1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/kdev_t.h> 22 #include <linux/notifier.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/blkdev.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * 53 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 54 * represents the detail that the firmware lists @sup fwnode as supplying a 55 * resource to @con. 56 * 57 * The driver core will use the fwnode link to create a device link between the 58 * two device objects corresponding to @con and @sup when they are created. The 59 * driver core will automatically delete the fwnode link between @con and @sup 60 * after doing that. 61 * 62 * Attempts to create duplicate links between the same pair of fwnode handles 63 * are ignored and there is no reference counting. 64 */ 65 static int __fwnode_link_add(struct fwnode_handle *con, 66 struct fwnode_handle *sup, u8 flags) 67 { 68 struct fwnode_link *link; 69 70 list_for_each_entry(link, &sup->consumers, s_hook) 71 if (link->consumer == con) { 72 link->flags |= flags; 73 return 0; 74 } 75 76 link = kzalloc(sizeof(*link), GFP_KERNEL); 77 if (!link) 78 return -ENOMEM; 79 80 link->supplier = sup; 81 INIT_LIST_HEAD(&link->s_hook); 82 link->consumer = con; 83 INIT_LIST_HEAD(&link->c_hook); 84 link->flags = flags; 85 86 list_add(&link->s_hook, &sup->consumers); 87 list_add(&link->c_hook, &con->suppliers); 88 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 89 con, sup); 90 91 return 0; 92 } 93 94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 95 { 96 int ret; 97 98 mutex_lock(&fwnode_link_lock); 99 ret = __fwnode_link_add(con, sup, 0); 100 mutex_unlock(&fwnode_link_lock); 101 return ret; 102 } 103 104 /** 105 * __fwnode_link_del - Delete a link between two fwnode_handles. 106 * @link: the fwnode_link to be deleted 107 * 108 * The fwnode_link_lock needs to be held when this function is called. 109 */ 110 static void __fwnode_link_del(struct fwnode_link *link) 111 { 112 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 113 link->consumer, link->supplier); 114 list_del(&link->s_hook); 115 list_del(&link->c_hook); 116 kfree(link); 117 } 118 119 /** 120 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 121 * @link: the fwnode_link to be marked 122 * 123 * The fwnode_link_lock needs to be held when this function is called. 124 */ 125 static void __fwnode_link_cycle(struct fwnode_link *link) 126 { 127 pr_debug("%pfwf: Relaxing link with %pfwf\n", 128 link->consumer, link->supplier); 129 link->flags |= FWLINK_FLAG_CYCLE; 130 } 131 132 /** 133 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 134 * @fwnode: fwnode whose supplier links need to be deleted 135 * 136 * Deletes all supplier links connecting directly to @fwnode. 137 */ 138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 139 { 140 struct fwnode_link *link, *tmp; 141 142 mutex_lock(&fwnode_link_lock); 143 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 144 __fwnode_link_del(link); 145 mutex_unlock(&fwnode_link_lock); 146 } 147 148 /** 149 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 150 * @fwnode: fwnode whose consumer links need to be deleted 151 * 152 * Deletes all consumer links connecting directly to @fwnode. 153 */ 154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 155 { 156 struct fwnode_link *link, *tmp; 157 158 mutex_lock(&fwnode_link_lock); 159 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 160 __fwnode_link_del(link); 161 mutex_unlock(&fwnode_link_lock); 162 } 163 164 /** 165 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 166 * @fwnode: fwnode whose links needs to be deleted 167 * 168 * Deletes all links connecting directly to a fwnode. 169 */ 170 void fwnode_links_purge(struct fwnode_handle *fwnode) 171 { 172 fwnode_links_purge_suppliers(fwnode); 173 fwnode_links_purge_consumers(fwnode); 174 } 175 176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 177 { 178 struct fwnode_handle *child; 179 180 /* Don't purge consumer links of an added child */ 181 if (fwnode->dev) 182 return; 183 184 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 185 fwnode_links_purge_consumers(fwnode); 186 187 fwnode_for_each_available_child_node(fwnode, child) 188 fw_devlink_purge_absent_suppliers(child); 189 } 190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 191 192 /** 193 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 194 * @from: move consumers away from this fwnode 195 * @to: move consumers to this fwnode 196 * 197 * Move all consumer links from @from fwnode to @to fwnode. 198 */ 199 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 200 struct fwnode_handle *to) 201 { 202 struct fwnode_link *link, *tmp; 203 204 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 205 __fwnode_link_add(link->consumer, to, link->flags); 206 __fwnode_link_del(link); 207 } 208 } 209 210 /** 211 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 212 * @fwnode: fwnode from which to pick up dangling consumers 213 * @new_sup: fwnode of new supplier 214 * 215 * If the @fwnode has a corresponding struct device and the device supports 216 * probing (that is, added to a bus), then we want to let fw_devlink create 217 * MANAGED device links to this device, so leave @fwnode and its descendant's 218 * fwnode links alone. 219 * 220 * Otherwise, move its consumers to the new supplier @new_sup. 221 */ 222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 223 struct fwnode_handle *new_sup) 224 { 225 struct fwnode_handle *child; 226 227 if (fwnode->dev && fwnode->dev->bus) 228 return; 229 230 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 231 __fwnode_links_move_consumers(fwnode, new_sup); 232 233 fwnode_for_each_available_child_node(fwnode, child) 234 __fw_devlink_pickup_dangling_consumers(child, new_sup); 235 } 236 237 static DEFINE_MUTEX(device_links_lock); 238 DEFINE_STATIC_SRCU(device_links_srcu); 239 240 static inline void device_links_write_lock(void) 241 { 242 mutex_lock(&device_links_lock); 243 } 244 245 static inline void device_links_write_unlock(void) 246 { 247 mutex_unlock(&device_links_lock); 248 } 249 250 int device_links_read_lock(void) __acquires(&device_links_srcu) 251 { 252 return srcu_read_lock(&device_links_srcu); 253 } 254 255 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 256 { 257 srcu_read_unlock(&device_links_srcu, idx); 258 } 259 260 int device_links_read_lock_held(void) 261 { 262 return srcu_read_lock_held(&device_links_srcu); 263 } 264 265 static void device_link_synchronize_removal(void) 266 { 267 synchronize_srcu(&device_links_srcu); 268 } 269 270 static void device_link_remove_from_lists(struct device_link *link) 271 { 272 list_del_rcu(&link->s_node); 273 list_del_rcu(&link->c_node); 274 } 275 276 static bool device_is_ancestor(struct device *dev, struct device *target) 277 { 278 while (target->parent) { 279 target = target->parent; 280 if (dev == target) 281 return true; 282 } 283 return false; 284 } 285 286 static inline bool device_link_flag_is_sync_state_only(u32 flags) 287 { 288 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) == 289 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED); 290 } 291 292 /** 293 * device_is_dependent - Check if one device depends on another one 294 * @dev: Device to check dependencies for. 295 * @target: Device to check against. 296 * 297 * Check if @target depends on @dev or any device dependent on it (its child or 298 * its consumer etc). Return 1 if that is the case or 0 otherwise. 299 */ 300 int device_is_dependent(struct device *dev, void *target) 301 { 302 struct device_link *link; 303 int ret; 304 305 /* 306 * The "ancestors" check is needed to catch the case when the target 307 * device has not been completely initialized yet and it is still 308 * missing from the list of children of its parent device. 309 */ 310 if (dev == target || device_is_ancestor(dev, target)) 311 return 1; 312 313 ret = device_for_each_child(dev, target, device_is_dependent); 314 if (ret) 315 return ret; 316 317 list_for_each_entry(link, &dev->links.consumers, s_node) { 318 if (device_link_flag_is_sync_state_only(link->flags)) 319 continue; 320 321 if (link->consumer == target) 322 return 1; 323 324 ret = device_is_dependent(link->consumer, target); 325 if (ret) 326 break; 327 } 328 return ret; 329 } 330 331 static void device_link_init_status(struct device_link *link, 332 struct device *consumer, 333 struct device *supplier) 334 { 335 switch (supplier->links.status) { 336 case DL_DEV_PROBING: 337 switch (consumer->links.status) { 338 case DL_DEV_PROBING: 339 /* 340 * A consumer driver can create a link to a supplier 341 * that has not completed its probing yet as long as it 342 * knows that the supplier is already functional (for 343 * example, it has just acquired some resources from the 344 * supplier). 345 */ 346 link->status = DL_STATE_CONSUMER_PROBE; 347 break; 348 default: 349 link->status = DL_STATE_DORMANT; 350 break; 351 } 352 break; 353 case DL_DEV_DRIVER_BOUND: 354 switch (consumer->links.status) { 355 case DL_DEV_PROBING: 356 link->status = DL_STATE_CONSUMER_PROBE; 357 break; 358 case DL_DEV_DRIVER_BOUND: 359 link->status = DL_STATE_ACTIVE; 360 break; 361 default: 362 link->status = DL_STATE_AVAILABLE; 363 break; 364 } 365 break; 366 case DL_DEV_UNBINDING: 367 link->status = DL_STATE_SUPPLIER_UNBIND; 368 break; 369 default: 370 link->status = DL_STATE_DORMANT; 371 break; 372 } 373 } 374 375 static int device_reorder_to_tail(struct device *dev, void *not_used) 376 { 377 struct device_link *link; 378 379 /* 380 * Devices that have not been registered yet will be put to the ends 381 * of the lists during the registration, so skip them here. 382 */ 383 if (device_is_registered(dev)) 384 devices_kset_move_last(dev); 385 386 if (device_pm_initialized(dev)) 387 device_pm_move_last(dev); 388 389 device_for_each_child(dev, NULL, device_reorder_to_tail); 390 list_for_each_entry(link, &dev->links.consumers, s_node) { 391 if (device_link_flag_is_sync_state_only(link->flags)) 392 continue; 393 device_reorder_to_tail(link->consumer, NULL); 394 } 395 396 return 0; 397 } 398 399 /** 400 * device_pm_move_to_tail - Move set of devices to the end of device lists 401 * @dev: Device to move 402 * 403 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 404 * 405 * It moves the @dev along with all of its children and all of its consumers 406 * to the ends of the device_kset and dpm_list, recursively. 407 */ 408 void device_pm_move_to_tail(struct device *dev) 409 { 410 int idx; 411 412 idx = device_links_read_lock(); 413 device_pm_lock(); 414 device_reorder_to_tail(dev, NULL); 415 device_pm_unlock(); 416 device_links_read_unlock(idx); 417 } 418 419 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 420 421 static ssize_t status_show(struct device *dev, 422 struct device_attribute *attr, char *buf) 423 { 424 const char *output; 425 426 switch (to_devlink(dev)->status) { 427 case DL_STATE_NONE: 428 output = "not tracked"; 429 break; 430 case DL_STATE_DORMANT: 431 output = "dormant"; 432 break; 433 case DL_STATE_AVAILABLE: 434 output = "available"; 435 break; 436 case DL_STATE_CONSUMER_PROBE: 437 output = "consumer probing"; 438 break; 439 case DL_STATE_ACTIVE: 440 output = "active"; 441 break; 442 case DL_STATE_SUPPLIER_UNBIND: 443 output = "supplier unbinding"; 444 break; 445 default: 446 output = "unknown"; 447 break; 448 } 449 450 return sysfs_emit(buf, "%s\n", output); 451 } 452 static DEVICE_ATTR_RO(status); 453 454 static ssize_t auto_remove_on_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct device_link *link = to_devlink(dev); 458 const char *output; 459 460 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 461 output = "supplier unbind"; 462 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 463 output = "consumer unbind"; 464 else 465 output = "never"; 466 467 return sysfs_emit(buf, "%s\n", output); 468 } 469 static DEVICE_ATTR_RO(auto_remove_on); 470 471 static ssize_t runtime_pm_show(struct device *dev, 472 struct device_attribute *attr, char *buf) 473 { 474 struct device_link *link = to_devlink(dev); 475 476 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 477 } 478 static DEVICE_ATTR_RO(runtime_pm); 479 480 static ssize_t sync_state_only_show(struct device *dev, 481 struct device_attribute *attr, char *buf) 482 { 483 struct device_link *link = to_devlink(dev); 484 485 return sysfs_emit(buf, "%d\n", 486 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 487 } 488 static DEVICE_ATTR_RO(sync_state_only); 489 490 static struct attribute *devlink_attrs[] = { 491 &dev_attr_status.attr, 492 &dev_attr_auto_remove_on.attr, 493 &dev_attr_runtime_pm.attr, 494 &dev_attr_sync_state_only.attr, 495 NULL, 496 }; 497 ATTRIBUTE_GROUPS(devlink); 498 499 static void device_link_release_fn(struct work_struct *work) 500 { 501 struct device_link *link = container_of(work, struct device_link, rm_work); 502 503 /* Ensure that all references to the link object have been dropped. */ 504 device_link_synchronize_removal(); 505 506 pm_runtime_release_supplier(link); 507 /* 508 * If supplier_preactivated is set, the link has been dropped between 509 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 510 * in __driver_probe_device(). In that case, drop the supplier's 511 * PM-runtime usage counter to remove the reference taken by 512 * pm_runtime_get_suppliers(). 513 */ 514 if (link->supplier_preactivated) 515 pm_runtime_put_noidle(link->supplier); 516 517 pm_request_idle(link->supplier); 518 519 put_device(link->consumer); 520 put_device(link->supplier); 521 kfree(link); 522 } 523 524 static void devlink_dev_release(struct device *dev) 525 { 526 struct device_link *link = to_devlink(dev); 527 528 INIT_WORK(&link->rm_work, device_link_release_fn); 529 /* 530 * It may take a while to complete this work because of the SRCU 531 * synchronization in device_link_release_fn() and if the consumer or 532 * supplier devices get deleted when it runs, so put it into the "long" 533 * workqueue. 534 */ 535 queue_work(system_long_wq, &link->rm_work); 536 } 537 538 static struct class devlink_class = { 539 .name = "devlink", 540 .dev_groups = devlink_groups, 541 .dev_release = devlink_dev_release, 542 }; 543 544 static int devlink_add_symlinks(struct device *dev, 545 struct class_interface *class_intf) 546 { 547 int ret; 548 size_t len; 549 struct device_link *link = to_devlink(dev); 550 struct device *sup = link->supplier; 551 struct device *con = link->consumer; 552 char *buf; 553 554 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 555 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 556 len += strlen(":"); 557 len += strlen("supplier:") + 1; 558 buf = kzalloc(len, GFP_KERNEL); 559 if (!buf) 560 return -ENOMEM; 561 562 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 563 if (ret) 564 goto out; 565 566 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 567 if (ret) 568 goto err_con; 569 570 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 571 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 572 if (ret) 573 goto err_con_dev; 574 575 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 576 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 577 if (ret) 578 goto err_sup_dev; 579 580 goto out; 581 582 err_sup_dev: 583 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 584 sysfs_remove_link(&sup->kobj, buf); 585 err_con_dev: 586 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 587 err_con: 588 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 589 out: 590 kfree(buf); 591 return ret; 592 } 593 594 static void devlink_remove_symlinks(struct device *dev, 595 struct class_interface *class_intf) 596 { 597 struct device_link *link = to_devlink(dev); 598 size_t len; 599 struct device *sup = link->supplier; 600 struct device *con = link->consumer; 601 char *buf; 602 603 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 606 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 607 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 608 len += strlen(":"); 609 len += strlen("supplier:") + 1; 610 buf = kzalloc(len, GFP_KERNEL); 611 if (!buf) { 612 WARN(1, "Unable to properly free device link symlinks!\n"); 613 return; 614 } 615 616 if (device_is_registered(con)) { 617 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 618 sysfs_remove_link(&con->kobj, buf); 619 } 620 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 621 sysfs_remove_link(&sup->kobj, buf); 622 kfree(buf); 623 } 624 625 static struct class_interface devlink_class_intf = { 626 .class = &devlink_class, 627 .add_dev = devlink_add_symlinks, 628 .remove_dev = devlink_remove_symlinks, 629 }; 630 631 static int __init devlink_class_init(void) 632 { 633 int ret; 634 635 ret = class_register(&devlink_class); 636 if (ret) 637 return ret; 638 639 ret = class_interface_register(&devlink_class_intf); 640 if (ret) 641 class_unregister(&devlink_class); 642 643 return ret; 644 } 645 postcore_initcall(devlink_class_init); 646 647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 648 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 649 DL_FLAG_AUTOPROBE_CONSUMER | \ 650 DL_FLAG_SYNC_STATE_ONLY | \ 651 DL_FLAG_INFERRED | \ 652 DL_FLAG_CYCLE) 653 654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 655 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 656 657 /** 658 * device_link_add - Create a link between two devices. 659 * @consumer: Consumer end of the link. 660 * @supplier: Supplier end of the link. 661 * @flags: Link flags. 662 * 663 * The caller is responsible for the proper synchronization of the link creation 664 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 665 * runtime PM framework to take the link into account. Second, if the 666 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 667 * be forced into the active meta state and reference-counted upon the creation 668 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 669 * ignored. 670 * 671 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 672 * expected to release the link returned by it directly with the help of either 673 * device_link_del() or device_link_remove(). 674 * 675 * If that flag is not set, however, the caller of this function is handing the 676 * management of the link over to the driver core entirely and its return value 677 * can only be used to check whether or not the link is present. In that case, 678 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 679 * flags can be used to indicate to the driver core when the link can be safely 680 * deleted. Namely, setting one of them in @flags indicates to the driver core 681 * that the link is not going to be used (by the given caller of this function) 682 * after unbinding the consumer or supplier driver, respectively, from its 683 * device, so the link can be deleted at that point. If none of them is set, 684 * the link will be maintained until one of the devices pointed to by it (either 685 * the consumer or the supplier) is unregistered. 686 * 687 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 688 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 689 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 690 * be used to request the driver core to automatically probe for a consumer 691 * driver after successfully binding a driver to the supplier device. 692 * 693 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 694 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 695 * the same time is invalid and will cause NULL to be returned upfront. 696 * However, if a device link between the given @consumer and @supplier pair 697 * exists already when this function is called for them, the existing link will 698 * be returned regardless of its current type and status (the link's flags may 699 * be modified then). The caller of this function is then expected to treat 700 * the link as though it has just been created, so (in particular) if 701 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 702 * explicitly when not needed any more (as stated above). 703 * 704 * A side effect of the link creation is re-ordering of dpm_list and the 705 * devices_kset list by moving the consumer device and all devices depending 706 * on it to the ends of these lists (that does not happen to devices that have 707 * not been registered when this function is called). 708 * 709 * The supplier device is required to be registered when this function is called 710 * and NULL will be returned if that is not the case. The consumer device need 711 * not be registered, however. 712 */ 713 struct device_link *device_link_add(struct device *consumer, 714 struct device *supplier, u32 flags) 715 { 716 struct device_link *link; 717 718 if (!consumer || !supplier || consumer == supplier || 719 flags & ~DL_ADD_VALID_FLAGS || 720 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 721 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 722 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 723 DL_FLAG_AUTOREMOVE_SUPPLIER))) 724 return NULL; 725 726 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 727 if (pm_runtime_get_sync(supplier) < 0) { 728 pm_runtime_put_noidle(supplier); 729 return NULL; 730 } 731 } 732 733 if (!(flags & DL_FLAG_STATELESS)) 734 flags |= DL_FLAG_MANAGED; 735 736 if (flags & DL_FLAG_SYNC_STATE_ONLY && 737 !device_link_flag_is_sync_state_only(flags)) 738 return NULL; 739 740 device_links_write_lock(); 741 device_pm_lock(); 742 743 /* 744 * If the supplier has not been fully registered yet or there is a 745 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 746 * the supplier already in the graph, return NULL. If the link is a 747 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 748 * because it only affects sync_state() callbacks. 749 */ 750 if (!device_pm_initialized(supplier) 751 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 752 device_is_dependent(consumer, supplier))) { 753 link = NULL; 754 goto out; 755 } 756 757 /* 758 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 759 * So, only create it if the consumer hasn't probed yet. 760 */ 761 if (flags & DL_FLAG_SYNC_STATE_ONLY && 762 consumer->links.status != DL_DEV_NO_DRIVER && 763 consumer->links.status != DL_DEV_PROBING) { 764 link = NULL; 765 goto out; 766 } 767 768 /* 769 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 770 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 771 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 772 */ 773 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 774 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 775 776 list_for_each_entry(link, &supplier->links.consumers, s_node) { 777 if (link->consumer != consumer) 778 continue; 779 780 if (link->flags & DL_FLAG_INFERRED && 781 !(flags & DL_FLAG_INFERRED)) 782 link->flags &= ~DL_FLAG_INFERRED; 783 784 if (flags & DL_FLAG_PM_RUNTIME) { 785 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 786 pm_runtime_new_link(consumer); 787 link->flags |= DL_FLAG_PM_RUNTIME; 788 } 789 if (flags & DL_FLAG_RPM_ACTIVE) 790 refcount_inc(&link->rpm_active); 791 } 792 793 if (flags & DL_FLAG_STATELESS) { 794 kref_get(&link->kref); 795 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 796 !(link->flags & DL_FLAG_STATELESS)) { 797 link->flags |= DL_FLAG_STATELESS; 798 goto reorder; 799 } else { 800 link->flags |= DL_FLAG_STATELESS; 801 goto out; 802 } 803 } 804 805 /* 806 * If the life time of the link following from the new flags is 807 * longer than indicated by the flags of the existing link, 808 * update the existing link to stay around longer. 809 */ 810 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 811 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 812 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 813 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 814 } 815 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 816 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 817 DL_FLAG_AUTOREMOVE_SUPPLIER); 818 } 819 if (!(link->flags & DL_FLAG_MANAGED)) { 820 kref_get(&link->kref); 821 link->flags |= DL_FLAG_MANAGED; 822 device_link_init_status(link, consumer, supplier); 823 } 824 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 825 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 826 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 827 goto reorder; 828 } 829 830 goto out; 831 } 832 833 link = kzalloc(sizeof(*link), GFP_KERNEL); 834 if (!link) 835 goto out; 836 837 refcount_set(&link->rpm_active, 1); 838 839 get_device(supplier); 840 link->supplier = supplier; 841 INIT_LIST_HEAD(&link->s_node); 842 get_device(consumer); 843 link->consumer = consumer; 844 INIT_LIST_HEAD(&link->c_node); 845 link->flags = flags; 846 kref_init(&link->kref); 847 848 link->link_dev.class = &devlink_class; 849 device_set_pm_not_required(&link->link_dev); 850 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 851 dev_bus_name(supplier), dev_name(supplier), 852 dev_bus_name(consumer), dev_name(consumer)); 853 if (device_register(&link->link_dev)) { 854 put_device(&link->link_dev); 855 link = NULL; 856 goto out; 857 } 858 859 if (flags & DL_FLAG_PM_RUNTIME) { 860 if (flags & DL_FLAG_RPM_ACTIVE) 861 refcount_inc(&link->rpm_active); 862 863 pm_runtime_new_link(consumer); 864 } 865 866 /* Determine the initial link state. */ 867 if (flags & DL_FLAG_STATELESS) 868 link->status = DL_STATE_NONE; 869 else 870 device_link_init_status(link, consumer, supplier); 871 872 /* 873 * Some callers expect the link creation during consumer driver probe to 874 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 875 */ 876 if (link->status == DL_STATE_CONSUMER_PROBE && 877 flags & DL_FLAG_PM_RUNTIME) 878 pm_runtime_resume(supplier); 879 880 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 881 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 882 883 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 884 dev_dbg(consumer, 885 "Linked as a sync state only consumer to %s\n", 886 dev_name(supplier)); 887 goto out; 888 } 889 890 reorder: 891 /* 892 * Move the consumer and all of the devices depending on it to the end 893 * of dpm_list and the devices_kset list. 894 * 895 * It is necessary to hold dpm_list locked throughout all that or else 896 * we may end up suspending with a wrong ordering of it. 897 */ 898 device_reorder_to_tail(consumer, NULL); 899 900 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 901 902 out: 903 device_pm_unlock(); 904 device_links_write_unlock(); 905 906 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 907 pm_runtime_put(supplier); 908 909 return link; 910 } 911 EXPORT_SYMBOL_GPL(device_link_add); 912 913 static void __device_link_del(struct kref *kref) 914 { 915 struct device_link *link = container_of(kref, struct device_link, kref); 916 917 dev_dbg(link->consumer, "Dropping the link to %s\n", 918 dev_name(link->supplier)); 919 920 pm_runtime_drop_link(link); 921 922 device_link_remove_from_lists(link); 923 device_unregister(&link->link_dev); 924 } 925 926 static void device_link_put_kref(struct device_link *link) 927 { 928 if (link->flags & DL_FLAG_STATELESS) 929 kref_put(&link->kref, __device_link_del); 930 else if (!device_is_registered(link->consumer)) 931 __device_link_del(&link->kref); 932 else 933 WARN(1, "Unable to drop a managed device link reference\n"); 934 } 935 936 /** 937 * device_link_del - Delete a stateless link between two devices. 938 * @link: Device link to delete. 939 * 940 * The caller must ensure proper synchronization of this function with runtime 941 * PM. If the link was added multiple times, it needs to be deleted as often. 942 * Care is required for hotplugged devices: Their links are purged on removal 943 * and calling device_link_del() is then no longer allowed. 944 */ 945 void device_link_del(struct device_link *link) 946 { 947 device_links_write_lock(); 948 device_link_put_kref(link); 949 device_links_write_unlock(); 950 } 951 EXPORT_SYMBOL_GPL(device_link_del); 952 953 /** 954 * device_link_remove - Delete a stateless link between two devices. 955 * @consumer: Consumer end of the link. 956 * @supplier: Supplier end of the link. 957 * 958 * The caller must ensure proper synchronization of this function with runtime 959 * PM. 960 */ 961 void device_link_remove(void *consumer, struct device *supplier) 962 { 963 struct device_link *link; 964 965 if (WARN_ON(consumer == supplier)) 966 return; 967 968 device_links_write_lock(); 969 970 list_for_each_entry(link, &supplier->links.consumers, s_node) { 971 if (link->consumer == consumer) { 972 device_link_put_kref(link); 973 break; 974 } 975 } 976 977 device_links_write_unlock(); 978 } 979 EXPORT_SYMBOL_GPL(device_link_remove); 980 981 static void device_links_missing_supplier(struct device *dev) 982 { 983 struct device_link *link; 984 985 list_for_each_entry(link, &dev->links.suppliers, c_node) { 986 if (link->status != DL_STATE_CONSUMER_PROBE) 987 continue; 988 989 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 990 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 991 } else { 992 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 993 WRITE_ONCE(link->status, DL_STATE_DORMANT); 994 } 995 } 996 } 997 998 static bool dev_is_best_effort(struct device *dev) 999 { 1000 return (fw_devlink_best_effort && dev->can_match) || 1001 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1002 } 1003 1004 static struct fwnode_handle *fwnode_links_check_suppliers( 1005 struct fwnode_handle *fwnode) 1006 { 1007 struct fwnode_link *link; 1008 1009 if (!fwnode || fw_devlink_is_permissive()) 1010 return NULL; 1011 1012 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1013 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1014 return link->supplier; 1015 1016 return NULL; 1017 } 1018 1019 /** 1020 * device_links_check_suppliers - Check presence of supplier drivers. 1021 * @dev: Consumer device. 1022 * 1023 * Check links from this device to any suppliers. Walk the list of the device's 1024 * links to suppliers and see if all of them are available. If not, simply 1025 * return -EPROBE_DEFER. 1026 * 1027 * We need to guarantee that the supplier will not go away after the check has 1028 * been positive here. It only can go away in __device_release_driver() and 1029 * that function checks the device's links to consumers. This means we need to 1030 * mark the link as "consumer probe in progress" to make the supplier removal 1031 * wait for us to complete (or bad things may happen). 1032 * 1033 * Links without the DL_FLAG_MANAGED flag set are ignored. 1034 */ 1035 int device_links_check_suppliers(struct device *dev) 1036 { 1037 struct device_link *link; 1038 int ret = 0, fwnode_ret = 0; 1039 struct fwnode_handle *sup_fw; 1040 1041 /* 1042 * Device waiting for supplier to become available is not allowed to 1043 * probe. 1044 */ 1045 mutex_lock(&fwnode_link_lock); 1046 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1047 if (sup_fw) { 1048 if (!dev_is_best_effort(dev)) { 1049 fwnode_ret = -EPROBE_DEFER; 1050 dev_err_probe(dev, -EPROBE_DEFER, 1051 "wait for supplier %pfwf\n", sup_fw); 1052 } else { 1053 fwnode_ret = -EAGAIN; 1054 } 1055 } 1056 mutex_unlock(&fwnode_link_lock); 1057 if (fwnode_ret == -EPROBE_DEFER) 1058 return fwnode_ret; 1059 1060 device_links_write_lock(); 1061 1062 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1063 if (!(link->flags & DL_FLAG_MANAGED)) 1064 continue; 1065 1066 if (link->status != DL_STATE_AVAILABLE && 1067 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1068 1069 if (dev_is_best_effort(dev) && 1070 link->flags & DL_FLAG_INFERRED && 1071 !link->supplier->can_match) { 1072 ret = -EAGAIN; 1073 continue; 1074 } 1075 1076 device_links_missing_supplier(dev); 1077 dev_err_probe(dev, -EPROBE_DEFER, 1078 "supplier %s not ready\n", 1079 dev_name(link->supplier)); 1080 ret = -EPROBE_DEFER; 1081 break; 1082 } 1083 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1084 } 1085 dev->links.status = DL_DEV_PROBING; 1086 1087 device_links_write_unlock(); 1088 1089 return ret ? ret : fwnode_ret; 1090 } 1091 1092 /** 1093 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1094 * @dev: Device to call sync_state() on 1095 * @list: List head to queue the @dev on 1096 * 1097 * Queues a device for a sync_state() callback when the device links write lock 1098 * isn't held. This allows the sync_state() execution flow to use device links 1099 * APIs. The caller must ensure this function is called with 1100 * device_links_write_lock() held. 1101 * 1102 * This function does a get_device() to make sure the device is not freed while 1103 * on this list. 1104 * 1105 * So the caller must also ensure that device_links_flush_sync_list() is called 1106 * as soon as the caller releases device_links_write_lock(). This is necessary 1107 * to make sure the sync_state() is called in a timely fashion and the 1108 * put_device() is called on this device. 1109 */ 1110 static void __device_links_queue_sync_state(struct device *dev, 1111 struct list_head *list) 1112 { 1113 struct device_link *link; 1114 1115 if (!dev_has_sync_state(dev)) 1116 return; 1117 if (dev->state_synced) 1118 return; 1119 1120 list_for_each_entry(link, &dev->links.consumers, s_node) { 1121 if (!(link->flags & DL_FLAG_MANAGED)) 1122 continue; 1123 if (link->status != DL_STATE_ACTIVE) 1124 return; 1125 } 1126 1127 /* 1128 * Set the flag here to avoid adding the same device to a list more 1129 * than once. This can happen if new consumers get added to the device 1130 * and probed before the list is flushed. 1131 */ 1132 dev->state_synced = true; 1133 1134 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1135 return; 1136 1137 get_device(dev); 1138 list_add_tail(&dev->links.defer_sync, list); 1139 } 1140 1141 /** 1142 * device_links_flush_sync_list - Call sync_state() on a list of devices 1143 * @list: List of devices to call sync_state() on 1144 * @dont_lock_dev: Device for which lock is already held by the caller 1145 * 1146 * Calls sync_state() on all the devices that have been queued for it. This 1147 * function is used in conjunction with __device_links_queue_sync_state(). The 1148 * @dont_lock_dev parameter is useful when this function is called from a 1149 * context where a device lock is already held. 1150 */ 1151 static void device_links_flush_sync_list(struct list_head *list, 1152 struct device *dont_lock_dev) 1153 { 1154 struct device *dev, *tmp; 1155 1156 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1157 list_del_init(&dev->links.defer_sync); 1158 1159 if (dev != dont_lock_dev) 1160 device_lock(dev); 1161 1162 dev_sync_state(dev); 1163 1164 if (dev != dont_lock_dev) 1165 device_unlock(dev); 1166 1167 put_device(dev); 1168 } 1169 } 1170 1171 void device_links_supplier_sync_state_pause(void) 1172 { 1173 device_links_write_lock(); 1174 defer_sync_state_count++; 1175 device_links_write_unlock(); 1176 } 1177 1178 void device_links_supplier_sync_state_resume(void) 1179 { 1180 struct device *dev, *tmp; 1181 LIST_HEAD(sync_list); 1182 1183 device_links_write_lock(); 1184 if (!defer_sync_state_count) { 1185 WARN(true, "Unmatched sync_state pause/resume!"); 1186 goto out; 1187 } 1188 defer_sync_state_count--; 1189 if (defer_sync_state_count) 1190 goto out; 1191 1192 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1193 /* 1194 * Delete from deferred_sync list before queuing it to 1195 * sync_list because defer_sync is used for both lists. 1196 */ 1197 list_del_init(&dev->links.defer_sync); 1198 __device_links_queue_sync_state(dev, &sync_list); 1199 } 1200 out: 1201 device_links_write_unlock(); 1202 1203 device_links_flush_sync_list(&sync_list, NULL); 1204 } 1205 1206 static int sync_state_resume_initcall(void) 1207 { 1208 device_links_supplier_sync_state_resume(); 1209 return 0; 1210 } 1211 late_initcall(sync_state_resume_initcall); 1212 1213 static void __device_links_supplier_defer_sync(struct device *sup) 1214 { 1215 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1216 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1217 } 1218 1219 static void device_link_drop_managed(struct device_link *link) 1220 { 1221 link->flags &= ~DL_FLAG_MANAGED; 1222 WRITE_ONCE(link->status, DL_STATE_NONE); 1223 kref_put(&link->kref, __device_link_del); 1224 } 1225 1226 static ssize_t waiting_for_supplier_show(struct device *dev, 1227 struct device_attribute *attr, 1228 char *buf) 1229 { 1230 bool val; 1231 1232 device_lock(dev); 1233 mutex_lock(&fwnode_link_lock); 1234 val = !!fwnode_links_check_suppliers(dev->fwnode); 1235 mutex_unlock(&fwnode_link_lock); 1236 device_unlock(dev); 1237 return sysfs_emit(buf, "%u\n", val); 1238 } 1239 static DEVICE_ATTR_RO(waiting_for_supplier); 1240 1241 /** 1242 * device_links_force_bind - Prepares device to be force bound 1243 * @dev: Consumer device. 1244 * 1245 * device_bind_driver() force binds a device to a driver without calling any 1246 * driver probe functions. So the consumer really isn't going to wait for any 1247 * supplier before it's bound to the driver. We still want the device link 1248 * states to be sensible when this happens. 1249 * 1250 * In preparation for device_bind_driver(), this function goes through each 1251 * supplier device links and checks if the supplier is bound. If it is, then 1252 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1253 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1254 */ 1255 void device_links_force_bind(struct device *dev) 1256 { 1257 struct device_link *link, *ln; 1258 1259 device_links_write_lock(); 1260 1261 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1262 if (!(link->flags & DL_FLAG_MANAGED)) 1263 continue; 1264 1265 if (link->status != DL_STATE_AVAILABLE) { 1266 device_link_drop_managed(link); 1267 continue; 1268 } 1269 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1270 } 1271 dev->links.status = DL_DEV_PROBING; 1272 1273 device_links_write_unlock(); 1274 } 1275 1276 /** 1277 * device_links_driver_bound - Update device links after probing its driver. 1278 * @dev: Device to update the links for. 1279 * 1280 * The probe has been successful, so update links from this device to any 1281 * consumers by changing their status to "available". 1282 * 1283 * Also change the status of @dev's links to suppliers to "active". 1284 * 1285 * Links without the DL_FLAG_MANAGED flag set are ignored. 1286 */ 1287 void device_links_driver_bound(struct device *dev) 1288 { 1289 struct device_link *link, *ln; 1290 LIST_HEAD(sync_list); 1291 1292 /* 1293 * If a device binds successfully, it's expected to have created all 1294 * the device links it needs to or make new device links as it needs 1295 * them. So, fw_devlink no longer needs to create device links to any 1296 * of the device's suppliers. 1297 * 1298 * Also, if a child firmware node of this bound device is not added as a 1299 * device by now, assume it is never going to be added. Make this bound 1300 * device the fallback supplier to the dangling consumers of the child 1301 * firmware node because this bound device is probably implementing the 1302 * child firmware node functionality and we don't want the dangling 1303 * consumers to defer probe indefinitely waiting for a device for the 1304 * child firmware node. 1305 */ 1306 if (dev->fwnode && dev->fwnode->dev == dev) { 1307 struct fwnode_handle *child; 1308 fwnode_links_purge_suppliers(dev->fwnode); 1309 mutex_lock(&fwnode_link_lock); 1310 fwnode_for_each_available_child_node(dev->fwnode, child) 1311 __fw_devlink_pickup_dangling_consumers(child, 1312 dev->fwnode); 1313 __fw_devlink_link_to_consumers(dev); 1314 mutex_unlock(&fwnode_link_lock); 1315 } 1316 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1317 1318 device_links_write_lock(); 1319 1320 list_for_each_entry(link, &dev->links.consumers, s_node) { 1321 if (!(link->flags & DL_FLAG_MANAGED)) 1322 continue; 1323 1324 /* 1325 * Links created during consumer probe may be in the "consumer 1326 * probe" state to start with if the supplier is still probing 1327 * when they are created and they may become "active" if the 1328 * consumer probe returns first. Skip them here. 1329 */ 1330 if (link->status == DL_STATE_CONSUMER_PROBE || 1331 link->status == DL_STATE_ACTIVE) 1332 continue; 1333 1334 WARN_ON(link->status != DL_STATE_DORMANT); 1335 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1336 1337 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1338 driver_deferred_probe_add(link->consumer); 1339 } 1340 1341 if (defer_sync_state_count) 1342 __device_links_supplier_defer_sync(dev); 1343 else 1344 __device_links_queue_sync_state(dev, &sync_list); 1345 1346 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1347 struct device *supplier; 1348 1349 if (!(link->flags & DL_FLAG_MANAGED)) 1350 continue; 1351 1352 supplier = link->supplier; 1353 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1354 /* 1355 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1356 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1357 * save to drop the managed link completely. 1358 */ 1359 device_link_drop_managed(link); 1360 } else if (dev_is_best_effort(dev) && 1361 link->flags & DL_FLAG_INFERRED && 1362 link->status != DL_STATE_CONSUMER_PROBE && 1363 !link->supplier->can_match) { 1364 /* 1365 * When dev_is_best_effort() is true, we ignore device 1366 * links to suppliers that don't have a driver. If the 1367 * consumer device still managed to probe, there's no 1368 * point in maintaining a device link in a weird state 1369 * (consumer probed before supplier). So delete it. 1370 */ 1371 device_link_drop_managed(link); 1372 } else { 1373 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1374 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1375 } 1376 1377 /* 1378 * This needs to be done even for the deleted 1379 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1380 * device link that was preventing the supplier from getting a 1381 * sync_state() call. 1382 */ 1383 if (defer_sync_state_count) 1384 __device_links_supplier_defer_sync(supplier); 1385 else 1386 __device_links_queue_sync_state(supplier, &sync_list); 1387 } 1388 1389 dev->links.status = DL_DEV_DRIVER_BOUND; 1390 1391 device_links_write_unlock(); 1392 1393 device_links_flush_sync_list(&sync_list, dev); 1394 } 1395 1396 /** 1397 * __device_links_no_driver - Update links of a device without a driver. 1398 * @dev: Device without a drvier. 1399 * 1400 * Delete all non-persistent links from this device to any suppliers. 1401 * 1402 * Persistent links stay around, but their status is changed to "available", 1403 * unless they already are in the "supplier unbind in progress" state in which 1404 * case they need not be updated. 1405 * 1406 * Links without the DL_FLAG_MANAGED flag set are ignored. 1407 */ 1408 static void __device_links_no_driver(struct device *dev) 1409 { 1410 struct device_link *link, *ln; 1411 1412 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1413 if (!(link->flags & DL_FLAG_MANAGED)) 1414 continue; 1415 1416 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1417 device_link_drop_managed(link); 1418 continue; 1419 } 1420 1421 if (link->status != DL_STATE_CONSUMER_PROBE && 1422 link->status != DL_STATE_ACTIVE) 1423 continue; 1424 1425 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1426 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1427 } else { 1428 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1429 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1430 } 1431 } 1432 1433 dev->links.status = DL_DEV_NO_DRIVER; 1434 } 1435 1436 /** 1437 * device_links_no_driver - Update links after failing driver probe. 1438 * @dev: Device whose driver has just failed to probe. 1439 * 1440 * Clean up leftover links to consumers for @dev and invoke 1441 * %__device_links_no_driver() to update links to suppliers for it as 1442 * appropriate. 1443 * 1444 * Links without the DL_FLAG_MANAGED flag set are ignored. 1445 */ 1446 void device_links_no_driver(struct device *dev) 1447 { 1448 struct device_link *link; 1449 1450 device_links_write_lock(); 1451 1452 list_for_each_entry(link, &dev->links.consumers, s_node) { 1453 if (!(link->flags & DL_FLAG_MANAGED)) 1454 continue; 1455 1456 /* 1457 * The probe has failed, so if the status of the link is 1458 * "consumer probe" or "active", it must have been added by 1459 * a probing consumer while this device was still probing. 1460 * Change its state to "dormant", as it represents a valid 1461 * relationship, but it is not functionally meaningful. 1462 */ 1463 if (link->status == DL_STATE_CONSUMER_PROBE || 1464 link->status == DL_STATE_ACTIVE) 1465 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1466 } 1467 1468 __device_links_no_driver(dev); 1469 1470 device_links_write_unlock(); 1471 } 1472 1473 /** 1474 * device_links_driver_cleanup - Update links after driver removal. 1475 * @dev: Device whose driver has just gone away. 1476 * 1477 * Update links to consumers for @dev by changing their status to "dormant" and 1478 * invoke %__device_links_no_driver() to update links to suppliers for it as 1479 * appropriate. 1480 * 1481 * Links without the DL_FLAG_MANAGED flag set are ignored. 1482 */ 1483 void device_links_driver_cleanup(struct device *dev) 1484 { 1485 struct device_link *link, *ln; 1486 1487 device_links_write_lock(); 1488 1489 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1490 if (!(link->flags & DL_FLAG_MANAGED)) 1491 continue; 1492 1493 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1494 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1495 1496 /* 1497 * autoremove the links between this @dev and its consumer 1498 * devices that are not active, i.e. where the link state 1499 * has moved to DL_STATE_SUPPLIER_UNBIND. 1500 */ 1501 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1502 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1503 device_link_drop_managed(link); 1504 1505 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1506 } 1507 1508 list_del_init(&dev->links.defer_sync); 1509 __device_links_no_driver(dev); 1510 1511 device_links_write_unlock(); 1512 } 1513 1514 /** 1515 * device_links_busy - Check if there are any busy links to consumers. 1516 * @dev: Device to check. 1517 * 1518 * Check each consumer of the device and return 'true' if its link's status 1519 * is one of "consumer probe" or "active" (meaning that the given consumer is 1520 * probing right now or its driver is present). Otherwise, change the link 1521 * state to "supplier unbind" to prevent the consumer from being probed 1522 * successfully going forward. 1523 * 1524 * Return 'false' if there are no probing or active consumers. 1525 * 1526 * Links without the DL_FLAG_MANAGED flag set are ignored. 1527 */ 1528 bool device_links_busy(struct device *dev) 1529 { 1530 struct device_link *link; 1531 bool ret = false; 1532 1533 device_links_write_lock(); 1534 1535 list_for_each_entry(link, &dev->links.consumers, s_node) { 1536 if (!(link->flags & DL_FLAG_MANAGED)) 1537 continue; 1538 1539 if (link->status == DL_STATE_CONSUMER_PROBE 1540 || link->status == DL_STATE_ACTIVE) { 1541 ret = true; 1542 break; 1543 } 1544 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1545 } 1546 1547 dev->links.status = DL_DEV_UNBINDING; 1548 1549 device_links_write_unlock(); 1550 return ret; 1551 } 1552 1553 /** 1554 * device_links_unbind_consumers - Force unbind consumers of the given device. 1555 * @dev: Device to unbind the consumers of. 1556 * 1557 * Walk the list of links to consumers for @dev and if any of them is in the 1558 * "consumer probe" state, wait for all device probes in progress to complete 1559 * and start over. 1560 * 1561 * If that's not the case, change the status of the link to "supplier unbind" 1562 * and check if the link was in the "active" state. If so, force the consumer 1563 * driver to unbind and start over (the consumer will not re-probe as we have 1564 * changed the state of the link already). 1565 * 1566 * Links without the DL_FLAG_MANAGED flag set are ignored. 1567 */ 1568 void device_links_unbind_consumers(struct device *dev) 1569 { 1570 struct device_link *link; 1571 1572 start: 1573 device_links_write_lock(); 1574 1575 list_for_each_entry(link, &dev->links.consumers, s_node) { 1576 enum device_link_state status; 1577 1578 if (!(link->flags & DL_FLAG_MANAGED) || 1579 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1580 continue; 1581 1582 status = link->status; 1583 if (status == DL_STATE_CONSUMER_PROBE) { 1584 device_links_write_unlock(); 1585 1586 wait_for_device_probe(); 1587 goto start; 1588 } 1589 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1590 if (status == DL_STATE_ACTIVE) { 1591 struct device *consumer = link->consumer; 1592 1593 get_device(consumer); 1594 1595 device_links_write_unlock(); 1596 1597 device_release_driver_internal(consumer, NULL, 1598 consumer->parent); 1599 put_device(consumer); 1600 goto start; 1601 } 1602 } 1603 1604 device_links_write_unlock(); 1605 } 1606 1607 /** 1608 * device_links_purge - Delete existing links to other devices. 1609 * @dev: Target device. 1610 */ 1611 static void device_links_purge(struct device *dev) 1612 { 1613 struct device_link *link, *ln; 1614 1615 if (dev->class == &devlink_class) 1616 return; 1617 1618 /* 1619 * Delete all of the remaining links from this device to any other 1620 * devices (either consumers or suppliers). 1621 */ 1622 device_links_write_lock(); 1623 1624 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1625 WARN_ON(link->status == DL_STATE_ACTIVE); 1626 __device_link_del(&link->kref); 1627 } 1628 1629 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1630 WARN_ON(link->status != DL_STATE_DORMANT && 1631 link->status != DL_STATE_NONE); 1632 __device_link_del(&link->kref); 1633 } 1634 1635 device_links_write_unlock(); 1636 } 1637 1638 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1639 DL_FLAG_SYNC_STATE_ONLY) 1640 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1641 DL_FLAG_AUTOPROBE_CONSUMER) 1642 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1643 DL_FLAG_PM_RUNTIME) 1644 1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1646 static int __init fw_devlink_setup(char *arg) 1647 { 1648 if (!arg) 1649 return -EINVAL; 1650 1651 if (strcmp(arg, "off") == 0) { 1652 fw_devlink_flags = 0; 1653 } else if (strcmp(arg, "permissive") == 0) { 1654 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1655 } else if (strcmp(arg, "on") == 0) { 1656 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1657 } else if (strcmp(arg, "rpm") == 0) { 1658 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1659 } 1660 return 0; 1661 } 1662 early_param("fw_devlink", fw_devlink_setup); 1663 1664 static bool fw_devlink_strict; 1665 static int __init fw_devlink_strict_setup(char *arg) 1666 { 1667 return kstrtobool(arg, &fw_devlink_strict); 1668 } 1669 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1670 1671 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1673 1674 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1675 static int fw_devlink_sync_state; 1676 #else 1677 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1678 #endif 1679 1680 static int __init fw_devlink_sync_state_setup(char *arg) 1681 { 1682 if (!arg) 1683 return -EINVAL; 1684 1685 if (strcmp(arg, "strict") == 0) { 1686 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1687 return 0; 1688 } else if (strcmp(arg, "timeout") == 0) { 1689 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1690 return 0; 1691 } 1692 return -EINVAL; 1693 } 1694 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1695 1696 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1697 { 1698 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1699 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1700 1701 return fw_devlink_flags; 1702 } 1703 1704 static bool fw_devlink_is_permissive(void) 1705 { 1706 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1707 } 1708 1709 bool fw_devlink_is_strict(void) 1710 { 1711 return fw_devlink_strict && !fw_devlink_is_permissive(); 1712 } 1713 1714 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1715 { 1716 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1717 return; 1718 1719 fwnode_call_int_op(fwnode, add_links); 1720 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1721 } 1722 1723 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1724 { 1725 struct fwnode_handle *child = NULL; 1726 1727 fw_devlink_parse_fwnode(fwnode); 1728 1729 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1730 fw_devlink_parse_fwtree(child); 1731 } 1732 1733 static void fw_devlink_relax_link(struct device_link *link) 1734 { 1735 if (!(link->flags & DL_FLAG_INFERRED)) 1736 return; 1737 1738 if (device_link_flag_is_sync_state_only(link->flags)) 1739 return; 1740 1741 pm_runtime_drop_link(link); 1742 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1743 dev_dbg(link->consumer, "Relaxing link with %s\n", 1744 dev_name(link->supplier)); 1745 } 1746 1747 static int fw_devlink_no_driver(struct device *dev, void *data) 1748 { 1749 struct device_link *link = to_devlink(dev); 1750 1751 if (!link->supplier->can_match) 1752 fw_devlink_relax_link(link); 1753 1754 return 0; 1755 } 1756 1757 void fw_devlink_drivers_done(void) 1758 { 1759 fw_devlink_drv_reg_done = true; 1760 device_links_write_lock(); 1761 class_for_each_device(&devlink_class, NULL, NULL, 1762 fw_devlink_no_driver); 1763 device_links_write_unlock(); 1764 } 1765 1766 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1767 { 1768 struct device_link *link = to_devlink(dev); 1769 struct device *sup = link->supplier; 1770 1771 if (!(link->flags & DL_FLAG_MANAGED) || 1772 link->status == DL_STATE_ACTIVE || sup->state_synced || 1773 !dev_has_sync_state(sup)) 1774 return 0; 1775 1776 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1777 dev_warn(sup, "sync_state() pending due to %s\n", 1778 dev_name(link->consumer)); 1779 return 0; 1780 } 1781 1782 if (!list_empty(&sup->links.defer_sync)) 1783 return 0; 1784 1785 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1786 sup->state_synced = true; 1787 get_device(sup); 1788 list_add_tail(&sup->links.defer_sync, data); 1789 1790 return 0; 1791 } 1792 1793 void fw_devlink_probing_done(void) 1794 { 1795 LIST_HEAD(sync_list); 1796 1797 device_links_write_lock(); 1798 class_for_each_device(&devlink_class, NULL, &sync_list, 1799 fw_devlink_dev_sync_state); 1800 device_links_write_unlock(); 1801 device_links_flush_sync_list(&sync_list, NULL); 1802 } 1803 1804 /** 1805 * wait_for_init_devices_probe - Try to probe any device needed for init 1806 * 1807 * Some devices might need to be probed and bound successfully before the kernel 1808 * boot sequence can finish and move on to init/userspace. For example, a 1809 * network interface might need to be bound to be able to mount a NFS rootfs. 1810 * 1811 * With fw_devlink=on by default, some of these devices might be blocked from 1812 * probing because they are waiting on a optional supplier that doesn't have a 1813 * driver. While fw_devlink will eventually identify such devices and unblock 1814 * the probing automatically, it might be too late by the time it unblocks the 1815 * probing of devices. For example, the IP4 autoconfig might timeout before 1816 * fw_devlink unblocks probing of the network interface. 1817 * 1818 * This function is available to temporarily try and probe all devices that have 1819 * a driver even if some of their suppliers haven't been added or don't have 1820 * drivers. 1821 * 1822 * The drivers can then decide which of the suppliers are optional vs mandatory 1823 * and probe the device if possible. By the time this function returns, all such 1824 * "best effort" probes are guaranteed to be completed. If a device successfully 1825 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1826 * device where the supplier hasn't yet probed successfully because they have to 1827 * be optional dependencies. 1828 * 1829 * Any devices that didn't successfully probe go back to being treated as if 1830 * this function was never called. 1831 * 1832 * This also means that some devices that aren't needed for init and could have 1833 * waited for their optional supplier to probe (when the supplier's module is 1834 * loaded later on) would end up probing prematurely with limited functionality. 1835 * So call this function only when boot would fail without it. 1836 */ 1837 void __init wait_for_init_devices_probe(void) 1838 { 1839 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1840 return; 1841 1842 /* 1843 * Wait for all ongoing probes to finish so that the "best effort" is 1844 * only applied to devices that can't probe otherwise. 1845 */ 1846 wait_for_device_probe(); 1847 1848 pr_info("Trying to probe devices needed for running init ...\n"); 1849 fw_devlink_best_effort = true; 1850 driver_deferred_probe_trigger(); 1851 1852 /* 1853 * Wait for all "best effort" probes to finish before going back to 1854 * normal enforcement. 1855 */ 1856 wait_for_device_probe(); 1857 fw_devlink_best_effort = false; 1858 } 1859 1860 static void fw_devlink_unblock_consumers(struct device *dev) 1861 { 1862 struct device_link *link; 1863 1864 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1865 return; 1866 1867 device_links_write_lock(); 1868 list_for_each_entry(link, &dev->links.consumers, s_node) 1869 fw_devlink_relax_link(link); 1870 device_links_write_unlock(); 1871 } 1872 1873 1874 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1875 { 1876 struct device *dev; 1877 bool ret; 1878 1879 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1880 return false; 1881 1882 dev = get_dev_from_fwnode(fwnode); 1883 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1884 put_device(dev); 1885 1886 return ret; 1887 } 1888 1889 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1890 { 1891 struct fwnode_handle *parent; 1892 1893 fwnode_for_each_parent_node(fwnode, parent) { 1894 if (fwnode_init_without_drv(parent)) { 1895 fwnode_handle_put(parent); 1896 return true; 1897 } 1898 } 1899 1900 return false; 1901 } 1902 1903 /** 1904 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1905 * @con: Potential consumer device. 1906 * @sup_handle: Potential supplier's fwnode. 1907 * 1908 * Needs to be called with fwnode_lock and device link lock held. 1909 * 1910 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1911 * depend on @con. This function can detect multiple cyles between @sup_handle 1912 * and @con. When such dependency cycles are found, convert all device links 1913 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1914 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1915 * converted into a device link in the future, they are created as 1916 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1917 * fw_devlink=permissive just between the devices in the cycle. We need to do 1918 * this because, at this point, fw_devlink can't tell which of these 1919 * dependencies is not a real dependency. 1920 * 1921 * Return true if one or more cycles were found. Otherwise, return false. 1922 */ 1923 static bool __fw_devlink_relax_cycles(struct device *con, 1924 struct fwnode_handle *sup_handle) 1925 { 1926 struct device *sup_dev = NULL, *par_dev = NULL; 1927 struct fwnode_link *link; 1928 struct device_link *dev_link; 1929 bool ret = false; 1930 1931 if (!sup_handle) 1932 return false; 1933 1934 /* 1935 * We aren't trying to find all cycles. Just a cycle between con and 1936 * sup_handle. 1937 */ 1938 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1939 return false; 1940 1941 sup_handle->flags |= FWNODE_FLAG_VISITED; 1942 1943 sup_dev = get_dev_from_fwnode(sup_handle); 1944 1945 /* Termination condition. */ 1946 if (sup_dev == con) { 1947 ret = true; 1948 goto out; 1949 } 1950 1951 /* 1952 * If sup_dev is bound to a driver and @con hasn't started binding to a 1953 * driver, sup_dev can't be a consumer of @con. So, no need to check 1954 * further. 1955 */ 1956 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1957 con->links.status == DL_DEV_NO_DRIVER) { 1958 ret = false; 1959 goto out; 1960 } 1961 1962 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1963 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1964 __fwnode_link_cycle(link); 1965 ret = true; 1966 } 1967 } 1968 1969 /* 1970 * Give priority to device parent over fwnode parent to account for any 1971 * quirks in how fwnodes are converted to devices. 1972 */ 1973 if (sup_dev) 1974 par_dev = get_device(sup_dev->parent); 1975 else 1976 par_dev = fwnode_get_next_parent_dev(sup_handle); 1977 1978 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1979 ret = true; 1980 1981 if (!sup_dev) 1982 goto out; 1983 1984 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1985 /* 1986 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1987 * such due to a cycle. 1988 */ 1989 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1990 !(dev_link->flags & DL_FLAG_CYCLE)) 1991 continue; 1992 1993 if (__fw_devlink_relax_cycles(con, 1994 dev_link->supplier->fwnode)) { 1995 fw_devlink_relax_link(dev_link); 1996 dev_link->flags |= DL_FLAG_CYCLE; 1997 ret = true; 1998 } 1999 } 2000 2001 out: 2002 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2003 put_device(sup_dev); 2004 put_device(par_dev); 2005 return ret; 2006 } 2007 2008 /** 2009 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2010 * @con: consumer device for the device link 2011 * @sup_handle: fwnode handle of supplier 2012 * @link: fwnode link that's being converted to a device link 2013 * 2014 * This function will try to create a device link between the consumer device 2015 * @con and the supplier device represented by @sup_handle. 2016 * 2017 * The supplier has to be provided as a fwnode because incorrect cycles in 2018 * fwnode links can sometimes cause the supplier device to never be created. 2019 * This function detects such cases and returns an error if it cannot create a 2020 * device link from the consumer to a missing supplier. 2021 * 2022 * Returns, 2023 * 0 on successfully creating a device link 2024 * -EINVAL if the device link cannot be created as expected 2025 * -EAGAIN if the device link cannot be created right now, but it may be 2026 * possible to do that in the future 2027 */ 2028 static int fw_devlink_create_devlink(struct device *con, 2029 struct fwnode_handle *sup_handle, 2030 struct fwnode_link *link) 2031 { 2032 struct device *sup_dev; 2033 int ret = 0; 2034 u32 flags; 2035 2036 if (con->fwnode == link->consumer) 2037 flags = fw_devlink_get_flags(link->flags); 2038 else 2039 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2040 2041 /* 2042 * In some cases, a device P might also be a supplier to its child node 2043 * C. However, this would defer the probe of C until the probe of P 2044 * completes successfully. This is perfectly fine in the device driver 2045 * model. device_add() doesn't guarantee probe completion of the device 2046 * by the time it returns. 2047 * 2048 * However, there are a few drivers that assume C will finish probing 2049 * as soon as it's added and before P finishes probing. So, we provide 2050 * a flag to let fw_devlink know not to delay the probe of C until the 2051 * probe of P completes successfully. 2052 * 2053 * When such a flag is set, we can't create device links where P is the 2054 * supplier of C as that would delay the probe of C. 2055 */ 2056 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2057 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2058 return -EINVAL; 2059 2060 /* 2061 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2062 * So cycle detection isn't necessary and shouldn't be done. 2063 */ 2064 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) { 2065 device_links_write_lock(); 2066 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2067 __fwnode_link_cycle(link); 2068 flags = fw_devlink_get_flags(link->flags); 2069 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2070 sup_handle); 2071 } 2072 device_links_write_unlock(); 2073 } 2074 2075 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2076 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2077 else 2078 sup_dev = get_dev_from_fwnode(sup_handle); 2079 2080 if (sup_dev) { 2081 /* 2082 * If it's one of those drivers that don't actually bind to 2083 * their device using driver core, then don't wait on this 2084 * supplier device indefinitely. 2085 */ 2086 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2087 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2088 dev_dbg(con, 2089 "Not linking %pfwf - dev might never probe\n", 2090 sup_handle); 2091 ret = -EINVAL; 2092 goto out; 2093 } 2094 2095 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2096 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2097 flags, dev_name(sup_dev)); 2098 ret = -EINVAL; 2099 } 2100 2101 goto out; 2102 } 2103 2104 /* 2105 * Supplier or supplier's ancestor already initialized without a struct 2106 * device or being probed by a driver. 2107 */ 2108 if (fwnode_init_without_drv(sup_handle) || 2109 fwnode_ancestor_init_without_drv(sup_handle)) { 2110 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2111 sup_handle); 2112 return -EINVAL; 2113 } 2114 2115 ret = -EAGAIN; 2116 out: 2117 put_device(sup_dev); 2118 return ret; 2119 } 2120 2121 /** 2122 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2123 * @dev: Device that needs to be linked to its consumers 2124 * 2125 * This function looks at all the consumer fwnodes of @dev and creates device 2126 * links between the consumer device and @dev (supplier). 2127 * 2128 * If the consumer device has not been added yet, then this function creates a 2129 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2130 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2131 * sync_state() callback before the real consumer device gets to be added and 2132 * then probed. 2133 * 2134 * Once device links are created from the real consumer to @dev (supplier), the 2135 * fwnode links are deleted. 2136 */ 2137 static void __fw_devlink_link_to_consumers(struct device *dev) 2138 { 2139 struct fwnode_handle *fwnode = dev->fwnode; 2140 struct fwnode_link *link, *tmp; 2141 2142 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2143 struct device *con_dev; 2144 bool own_link = true; 2145 int ret; 2146 2147 con_dev = get_dev_from_fwnode(link->consumer); 2148 /* 2149 * If consumer device is not available yet, make a "proxy" 2150 * SYNC_STATE_ONLY link from the consumer's parent device to 2151 * the supplier device. This is necessary to make sure the 2152 * supplier doesn't get a sync_state() callback before the real 2153 * consumer can create a device link to the supplier. 2154 * 2155 * This proxy link step is needed to handle the case where the 2156 * consumer's parent device is added before the supplier. 2157 */ 2158 if (!con_dev) { 2159 con_dev = fwnode_get_next_parent_dev(link->consumer); 2160 /* 2161 * However, if the consumer's parent device is also the 2162 * parent of the supplier, don't create a 2163 * consumer-supplier link from the parent to its child 2164 * device. Such a dependency is impossible. 2165 */ 2166 if (con_dev && 2167 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2168 put_device(con_dev); 2169 con_dev = NULL; 2170 } else { 2171 own_link = false; 2172 } 2173 } 2174 2175 if (!con_dev) 2176 continue; 2177 2178 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2179 put_device(con_dev); 2180 if (!own_link || ret == -EAGAIN) 2181 continue; 2182 2183 __fwnode_link_del(link); 2184 } 2185 } 2186 2187 /** 2188 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2189 * @dev: The consumer device that needs to be linked to its suppliers 2190 * @fwnode: Root of the fwnode tree that is used to create device links 2191 * 2192 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2193 * @fwnode and creates device links between @dev (consumer) and all the 2194 * supplier devices of the entire fwnode tree at @fwnode. 2195 * 2196 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2197 * and the real suppliers of @dev. Once these device links are created, the 2198 * fwnode links are deleted. 2199 * 2200 * In addition, it also looks at all the suppliers of the entire fwnode tree 2201 * because some of the child devices of @dev that have not been added yet 2202 * (because @dev hasn't probed) might already have their suppliers added to 2203 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2204 * @dev (consumer) and these suppliers to make sure they don't execute their 2205 * sync_state() callbacks before these child devices have a chance to create 2206 * their device links. The fwnode links that correspond to the child devices 2207 * aren't delete because they are needed later to create the device links 2208 * between the real consumer and supplier devices. 2209 */ 2210 static void __fw_devlink_link_to_suppliers(struct device *dev, 2211 struct fwnode_handle *fwnode) 2212 { 2213 bool own_link = (dev->fwnode == fwnode); 2214 struct fwnode_link *link, *tmp; 2215 struct fwnode_handle *child = NULL; 2216 2217 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2218 int ret; 2219 struct fwnode_handle *sup = link->supplier; 2220 2221 ret = fw_devlink_create_devlink(dev, sup, link); 2222 if (!own_link || ret == -EAGAIN) 2223 continue; 2224 2225 __fwnode_link_del(link); 2226 } 2227 2228 /* 2229 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2230 * all the descendants. This proxy link step is needed to handle the 2231 * case where the supplier is added before the consumer's parent device 2232 * (@dev). 2233 */ 2234 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2235 __fw_devlink_link_to_suppliers(dev, child); 2236 } 2237 2238 static void fw_devlink_link_device(struct device *dev) 2239 { 2240 struct fwnode_handle *fwnode = dev->fwnode; 2241 2242 if (!fw_devlink_flags) 2243 return; 2244 2245 fw_devlink_parse_fwtree(fwnode); 2246 2247 mutex_lock(&fwnode_link_lock); 2248 __fw_devlink_link_to_consumers(dev); 2249 __fw_devlink_link_to_suppliers(dev, fwnode); 2250 mutex_unlock(&fwnode_link_lock); 2251 } 2252 2253 /* Device links support end. */ 2254 2255 int (*platform_notify)(struct device *dev) = NULL; 2256 int (*platform_notify_remove)(struct device *dev) = NULL; 2257 static struct kobject *dev_kobj; 2258 struct kobject *sysfs_dev_char_kobj; 2259 struct kobject *sysfs_dev_block_kobj; 2260 2261 static DEFINE_MUTEX(device_hotplug_lock); 2262 2263 void lock_device_hotplug(void) 2264 { 2265 mutex_lock(&device_hotplug_lock); 2266 } 2267 2268 void unlock_device_hotplug(void) 2269 { 2270 mutex_unlock(&device_hotplug_lock); 2271 } 2272 2273 int lock_device_hotplug_sysfs(void) 2274 { 2275 if (mutex_trylock(&device_hotplug_lock)) 2276 return 0; 2277 2278 /* Avoid busy looping (5 ms of sleep should do). */ 2279 msleep(5); 2280 return restart_syscall(); 2281 } 2282 2283 #ifdef CONFIG_BLOCK 2284 static inline int device_is_not_partition(struct device *dev) 2285 { 2286 return !(dev->type == &part_type); 2287 } 2288 #else 2289 static inline int device_is_not_partition(struct device *dev) 2290 { 2291 return 1; 2292 } 2293 #endif 2294 2295 static void device_platform_notify(struct device *dev) 2296 { 2297 acpi_device_notify(dev); 2298 2299 software_node_notify(dev); 2300 2301 if (platform_notify) 2302 platform_notify(dev); 2303 } 2304 2305 static void device_platform_notify_remove(struct device *dev) 2306 { 2307 acpi_device_notify_remove(dev); 2308 2309 software_node_notify_remove(dev); 2310 2311 if (platform_notify_remove) 2312 platform_notify_remove(dev); 2313 } 2314 2315 /** 2316 * dev_driver_string - Return a device's driver name, if at all possible 2317 * @dev: struct device to get the name of 2318 * 2319 * Will return the device's driver's name if it is bound to a device. If 2320 * the device is not bound to a driver, it will return the name of the bus 2321 * it is attached to. If it is not attached to a bus either, an empty 2322 * string will be returned. 2323 */ 2324 const char *dev_driver_string(const struct device *dev) 2325 { 2326 struct device_driver *drv; 2327 2328 /* dev->driver can change to NULL underneath us because of unbinding, 2329 * so be careful about accessing it. dev->bus and dev->class should 2330 * never change once they are set, so they don't need special care. 2331 */ 2332 drv = READ_ONCE(dev->driver); 2333 return drv ? drv->name : dev_bus_name(dev); 2334 } 2335 EXPORT_SYMBOL(dev_driver_string); 2336 2337 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2338 2339 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2340 char *buf) 2341 { 2342 struct device_attribute *dev_attr = to_dev_attr(attr); 2343 struct device *dev = kobj_to_dev(kobj); 2344 ssize_t ret = -EIO; 2345 2346 if (dev_attr->show) 2347 ret = dev_attr->show(dev, dev_attr, buf); 2348 if (ret >= (ssize_t)PAGE_SIZE) { 2349 printk("dev_attr_show: %pS returned bad count\n", 2350 dev_attr->show); 2351 } 2352 return ret; 2353 } 2354 2355 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2356 const char *buf, size_t count) 2357 { 2358 struct device_attribute *dev_attr = to_dev_attr(attr); 2359 struct device *dev = kobj_to_dev(kobj); 2360 ssize_t ret = -EIO; 2361 2362 if (dev_attr->store) 2363 ret = dev_attr->store(dev, dev_attr, buf, count); 2364 return ret; 2365 } 2366 2367 static const struct sysfs_ops dev_sysfs_ops = { 2368 .show = dev_attr_show, 2369 .store = dev_attr_store, 2370 }; 2371 2372 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2373 2374 ssize_t device_store_ulong(struct device *dev, 2375 struct device_attribute *attr, 2376 const char *buf, size_t size) 2377 { 2378 struct dev_ext_attribute *ea = to_ext_attr(attr); 2379 int ret; 2380 unsigned long new; 2381 2382 ret = kstrtoul(buf, 0, &new); 2383 if (ret) 2384 return ret; 2385 *(unsigned long *)(ea->var) = new; 2386 /* Always return full write size even if we didn't consume all */ 2387 return size; 2388 } 2389 EXPORT_SYMBOL_GPL(device_store_ulong); 2390 2391 ssize_t device_show_ulong(struct device *dev, 2392 struct device_attribute *attr, 2393 char *buf) 2394 { 2395 struct dev_ext_attribute *ea = to_ext_attr(attr); 2396 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2397 } 2398 EXPORT_SYMBOL_GPL(device_show_ulong); 2399 2400 ssize_t device_store_int(struct device *dev, 2401 struct device_attribute *attr, 2402 const char *buf, size_t size) 2403 { 2404 struct dev_ext_attribute *ea = to_ext_attr(attr); 2405 int ret; 2406 long new; 2407 2408 ret = kstrtol(buf, 0, &new); 2409 if (ret) 2410 return ret; 2411 2412 if (new > INT_MAX || new < INT_MIN) 2413 return -EINVAL; 2414 *(int *)(ea->var) = new; 2415 /* Always return full write size even if we didn't consume all */ 2416 return size; 2417 } 2418 EXPORT_SYMBOL_GPL(device_store_int); 2419 2420 ssize_t device_show_int(struct device *dev, 2421 struct device_attribute *attr, 2422 char *buf) 2423 { 2424 struct dev_ext_attribute *ea = to_ext_attr(attr); 2425 2426 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2427 } 2428 EXPORT_SYMBOL_GPL(device_show_int); 2429 2430 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2431 const char *buf, size_t size) 2432 { 2433 struct dev_ext_attribute *ea = to_ext_attr(attr); 2434 2435 if (kstrtobool(buf, ea->var) < 0) 2436 return -EINVAL; 2437 2438 return size; 2439 } 2440 EXPORT_SYMBOL_GPL(device_store_bool); 2441 2442 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2443 char *buf) 2444 { 2445 struct dev_ext_attribute *ea = to_ext_attr(attr); 2446 2447 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2448 } 2449 EXPORT_SYMBOL_GPL(device_show_bool); 2450 2451 /** 2452 * device_release - free device structure. 2453 * @kobj: device's kobject. 2454 * 2455 * This is called once the reference count for the object 2456 * reaches 0. We forward the call to the device's release 2457 * method, which should handle actually freeing the structure. 2458 */ 2459 static void device_release(struct kobject *kobj) 2460 { 2461 struct device *dev = kobj_to_dev(kobj); 2462 struct device_private *p = dev->p; 2463 2464 /* 2465 * Some platform devices are driven without driver attached 2466 * and managed resources may have been acquired. Make sure 2467 * all resources are released. 2468 * 2469 * Drivers still can add resources into device after device 2470 * is deleted but alive, so release devres here to avoid 2471 * possible memory leak. 2472 */ 2473 devres_release_all(dev); 2474 2475 kfree(dev->dma_range_map); 2476 2477 if (dev->release) 2478 dev->release(dev); 2479 else if (dev->type && dev->type->release) 2480 dev->type->release(dev); 2481 else if (dev->class && dev->class->dev_release) 2482 dev->class->dev_release(dev); 2483 else 2484 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2485 dev_name(dev)); 2486 kfree(p); 2487 } 2488 2489 static const void *device_namespace(const struct kobject *kobj) 2490 { 2491 const struct device *dev = kobj_to_dev(kobj); 2492 const void *ns = NULL; 2493 2494 if (dev->class && dev->class->ns_type) 2495 ns = dev->class->namespace(dev); 2496 2497 return ns; 2498 } 2499 2500 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2501 { 2502 const struct device *dev = kobj_to_dev(kobj); 2503 2504 if (dev->class && dev->class->get_ownership) 2505 dev->class->get_ownership(dev, uid, gid); 2506 } 2507 2508 static const struct kobj_type device_ktype = { 2509 .release = device_release, 2510 .sysfs_ops = &dev_sysfs_ops, 2511 .namespace = device_namespace, 2512 .get_ownership = device_get_ownership, 2513 }; 2514 2515 2516 static int dev_uevent_filter(const struct kobject *kobj) 2517 { 2518 const struct kobj_type *ktype = get_ktype(kobj); 2519 2520 if (ktype == &device_ktype) { 2521 const struct device *dev = kobj_to_dev(kobj); 2522 if (dev->bus) 2523 return 1; 2524 if (dev->class) 2525 return 1; 2526 } 2527 return 0; 2528 } 2529 2530 static const char *dev_uevent_name(const struct kobject *kobj) 2531 { 2532 const struct device *dev = kobj_to_dev(kobj); 2533 2534 if (dev->bus) 2535 return dev->bus->name; 2536 if (dev->class) 2537 return dev->class->name; 2538 return NULL; 2539 } 2540 2541 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2542 { 2543 const struct device *dev = kobj_to_dev(kobj); 2544 int retval = 0; 2545 2546 /* add device node properties if present */ 2547 if (MAJOR(dev->devt)) { 2548 const char *tmp; 2549 const char *name; 2550 umode_t mode = 0; 2551 kuid_t uid = GLOBAL_ROOT_UID; 2552 kgid_t gid = GLOBAL_ROOT_GID; 2553 2554 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2555 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2556 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2557 if (name) { 2558 add_uevent_var(env, "DEVNAME=%s", name); 2559 if (mode) 2560 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2561 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2562 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2563 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2564 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2565 kfree(tmp); 2566 } 2567 } 2568 2569 if (dev->type && dev->type->name) 2570 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2571 2572 if (dev->driver) 2573 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2574 2575 /* Add common DT information about the device */ 2576 of_device_uevent(dev, env); 2577 2578 /* have the bus specific function add its stuff */ 2579 if (dev->bus && dev->bus->uevent) { 2580 retval = dev->bus->uevent(dev, env); 2581 if (retval) 2582 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2583 dev_name(dev), __func__, retval); 2584 } 2585 2586 /* have the class specific function add its stuff */ 2587 if (dev->class && dev->class->dev_uevent) { 2588 retval = dev->class->dev_uevent(dev, env); 2589 if (retval) 2590 pr_debug("device: '%s': %s: class uevent() " 2591 "returned %d\n", dev_name(dev), 2592 __func__, retval); 2593 } 2594 2595 /* have the device type specific function add its stuff */ 2596 if (dev->type && dev->type->uevent) { 2597 retval = dev->type->uevent(dev, env); 2598 if (retval) 2599 pr_debug("device: '%s': %s: dev_type uevent() " 2600 "returned %d\n", dev_name(dev), 2601 __func__, retval); 2602 } 2603 2604 return retval; 2605 } 2606 2607 static const struct kset_uevent_ops device_uevent_ops = { 2608 .filter = dev_uevent_filter, 2609 .name = dev_uevent_name, 2610 .uevent = dev_uevent, 2611 }; 2612 2613 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2614 char *buf) 2615 { 2616 struct kobject *top_kobj; 2617 struct kset *kset; 2618 struct kobj_uevent_env *env = NULL; 2619 int i; 2620 int len = 0; 2621 int retval; 2622 2623 /* search the kset, the device belongs to */ 2624 top_kobj = &dev->kobj; 2625 while (!top_kobj->kset && top_kobj->parent) 2626 top_kobj = top_kobj->parent; 2627 if (!top_kobj->kset) 2628 goto out; 2629 2630 kset = top_kobj->kset; 2631 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2632 goto out; 2633 2634 /* respect filter */ 2635 if (kset->uevent_ops && kset->uevent_ops->filter) 2636 if (!kset->uevent_ops->filter(&dev->kobj)) 2637 goto out; 2638 2639 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2640 if (!env) 2641 return -ENOMEM; 2642 2643 /* let the kset specific function add its keys */ 2644 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2645 if (retval) 2646 goto out; 2647 2648 /* copy keys to file */ 2649 for (i = 0; i < env->envp_idx; i++) 2650 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2651 out: 2652 kfree(env); 2653 return len; 2654 } 2655 2656 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2657 const char *buf, size_t count) 2658 { 2659 int rc; 2660 2661 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2662 2663 if (rc) { 2664 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2665 return rc; 2666 } 2667 2668 return count; 2669 } 2670 static DEVICE_ATTR_RW(uevent); 2671 2672 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2673 char *buf) 2674 { 2675 bool val; 2676 2677 device_lock(dev); 2678 val = !dev->offline; 2679 device_unlock(dev); 2680 return sysfs_emit(buf, "%u\n", val); 2681 } 2682 2683 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2684 const char *buf, size_t count) 2685 { 2686 bool val; 2687 int ret; 2688 2689 ret = kstrtobool(buf, &val); 2690 if (ret < 0) 2691 return ret; 2692 2693 ret = lock_device_hotplug_sysfs(); 2694 if (ret) 2695 return ret; 2696 2697 ret = val ? device_online(dev) : device_offline(dev); 2698 unlock_device_hotplug(); 2699 return ret < 0 ? ret : count; 2700 } 2701 static DEVICE_ATTR_RW(online); 2702 2703 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2704 char *buf) 2705 { 2706 const char *loc; 2707 2708 switch (dev->removable) { 2709 case DEVICE_REMOVABLE: 2710 loc = "removable"; 2711 break; 2712 case DEVICE_FIXED: 2713 loc = "fixed"; 2714 break; 2715 default: 2716 loc = "unknown"; 2717 } 2718 return sysfs_emit(buf, "%s\n", loc); 2719 } 2720 static DEVICE_ATTR_RO(removable); 2721 2722 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2723 { 2724 return sysfs_create_groups(&dev->kobj, groups); 2725 } 2726 EXPORT_SYMBOL_GPL(device_add_groups); 2727 2728 void device_remove_groups(struct device *dev, 2729 const struct attribute_group **groups) 2730 { 2731 sysfs_remove_groups(&dev->kobj, groups); 2732 } 2733 EXPORT_SYMBOL_GPL(device_remove_groups); 2734 2735 union device_attr_group_devres { 2736 const struct attribute_group *group; 2737 const struct attribute_group **groups; 2738 }; 2739 2740 static void devm_attr_group_remove(struct device *dev, void *res) 2741 { 2742 union device_attr_group_devres *devres = res; 2743 const struct attribute_group *group = devres->group; 2744 2745 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2746 sysfs_remove_group(&dev->kobj, group); 2747 } 2748 2749 static void devm_attr_groups_remove(struct device *dev, void *res) 2750 { 2751 union device_attr_group_devres *devres = res; 2752 const struct attribute_group **groups = devres->groups; 2753 2754 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2755 sysfs_remove_groups(&dev->kobj, groups); 2756 } 2757 2758 /** 2759 * devm_device_add_group - given a device, create a managed attribute group 2760 * @dev: The device to create the group for 2761 * @grp: The attribute group to create 2762 * 2763 * This function creates a group for the first time. It will explicitly 2764 * warn and error if any of the attribute files being created already exist. 2765 * 2766 * Returns 0 on success or error code on failure. 2767 */ 2768 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2769 { 2770 union device_attr_group_devres *devres; 2771 int error; 2772 2773 devres = devres_alloc(devm_attr_group_remove, 2774 sizeof(*devres), GFP_KERNEL); 2775 if (!devres) 2776 return -ENOMEM; 2777 2778 error = sysfs_create_group(&dev->kobj, grp); 2779 if (error) { 2780 devres_free(devres); 2781 return error; 2782 } 2783 2784 devres->group = grp; 2785 devres_add(dev, devres); 2786 return 0; 2787 } 2788 EXPORT_SYMBOL_GPL(devm_device_add_group); 2789 2790 /** 2791 * devm_device_add_groups - create a bunch of managed attribute groups 2792 * @dev: The device to create the group for 2793 * @groups: The attribute groups to create, NULL terminated 2794 * 2795 * This function creates a bunch of managed attribute groups. If an error 2796 * occurs when creating a group, all previously created groups will be 2797 * removed, unwinding everything back to the original state when this 2798 * function was called. It will explicitly warn and error if any of the 2799 * attribute files being created already exist. 2800 * 2801 * Returns 0 on success or error code from sysfs_create_group on failure. 2802 */ 2803 int devm_device_add_groups(struct device *dev, 2804 const struct attribute_group **groups) 2805 { 2806 union device_attr_group_devres *devres; 2807 int error; 2808 2809 devres = devres_alloc(devm_attr_groups_remove, 2810 sizeof(*devres), GFP_KERNEL); 2811 if (!devres) 2812 return -ENOMEM; 2813 2814 error = sysfs_create_groups(&dev->kobj, groups); 2815 if (error) { 2816 devres_free(devres); 2817 return error; 2818 } 2819 2820 devres->groups = groups; 2821 devres_add(dev, devres); 2822 return 0; 2823 } 2824 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2825 2826 static int device_add_attrs(struct device *dev) 2827 { 2828 const struct class *class = dev->class; 2829 const struct device_type *type = dev->type; 2830 int error; 2831 2832 if (class) { 2833 error = device_add_groups(dev, class->dev_groups); 2834 if (error) 2835 return error; 2836 } 2837 2838 if (type) { 2839 error = device_add_groups(dev, type->groups); 2840 if (error) 2841 goto err_remove_class_groups; 2842 } 2843 2844 error = device_add_groups(dev, dev->groups); 2845 if (error) 2846 goto err_remove_type_groups; 2847 2848 if (device_supports_offline(dev) && !dev->offline_disabled) { 2849 error = device_create_file(dev, &dev_attr_online); 2850 if (error) 2851 goto err_remove_dev_groups; 2852 } 2853 2854 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2855 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2856 if (error) 2857 goto err_remove_dev_online; 2858 } 2859 2860 if (dev_removable_is_valid(dev)) { 2861 error = device_create_file(dev, &dev_attr_removable); 2862 if (error) 2863 goto err_remove_dev_waiting_for_supplier; 2864 } 2865 2866 if (dev_add_physical_location(dev)) { 2867 error = device_add_group(dev, 2868 &dev_attr_physical_location_group); 2869 if (error) 2870 goto err_remove_dev_removable; 2871 } 2872 2873 return 0; 2874 2875 err_remove_dev_removable: 2876 device_remove_file(dev, &dev_attr_removable); 2877 err_remove_dev_waiting_for_supplier: 2878 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2879 err_remove_dev_online: 2880 device_remove_file(dev, &dev_attr_online); 2881 err_remove_dev_groups: 2882 device_remove_groups(dev, dev->groups); 2883 err_remove_type_groups: 2884 if (type) 2885 device_remove_groups(dev, type->groups); 2886 err_remove_class_groups: 2887 if (class) 2888 device_remove_groups(dev, class->dev_groups); 2889 2890 return error; 2891 } 2892 2893 static void device_remove_attrs(struct device *dev) 2894 { 2895 const struct class *class = dev->class; 2896 const struct device_type *type = dev->type; 2897 2898 if (dev->physical_location) { 2899 device_remove_group(dev, &dev_attr_physical_location_group); 2900 kfree(dev->physical_location); 2901 } 2902 2903 device_remove_file(dev, &dev_attr_removable); 2904 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2905 device_remove_file(dev, &dev_attr_online); 2906 device_remove_groups(dev, dev->groups); 2907 2908 if (type) 2909 device_remove_groups(dev, type->groups); 2910 2911 if (class) 2912 device_remove_groups(dev, class->dev_groups); 2913 } 2914 2915 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2916 char *buf) 2917 { 2918 return print_dev_t(buf, dev->devt); 2919 } 2920 static DEVICE_ATTR_RO(dev); 2921 2922 /* /sys/devices/ */ 2923 struct kset *devices_kset; 2924 2925 /** 2926 * devices_kset_move_before - Move device in the devices_kset's list. 2927 * @deva: Device to move. 2928 * @devb: Device @deva should come before. 2929 */ 2930 static void devices_kset_move_before(struct device *deva, struct device *devb) 2931 { 2932 if (!devices_kset) 2933 return; 2934 pr_debug("devices_kset: Moving %s before %s\n", 2935 dev_name(deva), dev_name(devb)); 2936 spin_lock(&devices_kset->list_lock); 2937 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2938 spin_unlock(&devices_kset->list_lock); 2939 } 2940 2941 /** 2942 * devices_kset_move_after - Move device in the devices_kset's list. 2943 * @deva: Device to move 2944 * @devb: Device @deva should come after. 2945 */ 2946 static void devices_kset_move_after(struct device *deva, struct device *devb) 2947 { 2948 if (!devices_kset) 2949 return; 2950 pr_debug("devices_kset: Moving %s after %s\n", 2951 dev_name(deva), dev_name(devb)); 2952 spin_lock(&devices_kset->list_lock); 2953 list_move(&deva->kobj.entry, &devb->kobj.entry); 2954 spin_unlock(&devices_kset->list_lock); 2955 } 2956 2957 /** 2958 * devices_kset_move_last - move the device to the end of devices_kset's list. 2959 * @dev: device to move 2960 */ 2961 void devices_kset_move_last(struct device *dev) 2962 { 2963 if (!devices_kset) 2964 return; 2965 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2966 spin_lock(&devices_kset->list_lock); 2967 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2968 spin_unlock(&devices_kset->list_lock); 2969 } 2970 2971 /** 2972 * device_create_file - create sysfs attribute file for device. 2973 * @dev: device. 2974 * @attr: device attribute descriptor. 2975 */ 2976 int device_create_file(struct device *dev, 2977 const struct device_attribute *attr) 2978 { 2979 int error = 0; 2980 2981 if (dev) { 2982 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2983 "Attribute %s: write permission without 'store'\n", 2984 attr->attr.name); 2985 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2986 "Attribute %s: read permission without 'show'\n", 2987 attr->attr.name); 2988 error = sysfs_create_file(&dev->kobj, &attr->attr); 2989 } 2990 2991 return error; 2992 } 2993 EXPORT_SYMBOL_GPL(device_create_file); 2994 2995 /** 2996 * device_remove_file - remove sysfs attribute file. 2997 * @dev: device. 2998 * @attr: device attribute descriptor. 2999 */ 3000 void device_remove_file(struct device *dev, 3001 const struct device_attribute *attr) 3002 { 3003 if (dev) 3004 sysfs_remove_file(&dev->kobj, &attr->attr); 3005 } 3006 EXPORT_SYMBOL_GPL(device_remove_file); 3007 3008 /** 3009 * device_remove_file_self - remove sysfs attribute file from its own method. 3010 * @dev: device. 3011 * @attr: device attribute descriptor. 3012 * 3013 * See kernfs_remove_self() for details. 3014 */ 3015 bool device_remove_file_self(struct device *dev, 3016 const struct device_attribute *attr) 3017 { 3018 if (dev) 3019 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3020 else 3021 return false; 3022 } 3023 EXPORT_SYMBOL_GPL(device_remove_file_self); 3024 3025 /** 3026 * device_create_bin_file - create sysfs binary attribute file for device. 3027 * @dev: device. 3028 * @attr: device binary attribute descriptor. 3029 */ 3030 int device_create_bin_file(struct device *dev, 3031 const struct bin_attribute *attr) 3032 { 3033 int error = -EINVAL; 3034 if (dev) 3035 error = sysfs_create_bin_file(&dev->kobj, attr); 3036 return error; 3037 } 3038 EXPORT_SYMBOL_GPL(device_create_bin_file); 3039 3040 /** 3041 * device_remove_bin_file - remove sysfs binary attribute file 3042 * @dev: device. 3043 * @attr: device binary attribute descriptor. 3044 */ 3045 void device_remove_bin_file(struct device *dev, 3046 const struct bin_attribute *attr) 3047 { 3048 if (dev) 3049 sysfs_remove_bin_file(&dev->kobj, attr); 3050 } 3051 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3052 3053 static void klist_children_get(struct klist_node *n) 3054 { 3055 struct device_private *p = to_device_private_parent(n); 3056 struct device *dev = p->device; 3057 3058 get_device(dev); 3059 } 3060 3061 static void klist_children_put(struct klist_node *n) 3062 { 3063 struct device_private *p = to_device_private_parent(n); 3064 struct device *dev = p->device; 3065 3066 put_device(dev); 3067 } 3068 3069 /** 3070 * device_initialize - init device structure. 3071 * @dev: device. 3072 * 3073 * This prepares the device for use by other layers by initializing 3074 * its fields. 3075 * It is the first half of device_register(), if called by 3076 * that function, though it can also be called separately, so one 3077 * may use @dev's fields. In particular, get_device()/put_device() 3078 * may be used for reference counting of @dev after calling this 3079 * function. 3080 * 3081 * All fields in @dev must be initialized by the caller to 0, except 3082 * for those explicitly set to some other value. The simplest 3083 * approach is to use kzalloc() to allocate the structure containing 3084 * @dev. 3085 * 3086 * NOTE: Use put_device() to give up your reference instead of freeing 3087 * @dev directly once you have called this function. 3088 */ 3089 void device_initialize(struct device *dev) 3090 { 3091 dev->kobj.kset = devices_kset; 3092 kobject_init(&dev->kobj, &device_ktype); 3093 INIT_LIST_HEAD(&dev->dma_pools); 3094 mutex_init(&dev->mutex); 3095 lockdep_set_novalidate_class(&dev->mutex); 3096 spin_lock_init(&dev->devres_lock); 3097 INIT_LIST_HEAD(&dev->devres_head); 3098 device_pm_init(dev); 3099 set_dev_node(dev, NUMA_NO_NODE); 3100 INIT_LIST_HEAD(&dev->links.consumers); 3101 INIT_LIST_HEAD(&dev->links.suppliers); 3102 INIT_LIST_HEAD(&dev->links.defer_sync); 3103 dev->links.status = DL_DEV_NO_DRIVER; 3104 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3105 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3106 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3107 dev->dma_coherent = dma_default_coherent; 3108 #endif 3109 #ifdef CONFIG_SWIOTLB 3110 dev->dma_io_tlb_mem = &io_tlb_default_mem; 3111 #endif 3112 } 3113 EXPORT_SYMBOL_GPL(device_initialize); 3114 3115 struct kobject *virtual_device_parent(struct device *dev) 3116 { 3117 static struct kobject *virtual_dir = NULL; 3118 3119 if (!virtual_dir) 3120 virtual_dir = kobject_create_and_add("virtual", 3121 &devices_kset->kobj); 3122 3123 return virtual_dir; 3124 } 3125 3126 struct class_dir { 3127 struct kobject kobj; 3128 const struct class *class; 3129 }; 3130 3131 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3132 3133 static void class_dir_release(struct kobject *kobj) 3134 { 3135 struct class_dir *dir = to_class_dir(kobj); 3136 kfree(dir); 3137 } 3138 3139 static const 3140 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3141 { 3142 const struct class_dir *dir = to_class_dir(kobj); 3143 return dir->class->ns_type; 3144 } 3145 3146 static const struct kobj_type class_dir_ktype = { 3147 .release = class_dir_release, 3148 .sysfs_ops = &kobj_sysfs_ops, 3149 .child_ns_type = class_dir_child_ns_type 3150 }; 3151 3152 static struct kobject * 3153 class_dir_create_and_add(const struct class *class, struct kobject *parent_kobj) 3154 { 3155 struct class_dir *dir; 3156 int retval; 3157 3158 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3159 if (!dir) 3160 return ERR_PTR(-ENOMEM); 3161 3162 dir->class = class; 3163 kobject_init(&dir->kobj, &class_dir_ktype); 3164 3165 dir->kobj.kset = &class->p->glue_dirs; 3166 3167 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 3168 if (retval < 0) { 3169 kobject_put(&dir->kobj); 3170 return ERR_PTR(retval); 3171 } 3172 return &dir->kobj; 3173 } 3174 3175 static DEFINE_MUTEX(gdp_mutex); 3176 3177 static struct kobject *get_device_parent(struct device *dev, 3178 struct device *parent) 3179 { 3180 struct kobject *kobj = NULL; 3181 3182 if (dev->class) { 3183 struct kobject *parent_kobj; 3184 struct kobject *k; 3185 3186 /* 3187 * If we have no parent, we live in "virtual". 3188 * Class-devices with a non class-device as parent, live 3189 * in a "glue" directory to prevent namespace collisions. 3190 */ 3191 if (parent == NULL) 3192 parent_kobj = virtual_device_parent(dev); 3193 else if (parent->class && !dev->class->ns_type) 3194 return &parent->kobj; 3195 else 3196 parent_kobj = &parent->kobj; 3197 3198 mutex_lock(&gdp_mutex); 3199 3200 /* find our class-directory at the parent and reference it */ 3201 spin_lock(&dev->class->p->glue_dirs.list_lock); 3202 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 3203 if (k->parent == parent_kobj) { 3204 kobj = kobject_get(k); 3205 break; 3206 } 3207 spin_unlock(&dev->class->p->glue_dirs.list_lock); 3208 if (kobj) { 3209 mutex_unlock(&gdp_mutex); 3210 return kobj; 3211 } 3212 3213 /* or create a new class-directory at the parent device */ 3214 k = class_dir_create_and_add(dev->class, parent_kobj); 3215 /* do not emit an uevent for this simple "glue" directory */ 3216 mutex_unlock(&gdp_mutex); 3217 return k; 3218 } 3219 3220 /* subsystems can specify a default root directory for their devices */ 3221 if (!parent && dev->bus) { 3222 struct device *dev_root = bus_get_dev_root(dev->bus); 3223 3224 if (dev_root) { 3225 kobj = &dev_root->kobj; 3226 put_device(dev_root); 3227 return kobj; 3228 } 3229 } 3230 3231 if (parent) 3232 return &parent->kobj; 3233 return NULL; 3234 } 3235 3236 static inline bool live_in_glue_dir(struct kobject *kobj, 3237 struct device *dev) 3238 { 3239 if (!kobj || !dev->class || 3240 kobj->kset != &dev->class->p->glue_dirs) 3241 return false; 3242 return true; 3243 } 3244 3245 static inline struct kobject *get_glue_dir(struct device *dev) 3246 { 3247 return dev->kobj.parent; 3248 } 3249 3250 /** 3251 * kobject_has_children - Returns whether a kobject has children. 3252 * @kobj: the object to test 3253 * 3254 * This will return whether a kobject has other kobjects as children. 3255 * 3256 * It does NOT account for the presence of attribute files, only sub 3257 * directories. It also assumes there is no concurrent addition or 3258 * removal of such children, and thus relies on external locking. 3259 */ 3260 static inline bool kobject_has_children(struct kobject *kobj) 3261 { 3262 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3263 3264 return kobj->sd && kobj->sd->dir.subdirs; 3265 } 3266 3267 /* 3268 * make sure cleaning up dir as the last step, we need to make 3269 * sure .release handler of kobject is run with holding the 3270 * global lock 3271 */ 3272 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3273 { 3274 unsigned int ref; 3275 3276 /* see if we live in a "glue" directory */ 3277 if (!live_in_glue_dir(glue_dir, dev)) 3278 return; 3279 3280 mutex_lock(&gdp_mutex); 3281 /** 3282 * There is a race condition between removing glue directory 3283 * and adding a new device under the glue directory. 3284 * 3285 * CPU1: CPU2: 3286 * 3287 * device_add() 3288 * get_device_parent() 3289 * class_dir_create_and_add() 3290 * kobject_add_internal() 3291 * create_dir() // create glue_dir 3292 * 3293 * device_add() 3294 * get_device_parent() 3295 * kobject_get() // get glue_dir 3296 * 3297 * device_del() 3298 * cleanup_glue_dir() 3299 * kobject_del(glue_dir) 3300 * 3301 * kobject_add() 3302 * kobject_add_internal() 3303 * create_dir() // in glue_dir 3304 * sysfs_create_dir_ns() 3305 * kernfs_create_dir_ns(sd) 3306 * 3307 * sysfs_remove_dir() // glue_dir->sd=NULL 3308 * sysfs_put() // free glue_dir->sd 3309 * 3310 * // sd is freed 3311 * kernfs_new_node(sd) 3312 * kernfs_get(glue_dir) 3313 * kernfs_add_one() 3314 * kernfs_put() 3315 * 3316 * Before CPU1 remove last child device under glue dir, if CPU2 add 3317 * a new device under glue dir, the glue_dir kobject reference count 3318 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3319 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3320 * and sysfs_put(). This result in glue_dir->sd is freed. 3321 * 3322 * Then the CPU2 will see a stale "empty" but still potentially used 3323 * glue dir around in kernfs_new_node(). 3324 * 3325 * In order to avoid this happening, we also should make sure that 3326 * kernfs_node for glue_dir is released in CPU1 only when refcount 3327 * for glue_dir kobj is 1. 3328 */ 3329 ref = kref_read(&glue_dir->kref); 3330 if (!kobject_has_children(glue_dir) && !--ref) 3331 kobject_del(glue_dir); 3332 kobject_put(glue_dir); 3333 mutex_unlock(&gdp_mutex); 3334 } 3335 3336 static int device_add_class_symlinks(struct device *dev) 3337 { 3338 struct device_node *of_node = dev_of_node(dev); 3339 int error; 3340 3341 if (of_node) { 3342 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3343 if (error) 3344 dev_warn(dev, "Error %d creating of_node link\n",error); 3345 /* An error here doesn't warrant bringing down the device */ 3346 } 3347 3348 if (!dev->class) 3349 return 0; 3350 3351 error = sysfs_create_link(&dev->kobj, 3352 &dev->class->p->subsys.kobj, 3353 "subsystem"); 3354 if (error) 3355 goto out_devnode; 3356 3357 if (dev->parent && device_is_not_partition(dev)) { 3358 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3359 "device"); 3360 if (error) 3361 goto out_subsys; 3362 } 3363 3364 /* link in the class directory pointing to the device */ 3365 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3366 &dev->kobj, dev_name(dev)); 3367 if (error) 3368 goto out_device; 3369 3370 return 0; 3371 3372 out_device: 3373 sysfs_remove_link(&dev->kobj, "device"); 3374 3375 out_subsys: 3376 sysfs_remove_link(&dev->kobj, "subsystem"); 3377 out_devnode: 3378 sysfs_remove_link(&dev->kobj, "of_node"); 3379 return error; 3380 } 3381 3382 static void device_remove_class_symlinks(struct device *dev) 3383 { 3384 if (dev_of_node(dev)) 3385 sysfs_remove_link(&dev->kobj, "of_node"); 3386 3387 if (!dev->class) 3388 return; 3389 3390 if (dev->parent && device_is_not_partition(dev)) 3391 sysfs_remove_link(&dev->kobj, "device"); 3392 sysfs_remove_link(&dev->kobj, "subsystem"); 3393 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3394 } 3395 3396 /** 3397 * dev_set_name - set a device name 3398 * @dev: device 3399 * @fmt: format string for the device's name 3400 */ 3401 int dev_set_name(struct device *dev, const char *fmt, ...) 3402 { 3403 va_list vargs; 3404 int err; 3405 3406 va_start(vargs, fmt); 3407 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3408 va_end(vargs); 3409 return err; 3410 } 3411 EXPORT_SYMBOL_GPL(dev_set_name); 3412 3413 /** 3414 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3415 * @dev: device 3416 * 3417 * By default we select char/ for new entries. Setting class->dev_obj 3418 * to NULL prevents an entry from being created. class->dev_kobj must 3419 * be set (or cleared) before any devices are registered to the class 3420 * otherwise device_create_sys_dev_entry() and 3421 * device_remove_sys_dev_entry() will disagree about the presence of 3422 * the link. 3423 */ 3424 static struct kobject *device_to_dev_kobj(struct device *dev) 3425 { 3426 struct kobject *kobj; 3427 3428 if (dev->class) 3429 kobj = dev->class->dev_kobj; 3430 else 3431 kobj = sysfs_dev_char_kobj; 3432 3433 return kobj; 3434 } 3435 3436 static int device_create_sys_dev_entry(struct device *dev) 3437 { 3438 struct kobject *kobj = device_to_dev_kobj(dev); 3439 int error = 0; 3440 char devt_str[15]; 3441 3442 if (kobj) { 3443 format_dev_t(devt_str, dev->devt); 3444 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3445 } 3446 3447 return error; 3448 } 3449 3450 static void device_remove_sys_dev_entry(struct device *dev) 3451 { 3452 struct kobject *kobj = device_to_dev_kobj(dev); 3453 char devt_str[15]; 3454 3455 if (kobj) { 3456 format_dev_t(devt_str, dev->devt); 3457 sysfs_remove_link(kobj, devt_str); 3458 } 3459 } 3460 3461 static int device_private_init(struct device *dev) 3462 { 3463 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3464 if (!dev->p) 3465 return -ENOMEM; 3466 dev->p->device = dev; 3467 klist_init(&dev->p->klist_children, klist_children_get, 3468 klist_children_put); 3469 INIT_LIST_HEAD(&dev->p->deferred_probe); 3470 return 0; 3471 } 3472 3473 /** 3474 * device_add - add device to device hierarchy. 3475 * @dev: device. 3476 * 3477 * This is part 2 of device_register(), though may be called 3478 * separately _iff_ device_initialize() has been called separately. 3479 * 3480 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3481 * to the global and sibling lists for the device, then 3482 * adds it to the other relevant subsystems of the driver model. 3483 * 3484 * Do not call this routine or device_register() more than once for 3485 * any device structure. The driver model core is not designed to work 3486 * with devices that get unregistered and then spring back to life. 3487 * (Among other things, it's very hard to guarantee that all references 3488 * to the previous incarnation of @dev have been dropped.) Allocate 3489 * and register a fresh new struct device instead. 3490 * 3491 * NOTE: _Never_ directly free @dev after calling this function, even 3492 * if it returned an error! Always use put_device() to give up your 3493 * reference instead. 3494 * 3495 * Rule of thumb is: if device_add() succeeds, you should call 3496 * device_del() when you want to get rid of it. If device_add() has 3497 * *not* succeeded, use *only* put_device() to drop the reference 3498 * count. 3499 */ 3500 int device_add(struct device *dev) 3501 { 3502 struct device *parent; 3503 struct kobject *kobj; 3504 struct class_interface *class_intf; 3505 int error = -EINVAL; 3506 struct kobject *glue_dir = NULL; 3507 3508 dev = get_device(dev); 3509 if (!dev) 3510 goto done; 3511 3512 if (!dev->p) { 3513 error = device_private_init(dev); 3514 if (error) 3515 goto done; 3516 } 3517 3518 /* 3519 * for statically allocated devices, which should all be converted 3520 * some day, we need to initialize the name. We prevent reading back 3521 * the name, and force the use of dev_name() 3522 */ 3523 if (dev->init_name) { 3524 dev_set_name(dev, "%s", dev->init_name); 3525 dev->init_name = NULL; 3526 } 3527 3528 /* subsystems can specify simple device enumeration */ 3529 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3530 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3531 3532 if (!dev_name(dev)) { 3533 error = -EINVAL; 3534 goto name_error; 3535 } 3536 3537 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3538 3539 parent = get_device(dev->parent); 3540 kobj = get_device_parent(dev, parent); 3541 if (IS_ERR(kobj)) { 3542 error = PTR_ERR(kobj); 3543 goto parent_error; 3544 } 3545 if (kobj) 3546 dev->kobj.parent = kobj; 3547 3548 /* use parent numa_node */ 3549 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3550 set_dev_node(dev, dev_to_node(parent)); 3551 3552 /* first, register with generic layer. */ 3553 /* we require the name to be set before, and pass NULL */ 3554 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3555 if (error) { 3556 glue_dir = kobj; 3557 goto Error; 3558 } 3559 3560 /* notify platform of device entry */ 3561 device_platform_notify(dev); 3562 3563 error = device_create_file(dev, &dev_attr_uevent); 3564 if (error) 3565 goto attrError; 3566 3567 error = device_add_class_symlinks(dev); 3568 if (error) 3569 goto SymlinkError; 3570 error = device_add_attrs(dev); 3571 if (error) 3572 goto AttrsError; 3573 error = bus_add_device(dev); 3574 if (error) 3575 goto BusError; 3576 error = dpm_sysfs_add(dev); 3577 if (error) 3578 goto DPMError; 3579 device_pm_add(dev); 3580 3581 if (MAJOR(dev->devt)) { 3582 error = device_create_file(dev, &dev_attr_dev); 3583 if (error) 3584 goto DevAttrError; 3585 3586 error = device_create_sys_dev_entry(dev); 3587 if (error) 3588 goto SysEntryError; 3589 3590 devtmpfs_create_node(dev); 3591 } 3592 3593 /* Notify clients of device addition. This call must come 3594 * after dpm_sysfs_add() and before kobject_uevent(). 3595 */ 3596 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3597 kobject_uevent(&dev->kobj, KOBJ_ADD); 3598 3599 /* 3600 * Check if any of the other devices (consumers) have been waiting for 3601 * this device (supplier) to be added so that they can create a device 3602 * link to it. 3603 * 3604 * This needs to happen after device_pm_add() because device_link_add() 3605 * requires the supplier be registered before it's called. 3606 * 3607 * But this also needs to happen before bus_probe_device() to make sure 3608 * waiting consumers can link to it before the driver is bound to the 3609 * device and the driver sync_state callback is called for this device. 3610 */ 3611 if (dev->fwnode && !dev->fwnode->dev) { 3612 dev->fwnode->dev = dev; 3613 fw_devlink_link_device(dev); 3614 } 3615 3616 bus_probe_device(dev); 3617 3618 /* 3619 * If all driver registration is done and a newly added device doesn't 3620 * match with any driver, don't block its consumers from probing in 3621 * case the consumer device is able to operate without this supplier. 3622 */ 3623 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3624 fw_devlink_unblock_consumers(dev); 3625 3626 if (parent) 3627 klist_add_tail(&dev->p->knode_parent, 3628 &parent->p->klist_children); 3629 3630 if (dev->class) { 3631 mutex_lock(&dev->class->p->mutex); 3632 /* tie the class to the device */ 3633 klist_add_tail(&dev->p->knode_class, 3634 &dev->class->p->klist_devices); 3635 3636 /* notify any interfaces that the device is here */ 3637 list_for_each_entry(class_intf, 3638 &dev->class->p->interfaces, node) 3639 if (class_intf->add_dev) 3640 class_intf->add_dev(dev, class_intf); 3641 mutex_unlock(&dev->class->p->mutex); 3642 } 3643 done: 3644 put_device(dev); 3645 return error; 3646 SysEntryError: 3647 if (MAJOR(dev->devt)) 3648 device_remove_file(dev, &dev_attr_dev); 3649 DevAttrError: 3650 device_pm_remove(dev); 3651 dpm_sysfs_remove(dev); 3652 DPMError: 3653 dev->driver = NULL; 3654 bus_remove_device(dev); 3655 BusError: 3656 device_remove_attrs(dev); 3657 AttrsError: 3658 device_remove_class_symlinks(dev); 3659 SymlinkError: 3660 device_remove_file(dev, &dev_attr_uevent); 3661 attrError: 3662 device_platform_notify_remove(dev); 3663 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3664 glue_dir = get_glue_dir(dev); 3665 kobject_del(&dev->kobj); 3666 Error: 3667 cleanup_glue_dir(dev, glue_dir); 3668 parent_error: 3669 put_device(parent); 3670 name_error: 3671 kfree(dev->p); 3672 dev->p = NULL; 3673 goto done; 3674 } 3675 EXPORT_SYMBOL_GPL(device_add); 3676 3677 /** 3678 * device_register - register a device with the system. 3679 * @dev: pointer to the device structure 3680 * 3681 * This happens in two clean steps - initialize the device 3682 * and add it to the system. The two steps can be called 3683 * separately, but this is the easiest and most common. 3684 * I.e. you should only call the two helpers separately if 3685 * have a clearly defined need to use and refcount the device 3686 * before it is added to the hierarchy. 3687 * 3688 * For more information, see the kerneldoc for device_initialize() 3689 * and device_add(). 3690 * 3691 * NOTE: _Never_ directly free @dev after calling this function, even 3692 * if it returned an error! Always use put_device() to give up the 3693 * reference initialized in this function instead. 3694 */ 3695 int device_register(struct device *dev) 3696 { 3697 device_initialize(dev); 3698 return device_add(dev); 3699 } 3700 EXPORT_SYMBOL_GPL(device_register); 3701 3702 /** 3703 * get_device - increment reference count for device. 3704 * @dev: device. 3705 * 3706 * This simply forwards the call to kobject_get(), though 3707 * we do take care to provide for the case that we get a NULL 3708 * pointer passed in. 3709 */ 3710 struct device *get_device(struct device *dev) 3711 { 3712 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3713 } 3714 EXPORT_SYMBOL_GPL(get_device); 3715 3716 /** 3717 * put_device - decrement reference count. 3718 * @dev: device in question. 3719 */ 3720 void put_device(struct device *dev) 3721 { 3722 /* might_sleep(); */ 3723 if (dev) 3724 kobject_put(&dev->kobj); 3725 } 3726 EXPORT_SYMBOL_GPL(put_device); 3727 3728 bool kill_device(struct device *dev) 3729 { 3730 /* 3731 * Require the device lock and set the "dead" flag to guarantee that 3732 * the update behavior is consistent with the other bitfields near 3733 * it and that we cannot have an asynchronous probe routine trying 3734 * to run while we are tearing out the bus/class/sysfs from 3735 * underneath the device. 3736 */ 3737 device_lock_assert(dev); 3738 3739 if (dev->p->dead) 3740 return false; 3741 dev->p->dead = true; 3742 return true; 3743 } 3744 EXPORT_SYMBOL_GPL(kill_device); 3745 3746 /** 3747 * device_del - delete device from system. 3748 * @dev: device. 3749 * 3750 * This is the first part of the device unregistration 3751 * sequence. This removes the device from the lists we control 3752 * from here, has it removed from the other driver model 3753 * subsystems it was added to in device_add(), and removes it 3754 * from the kobject hierarchy. 3755 * 3756 * NOTE: this should be called manually _iff_ device_add() was 3757 * also called manually. 3758 */ 3759 void device_del(struct device *dev) 3760 { 3761 struct device *parent = dev->parent; 3762 struct kobject *glue_dir = NULL; 3763 struct class_interface *class_intf; 3764 unsigned int noio_flag; 3765 3766 device_lock(dev); 3767 kill_device(dev); 3768 device_unlock(dev); 3769 3770 if (dev->fwnode && dev->fwnode->dev == dev) 3771 dev->fwnode->dev = NULL; 3772 3773 /* Notify clients of device removal. This call must come 3774 * before dpm_sysfs_remove(). 3775 */ 3776 noio_flag = memalloc_noio_save(); 3777 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3778 3779 dpm_sysfs_remove(dev); 3780 if (parent) 3781 klist_del(&dev->p->knode_parent); 3782 if (MAJOR(dev->devt)) { 3783 devtmpfs_delete_node(dev); 3784 device_remove_sys_dev_entry(dev); 3785 device_remove_file(dev, &dev_attr_dev); 3786 } 3787 if (dev->class) { 3788 device_remove_class_symlinks(dev); 3789 3790 mutex_lock(&dev->class->p->mutex); 3791 /* notify any interfaces that the device is now gone */ 3792 list_for_each_entry(class_intf, 3793 &dev->class->p->interfaces, node) 3794 if (class_intf->remove_dev) 3795 class_intf->remove_dev(dev, class_intf); 3796 /* remove the device from the class list */ 3797 klist_del(&dev->p->knode_class); 3798 mutex_unlock(&dev->class->p->mutex); 3799 } 3800 device_remove_file(dev, &dev_attr_uevent); 3801 device_remove_attrs(dev); 3802 bus_remove_device(dev); 3803 device_pm_remove(dev); 3804 driver_deferred_probe_del(dev); 3805 device_platform_notify_remove(dev); 3806 device_links_purge(dev); 3807 3808 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3809 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3810 glue_dir = get_glue_dir(dev); 3811 kobject_del(&dev->kobj); 3812 cleanup_glue_dir(dev, glue_dir); 3813 memalloc_noio_restore(noio_flag); 3814 put_device(parent); 3815 } 3816 EXPORT_SYMBOL_GPL(device_del); 3817 3818 /** 3819 * device_unregister - unregister device from system. 3820 * @dev: device going away. 3821 * 3822 * We do this in two parts, like we do device_register(). First, 3823 * we remove it from all the subsystems with device_del(), then 3824 * we decrement the reference count via put_device(). If that 3825 * is the final reference count, the device will be cleaned up 3826 * via device_release() above. Otherwise, the structure will 3827 * stick around until the final reference to the device is dropped. 3828 */ 3829 void device_unregister(struct device *dev) 3830 { 3831 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3832 device_del(dev); 3833 put_device(dev); 3834 } 3835 EXPORT_SYMBOL_GPL(device_unregister); 3836 3837 static struct device *prev_device(struct klist_iter *i) 3838 { 3839 struct klist_node *n = klist_prev(i); 3840 struct device *dev = NULL; 3841 struct device_private *p; 3842 3843 if (n) { 3844 p = to_device_private_parent(n); 3845 dev = p->device; 3846 } 3847 return dev; 3848 } 3849 3850 static struct device *next_device(struct klist_iter *i) 3851 { 3852 struct klist_node *n = klist_next(i); 3853 struct device *dev = NULL; 3854 struct device_private *p; 3855 3856 if (n) { 3857 p = to_device_private_parent(n); 3858 dev = p->device; 3859 } 3860 return dev; 3861 } 3862 3863 /** 3864 * device_get_devnode - path of device node file 3865 * @dev: device 3866 * @mode: returned file access mode 3867 * @uid: returned file owner 3868 * @gid: returned file group 3869 * @tmp: possibly allocated string 3870 * 3871 * Return the relative path of a possible device node. 3872 * Non-default names may need to allocate a memory to compose 3873 * a name. This memory is returned in tmp and needs to be 3874 * freed by the caller. 3875 */ 3876 const char *device_get_devnode(const struct device *dev, 3877 umode_t *mode, kuid_t *uid, kgid_t *gid, 3878 const char **tmp) 3879 { 3880 char *s; 3881 3882 *tmp = NULL; 3883 3884 /* the device type may provide a specific name */ 3885 if (dev->type && dev->type->devnode) 3886 *tmp = dev->type->devnode(dev, mode, uid, gid); 3887 if (*tmp) 3888 return *tmp; 3889 3890 /* the class may provide a specific name */ 3891 if (dev->class && dev->class->devnode) 3892 *tmp = dev->class->devnode(dev, mode); 3893 if (*tmp) 3894 return *tmp; 3895 3896 /* return name without allocation, tmp == NULL */ 3897 if (strchr(dev_name(dev), '!') == NULL) 3898 return dev_name(dev); 3899 3900 /* replace '!' in the name with '/' */ 3901 s = kstrdup(dev_name(dev), GFP_KERNEL); 3902 if (!s) 3903 return NULL; 3904 strreplace(s, '!', '/'); 3905 return *tmp = s; 3906 } 3907 3908 /** 3909 * device_for_each_child - device child iterator. 3910 * @parent: parent struct device. 3911 * @fn: function to be called for each device. 3912 * @data: data for the callback. 3913 * 3914 * Iterate over @parent's child devices, and call @fn for each, 3915 * passing it @data. 3916 * 3917 * We check the return of @fn each time. If it returns anything 3918 * other than 0, we break out and return that value. 3919 */ 3920 int device_for_each_child(struct device *parent, void *data, 3921 int (*fn)(struct device *dev, void *data)) 3922 { 3923 struct klist_iter i; 3924 struct device *child; 3925 int error = 0; 3926 3927 if (!parent->p) 3928 return 0; 3929 3930 klist_iter_init(&parent->p->klist_children, &i); 3931 while (!error && (child = next_device(&i))) 3932 error = fn(child, data); 3933 klist_iter_exit(&i); 3934 return error; 3935 } 3936 EXPORT_SYMBOL_GPL(device_for_each_child); 3937 3938 /** 3939 * device_for_each_child_reverse - device child iterator in reversed order. 3940 * @parent: parent struct device. 3941 * @fn: function to be called for each device. 3942 * @data: data for the callback. 3943 * 3944 * Iterate over @parent's child devices, and call @fn for each, 3945 * passing it @data. 3946 * 3947 * We check the return of @fn each time. If it returns anything 3948 * other than 0, we break out and return that value. 3949 */ 3950 int device_for_each_child_reverse(struct device *parent, void *data, 3951 int (*fn)(struct device *dev, void *data)) 3952 { 3953 struct klist_iter i; 3954 struct device *child; 3955 int error = 0; 3956 3957 if (!parent->p) 3958 return 0; 3959 3960 klist_iter_init(&parent->p->klist_children, &i); 3961 while ((child = prev_device(&i)) && !error) 3962 error = fn(child, data); 3963 klist_iter_exit(&i); 3964 return error; 3965 } 3966 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3967 3968 /** 3969 * device_find_child - device iterator for locating a particular device. 3970 * @parent: parent struct device 3971 * @match: Callback function to check device 3972 * @data: Data to pass to match function 3973 * 3974 * This is similar to the device_for_each_child() function above, but it 3975 * returns a reference to a device that is 'found' for later use, as 3976 * determined by the @match callback. 3977 * 3978 * The callback should return 0 if the device doesn't match and non-zero 3979 * if it does. If the callback returns non-zero and a reference to the 3980 * current device can be obtained, this function will return to the caller 3981 * and not iterate over any more devices. 3982 * 3983 * NOTE: you will need to drop the reference with put_device() after use. 3984 */ 3985 struct device *device_find_child(struct device *parent, void *data, 3986 int (*match)(struct device *dev, void *data)) 3987 { 3988 struct klist_iter i; 3989 struct device *child; 3990 3991 if (!parent) 3992 return NULL; 3993 3994 klist_iter_init(&parent->p->klist_children, &i); 3995 while ((child = next_device(&i))) 3996 if (match(child, data) && get_device(child)) 3997 break; 3998 klist_iter_exit(&i); 3999 return child; 4000 } 4001 EXPORT_SYMBOL_GPL(device_find_child); 4002 4003 /** 4004 * device_find_child_by_name - device iterator for locating a child device. 4005 * @parent: parent struct device 4006 * @name: name of the child device 4007 * 4008 * This is similar to the device_find_child() function above, but it 4009 * returns a reference to a device that has the name @name. 4010 * 4011 * NOTE: you will need to drop the reference with put_device() after use. 4012 */ 4013 struct device *device_find_child_by_name(struct device *parent, 4014 const char *name) 4015 { 4016 struct klist_iter i; 4017 struct device *child; 4018 4019 if (!parent) 4020 return NULL; 4021 4022 klist_iter_init(&parent->p->klist_children, &i); 4023 while ((child = next_device(&i))) 4024 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4025 break; 4026 klist_iter_exit(&i); 4027 return child; 4028 } 4029 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4030 4031 static int match_any(struct device *dev, void *unused) 4032 { 4033 return 1; 4034 } 4035 4036 /** 4037 * device_find_any_child - device iterator for locating a child device, if any. 4038 * @parent: parent struct device 4039 * 4040 * This is similar to the device_find_child() function above, but it 4041 * returns a reference to a child device, if any. 4042 * 4043 * NOTE: you will need to drop the reference with put_device() after use. 4044 */ 4045 struct device *device_find_any_child(struct device *parent) 4046 { 4047 return device_find_child(parent, NULL, match_any); 4048 } 4049 EXPORT_SYMBOL_GPL(device_find_any_child); 4050 4051 int __init devices_init(void) 4052 { 4053 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4054 if (!devices_kset) 4055 return -ENOMEM; 4056 dev_kobj = kobject_create_and_add("dev", NULL); 4057 if (!dev_kobj) 4058 goto dev_kobj_err; 4059 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4060 if (!sysfs_dev_block_kobj) 4061 goto block_kobj_err; 4062 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4063 if (!sysfs_dev_char_kobj) 4064 goto char_kobj_err; 4065 4066 return 0; 4067 4068 char_kobj_err: 4069 kobject_put(sysfs_dev_block_kobj); 4070 block_kobj_err: 4071 kobject_put(dev_kobj); 4072 dev_kobj_err: 4073 kset_unregister(devices_kset); 4074 return -ENOMEM; 4075 } 4076 4077 static int device_check_offline(struct device *dev, void *not_used) 4078 { 4079 int ret; 4080 4081 ret = device_for_each_child(dev, NULL, device_check_offline); 4082 if (ret) 4083 return ret; 4084 4085 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4086 } 4087 4088 /** 4089 * device_offline - Prepare the device for hot-removal. 4090 * @dev: Device to be put offline. 4091 * 4092 * Execute the device bus type's .offline() callback, if present, to prepare 4093 * the device for a subsequent hot-removal. If that succeeds, the device must 4094 * not be used until either it is removed or its bus type's .online() callback 4095 * is executed. 4096 * 4097 * Call under device_hotplug_lock. 4098 */ 4099 int device_offline(struct device *dev) 4100 { 4101 int ret; 4102 4103 if (dev->offline_disabled) 4104 return -EPERM; 4105 4106 ret = device_for_each_child(dev, NULL, device_check_offline); 4107 if (ret) 4108 return ret; 4109 4110 device_lock(dev); 4111 if (device_supports_offline(dev)) { 4112 if (dev->offline) { 4113 ret = 1; 4114 } else { 4115 ret = dev->bus->offline(dev); 4116 if (!ret) { 4117 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4118 dev->offline = true; 4119 } 4120 } 4121 } 4122 device_unlock(dev); 4123 4124 return ret; 4125 } 4126 4127 /** 4128 * device_online - Put the device back online after successful device_offline(). 4129 * @dev: Device to be put back online. 4130 * 4131 * If device_offline() has been successfully executed for @dev, but the device 4132 * has not been removed subsequently, execute its bus type's .online() callback 4133 * to indicate that the device can be used again. 4134 * 4135 * Call under device_hotplug_lock. 4136 */ 4137 int device_online(struct device *dev) 4138 { 4139 int ret = 0; 4140 4141 device_lock(dev); 4142 if (device_supports_offline(dev)) { 4143 if (dev->offline) { 4144 ret = dev->bus->online(dev); 4145 if (!ret) { 4146 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4147 dev->offline = false; 4148 } 4149 } else { 4150 ret = 1; 4151 } 4152 } 4153 device_unlock(dev); 4154 4155 return ret; 4156 } 4157 4158 struct root_device { 4159 struct device dev; 4160 struct module *owner; 4161 }; 4162 4163 static inline struct root_device *to_root_device(struct device *d) 4164 { 4165 return container_of(d, struct root_device, dev); 4166 } 4167 4168 static void root_device_release(struct device *dev) 4169 { 4170 kfree(to_root_device(dev)); 4171 } 4172 4173 /** 4174 * __root_device_register - allocate and register a root device 4175 * @name: root device name 4176 * @owner: owner module of the root device, usually THIS_MODULE 4177 * 4178 * This function allocates a root device and registers it 4179 * using device_register(). In order to free the returned 4180 * device, use root_device_unregister(). 4181 * 4182 * Root devices are dummy devices which allow other devices 4183 * to be grouped under /sys/devices. Use this function to 4184 * allocate a root device and then use it as the parent of 4185 * any device which should appear under /sys/devices/{name} 4186 * 4187 * The /sys/devices/{name} directory will also contain a 4188 * 'module' symlink which points to the @owner directory 4189 * in sysfs. 4190 * 4191 * Returns &struct device pointer on success, or ERR_PTR() on error. 4192 * 4193 * Note: You probably want to use root_device_register(). 4194 */ 4195 struct device *__root_device_register(const char *name, struct module *owner) 4196 { 4197 struct root_device *root; 4198 int err = -ENOMEM; 4199 4200 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4201 if (!root) 4202 return ERR_PTR(err); 4203 4204 err = dev_set_name(&root->dev, "%s", name); 4205 if (err) { 4206 kfree(root); 4207 return ERR_PTR(err); 4208 } 4209 4210 root->dev.release = root_device_release; 4211 4212 err = device_register(&root->dev); 4213 if (err) { 4214 put_device(&root->dev); 4215 return ERR_PTR(err); 4216 } 4217 4218 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4219 if (owner) { 4220 struct module_kobject *mk = &owner->mkobj; 4221 4222 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4223 if (err) { 4224 device_unregister(&root->dev); 4225 return ERR_PTR(err); 4226 } 4227 root->owner = owner; 4228 } 4229 #endif 4230 4231 return &root->dev; 4232 } 4233 EXPORT_SYMBOL_GPL(__root_device_register); 4234 4235 /** 4236 * root_device_unregister - unregister and free a root device 4237 * @dev: device going away 4238 * 4239 * This function unregisters and cleans up a device that was created by 4240 * root_device_register(). 4241 */ 4242 void root_device_unregister(struct device *dev) 4243 { 4244 struct root_device *root = to_root_device(dev); 4245 4246 if (root->owner) 4247 sysfs_remove_link(&root->dev.kobj, "module"); 4248 4249 device_unregister(dev); 4250 } 4251 EXPORT_SYMBOL_GPL(root_device_unregister); 4252 4253 4254 static void device_create_release(struct device *dev) 4255 { 4256 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4257 kfree(dev); 4258 } 4259 4260 static __printf(6, 0) struct device * 4261 device_create_groups_vargs(const struct class *class, struct device *parent, 4262 dev_t devt, void *drvdata, 4263 const struct attribute_group **groups, 4264 const char *fmt, va_list args) 4265 { 4266 struct device *dev = NULL; 4267 int retval = -ENODEV; 4268 4269 if (IS_ERR_OR_NULL(class)) 4270 goto error; 4271 4272 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4273 if (!dev) { 4274 retval = -ENOMEM; 4275 goto error; 4276 } 4277 4278 device_initialize(dev); 4279 dev->devt = devt; 4280 dev->class = class; 4281 dev->parent = parent; 4282 dev->groups = groups; 4283 dev->release = device_create_release; 4284 dev_set_drvdata(dev, drvdata); 4285 4286 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4287 if (retval) 4288 goto error; 4289 4290 retval = device_add(dev); 4291 if (retval) 4292 goto error; 4293 4294 return dev; 4295 4296 error: 4297 put_device(dev); 4298 return ERR_PTR(retval); 4299 } 4300 4301 /** 4302 * device_create - creates a device and registers it with sysfs 4303 * @class: pointer to the struct class that this device should be registered to 4304 * @parent: pointer to the parent struct device of this new device, if any 4305 * @devt: the dev_t for the char device to be added 4306 * @drvdata: the data to be added to the device for callbacks 4307 * @fmt: string for the device's name 4308 * 4309 * This function can be used by char device classes. A struct device 4310 * will be created in sysfs, registered to the specified class. 4311 * 4312 * A "dev" file will be created, showing the dev_t for the device, if 4313 * the dev_t is not 0,0. 4314 * If a pointer to a parent struct device is passed in, the newly created 4315 * struct device will be a child of that device in sysfs. 4316 * The pointer to the struct device will be returned from the call. 4317 * Any further sysfs files that might be required can be created using this 4318 * pointer. 4319 * 4320 * Returns &struct device pointer on success, or ERR_PTR() on error. 4321 * 4322 * Note: the struct class passed to this function must have previously 4323 * been created with a call to class_create(). 4324 */ 4325 struct device *device_create(const struct class *class, struct device *parent, 4326 dev_t devt, void *drvdata, const char *fmt, ...) 4327 { 4328 va_list vargs; 4329 struct device *dev; 4330 4331 va_start(vargs, fmt); 4332 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4333 fmt, vargs); 4334 va_end(vargs); 4335 return dev; 4336 } 4337 EXPORT_SYMBOL_GPL(device_create); 4338 4339 /** 4340 * device_create_with_groups - creates a device and registers it with sysfs 4341 * @class: pointer to the struct class that this device should be registered to 4342 * @parent: pointer to the parent struct device of this new device, if any 4343 * @devt: the dev_t for the char device to be added 4344 * @drvdata: the data to be added to the device for callbacks 4345 * @groups: NULL-terminated list of attribute groups to be created 4346 * @fmt: string for the device's name 4347 * 4348 * This function can be used by char device classes. A struct device 4349 * will be created in sysfs, registered to the specified class. 4350 * Additional attributes specified in the groups parameter will also 4351 * be created automatically. 4352 * 4353 * A "dev" file will be created, showing the dev_t for the device, if 4354 * the dev_t is not 0,0. 4355 * If a pointer to a parent struct device is passed in, the newly created 4356 * struct device will be a child of that device in sysfs. 4357 * The pointer to the struct device will be returned from the call. 4358 * Any further sysfs files that might be required can be created using this 4359 * pointer. 4360 * 4361 * Returns &struct device pointer on success, or ERR_PTR() on error. 4362 * 4363 * Note: the struct class passed to this function must have previously 4364 * been created with a call to class_create(). 4365 */ 4366 struct device *device_create_with_groups(const struct class *class, 4367 struct device *parent, dev_t devt, 4368 void *drvdata, 4369 const struct attribute_group **groups, 4370 const char *fmt, ...) 4371 { 4372 va_list vargs; 4373 struct device *dev; 4374 4375 va_start(vargs, fmt); 4376 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4377 fmt, vargs); 4378 va_end(vargs); 4379 return dev; 4380 } 4381 EXPORT_SYMBOL_GPL(device_create_with_groups); 4382 4383 /** 4384 * device_destroy - removes a device that was created with device_create() 4385 * @class: pointer to the struct class that this device was registered with 4386 * @devt: the dev_t of the device that was previously registered 4387 * 4388 * This call unregisters and cleans up a device that was created with a 4389 * call to device_create(). 4390 */ 4391 void device_destroy(const struct class *class, dev_t devt) 4392 { 4393 struct device *dev; 4394 4395 dev = class_find_device_by_devt(class, devt); 4396 if (dev) { 4397 put_device(dev); 4398 device_unregister(dev); 4399 } 4400 } 4401 EXPORT_SYMBOL_GPL(device_destroy); 4402 4403 /** 4404 * device_rename - renames a device 4405 * @dev: the pointer to the struct device to be renamed 4406 * @new_name: the new name of the device 4407 * 4408 * It is the responsibility of the caller to provide mutual 4409 * exclusion between two different calls of device_rename 4410 * on the same device to ensure that new_name is valid and 4411 * won't conflict with other devices. 4412 * 4413 * Note: Don't call this function. Currently, the networking layer calls this 4414 * function, but that will change. The following text from Kay Sievers offers 4415 * some insight: 4416 * 4417 * Renaming devices is racy at many levels, symlinks and other stuff are not 4418 * replaced atomically, and you get a "move" uevent, but it's not easy to 4419 * connect the event to the old and new device. Device nodes are not renamed at 4420 * all, there isn't even support for that in the kernel now. 4421 * 4422 * In the meantime, during renaming, your target name might be taken by another 4423 * driver, creating conflicts. Or the old name is taken directly after you 4424 * renamed it -- then you get events for the same DEVPATH, before you even see 4425 * the "move" event. It's just a mess, and nothing new should ever rely on 4426 * kernel device renaming. Besides that, it's not even implemented now for 4427 * other things than (driver-core wise very simple) network devices. 4428 * 4429 * We are currently about to change network renaming in udev to completely 4430 * disallow renaming of devices in the same namespace as the kernel uses, 4431 * because we can't solve the problems properly, that arise with swapping names 4432 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4433 * be allowed to some other name than eth[0-9]*, for the aforementioned 4434 * reasons. 4435 * 4436 * Make up a "real" name in the driver before you register anything, or add 4437 * some other attributes for userspace to find the device, or use udev to add 4438 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4439 * don't even want to get into that and try to implement the missing pieces in 4440 * the core. We really have other pieces to fix in the driver core mess. :) 4441 */ 4442 int device_rename(struct device *dev, const char *new_name) 4443 { 4444 struct kobject *kobj = &dev->kobj; 4445 char *old_device_name = NULL; 4446 int error; 4447 4448 dev = get_device(dev); 4449 if (!dev) 4450 return -EINVAL; 4451 4452 dev_dbg(dev, "renaming to %s\n", new_name); 4453 4454 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4455 if (!old_device_name) { 4456 error = -ENOMEM; 4457 goto out; 4458 } 4459 4460 if (dev->class) { 4461 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4462 kobj, old_device_name, 4463 new_name, kobject_namespace(kobj)); 4464 if (error) 4465 goto out; 4466 } 4467 4468 error = kobject_rename(kobj, new_name); 4469 if (error) 4470 goto out; 4471 4472 out: 4473 put_device(dev); 4474 4475 kfree(old_device_name); 4476 4477 return error; 4478 } 4479 EXPORT_SYMBOL_GPL(device_rename); 4480 4481 static int device_move_class_links(struct device *dev, 4482 struct device *old_parent, 4483 struct device *new_parent) 4484 { 4485 int error = 0; 4486 4487 if (old_parent) 4488 sysfs_remove_link(&dev->kobj, "device"); 4489 if (new_parent) 4490 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4491 "device"); 4492 return error; 4493 } 4494 4495 /** 4496 * device_move - moves a device to a new parent 4497 * @dev: the pointer to the struct device to be moved 4498 * @new_parent: the new parent of the device (can be NULL) 4499 * @dpm_order: how to reorder the dpm_list 4500 */ 4501 int device_move(struct device *dev, struct device *new_parent, 4502 enum dpm_order dpm_order) 4503 { 4504 int error; 4505 struct device *old_parent; 4506 struct kobject *new_parent_kobj; 4507 4508 dev = get_device(dev); 4509 if (!dev) 4510 return -EINVAL; 4511 4512 device_pm_lock(); 4513 new_parent = get_device(new_parent); 4514 new_parent_kobj = get_device_parent(dev, new_parent); 4515 if (IS_ERR(new_parent_kobj)) { 4516 error = PTR_ERR(new_parent_kobj); 4517 put_device(new_parent); 4518 goto out; 4519 } 4520 4521 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4522 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4523 error = kobject_move(&dev->kobj, new_parent_kobj); 4524 if (error) { 4525 cleanup_glue_dir(dev, new_parent_kobj); 4526 put_device(new_parent); 4527 goto out; 4528 } 4529 old_parent = dev->parent; 4530 dev->parent = new_parent; 4531 if (old_parent) 4532 klist_remove(&dev->p->knode_parent); 4533 if (new_parent) { 4534 klist_add_tail(&dev->p->knode_parent, 4535 &new_parent->p->klist_children); 4536 set_dev_node(dev, dev_to_node(new_parent)); 4537 } 4538 4539 if (dev->class) { 4540 error = device_move_class_links(dev, old_parent, new_parent); 4541 if (error) { 4542 /* We ignore errors on cleanup since we're hosed anyway... */ 4543 device_move_class_links(dev, new_parent, old_parent); 4544 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4545 if (new_parent) 4546 klist_remove(&dev->p->knode_parent); 4547 dev->parent = old_parent; 4548 if (old_parent) { 4549 klist_add_tail(&dev->p->knode_parent, 4550 &old_parent->p->klist_children); 4551 set_dev_node(dev, dev_to_node(old_parent)); 4552 } 4553 } 4554 cleanup_glue_dir(dev, new_parent_kobj); 4555 put_device(new_parent); 4556 goto out; 4557 } 4558 } 4559 switch (dpm_order) { 4560 case DPM_ORDER_NONE: 4561 break; 4562 case DPM_ORDER_DEV_AFTER_PARENT: 4563 device_pm_move_after(dev, new_parent); 4564 devices_kset_move_after(dev, new_parent); 4565 break; 4566 case DPM_ORDER_PARENT_BEFORE_DEV: 4567 device_pm_move_before(new_parent, dev); 4568 devices_kset_move_before(new_parent, dev); 4569 break; 4570 case DPM_ORDER_DEV_LAST: 4571 device_pm_move_last(dev); 4572 devices_kset_move_last(dev); 4573 break; 4574 } 4575 4576 put_device(old_parent); 4577 out: 4578 device_pm_unlock(); 4579 put_device(dev); 4580 return error; 4581 } 4582 EXPORT_SYMBOL_GPL(device_move); 4583 4584 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4585 kgid_t kgid) 4586 { 4587 struct kobject *kobj = &dev->kobj; 4588 const struct class *class = dev->class; 4589 const struct device_type *type = dev->type; 4590 int error; 4591 4592 if (class) { 4593 /* 4594 * Change the device groups of the device class for @dev to 4595 * @kuid/@kgid. 4596 */ 4597 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4598 kgid); 4599 if (error) 4600 return error; 4601 } 4602 4603 if (type) { 4604 /* 4605 * Change the device groups of the device type for @dev to 4606 * @kuid/@kgid. 4607 */ 4608 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4609 kgid); 4610 if (error) 4611 return error; 4612 } 4613 4614 /* Change the device groups of @dev to @kuid/@kgid. */ 4615 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4616 if (error) 4617 return error; 4618 4619 if (device_supports_offline(dev) && !dev->offline_disabled) { 4620 /* Change online device attributes of @dev to @kuid/@kgid. */ 4621 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4622 kuid, kgid); 4623 if (error) 4624 return error; 4625 } 4626 4627 return 0; 4628 } 4629 4630 /** 4631 * device_change_owner - change the owner of an existing device. 4632 * @dev: device. 4633 * @kuid: new owner's kuid 4634 * @kgid: new owner's kgid 4635 * 4636 * This changes the owner of @dev and its corresponding sysfs entries to 4637 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4638 * core. 4639 * 4640 * Returns 0 on success or error code on failure. 4641 */ 4642 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4643 { 4644 int error; 4645 struct kobject *kobj = &dev->kobj; 4646 4647 dev = get_device(dev); 4648 if (!dev) 4649 return -EINVAL; 4650 4651 /* 4652 * Change the kobject and the default attributes and groups of the 4653 * ktype associated with it to @kuid/@kgid. 4654 */ 4655 error = sysfs_change_owner(kobj, kuid, kgid); 4656 if (error) 4657 goto out; 4658 4659 /* 4660 * Change the uevent file for @dev to the new owner. The uevent file 4661 * was created in a separate step when @dev got added and we mirror 4662 * that step here. 4663 */ 4664 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4665 kgid); 4666 if (error) 4667 goto out; 4668 4669 /* 4670 * Change the device groups, the device groups associated with the 4671 * device class, and the groups associated with the device type of @dev 4672 * to @kuid/@kgid. 4673 */ 4674 error = device_attrs_change_owner(dev, kuid, kgid); 4675 if (error) 4676 goto out; 4677 4678 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4679 if (error) 4680 goto out; 4681 4682 /* 4683 * Change the owner of the symlink located in the class directory of 4684 * the device class associated with @dev which points to the actual 4685 * directory entry for @dev to @kuid/@kgid. This ensures that the 4686 * symlink shows the same permissions as its target. 4687 */ 4688 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4689 dev_name(dev), kuid, kgid); 4690 if (error) 4691 goto out; 4692 4693 out: 4694 put_device(dev); 4695 return error; 4696 } 4697 EXPORT_SYMBOL_GPL(device_change_owner); 4698 4699 /** 4700 * device_shutdown - call ->shutdown() on each device to shutdown. 4701 */ 4702 void device_shutdown(void) 4703 { 4704 struct device *dev, *parent; 4705 4706 wait_for_device_probe(); 4707 device_block_probing(); 4708 4709 cpufreq_suspend(); 4710 4711 spin_lock(&devices_kset->list_lock); 4712 /* 4713 * Walk the devices list backward, shutting down each in turn. 4714 * Beware that device unplug events may also start pulling 4715 * devices offline, even as the system is shutting down. 4716 */ 4717 while (!list_empty(&devices_kset->list)) { 4718 dev = list_entry(devices_kset->list.prev, struct device, 4719 kobj.entry); 4720 4721 /* 4722 * hold reference count of device's parent to 4723 * prevent it from being freed because parent's 4724 * lock is to be held 4725 */ 4726 parent = get_device(dev->parent); 4727 get_device(dev); 4728 /* 4729 * Make sure the device is off the kset list, in the 4730 * event that dev->*->shutdown() doesn't remove it. 4731 */ 4732 list_del_init(&dev->kobj.entry); 4733 spin_unlock(&devices_kset->list_lock); 4734 4735 /* hold lock to avoid race with probe/release */ 4736 if (parent) 4737 device_lock(parent); 4738 device_lock(dev); 4739 4740 /* Don't allow any more runtime suspends */ 4741 pm_runtime_get_noresume(dev); 4742 pm_runtime_barrier(dev); 4743 4744 if (dev->class && dev->class->shutdown_pre) { 4745 if (initcall_debug) 4746 dev_info(dev, "shutdown_pre\n"); 4747 dev->class->shutdown_pre(dev); 4748 } 4749 if (dev->bus && dev->bus->shutdown) { 4750 if (initcall_debug) 4751 dev_info(dev, "shutdown\n"); 4752 dev->bus->shutdown(dev); 4753 } else if (dev->driver && dev->driver->shutdown) { 4754 if (initcall_debug) 4755 dev_info(dev, "shutdown\n"); 4756 dev->driver->shutdown(dev); 4757 } 4758 4759 device_unlock(dev); 4760 if (parent) 4761 device_unlock(parent); 4762 4763 put_device(dev); 4764 put_device(parent); 4765 4766 spin_lock(&devices_kset->list_lock); 4767 } 4768 spin_unlock(&devices_kset->list_lock); 4769 } 4770 4771 /* 4772 * Device logging functions 4773 */ 4774 4775 #ifdef CONFIG_PRINTK 4776 static void 4777 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4778 { 4779 const char *subsys; 4780 4781 memset(dev_info, 0, sizeof(*dev_info)); 4782 4783 if (dev->class) 4784 subsys = dev->class->name; 4785 else if (dev->bus) 4786 subsys = dev->bus->name; 4787 else 4788 return; 4789 4790 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4791 4792 /* 4793 * Add device identifier DEVICE=: 4794 * b12:8 block dev_t 4795 * c127:3 char dev_t 4796 * n8 netdev ifindex 4797 * +sound:card0 subsystem:devname 4798 */ 4799 if (MAJOR(dev->devt)) { 4800 char c; 4801 4802 if (strcmp(subsys, "block") == 0) 4803 c = 'b'; 4804 else 4805 c = 'c'; 4806 4807 snprintf(dev_info->device, sizeof(dev_info->device), 4808 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4809 } else if (strcmp(subsys, "net") == 0) { 4810 struct net_device *net = to_net_dev(dev); 4811 4812 snprintf(dev_info->device, sizeof(dev_info->device), 4813 "n%u", net->ifindex); 4814 } else { 4815 snprintf(dev_info->device, sizeof(dev_info->device), 4816 "+%s:%s", subsys, dev_name(dev)); 4817 } 4818 } 4819 4820 int dev_vprintk_emit(int level, const struct device *dev, 4821 const char *fmt, va_list args) 4822 { 4823 struct dev_printk_info dev_info; 4824 4825 set_dev_info(dev, &dev_info); 4826 4827 return vprintk_emit(0, level, &dev_info, fmt, args); 4828 } 4829 EXPORT_SYMBOL(dev_vprintk_emit); 4830 4831 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4832 { 4833 va_list args; 4834 int r; 4835 4836 va_start(args, fmt); 4837 4838 r = dev_vprintk_emit(level, dev, fmt, args); 4839 4840 va_end(args); 4841 4842 return r; 4843 } 4844 EXPORT_SYMBOL(dev_printk_emit); 4845 4846 static void __dev_printk(const char *level, const struct device *dev, 4847 struct va_format *vaf) 4848 { 4849 if (dev) 4850 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4851 dev_driver_string(dev), dev_name(dev), vaf); 4852 else 4853 printk("%s(NULL device *): %pV", level, vaf); 4854 } 4855 4856 void _dev_printk(const char *level, const struct device *dev, 4857 const char *fmt, ...) 4858 { 4859 struct va_format vaf; 4860 va_list args; 4861 4862 va_start(args, fmt); 4863 4864 vaf.fmt = fmt; 4865 vaf.va = &args; 4866 4867 __dev_printk(level, dev, &vaf); 4868 4869 va_end(args); 4870 } 4871 EXPORT_SYMBOL(_dev_printk); 4872 4873 #define define_dev_printk_level(func, kern_level) \ 4874 void func(const struct device *dev, const char *fmt, ...) \ 4875 { \ 4876 struct va_format vaf; \ 4877 va_list args; \ 4878 \ 4879 va_start(args, fmt); \ 4880 \ 4881 vaf.fmt = fmt; \ 4882 vaf.va = &args; \ 4883 \ 4884 __dev_printk(kern_level, dev, &vaf); \ 4885 \ 4886 va_end(args); \ 4887 } \ 4888 EXPORT_SYMBOL(func); 4889 4890 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4891 define_dev_printk_level(_dev_alert, KERN_ALERT); 4892 define_dev_printk_level(_dev_crit, KERN_CRIT); 4893 define_dev_printk_level(_dev_err, KERN_ERR); 4894 define_dev_printk_level(_dev_warn, KERN_WARNING); 4895 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4896 define_dev_printk_level(_dev_info, KERN_INFO); 4897 4898 #endif 4899 4900 /** 4901 * dev_err_probe - probe error check and log helper 4902 * @dev: the pointer to the struct device 4903 * @err: error value to test 4904 * @fmt: printf-style format string 4905 * @...: arguments as specified in the format string 4906 * 4907 * This helper implements common pattern present in probe functions for error 4908 * checking: print debug or error message depending if the error value is 4909 * -EPROBE_DEFER and propagate error upwards. 4910 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4911 * checked later by reading devices_deferred debugfs attribute. 4912 * It replaces code sequence:: 4913 * 4914 * if (err != -EPROBE_DEFER) 4915 * dev_err(dev, ...); 4916 * else 4917 * dev_dbg(dev, ...); 4918 * return err; 4919 * 4920 * with:: 4921 * 4922 * return dev_err_probe(dev, err, ...); 4923 * 4924 * Note that it is deemed acceptable to use this function for error 4925 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4926 * The benefit compared to a normal dev_err() is the standardized format 4927 * of the error code and the fact that the error code is returned. 4928 * 4929 * Returns @err. 4930 * 4931 */ 4932 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4933 { 4934 struct va_format vaf; 4935 va_list args; 4936 4937 va_start(args, fmt); 4938 vaf.fmt = fmt; 4939 vaf.va = &args; 4940 4941 if (err != -EPROBE_DEFER) { 4942 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4943 } else { 4944 device_set_deferred_probe_reason(dev, &vaf); 4945 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4946 } 4947 4948 va_end(args); 4949 4950 return err; 4951 } 4952 EXPORT_SYMBOL_GPL(dev_err_probe); 4953 4954 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4955 { 4956 return fwnode && !IS_ERR(fwnode->secondary); 4957 } 4958 4959 /** 4960 * set_primary_fwnode - Change the primary firmware node of a given device. 4961 * @dev: Device to handle. 4962 * @fwnode: New primary firmware node of the device. 4963 * 4964 * Set the device's firmware node pointer to @fwnode, but if a secondary 4965 * firmware node of the device is present, preserve it. 4966 * 4967 * Valid fwnode cases are: 4968 * - primary --> secondary --> -ENODEV 4969 * - primary --> NULL 4970 * - secondary --> -ENODEV 4971 * - NULL 4972 */ 4973 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4974 { 4975 struct device *parent = dev->parent; 4976 struct fwnode_handle *fn = dev->fwnode; 4977 4978 if (fwnode) { 4979 if (fwnode_is_primary(fn)) 4980 fn = fn->secondary; 4981 4982 if (fn) { 4983 WARN_ON(fwnode->secondary); 4984 fwnode->secondary = fn; 4985 } 4986 dev->fwnode = fwnode; 4987 } else { 4988 if (fwnode_is_primary(fn)) { 4989 dev->fwnode = fn->secondary; 4990 4991 /* Skip nullifying fn->secondary if the primary is shared */ 4992 if (parent && fn == parent->fwnode) 4993 return; 4994 4995 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4996 fn->secondary = NULL; 4997 } else { 4998 dev->fwnode = NULL; 4999 } 5000 } 5001 } 5002 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5003 5004 /** 5005 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5006 * @dev: Device to handle. 5007 * @fwnode: New secondary firmware node of the device. 5008 * 5009 * If a primary firmware node of the device is present, set its secondary 5010 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5011 * @fwnode. 5012 */ 5013 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5014 { 5015 if (fwnode) 5016 fwnode->secondary = ERR_PTR(-ENODEV); 5017 5018 if (fwnode_is_primary(dev->fwnode)) 5019 dev->fwnode->secondary = fwnode; 5020 else 5021 dev->fwnode = fwnode; 5022 } 5023 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5024 5025 /** 5026 * device_set_of_node_from_dev - reuse device-tree node of another device 5027 * @dev: device whose device-tree node is being set 5028 * @dev2: device whose device-tree node is being reused 5029 * 5030 * Takes another reference to the new device-tree node after first dropping 5031 * any reference held to the old node. 5032 */ 5033 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5034 { 5035 of_node_put(dev->of_node); 5036 dev->of_node = of_node_get(dev2->of_node); 5037 dev->of_node_reused = true; 5038 } 5039 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5040 5041 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5042 { 5043 dev->fwnode = fwnode; 5044 dev->of_node = to_of_node(fwnode); 5045 } 5046 EXPORT_SYMBOL_GPL(device_set_node); 5047 5048 int device_match_name(struct device *dev, const void *name) 5049 { 5050 return sysfs_streq(dev_name(dev), name); 5051 } 5052 EXPORT_SYMBOL_GPL(device_match_name); 5053 5054 int device_match_of_node(struct device *dev, const void *np) 5055 { 5056 return dev->of_node == np; 5057 } 5058 EXPORT_SYMBOL_GPL(device_match_of_node); 5059 5060 int device_match_fwnode(struct device *dev, const void *fwnode) 5061 { 5062 return dev_fwnode(dev) == fwnode; 5063 } 5064 EXPORT_SYMBOL_GPL(device_match_fwnode); 5065 5066 int device_match_devt(struct device *dev, const void *pdevt) 5067 { 5068 return dev->devt == *(dev_t *)pdevt; 5069 } 5070 EXPORT_SYMBOL_GPL(device_match_devt); 5071 5072 int device_match_acpi_dev(struct device *dev, const void *adev) 5073 { 5074 return ACPI_COMPANION(dev) == adev; 5075 } 5076 EXPORT_SYMBOL(device_match_acpi_dev); 5077 5078 int device_match_acpi_handle(struct device *dev, const void *handle) 5079 { 5080 return ACPI_HANDLE(dev) == handle; 5081 } 5082 EXPORT_SYMBOL(device_match_acpi_handle); 5083 5084 int device_match_any(struct device *dev, const void *unused) 5085 { 5086 return 1; 5087 } 5088 EXPORT_SYMBOL_GPL(device_match_any); 5089