. There's always some corner case that won't get
2139 	 * detected.
2140 	 */
2141 	device_links_write_lock();
2142 	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2143 		__fwnode_link_cycle(link);
2144 		pr_debug("----- cycle: end -----\n");
2145 		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2146 			link->consumer, sup_handle);
2147 	}
2148 	device_links_write_unlock();
2149 
2150 	if (con->fwnode == link->consumer)
2151 		flags = fw_devlink_get_flags(link->flags);
2152 	else
2153 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2154 
2155 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2156 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2157 	else
2158 		sup_dev = get_dev_from_fwnode(sup_handle);
2159 
2160 	if (sup_dev) {
2161 		/*
2162 		 * If it's one of those drivers that don't actually bind to
2163 		 * their device using driver core, then don't wait on this
2164 		 * supplier device indefinitely.
2165 		 */
2166 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2167 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2168 			dev_dbg(con,
2169 				"Not linking %pfwf - dev might never probe\n",
2170 				sup_handle);
2171 			ret = -EINVAL;
2172 			goto out;
2173 		}
2174 
2175 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2176 			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2177 				flags, dev_name(sup_dev), link->consumer);
2178 			ret = -EINVAL;
2179 		}
2180 
2181 		goto out;
2182 	}
2183 
2184 	/*
2185 	 * Supplier or supplier's ancestor already initialized without a struct
2186 	 * device or being probed by a driver.
2187 	 */
2188 	if (fwnode_init_without_drv(sup_handle) ||
2189 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2190 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2191 			sup_handle);
2192 		return -EINVAL;
2193 	}
2194 
2195 	ret = -EAGAIN;
2196 out:
2197 	put_device(sup_dev);
2198 	return ret;
2199 }
2200 
2201 /**
2202  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2203  * @dev: Device that needs to be linked to its consumers
2204  *
2205  * This function looks at all the consumer fwnodes of @dev and creates device
2206  * links between the consumer device and @dev (supplier).
2207  *
2208  * If the consumer device has not been added yet, then this function creates a
2209  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2210  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2211  * sync_state() callback before the real consumer device gets to be added and
2212  * then probed.
2213  *
2214  * Once device links are created from the real consumer to @dev (supplier), the
2215  * fwnode links are deleted.
2216  */
2217 static void __fw_devlink_link_to_consumers(struct device *dev)
2218 {
2219 	struct fwnode_handle *fwnode = dev->fwnode;
2220 	struct fwnode_link *link, *tmp;
2221 
2222 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2223 		struct device *con_dev;
2224 		bool own_link = true;
2225 		int ret;
2226 
2227 		con_dev = get_dev_from_fwnode(link->consumer);
2228 		/*
2229 		 * If consumer device is not available yet, make a "proxy"
2230 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2231 		 * the supplier device. This is necessary to make sure the
2232 		 * supplier doesn't get a sync_state() callback before the real
2233 		 * consumer can create a device link to the supplier.
2234 		 *
2235 		 * This proxy link step is needed to handle the case where the
2236 		 * consumer's parent device is added before the supplier.
2237 		 */
2238 		if (!con_dev) {
2239 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2240 			/*
2241 			 * However, if the consumer's parent device is also the
2242 			 * parent of the supplier, don't create a
2243 			 * consumer-supplier link from the parent to its child
2244 			 * device. Such a dependency is impossible.
2245 			 */
2246 			if (con_dev &&
2247 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2248 				put_device(con_dev);
2249 				con_dev = NULL;
2250 			} else {
2251 				own_link = false;
2252 			}
2253 		}
2254 
2255 		if (!con_dev)
2256 			continue;
2257 
2258 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2259 		put_device(con_dev);
2260 		if (!own_link || ret == -EAGAIN)
2261 			continue;
2262 
2263 		__fwnode_link_del(link);
2264 	}
2265 }
2266 
2267 /**
2268  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2269  * @dev: The consumer device that needs to be linked to its suppliers
2270  * @fwnode: Root of the fwnode tree that is used to create device links
2271  *
2272  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2273  * @fwnode and creates device links between @dev (consumer) and all the
2274  * supplier devices of the entire fwnode tree at @fwnode.
2275  *
2276  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2277  * and the real suppliers of @dev. Once these device links are created, the
2278  * fwnode links are deleted.
2279  *
2280  * In addition, it also looks at all the suppliers of the entire fwnode tree
2281  * because some of the child devices of @dev that have not been added yet
2282  * (because @dev hasn't probed) might already have their suppliers added to
2283  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2284  * @dev (consumer) and these suppliers to make sure they don't execute their
2285  * sync_state() callbacks before these child devices have a chance to create
2286  * their device links. The fwnode links that correspond to the child devices
2287  * aren't delete because they are needed later to create the device links
2288  * between the real consumer and supplier devices.
2289  */
2290 static void __fw_devlink_link_to_suppliers(struct device *dev,
2291 					   struct fwnode_handle *fwnode)
2292 {
2293 	bool own_link = (dev->fwnode == fwnode);
2294 	struct fwnode_link *link, *tmp;
2295 	struct fwnode_handle *child = NULL;
2296 
2297 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2298 		int ret;
2299 		struct fwnode_handle *sup = link->supplier;
2300 
2301 		ret = fw_devlink_create_devlink(dev, sup, link);
2302 		if (!own_link || ret == -EAGAIN)
2303 			continue;
2304 
2305 		__fwnode_link_del(link);
2306 	}
2307 
2308 	/*
2309 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2310 	 * all the descendants. This proxy link step is needed to handle the
2311 	 * case where the supplier is added before the consumer's parent device
2312 	 * (@dev).
2313 	 */
2314 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2315 		__fw_devlink_link_to_suppliers(dev, child);
2316 }
2317 
2318 static void fw_devlink_link_device(struct device *dev)
2319 {
2320 	struct fwnode_handle *fwnode = dev->fwnode;
2321 
2322 	if (!fw_devlink_flags)
2323 		return;
2324 
2325 	fw_devlink_parse_fwtree(fwnode);
2326 
2327 	guard(mutex)(&fwnode_link_lock);
2328 
2329 	__fw_devlink_link_to_consumers(dev);
2330 	__fw_devlink_link_to_suppliers(dev, fwnode);
2331 }
2332 
2333 /* Device links support end. */
2334 
2335 static struct kobject *dev_kobj;
2336 
2337 /* /sys/dev/char */
2338 static struct kobject *sysfs_dev_char_kobj;
2339 
2340 /* /sys/dev/block */
2341 static struct kobject *sysfs_dev_block_kobj;
2342 
2343 static DEFINE_MUTEX(device_hotplug_lock);
2344 
2345 void lock_device_hotplug(void)
2346 {
2347 	mutex_lock(&device_hotplug_lock);
2348 }
2349 
2350 void unlock_device_hotplug(void)
2351 {
2352 	mutex_unlock(&device_hotplug_lock);
2353 }
2354 
2355 int lock_device_hotplug_sysfs(void)
2356 {
2357 	if (mutex_trylock(&device_hotplug_lock))
2358 		return 0;
2359 
2360 	/* Avoid busy looping (5 ms of sleep should do). */
2361 	msleep(5);
2362 	return restart_syscall();
2363 }
2364 
2365 #ifdef CONFIG_BLOCK
2366 static inline int device_is_not_partition(struct device *dev)
2367 {
2368 	return !(dev->type == &part_type);
2369 }
2370 #else
2371 static inline int device_is_not_partition(struct device *dev)
2372 {
2373 	return 1;
2374 }
2375 #endif
2376 
2377 static void device_platform_notify(struct device *dev)
2378 {
2379 	acpi_device_notify(dev);
2380 
2381 	software_node_notify(dev);
2382 }
2383 
2384 static void device_platform_notify_remove(struct device *dev)
2385 {
2386 	software_node_notify_remove(dev);
2387 
2388 	acpi_device_notify_remove(dev);
2389 }
2390 
2391 /**
2392  * dev_driver_string - Return a device's driver name, if at all possible
2393  * @dev: struct device to get the name of
2394  *
2395  * Will return the device's driver's name if it is bound to a device.  If
2396  * the device is not bound to a driver, it will return the name of the bus
2397  * it is attached to.  If it is not attached to a bus either, an empty
2398  * string will be returned.
2399  */
2400 const char *dev_driver_string(const struct device *dev)
2401 {
2402 	struct device_driver *drv;
2403 
2404 	/* dev->driver can change to NULL underneath us because of unbinding,
2405 	 * so be careful about accessing it.  dev->bus and dev->class should
2406 	 * never change once they are set, so they don't need special care.
2407 	 */
2408 	drv = READ_ONCE(dev->driver);
2409 	return drv ? drv->name : dev_bus_name(dev);
2410 }
2411 EXPORT_SYMBOL(dev_driver_string);
2412 
2413 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2414 
2415 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2416 			     char *buf)
2417 {
2418 	struct device_attribute *dev_attr = to_dev_attr(attr);
2419 	struct device *dev = kobj_to_dev(kobj);
2420 	ssize_t ret = -EIO;
2421 
2422 	if (dev_attr->show)
2423 		ret = dev_attr->show(dev, dev_attr, buf);
2424 	if (ret >= (ssize_t)PAGE_SIZE) {
2425 		printk("dev_attr_show: %pS returned bad count\n",
2426 				dev_attr->show);
2427 	}
2428 	return ret;
2429 }
2430 
2431 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2432 			      const char *buf, size_t count)
2433 {
2434 	struct device_attribute *dev_attr = to_dev_attr(attr);
2435 	struct device *dev = kobj_to_dev(kobj);
2436 	ssize_t ret = -EIO;
2437 
2438 	if (dev_attr->store)
2439 		ret = dev_attr->store(dev, dev_attr, buf, count);
2440 	return ret;
2441 }
2442 
2443 static const struct sysfs_ops dev_sysfs_ops = {
2444 	.show	= dev_attr_show,
2445 	.store	= dev_attr_store,
2446 };
2447 
2448 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2449 
2450 ssize_t device_store_ulong(struct device *dev,
2451 			   struct device_attribute *attr,
2452 			   const char *buf, size_t size)
2453 {
2454 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2455 	int ret;
2456 	unsigned long new;
2457 
2458 	ret = kstrtoul(buf, 0, &new);
2459 	if (ret)
2460 		return ret;
2461 	*(unsigned long *)(ea->var) = new;
2462 	/* Always return full write size even if we didn't consume all */
2463 	return size;
2464 }
2465 EXPORT_SYMBOL_GPL(device_store_ulong);
2466 
2467 ssize_t device_show_ulong(struct device *dev,
2468 			  struct device_attribute *attr,
2469 			  char *buf)
2470 {
2471 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2472 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2473 }
2474 EXPORT_SYMBOL_GPL(device_show_ulong);
2475 
2476 ssize_t device_store_int(struct device *dev,
2477 			 struct device_attribute *attr,
2478 			 const char *buf, size_t size)
2479 {
2480 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2481 	int ret;
2482 	long new;
2483 
2484 	ret = kstrtol(buf, 0, &new);
2485 	if (ret)
2486 		return ret;
2487 
2488 	if (new > INT_MAX || new < INT_MIN)
2489 		return -EINVAL;
2490 	*(int *)(ea->var) = new;
2491 	/* Always return full write size even if we didn't consume all */
2492 	return size;
2493 }
2494 EXPORT_SYMBOL_GPL(device_store_int);
2495 
2496 ssize_t device_show_int(struct device *dev,
2497 			struct device_attribute *attr,
2498 			char *buf)
2499 {
2500 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2501 
2502 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2503 }
2504 EXPORT_SYMBOL_GPL(device_show_int);
2505 
2506 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2507 			  const char *buf, size_t size)
2508 {
2509 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2510 
2511 	if (kstrtobool(buf, ea->var) < 0)
2512 		return -EINVAL;
2513 
2514 	return size;
2515 }
2516 EXPORT_SYMBOL_GPL(device_store_bool);
2517 
2518 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2519 			 char *buf)
2520 {
2521 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2522 
2523 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2524 }
2525 EXPORT_SYMBOL_GPL(device_show_bool);
2526 
2527 ssize_t device_show_string(struct device *dev,
2528 			   struct device_attribute *attr, char *buf)
2529 {
2530 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2531 
2532 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2533 }
2534 EXPORT_SYMBOL_GPL(device_show_string);
2535 
2536 /**
2537  * device_release - free device structure.
2538  * @kobj: device's kobject.
2539  *
2540  * This is called once the reference count for the object
2541  * reaches 0. We forward the call to the device's release
2542  * method, which should handle actually freeing the structure.
2543  */
2544 static void device_release(struct kobject *kobj)
2545 {
2546 	struct device *dev = kobj_to_dev(kobj);
2547 	struct device_private *p = dev->p;
2548 
2549 	/*
2550 	 * Some platform devices are driven without driver attached
2551 	 * and managed resources may have been acquired.  Make sure
2552 	 * all resources are released.
2553 	 *
2554 	 * Drivers still can add resources into device after device
2555 	 * is deleted but alive, so release devres here to avoid
2556 	 * possible memory leak.
2557 	 */
2558 	devres_release_all(dev);
2559 
2560 	kfree(dev->dma_range_map);
2561 
2562 	if (dev->release)
2563 		dev->release(dev);
2564 	else if (dev->type && dev->type->release)
2565 		dev->type->release(dev);
2566 	else if (dev->class && dev->class->dev_release)
2567 		dev->class->dev_release(dev);
2568 	else
2569 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2570 			dev_name(dev));
2571 	kfree(p);
2572 }
2573 
2574 static const void *device_namespace(const struct kobject *kobj)
2575 {
2576 	const struct device *dev = kobj_to_dev(kobj);
2577 	const void *ns = NULL;
2578 
2579 	if (dev->class && dev->class->namespace)
2580 		ns = dev->class->namespace(dev);
2581 
2582 	return ns;
2583 }
2584 
2585 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2586 {
2587 	const struct device *dev = kobj_to_dev(kobj);
2588 
2589 	if (dev->class && dev->class->get_ownership)
2590 		dev->class->get_ownership(dev, uid, gid);
2591 }
2592 
2593 static const struct kobj_type device_ktype = {
2594 	.release	= device_release,
2595 	.sysfs_ops	= &dev_sysfs_ops,
2596 	.namespace	= device_namespace,
2597 	.get_ownership	= device_get_ownership,
2598 };
2599 
2600 
2601 static int dev_uevent_filter(const struct kobject *kobj)
2602 {
2603 	const struct kobj_type *ktype = get_ktype(kobj);
2604 
2605 	if (ktype == &device_ktype) {
2606 		const struct device *dev = kobj_to_dev(kobj);
2607 		if (dev->bus)
2608 			return 1;
2609 		if (dev->class)
2610 			return 1;
2611 	}
2612 	return 0;
2613 }
2614 
2615 static const char *dev_uevent_name(const struct kobject *kobj)
2616 {
2617 	const struct device *dev = kobj_to_dev(kobj);
2618 
2619 	if (dev->bus)
2620 		return dev->bus->name;
2621 	if (dev->class)
2622 		return dev->class->name;
2623 	return NULL;
2624 }
2625 
2626 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2627 {
2628 	const struct device *dev = kobj_to_dev(kobj);
2629 	int retval = 0;
2630 
2631 	/* add device node properties if present */
2632 	if (MAJOR(dev->devt)) {
2633 		const char *tmp;
2634 		const char *name;
2635 		umode_t mode = 0;
2636 		kuid_t uid = GLOBAL_ROOT_UID;
2637 		kgid_t gid = GLOBAL_ROOT_GID;
2638 
2639 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2640 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2641 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2642 		if (name) {
2643 			add_uevent_var(env, "DEVNAME=%s", name);
2644 			if (mode)
2645 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2646 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2647 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2648 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2649 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2650 			kfree(tmp);
2651 		}
2652 	}
2653 
2654 	if (dev->type && dev->type->name)
2655 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2656 
2657 	if (dev->driver)
2658 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2659 
2660 	/* Add common DT information about the device */
2661 	of_device_uevent(dev, env);
2662 
2663 	/* have the bus specific function add its stuff */
2664 	if (dev->bus && dev->bus->uevent) {
2665 		retval = dev->bus->uevent(dev, env);
2666 		if (retval)
2667 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2668 				 dev_name(dev), __func__, retval);
2669 	}
2670 
2671 	/* have the class specific function add its stuff */
2672 	if (dev->class && dev->class->dev_uevent) {
2673 		retval = dev->class->dev_uevent(dev, env);
2674 		if (retval)
2675 			pr_debug("device: '%s': %s: class uevent() "
2676 				 "returned %d\n", dev_name(dev),
2677 				 __func__, retval);
2678 	}
2679 
2680 	/* have the device type specific function add its stuff */
2681 	if (dev->type && dev->type->uevent) {
2682 		retval = dev->type->uevent(dev, env);
2683 		if (retval)
2684 			pr_debug("device: '%s': %s: dev_type uevent() "
2685 				 "returned %d\n", dev_name(dev),
2686 				 __func__, retval);
2687 	}
2688 
2689 	return retval;
2690 }
2691 
2692 static const struct kset_uevent_ops device_uevent_ops = {
2693 	.filter =	dev_uevent_filter,
2694 	.name =		dev_uevent_name,
2695 	.uevent =	dev_uevent,
2696 };
2697 
2698 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2699 			   char *buf)
2700 {
2701 	struct kobject *top_kobj;
2702 	struct kset *kset;
2703 	struct kobj_uevent_env *env = NULL;
2704 	int i;
2705 	int len = 0;
2706 	int retval;
2707 
2708 	/* search the kset, the device belongs to */
2709 	top_kobj = &dev->kobj;
2710 	while (!top_kobj->kset && top_kobj->parent)
2711 		top_kobj = top_kobj->parent;
2712 	if (!top_kobj->kset)
2713 		goto out;
2714 
2715 	kset = top_kobj->kset;
2716 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2717 		goto out;
2718 
2719 	/* respect filter */
2720 	if (kset->uevent_ops && kset->uevent_ops->filter)
2721 		if (!kset->uevent_ops->filter(&dev->kobj))
2722 			goto out;
2723 
2724 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2725 	if (!env)
2726 		return -ENOMEM;
2727 
2728 	/* Synchronize with really_probe() */
2729 	device_lock(dev);
2730 	/* let the kset specific function add its keys */
2731 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2732 	device_unlock(dev);
2733 	if (retval)
2734 		goto out;
2735 
2736 	/* copy keys to file */
2737 	for (i = 0; i < env->envp_idx; i++)
2738 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2739 out:
2740 	kfree(env);
2741 	return len;
2742 }
2743 
2744 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2745 			    const char *buf, size_t count)
2746 {
2747 	int rc;
2748 
2749 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2750 
2751 	if (rc) {
2752 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2753 		return rc;
2754 	}
2755 
2756 	return count;
2757 }
2758 static DEVICE_ATTR_RW(uevent);
2759 
2760 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2761 			   char *buf)
2762 {
2763 	bool val;
2764 
2765 	device_lock(dev);
2766 	val = !dev->offline;
2767 	device_unlock(dev);
2768 	return sysfs_emit(buf, "%u\n", val);
2769 }
2770 
2771 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2772 			    const char *buf, size_t count)
2773 {
2774 	bool val;
2775 	int ret;
2776 
2777 	ret = kstrtobool(buf, &val);
2778 	if (ret < 0)
2779 		return ret;
2780 
2781 	ret = lock_device_hotplug_sysfs();
2782 	if (ret)
2783 		return ret;
2784 
2785 	ret = val ? device_online(dev) : device_offline(dev);
2786 	unlock_device_hotplug();
2787 	return ret < 0 ? ret : count;
2788 }
2789 static DEVICE_ATTR_RW(online);
2790 
2791 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2792 			      char *buf)
2793 {
2794 	const char *loc;
2795 
2796 	switch (dev->removable) {
2797 	case DEVICE_REMOVABLE:
2798 		loc = "removable";
2799 		break;
2800 	case DEVICE_FIXED:
2801 		loc = "fixed";
2802 		break;
2803 	default:
2804 		loc = "unknown";
2805 	}
2806 	return sysfs_emit(buf, "%s\n", loc);
2807 }
2808 static DEVICE_ATTR_RO(removable);
2809 
2810 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2811 {
2812 	return sysfs_create_groups(&dev->kobj, groups);
2813 }
2814 EXPORT_SYMBOL_GPL(device_add_groups);
2815 
2816 void device_remove_groups(struct device *dev,
2817 			  const struct attribute_group **groups)
2818 {
2819 	sysfs_remove_groups(&dev->kobj, groups);
2820 }
2821 EXPORT_SYMBOL_GPL(device_remove_groups);
2822 
2823 union device_attr_group_devres {
2824 	const struct attribute_group *group;
2825 	const struct attribute_group **groups;
2826 };
2827 
2828 static void devm_attr_group_remove(struct device *dev, void *res)
2829 {
2830 	union device_attr_group_devres *devres = res;
2831 	const struct attribute_group *group = devres->group;
2832 
2833 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2834 	sysfs_remove_group(&dev->kobj, group);
2835 }
2836 
2837 /**
2838  * devm_device_add_group - given a device, create a managed attribute group
2839  * @dev:	The device to create the group for
2840  * @grp:	The attribute group to create
2841  *
2842  * This function creates a group for the first time.  It will explicitly
2843  * warn and error if any of the attribute files being created already exist.
2844  *
2845  * Returns 0 on success or error code on failure.
2846  */
2847 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2848 {
2849 	union device_attr_group_devres *devres;
2850 	int error;
2851 
2852 	devres = devres_alloc(devm_attr_group_remove,
2853 			      sizeof(*devres), GFP_KERNEL);
2854 	if (!devres)
2855 		return -ENOMEM;
2856 
2857 	error = sysfs_create_group(&dev->kobj, grp);
2858 	if (error) {
2859 		devres_free(devres);
2860 		return error;
2861 	}
2862 
2863 	devres->group = grp;
2864 	devres_add(dev, devres);
2865 	return 0;
2866 }
2867 EXPORT_SYMBOL_GPL(devm_device_add_group);
2868 
2869 static int device_add_attrs(struct device *dev)
2870 {
2871 	const struct class *class = dev->class;
2872 	const struct device_type *type = dev->type;
2873 	int error;
2874 
2875 	if (class) {
2876 		error = device_add_groups(dev, class->dev_groups);
2877 		if (error)
2878 			return error;
2879 	}
2880 
2881 	if (type) {
2882 		error = device_add_groups(dev, type->groups);
2883 		if (error)
2884 			goto err_remove_class_groups;
2885 	}
2886 
2887 	error = device_add_groups(dev, dev->groups);
2888 	if (error)
2889 		goto err_remove_type_groups;
2890 
2891 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2892 		error = device_create_file(dev, &dev_attr_online);
2893 		if (error)
2894 			goto err_remove_dev_groups;
2895 	}
2896 
2897 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2898 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2899 		if (error)
2900 			goto err_remove_dev_online;
2901 	}
2902 
2903 	if (dev_removable_is_valid(dev)) {
2904 		error = device_create_file(dev, &dev_attr_removable);
2905 		if (error)
2906 			goto err_remove_dev_waiting_for_supplier;
2907 	}
2908 
2909 	if (dev_add_physical_location(dev)) {
2910 		error = device_add_group(dev,
2911 			&dev_attr_physical_location_group);
2912 		if (error)
2913 			goto err_remove_dev_removable;
2914 	}
2915 
2916 	return 0;
2917 
2918  err_remove_dev_removable:
2919 	device_remove_file(dev, &dev_attr_removable);
2920  err_remove_dev_waiting_for_supplier:
2921 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2922  err_remove_dev_online:
2923 	device_remove_file(dev, &dev_attr_online);
2924  err_remove_dev_groups:
2925 	device_remove_groups(dev, dev->groups);
2926  err_remove_type_groups:
2927 	if (type)
2928 		device_remove_groups(dev, type->groups);
2929  err_remove_class_groups:
2930 	if (class)
2931 		device_remove_groups(dev, class->dev_groups);
2932 
2933 	return error;
2934 }
2935 
2936 static void device_remove_attrs(struct device *dev)
2937 {
2938 	const struct class *class = dev->class;
2939 	const struct device_type *type = dev->type;
2940 
2941 	if (dev->physical_location) {
2942 		device_remove_group(dev, &dev_attr_physical_location_group);
2943 		kfree(dev->physical_location);
2944 	}
2945 
2946 	device_remove_file(dev, &dev_attr_removable);
2947 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2948 	device_remove_file(dev, &dev_attr_online);
2949 	device_remove_groups(dev, dev->groups);
2950 
2951 	if (type)
2952 		device_remove_groups(dev, type->groups);
2953 
2954 	if (class)
2955 		device_remove_groups(dev, class->dev_groups);
2956 }
2957 
2958 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2959 			char *buf)
2960 {
2961 	return print_dev_t(buf, dev->devt);
2962 }
2963 static DEVICE_ATTR_RO(dev);
2964 
2965 /* /sys/devices/ */
2966 struct kset *devices_kset;
2967 
2968 /**
2969  * devices_kset_move_before - Move device in the devices_kset's list.
2970  * @deva: Device to move.
2971  * @devb: Device @deva should come before.
2972  */
2973 static void devices_kset_move_before(struct device *deva, struct device *devb)
2974 {
2975 	if (!devices_kset)
2976 		return;
2977 	pr_debug("devices_kset: Moving %s before %s\n",
2978 		 dev_name(deva), dev_name(devb));
2979 	spin_lock(&devices_kset->list_lock);
2980 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2981 	spin_unlock(&devices_kset->list_lock);
2982 }
2983 
2984 /**
2985  * devices_kset_move_after - Move device in the devices_kset's list.
2986  * @deva: Device to move
2987  * @devb: Device @deva should come after.
2988  */
2989 static void devices_kset_move_after(struct device *deva, struct device *devb)
2990 {
2991 	if (!devices_kset)
2992 		return;
2993 	pr_debug("devices_kset: Moving %s after %s\n",
2994 		 dev_name(deva), dev_name(devb));
2995 	spin_lock(&devices_kset->list_lock);
2996 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2997 	spin_unlock(&devices_kset->list_lock);
2998 }
2999 
3000 /**
3001  * devices_kset_move_last - move the device to the end of devices_kset's list.
3002  * @dev: device to move
3003  */
3004 void devices_kset_move_last(struct device *dev)
3005 {
3006 	if (!devices_kset)
3007 		return;
3008 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3009 	spin_lock(&devices_kset->list_lock);
3010 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3011 	spin_unlock(&devices_kset->list_lock);
3012 }
3013 
3014 /**
3015  * device_create_file - create sysfs attribute file for device.
3016  * @dev: device.
3017  * @attr: device attribute descriptor.
3018  */
3019 int device_create_file(struct device *dev,
3020 		       const struct device_attribute *attr)
3021 {
3022 	int error = 0;
3023 
3024 	if (dev) {
3025 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3026 			"Attribute %s: write permission without 'store'\n",
3027 			attr->attr.name);
3028 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3029 			"Attribute %s: read permission without 'show'\n",
3030 			attr->attr.name);
3031 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3032 	}
3033 
3034 	return error;
3035 }
3036 EXPORT_SYMBOL_GPL(device_create_file);
3037 
3038 /**
3039  * device_remove_file - remove sysfs attribute file.
3040  * @dev: device.
3041  * @attr: device attribute descriptor.
3042  */
3043 void device_remove_file(struct device *dev,
3044 			const struct device_attribute *attr)
3045 {
3046 	if (dev)
3047 		sysfs_remove_file(&dev->kobj, &attr->attr);
3048 }
3049 EXPORT_SYMBOL_GPL(device_remove_file);
3050 
3051 /**
3052  * device_remove_file_self - remove sysfs attribute file from its own method.
3053  * @dev: device.
3054  * @attr: device attribute descriptor.
3055  *
3056  * See kernfs_remove_self() for details.
3057  */
3058 bool device_remove_file_self(struct device *dev,
3059 			     const struct device_attribute *attr)
3060 {
3061 	if (dev)
3062 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3063 	else
3064 		return false;
3065 }
3066 EXPORT_SYMBOL_GPL(device_remove_file_self);
3067 
3068 /**
3069  * device_create_bin_file - create sysfs binary attribute file for device.
3070  * @dev: device.
3071  * @attr: device binary attribute descriptor.
3072  */
3073 int device_create_bin_file(struct device *dev,
3074 			   const struct bin_attribute *attr)
3075 {
3076 	int error = -EINVAL;
3077 	if (dev)
3078 		error = sysfs_create_bin_file(&dev->kobj, attr);
3079 	return error;
3080 }
3081 EXPORT_SYMBOL_GPL(device_create_bin_file);
3082 
3083 /**
3084  * device_remove_bin_file - remove sysfs binary attribute file
3085  * @dev: device.
3086  * @attr: device binary attribute descriptor.
3087  */
3088 void device_remove_bin_file(struct device *dev,
3089 			    const struct bin_attribute *attr)
3090 {
3091 	if (dev)
3092 		sysfs_remove_bin_file(&dev->kobj, attr);
3093 }
3094 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3095 
3096 static void klist_children_get(struct klist_node *n)
3097 {
3098 	struct device_private *p = to_device_private_parent(n);
3099 	struct device *dev = p->device;
3100 
3101 	get_device(dev);
3102 }
3103 
3104 static void klist_children_put(struct klist_node *n)
3105 {
3106 	struct device_private *p = to_device_private_parent(n);
3107 	struct device *dev = p->device;
3108 
3109 	put_device(dev);
3110 }
3111 
3112 /**
3113  * device_initialize - init device structure.
3114  * @dev: device.
3115  *
3116  * This prepares the device for use by other layers by initializing
3117  * its fields.
3118  * It is the first half of device_register(), if called by
3119  * that function, though it can also be called separately, so one
3120  * may use @dev's fields. In particular, get_device()/put_device()
3121  * may be used for reference counting of @dev after calling this
3122  * function.
3123  *
3124  * All fields in @dev must be initialized by the caller to 0, except
3125  * for those explicitly set to some other value.  The simplest
3126  * approach is to use kzalloc() to allocate the structure containing
3127  * @dev.
3128  *
3129  * NOTE: Use put_device() to give up your reference instead of freeing
3130  * @dev directly once you have called this function.
3131  */
3132 void device_initialize(struct device *dev)
3133 {
3134 	dev->kobj.kset = devices_kset;
3135 	kobject_init(&dev->kobj, &device_ktype);
3136 	INIT_LIST_HEAD(&dev->dma_pools);
3137 	mutex_init(&dev->mutex);
3138 	lockdep_set_novalidate_class(&dev->mutex);
3139 	spin_lock_init(&dev->devres_lock);
3140 	INIT_LIST_HEAD(&dev->devres_head);
3141 	device_pm_init(dev);
3142 	set_dev_node(dev, NUMA_NO_NODE);
3143 	INIT_LIST_HEAD(&dev->links.consumers);
3144 	INIT_LIST_HEAD(&dev->links.suppliers);
3145 	INIT_LIST_HEAD(&dev->links.defer_sync);
3146 	dev->links.status = DL_DEV_NO_DRIVER;
3147 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3148     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3149     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3150 	dev->dma_coherent = dma_default_coherent;
3151 #endif
3152 	swiotlb_dev_init(dev);
3153 }
3154 EXPORT_SYMBOL_GPL(device_initialize);
3155 
3156 struct kobject *virtual_device_parent(void)
3157 {
3158 	static struct kobject *virtual_dir = NULL;
3159 
3160 	if (!virtual_dir)
3161 		virtual_dir = kobject_create_and_add("virtual",
3162 						     &devices_kset->kobj);
3163 
3164 	return virtual_dir;
3165 }
3166 
3167 struct class_dir {
3168 	struct kobject kobj;
3169 	const struct class *class;
3170 };
3171 
3172 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3173 
3174 static void class_dir_release(struct kobject *kobj)
3175 {
3176 	struct class_dir *dir = to_class_dir(kobj);
3177 	kfree(dir);
3178 }
3179 
3180 static const
3181 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3182 {
3183 	const struct class_dir *dir = to_class_dir(kobj);
3184 	return dir->class->ns_type;
3185 }
3186 
3187 static const struct kobj_type class_dir_ktype = {
3188 	.release	= class_dir_release,
3189 	.sysfs_ops	= &kobj_sysfs_ops,
3190 	.child_ns_type	= class_dir_child_ns_type
3191 };
3192 
3193 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3194 						struct kobject *parent_kobj)
3195 {
3196 	struct class_dir *dir;
3197 	int retval;
3198 
3199 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3200 	if (!dir)
3201 		return ERR_PTR(-ENOMEM);
3202 
3203 	dir->class = sp->class;
3204 	kobject_init(&dir->kobj, &class_dir_ktype);
3205 
3206 	dir->kobj.kset = &sp->glue_dirs;
3207 
3208 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3209 	if (retval < 0) {
3210 		kobject_put(&dir->kobj);
3211 		return ERR_PTR(retval);
3212 	}
3213 	return &dir->kobj;
3214 }
3215 
3216 static DEFINE_MUTEX(gdp_mutex);
3217 
3218 static struct kobject *get_device_parent(struct device *dev,
3219 					 struct device *parent)
3220 {
3221 	struct subsys_private *sp = class_to_subsys(dev->class);
3222 	struct kobject *kobj = NULL;
3223 
3224 	if (sp) {
3225 		struct kobject *parent_kobj;
3226 		struct kobject *k;
3227 
3228 		/*
3229 		 * If we have no parent, we live in "virtual".
3230 		 * Class-devices with a non class-device as parent, live
3231 		 * in a "glue" directory to prevent namespace collisions.
3232 		 */
3233 		if (parent == NULL)
3234 			parent_kobj = virtual_device_parent();
3235 		else if (parent->class && !dev->class->ns_type) {
3236 			subsys_put(sp);
3237 			return &parent->kobj;
3238 		} else {
3239 			parent_kobj = &parent->kobj;
3240 		}
3241 
3242 		mutex_lock(&gdp_mutex);
3243 
3244 		/* find our class-directory at the parent and reference it */
3245 		spin_lock(&sp->glue_dirs.list_lock);
3246 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3247 			if (k->parent == parent_kobj) {
3248 				kobj = kobject_get(k);
3249 				break;
3250 			}
3251 		spin_unlock(&sp->glue_dirs.list_lock);
3252 		if (kobj) {
3253 			mutex_unlock(&gdp_mutex);
3254 			subsys_put(sp);
3255 			return kobj;
3256 		}
3257 
3258 		/* or create a new class-directory at the parent device */
3259 		k = class_dir_create_and_add(sp, parent_kobj);
3260 		/* do not emit an uevent for this simple "glue" directory */
3261 		mutex_unlock(&gdp_mutex);
3262 		subsys_put(sp);
3263 		return k;
3264 	}
3265 
3266 	/* subsystems can specify a default root directory for their devices */
3267 	if (!parent && dev->bus) {
3268 		struct device *dev_root = bus_get_dev_root(dev->bus);
3269 
3270 		if (dev_root) {
3271 			kobj = &dev_root->kobj;
3272 			put_device(dev_root);
3273 			return kobj;
3274 		}
3275 	}
3276 
3277 	if (parent)
3278 		return &parent->kobj;
3279 	return NULL;
3280 }
3281 
3282 static inline bool live_in_glue_dir(struct kobject *kobj,
3283 				    struct device *dev)
3284 {
3285 	struct subsys_private *sp;
3286 	bool retval;
3287 
3288 	if (!kobj || !dev->class)
3289 		return false;
3290 
3291 	sp = class_to_subsys(dev->class);
3292 	if (!sp)
3293 		return false;
3294 
3295 	if (kobj->kset == &sp->glue_dirs)
3296 		retval = true;
3297 	else
3298 		retval = false;
3299 
3300 	subsys_put(sp);
3301 	return retval;
3302 }
3303 
3304 static inline struct kobject *get_glue_dir(struct device *dev)
3305 {
3306 	return dev->kobj.parent;
3307 }
3308 
3309 /**
3310  * kobject_has_children - Returns whether a kobject has children.
3311  * @kobj: the object to test
3312  *
3313  * This will return whether a kobject has other kobjects as children.
3314  *
3315  * It does NOT account for the presence of attribute files, only sub
3316  * directories. It also assumes there is no concurrent addition or
3317  * removal of such children, and thus relies on external locking.
3318  */
3319 static inline bool kobject_has_children(struct kobject *kobj)
3320 {
3321 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3322 
3323 	return kobj->sd && kobj->sd->dir.subdirs;
3324 }
3325 
3326 /*
3327  * make sure cleaning up dir as the last step, we need to make
3328  * sure .release handler of kobject is run with holding the
3329  * global lock
3330  */
3331 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3332 {
3333 	unsigned int ref;
3334 
3335 	/* see if we live in a "glue" directory */
3336 	if (!live_in_glue_dir(glue_dir, dev))
3337 		return;
3338 
3339 	mutex_lock(&gdp_mutex);
3340 	/**
3341 	 * There is a race condition between removing glue directory
3342 	 * and adding a new device under the glue directory.
3343 	 *
3344 	 * CPU1:                                         CPU2:
3345 	 *
3346 	 * device_add()
3347 	 *   get_device_parent()
3348 	 *     class_dir_create_and_add()
3349 	 *       kobject_add_internal()
3350 	 *         create_dir()    // create glue_dir
3351 	 *
3352 	 *                                               device_add()
3353 	 *                                                 get_device_parent()
3354 	 *                                                   kobject_get() // get glue_dir
3355 	 *
3356 	 * device_del()
3357 	 *   cleanup_glue_dir()
3358 	 *     kobject_del(glue_dir)
3359 	 *
3360 	 *                                               kobject_add()
3361 	 *                                                 kobject_add_internal()
3362 	 *                                                   create_dir() // in glue_dir
3363 	 *                                                     sysfs_create_dir_ns()
3364 	 *                                                       kernfs_create_dir_ns(sd)
3365 	 *
3366 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3367 	 *       sysfs_put()        // free glue_dir->sd
3368 	 *
3369 	 *                                                         // sd is freed
3370 	 *                                                         kernfs_new_node(sd)
3371 	 *                                                           kernfs_get(glue_dir)
3372 	 *                                                           kernfs_add_one()
3373 	 *                                                           kernfs_put()
3374 	 *
3375 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3376 	 * a new device under glue dir, the glue_dir kobject reference count
3377 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3378 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3379 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3380 	 *
3381 	 * Then the CPU2 will see a stale "empty" but still potentially used
3382 	 * glue dir around in kernfs_new_node().
3383 	 *
3384 	 * In order to avoid this happening, we also should make sure that
3385 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3386 	 * for glue_dir kobj is 1.
3387 	 */
3388 	ref = kref_read(&glue_dir->kref);
3389 	if (!kobject_has_children(glue_dir) && !--ref)
3390 		kobject_del(glue_dir);
3391 	kobject_put(glue_dir);
3392 	mutex_unlock(&gdp_mutex);
3393 }
3394 
3395 static int device_add_class_symlinks(struct device *dev)
3396 {
3397 	struct device_node *of_node = dev_of_node(dev);
3398 	struct subsys_private *sp;
3399 	int error;
3400 
3401 	if (of_node) {
3402 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3403 		if (error)
3404 			dev_warn(dev, "Error %d creating of_node link\n",error);
3405 		/* An error here doesn't warrant bringing down the device */
3406 	}
3407 
3408 	sp = class_to_subsys(dev->class);
3409 	if (!sp)
3410 		return 0;
3411 
3412 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3413 	if (error)
3414 		goto out_devnode;
3415 
3416 	if (dev->parent && device_is_not_partition(dev)) {
3417 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3418 					  "device");
3419 		if (error)
3420 			goto out_subsys;
3421 	}
3422 
3423 	/* link in the class directory pointing to the device */
3424 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3425 	if (error)
3426 		goto out_device;
3427 	goto exit;
3428 
3429 out_device:
3430 	sysfs_remove_link(&dev->kobj, "device");
3431 out_subsys:
3432 	sysfs_remove_link(&dev->kobj, "subsystem");
3433 out_devnode:
3434 	sysfs_remove_link(&dev->kobj, "of_node");
3435 exit:
3436 	subsys_put(sp);
3437 	return error;
3438 }
3439 
3440 static void device_remove_class_symlinks(struct device *dev)
3441 {
3442 	struct subsys_private *sp = class_to_subsys(dev->class);
3443 
3444 	if (dev_of_node(dev))
3445 		sysfs_remove_link(&dev->kobj, "of_node");
3446 
3447 	if (!sp)
3448 		return;
3449 
3450 	if (dev->parent && device_is_not_partition(dev))
3451 		sysfs_remove_link(&dev->kobj, "device");
3452 	sysfs_remove_link(&dev->kobj, "subsystem");
3453 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3454 	subsys_put(sp);
3455 }
3456 
3457 /**
3458  * dev_set_name - set a device name
3459  * @dev: device
3460  * @fmt: format string for the device's name
3461  */
3462 int dev_set_name(struct device *dev, const char *fmt, ...)
3463 {
3464 	va_list vargs;
3465 	int err;
3466 
3467 	va_start(vargs, fmt);
3468 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3469 	va_end(vargs);
3470 	return err;
3471 }
3472 EXPORT_SYMBOL_GPL(dev_set_name);
3473 
3474 /* select a /sys/dev/ directory for the device */
3475 static struct kobject *device_to_dev_kobj(struct device *dev)
3476 {
3477 	if (is_blockdev(dev))
3478 		return sysfs_dev_block_kobj;
3479 	else
3480 		return sysfs_dev_char_kobj;
3481 }
3482 
3483 static int device_create_sys_dev_entry(struct device *dev)
3484 {
3485 	struct kobject *kobj = device_to_dev_kobj(dev);
3486 	int error = 0;
3487 	char devt_str[15];
3488 
3489 	if (kobj) {
3490 		format_dev_t(devt_str, dev->devt);
3491 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3492 	}
3493 
3494 	return error;
3495 }
3496 
3497 static void device_remove_sys_dev_entry(struct device *dev)
3498 {
3499 	struct kobject *kobj = device_to_dev_kobj(dev);
3500 	char devt_str[15];
3501 
3502 	if (kobj) {
3503 		format_dev_t(devt_str, dev->devt);
3504 		sysfs_remove_link(kobj, devt_str);
3505 	}
3506 }
3507 
3508 static int device_private_init(struct device *dev)
3509 {
3510 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3511 	if (!dev->p)
3512 		return -ENOMEM;
3513 	dev->p->device = dev;
3514 	klist_init(&dev->p->klist_children, klist_children_get,
3515 		   klist_children_put);
3516 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3517 	return 0;
3518 }
3519 
3520 /**
3521  * device_add - add device to device hierarchy.
3522  * @dev: device.
3523  *
3524  * This is part 2 of device_register(), though may be called
3525  * separately _iff_ device_initialize() has been called separately.
3526  *
3527  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3528  * to the global and sibling lists for the device, then
3529  * adds it to the other relevant subsystems of the driver model.
3530  *
3531  * Do not call this routine or device_register() more than once for
3532  * any device structure.  The driver model core is not designed to work
3533  * with devices that get unregistered and then spring back to life.
3534  * (Among other things, it's very hard to guarantee that all references
3535  * to the previous incarnation of @dev have been dropped.)  Allocate
3536  * and register a fresh new struct device instead.
3537  *
3538  * NOTE: _Never_ directly free @dev after calling this function, even
3539  * if it returned an error! Always use put_device() to give up your
3540  * reference instead.
3541  *
3542  * Rule of thumb is: if device_add() succeeds, you should call
3543  * device_del() when you want to get rid of it. If device_add() has
3544  * *not* succeeded, use *only* put_device() to drop the reference
3545  * count.
3546  */
3547 int device_add(struct device *dev)
3548 {
3549 	struct subsys_private *sp;
3550 	struct device *parent;
3551 	struct kobject *kobj;
3552 	struct class_interface *class_intf;
3553 	int error = -EINVAL;
3554 	struct kobject *glue_dir = NULL;
3555 
3556 	dev = get_device(dev);
3557 	if (!dev)
3558 		goto done;
3559 
3560 	if (!dev->p) {
3561 		error = device_private_init(dev);
3562 		if (error)
3563 			goto done;
3564 	}
3565 
3566 	/*
3567 	 * for statically allocated devices, which should all be converted
3568 	 * some day, we need to initialize the name. We prevent reading back
3569 	 * the name, and force the use of dev_name()
3570 	 */
3571 	if (dev->init_name) {
3572 		error = dev_set_name(dev, "%s", dev->init_name);
3573 		dev->init_name = NULL;
3574 	}
3575 
3576 	if (dev_name(dev))
3577 		error = 0;
3578 	/* subsystems can specify simple device enumeration */
3579 	else if (dev->bus && dev->bus->dev_name)
3580 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3581 	else
3582 		error = -EINVAL;
3583 	if (error)
3584 		goto name_error;
3585 
3586 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3587 
3588 	parent = get_device(dev->parent);
3589 	kobj = get_device_parent(dev, parent);
3590 	if (IS_ERR(kobj)) {
3591 		error = PTR_ERR(kobj);
3592 		goto parent_error;
3593 	}
3594 	if (kobj)
3595 		dev->kobj.parent = kobj;
3596 
3597 	/* use parent numa_node */
3598 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3599 		set_dev_node(dev, dev_to_node(parent));
3600 
3601 	/* first, register with generic layer. */
3602 	/* we require the name to be set before, and pass NULL */
3603 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3604 	if (error) {
3605 		glue_dir = kobj;
3606 		goto Error;
3607 	}
3608 
3609 	/* notify platform of device entry */
3610 	device_platform_notify(dev);
3611 
3612 	error = device_create_file(dev, &dev_attr_uevent);
3613 	if (error)
3614 		goto attrError;
3615 
3616 	error = device_add_class_symlinks(dev);
3617 	if (error)
3618 		goto SymlinkError;
3619 	error = device_add_attrs(dev);
3620 	if (error)
3621 		goto AttrsError;
3622 	error = bus_add_device(dev);
3623 	if (error)
3624 		goto BusError;
3625 	error = dpm_sysfs_add(dev);
3626 	if (error)
3627 		goto DPMError;
3628 	device_pm_add(dev);
3629 
3630 	if (MAJOR(dev->devt)) {
3631 		error = device_create_file(dev, &dev_attr_dev);
3632 		if (error)
3633 			goto DevAttrError;
3634 
3635 		error = device_create_sys_dev_entry(dev);
3636 		if (error)
3637 			goto SysEntryError;
3638 
3639 		devtmpfs_create_node(dev);
3640 	}
3641 
3642 	/* Notify clients of device addition.  This call must come
3643 	 * after dpm_sysfs_add() and before kobject_uevent().
3644 	 */
3645 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3646 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3647 
3648 	/*
3649 	 * Check if any of the other devices (consumers) have been waiting for
3650 	 * this device (supplier) to be added so that they can create a device
3651 	 * link to it.
3652 	 *
3653 	 * This needs to happen after device_pm_add() because device_link_add()
3654 	 * requires the supplier be registered before it's called.
3655 	 *
3656 	 * But this also needs to happen before bus_probe_device() to make sure
3657 	 * waiting consumers can link to it before the driver is bound to the
3658 	 * device and the driver sync_state callback is called for this device.
3659 	 */
3660 	if (dev->fwnode && !dev->fwnode->dev) {
3661 		dev->fwnode->dev = dev;
3662 		fw_devlink_link_device(dev);
3663 	}
3664 
3665 	bus_probe_device(dev);
3666 
3667 	/*
3668 	 * If all driver registration is done and a newly added device doesn't
3669 	 * match with any driver, don't block its consumers from probing in
3670 	 * case the consumer device is able to operate without this supplier.
3671 	 */
3672 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3673 		fw_devlink_unblock_consumers(dev);
3674 
3675 	if (parent)
3676 		klist_add_tail(&dev->p->knode_parent,
3677 			       &parent->p->klist_children);
3678 
3679 	sp = class_to_subsys(dev->class);
3680 	if (sp) {
3681 		mutex_lock(&sp->mutex);
3682 		/* tie the class to the device */
3683 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3684 
3685 		/* notify any interfaces that the device is here */
3686 		list_for_each_entry(class_intf, &sp->interfaces, node)
3687 			if (class_intf->add_dev)
3688 				class_intf->add_dev(dev);
3689 		mutex_unlock(&sp->mutex);
3690 		subsys_put(sp);
3691 	}
3692 done:
3693 	put_device(dev);
3694 	return error;
3695  SysEntryError:
3696 	if (MAJOR(dev->devt))
3697 		device_remove_file(dev, &dev_attr_dev);
3698  DevAttrError:
3699 	device_pm_remove(dev);
3700 	dpm_sysfs_remove(dev);
3701  DPMError:
3702 	dev->driver = NULL;
3703 	bus_remove_device(dev);
3704  BusError:
3705 	device_remove_attrs(dev);
3706  AttrsError:
3707 	device_remove_class_symlinks(dev);
3708  SymlinkError:
3709 	device_remove_file(dev, &dev_attr_uevent);
3710  attrError:
3711 	device_platform_notify_remove(dev);
3712 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3713 	glue_dir = get_glue_dir(dev);
3714 	kobject_del(&dev->kobj);
3715  Error:
3716 	cleanup_glue_dir(dev, glue_dir);
3717 parent_error:
3718 	put_device(parent);
3719 name_error:
3720 	kfree(dev->p);
3721 	dev->p = NULL;
3722 	goto done;
3723 }
3724 EXPORT_SYMBOL_GPL(device_add);
3725 
3726 /**
3727  * device_register - register a device with the system.
3728  * @dev: pointer to the device structure
3729  *
3730  * This happens in two clean steps - initialize the device
3731  * and add it to the system. The two steps can be called
3732  * separately, but this is the easiest and most common.
3733  * I.e. you should only call the two helpers separately if
3734  * have a clearly defined need to use and refcount the device
3735  * before it is added to the hierarchy.
3736  *
3737  * For more information, see the kerneldoc for device_initialize()
3738  * and device_add().
3739  *
3740  * NOTE: _Never_ directly free @dev after calling this function, even
3741  * if it returned an error! Always use put_device() to give up the
3742  * reference initialized in this function instead.
3743  */
3744 int device_register(struct device *dev)
3745 {
3746 	device_initialize(dev);
3747 	return device_add(dev);
3748 }
3749 EXPORT_SYMBOL_GPL(device_register);
3750 
3751 /**
3752  * get_device - increment reference count for device.
3753  * @dev: device.
3754  *
3755  * This simply forwards the call to kobject_get(), though
3756  * we do take care to provide for the case that we get a NULL
3757  * pointer passed in.
3758  */
3759 struct device *get_device(struct device *dev)
3760 {
3761 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3762 }
3763 EXPORT_SYMBOL_GPL(get_device);
3764 
3765 /**
3766  * put_device - decrement reference count.
3767  * @dev: device in question.
3768  */
3769 void put_device(struct device *dev)
3770 {
3771 	/* might_sleep(); */
3772 	if (dev)
3773 		kobject_put(&dev->kobj);
3774 }
3775 EXPORT_SYMBOL_GPL(put_device);
3776 
3777 bool kill_device(struct device *dev)
3778 {
3779 	/*
3780 	 * Require the device lock and set the "dead" flag to guarantee that
3781 	 * the update behavior is consistent with the other bitfields near
3782 	 * it and that we cannot have an asynchronous probe routine trying
3783 	 * to run while we are tearing out the bus/class/sysfs from
3784 	 * underneath the device.
3785 	 */
3786 	device_lock_assert(dev);
3787 
3788 	if (dev->p->dead)
3789 		return false;
3790 	dev->p->dead = true;
3791 	return true;
3792 }
3793 EXPORT_SYMBOL_GPL(kill_device);
3794 
3795 /**
3796  * device_del - delete device from system.
3797  * @dev: device.
3798  *
3799  * This is the first part of the device unregistration
3800  * sequence. This removes the device from the lists we control
3801  * from here, has it removed from the other driver model
3802  * subsystems it was added to in device_add(), and removes it
3803  * from the kobject hierarchy.
3804  *
3805  * NOTE: this should be called manually _iff_ device_add() was
3806  * also called manually.
3807  */
3808 void device_del(struct device *dev)
3809 {
3810 	struct subsys_private *sp;
3811 	struct device *parent = dev->parent;
3812 	struct kobject *glue_dir = NULL;
3813 	struct class_interface *class_intf;
3814 	unsigned int noio_flag;
3815 
3816 	device_lock(dev);
3817 	kill_device(dev);
3818 	device_unlock(dev);
3819 
3820 	if (dev->fwnode && dev->fwnode->dev == dev)
3821 		dev->fwnode->dev = NULL;
3822 
3823 	/* Notify clients of device removal.  This call must come
3824 	 * before dpm_sysfs_remove().
3825 	 */
3826 	noio_flag = memalloc_noio_save();
3827 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3828 
3829 	dpm_sysfs_remove(dev);
3830 	if (parent)
3831 		klist_del(&dev->p->knode_parent);
3832 	if (MAJOR(dev->devt)) {
3833 		devtmpfs_delete_node(dev);
3834 		device_remove_sys_dev_entry(dev);
3835 		device_remove_file(dev, &dev_attr_dev);
3836 	}
3837 
3838 	sp = class_to_subsys(dev->class);
3839 	if (sp) {
3840 		device_remove_class_symlinks(dev);
3841 
3842 		mutex_lock(&sp->mutex);
3843 		/* notify any interfaces that the device is now gone */
3844 		list_for_each_entry(class_intf, &sp->interfaces, node)
3845 			if (class_intf->remove_dev)
3846 				class_intf->remove_dev(dev);
3847 		/* remove the device from the class list */
3848 		klist_del(&dev->p->knode_class);
3849 		mutex_unlock(&sp->mutex);
3850 		subsys_put(sp);
3851 	}
3852 	device_remove_file(dev, &dev_attr_uevent);
3853 	device_remove_attrs(dev);
3854 	bus_remove_device(dev);
3855 	device_pm_remove(dev);
3856 	driver_deferred_probe_del(dev);
3857 	device_platform_notify_remove(dev);
3858 	device_links_purge(dev);
3859 
3860 	/*
3861 	 * If a device does not have a driver attached, we need to clean
3862 	 * up any managed resources. We do this in device_release(), but
3863 	 * it's never called (and we leak the device) if a managed
3864 	 * resource holds a reference to the device. So release all
3865 	 * managed resources here, like we do in driver_detach(). We
3866 	 * still need to do so again in device_release() in case someone
3867 	 * adds a new resource after this point, though.
3868 	 */
3869 	devres_release_all(dev);
3870 
3871 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3872 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3873 	glue_dir = get_glue_dir(dev);
3874 	kobject_del(&dev->kobj);
3875 	cleanup_glue_dir(dev, glue_dir);
3876 	memalloc_noio_restore(noio_flag);
3877 	put_device(parent);
3878 }
3879 EXPORT_SYMBOL_GPL(device_del);
3880 
3881 /**
3882  * device_unregister - unregister device from system.
3883  * @dev: device going away.
3884  *
3885  * We do this in two parts, like we do device_register(). First,
3886  * we remove it from all the subsystems with device_del(), then
3887  * we decrement the reference count via put_device(). If that
3888  * is the final reference count, the device will be cleaned up
3889  * via device_release() above. Otherwise, the structure will
3890  * stick around until the final reference to the device is dropped.
3891  */
3892 void device_unregister(struct device *dev)
3893 {
3894 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3895 	device_del(dev);
3896 	put_device(dev);
3897 }
3898 EXPORT_SYMBOL_GPL(device_unregister);
3899 
3900 static struct device *prev_device(struct klist_iter *i)
3901 {
3902 	struct klist_node *n = klist_prev(i);
3903 	struct device *dev = NULL;
3904 	struct device_private *p;
3905 
3906 	if (n) {
3907 		p = to_device_private_parent(n);
3908 		dev = p->device;
3909 	}
3910 	return dev;
3911 }
3912 
3913 static struct device *next_device(struct klist_iter *i)
3914 {
3915 	struct klist_node *n = klist_next(i);
3916 	struct device *dev = NULL;
3917 	struct device_private *p;
3918 
3919 	if (n) {
3920 		p = to_device_private_parent(n);
3921 		dev = p->device;
3922 	}
3923 	return dev;
3924 }
3925 
3926 /**
3927  * device_get_devnode - path of device node file
3928  * @dev: device
3929  * @mode: returned file access mode
3930  * @uid: returned file owner
3931  * @gid: returned file group
3932  * @tmp: possibly allocated string
3933  *
3934  * Return the relative path of a possible device node.
3935  * Non-default names may need to allocate a memory to compose
3936  * a name. This memory is returned in tmp and needs to be
3937  * freed by the caller.
3938  */
3939 const char *device_get_devnode(const struct device *dev,
3940 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3941 			       const char **tmp)
3942 {
3943 	char *s;
3944 
3945 	*tmp = NULL;
3946 
3947 	/* the device type may provide a specific name */
3948 	if (dev->type && dev->type->devnode)
3949 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3950 	if (*tmp)
3951 		return *tmp;
3952 
3953 	/* the class may provide a specific name */
3954 	if (dev->class && dev->class->devnode)
3955 		*tmp = dev->class->devnode(dev, mode);
3956 	if (*tmp)
3957 		return *tmp;
3958 
3959 	/* return name without allocation, tmp == NULL */
3960 	if (strchr(dev_name(dev), '!') == NULL)
3961 		return dev_name(dev);
3962 
3963 	/* replace '!' in the name with '/' */
3964 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3965 	if (!s)
3966 		return NULL;
3967 	return *tmp = s;
3968 }
3969 
3970 /**
3971  * device_for_each_child - device child iterator.
3972  * @parent: parent struct device.
3973  * @fn: function to be called for each device.
3974  * @data: data for the callback.
3975  *
3976  * Iterate over @parent's child devices, and call @fn for each,
3977  * passing it @data.
3978  *
3979  * We check the return of @fn each time. If it returns anything
3980  * other than 0, we break out and return that value.
3981  */
3982 int device_for_each_child(struct device *parent, void *data,
3983 			  int (*fn)(struct device *dev, void *data))
3984 {
3985 	struct klist_iter i;
3986 	struct device *child;
3987 	int error = 0;
3988 
3989 	if (!parent || !parent->p)
3990 		return 0;
3991 
3992 	klist_iter_init(&parent->p->klist_children, &i);
3993 	while (!error && (child = next_device(&i)))
3994 		error = fn(child, data);
3995 	klist_iter_exit(&i);
3996 	return error;
3997 }
3998 EXPORT_SYMBOL_GPL(device_for_each_child);
3999 
4000 /**
4001  * device_for_each_child_reverse - device child iterator in reversed order.
4002  * @parent: parent struct device.
4003  * @fn: function to be called for each device.
4004  * @data: data for the callback.
4005  *
4006  * Iterate over @parent's child devices, and call @fn for each,
4007  * passing it @data.
4008  *
4009  * We check the return of @fn each time. If it returns anything
4010  * other than 0, we break out and return that value.
4011  */
4012 int device_for_each_child_reverse(struct device *parent, void *data,
4013 				  int (*fn)(struct device *dev, void *data))
4014 {
4015 	struct klist_iter i;
4016 	struct device *child;
4017 	int error = 0;
4018 
4019 	if (!parent || !parent->p)
4020 		return 0;
4021 
4022 	klist_iter_init(&parent->p->klist_children, &i);
4023 	while ((child = prev_device(&i)) && !error)
4024 		error = fn(child, data);
4025 	klist_iter_exit(&i);
4026 	return error;
4027 }
4028 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4029 
4030 /**
4031  * device_for_each_child_reverse_from - device child iterator in reversed order.
4032  * @parent: parent struct device.
4033  * @from: optional starting point in child list
4034  * @fn: function to be called for each device.
4035  * @data: data for the callback.
4036  *
4037  * Iterate over @parent's child devices, starting at @from, and call @fn
4038  * for each, passing it @data. This helper is identical to
4039  * device_for_each_child_reverse() when @from is NULL.
4040  *
4041  * @fn is checked each iteration. If it returns anything other than 0,
4042  * iteration stop and that value is returned to the caller of
4043  * device_for_each_child_reverse_from();
4044  */
4045 int device_for_each_child_reverse_from(struct device *parent,
4046 				       struct device *from, const void *data,
4047 				       int (*fn)(struct device *, const void *))
4048 {
4049 	struct klist_iter i;
4050 	struct device *child;
4051 	int error = 0;
4052 
4053 	if (!parent->p)
4054 		return 0;
4055 
4056 	klist_iter_init_node(&parent->p->klist_children, &i,
4057 			     (from ? &from->p->knode_parent : NULL));
4058 	while ((child = prev_device(&i)) && !error)
4059 		error = fn(child, data);
4060 	klist_iter_exit(&i);
4061 	return error;
4062 }
4063 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4064 
4065 /**
4066  * device_find_child - device iterator for locating a particular device.
4067  * @parent: parent struct device
4068  * @match: Callback function to check device
4069  * @data: Data to pass to match function
4070  *
4071  * This is similar to the device_for_each_child() function above, but it
4072  * returns a reference to a device that is 'found' for later use, as
4073  * determined by the @match callback.
4074  *
4075  * The callback should return 0 if the device doesn't match and non-zero
4076  * if it does.  If the callback returns non-zero and a reference to the
4077  * current device can be obtained, this function will return to the caller
4078  * and not iterate over any more devices.
4079  *
4080  * NOTE: you will need to drop the reference with put_device() after use.
4081  */
4082 struct device *device_find_child(struct device *parent, void *data,
4083 				 int (*match)(struct device *dev, void *data))
4084 {
4085 	struct klist_iter i;
4086 	struct device *child;
4087 
4088 	if (!parent || !parent->p)
4089 		return NULL;
4090 
4091 	klist_iter_init(&parent->p->klist_children, &i);
4092 	while ((child = next_device(&i)))
4093 		if (match(child, data) && get_device(child))
4094 			break;
4095 	klist_iter_exit(&i);
4096 	return child;
4097 }
4098 EXPORT_SYMBOL_GPL(device_find_child);
4099 
4100 /**
4101  * device_find_child_by_name - device iterator for locating a child device.
4102  * @parent: parent struct device
4103  * @name: name of the child device
4104  *
4105  * This is similar to the device_find_child() function above, but it
4106  * returns a reference to a device that has the name @name.
4107  *
4108  * NOTE: you will need to drop the reference with put_device() after use.
4109  */
4110 struct device *device_find_child_by_name(struct device *parent,
4111 					 const char *name)
4112 {
4113 	struct klist_iter i;
4114 	struct device *child;
4115 
4116 	if (!parent)
4117 		return NULL;
4118 
4119 	klist_iter_init(&parent->p->klist_children, &i);
4120 	while ((child = next_device(&i)))
4121 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4122 			break;
4123 	klist_iter_exit(&i);
4124 	return child;
4125 }
4126 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4127 
4128 static int match_any(struct device *dev, void *unused)
4129 {
4130 	return 1;
4131 }
4132 
4133 /**
4134  * device_find_any_child - device iterator for locating a child device, if any.
4135  * @parent: parent struct device
4136  *
4137  * This is similar to the device_find_child() function above, but it
4138  * returns a reference to a child device, if any.
4139  *
4140  * NOTE: you will need to drop the reference with put_device() after use.
4141  */
4142 struct device *device_find_any_child(struct device *parent)
4143 {
4144 	return device_find_child(parent, NULL, match_any);
4145 }
4146 EXPORT_SYMBOL_GPL(device_find_any_child);
4147 
4148 int __init devices_init(void)
4149 {
4150 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4151 	if (!devices_kset)
4152 		return -ENOMEM;
4153 	dev_kobj = kobject_create_and_add("dev", NULL);
4154 	if (!dev_kobj)
4155 		goto dev_kobj_err;
4156 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4157 	if (!sysfs_dev_block_kobj)
4158 		goto block_kobj_err;
4159 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4160 	if (!sysfs_dev_char_kobj)
4161 		goto char_kobj_err;
4162 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4163 	if (!device_link_wq)
4164 		goto wq_err;
4165 
4166 	return 0;
4167 
4168  wq_err:
4169 	kobject_put(sysfs_dev_char_kobj);
4170  char_kobj_err:
4171 	kobject_put(sysfs_dev_block_kobj);
4172  block_kobj_err:
4173 	kobject_put(dev_kobj);
4174  dev_kobj_err:
4175 	kset_unregister(devices_kset);
4176 	return -ENOMEM;
4177 }
4178 
4179 static int device_check_offline(struct device *dev, void *not_used)
4180 {
4181 	int ret;
4182 
4183 	ret = device_for_each_child(dev, NULL, device_check_offline);
4184 	if (ret)
4185 		return ret;
4186 
4187 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4188 }
4189 
4190 /**
4191  * device_offline - Prepare the device for hot-removal.
4192  * @dev: Device to be put offline.
4193  *
4194  * Execute the device bus type's .offline() callback, if present, to prepare
4195  * the device for a subsequent hot-removal.  If that succeeds, the device must
4196  * not be used until either it is removed or its bus type's .online() callback
4197  * is executed.
4198  *
4199  * Call under device_hotplug_lock.
4200  */
4201 int device_offline(struct device *dev)
4202 {
4203 	int ret;
4204 
4205 	if (dev->offline_disabled)
4206 		return -EPERM;
4207 
4208 	ret = device_for_each_child(dev, NULL, device_check_offline);
4209 	if (ret)
4210 		return ret;
4211 
4212 	device_lock(dev);
4213 	if (device_supports_offline(dev)) {
4214 		if (dev->offline) {
4215 			ret = 1;
4216 		} else {
4217 			ret = dev->bus->offline(dev);
4218 			if (!ret) {
4219 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4220 				dev->offline = true;
4221 			}
4222 		}
4223 	}
4224 	device_unlock(dev);
4225 
4226 	return ret;
4227 }
4228 
4229 /**
4230  * device_online - Put the device back online after successful device_offline().
4231  * @dev: Device to be put back online.
4232  *
4233  * If device_offline() has been successfully executed for @dev, but the device
4234  * has not been removed subsequently, execute its bus type's .online() callback
4235  * to indicate that the device can be used again.
4236  *
4237  * Call under device_hotplug_lock.
4238  */
4239 int device_online(struct device *dev)
4240 {
4241 	int ret = 0;
4242 
4243 	device_lock(dev);
4244 	if (device_supports_offline(dev)) {
4245 		if (dev->offline) {
4246 			ret = dev->bus->online(dev);
4247 			if (!ret) {
4248 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4249 				dev->offline = false;
4250 			}
4251 		} else {
4252 			ret = 1;
4253 		}
4254 	}
4255 	device_unlock(dev);
4256 
4257 	return ret;
4258 }
4259 
4260 struct root_device {
4261 	struct device dev;
4262 	struct module *owner;
4263 };
4264 
4265 static inline struct root_device *to_root_device(struct device *d)
4266 {
4267 	return container_of(d, struct root_device, dev);
4268 }
4269 
4270 static void root_device_release(struct device *dev)
4271 {
4272 	kfree(to_root_device(dev));
4273 }
4274 
4275 /**
4276  * __root_device_register - allocate and register a root device
4277  * @name: root device name
4278  * @owner: owner module of the root device, usually THIS_MODULE
4279  *
4280  * This function allocates a root device and registers it
4281  * using device_register(). In order to free the returned
4282  * device, use root_device_unregister().
4283  *
4284  * Root devices are dummy devices which allow other devices
4285  * to be grouped under /sys/devices. Use this function to
4286  * allocate a root device and then use it as the parent of
4287  * any device which should appear under /sys/devices/{name}
4288  *
4289  * The /sys/devices/{name} directory will also contain a
4290  * 'module' symlink which points to the @owner directory
4291  * in sysfs.
4292  *
4293  * Returns &struct device pointer on success, or ERR_PTR() on error.
4294  *
4295  * Note: You probably want to use root_device_register().
4296  */
4297 struct device *__root_device_register(const char *name, struct module *owner)
4298 {
4299 	struct root_device *root;
4300 	int err = -ENOMEM;
4301 
4302 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4303 	if (!root)
4304 		return ERR_PTR(err);
4305 
4306 	err = dev_set_name(&root->dev, "%s", name);
4307 	if (err) {
4308 		kfree(root);
4309 		return ERR_PTR(err);
4310 	}
4311 
4312 	root->dev.release = root_device_release;
4313 
4314 	err = device_register(&root->dev);
4315 	if (err) {
4316 		put_device(&root->dev);
4317 		return ERR_PTR(err);
4318 	}
4319 
4320 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4321 	if (owner) {
4322 		struct module_kobject *mk = &owner->mkobj;
4323 
4324 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4325 		if (err) {
4326 			device_unregister(&root->dev);
4327 			return ERR_PTR(err);
4328 		}
4329 		root->owner = owner;
4330 	}
4331 #endif
4332 
4333 	return &root->dev;
4334 }
4335 EXPORT_SYMBOL_GPL(__root_device_register);
4336 
4337 /**
4338  * root_device_unregister - unregister and free a root device
4339  * @dev: device going away
4340  *
4341  * This function unregisters and cleans up a device that was created by
4342  * root_device_register().
4343  */
4344 void root_device_unregister(struct device *dev)
4345 {
4346 	struct root_device *root = to_root_device(dev);
4347 
4348 	if (root->owner)
4349 		sysfs_remove_link(&root->dev.kobj, "module");
4350 
4351 	device_unregister(dev);
4352 }
4353 EXPORT_SYMBOL_GPL(root_device_unregister);
4354 
4355 
4356 static void device_create_release(struct device *dev)
4357 {
4358 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4359 	kfree(dev);
4360 }
4361 
4362 static __printf(6, 0) struct device *
4363 device_create_groups_vargs(const struct class *class, struct device *parent,
4364 			   dev_t devt, void *drvdata,
4365 			   const struct attribute_group **groups,
4366 			   const char *fmt, va_list args)
4367 {
4368 	struct device *dev = NULL;
4369 	int retval = -ENODEV;
4370 
4371 	if (IS_ERR_OR_NULL(class))
4372 		goto error;
4373 
4374 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4375 	if (!dev) {
4376 		retval = -ENOMEM;
4377 		goto error;
4378 	}
4379 
4380 	device_initialize(dev);
4381 	dev->devt = devt;
4382 	dev->class = class;
4383 	dev->parent = parent;
4384 	dev->groups = groups;
4385 	dev->release = device_create_release;
4386 	dev_set_drvdata(dev, drvdata);
4387 
4388 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4389 	if (retval)
4390 		goto error;
4391 
4392 	retval = device_add(dev);
4393 	if (retval)
4394 		goto error;
4395 
4396 	return dev;
4397 
4398 error:
4399 	put_device(dev);
4400 	return ERR_PTR(retval);
4401 }
4402 
4403 /**
4404  * device_create - creates a device and registers it with sysfs
4405  * @class: pointer to the struct class that this device should be registered to
4406  * @parent: pointer to the parent struct device of this new device, if any
4407  * @devt: the dev_t for the char device to be added
4408  * @drvdata: the data to be added to the device for callbacks
4409  * @fmt: string for the device's name
4410  *
4411  * This function can be used by char device classes.  A struct device
4412  * will be created in sysfs, registered to the specified class.
4413  *
4414  * A "dev" file will be created, showing the dev_t for the device, if
4415  * the dev_t is not 0,0.
4416  * If a pointer to a parent struct device is passed in, the newly created
4417  * struct device will be a child of that device in sysfs.
4418  * The pointer to the struct device will be returned from the call.
4419  * Any further sysfs files that might be required can be created using this
4420  * pointer.
4421  *
4422  * Returns &struct device pointer on success, or ERR_PTR() on error.
4423  */
4424 struct device *device_create(const struct class *class, struct device *parent,
4425 			     dev_t devt, void *drvdata, const char *fmt, ...)
4426 {
4427 	va_list vargs;
4428 	struct device *dev;
4429 
4430 	va_start(vargs, fmt);
4431 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4432 					  fmt, vargs);
4433 	va_end(vargs);
4434 	return dev;
4435 }
4436 EXPORT_SYMBOL_GPL(device_create);
4437 
4438 /**
4439  * device_create_with_groups - creates a device and registers it with sysfs
4440  * @class: pointer to the struct class that this device should be registered to
4441  * @parent: pointer to the parent struct device of this new device, if any
4442  * @devt: the dev_t for the char device to be added
4443  * @drvdata: the data to be added to the device for callbacks
4444  * @groups: NULL-terminated list of attribute groups to be created
4445  * @fmt: string for the device's name
4446  *
4447  * This function can be used by char device classes.  A struct device
4448  * will be created in sysfs, registered to the specified class.
4449  * Additional attributes specified in the groups parameter will also
4450  * be created automatically.
4451  *
4452  * A "dev" file will be created, showing the dev_t for the device, if
4453  * the dev_t is not 0,0.
4454  * If a pointer to a parent struct device is passed in, the newly created
4455  * struct device will be a child of that device in sysfs.
4456  * The pointer to the struct device will be returned from the call.
4457  * Any further sysfs files that might be required can be created using this
4458  * pointer.
4459  *
4460  * Returns &struct device pointer on success, or ERR_PTR() on error.
4461  */
4462 struct device *device_create_with_groups(const struct class *class,
4463 					 struct device *parent, dev_t devt,
4464 					 void *drvdata,
4465 					 const struct attribute_group **groups,
4466 					 const char *fmt, ...)
4467 {
4468 	va_list vargs;
4469 	struct device *dev;
4470 
4471 	va_start(vargs, fmt);
4472 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4473 					 fmt, vargs);
4474 	va_end(vargs);
4475 	return dev;
4476 }
4477 EXPORT_SYMBOL_GPL(device_create_with_groups);
4478 
4479 /**
4480  * device_destroy - removes a device that was created with device_create()
4481  * @class: pointer to the struct class that this device was registered with
4482  * @devt: the dev_t of the device that was previously registered
4483  *
4484  * This call unregisters and cleans up a device that was created with a
4485  * call to device_create().
4486  */
4487 void device_destroy(const struct class *class, dev_t devt)
4488 {
4489 	struct device *dev;
4490 
4491 	dev = class_find_device_by_devt(class, devt);
4492 	if (dev) {
4493 		put_device(dev);
4494 		device_unregister(dev);
4495 	}
4496 }
4497 EXPORT_SYMBOL_GPL(device_destroy);
4498 
4499 /**
4500  * device_rename - renames a device
4501  * @dev: the pointer to the struct device to be renamed
4502  * @new_name: the new name of the device
4503  *
4504  * It is the responsibility of the caller to provide mutual
4505  * exclusion between two different calls of device_rename
4506  * on the same device to ensure that new_name is valid and
4507  * won't conflict with other devices.
4508  *
4509  * Note: given that some subsystems (networking and infiniband) use this
4510  * function, with no immediate plans for this to change, we cannot assume or
4511  * require that this function not be called at all.
4512  *
4513  * However, if you're writing new code, do not call this function. The following
4514  * text from Kay Sievers offers some insight:
4515  *
4516  * Renaming devices is racy at many levels, symlinks and other stuff are not
4517  * replaced atomically, and you get a "move" uevent, but it's not easy to
4518  * connect the event to the old and new device. Device nodes are not renamed at
4519  * all, there isn't even support for that in the kernel now.
4520  *
4521  * In the meantime, during renaming, your target name might be taken by another
4522  * driver, creating conflicts. Or the old name is taken directly after you
4523  * renamed it -- then you get events for the same DEVPATH, before you even see
4524  * the "move" event. It's just a mess, and nothing new should ever rely on
4525  * kernel device renaming. Besides that, it's not even implemented now for
4526  * other things than (driver-core wise very simple) network devices.
4527  *
4528  * Make up a "real" name in the driver before you register anything, or add
4529  * some other attributes for userspace to find the device, or use udev to add
4530  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4531  * don't even want to get into that and try to implement the missing pieces in
4532  * the core. We really have other pieces to fix in the driver core mess. :)
4533  */
4534 int device_rename(struct device *dev, const char *new_name)
4535 {
4536 	struct subsys_private *sp = NULL;
4537 	struct kobject *kobj = &dev->kobj;
4538 	char *old_device_name = NULL;
4539 	int error;
4540 	bool is_link_renamed = false;
4541 
4542 	dev = get_device(dev);
4543 	if (!dev)
4544 		return -EINVAL;
4545 
4546 	dev_dbg(dev, "renaming to %s\n", new_name);
4547 
4548 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4549 	if (!old_device_name) {
4550 		error = -ENOMEM;
4551 		goto out;
4552 	}
4553 
4554 	if (dev->class) {
4555 		sp = class_to_subsys(dev->class);
4556 
4557 		if (!sp) {
4558 			error = -EINVAL;
4559 			goto out;
4560 		}
4561 
4562 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4563 					     new_name, kobject_namespace(kobj));
4564 		if (error)
4565 			goto out;
4566 
4567 		is_link_renamed = true;
4568 	}
4569 
4570 	error = kobject_rename(kobj, new_name);
4571 out:
4572 	if (error && is_link_renamed)
4573 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4574 				     old_device_name, kobject_namespace(kobj));
4575 	subsys_put(sp);
4576 
4577 	put_device(dev);
4578 
4579 	kfree(old_device_name);
4580 
4581 	return error;
4582 }
4583 EXPORT_SYMBOL_GPL(device_rename);
4584 
4585 static int device_move_class_links(struct device *dev,
4586 				   struct device *old_parent,
4587 				   struct device *new_parent)
4588 {
4589 	int error = 0;
4590 
4591 	if (old_parent)
4592 		sysfs_remove_link(&dev->kobj, "device");
4593 	if (new_parent)
4594 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4595 					  "device");
4596 	return error;
4597 }
4598 
4599 /**
4600  * device_move - moves a device to a new parent
4601  * @dev: the pointer to the struct device to be moved
4602  * @new_parent: the new parent of the device (can be NULL)
4603  * @dpm_order: how to reorder the dpm_list
4604  */
4605 int device_move(struct device *dev, struct device *new_parent,
4606 		enum dpm_order dpm_order)
4607 {
4608 	int error;
4609 	struct device *old_parent;
4610 	struct kobject *new_parent_kobj;
4611 
4612 	dev = get_device(dev);
4613 	if (!dev)
4614 		return -EINVAL;
4615 
4616 	device_pm_lock();
4617 	new_parent = get_device(new_parent);
4618 	new_parent_kobj = get_device_parent(dev, new_parent);
4619 	if (IS_ERR(new_parent_kobj)) {
4620 		error = PTR_ERR(new_parent_kobj);
4621 		put_device(new_parent);
4622 		goto out;
4623 	}
4624 
4625 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4626 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4627 	error = kobject_move(&dev->kobj, new_parent_kobj);
4628 	if (error) {
4629 		cleanup_glue_dir(dev, new_parent_kobj);
4630 		put_device(new_parent);
4631 		goto out;
4632 	}
4633 	old_parent = dev->parent;
4634 	dev->parent = new_parent;
4635 	if (old_parent)
4636 		klist_remove(&dev->p->knode_parent);
4637 	if (new_parent) {
4638 		klist_add_tail(&dev->p->knode_parent,
4639 			       &new_parent->p->klist_children);
4640 		set_dev_node(dev, dev_to_node(new_parent));
4641 	}
4642 
4643 	if (dev->class) {
4644 		error = device_move_class_links(dev, old_parent, new_parent);
4645 		if (error) {
4646 			/* We ignore errors on cleanup since we're hosed anyway... */
4647 			device_move_class_links(dev, new_parent, old_parent);
4648 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4649 				if (new_parent)
4650 					klist_remove(&dev->p->knode_parent);
4651 				dev->parent = old_parent;
4652 				if (old_parent) {
4653 					klist_add_tail(&dev->p->knode_parent,
4654 						       &old_parent->p->klist_children);
4655 					set_dev_node(dev, dev_to_node(old_parent));
4656 				}
4657 			}
4658 			cleanup_glue_dir(dev, new_parent_kobj);
4659 			put_device(new_parent);
4660 			goto out;
4661 		}
4662 	}
4663 	switch (dpm_order) {
4664 	case DPM_ORDER_NONE:
4665 		break;
4666 	case DPM_ORDER_DEV_AFTER_PARENT:
4667 		device_pm_move_after(dev, new_parent);
4668 		devices_kset_move_after(dev, new_parent);
4669 		break;
4670 	case DPM_ORDER_PARENT_BEFORE_DEV:
4671 		device_pm_move_before(new_parent, dev);
4672 		devices_kset_move_before(new_parent, dev);
4673 		break;
4674 	case DPM_ORDER_DEV_LAST:
4675 		device_pm_move_last(dev);
4676 		devices_kset_move_last(dev);
4677 		break;
4678 	}
4679 
4680 	put_device(old_parent);
4681 out:
4682 	device_pm_unlock();
4683 	put_device(dev);
4684 	return error;
4685 }
4686 EXPORT_SYMBOL_GPL(device_move);
4687 
4688 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4689 				     kgid_t kgid)
4690 {
4691 	struct kobject *kobj = &dev->kobj;
4692 	const struct class *class = dev->class;
4693 	const struct device_type *type = dev->type;
4694 	int error;
4695 
4696 	if (class) {
4697 		/*
4698 		 * Change the device groups of the device class for @dev to
4699 		 * @kuid/@kgid.
4700 		 */
4701 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4702 						  kgid);
4703 		if (error)
4704 			return error;
4705 	}
4706 
4707 	if (type) {
4708 		/*
4709 		 * Change the device groups of the device type for @dev to
4710 		 * @kuid/@kgid.
4711 		 */
4712 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4713 						  kgid);
4714 		if (error)
4715 			return error;
4716 	}
4717 
4718 	/* Change the device groups of @dev to @kuid/@kgid. */
4719 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4720 	if (error)
4721 		return error;
4722 
4723 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4724 		/* Change online device attributes of @dev to @kuid/@kgid. */
4725 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4726 						kuid, kgid);
4727 		if (error)
4728 			return error;
4729 	}
4730 
4731 	return 0;
4732 }
4733 
4734 /**
4735  * device_change_owner - change the owner of an existing device.
4736  * @dev: device.
4737  * @kuid: new owner's kuid
4738  * @kgid: new owner's kgid
4739  *
4740  * This changes the owner of @dev and its corresponding sysfs entries to
4741  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4742  * core.
4743  *
4744  * Returns 0 on success or error code on failure.
4745  */
4746 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4747 {
4748 	int error;
4749 	struct kobject *kobj = &dev->kobj;
4750 	struct subsys_private *sp;
4751 
4752 	dev = get_device(dev);
4753 	if (!dev)
4754 		return -EINVAL;
4755 
4756 	/*
4757 	 * Change the kobject and the default attributes and groups of the
4758 	 * ktype associated with it to @kuid/@kgid.
4759 	 */
4760 	error = sysfs_change_owner(kobj, kuid, kgid);
4761 	if (error)
4762 		goto out;
4763 
4764 	/*
4765 	 * Change the uevent file for @dev to the new owner. The uevent file
4766 	 * was created in a separate step when @dev got added and we mirror
4767 	 * that step here.
4768 	 */
4769 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4770 					kgid);
4771 	if (error)
4772 		goto out;
4773 
4774 	/*
4775 	 * Change the device groups, the device groups associated with the
4776 	 * device class, and the groups associated with the device type of @dev
4777 	 * to @kuid/@kgid.
4778 	 */
4779 	error = device_attrs_change_owner(dev, kuid, kgid);
4780 	if (error)
4781 		goto out;
4782 
4783 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4784 	if (error)
4785 		goto out;
4786 
4787 	/*
4788 	 * Change the owner of the symlink located in the class directory of
4789 	 * the device class associated with @dev which points to the actual
4790 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4791 	 * symlink shows the same permissions as its target.
4792 	 */
4793 	sp = class_to_subsys(dev->class);
4794 	if (!sp) {
4795 		error = -EINVAL;
4796 		goto out;
4797 	}
4798 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4799 	subsys_put(sp);
4800 
4801 out:
4802 	put_device(dev);
4803 	return error;
4804 }
4805 EXPORT_SYMBOL_GPL(device_change_owner);
4806 
4807 /**
4808  * device_shutdown - call ->shutdown() on each device to shutdown.
4809  */
4810 void device_shutdown(void)
4811 {
4812 	struct device *dev, *parent;
4813 
4814 	wait_for_device_probe();
4815 	device_block_probing();
4816 
4817 	cpufreq_suspend();
4818 
4819 	spin_lock(&devices_kset->list_lock);
4820 	/*
4821 	 * Walk the devices list backward, shutting down each in turn.
4822 	 * Beware that device unplug events may also start pulling
4823 	 * devices offline, even as the system is shutting down.
4824 	 */
4825 	while (!list_empty(&devices_kset->list)) {
4826 		dev = list_entry(devices_kset->list.prev, struct device,
4827 				kobj.entry);
4828 
4829 		/*
4830 		 * hold reference count of device's parent to
4831 		 * prevent it from being freed because parent's
4832 		 * lock is to be held
4833 		 */
4834 		parent = get_device(dev->parent);
4835 		get_device(dev);
4836 		/*
4837 		 * Make sure the device is off the kset list, in the
4838 		 * event that dev->*->shutdown() doesn't remove it.
4839 		 */
4840 		list_del_init(&dev->kobj.entry);
4841 		spin_unlock(&devices_kset->list_lock);
4842 
4843 		/* hold lock to avoid race with probe/release */
4844 		if (parent)
4845 			device_lock(parent);
4846 		device_lock(dev);
4847 
4848 		/* Don't allow any more runtime suspends */
4849 		pm_runtime_get_noresume(dev);
4850 		pm_runtime_barrier(dev);
4851 
4852 		if (dev->class && dev->class->shutdown_pre) {
4853 			if (initcall_debug)
4854 				dev_info(dev, "shutdown_pre\n");
4855 			dev->class->shutdown_pre(dev);
4856 		}
4857 		if (dev->bus && dev->bus->shutdown) {
4858 			if (initcall_debug)
4859 				dev_info(dev, "shutdown\n");
4860 			dev->bus->shutdown(dev);
4861 		} else if (dev->driver && dev->driver->shutdown) {
4862 			if (initcall_debug)
4863 				dev_info(dev, "shutdown\n");
4864 			dev->driver->shutdown(dev);
4865 		}
4866 
4867 		device_unlock(dev);
4868 		if (parent)
4869 			device_unlock(parent);
4870 
4871 		put_device(dev);
4872 		put_device(parent);
4873 
4874 		spin_lock(&devices_kset->list_lock);
4875 	}
4876 	spin_unlock(&devices_kset->list_lock);
4877 }
4878 
4879 /*
4880  * Device logging functions
4881  */
4882 
4883 #ifdef CONFIG_PRINTK
4884 static void
4885 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4886 {
4887 	const char *subsys;
4888 
4889 	memset(dev_info, 0, sizeof(*dev_info));
4890 
4891 	if (dev->class)
4892 		subsys = dev->class->name;
4893 	else if (dev->bus)
4894 		subsys = dev->bus->name;
4895 	else
4896 		return;
4897 
4898 	strscpy(dev_info->subsystem, subsys);
4899 
4900 	/*
4901 	 * Add device identifier DEVICE=:
4902 	 *   b12:8         block dev_t
4903 	 *   c127:3        char dev_t
4904 	 *   n8            netdev ifindex
4905 	 *   +sound:card0  subsystem:devname
4906 	 */
4907 	if (MAJOR(dev->devt)) {
4908 		char c;
4909 
4910 		if (strcmp(subsys, "block") == 0)
4911 			c = 'b';
4912 		else
4913 			c = 'c';
4914 
4915 		snprintf(dev_info->device, sizeof(dev_info->device),
4916 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4917 	} else if (strcmp(subsys, "net") == 0) {
4918 		struct net_device *net = to_net_dev(dev);
4919 
4920 		snprintf(dev_info->device, sizeof(dev_info->device),
4921 			 "n%u", net->ifindex);
4922 	} else {
4923 		snprintf(dev_info->device, sizeof(dev_info->device),
4924 			 "+%s:%s", subsys, dev_name(dev));
4925 	}
4926 }
4927 
4928 int dev_vprintk_emit(int level, const struct device *dev,
4929 		     const char *fmt, va_list args)
4930 {
4931 	struct dev_printk_info dev_info;
4932 
4933 	set_dev_info(dev, &dev_info);
4934 
4935 	return vprintk_emit(0, level, &dev_info, fmt, args);
4936 }
4937 EXPORT_SYMBOL(dev_vprintk_emit);
4938 
4939 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4940 {
4941 	va_list args;
4942 	int r;
4943 
4944 	va_start(args, fmt);
4945 
4946 	r = dev_vprintk_emit(level, dev, fmt, args);
4947 
4948 	va_end(args);
4949 
4950 	return r;
4951 }
4952 EXPORT_SYMBOL(dev_printk_emit);
4953 
4954 static void __dev_printk(const char *level, const struct device *dev,
4955 			struct va_format *vaf)
4956 {
4957 	if (dev)
4958 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4959 				dev_driver_string(dev), dev_name(dev), vaf);
4960 	else
4961 		printk("%s(NULL device *): %pV", level, vaf);
4962 }
4963 
4964 void _dev_printk(const char *level, const struct device *dev,
4965 		 const char *fmt, ...)
4966 {
4967 	struct va_format vaf;
4968 	va_list args;
4969 
4970 	va_start(args, fmt);
4971 
4972 	vaf.fmt = fmt;
4973 	vaf.va = &args;
4974 
4975 	__dev_printk(level, dev, &vaf);
4976 
4977 	va_end(args);
4978 }
4979 EXPORT_SYMBOL(_dev_printk);
4980 
4981 #define define_dev_printk_level(func, kern_level)		\
4982 void func(const struct device *dev, const char *fmt, ...)	\
4983 {								\
4984 	struct va_format vaf;					\
4985 	va_list args;						\
4986 								\
4987 	va_start(args, fmt);					\
4988 								\
4989 	vaf.fmt = fmt;						\
4990 	vaf.va = &args;						\
4991 								\
4992 	__dev_printk(kern_level, dev, &vaf);			\
4993 								\
4994 	va_end(args);						\
4995 }								\
4996 EXPORT_SYMBOL(func);
4997 
4998 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4999 define_dev_printk_level(_dev_alert, KERN_ALERT);
5000 define_dev_printk_level(_dev_crit, KERN_CRIT);
5001 define_dev_printk_level(_dev_err, KERN_ERR);
5002 define_dev_printk_level(_dev_warn, KERN_WARNING);
5003 define_dev_printk_level(_dev_notice, KERN_NOTICE);
5004 define_dev_printk_level(_dev_info, KERN_INFO);
5005 
5006 #endif
5007 
5008 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
5009 			       const char *fmt, va_list vargsp)
5010 {
5011 	struct va_format vaf;
5012 	va_list vargs;
5013 
5014 	/*
5015 	 * On x86_64 and possibly on other architectures, va_list is actually a
5016 	 * size-1 array containing a structure.  As a result, function parameter
5017 	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5018 	 * T(*)[1], which is expected by its assignment to vaf.va below.
5019 	 *
5020 	 * One standard way to solve this mess is by creating a copy in a local
5021 	 * variable of type va_list and then using a pointer to that local copy
5022 	 * instead, which is the approach employed here.
5023 	 */
5024 	va_copy(vargs, vargsp);
5025 
5026 	vaf.fmt = fmt;
5027 	vaf.va = &vargs;
5028 
5029 	switch (err) {
5030 	case -EPROBE_DEFER:
5031 		device_set_deferred_probe_reason(dev, &vaf);
5032 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5033 		break;
5034 
5035 	case -ENOMEM:
5036 		/* Don't print anything on -ENOMEM, there's already enough output */
5037 		break;
5038 
5039 	default:
5040 		/* Log fatal final failures as errors, otherwise produce warnings */
5041 		if (fatal)
5042 			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5043 		else
5044 			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5045 		break;
5046 	}
5047 
5048 	va_end(vargs);
5049 }
5050 
5051 /**
5052  * dev_err_probe - probe error check and log helper
5053  * @dev: the pointer to the struct device
5054  * @err: error value to test
5055  * @fmt: printf-style format string
5056  * @...: arguments as specified in the format string
5057  *
5058  * This helper implements common pattern present in probe functions for error
5059  * checking: print debug or error message depending if the error value is
5060  * -EPROBE_DEFER and propagate error upwards.
5061  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5062  * checked later by reading devices_deferred debugfs attribute.
5063  * It replaces the following code sequence::
5064  *
5065  * 	if (err != -EPROBE_DEFER)
5066  * 		dev_err(dev, ...);
5067  * 	else
5068  * 		dev_dbg(dev, ...);
5069  * 	return err;
5070  *
5071  * with::
5072  *
5073  * 	return dev_err_probe(dev, err, ...);
5074  *
5075  * Using this helper in your probe function is totally fine even if @err
5076  * is known to never be -EPROBE_DEFER.
5077  * The benefit compared to a normal dev_err() is the standardized format
5078  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5079  * instead of "-35"), and having the error code returned allows more
5080  * compact error paths.
5081  *
5082  * Returns @err.
5083  */
5084 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5085 {
5086 	va_list vargs;
5087 
5088 	va_start(vargs, fmt);
5089 
5090 	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5091 	__dev_probe_failed(dev, err, true, fmt, vargs);
5092 
5093 	va_end(vargs);
5094 
5095 	return err;
5096 }
5097 EXPORT_SYMBOL_GPL(dev_err_probe);
5098 
5099 /**
5100  * dev_warn_probe - probe error check and log helper
5101  * @dev: the pointer to the struct device
5102  * @err: error value to test
5103  * @fmt: printf-style format string
5104  * @...: arguments as specified in the format string
5105  *
5106  * This helper implements common pattern present in probe functions for error
5107  * checking: print debug or warning message depending if the error value is
5108  * -EPROBE_DEFER and propagate error upwards.
5109  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5110  * checked later by reading devices_deferred debugfs attribute.
5111  * It replaces the following code sequence::
5112  *
5113  * 	if (err != -EPROBE_DEFER)
5114  * 		dev_warn(dev, ...);
5115  * 	else
5116  * 		dev_dbg(dev, ...);
5117  * 	return err;
5118  *
5119  * with::
5120  *
5121  * 	return dev_warn_probe(dev, err, ...);
5122  *
5123  * Using this helper in your probe function is totally fine even if @err
5124  * is known to never be -EPROBE_DEFER.
5125  * The benefit compared to a normal dev_warn() is the standardized format
5126  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5127  * instead of "-35"), and having the error code returned allows more
5128  * compact error paths.
5129  *
5130  * Returns @err.
5131  */
5132 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5133 {
5134 	va_list vargs;
5135 
5136 	va_start(vargs, fmt);
5137 
5138 	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5139 	__dev_probe_failed(dev, err, false, fmt, vargs);
5140 
5141 	va_end(vargs);
5142 
5143 	return err;
5144 }
5145 EXPORT_SYMBOL_GPL(dev_warn_probe);
5146 
5147 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5148 {
5149 	return fwnode && !IS_ERR(fwnode->secondary);
5150 }
5151 
5152 /**
5153  * set_primary_fwnode - Change the primary firmware node of a given device.
5154  * @dev: Device to handle.
5155  * @fwnode: New primary firmware node of the device.
5156  *
5157  * Set the device's firmware node pointer to @fwnode, but if a secondary
5158  * firmware node of the device is present, preserve it.
5159  *
5160  * Valid fwnode cases are:
5161  *  - primary --> secondary --> -ENODEV
5162  *  - primary --> NULL
5163  *  - secondary --> -ENODEV
5164  *  - NULL
5165  */
5166 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5167 {
5168 	struct device *parent = dev->parent;
5169 	struct fwnode_handle *fn = dev->fwnode;
5170 
5171 	if (fwnode) {
5172 		if (fwnode_is_primary(fn))
5173 			fn = fn->secondary;
5174 
5175 		if (fn) {
5176 			WARN_ON(fwnode->secondary);
5177 			fwnode->secondary = fn;
5178 		}
5179 		dev->fwnode = fwnode;
5180 	} else {
5181 		if (fwnode_is_primary(fn)) {
5182 			dev->fwnode = fn->secondary;
5183 
5184 			/* Skip nullifying fn->secondary if the primary is shared */
5185 			if (parent && fn == parent->fwnode)
5186 				return;
5187 
5188 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5189 			fn->secondary = NULL;
5190 		} else {
5191 			dev->fwnode = NULL;
5192 		}
5193 	}
5194 }
5195 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5196 
5197 /**
5198  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5199  * @dev: Device to handle.
5200  * @fwnode: New secondary firmware node of the device.
5201  *
5202  * If a primary firmware node of the device is present, set its secondary
5203  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5204  * @fwnode.
5205  */
5206 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5207 {
5208 	if (fwnode)
5209 		fwnode->secondary = ERR_PTR(-ENODEV);
5210 
5211 	if (fwnode_is_primary(dev->fwnode))
5212 		dev->fwnode->secondary = fwnode;
5213 	else
5214 		dev->fwnode = fwnode;
5215 }
5216 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5217 
5218 /**
5219  * device_set_of_node_from_dev - reuse device-tree node of another device
5220  * @dev: device whose device-tree node is being set
5221  * @dev2: device whose device-tree node is being reused
5222  *
5223  * Takes another reference to the new device-tree node after first dropping
5224  * any reference held to the old node.
5225  */
5226 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5227 {
5228 	of_node_put(dev->of_node);
5229 	dev->of_node = of_node_get(dev2->of_node);
5230 	dev->of_node_reused = true;
5231 }
5232 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5233 
5234 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5235 {
5236 	dev->fwnode = fwnode;
5237 	dev->of_node = to_of_node(fwnode);
5238 }
5239 EXPORT_SYMBOL_GPL(device_set_node);
5240 
5241 int device_match_name(struct device *dev, const void *name)
5242 {
5243 	return sysfs_streq(dev_name(dev), name);
5244 }
5245 EXPORT_SYMBOL_GPL(device_match_name);
5246 
5247 int device_match_of_node(struct device *dev, const void *np)
5248 {
5249 	return dev->of_node == np;
5250 }
5251 EXPORT_SYMBOL_GPL(device_match_of_node);
5252 
5253 int device_match_fwnode(struct device *dev, const void *fwnode)
5254 {
5255 	return dev_fwnode(dev) == fwnode;
5256 }
5257 EXPORT_SYMBOL_GPL(device_match_fwnode);
5258 
5259 int device_match_devt(struct device *dev, const void *pdevt)
5260 {
5261 	return dev->devt == *(dev_t *)pdevt;
5262 }
5263 EXPORT_SYMBOL_GPL(device_match_devt);
5264 
5265 int device_match_acpi_dev(struct device *dev, const void *adev)
5266 {
5267 	return ACPI_COMPANION(dev) == adev;
5268 }
5269 EXPORT_SYMBOL(device_match_acpi_dev);
5270 
5271 int device_match_acpi_handle(struct device *dev, const void *handle)
5272 {
5273 	return ACPI_HANDLE(dev) == handle;
5274 }
5275 EXPORT_SYMBOL(device_match_acpi_handle);
5276 
5277 int device_match_any(struct device *dev, const void *unused)
5278 {
5279 	return 1;
5280 }
5281 EXPORT_SYMBOL_GPL(device_match_any);
5282