xref: /linux/drivers/base/core.c (revision 67ca1b9346fe255cfe503b967407fd24ec76da37)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 
48 /**
49  * __fwnode_link_add - Create a link between two fwnode_handles.
50  * @con: Consumer end of the link.
51  * @sup: Supplier end of the link.
52  *
53  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
54  * represents the detail that the firmware lists @sup fwnode as supplying a
55  * resource to @con.
56  *
57  * The driver core will use the fwnode link to create a device link between the
58  * two device objects corresponding to @con and @sup when they are created. The
59  * driver core will automatically delete the fwnode link between @con and @sup
60  * after doing that.
61  *
62  * Attempts to create duplicate links between the same pair of fwnode handles
63  * are ignored and there is no reference counting.
64  */
65 static int __fwnode_link_add(struct fwnode_handle *con,
66 			     struct fwnode_handle *sup, u8 flags)
67 {
68 	struct fwnode_link *link;
69 
70 	list_for_each_entry(link, &sup->consumers, s_hook)
71 		if (link->consumer == con) {
72 			link->flags |= flags;
73 			return 0;
74 		}
75 
76 	link = kzalloc(sizeof(*link), GFP_KERNEL);
77 	if (!link)
78 		return -ENOMEM;
79 
80 	link->supplier = sup;
81 	INIT_LIST_HEAD(&link->s_hook);
82 	link->consumer = con;
83 	INIT_LIST_HEAD(&link->c_hook);
84 	link->flags = flags;
85 
86 	list_add(&link->s_hook, &sup->consumers);
87 	list_add(&link->c_hook, &con->suppliers);
88 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
89 		 con, sup);
90 
91 	return 0;
92 }
93 
94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
95 {
96 	int ret;
97 
98 	mutex_lock(&fwnode_link_lock);
99 	ret = __fwnode_link_add(con, sup, 0);
100 	mutex_unlock(&fwnode_link_lock);
101 	return ret;
102 }
103 
104 /**
105  * __fwnode_link_del - Delete a link between two fwnode_handles.
106  * @link: the fwnode_link to be deleted
107  *
108  * The fwnode_link_lock needs to be held when this function is called.
109  */
110 static void __fwnode_link_del(struct fwnode_link *link)
111 {
112 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
113 		 link->consumer, link->supplier);
114 	list_del(&link->s_hook);
115 	list_del(&link->c_hook);
116 	kfree(link);
117 }
118 
119 /**
120  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
121  * @link: the fwnode_link to be marked
122  *
123  * The fwnode_link_lock needs to be held when this function is called.
124  */
125 static void __fwnode_link_cycle(struct fwnode_link *link)
126 {
127 	pr_debug("%pfwf: Relaxing link with %pfwf\n",
128 		 link->consumer, link->supplier);
129 	link->flags |= FWLINK_FLAG_CYCLE;
130 }
131 
132 /**
133  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
134  * @fwnode: fwnode whose supplier links need to be deleted
135  *
136  * Deletes all supplier links connecting directly to @fwnode.
137  */
138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
139 {
140 	struct fwnode_link *link, *tmp;
141 
142 	mutex_lock(&fwnode_link_lock);
143 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
144 		__fwnode_link_del(link);
145 	mutex_unlock(&fwnode_link_lock);
146 }
147 
148 /**
149  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
150  * @fwnode: fwnode whose consumer links need to be deleted
151  *
152  * Deletes all consumer links connecting directly to @fwnode.
153  */
154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
155 {
156 	struct fwnode_link *link, *tmp;
157 
158 	mutex_lock(&fwnode_link_lock);
159 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
160 		__fwnode_link_del(link);
161 	mutex_unlock(&fwnode_link_lock);
162 }
163 
164 /**
165  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
166  * @fwnode: fwnode whose links needs to be deleted
167  *
168  * Deletes all links connecting directly to a fwnode.
169  */
170 void fwnode_links_purge(struct fwnode_handle *fwnode)
171 {
172 	fwnode_links_purge_suppliers(fwnode);
173 	fwnode_links_purge_consumers(fwnode);
174 }
175 
176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
177 {
178 	struct fwnode_handle *child;
179 
180 	/* Don't purge consumer links of an added child */
181 	if (fwnode->dev)
182 		return;
183 
184 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
185 	fwnode_links_purge_consumers(fwnode);
186 
187 	fwnode_for_each_available_child_node(fwnode, child)
188 		fw_devlink_purge_absent_suppliers(child);
189 }
190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
191 
192 /**
193  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
194  * @from: move consumers away from this fwnode
195  * @to: move consumers to this fwnode
196  *
197  * Move all consumer links from @from fwnode to @to fwnode.
198  */
199 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
200 					  struct fwnode_handle *to)
201 {
202 	struct fwnode_link *link, *tmp;
203 
204 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
205 		__fwnode_link_add(link->consumer, to, link->flags);
206 		__fwnode_link_del(link);
207 	}
208 }
209 
210 /**
211  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
212  * @fwnode: fwnode from which to pick up dangling consumers
213  * @new_sup: fwnode of new supplier
214  *
215  * If the @fwnode has a corresponding struct device and the device supports
216  * probing (that is, added to a bus), then we want to let fw_devlink create
217  * MANAGED device links to this device, so leave @fwnode and its descendant's
218  * fwnode links alone.
219  *
220  * Otherwise, move its consumers to the new supplier @new_sup.
221  */
222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
223 						   struct fwnode_handle *new_sup)
224 {
225 	struct fwnode_handle *child;
226 
227 	if (fwnode->dev && fwnode->dev->bus)
228 		return;
229 
230 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
231 	__fwnode_links_move_consumers(fwnode, new_sup);
232 
233 	fwnode_for_each_available_child_node(fwnode, child)
234 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
235 }
236 
237 static DEFINE_MUTEX(device_links_lock);
238 DEFINE_STATIC_SRCU(device_links_srcu);
239 
240 static inline void device_links_write_lock(void)
241 {
242 	mutex_lock(&device_links_lock);
243 }
244 
245 static inline void device_links_write_unlock(void)
246 {
247 	mutex_unlock(&device_links_lock);
248 }
249 
250 int device_links_read_lock(void) __acquires(&device_links_srcu)
251 {
252 	return srcu_read_lock(&device_links_srcu);
253 }
254 
255 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
256 {
257 	srcu_read_unlock(&device_links_srcu, idx);
258 }
259 
260 int device_links_read_lock_held(void)
261 {
262 	return srcu_read_lock_held(&device_links_srcu);
263 }
264 
265 static void device_link_synchronize_removal(void)
266 {
267 	synchronize_srcu(&device_links_srcu);
268 }
269 
270 static void device_link_remove_from_lists(struct device_link *link)
271 {
272 	list_del_rcu(&link->s_node);
273 	list_del_rcu(&link->c_node);
274 }
275 
276 static bool device_is_ancestor(struct device *dev, struct device *target)
277 {
278 	while (target->parent) {
279 		target = target->parent;
280 		if (dev == target)
281 			return true;
282 	}
283 	return false;
284 }
285 
286 static inline bool device_link_flag_is_sync_state_only(u32 flags)
287 {
288 	return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) ==
289 		(DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED);
290 }
291 
292 /**
293  * device_is_dependent - Check if one device depends on another one
294  * @dev: Device to check dependencies for.
295  * @target: Device to check against.
296  *
297  * Check if @target depends on @dev or any device dependent on it (its child or
298  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
299  */
300 int device_is_dependent(struct device *dev, void *target)
301 {
302 	struct device_link *link;
303 	int ret;
304 
305 	/*
306 	 * The "ancestors" check is needed to catch the case when the target
307 	 * device has not been completely initialized yet and it is still
308 	 * missing from the list of children of its parent device.
309 	 */
310 	if (dev == target || device_is_ancestor(dev, target))
311 		return 1;
312 
313 	ret = device_for_each_child(dev, target, device_is_dependent);
314 	if (ret)
315 		return ret;
316 
317 	list_for_each_entry(link, &dev->links.consumers, s_node) {
318 		if (device_link_flag_is_sync_state_only(link->flags))
319 			continue;
320 
321 		if (link->consumer == target)
322 			return 1;
323 
324 		ret = device_is_dependent(link->consumer, target);
325 		if (ret)
326 			break;
327 	}
328 	return ret;
329 }
330 
331 static void device_link_init_status(struct device_link *link,
332 				    struct device *consumer,
333 				    struct device *supplier)
334 {
335 	switch (supplier->links.status) {
336 	case DL_DEV_PROBING:
337 		switch (consumer->links.status) {
338 		case DL_DEV_PROBING:
339 			/*
340 			 * A consumer driver can create a link to a supplier
341 			 * that has not completed its probing yet as long as it
342 			 * knows that the supplier is already functional (for
343 			 * example, it has just acquired some resources from the
344 			 * supplier).
345 			 */
346 			link->status = DL_STATE_CONSUMER_PROBE;
347 			break;
348 		default:
349 			link->status = DL_STATE_DORMANT;
350 			break;
351 		}
352 		break;
353 	case DL_DEV_DRIVER_BOUND:
354 		switch (consumer->links.status) {
355 		case DL_DEV_PROBING:
356 			link->status = DL_STATE_CONSUMER_PROBE;
357 			break;
358 		case DL_DEV_DRIVER_BOUND:
359 			link->status = DL_STATE_ACTIVE;
360 			break;
361 		default:
362 			link->status = DL_STATE_AVAILABLE;
363 			break;
364 		}
365 		break;
366 	case DL_DEV_UNBINDING:
367 		link->status = DL_STATE_SUPPLIER_UNBIND;
368 		break;
369 	default:
370 		link->status = DL_STATE_DORMANT;
371 		break;
372 	}
373 }
374 
375 static int device_reorder_to_tail(struct device *dev, void *not_used)
376 {
377 	struct device_link *link;
378 
379 	/*
380 	 * Devices that have not been registered yet will be put to the ends
381 	 * of the lists during the registration, so skip them here.
382 	 */
383 	if (device_is_registered(dev))
384 		devices_kset_move_last(dev);
385 
386 	if (device_pm_initialized(dev))
387 		device_pm_move_last(dev);
388 
389 	device_for_each_child(dev, NULL, device_reorder_to_tail);
390 	list_for_each_entry(link, &dev->links.consumers, s_node) {
391 		if (device_link_flag_is_sync_state_only(link->flags))
392 			continue;
393 		device_reorder_to_tail(link->consumer, NULL);
394 	}
395 
396 	return 0;
397 }
398 
399 /**
400  * device_pm_move_to_tail - Move set of devices to the end of device lists
401  * @dev: Device to move
402  *
403  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
404  *
405  * It moves the @dev along with all of its children and all of its consumers
406  * to the ends of the device_kset and dpm_list, recursively.
407  */
408 void device_pm_move_to_tail(struct device *dev)
409 {
410 	int idx;
411 
412 	idx = device_links_read_lock();
413 	device_pm_lock();
414 	device_reorder_to_tail(dev, NULL);
415 	device_pm_unlock();
416 	device_links_read_unlock(idx);
417 }
418 
419 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
420 
421 static ssize_t status_show(struct device *dev,
422 			   struct device_attribute *attr, char *buf)
423 {
424 	const char *output;
425 
426 	switch (to_devlink(dev)->status) {
427 	case DL_STATE_NONE:
428 		output = "not tracked";
429 		break;
430 	case DL_STATE_DORMANT:
431 		output = "dormant";
432 		break;
433 	case DL_STATE_AVAILABLE:
434 		output = "available";
435 		break;
436 	case DL_STATE_CONSUMER_PROBE:
437 		output = "consumer probing";
438 		break;
439 	case DL_STATE_ACTIVE:
440 		output = "active";
441 		break;
442 	case DL_STATE_SUPPLIER_UNBIND:
443 		output = "supplier unbinding";
444 		break;
445 	default:
446 		output = "unknown";
447 		break;
448 	}
449 
450 	return sysfs_emit(buf, "%s\n", output);
451 }
452 static DEVICE_ATTR_RO(status);
453 
454 static ssize_t auto_remove_on_show(struct device *dev,
455 				   struct device_attribute *attr, char *buf)
456 {
457 	struct device_link *link = to_devlink(dev);
458 	const char *output;
459 
460 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
461 		output = "supplier unbind";
462 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
463 		output = "consumer unbind";
464 	else
465 		output = "never";
466 
467 	return sysfs_emit(buf, "%s\n", output);
468 }
469 static DEVICE_ATTR_RO(auto_remove_on);
470 
471 static ssize_t runtime_pm_show(struct device *dev,
472 			       struct device_attribute *attr, char *buf)
473 {
474 	struct device_link *link = to_devlink(dev);
475 
476 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
477 }
478 static DEVICE_ATTR_RO(runtime_pm);
479 
480 static ssize_t sync_state_only_show(struct device *dev,
481 				    struct device_attribute *attr, char *buf)
482 {
483 	struct device_link *link = to_devlink(dev);
484 
485 	return sysfs_emit(buf, "%d\n",
486 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
487 }
488 static DEVICE_ATTR_RO(sync_state_only);
489 
490 static struct attribute *devlink_attrs[] = {
491 	&dev_attr_status.attr,
492 	&dev_attr_auto_remove_on.attr,
493 	&dev_attr_runtime_pm.attr,
494 	&dev_attr_sync_state_only.attr,
495 	NULL,
496 };
497 ATTRIBUTE_GROUPS(devlink);
498 
499 static void device_link_release_fn(struct work_struct *work)
500 {
501 	struct device_link *link = container_of(work, struct device_link, rm_work);
502 
503 	/* Ensure that all references to the link object have been dropped. */
504 	device_link_synchronize_removal();
505 
506 	pm_runtime_release_supplier(link);
507 	/*
508 	 * If supplier_preactivated is set, the link has been dropped between
509 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
510 	 * in __driver_probe_device().  In that case, drop the supplier's
511 	 * PM-runtime usage counter to remove the reference taken by
512 	 * pm_runtime_get_suppliers().
513 	 */
514 	if (link->supplier_preactivated)
515 		pm_runtime_put_noidle(link->supplier);
516 
517 	pm_request_idle(link->supplier);
518 
519 	put_device(link->consumer);
520 	put_device(link->supplier);
521 	kfree(link);
522 }
523 
524 static void devlink_dev_release(struct device *dev)
525 {
526 	struct device_link *link = to_devlink(dev);
527 
528 	INIT_WORK(&link->rm_work, device_link_release_fn);
529 	/*
530 	 * It may take a while to complete this work because of the SRCU
531 	 * synchronization in device_link_release_fn() and if the consumer or
532 	 * supplier devices get deleted when it runs, so put it into the "long"
533 	 * workqueue.
534 	 */
535 	queue_work(system_long_wq, &link->rm_work);
536 }
537 
538 static struct class devlink_class = {
539 	.name = "devlink",
540 	.dev_groups = devlink_groups,
541 	.dev_release = devlink_dev_release,
542 };
543 
544 static int devlink_add_symlinks(struct device *dev,
545 				struct class_interface *class_intf)
546 {
547 	int ret;
548 	size_t len;
549 	struct device_link *link = to_devlink(dev);
550 	struct device *sup = link->supplier;
551 	struct device *con = link->consumer;
552 	char *buf;
553 
554 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
555 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
556 	len += strlen(":");
557 	len += strlen("supplier:") + 1;
558 	buf = kzalloc(len, GFP_KERNEL);
559 	if (!buf)
560 		return -ENOMEM;
561 
562 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
563 	if (ret)
564 		goto out;
565 
566 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
567 	if (ret)
568 		goto err_con;
569 
570 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
571 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
572 	if (ret)
573 		goto err_con_dev;
574 
575 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
576 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
577 	if (ret)
578 		goto err_sup_dev;
579 
580 	goto out;
581 
582 err_sup_dev:
583 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
584 	sysfs_remove_link(&sup->kobj, buf);
585 err_con_dev:
586 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
587 err_con:
588 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
589 out:
590 	kfree(buf);
591 	return ret;
592 }
593 
594 static void devlink_remove_symlinks(struct device *dev,
595 				   struct class_interface *class_intf)
596 {
597 	struct device_link *link = to_devlink(dev);
598 	size_t len;
599 	struct device *sup = link->supplier;
600 	struct device *con = link->consumer;
601 	char *buf;
602 
603 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
604 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 
606 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
607 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
608 	len += strlen(":");
609 	len += strlen("supplier:") + 1;
610 	buf = kzalloc(len, GFP_KERNEL);
611 	if (!buf) {
612 		WARN(1, "Unable to properly free device link symlinks!\n");
613 		return;
614 	}
615 
616 	if (device_is_registered(con)) {
617 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
618 		sysfs_remove_link(&con->kobj, buf);
619 	}
620 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
621 	sysfs_remove_link(&sup->kobj, buf);
622 	kfree(buf);
623 }
624 
625 static struct class_interface devlink_class_intf = {
626 	.class = &devlink_class,
627 	.add_dev = devlink_add_symlinks,
628 	.remove_dev = devlink_remove_symlinks,
629 };
630 
631 static int __init devlink_class_init(void)
632 {
633 	int ret;
634 
635 	ret = class_register(&devlink_class);
636 	if (ret)
637 		return ret;
638 
639 	ret = class_interface_register(&devlink_class_intf);
640 	if (ret)
641 		class_unregister(&devlink_class);
642 
643 	return ret;
644 }
645 postcore_initcall(devlink_class_init);
646 
647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
648 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
649 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
650 			       DL_FLAG_SYNC_STATE_ONLY | \
651 			       DL_FLAG_INFERRED | \
652 			       DL_FLAG_CYCLE)
653 
654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
655 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
656 
657 /**
658  * device_link_add - Create a link between two devices.
659  * @consumer: Consumer end of the link.
660  * @supplier: Supplier end of the link.
661  * @flags: Link flags.
662  *
663  * The caller is responsible for the proper synchronization of the link creation
664  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
665  * runtime PM framework to take the link into account.  Second, if the
666  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
667  * be forced into the active meta state and reference-counted upon the creation
668  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
669  * ignored.
670  *
671  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
672  * expected to release the link returned by it directly with the help of either
673  * device_link_del() or device_link_remove().
674  *
675  * If that flag is not set, however, the caller of this function is handing the
676  * management of the link over to the driver core entirely and its return value
677  * can only be used to check whether or not the link is present.  In that case,
678  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
679  * flags can be used to indicate to the driver core when the link can be safely
680  * deleted.  Namely, setting one of them in @flags indicates to the driver core
681  * that the link is not going to be used (by the given caller of this function)
682  * after unbinding the consumer or supplier driver, respectively, from its
683  * device, so the link can be deleted at that point.  If none of them is set,
684  * the link will be maintained until one of the devices pointed to by it (either
685  * the consumer or the supplier) is unregistered.
686  *
687  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
688  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
689  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
690  * be used to request the driver core to automatically probe for a consumer
691  * driver after successfully binding a driver to the supplier device.
692  *
693  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
694  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
695  * the same time is invalid and will cause NULL to be returned upfront.
696  * However, if a device link between the given @consumer and @supplier pair
697  * exists already when this function is called for them, the existing link will
698  * be returned regardless of its current type and status (the link's flags may
699  * be modified then).  The caller of this function is then expected to treat
700  * the link as though it has just been created, so (in particular) if
701  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
702  * explicitly when not needed any more (as stated above).
703  *
704  * A side effect of the link creation is re-ordering of dpm_list and the
705  * devices_kset list by moving the consumer device and all devices depending
706  * on it to the ends of these lists (that does not happen to devices that have
707  * not been registered when this function is called).
708  *
709  * The supplier device is required to be registered when this function is called
710  * and NULL will be returned if that is not the case.  The consumer device need
711  * not be registered, however.
712  */
713 struct device_link *device_link_add(struct device *consumer,
714 				    struct device *supplier, u32 flags)
715 {
716 	struct device_link *link;
717 
718 	if (!consumer || !supplier || consumer == supplier ||
719 	    flags & ~DL_ADD_VALID_FLAGS ||
720 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
721 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
722 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
723 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
724 		return NULL;
725 
726 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
727 		if (pm_runtime_get_sync(supplier) < 0) {
728 			pm_runtime_put_noidle(supplier);
729 			return NULL;
730 		}
731 	}
732 
733 	if (!(flags & DL_FLAG_STATELESS))
734 		flags |= DL_FLAG_MANAGED;
735 
736 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
737 	    !device_link_flag_is_sync_state_only(flags))
738 		return NULL;
739 
740 	device_links_write_lock();
741 	device_pm_lock();
742 
743 	/*
744 	 * If the supplier has not been fully registered yet or there is a
745 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
746 	 * the supplier already in the graph, return NULL. If the link is a
747 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
748 	 * because it only affects sync_state() callbacks.
749 	 */
750 	if (!device_pm_initialized(supplier)
751 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
752 		  device_is_dependent(consumer, supplier))) {
753 		link = NULL;
754 		goto out;
755 	}
756 
757 	/*
758 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
759 	 * So, only create it if the consumer hasn't probed yet.
760 	 */
761 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
762 	    consumer->links.status != DL_DEV_NO_DRIVER &&
763 	    consumer->links.status != DL_DEV_PROBING) {
764 		link = NULL;
765 		goto out;
766 	}
767 
768 	/*
769 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
770 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
771 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
772 	 */
773 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
774 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
775 
776 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
777 		if (link->consumer != consumer)
778 			continue;
779 
780 		if (link->flags & DL_FLAG_INFERRED &&
781 		    !(flags & DL_FLAG_INFERRED))
782 			link->flags &= ~DL_FLAG_INFERRED;
783 
784 		if (flags & DL_FLAG_PM_RUNTIME) {
785 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
786 				pm_runtime_new_link(consumer);
787 				link->flags |= DL_FLAG_PM_RUNTIME;
788 			}
789 			if (flags & DL_FLAG_RPM_ACTIVE)
790 				refcount_inc(&link->rpm_active);
791 		}
792 
793 		if (flags & DL_FLAG_STATELESS) {
794 			kref_get(&link->kref);
795 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
796 			    !(link->flags & DL_FLAG_STATELESS)) {
797 				link->flags |= DL_FLAG_STATELESS;
798 				goto reorder;
799 			} else {
800 				link->flags |= DL_FLAG_STATELESS;
801 				goto out;
802 			}
803 		}
804 
805 		/*
806 		 * If the life time of the link following from the new flags is
807 		 * longer than indicated by the flags of the existing link,
808 		 * update the existing link to stay around longer.
809 		 */
810 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
811 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
812 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
813 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
814 			}
815 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
816 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
817 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
818 		}
819 		if (!(link->flags & DL_FLAG_MANAGED)) {
820 			kref_get(&link->kref);
821 			link->flags |= DL_FLAG_MANAGED;
822 			device_link_init_status(link, consumer, supplier);
823 		}
824 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
825 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
826 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
827 			goto reorder;
828 		}
829 
830 		goto out;
831 	}
832 
833 	link = kzalloc(sizeof(*link), GFP_KERNEL);
834 	if (!link)
835 		goto out;
836 
837 	refcount_set(&link->rpm_active, 1);
838 
839 	get_device(supplier);
840 	link->supplier = supplier;
841 	INIT_LIST_HEAD(&link->s_node);
842 	get_device(consumer);
843 	link->consumer = consumer;
844 	INIT_LIST_HEAD(&link->c_node);
845 	link->flags = flags;
846 	kref_init(&link->kref);
847 
848 	link->link_dev.class = &devlink_class;
849 	device_set_pm_not_required(&link->link_dev);
850 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
851 		     dev_bus_name(supplier), dev_name(supplier),
852 		     dev_bus_name(consumer), dev_name(consumer));
853 	if (device_register(&link->link_dev)) {
854 		put_device(&link->link_dev);
855 		link = NULL;
856 		goto out;
857 	}
858 
859 	if (flags & DL_FLAG_PM_RUNTIME) {
860 		if (flags & DL_FLAG_RPM_ACTIVE)
861 			refcount_inc(&link->rpm_active);
862 
863 		pm_runtime_new_link(consumer);
864 	}
865 
866 	/* Determine the initial link state. */
867 	if (flags & DL_FLAG_STATELESS)
868 		link->status = DL_STATE_NONE;
869 	else
870 		device_link_init_status(link, consumer, supplier);
871 
872 	/*
873 	 * Some callers expect the link creation during consumer driver probe to
874 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
875 	 */
876 	if (link->status == DL_STATE_CONSUMER_PROBE &&
877 	    flags & DL_FLAG_PM_RUNTIME)
878 		pm_runtime_resume(supplier);
879 
880 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
881 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
882 
883 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
884 		dev_dbg(consumer,
885 			"Linked as a sync state only consumer to %s\n",
886 			dev_name(supplier));
887 		goto out;
888 	}
889 
890 reorder:
891 	/*
892 	 * Move the consumer and all of the devices depending on it to the end
893 	 * of dpm_list and the devices_kset list.
894 	 *
895 	 * It is necessary to hold dpm_list locked throughout all that or else
896 	 * we may end up suspending with a wrong ordering of it.
897 	 */
898 	device_reorder_to_tail(consumer, NULL);
899 
900 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
901 
902 out:
903 	device_pm_unlock();
904 	device_links_write_unlock();
905 
906 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
907 		pm_runtime_put(supplier);
908 
909 	return link;
910 }
911 EXPORT_SYMBOL_GPL(device_link_add);
912 
913 static void __device_link_del(struct kref *kref)
914 {
915 	struct device_link *link = container_of(kref, struct device_link, kref);
916 
917 	dev_dbg(link->consumer, "Dropping the link to %s\n",
918 		dev_name(link->supplier));
919 
920 	pm_runtime_drop_link(link);
921 
922 	device_link_remove_from_lists(link);
923 	device_unregister(&link->link_dev);
924 }
925 
926 static void device_link_put_kref(struct device_link *link)
927 {
928 	if (link->flags & DL_FLAG_STATELESS)
929 		kref_put(&link->kref, __device_link_del);
930 	else if (!device_is_registered(link->consumer))
931 		__device_link_del(&link->kref);
932 	else
933 		WARN(1, "Unable to drop a managed device link reference\n");
934 }
935 
936 /**
937  * device_link_del - Delete a stateless link between two devices.
938  * @link: Device link to delete.
939  *
940  * The caller must ensure proper synchronization of this function with runtime
941  * PM.  If the link was added multiple times, it needs to be deleted as often.
942  * Care is required for hotplugged devices:  Their links are purged on removal
943  * and calling device_link_del() is then no longer allowed.
944  */
945 void device_link_del(struct device_link *link)
946 {
947 	device_links_write_lock();
948 	device_link_put_kref(link);
949 	device_links_write_unlock();
950 }
951 EXPORT_SYMBOL_GPL(device_link_del);
952 
953 /**
954  * device_link_remove - Delete a stateless link between two devices.
955  * @consumer: Consumer end of the link.
956  * @supplier: Supplier end of the link.
957  *
958  * The caller must ensure proper synchronization of this function with runtime
959  * PM.
960  */
961 void device_link_remove(void *consumer, struct device *supplier)
962 {
963 	struct device_link *link;
964 
965 	if (WARN_ON(consumer == supplier))
966 		return;
967 
968 	device_links_write_lock();
969 
970 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
971 		if (link->consumer == consumer) {
972 			device_link_put_kref(link);
973 			break;
974 		}
975 	}
976 
977 	device_links_write_unlock();
978 }
979 EXPORT_SYMBOL_GPL(device_link_remove);
980 
981 static void device_links_missing_supplier(struct device *dev)
982 {
983 	struct device_link *link;
984 
985 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
986 		if (link->status != DL_STATE_CONSUMER_PROBE)
987 			continue;
988 
989 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
990 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
991 		} else {
992 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
993 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
994 		}
995 	}
996 }
997 
998 static bool dev_is_best_effort(struct device *dev)
999 {
1000 	return (fw_devlink_best_effort && dev->can_match) ||
1001 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1002 }
1003 
1004 static struct fwnode_handle *fwnode_links_check_suppliers(
1005 						struct fwnode_handle *fwnode)
1006 {
1007 	struct fwnode_link *link;
1008 
1009 	if (!fwnode || fw_devlink_is_permissive())
1010 		return NULL;
1011 
1012 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1013 		if (!(link->flags & FWLINK_FLAG_CYCLE))
1014 			return link->supplier;
1015 
1016 	return NULL;
1017 }
1018 
1019 /**
1020  * device_links_check_suppliers - Check presence of supplier drivers.
1021  * @dev: Consumer device.
1022  *
1023  * Check links from this device to any suppliers.  Walk the list of the device's
1024  * links to suppliers and see if all of them are available.  If not, simply
1025  * return -EPROBE_DEFER.
1026  *
1027  * We need to guarantee that the supplier will not go away after the check has
1028  * been positive here.  It only can go away in __device_release_driver() and
1029  * that function  checks the device's links to consumers.  This means we need to
1030  * mark the link as "consumer probe in progress" to make the supplier removal
1031  * wait for us to complete (or bad things may happen).
1032  *
1033  * Links without the DL_FLAG_MANAGED flag set are ignored.
1034  */
1035 int device_links_check_suppliers(struct device *dev)
1036 {
1037 	struct device_link *link;
1038 	int ret = 0, fwnode_ret = 0;
1039 	struct fwnode_handle *sup_fw;
1040 
1041 	/*
1042 	 * Device waiting for supplier to become available is not allowed to
1043 	 * probe.
1044 	 */
1045 	mutex_lock(&fwnode_link_lock);
1046 	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1047 	if (sup_fw) {
1048 		if (!dev_is_best_effort(dev)) {
1049 			fwnode_ret = -EPROBE_DEFER;
1050 			dev_err_probe(dev, -EPROBE_DEFER,
1051 				    "wait for supplier %pfwf\n", sup_fw);
1052 		} else {
1053 			fwnode_ret = -EAGAIN;
1054 		}
1055 	}
1056 	mutex_unlock(&fwnode_link_lock);
1057 	if (fwnode_ret == -EPROBE_DEFER)
1058 		return fwnode_ret;
1059 
1060 	device_links_write_lock();
1061 
1062 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1063 		if (!(link->flags & DL_FLAG_MANAGED))
1064 			continue;
1065 
1066 		if (link->status != DL_STATE_AVAILABLE &&
1067 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1068 
1069 			if (dev_is_best_effort(dev) &&
1070 			    link->flags & DL_FLAG_INFERRED &&
1071 			    !link->supplier->can_match) {
1072 				ret = -EAGAIN;
1073 				continue;
1074 			}
1075 
1076 			device_links_missing_supplier(dev);
1077 			dev_err_probe(dev, -EPROBE_DEFER,
1078 				      "supplier %s not ready\n",
1079 				      dev_name(link->supplier));
1080 			ret = -EPROBE_DEFER;
1081 			break;
1082 		}
1083 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1084 	}
1085 	dev->links.status = DL_DEV_PROBING;
1086 
1087 	device_links_write_unlock();
1088 
1089 	return ret ? ret : fwnode_ret;
1090 }
1091 
1092 /**
1093  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1094  * @dev: Device to call sync_state() on
1095  * @list: List head to queue the @dev on
1096  *
1097  * Queues a device for a sync_state() callback when the device links write lock
1098  * isn't held. This allows the sync_state() execution flow to use device links
1099  * APIs.  The caller must ensure this function is called with
1100  * device_links_write_lock() held.
1101  *
1102  * This function does a get_device() to make sure the device is not freed while
1103  * on this list.
1104  *
1105  * So the caller must also ensure that device_links_flush_sync_list() is called
1106  * as soon as the caller releases device_links_write_lock().  This is necessary
1107  * to make sure the sync_state() is called in a timely fashion and the
1108  * put_device() is called on this device.
1109  */
1110 static void __device_links_queue_sync_state(struct device *dev,
1111 					    struct list_head *list)
1112 {
1113 	struct device_link *link;
1114 
1115 	if (!dev_has_sync_state(dev))
1116 		return;
1117 	if (dev->state_synced)
1118 		return;
1119 
1120 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1121 		if (!(link->flags & DL_FLAG_MANAGED))
1122 			continue;
1123 		if (link->status != DL_STATE_ACTIVE)
1124 			return;
1125 	}
1126 
1127 	/*
1128 	 * Set the flag here to avoid adding the same device to a list more
1129 	 * than once. This can happen if new consumers get added to the device
1130 	 * and probed before the list is flushed.
1131 	 */
1132 	dev->state_synced = true;
1133 
1134 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1135 		return;
1136 
1137 	get_device(dev);
1138 	list_add_tail(&dev->links.defer_sync, list);
1139 }
1140 
1141 /**
1142  * device_links_flush_sync_list - Call sync_state() on a list of devices
1143  * @list: List of devices to call sync_state() on
1144  * @dont_lock_dev: Device for which lock is already held by the caller
1145  *
1146  * Calls sync_state() on all the devices that have been queued for it. This
1147  * function is used in conjunction with __device_links_queue_sync_state(). The
1148  * @dont_lock_dev parameter is useful when this function is called from a
1149  * context where a device lock is already held.
1150  */
1151 static void device_links_flush_sync_list(struct list_head *list,
1152 					 struct device *dont_lock_dev)
1153 {
1154 	struct device *dev, *tmp;
1155 
1156 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1157 		list_del_init(&dev->links.defer_sync);
1158 
1159 		if (dev != dont_lock_dev)
1160 			device_lock(dev);
1161 
1162 		dev_sync_state(dev);
1163 
1164 		if (dev != dont_lock_dev)
1165 			device_unlock(dev);
1166 
1167 		put_device(dev);
1168 	}
1169 }
1170 
1171 void device_links_supplier_sync_state_pause(void)
1172 {
1173 	device_links_write_lock();
1174 	defer_sync_state_count++;
1175 	device_links_write_unlock();
1176 }
1177 
1178 void device_links_supplier_sync_state_resume(void)
1179 {
1180 	struct device *dev, *tmp;
1181 	LIST_HEAD(sync_list);
1182 
1183 	device_links_write_lock();
1184 	if (!defer_sync_state_count) {
1185 		WARN(true, "Unmatched sync_state pause/resume!");
1186 		goto out;
1187 	}
1188 	defer_sync_state_count--;
1189 	if (defer_sync_state_count)
1190 		goto out;
1191 
1192 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1193 		/*
1194 		 * Delete from deferred_sync list before queuing it to
1195 		 * sync_list because defer_sync is used for both lists.
1196 		 */
1197 		list_del_init(&dev->links.defer_sync);
1198 		__device_links_queue_sync_state(dev, &sync_list);
1199 	}
1200 out:
1201 	device_links_write_unlock();
1202 
1203 	device_links_flush_sync_list(&sync_list, NULL);
1204 }
1205 
1206 static int sync_state_resume_initcall(void)
1207 {
1208 	device_links_supplier_sync_state_resume();
1209 	return 0;
1210 }
1211 late_initcall(sync_state_resume_initcall);
1212 
1213 static void __device_links_supplier_defer_sync(struct device *sup)
1214 {
1215 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1216 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1217 }
1218 
1219 static void device_link_drop_managed(struct device_link *link)
1220 {
1221 	link->flags &= ~DL_FLAG_MANAGED;
1222 	WRITE_ONCE(link->status, DL_STATE_NONE);
1223 	kref_put(&link->kref, __device_link_del);
1224 }
1225 
1226 static ssize_t waiting_for_supplier_show(struct device *dev,
1227 					 struct device_attribute *attr,
1228 					 char *buf)
1229 {
1230 	bool val;
1231 
1232 	device_lock(dev);
1233 	mutex_lock(&fwnode_link_lock);
1234 	val = !!fwnode_links_check_suppliers(dev->fwnode);
1235 	mutex_unlock(&fwnode_link_lock);
1236 	device_unlock(dev);
1237 	return sysfs_emit(buf, "%u\n", val);
1238 }
1239 static DEVICE_ATTR_RO(waiting_for_supplier);
1240 
1241 /**
1242  * device_links_force_bind - Prepares device to be force bound
1243  * @dev: Consumer device.
1244  *
1245  * device_bind_driver() force binds a device to a driver without calling any
1246  * driver probe functions. So the consumer really isn't going to wait for any
1247  * supplier before it's bound to the driver. We still want the device link
1248  * states to be sensible when this happens.
1249  *
1250  * In preparation for device_bind_driver(), this function goes through each
1251  * supplier device links and checks if the supplier is bound. If it is, then
1252  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1253  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1254  */
1255 void device_links_force_bind(struct device *dev)
1256 {
1257 	struct device_link *link, *ln;
1258 
1259 	device_links_write_lock();
1260 
1261 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1262 		if (!(link->flags & DL_FLAG_MANAGED))
1263 			continue;
1264 
1265 		if (link->status != DL_STATE_AVAILABLE) {
1266 			device_link_drop_managed(link);
1267 			continue;
1268 		}
1269 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1270 	}
1271 	dev->links.status = DL_DEV_PROBING;
1272 
1273 	device_links_write_unlock();
1274 }
1275 
1276 /**
1277  * device_links_driver_bound - Update device links after probing its driver.
1278  * @dev: Device to update the links for.
1279  *
1280  * The probe has been successful, so update links from this device to any
1281  * consumers by changing their status to "available".
1282  *
1283  * Also change the status of @dev's links to suppliers to "active".
1284  *
1285  * Links without the DL_FLAG_MANAGED flag set are ignored.
1286  */
1287 void device_links_driver_bound(struct device *dev)
1288 {
1289 	struct device_link *link, *ln;
1290 	LIST_HEAD(sync_list);
1291 
1292 	/*
1293 	 * If a device binds successfully, it's expected to have created all
1294 	 * the device links it needs to or make new device links as it needs
1295 	 * them. So, fw_devlink no longer needs to create device links to any
1296 	 * of the device's suppliers.
1297 	 *
1298 	 * Also, if a child firmware node of this bound device is not added as a
1299 	 * device by now, assume it is never going to be added. Make this bound
1300 	 * device the fallback supplier to the dangling consumers of the child
1301 	 * firmware node because this bound device is probably implementing the
1302 	 * child firmware node functionality and we don't want the dangling
1303 	 * consumers to defer probe indefinitely waiting for a device for the
1304 	 * child firmware node.
1305 	 */
1306 	if (dev->fwnode && dev->fwnode->dev == dev) {
1307 		struct fwnode_handle *child;
1308 		fwnode_links_purge_suppliers(dev->fwnode);
1309 		mutex_lock(&fwnode_link_lock);
1310 		fwnode_for_each_available_child_node(dev->fwnode, child)
1311 			__fw_devlink_pickup_dangling_consumers(child,
1312 							       dev->fwnode);
1313 		__fw_devlink_link_to_consumers(dev);
1314 		mutex_unlock(&fwnode_link_lock);
1315 	}
1316 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1317 
1318 	device_links_write_lock();
1319 
1320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1321 		if (!(link->flags & DL_FLAG_MANAGED))
1322 			continue;
1323 
1324 		/*
1325 		 * Links created during consumer probe may be in the "consumer
1326 		 * probe" state to start with if the supplier is still probing
1327 		 * when they are created and they may become "active" if the
1328 		 * consumer probe returns first.  Skip them here.
1329 		 */
1330 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1331 		    link->status == DL_STATE_ACTIVE)
1332 			continue;
1333 
1334 		WARN_ON(link->status != DL_STATE_DORMANT);
1335 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1336 
1337 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1338 			driver_deferred_probe_add(link->consumer);
1339 	}
1340 
1341 	if (defer_sync_state_count)
1342 		__device_links_supplier_defer_sync(dev);
1343 	else
1344 		__device_links_queue_sync_state(dev, &sync_list);
1345 
1346 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1347 		struct device *supplier;
1348 
1349 		if (!(link->flags & DL_FLAG_MANAGED))
1350 			continue;
1351 
1352 		supplier = link->supplier;
1353 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1354 			/*
1355 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1356 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1357 			 * save to drop the managed link completely.
1358 			 */
1359 			device_link_drop_managed(link);
1360 		} else if (dev_is_best_effort(dev) &&
1361 			   link->flags & DL_FLAG_INFERRED &&
1362 			   link->status != DL_STATE_CONSUMER_PROBE &&
1363 			   !link->supplier->can_match) {
1364 			/*
1365 			 * When dev_is_best_effort() is true, we ignore device
1366 			 * links to suppliers that don't have a driver.  If the
1367 			 * consumer device still managed to probe, there's no
1368 			 * point in maintaining a device link in a weird state
1369 			 * (consumer probed before supplier). So delete it.
1370 			 */
1371 			device_link_drop_managed(link);
1372 		} else {
1373 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1374 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1375 		}
1376 
1377 		/*
1378 		 * This needs to be done even for the deleted
1379 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1380 		 * device link that was preventing the supplier from getting a
1381 		 * sync_state() call.
1382 		 */
1383 		if (defer_sync_state_count)
1384 			__device_links_supplier_defer_sync(supplier);
1385 		else
1386 			__device_links_queue_sync_state(supplier, &sync_list);
1387 	}
1388 
1389 	dev->links.status = DL_DEV_DRIVER_BOUND;
1390 
1391 	device_links_write_unlock();
1392 
1393 	device_links_flush_sync_list(&sync_list, dev);
1394 }
1395 
1396 /**
1397  * __device_links_no_driver - Update links of a device without a driver.
1398  * @dev: Device without a drvier.
1399  *
1400  * Delete all non-persistent links from this device to any suppliers.
1401  *
1402  * Persistent links stay around, but their status is changed to "available",
1403  * unless they already are in the "supplier unbind in progress" state in which
1404  * case they need not be updated.
1405  *
1406  * Links without the DL_FLAG_MANAGED flag set are ignored.
1407  */
1408 static void __device_links_no_driver(struct device *dev)
1409 {
1410 	struct device_link *link, *ln;
1411 
1412 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1413 		if (!(link->flags & DL_FLAG_MANAGED))
1414 			continue;
1415 
1416 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1417 			device_link_drop_managed(link);
1418 			continue;
1419 		}
1420 
1421 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1422 		    link->status != DL_STATE_ACTIVE)
1423 			continue;
1424 
1425 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1426 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1427 		} else {
1428 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1429 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1430 		}
1431 	}
1432 
1433 	dev->links.status = DL_DEV_NO_DRIVER;
1434 }
1435 
1436 /**
1437  * device_links_no_driver - Update links after failing driver probe.
1438  * @dev: Device whose driver has just failed to probe.
1439  *
1440  * Clean up leftover links to consumers for @dev and invoke
1441  * %__device_links_no_driver() to update links to suppliers for it as
1442  * appropriate.
1443  *
1444  * Links without the DL_FLAG_MANAGED flag set are ignored.
1445  */
1446 void device_links_no_driver(struct device *dev)
1447 {
1448 	struct device_link *link;
1449 
1450 	device_links_write_lock();
1451 
1452 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1453 		if (!(link->flags & DL_FLAG_MANAGED))
1454 			continue;
1455 
1456 		/*
1457 		 * The probe has failed, so if the status of the link is
1458 		 * "consumer probe" or "active", it must have been added by
1459 		 * a probing consumer while this device was still probing.
1460 		 * Change its state to "dormant", as it represents a valid
1461 		 * relationship, but it is not functionally meaningful.
1462 		 */
1463 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1464 		    link->status == DL_STATE_ACTIVE)
1465 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1466 	}
1467 
1468 	__device_links_no_driver(dev);
1469 
1470 	device_links_write_unlock();
1471 }
1472 
1473 /**
1474  * device_links_driver_cleanup - Update links after driver removal.
1475  * @dev: Device whose driver has just gone away.
1476  *
1477  * Update links to consumers for @dev by changing their status to "dormant" and
1478  * invoke %__device_links_no_driver() to update links to suppliers for it as
1479  * appropriate.
1480  *
1481  * Links without the DL_FLAG_MANAGED flag set are ignored.
1482  */
1483 void device_links_driver_cleanup(struct device *dev)
1484 {
1485 	struct device_link *link, *ln;
1486 
1487 	device_links_write_lock();
1488 
1489 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1490 		if (!(link->flags & DL_FLAG_MANAGED))
1491 			continue;
1492 
1493 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1494 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1495 
1496 		/*
1497 		 * autoremove the links between this @dev and its consumer
1498 		 * devices that are not active, i.e. where the link state
1499 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1500 		 */
1501 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1502 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1503 			device_link_drop_managed(link);
1504 
1505 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1506 	}
1507 
1508 	list_del_init(&dev->links.defer_sync);
1509 	__device_links_no_driver(dev);
1510 
1511 	device_links_write_unlock();
1512 }
1513 
1514 /**
1515  * device_links_busy - Check if there are any busy links to consumers.
1516  * @dev: Device to check.
1517  *
1518  * Check each consumer of the device and return 'true' if its link's status
1519  * is one of "consumer probe" or "active" (meaning that the given consumer is
1520  * probing right now or its driver is present).  Otherwise, change the link
1521  * state to "supplier unbind" to prevent the consumer from being probed
1522  * successfully going forward.
1523  *
1524  * Return 'false' if there are no probing or active consumers.
1525  *
1526  * Links without the DL_FLAG_MANAGED flag set are ignored.
1527  */
1528 bool device_links_busy(struct device *dev)
1529 {
1530 	struct device_link *link;
1531 	bool ret = false;
1532 
1533 	device_links_write_lock();
1534 
1535 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1536 		if (!(link->flags & DL_FLAG_MANAGED))
1537 			continue;
1538 
1539 		if (link->status == DL_STATE_CONSUMER_PROBE
1540 		    || link->status == DL_STATE_ACTIVE) {
1541 			ret = true;
1542 			break;
1543 		}
1544 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1545 	}
1546 
1547 	dev->links.status = DL_DEV_UNBINDING;
1548 
1549 	device_links_write_unlock();
1550 	return ret;
1551 }
1552 
1553 /**
1554  * device_links_unbind_consumers - Force unbind consumers of the given device.
1555  * @dev: Device to unbind the consumers of.
1556  *
1557  * Walk the list of links to consumers for @dev and if any of them is in the
1558  * "consumer probe" state, wait for all device probes in progress to complete
1559  * and start over.
1560  *
1561  * If that's not the case, change the status of the link to "supplier unbind"
1562  * and check if the link was in the "active" state.  If so, force the consumer
1563  * driver to unbind and start over (the consumer will not re-probe as we have
1564  * changed the state of the link already).
1565  *
1566  * Links without the DL_FLAG_MANAGED flag set are ignored.
1567  */
1568 void device_links_unbind_consumers(struct device *dev)
1569 {
1570 	struct device_link *link;
1571 
1572  start:
1573 	device_links_write_lock();
1574 
1575 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1576 		enum device_link_state status;
1577 
1578 		if (!(link->flags & DL_FLAG_MANAGED) ||
1579 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1580 			continue;
1581 
1582 		status = link->status;
1583 		if (status == DL_STATE_CONSUMER_PROBE) {
1584 			device_links_write_unlock();
1585 
1586 			wait_for_device_probe();
1587 			goto start;
1588 		}
1589 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1590 		if (status == DL_STATE_ACTIVE) {
1591 			struct device *consumer = link->consumer;
1592 
1593 			get_device(consumer);
1594 
1595 			device_links_write_unlock();
1596 
1597 			device_release_driver_internal(consumer, NULL,
1598 						       consumer->parent);
1599 			put_device(consumer);
1600 			goto start;
1601 		}
1602 	}
1603 
1604 	device_links_write_unlock();
1605 }
1606 
1607 /**
1608  * device_links_purge - Delete existing links to other devices.
1609  * @dev: Target device.
1610  */
1611 static void device_links_purge(struct device *dev)
1612 {
1613 	struct device_link *link, *ln;
1614 
1615 	if (dev->class == &devlink_class)
1616 		return;
1617 
1618 	/*
1619 	 * Delete all of the remaining links from this device to any other
1620 	 * devices (either consumers or suppliers).
1621 	 */
1622 	device_links_write_lock();
1623 
1624 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1625 		WARN_ON(link->status == DL_STATE_ACTIVE);
1626 		__device_link_del(&link->kref);
1627 	}
1628 
1629 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1630 		WARN_ON(link->status != DL_STATE_DORMANT &&
1631 			link->status != DL_STATE_NONE);
1632 		__device_link_del(&link->kref);
1633 	}
1634 
1635 	device_links_write_unlock();
1636 }
1637 
1638 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1639 					 DL_FLAG_SYNC_STATE_ONLY)
1640 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1641 					 DL_FLAG_AUTOPROBE_CONSUMER)
1642 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1643 					 DL_FLAG_PM_RUNTIME)
1644 
1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1646 static int __init fw_devlink_setup(char *arg)
1647 {
1648 	if (!arg)
1649 		return -EINVAL;
1650 
1651 	if (strcmp(arg, "off") == 0) {
1652 		fw_devlink_flags = 0;
1653 	} else if (strcmp(arg, "permissive") == 0) {
1654 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1655 	} else if (strcmp(arg, "on") == 0) {
1656 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1657 	} else if (strcmp(arg, "rpm") == 0) {
1658 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1659 	}
1660 	return 0;
1661 }
1662 early_param("fw_devlink", fw_devlink_setup);
1663 
1664 static bool fw_devlink_strict;
1665 static int __init fw_devlink_strict_setup(char *arg)
1666 {
1667 	return kstrtobool(arg, &fw_devlink_strict);
1668 }
1669 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1670 
1671 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1673 
1674 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1675 static int fw_devlink_sync_state;
1676 #else
1677 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1678 #endif
1679 
1680 static int __init fw_devlink_sync_state_setup(char *arg)
1681 {
1682 	if (!arg)
1683 		return -EINVAL;
1684 
1685 	if (strcmp(arg, "strict") == 0) {
1686 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1687 		return 0;
1688 	} else if (strcmp(arg, "timeout") == 0) {
1689 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1690 		return 0;
1691 	}
1692 	return -EINVAL;
1693 }
1694 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1695 
1696 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1697 {
1698 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1699 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1700 
1701 	return fw_devlink_flags;
1702 }
1703 
1704 static bool fw_devlink_is_permissive(void)
1705 {
1706 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1707 }
1708 
1709 bool fw_devlink_is_strict(void)
1710 {
1711 	return fw_devlink_strict && !fw_devlink_is_permissive();
1712 }
1713 
1714 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1715 {
1716 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1717 		return;
1718 
1719 	fwnode_call_int_op(fwnode, add_links);
1720 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1721 }
1722 
1723 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1724 {
1725 	struct fwnode_handle *child = NULL;
1726 
1727 	fw_devlink_parse_fwnode(fwnode);
1728 
1729 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1730 		fw_devlink_parse_fwtree(child);
1731 }
1732 
1733 static void fw_devlink_relax_link(struct device_link *link)
1734 {
1735 	if (!(link->flags & DL_FLAG_INFERRED))
1736 		return;
1737 
1738 	if (device_link_flag_is_sync_state_only(link->flags))
1739 		return;
1740 
1741 	pm_runtime_drop_link(link);
1742 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1743 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1744 		dev_name(link->supplier));
1745 }
1746 
1747 static int fw_devlink_no_driver(struct device *dev, void *data)
1748 {
1749 	struct device_link *link = to_devlink(dev);
1750 
1751 	if (!link->supplier->can_match)
1752 		fw_devlink_relax_link(link);
1753 
1754 	return 0;
1755 }
1756 
1757 void fw_devlink_drivers_done(void)
1758 {
1759 	fw_devlink_drv_reg_done = true;
1760 	device_links_write_lock();
1761 	class_for_each_device(&devlink_class, NULL, NULL,
1762 			      fw_devlink_no_driver);
1763 	device_links_write_unlock();
1764 }
1765 
1766 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1767 {
1768 	struct device_link *link = to_devlink(dev);
1769 	struct device *sup = link->supplier;
1770 
1771 	if (!(link->flags & DL_FLAG_MANAGED) ||
1772 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1773 	    !dev_has_sync_state(sup))
1774 		return 0;
1775 
1776 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1777 		dev_warn(sup, "sync_state() pending due to %s\n",
1778 			 dev_name(link->consumer));
1779 		return 0;
1780 	}
1781 
1782 	if (!list_empty(&sup->links.defer_sync))
1783 		return 0;
1784 
1785 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1786 	sup->state_synced = true;
1787 	get_device(sup);
1788 	list_add_tail(&sup->links.defer_sync, data);
1789 
1790 	return 0;
1791 }
1792 
1793 void fw_devlink_probing_done(void)
1794 {
1795 	LIST_HEAD(sync_list);
1796 
1797 	device_links_write_lock();
1798 	class_for_each_device(&devlink_class, NULL, &sync_list,
1799 			      fw_devlink_dev_sync_state);
1800 	device_links_write_unlock();
1801 	device_links_flush_sync_list(&sync_list, NULL);
1802 }
1803 
1804 /**
1805  * wait_for_init_devices_probe - Try to probe any device needed for init
1806  *
1807  * Some devices might need to be probed and bound successfully before the kernel
1808  * boot sequence can finish and move on to init/userspace. For example, a
1809  * network interface might need to be bound to be able to mount a NFS rootfs.
1810  *
1811  * With fw_devlink=on by default, some of these devices might be blocked from
1812  * probing because they are waiting on a optional supplier that doesn't have a
1813  * driver. While fw_devlink will eventually identify such devices and unblock
1814  * the probing automatically, it might be too late by the time it unblocks the
1815  * probing of devices. For example, the IP4 autoconfig might timeout before
1816  * fw_devlink unblocks probing of the network interface.
1817  *
1818  * This function is available to temporarily try and probe all devices that have
1819  * a driver even if some of their suppliers haven't been added or don't have
1820  * drivers.
1821  *
1822  * The drivers can then decide which of the suppliers are optional vs mandatory
1823  * and probe the device if possible. By the time this function returns, all such
1824  * "best effort" probes are guaranteed to be completed. If a device successfully
1825  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1826  * device where the supplier hasn't yet probed successfully because they have to
1827  * be optional dependencies.
1828  *
1829  * Any devices that didn't successfully probe go back to being treated as if
1830  * this function was never called.
1831  *
1832  * This also means that some devices that aren't needed for init and could have
1833  * waited for their optional supplier to probe (when the supplier's module is
1834  * loaded later on) would end up probing prematurely with limited functionality.
1835  * So call this function only when boot would fail without it.
1836  */
1837 void __init wait_for_init_devices_probe(void)
1838 {
1839 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1840 		return;
1841 
1842 	/*
1843 	 * Wait for all ongoing probes to finish so that the "best effort" is
1844 	 * only applied to devices that can't probe otherwise.
1845 	 */
1846 	wait_for_device_probe();
1847 
1848 	pr_info("Trying to probe devices needed for running init ...\n");
1849 	fw_devlink_best_effort = true;
1850 	driver_deferred_probe_trigger();
1851 
1852 	/*
1853 	 * Wait for all "best effort" probes to finish before going back to
1854 	 * normal enforcement.
1855 	 */
1856 	wait_for_device_probe();
1857 	fw_devlink_best_effort = false;
1858 }
1859 
1860 static void fw_devlink_unblock_consumers(struct device *dev)
1861 {
1862 	struct device_link *link;
1863 
1864 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1865 		return;
1866 
1867 	device_links_write_lock();
1868 	list_for_each_entry(link, &dev->links.consumers, s_node)
1869 		fw_devlink_relax_link(link);
1870 	device_links_write_unlock();
1871 }
1872 
1873 
1874 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1875 {
1876 	struct device *dev;
1877 	bool ret;
1878 
1879 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1880 		return false;
1881 
1882 	dev = get_dev_from_fwnode(fwnode);
1883 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1884 	put_device(dev);
1885 
1886 	return ret;
1887 }
1888 
1889 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1890 {
1891 	struct fwnode_handle *parent;
1892 
1893 	fwnode_for_each_parent_node(fwnode, parent) {
1894 		if (fwnode_init_without_drv(parent)) {
1895 			fwnode_handle_put(parent);
1896 			return true;
1897 		}
1898 	}
1899 
1900 	return false;
1901 }
1902 
1903 /**
1904  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1905  * @con: Potential consumer device.
1906  * @sup_handle: Potential supplier's fwnode.
1907  *
1908  * Needs to be called with fwnode_lock and device link lock held.
1909  *
1910  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1911  * depend on @con. This function can detect multiple cyles between @sup_handle
1912  * and @con. When such dependency cycles are found, convert all device links
1913  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1914  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1915  * converted into a device link in the future, they are created as
1916  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1917  * fw_devlink=permissive just between the devices in the cycle. We need to do
1918  * this because, at this point, fw_devlink can't tell which of these
1919  * dependencies is not a real dependency.
1920  *
1921  * Return true if one or more cycles were found. Otherwise, return false.
1922  */
1923 static bool __fw_devlink_relax_cycles(struct device *con,
1924 				 struct fwnode_handle *sup_handle)
1925 {
1926 	struct device *sup_dev = NULL, *par_dev = NULL;
1927 	struct fwnode_link *link;
1928 	struct device_link *dev_link;
1929 	bool ret = false;
1930 
1931 	if (!sup_handle)
1932 		return false;
1933 
1934 	/*
1935 	 * We aren't trying to find all cycles. Just a cycle between con and
1936 	 * sup_handle.
1937 	 */
1938 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
1939 		return false;
1940 
1941 	sup_handle->flags |= FWNODE_FLAG_VISITED;
1942 
1943 	sup_dev = get_dev_from_fwnode(sup_handle);
1944 
1945 	/* Termination condition. */
1946 	if (sup_dev == con) {
1947 		ret = true;
1948 		goto out;
1949 	}
1950 
1951 	/*
1952 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
1953 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
1954 	 * further.
1955 	 */
1956 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
1957 	    con->links.status == DL_DEV_NO_DRIVER) {
1958 		ret = false;
1959 		goto out;
1960 	}
1961 
1962 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1963 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
1964 			__fwnode_link_cycle(link);
1965 			ret = true;
1966 		}
1967 	}
1968 
1969 	/*
1970 	 * Give priority to device parent over fwnode parent to account for any
1971 	 * quirks in how fwnodes are converted to devices.
1972 	 */
1973 	if (sup_dev)
1974 		par_dev = get_device(sup_dev->parent);
1975 	else
1976 		par_dev = fwnode_get_next_parent_dev(sup_handle);
1977 
1978 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1979 		ret = true;
1980 
1981 	if (!sup_dev)
1982 		goto out;
1983 
1984 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1985 		/*
1986 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1987 		 * such due to a cycle.
1988 		 */
1989 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1990 		    !(dev_link->flags & DL_FLAG_CYCLE))
1991 			continue;
1992 
1993 		if (__fw_devlink_relax_cycles(con,
1994 					      dev_link->supplier->fwnode)) {
1995 			fw_devlink_relax_link(dev_link);
1996 			dev_link->flags |= DL_FLAG_CYCLE;
1997 			ret = true;
1998 		}
1999 	}
2000 
2001 out:
2002 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2003 	put_device(sup_dev);
2004 	put_device(par_dev);
2005 	return ret;
2006 }
2007 
2008 /**
2009  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2010  * @con: consumer device for the device link
2011  * @sup_handle: fwnode handle of supplier
2012  * @link: fwnode link that's being converted to a device link
2013  *
2014  * This function will try to create a device link between the consumer device
2015  * @con and the supplier device represented by @sup_handle.
2016  *
2017  * The supplier has to be provided as a fwnode because incorrect cycles in
2018  * fwnode links can sometimes cause the supplier device to never be created.
2019  * This function detects such cases and returns an error if it cannot create a
2020  * device link from the consumer to a missing supplier.
2021  *
2022  * Returns,
2023  * 0 on successfully creating a device link
2024  * -EINVAL if the device link cannot be created as expected
2025  * -EAGAIN if the device link cannot be created right now, but it may be
2026  *  possible to do that in the future
2027  */
2028 static int fw_devlink_create_devlink(struct device *con,
2029 				     struct fwnode_handle *sup_handle,
2030 				     struct fwnode_link *link)
2031 {
2032 	struct device *sup_dev;
2033 	int ret = 0;
2034 	u32 flags;
2035 
2036 	if (con->fwnode == link->consumer)
2037 		flags = fw_devlink_get_flags(link->flags);
2038 	else
2039 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2040 
2041 	/*
2042 	 * In some cases, a device P might also be a supplier to its child node
2043 	 * C. However, this would defer the probe of C until the probe of P
2044 	 * completes successfully. This is perfectly fine in the device driver
2045 	 * model. device_add() doesn't guarantee probe completion of the device
2046 	 * by the time it returns.
2047 	 *
2048 	 * However, there are a few drivers that assume C will finish probing
2049 	 * as soon as it's added and before P finishes probing. So, we provide
2050 	 * a flag to let fw_devlink know not to delay the probe of C until the
2051 	 * probe of P completes successfully.
2052 	 *
2053 	 * When such a flag is set, we can't create device links where P is the
2054 	 * supplier of C as that would delay the probe of C.
2055 	 */
2056 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2057 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2058 		return -EINVAL;
2059 
2060 	/*
2061 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2062 	 * So cycle detection isn't necessary and shouldn't be done.
2063 	 */
2064 	if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
2065 		device_links_write_lock();
2066 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2067 			__fwnode_link_cycle(link);
2068 			flags = fw_devlink_get_flags(link->flags);
2069 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2070 				 sup_handle);
2071 		}
2072 		device_links_write_unlock();
2073 	}
2074 
2075 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2076 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2077 	else
2078 		sup_dev = get_dev_from_fwnode(sup_handle);
2079 
2080 	if (sup_dev) {
2081 		/*
2082 		 * If it's one of those drivers that don't actually bind to
2083 		 * their device using driver core, then don't wait on this
2084 		 * supplier device indefinitely.
2085 		 */
2086 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2087 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2088 			dev_dbg(con,
2089 				"Not linking %pfwf - dev might never probe\n",
2090 				sup_handle);
2091 			ret = -EINVAL;
2092 			goto out;
2093 		}
2094 
2095 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2096 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2097 				flags, dev_name(sup_dev));
2098 			ret = -EINVAL;
2099 		}
2100 
2101 		goto out;
2102 	}
2103 
2104 	/*
2105 	 * Supplier or supplier's ancestor already initialized without a struct
2106 	 * device or being probed by a driver.
2107 	 */
2108 	if (fwnode_init_without_drv(sup_handle) ||
2109 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2110 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2111 			sup_handle);
2112 		return -EINVAL;
2113 	}
2114 
2115 	ret = -EAGAIN;
2116 out:
2117 	put_device(sup_dev);
2118 	return ret;
2119 }
2120 
2121 /**
2122  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2123  * @dev: Device that needs to be linked to its consumers
2124  *
2125  * This function looks at all the consumer fwnodes of @dev and creates device
2126  * links between the consumer device and @dev (supplier).
2127  *
2128  * If the consumer device has not been added yet, then this function creates a
2129  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2130  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2131  * sync_state() callback before the real consumer device gets to be added and
2132  * then probed.
2133  *
2134  * Once device links are created from the real consumer to @dev (supplier), the
2135  * fwnode links are deleted.
2136  */
2137 static void __fw_devlink_link_to_consumers(struct device *dev)
2138 {
2139 	struct fwnode_handle *fwnode = dev->fwnode;
2140 	struct fwnode_link *link, *tmp;
2141 
2142 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2143 		struct device *con_dev;
2144 		bool own_link = true;
2145 		int ret;
2146 
2147 		con_dev = get_dev_from_fwnode(link->consumer);
2148 		/*
2149 		 * If consumer device is not available yet, make a "proxy"
2150 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2151 		 * the supplier device. This is necessary to make sure the
2152 		 * supplier doesn't get a sync_state() callback before the real
2153 		 * consumer can create a device link to the supplier.
2154 		 *
2155 		 * This proxy link step is needed to handle the case where the
2156 		 * consumer's parent device is added before the supplier.
2157 		 */
2158 		if (!con_dev) {
2159 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2160 			/*
2161 			 * However, if the consumer's parent device is also the
2162 			 * parent of the supplier, don't create a
2163 			 * consumer-supplier link from the parent to its child
2164 			 * device. Such a dependency is impossible.
2165 			 */
2166 			if (con_dev &&
2167 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2168 				put_device(con_dev);
2169 				con_dev = NULL;
2170 			} else {
2171 				own_link = false;
2172 			}
2173 		}
2174 
2175 		if (!con_dev)
2176 			continue;
2177 
2178 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2179 		put_device(con_dev);
2180 		if (!own_link || ret == -EAGAIN)
2181 			continue;
2182 
2183 		__fwnode_link_del(link);
2184 	}
2185 }
2186 
2187 /**
2188  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2189  * @dev: The consumer device that needs to be linked to its suppliers
2190  * @fwnode: Root of the fwnode tree that is used to create device links
2191  *
2192  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2193  * @fwnode and creates device links between @dev (consumer) and all the
2194  * supplier devices of the entire fwnode tree at @fwnode.
2195  *
2196  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2197  * and the real suppliers of @dev. Once these device links are created, the
2198  * fwnode links are deleted.
2199  *
2200  * In addition, it also looks at all the suppliers of the entire fwnode tree
2201  * because some of the child devices of @dev that have not been added yet
2202  * (because @dev hasn't probed) might already have their suppliers added to
2203  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2204  * @dev (consumer) and these suppliers to make sure they don't execute their
2205  * sync_state() callbacks before these child devices have a chance to create
2206  * their device links. The fwnode links that correspond to the child devices
2207  * aren't delete because they are needed later to create the device links
2208  * between the real consumer and supplier devices.
2209  */
2210 static void __fw_devlink_link_to_suppliers(struct device *dev,
2211 					   struct fwnode_handle *fwnode)
2212 {
2213 	bool own_link = (dev->fwnode == fwnode);
2214 	struct fwnode_link *link, *tmp;
2215 	struct fwnode_handle *child = NULL;
2216 
2217 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2218 		int ret;
2219 		struct fwnode_handle *sup = link->supplier;
2220 
2221 		ret = fw_devlink_create_devlink(dev, sup, link);
2222 		if (!own_link || ret == -EAGAIN)
2223 			continue;
2224 
2225 		__fwnode_link_del(link);
2226 	}
2227 
2228 	/*
2229 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2230 	 * all the descendants. This proxy link step is needed to handle the
2231 	 * case where the supplier is added before the consumer's parent device
2232 	 * (@dev).
2233 	 */
2234 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2235 		__fw_devlink_link_to_suppliers(dev, child);
2236 }
2237 
2238 static void fw_devlink_link_device(struct device *dev)
2239 {
2240 	struct fwnode_handle *fwnode = dev->fwnode;
2241 
2242 	if (!fw_devlink_flags)
2243 		return;
2244 
2245 	fw_devlink_parse_fwtree(fwnode);
2246 
2247 	mutex_lock(&fwnode_link_lock);
2248 	__fw_devlink_link_to_consumers(dev);
2249 	__fw_devlink_link_to_suppliers(dev, fwnode);
2250 	mutex_unlock(&fwnode_link_lock);
2251 }
2252 
2253 /* Device links support end. */
2254 
2255 int (*platform_notify)(struct device *dev) = NULL;
2256 int (*platform_notify_remove)(struct device *dev) = NULL;
2257 static struct kobject *dev_kobj;
2258 struct kobject *sysfs_dev_char_kobj;
2259 struct kobject *sysfs_dev_block_kobj;
2260 
2261 static DEFINE_MUTEX(device_hotplug_lock);
2262 
2263 void lock_device_hotplug(void)
2264 {
2265 	mutex_lock(&device_hotplug_lock);
2266 }
2267 
2268 void unlock_device_hotplug(void)
2269 {
2270 	mutex_unlock(&device_hotplug_lock);
2271 }
2272 
2273 int lock_device_hotplug_sysfs(void)
2274 {
2275 	if (mutex_trylock(&device_hotplug_lock))
2276 		return 0;
2277 
2278 	/* Avoid busy looping (5 ms of sleep should do). */
2279 	msleep(5);
2280 	return restart_syscall();
2281 }
2282 
2283 #ifdef CONFIG_BLOCK
2284 static inline int device_is_not_partition(struct device *dev)
2285 {
2286 	return !(dev->type == &part_type);
2287 }
2288 #else
2289 static inline int device_is_not_partition(struct device *dev)
2290 {
2291 	return 1;
2292 }
2293 #endif
2294 
2295 static void device_platform_notify(struct device *dev)
2296 {
2297 	acpi_device_notify(dev);
2298 
2299 	software_node_notify(dev);
2300 
2301 	if (platform_notify)
2302 		platform_notify(dev);
2303 }
2304 
2305 static void device_platform_notify_remove(struct device *dev)
2306 {
2307 	acpi_device_notify_remove(dev);
2308 
2309 	software_node_notify_remove(dev);
2310 
2311 	if (platform_notify_remove)
2312 		platform_notify_remove(dev);
2313 }
2314 
2315 /**
2316  * dev_driver_string - Return a device's driver name, if at all possible
2317  * @dev: struct device to get the name of
2318  *
2319  * Will return the device's driver's name if it is bound to a device.  If
2320  * the device is not bound to a driver, it will return the name of the bus
2321  * it is attached to.  If it is not attached to a bus either, an empty
2322  * string will be returned.
2323  */
2324 const char *dev_driver_string(const struct device *dev)
2325 {
2326 	struct device_driver *drv;
2327 
2328 	/* dev->driver can change to NULL underneath us because of unbinding,
2329 	 * so be careful about accessing it.  dev->bus and dev->class should
2330 	 * never change once they are set, so they don't need special care.
2331 	 */
2332 	drv = READ_ONCE(dev->driver);
2333 	return drv ? drv->name : dev_bus_name(dev);
2334 }
2335 EXPORT_SYMBOL(dev_driver_string);
2336 
2337 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2338 
2339 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2340 			     char *buf)
2341 {
2342 	struct device_attribute *dev_attr = to_dev_attr(attr);
2343 	struct device *dev = kobj_to_dev(kobj);
2344 	ssize_t ret = -EIO;
2345 
2346 	if (dev_attr->show)
2347 		ret = dev_attr->show(dev, dev_attr, buf);
2348 	if (ret >= (ssize_t)PAGE_SIZE) {
2349 		printk("dev_attr_show: %pS returned bad count\n",
2350 				dev_attr->show);
2351 	}
2352 	return ret;
2353 }
2354 
2355 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2356 			      const char *buf, size_t count)
2357 {
2358 	struct device_attribute *dev_attr = to_dev_attr(attr);
2359 	struct device *dev = kobj_to_dev(kobj);
2360 	ssize_t ret = -EIO;
2361 
2362 	if (dev_attr->store)
2363 		ret = dev_attr->store(dev, dev_attr, buf, count);
2364 	return ret;
2365 }
2366 
2367 static const struct sysfs_ops dev_sysfs_ops = {
2368 	.show	= dev_attr_show,
2369 	.store	= dev_attr_store,
2370 };
2371 
2372 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2373 
2374 ssize_t device_store_ulong(struct device *dev,
2375 			   struct device_attribute *attr,
2376 			   const char *buf, size_t size)
2377 {
2378 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2379 	int ret;
2380 	unsigned long new;
2381 
2382 	ret = kstrtoul(buf, 0, &new);
2383 	if (ret)
2384 		return ret;
2385 	*(unsigned long *)(ea->var) = new;
2386 	/* Always return full write size even if we didn't consume all */
2387 	return size;
2388 }
2389 EXPORT_SYMBOL_GPL(device_store_ulong);
2390 
2391 ssize_t device_show_ulong(struct device *dev,
2392 			  struct device_attribute *attr,
2393 			  char *buf)
2394 {
2395 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2396 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2397 }
2398 EXPORT_SYMBOL_GPL(device_show_ulong);
2399 
2400 ssize_t device_store_int(struct device *dev,
2401 			 struct device_attribute *attr,
2402 			 const char *buf, size_t size)
2403 {
2404 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2405 	int ret;
2406 	long new;
2407 
2408 	ret = kstrtol(buf, 0, &new);
2409 	if (ret)
2410 		return ret;
2411 
2412 	if (new > INT_MAX || new < INT_MIN)
2413 		return -EINVAL;
2414 	*(int *)(ea->var) = new;
2415 	/* Always return full write size even if we didn't consume all */
2416 	return size;
2417 }
2418 EXPORT_SYMBOL_GPL(device_store_int);
2419 
2420 ssize_t device_show_int(struct device *dev,
2421 			struct device_attribute *attr,
2422 			char *buf)
2423 {
2424 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2425 
2426 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2427 }
2428 EXPORT_SYMBOL_GPL(device_show_int);
2429 
2430 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2431 			  const char *buf, size_t size)
2432 {
2433 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2434 
2435 	if (kstrtobool(buf, ea->var) < 0)
2436 		return -EINVAL;
2437 
2438 	return size;
2439 }
2440 EXPORT_SYMBOL_GPL(device_store_bool);
2441 
2442 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2443 			 char *buf)
2444 {
2445 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2446 
2447 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2448 }
2449 EXPORT_SYMBOL_GPL(device_show_bool);
2450 
2451 /**
2452  * device_release - free device structure.
2453  * @kobj: device's kobject.
2454  *
2455  * This is called once the reference count for the object
2456  * reaches 0. We forward the call to the device's release
2457  * method, which should handle actually freeing the structure.
2458  */
2459 static void device_release(struct kobject *kobj)
2460 {
2461 	struct device *dev = kobj_to_dev(kobj);
2462 	struct device_private *p = dev->p;
2463 
2464 	/*
2465 	 * Some platform devices are driven without driver attached
2466 	 * and managed resources may have been acquired.  Make sure
2467 	 * all resources are released.
2468 	 *
2469 	 * Drivers still can add resources into device after device
2470 	 * is deleted but alive, so release devres here to avoid
2471 	 * possible memory leak.
2472 	 */
2473 	devres_release_all(dev);
2474 
2475 	kfree(dev->dma_range_map);
2476 
2477 	if (dev->release)
2478 		dev->release(dev);
2479 	else if (dev->type && dev->type->release)
2480 		dev->type->release(dev);
2481 	else if (dev->class && dev->class->dev_release)
2482 		dev->class->dev_release(dev);
2483 	else
2484 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2485 			dev_name(dev));
2486 	kfree(p);
2487 }
2488 
2489 static const void *device_namespace(const struct kobject *kobj)
2490 {
2491 	const struct device *dev = kobj_to_dev(kobj);
2492 	const void *ns = NULL;
2493 
2494 	if (dev->class && dev->class->ns_type)
2495 		ns = dev->class->namespace(dev);
2496 
2497 	return ns;
2498 }
2499 
2500 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2501 {
2502 	const struct device *dev = kobj_to_dev(kobj);
2503 
2504 	if (dev->class && dev->class->get_ownership)
2505 		dev->class->get_ownership(dev, uid, gid);
2506 }
2507 
2508 static const struct kobj_type device_ktype = {
2509 	.release	= device_release,
2510 	.sysfs_ops	= &dev_sysfs_ops,
2511 	.namespace	= device_namespace,
2512 	.get_ownership	= device_get_ownership,
2513 };
2514 
2515 
2516 static int dev_uevent_filter(const struct kobject *kobj)
2517 {
2518 	const struct kobj_type *ktype = get_ktype(kobj);
2519 
2520 	if (ktype == &device_ktype) {
2521 		const struct device *dev = kobj_to_dev(kobj);
2522 		if (dev->bus)
2523 			return 1;
2524 		if (dev->class)
2525 			return 1;
2526 	}
2527 	return 0;
2528 }
2529 
2530 static const char *dev_uevent_name(const struct kobject *kobj)
2531 {
2532 	const struct device *dev = kobj_to_dev(kobj);
2533 
2534 	if (dev->bus)
2535 		return dev->bus->name;
2536 	if (dev->class)
2537 		return dev->class->name;
2538 	return NULL;
2539 }
2540 
2541 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2542 {
2543 	const struct device *dev = kobj_to_dev(kobj);
2544 	int retval = 0;
2545 
2546 	/* add device node properties if present */
2547 	if (MAJOR(dev->devt)) {
2548 		const char *tmp;
2549 		const char *name;
2550 		umode_t mode = 0;
2551 		kuid_t uid = GLOBAL_ROOT_UID;
2552 		kgid_t gid = GLOBAL_ROOT_GID;
2553 
2554 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2555 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2556 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2557 		if (name) {
2558 			add_uevent_var(env, "DEVNAME=%s", name);
2559 			if (mode)
2560 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2561 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2562 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2563 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2564 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2565 			kfree(tmp);
2566 		}
2567 	}
2568 
2569 	if (dev->type && dev->type->name)
2570 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2571 
2572 	if (dev->driver)
2573 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2574 
2575 	/* Add common DT information about the device */
2576 	of_device_uevent(dev, env);
2577 
2578 	/* have the bus specific function add its stuff */
2579 	if (dev->bus && dev->bus->uevent) {
2580 		retval = dev->bus->uevent(dev, env);
2581 		if (retval)
2582 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2583 				 dev_name(dev), __func__, retval);
2584 	}
2585 
2586 	/* have the class specific function add its stuff */
2587 	if (dev->class && dev->class->dev_uevent) {
2588 		retval = dev->class->dev_uevent(dev, env);
2589 		if (retval)
2590 			pr_debug("device: '%s': %s: class uevent() "
2591 				 "returned %d\n", dev_name(dev),
2592 				 __func__, retval);
2593 	}
2594 
2595 	/* have the device type specific function add its stuff */
2596 	if (dev->type && dev->type->uevent) {
2597 		retval = dev->type->uevent(dev, env);
2598 		if (retval)
2599 			pr_debug("device: '%s': %s: dev_type uevent() "
2600 				 "returned %d\n", dev_name(dev),
2601 				 __func__, retval);
2602 	}
2603 
2604 	return retval;
2605 }
2606 
2607 static const struct kset_uevent_ops device_uevent_ops = {
2608 	.filter =	dev_uevent_filter,
2609 	.name =		dev_uevent_name,
2610 	.uevent =	dev_uevent,
2611 };
2612 
2613 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2614 			   char *buf)
2615 {
2616 	struct kobject *top_kobj;
2617 	struct kset *kset;
2618 	struct kobj_uevent_env *env = NULL;
2619 	int i;
2620 	int len = 0;
2621 	int retval;
2622 
2623 	/* search the kset, the device belongs to */
2624 	top_kobj = &dev->kobj;
2625 	while (!top_kobj->kset && top_kobj->parent)
2626 		top_kobj = top_kobj->parent;
2627 	if (!top_kobj->kset)
2628 		goto out;
2629 
2630 	kset = top_kobj->kset;
2631 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2632 		goto out;
2633 
2634 	/* respect filter */
2635 	if (kset->uevent_ops && kset->uevent_ops->filter)
2636 		if (!kset->uevent_ops->filter(&dev->kobj))
2637 			goto out;
2638 
2639 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2640 	if (!env)
2641 		return -ENOMEM;
2642 
2643 	/* let the kset specific function add its keys */
2644 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2645 	if (retval)
2646 		goto out;
2647 
2648 	/* copy keys to file */
2649 	for (i = 0; i < env->envp_idx; i++)
2650 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2651 out:
2652 	kfree(env);
2653 	return len;
2654 }
2655 
2656 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2657 			    const char *buf, size_t count)
2658 {
2659 	int rc;
2660 
2661 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2662 
2663 	if (rc) {
2664 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2665 		return rc;
2666 	}
2667 
2668 	return count;
2669 }
2670 static DEVICE_ATTR_RW(uevent);
2671 
2672 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2673 			   char *buf)
2674 {
2675 	bool val;
2676 
2677 	device_lock(dev);
2678 	val = !dev->offline;
2679 	device_unlock(dev);
2680 	return sysfs_emit(buf, "%u\n", val);
2681 }
2682 
2683 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2684 			    const char *buf, size_t count)
2685 {
2686 	bool val;
2687 	int ret;
2688 
2689 	ret = kstrtobool(buf, &val);
2690 	if (ret < 0)
2691 		return ret;
2692 
2693 	ret = lock_device_hotplug_sysfs();
2694 	if (ret)
2695 		return ret;
2696 
2697 	ret = val ? device_online(dev) : device_offline(dev);
2698 	unlock_device_hotplug();
2699 	return ret < 0 ? ret : count;
2700 }
2701 static DEVICE_ATTR_RW(online);
2702 
2703 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2704 			      char *buf)
2705 {
2706 	const char *loc;
2707 
2708 	switch (dev->removable) {
2709 	case DEVICE_REMOVABLE:
2710 		loc = "removable";
2711 		break;
2712 	case DEVICE_FIXED:
2713 		loc = "fixed";
2714 		break;
2715 	default:
2716 		loc = "unknown";
2717 	}
2718 	return sysfs_emit(buf, "%s\n", loc);
2719 }
2720 static DEVICE_ATTR_RO(removable);
2721 
2722 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2723 {
2724 	return sysfs_create_groups(&dev->kobj, groups);
2725 }
2726 EXPORT_SYMBOL_GPL(device_add_groups);
2727 
2728 void device_remove_groups(struct device *dev,
2729 			  const struct attribute_group **groups)
2730 {
2731 	sysfs_remove_groups(&dev->kobj, groups);
2732 }
2733 EXPORT_SYMBOL_GPL(device_remove_groups);
2734 
2735 union device_attr_group_devres {
2736 	const struct attribute_group *group;
2737 	const struct attribute_group **groups;
2738 };
2739 
2740 static void devm_attr_group_remove(struct device *dev, void *res)
2741 {
2742 	union device_attr_group_devres *devres = res;
2743 	const struct attribute_group *group = devres->group;
2744 
2745 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2746 	sysfs_remove_group(&dev->kobj, group);
2747 }
2748 
2749 static void devm_attr_groups_remove(struct device *dev, void *res)
2750 {
2751 	union device_attr_group_devres *devres = res;
2752 	const struct attribute_group **groups = devres->groups;
2753 
2754 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2755 	sysfs_remove_groups(&dev->kobj, groups);
2756 }
2757 
2758 /**
2759  * devm_device_add_group - given a device, create a managed attribute group
2760  * @dev:	The device to create the group for
2761  * @grp:	The attribute group to create
2762  *
2763  * This function creates a group for the first time.  It will explicitly
2764  * warn and error if any of the attribute files being created already exist.
2765  *
2766  * Returns 0 on success or error code on failure.
2767  */
2768 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2769 {
2770 	union device_attr_group_devres *devres;
2771 	int error;
2772 
2773 	devres = devres_alloc(devm_attr_group_remove,
2774 			      sizeof(*devres), GFP_KERNEL);
2775 	if (!devres)
2776 		return -ENOMEM;
2777 
2778 	error = sysfs_create_group(&dev->kobj, grp);
2779 	if (error) {
2780 		devres_free(devres);
2781 		return error;
2782 	}
2783 
2784 	devres->group = grp;
2785 	devres_add(dev, devres);
2786 	return 0;
2787 }
2788 EXPORT_SYMBOL_GPL(devm_device_add_group);
2789 
2790 /**
2791  * devm_device_add_groups - create a bunch of managed attribute groups
2792  * @dev:	The device to create the group for
2793  * @groups:	The attribute groups to create, NULL terminated
2794  *
2795  * This function creates a bunch of managed attribute groups.  If an error
2796  * occurs when creating a group, all previously created groups will be
2797  * removed, unwinding everything back to the original state when this
2798  * function was called.  It will explicitly warn and error if any of the
2799  * attribute files being created already exist.
2800  *
2801  * Returns 0 on success or error code from sysfs_create_group on failure.
2802  */
2803 int devm_device_add_groups(struct device *dev,
2804 			   const struct attribute_group **groups)
2805 {
2806 	union device_attr_group_devres *devres;
2807 	int error;
2808 
2809 	devres = devres_alloc(devm_attr_groups_remove,
2810 			      sizeof(*devres), GFP_KERNEL);
2811 	if (!devres)
2812 		return -ENOMEM;
2813 
2814 	error = sysfs_create_groups(&dev->kobj, groups);
2815 	if (error) {
2816 		devres_free(devres);
2817 		return error;
2818 	}
2819 
2820 	devres->groups = groups;
2821 	devres_add(dev, devres);
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2825 
2826 static int device_add_attrs(struct device *dev)
2827 {
2828 	const struct class *class = dev->class;
2829 	const struct device_type *type = dev->type;
2830 	int error;
2831 
2832 	if (class) {
2833 		error = device_add_groups(dev, class->dev_groups);
2834 		if (error)
2835 			return error;
2836 	}
2837 
2838 	if (type) {
2839 		error = device_add_groups(dev, type->groups);
2840 		if (error)
2841 			goto err_remove_class_groups;
2842 	}
2843 
2844 	error = device_add_groups(dev, dev->groups);
2845 	if (error)
2846 		goto err_remove_type_groups;
2847 
2848 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2849 		error = device_create_file(dev, &dev_attr_online);
2850 		if (error)
2851 			goto err_remove_dev_groups;
2852 	}
2853 
2854 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2855 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2856 		if (error)
2857 			goto err_remove_dev_online;
2858 	}
2859 
2860 	if (dev_removable_is_valid(dev)) {
2861 		error = device_create_file(dev, &dev_attr_removable);
2862 		if (error)
2863 			goto err_remove_dev_waiting_for_supplier;
2864 	}
2865 
2866 	if (dev_add_physical_location(dev)) {
2867 		error = device_add_group(dev,
2868 			&dev_attr_physical_location_group);
2869 		if (error)
2870 			goto err_remove_dev_removable;
2871 	}
2872 
2873 	return 0;
2874 
2875  err_remove_dev_removable:
2876 	device_remove_file(dev, &dev_attr_removable);
2877  err_remove_dev_waiting_for_supplier:
2878 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2879  err_remove_dev_online:
2880 	device_remove_file(dev, &dev_attr_online);
2881  err_remove_dev_groups:
2882 	device_remove_groups(dev, dev->groups);
2883  err_remove_type_groups:
2884 	if (type)
2885 		device_remove_groups(dev, type->groups);
2886  err_remove_class_groups:
2887 	if (class)
2888 		device_remove_groups(dev, class->dev_groups);
2889 
2890 	return error;
2891 }
2892 
2893 static void device_remove_attrs(struct device *dev)
2894 {
2895 	const struct class *class = dev->class;
2896 	const struct device_type *type = dev->type;
2897 
2898 	if (dev->physical_location) {
2899 		device_remove_group(dev, &dev_attr_physical_location_group);
2900 		kfree(dev->physical_location);
2901 	}
2902 
2903 	device_remove_file(dev, &dev_attr_removable);
2904 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2905 	device_remove_file(dev, &dev_attr_online);
2906 	device_remove_groups(dev, dev->groups);
2907 
2908 	if (type)
2909 		device_remove_groups(dev, type->groups);
2910 
2911 	if (class)
2912 		device_remove_groups(dev, class->dev_groups);
2913 }
2914 
2915 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2916 			char *buf)
2917 {
2918 	return print_dev_t(buf, dev->devt);
2919 }
2920 static DEVICE_ATTR_RO(dev);
2921 
2922 /* /sys/devices/ */
2923 struct kset *devices_kset;
2924 
2925 /**
2926  * devices_kset_move_before - Move device in the devices_kset's list.
2927  * @deva: Device to move.
2928  * @devb: Device @deva should come before.
2929  */
2930 static void devices_kset_move_before(struct device *deva, struct device *devb)
2931 {
2932 	if (!devices_kset)
2933 		return;
2934 	pr_debug("devices_kset: Moving %s before %s\n",
2935 		 dev_name(deva), dev_name(devb));
2936 	spin_lock(&devices_kset->list_lock);
2937 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2938 	spin_unlock(&devices_kset->list_lock);
2939 }
2940 
2941 /**
2942  * devices_kset_move_after - Move device in the devices_kset's list.
2943  * @deva: Device to move
2944  * @devb: Device @deva should come after.
2945  */
2946 static void devices_kset_move_after(struct device *deva, struct device *devb)
2947 {
2948 	if (!devices_kset)
2949 		return;
2950 	pr_debug("devices_kset: Moving %s after %s\n",
2951 		 dev_name(deva), dev_name(devb));
2952 	spin_lock(&devices_kset->list_lock);
2953 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2954 	spin_unlock(&devices_kset->list_lock);
2955 }
2956 
2957 /**
2958  * devices_kset_move_last - move the device to the end of devices_kset's list.
2959  * @dev: device to move
2960  */
2961 void devices_kset_move_last(struct device *dev)
2962 {
2963 	if (!devices_kset)
2964 		return;
2965 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2966 	spin_lock(&devices_kset->list_lock);
2967 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2968 	spin_unlock(&devices_kset->list_lock);
2969 }
2970 
2971 /**
2972  * device_create_file - create sysfs attribute file for device.
2973  * @dev: device.
2974  * @attr: device attribute descriptor.
2975  */
2976 int device_create_file(struct device *dev,
2977 		       const struct device_attribute *attr)
2978 {
2979 	int error = 0;
2980 
2981 	if (dev) {
2982 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2983 			"Attribute %s: write permission without 'store'\n",
2984 			attr->attr.name);
2985 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2986 			"Attribute %s: read permission without 'show'\n",
2987 			attr->attr.name);
2988 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2989 	}
2990 
2991 	return error;
2992 }
2993 EXPORT_SYMBOL_GPL(device_create_file);
2994 
2995 /**
2996  * device_remove_file - remove sysfs attribute file.
2997  * @dev: device.
2998  * @attr: device attribute descriptor.
2999  */
3000 void device_remove_file(struct device *dev,
3001 			const struct device_attribute *attr)
3002 {
3003 	if (dev)
3004 		sysfs_remove_file(&dev->kobj, &attr->attr);
3005 }
3006 EXPORT_SYMBOL_GPL(device_remove_file);
3007 
3008 /**
3009  * device_remove_file_self - remove sysfs attribute file from its own method.
3010  * @dev: device.
3011  * @attr: device attribute descriptor.
3012  *
3013  * See kernfs_remove_self() for details.
3014  */
3015 bool device_remove_file_self(struct device *dev,
3016 			     const struct device_attribute *attr)
3017 {
3018 	if (dev)
3019 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3020 	else
3021 		return false;
3022 }
3023 EXPORT_SYMBOL_GPL(device_remove_file_self);
3024 
3025 /**
3026  * device_create_bin_file - create sysfs binary attribute file for device.
3027  * @dev: device.
3028  * @attr: device binary attribute descriptor.
3029  */
3030 int device_create_bin_file(struct device *dev,
3031 			   const struct bin_attribute *attr)
3032 {
3033 	int error = -EINVAL;
3034 	if (dev)
3035 		error = sysfs_create_bin_file(&dev->kobj, attr);
3036 	return error;
3037 }
3038 EXPORT_SYMBOL_GPL(device_create_bin_file);
3039 
3040 /**
3041  * device_remove_bin_file - remove sysfs binary attribute file
3042  * @dev: device.
3043  * @attr: device binary attribute descriptor.
3044  */
3045 void device_remove_bin_file(struct device *dev,
3046 			    const struct bin_attribute *attr)
3047 {
3048 	if (dev)
3049 		sysfs_remove_bin_file(&dev->kobj, attr);
3050 }
3051 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3052 
3053 static void klist_children_get(struct klist_node *n)
3054 {
3055 	struct device_private *p = to_device_private_parent(n);
3056 	struct device *dev = p->device;
3057 
3058 	get_device(dev);
3059 }
3060 
3061 static void klist_children_put(struct klist_node *n)
3062 {
3063 	struct device_private *p = to_device_private_parent(n);
3064 	struct device *dev = p->device;
3065 
3066 	put_device(dev);
3067 }
3068 
3069 /**
3070  * device_initialize - init device structure.
3071  * @dev: device.
3072  *
3073  * This prepares the device for use by other layers by initializing
3074  * its fields.
3075  * It is the first half of device_register(), if called by
3076  * that function, though it can also be called separately, so one
3077  * may use @dev's fields. In particular, get_device()/put_device()
3078  * may be used for reference counting of @dev after calling this
3079  * function.
3080  *
3081  * All fields in @dev must be initialized by the caller to 0, except
3082  * for those explicitly set to some other value.  The simplest
3083  * approach is to use kzalloc() to allocate the structure containing
3084  * @dev.
3085  *
3086  * NOTE: Use put_device() to give up your reference instead of freeing
3087  * @dev directly once you have called this function.
3088  */
3089 void device_initialize(struct device *dev)
3090 {
3091 	dev->kobj.kset = devices_kset;
3092 	kobject_init(&dev->kobj, &device_ktype);
3093 	INIT_LIST_HEAD(&dev->dma_pools);
3094 	mutex_init(&dev->mutex);
3095 	lockdep_set_novalidate_class(&dev->mutex);
3096 	spin_lock_init(&dev->devres_lock);
3097 	INIT_LIST_HEAD(&dev->devres_head);
3098 	device_pm_init(dev);
3099 	set_dev_node(dev, NUMA_NO_NODE);
3100 	INIT_LIST_HEAD(&dev->links.consumers);
3101 	INIT_LIST_HEAD(&dev->links.suppliers);
3102 	INIT_LIST_HEAD(&dev->links.defer_sync);
3103 	dev->links.status = DL_DEV_NO_DRIVER;
3104 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3105     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3106     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3107 	dev->dma_coherent = dma_default_coherent;
3108 #endif
3109 #ifdef CONFIG_SWIOTLB
3110 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
3111 #endif
3112 }
3113 EXPORT_SYMBOL_GPL(device_initialize);
3114 
3115 struct kobject *virtual_device_parent(struct device *dev)
3116 {
3117 	static struct kobject *virtual_dir = NULL;
3118 
3119 	if (!virtual_dir)
3120 		virtual_dir = kobject_create_and_add("virtual",
3121 						     &devices_kset->kobj);
3122 
3123 	return virtual_dir;
3124 }
3125 
3126 struct class_dir {
3127 	struct kobject kobj;
3128 	const struct class *class;
3129 };
3130 
3131 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3132 
3133 static void class_dir_release(struct kobject *kobj)
3134 {
3135 	struct class_dir *dir = to_class_dir(kobj);
3136 	kfree(dir);
3137 }
3138 
3139 static const
3140 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3141 {
3142 	const struct class_dir *dir = to_class_dir(kobj);
3143 	return dir->class->ns_type;
3144 }
3145 
3146 static const struct kobj_type class_dir_ktype = {
3147 	.release	= class_dir_release,
3148 	.sysfs_ops	= &kobj_sysfs_ops,
3149 	.child_ns_type	= class_dir_child_ns_type
3150 };
3151 
3152 static struct kobject *
3153 class_dir_create_and_add(const struct class *class, struct kobject *parent_kobj)
3154 {
3155 	struct class_dir *dir;
3156 	int retval;
3157 
3158 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3159 	if (!dir)
3160 		return ERR_PTR(-ENOMEM);
3161 
3162 	dir->class = class;
3163 	kobject_init(&dir->kobj, &class_dir_ktype);
3164 
3165 	dir->kobj.kset = &class->p->glue_dirs;
3166 
3167 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3168 	if (retval < 0) {
3169 		kobject_put(&dir->kobj);
3170 		return ERR_PTR(retval);
3171 	}
3172 	return &dir->kobj;
3173 }
3174 
3175 static DEFINE_MUTEX(gdp_mutex);
3176 
3177 static struct kobject *get_device_parent(struct device *dev,
3178 					 struct device *parent)
3179 {
3180 	struct kobject *kobj = NULL;
3181 
3182 	if (dev->class) {
3183 		struct kobject *parent_kobj;
3184 		struct kobject *k;
3185 
3186 		/*
3187 		 * If we have no parent, we live in "virtual".
3188 		 * Class-devices with a non class-device as parent, live
3189 		 * in a "glue" directory to prevent namespace collisions.
3190 		 */
3191 		if (parent == NULL)
3192 			parent_kobj = virtual_device_parent(dev);
3193 		else if (parent->class && !dev->class->ns_type)
3194 			return &parent->kobj;
3195 		else
3196 			parent_kobj = &parent->kobj;
3197 
3198 		mutex_lock(&gdp_mutex);
3199 
3200 		/* find our class-directory at the parent and reference it */
3201 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3202 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3203 			if (k->parent == parent_kobj) {
3204 				kobj = kobject_get(k);
3205 				break;
3206 			}
3207 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3208 		if (kobj) {
3209 			mutex_unlock(&gdp_mutex);
3210 			return kobj;
3211 		}
3212 
3213 		/* or create a new class-directory at the parent device */
3214 		k = class_dir_create_and_add(dev->class, parent_kobj);
3215 		/* do not emit an uevent for this simple "glue" directory */
3216 		mutex_unlock(&gdp_mutex);
3217 		return k;
3218 	}
3219 
3220 	/* subsystems can specify a default root directory for their devices */
3221 	if (!parent && dev->bus) {
3222 		struct device *dev_root = bus_get_dev_root(dev->bus);
3223 
3224 		if (dev_root) {
3225 			kobj = &dev_root->kobj;
3226 			put_device(dev_root);
3227 			return kobj;
3228 		}
3229 	}
3230 
3231 	if (parent)
3232 		return &parent->kobj;
3233 	return NULL;
3234 }
3235 
3236 static inline bool live_in_glue_dir(struct kobject *kobj,
3237 				    struct device *dev)
3238 {
3239 	if (!kobj || !dev->class ||
3240 	    kobj->kset != &dev->class->p->glue_dirs)
3241 		return false;
3242 	return true;
3243 }
3244 
3245 static inline struct kobject *get_glue_dir(struct device *dev)
3246 {
3247 	return dev->kobj.parent;
3248 }
3249 
3250 /**
3251  * kobject_has_children - Returns whether a kobject has children.
3252  * @kobj: the object to test
3253  *
3254  * This will return whether a kobject has other kobjects as children.
3255  *
3256  * It does NOT account for the presence of attribute files, only sub
3257  * directories. It also assumes there is no concurrent addition or
3258  * removal of such children, and thus relies on external locking.
3259  */
3260 static inline bool kobject_has_children(struct kobject *kobj)
3261 {
3262 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3263 
3264 	return kobj->sd && kobj->sd->dir.subdirs;
3265 }
3266 
3267 /*
3268  * make sure cleaning up dir as the last step, we need to make
3269  * sure .release handler of kobject is run with holding the
3270  * global lock
3271  */
3272 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3273 {
3274 	unsigned int ref;
3275 
3276 	/* see if we live in a "glue" directory */
3277 	if (!live_in_glue_dir(glue_dir, dev))
3278 		return;
3279 
3280 	mutex_lock(&gdp_mutex);
3281 	/**
3282 	 * There is a race condition between removing glue directory
3283 	 * and adding a new device under the glue directory.
3284 	 *
3285 	 * CPU1:                                         CPU2:
3286 	 *
3287 	 * device_add()
3288 	 *   get_device_parent()
3289 	 *     class_dir_create_and_add()
3290 	 *       kobject_add_internal()
3291 	 *         create_dir()    // create glue_dir
3292 	 *
3293 	 *                                               device_add()
3294 	 *                                                 get_device_parent()
3295 	 *                                                   kobject_get() // get glue_dir
3296 	 *
3297 	 * device_del()
3298 	 *   cleanup_glue_dir()
3299 	 *     kobject_del(glue_dir)
3300 	 *
3301 	 *                                               kobject_add()
3302 	 *                                                 kobject_add_internal()
3303 	 *                                                   create_dir() // in glue_dir
3304 	 *                                                     sysfs_create_dir_ns()
3305 	 *                                                       kernfs_create_dir_ns(sd)
3306 	 *
3307 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3308 	 *       sysfs_put()        // free glue_dir->sd
3309 	 *
3310 	 *                                                         // sd is freed
3311 	 *                                                         kernfs_new_node(sd)
3312 	 *                                                           kernfs_get(glue_dir)
3313 	 *                                                           kernfs_add_one()
3314 	 *                                                           kernfs_put()
3315 	 *
3316 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3317 	 * a new device under glue dir, the glue_dir kobject reference count
3318 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3319 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3320 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3321 	 *
3322 	 * Then the CPU2 will see a stale "empty" but still potentially used
3323 	 * glue dir around in kernfs_new_node().
3324 	 *
3325 	 * In order to avoid this happening, we also should make sure that
3326 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3327 	 * for glue_dir kobj is 1.
3328 	 */
3329 	ref = kref_read(&glue_dir->kref);
3330 	if (!kobject_has_children(glue_dir) && !--ref)
3331 		kobject_del(glue_dir);
3332 	kobject_put(glue_dir);
3333 	mutex_unlock(&gdp_mutex);
3334 }
3335 
3336 static int device_add_class_symlinks(struct device *dev)
3337 {
3338 	struct device_node *of_node = dev_of_node(dev);
3339 	int error;
3340 
3341 	if (of_node) {
3342 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3343 		if (error)
3344 			dev_warn(dev, "Error %d creating of_node link\n",error);
3345 		/* An error here doesn't warrant bringing down the device */
3346 	}
3347 
3348 	if (!dev->class)
3349 		return 0;
3350 
3351 	error = sysfs_create_link(&dev->kobj,
3352 				  &dev->class->p->subsys.kobj,
3353 				  "subsystem");
3354 	if (error)
3355 		goto out_devnode;
3356 
3357 	if (dev->parent && device_is_not_partition(dev)) {
3358 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3359 					  "device");
3360 		if (error)
3361 			goto out_subsys;
3362 	}
3363 
3364 	/* link in the class directory pointing to the device */
3365 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3366 				  &dev->kobj, dev_name(dev));
3367 	if (error)
3368 		goto out_device;
3369 
3370 	return 0;
3371 
3372 out_device:
3373 	sysfs_remove_link(&dev->kobj, "device");
3374 
3375 out_subsys:
3376 	sysfs_remove_link(&dev->kobj, "subsystem");
3377 out_devnode:
3378 	sysfs_remove_link(&dev->kobj, "of_node");
3379 	return error;
3380 }
3381 
3382 static void device_remove_class_symlinks(struct device *dev)
3383 {
3384 	if (dev_of_node(dev))
3385 		sysfs_remove_link(&dev->kobj, "of_node");
3386 
3387 	if (!dev->class)
3388 		return;
3389 
3390 	if (dev->parent && device_is_not_partition(dev))
3391 		sysfs_remove_link(&dev->kobj, "device");
3392 	sysfs_remove_link(&dev->kobj, "subsystem");
3393 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3394 }
3395 
3396 /**
3397  * dev_set_name - set a device name
3398  * @dev: device
3399  * @fmt: format string for the device's name
3400  */
3401 int dev_set_name(struct device *dev, const char *fmt, ...)
3402 {
3403 	va_list vargs;
3404 	int err;
3405 
3406 	va_start(vargs, fmt);
3407 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3408 	va_end(vargs);
3409 	return err;
3410 }
3411 EXPORT_SYMBOL_GPL(dev_set_name);
3412 
3413 /**
3414  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3415  * @dev: device
3416  *
3417  * By default we select char/ for new entries.  Setting class->dev_obj
3418  * to NULL prevents an entry from being created.  class->dev_kobj must
3419  * be set (or cleared) before any devices are registered to the class
3420  * otherwise device_create_sys_dev_entry() and
3421  * device_remove_sys_dev_entry() will disagree about the presence of
3422  * the link.
3423  */
3424 static struct kobject *device_to_dev_kobj(struct device *dev)
3425 {
3426 	struct kobject *kobj;
3427 
3428 	if (dev->class)
3429 		kobj = dev->class->dev_kobj;
3430 	else
3431 		kobj = sysfs_dev_char_kobj;
3432 
3433 	return kobj;
3434 }
3435 
3436 static int device_create_sys_dev_entry(struct device *dev)
3437 {
3438 	struct kobject *kobj = device_to_dev_kobj(dev);
3439 	int error = 0;
3440 	char devt_str[15];
3441 
3442 	if (kobj) {
3443 		format_dev_t(devt_str, dev->devt);
3444 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3445 	}
3446 
3447 	return error;
3448 }
3449 
3450 static void device_remove_sys_dev_entry(struct device *dev)
3451 {
3452 	struct kobject *kobj = device_to_dev_kobj(dev);
3453 	char devt_str[15];
3454 
3455 	if (kobj) {
3456 		format_dev_t(devt_str, dev->devt);
3457 		sysfs_remove_link(kobj, devt_str);
3458 	}
3459 }
3460 
3461 static int device_private_init(struct device *dev)
3462 {
3463 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3464 	if (!dev->p)
3465 		return -ENOMEM;
3466 	dev->p->device = dev;
3467 	klist_init(&dev->p->klist_children, klist_children_get,
3468 		   klist_children_put);
3469 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3470 	return 0;
3471 }
3472 
3473 /**
3474  * device_add - add device to device hierarchy.
3475  * @dev: device.
3476  *
3477  * This is part 2 of device_register(), though may be called
3478  * separately _iff_ device_initialize() has been called separately.
3479  *
3480  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3481  * to the global and sibling lists for the device, then
3482  * adds it to the other relevant subsystems of the driver model.
3483  *
3484  * Do not call this routine or device_register() more than once for
3485  * any device structure.  The driver model core is not designed to work
3486  * with devices that get unregistered and then spring back to life.
3487  * (Among other things, it's very hard to guarantee that all references
3488  * to the previous incarnation of @dev have been dropped.)  Allocate
3489  * and register a fresh new struct device instead.
3490  *
3491  * NOTE: _Never_ directly free @dev after calling this function, even
3492  * if it returned an error! Always use put_device() to give up your
3493  * reference instead.
3494  *
3495  * Rule of thumb is: if device_add() succeeds, you should call
3496  * device_del() when you want to get rid of it. If device_add() has
3497  * *not* succeeded, use *only* put_device() to drop the reference
3498  * count.
3499  */
3500 int device_add(struct device *dev)
3501 {
3502 	struct device *parent;
3503 	struct kobject *kobj;
3504 	struct class_interface *class_intf;
3505 	int error = -EINVAL;
3506 	struct kobject *glue_dir = NULL;
3507 
3508 	dev = get_device(dev);
3509 	if (!dev)
3510 		goto done;
3511 
3512 	if (!dev->p) {
3513 		error = device_private_init(dev);
3514 		if (error)
3515 			goto done;
3516 	}
3517 
3518 	/*
3519 	 * for statically allocated devices, which should all be converted
3520 	 * some day, we need to initialize the name. We prevent reading back
3521 	 * the name, and force the use of dev_name()
3522 	 */
3523 	if (dev->init_name) {
3524 		dev_set_name(dev, "%s", dev->init_name);
3525 		dev->init_name = NULL;
3526 	}
3527 
3528 	/* subsystems can specify simple device enumeration */
3529 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3530 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3531 
3532 	if (!dev_name(dev)) {
3533 		error = -EINVAL;
3534 		goto name_error;
3535 	}
3536 
3537 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3538 
3539 	parent = get_device(dev->parent);
3540 	kobj = get_device_parent(dev, parent);
3541 	if (IS_ERR(kobj)) {
3542 		error = PTR_ERR(kobj);
3543 		goto parent_error;
3544 	}
3545 	if (kobj)
3546 		dev->kobj.parent = kobj;
3547 
3548 	/* use parent numa_node */
3549 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3550 		set_dev_node(dev, dev_to_node(parent));
3551 
3552 	/* first, register with generic layer. */
3553 	/* we require the name to be set before, and pass NULL */
3554 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3555 	if (error) {
3556 		glue_dir = kobj;
3557 		goto Error;
3558 	}
3559 
3560 	/* notify platform of device entry */
3561 	device_platform_notify(dev);
3562 
3563 	error = device_create_file(dev, &dev_attr_uevent);
3564 	if (error)
3565 		goto attrError;
3566 
3567 	error = device_add_class_symlinks(dev);
3568 	if (error)
3569 		goto SymlinkError;
3570 	error = device_add_attrs(dev);
3571 	if (error)
3572 		goto AttrsError;
3573 	error = bus_add_device(dev);
3574 	if (error)
3575 		goto BusError;
3576 	error = dpm_sysfs_add(dev);
3577 	if (error)
3578 		goto DPMError;
3579 	device_pm_add(dev);
3580 
3581 	if (MAJOR(dev->devt)) {
3582 		error = device_create_file(dev, &dev_attr_dev);
3583 		if (error)
3584 			goto DevAttrError;
3585 
3586 		error = device_create_sys_dev_entry(dev);
3587 		if (error)
3588 			goto SysEntryError;
3589 
3590 		devtmpfs_create_node(dev);
3591 	}
3592 
3593 	/* Notify clients of device addition.  This call must come
3594 	 * after dpm_sysfs_add() and before kobject_uevent().
3595 	 */
3596 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3597 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3598 
3599 	/*
3600 	 * Check if any of the other devices (consumers) have been waiting for
3601 	 * this device (supplier) to be added so that they can create a device
3602 	 * link to it.
3603 	 *
3604 	 * This needs to happen after device_pm_add() because device_link_add()
3605 	 * requires the supplier be registered before it's called.
3606 	 *
3607 	 * But this also needs to happen before bus_probe_device() to make sure
3608 	 * waiting consumers can link to it before the driver is bound to the
3609 	 * device and the driver sync_state callback is called for this device.
3610 	 */
3611 	if (dev->fwnode && !dev->fwnode->dev) {
3612 		dev->fwnode->dev = dev;
3613 		fw_devlink_link_device(dev);
3614 	}
3615 
3616 	bus_probe_device(dev);
3617 
3618 	/*
3619 	 * If all driver registration is done and a newly added device doesn't
3620 	 * match with any driver, don't block its consumers from probing in
3621 	 * case the consumer device is able to operate without this supplier.
3622 	 */
3623 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3624 		fw_devlink_unblock_consumers(dev);
3625 
3626 	if (parent)
3627 		klist_add_tail(&dev->p->knode_parent,
3628 			       &parent->p->klist_children);
3629 
3630 	if (dev->class) {
3631 		mutex_lock(&dev->class->p->mutex);
3632 		/* tie the class to the device */
3633 		klist_add_tail(&dev->p->knode_class,
3634 			       &dev->class->p->klist_devices);
3635 
3636 		/* notify any interfaces that the device is here */
3637 		list_for_each_entry(class_intf,
3638 				    &dev->class->p->interfaces, node)
3639 			if (class_intf->add_dev)
3640 				class_intf->add_dev(dev, class_intf);
3641 		mutex_unlock(&dev->class->p->mutex);
3642 	}
3643 done:
3644 	put_device(dev);
3645 	return error;
3646  SysEntryError:
3647 	if (MAJOR(dev->devt))
3648 		device_remove_file(dev, &dev_attr_dev);
3649  DevAttrError:
3650 	device_pm_remove(dev);
3651 	dpm_sysfs_remove(dev);
3652  DPMError:
3653 	dev->driver = NULL;
3654 	bus_remove_device(dev);
3655  BusError:
3656 	device_remove_attrs(dev);
3657  AttrsError:
3658 	device_remove_class_symlinks(dev);
3659  SymlinkError:
3660 	device_remove_file(dev, &dev_attr_uevent);
3661  attrError:
3662 	device_platform_notify_remove(dev);
3663 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3664 	glue_dir = get_glue_dir(dev);
3665 	kobject_del(&dev->kobj);
3666  Error:
3667 	cleanup_glue_dir(dev, glue_dir);
3668 parent_error:
3669 	put_device(parent);
3670 name_error:
3671 	kfree(dev->p);
3672 	dev->p = NULL;
3673 	goto done;
3674 }
3675 EXPORT_SYMBOL_GPL(device_add);
3676 
3677 /**
3678  * device_register - register a device with the system.
3679  * @dev: pointer to the device structure
3680  *
3681  * This happens in two clean steps - initialize the device
3682  * and add it to the system. The two steps can be called
3683  * separately, but this is the easiest and most common.
3684  * I.e. you should only call the two helpers separately if
3685  * have a clearly defined need to use and refcount the device
3686  * before it is added to the hierarchy.
3687  *
3688  * For more information, see the kerneldoc for device_initialize()
3689  * and device_add().
3690  *
3691  * NOTE: _Never_ directly free @dev after calling this function, even
3692  * if it returned an error! Always use put_device() to give up the
3693  * reference initialized in this function instead.
3694  */
3695 int device_register(struct device *dev)
3696 {
3697 	device_initialize(dev);
3698 	return device_add(dev);
3699 }
3700 EXPORT_SYMBOL_GPL(device_register);
3701 
3702 /**
3703  * get_device - increment reference count for device.
3704  * @dev: device.
3705  *
3706  * This simply forwards the call to kobject_get(), though
3707  * we do take care to provide for the case that we get a NULL
3708  * pointer passed in.
3709  */
3710 struct device *get_device(struct device *dev)
3711 {
3712 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3713 }
3714 EXPORT_SYMBOL_GPL(get_device);
3715 
3716 /**
3717  * put_device - decrement reference count.
3718  * @dev: device in question.
3719  */
3720 void put_device(struct device *dev)
3721 {
3722 	/* might_sleep(); */
3723 	if (dev)
3724 		kobject_put(&dev->kobj);
3725 }
3726 EXPORT_SYMBOL_GPL(put_device);
3727 
3728 bool kill_device(struct device *dev)
3729 {
3730 	/*
3731 	 * Require the device lock and set the "dead" flag to guarantee that
3732 	 * the update behavior is consistent with the other bitfields near
3733 	 * it and that we cannot have an asynchronous probe routine trying
3734 	 * to run while we are tearing out the bus/class/sysfs from
3735 	 * underneath the device.
3736 	 */
3737 	device_lock_assert(dev);
3738 
3739 	if (dev->p->dead)
3740 		return false;
3741 	dev->p->dead = true;
3742 	return true;
3743 }
3744 EXPORT_SYMBOL_GPL(kill_device);
3745 
3746 /**
3747  * device_del - delete device from system.
3748  * @dev: device.
3749  *
3750  * This is the first part of the device unregistration
3751  * sequence. This removes the device from the lists we control
3752  * from here, has it removed from the other driver model
3753  * subsystems it was added to in device_add(), and removes it
3754  * from the kobject hierarchy.
3755  *
3756  * NOTE: this should be called manually _iff_ device_add() was
3757  * also called manually.
3758  */
3759 void device_del(struct device *dev)
3760 {
3761 	struct device *parent = dev->parent;
3762 	struct kobject *glue_dir = NULL;
3763 	struct class_interface *class_intf;
3764 	unsigned int noio_flag;
3765 
3766 	device_lock(dev);
3767 	kill_device(dev);
3768 	device_unlock(dev);
3769 
3770 	if (dev->fwnode && dev->fwnode->dev == dev)
3771 		dev->fwnode->dev = NULL;
3772 
3773 	/* Notify clients of device removal.  This call must come
3774 	 * before dpm_sysfs_remove().
3775 	 */
3776 	noio_flag = memalloc_noio_save();
3777 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3778 
3779 	dpm_sysfs_remove(dev);
3780 	if (parent)
3781 		klist_del(&dev->p->knode_parent);
3782 	if (MAJOR(dev->devt)) {
3783 		devtmpfs_delete_node(dev);
3784 		device_remove_sys_dev_entry(dev);
3785 		device_remove_file(dev, &dev_attr_dev);
3786 	}
3787 	if (dev->class) {
3788 		device_remove_class_symlinks(dev);
3789 
3790 		mutex_lock(&dev->class->p->mutex);
3791 		/* notify any interfaces that the device is now gone */
3792 		list_for_each_entry(class_intf,
3793 				    &dev->class->p->interfaces, node)
3794 			if (class_intf->remove_dev)
3795 				class_intf->remove_dev(dev, class_intf);
3796 		/* remove the device from the class list */
3797 		klist_del(&dev->p->knode_class);
3798 		mutex_unlock(&dev->class->p->mutex);
3799 	}
3800 	device_remove_file(dev, &dev_attr_uevent);
3801 	device_remove_attrs(dev);
3802 	bus_remove_device(dev);
3803 	device_pm_remove(dev);
3804 	driver_deferred_probe_del(dev);
3805 	device_platform_notify_remove(dev);
3806 	device_links_purge(dev);
3807 
3808 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3809 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3810 	glue_dir = get_glue_dir(dev);
3811 	kobject_del(&dev->kobj);
3812 	cleanup_glue_dir(dev, glue_dir);
3813 	memalloc_noio_restore(noio_flag);
3814 	put_device(parent);
3815 }
3816 EXPORT_SYMBOL_GPL(device_del);
3817 
3818 /**
3819  * device_unregister - unregister device from system.
3820  * @dev: device going away.
3821  *
3822  * We do this in two parts, like we do device_register(). First,
3823  * we remove it from all the subsystems with device_del(), then
3824  * we decrement the reference count via put_device(). If that
3825  * is the final reference count, the device will be cleaned up
3826  * via device_release() above. Otherwise, the structure will
3827  * stick around until the final reference to the device is dropped.
3828  */
3829 void device_unregister(struct device *dev)
3830 {
3831 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3832 	device_del(dev);
3833 	put_device(dev);
3834 }
3835 EXPORT_SYMBOL_GPL(device_unregister);
3836 
3837 static struct device *prev_device(struct klist_iter *i)
3838 {
3839 	struct klist_node *n = klist_prev(i);
3840 	struct device *dev = NULL;
3841 	struct device_private *p;
3842 
3843 	if (n) {
3844 		p = to_device_private_parent(n);
3845 		dev = p->device;
3846 	}
3847 	return dev;
3848 }
3849 
3850 static struct device *next_device(struct klist_iter *i)
3851 {
3852 	struct klist_node *n = klist_next(i);
3853 	struct device *dev = NULL;
3854 	struct device_private *p;
3855 
3856 	if (n) {
3857 		p = to_device_private_parent(n);
3858 		dev = p->device;
3859 	}
3860 	return dev;
3861 }
3862 
3863 /**
3864  * device_get_devnode - path of device node file
3865  * @dev: device
3866  * @mode: returned file access mode
3867  * @uid: returned file owner
3868  * @gid: returned file group
3869  * @tmp: possibly allocated string
3870  *
3871  * Return the relative path of a possible device node.
3872  * Non-default names may need to allocate a memory to compose
3873  * a name. This memory is returned in tmp and needs to be
3874  * freed by the caller.
3875  */
3876 const char *device_get_devnode(const struct device *dev,
3877 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3878 			       const char **tmp)
3879 {
3880 	char *s;
3881 
3882 	*tmp = NULL;
3883 
3884 	/* the device type may provide a specific name */
3885 	if (dev->type && dev->type->devnode)
3886 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3887 	if (*tmp)
3888 		return *tmp;
3889 
3890 	/* the class may provide a specific name */
3891 	if (dev->class && dev->class->devnode)
3892 		*tmp = dev->class->devnode(dev, mode);
3893 	if (*tmp)
3894 		return *tmp;
3895 
3896 	/* return name without allocation, tmp == NULL */
3897 	if (strchr(dev_name(dev), '!') == NULL)
3898 		return dev_name(dev);
3899 
3900 	/* replace '!' in the name with '/' */
3901 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3902 	if (!s)
3903 		return NULL;
3904 	strreplace(s, '!', '/');
3905 	return *tmp = s;
3906 }
3907 
3908 /**
3909  * device_for_each_child - device child iterator.
3910  * @parent: parent struct device.
3911  * @fn: function to be called for each device.
3912  * @data: data for the callback.
3913  *
3914  * Iterate over @parent's child devices, and call @fn for each,
3915  * passing it @data.
3916  *
3917  * We check the return of @fn each time. If it returns anything
3918  * other than 0, we break out and return that value.
3919  */
3920 int device_for_each_child(struct device *parent, void *data,
3921 			  int (*fn)(struct device *dev, void *data))
3922 {
3923 	struct klist_iter i;
3924 	struct device *child;
3925 	int error = 0;
3926 
3927 	if (!parent->p)
3928 		return 0;
3929 
3930 	klist_iter_init(&parent->p->klist_children, &i);
3931 	while (!error && (child = next_device(&i)))
3932 		error = fn(child, data);
3933 	klist_iter_exit(&i);
3934 	return error;
3935 }
3936 EXPORT_SYMBOL_GPL(device_for_each_child);
3937 
3938 /**
3939  * device_for_each_child_reverse - device child iterator in reversed order.
3940  * @parent: parent struct device.
3941  * @fn: function to be called for each device.
3942  * @data: data for the callback.
3943  *
3944  * Iterate over @parent's child devices, and call @fn for each,
3945  * passing it @data.
3946  *
3947  * We check the return of @fn each time. If it returns anything
3948  * other than 0, we break out and return that value.
3949  */
3950 int device_for_each_child_reverse(struct device *parent, void *data,
3951 				  int (*fn)(struct device *dev, void *data))
3952 {
3953 	struct klist_iter i;
3954 	struct device *child;
3955 	int error = 0;
3956 
3957 	if (!parent->p)
3958 		return 0;
3959 
3960 	klist_iter_init(&parent->p->klist_children, &i);
3961 	while ((child = prev_device(&i)) && !error)
3962 		error = fn(child, data);
3963 	klist_iter_exit(&i);
3964 	return error;
3965 }
3966 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3967 
3968 /**
3969  * device_find_child - device iterator for locating a particular device.
3970  * @parent: parent struct device
3971  * @match: Callback function to check device
3972  * @data: Data to pass to match function
3973  *
3974  * This is similar to the device_for_each_child() function above, but it
3975  * returns a reference to a device that is 'found' for later use, as
3976  * determined by the @match callback.
3977  *
3978  * The callback should return 0 if the device doesn't match and non-zero
3979  * if it does.  If the callback returns non-zero and a reference to the
3980  * current device can be obtained, this function will return to the caller
3981  * and not iterate over any more devices.
3982  *
3983  * NOTE: you will need to drop the reference with put_device() after use.
3984  */
3985 struct device *device_find_child(struct device *parent, void *data,
3986 				 int (*match)(struct device *dev, void *data))
3987 {
3988 	struct klist_iter i;
3989 	struct device *child;
3990 
3991 	if (!parent)
3992 		return NULL;
3993 
3994 	klist_iter_init(&parent->p->klist_children, &i);
3995 	while ((child = next_device(&i)))
3996 		if (match(child, data) && get_device(child))
3997 			break;
3998 	klist_iter_exit(&i);
3999 	return child;
4000 }
4001 EXPORT_SYMBOL_GPL(device_find_child);
4002 
4003 /**
4004  * device_find_child_by_name - device iterator for locating a child device.
4005  * @parent: parent struct device
4006  * @name: name of the child device
4007  *
4008  * This is similar to the device_find_child() function above, but it
4009  * returns a reference to a device that has the name @name.
4010  *
4011  * NOTE: you will need to drop the reference with put_device() after use.
4012  */
4013 struct device *device_find_child_by_name(struct device *parent,
4014 					 const char *name)
4015 {
4016 	struct klist_iter i;
4017 	struct device *child;
4018 
4019 	if (!parent)
4020 		return NULL;
4021 
4022 	klist_iter_init(&parent->p->klist_children, &i);
4023 	while ((child = next_device(&i)))
4024 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4025 			break;
4026 	klist_iter_exit(&i);
4027 	return child;
4028 }
4029 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4030 
4031 static int match_any(struct device *dev, void *unused)
4032 {
4033 	return 1;
4034 }
4035 
4036 /**
4037  * device_find_any_child - device iterator for locating a child device, if any.
4038  * @parent: parent struct device
4039  *
4040  * This is similar to the device_find_child() function above, but it
4041  * returns a reference to a child device, if any.
4042  *
4043  * NOTE: you will need to drop the reference with put_device() after use.
4044  */
4045 struct device *device_find_any_child(struct device *parent)
4046 {
4047 	return device_find_child(parent, NULL, match_any);
4048 }
4049 EXPORT_SYMBOL_GPL(device_find_any_child);
4050 
4051 int __init devices_init(void)
4052 {
4053 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4054 	if (!devices_kset)
4055 		return -ENOMEM;
4056 	dev_kobj = kobject_create_and_add("dev", NULL);
4057 	if (!dev_kobj)
4058 		goto dev_kobj_err;
4059 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4060 	if (!sysfs_dev_block_kobj)
4061 		goto block_kobj_err;
4062 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4063 	if (!sysfs_dev_char_kobj)
4064 		goto char_kobj_err;
4065 
4066 	return 0;
4067 
4068  char_kobj_err:
4069 	kobject_put(sysfs_dev_block_kobj);
4070  block_kobj_err:
4071 	kobject_put(dev_kobj);
4072  dev_kobj_err:
4073 	kset_unregister(devices_kset);
4074 	return -ENOMEM;
4075 }
4076 
4077 static int device_check_offline(struct device *dev, void *not_used)
4078 {
4079 	int ret;
4080 
4081 	ret = device_for_each_child(dev, NULL, device_check_offline);
4082 	if (ret)
4083 		return ret;
4084 
4085 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4086 }
4087 
4088 /**
4089  * device_offline - Prepare the device for hot-removal.
4090  * @dev: Device to be put offline.
4091  *
4092  * Execute the device bus type's .offline() callback, if present, to prepare
4093  * the device for a subsequent hot-removal.  If that succeeds, the device must
4094  * not be used until either it is removed or its bus type's .online() callback
4095  * is executed.
4096  *
4097  * Call under device_hotplug_lock.
4098  */
4099 int device_offline(struct device *dev)
4100 {
4101 	int ret;
4102 
4103 	if (dev->offline_disabled)
4104 		return -EPERM;
4105 
4106 	ret = device_for_each_child(dev, NULL, device_check_offline);
4107 	if (ret)
4108 		return ret;
4109 
4110 	device_lock(dev);
4111 	if (device_supports_offline(dev)) {
4112 		if (dev->offline) {
4113 			ret = 1;
4114 		} else {
4115 			ret = dev->bus->offline(dev);
4116 			if (!ret) {
4117 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4118 				dev->offline = true;
4119 			}
4120 		}
4121 	}
4122 	device_unlock(dev);
4123 
4124 	return ret;
4125 }
4126 
4127 /**
4128  * device_online - Put the device back online after successful device_offline().
4129  * @dev: Device to be put back online.
4130  *
4131  * If device_offline() has been successfully executed for @dev, but the device
4132  * has not been removed subsequently, execute its bus type's .online() callback
4133  * to indicate that the device can be used again.
4134  *
4135  * Call under device_hotplug_lock.
4136  */
4137 int device_online(struct device *dev)
4138 {
4139 	int ret = 0;
4140 
4141 	device_lock(dev);
4142 	if (device_supports_offline(dev)) {
4143 		if (dev->offline) {
4144 			ret = dev->bus->online(dev);
4145 			if (!ret) {
4146 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4147 				dev->offline = false;
4148 			}
4149 		} else {
4150 			ret = 1;
4151 		}
4152 	}
4153 	device_unlock(dev);
4154 
4155 	return ret;
4156 }
4157 
4158 struct root_device {
4159 	struct device dev;
4160 	struct module *owner;
4161 };
4162 
4163 static inline struct root_device *to_root_device(struct device *d)
4164 {
4165 	return container_of(d, struct root_device, dev);
4166 }
4167 
4168 static void root_device_release(struct device *dev)
4169 {
4170 	kfree(to_root_device(dev));
4171 }
4172 
4173 /**
4174  * __root_device_register - allocate and register a root device
4175  * @name: root device name
4176  * @owner: owner module of the root device, usually THIS_MODULE
4177  *
4178  * This function allocates a root device and registers it
4179  * using device_register(). In order to free the returned
4180  * device, use root_device_unregister().
4181  *
4182  * Root devices are dummy devices which allow other devices
4183  * to be grouped under /sys/devices. Use this function to
4184  * allocate a root device and then use it as the parent of
4185  * any device which should appear under /sys/devices/{name}
4186  *
4187  * The /sys/devices/{name} directory will also contain a
4188  * 'module' symlink which points to the @owner directory
4189  * in sysfs.
4190  *
4191  * Returns &struct device pointer on success, or ERR_PTR() on error.
4192  *
4193  * Note: You probably want to use root_device_register().
4194  */
4195 struct device *__root_device_register(const char *name, struct module *owner)
4196 {
4197 	struct root_device *root;
4198 	int err = -ENOMEM;
4199 
4200 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4201 	if (!root)
4202 		return ERR_PTR(err);
4203 
4204 	err = dev_set_name(&root->dev, "%s", name);
4205 	if (err) {
4206 		kfree(root);
4207 		return ERR_PTR(err);
4208 	}
4209 
4210 	root->dev.release = root_device_release;
4211 
4212 	err = device_register(&root->dev);
4213 	if (err) {
4214 		put_device(&root->dev);
4215 		return ERR_PTR(err);
4216 	}
4217 
4218 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4219 	if (owner) {
4220 		struct module_kobject *mk = &owner->mkobj;
4221 
4222 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4223 		if (err) {
4224 			device_unregister(&root->dev);
4225 			return ERR_PTR(err);
4226 		}
4227 		root->owner = owner;
4228 	}
4229 #endif
4230 
4231 	return &root->dev;
4232 }
4233 EXPORT_SYMBOL_GPL(__root_device_register);
4234 
4235 /**
4236  * root_device_unregister - unregister and free a root device
4237  * @dev: device going away
4238  *
4239  * This function unregisters and cleans up a device that was created by
4240  * root_device_register().
4241  */
4242 void root_device_unregister(struct device *dev)
4243 {
4244 	struct root_device *root = to_root_device(dev);
4245 
4246 	if (root->owner)
4247 		sysfs_remove_link(&root->dev.kobj, "module");
4248 
4249 	device_unregister(dev);
4250 }
4251 EXPORT_SYMBOL_GPL(root_device_unregister);
4252 
4253 
4254 static void device_create_release(struct device *dev)
4255 {
4256 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4257 	kfree(dev);
4258 }
4259 
4260 static __printf(6, 0) struct device *
4261 device_create_groups_vargs(const struct class *class, struct device *parent,
4262 			   dev_t devt, void *drvdata,
4263 			   const struct attribute_group **groups,
4264 			   const char *fmt, va_list args)
4265 {
4266 	struct device *dev = NULL;
4267 	int retval = -ENODEV;
4268 
4269 	if (IS_ERR_OR_NULL(class))
4270 		goto error;
4271 
4272 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4273 	if (!dev) {
4274 		retval = -ENOMEM;
4275 		goto error;
4276 	}
4277 
4278 	device_initialize(dev);
4279 	dev->devt = devt;
4280 	dev->class = class;
4281 	dev->parent = parent;
4282 	dev->groups = groups;
4283 	dev->release = device_create_release;
4284 	dev_set_drvdata(dev, drvdata);
4285 
4286 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4287 	if (retval)
4288 		goto error;
4289 
4290 	retval = device_add(dev);
4291 	if (retval)
4292 		goto error;
4293 
4294 	return dev;
4295 
4296 error:
4297 	put_device(dev);
4298 	return ERR_PTR(retval);
4299 }
4300 
4301 /**
4302  * device_create - creates a device and registers it with sysfs
4303  * @class: pointer to the struct class that this device should be registered to
4304  * @parent: pointer to the parent struct device of this new device, if any
4305  * @devt: the dev_t for the char device to be added
4306  * @drvdata: the data to be added to the device for callbacks
4307  * @fmt: string for the device's name
4308  *
4309  * This function can be used by char device classes.  A struct device
4310  * will be created in sysfs, registered to the specified class.
4311  *
4312  * A "dev" file will be created, showing the dev_t for the device, if
4313  * the dev_t is not 0,0.
4314  * If a pointer to a parent struct device is passed in, the newly created
4315  * struct device will be a child of that device in sysfs.
4316  * The pointer to the struct device will be returned from the call.
4317  * Any further sysfs files that might be required can be created using this
4318  * pointer.
4319  *
4320  * Returns &struct device pointer on success, or ERR_PTR() on error.
4321  *
4322  * Note: the struct class passed to this function must have previously
4323  * been created with a call to class_create().
4324  */
4325 struct device *device_create(const struct class *class, struct device *parent,
4326 			     dev_t devt, void *drvdata, const char *fmt, ...)
4327 {
4328 	va_list vargs;
4329 	struct device *dev;
4330 
4331 	va_start(vargs, fmt);
4332 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4333 					  fmt, vargs);
4334 	va_end(vargs);
4335 	return dev;
4336 }
4337 EXPORT_SYMBOL_GPL(device_create);
4338 
4339 /**
4340  * device_create_with_groups - creates a device and registers it with sysfs
4341  * @class: pointer to the struct class that this device should be registered to
4342  * @parent: pointer to the parent struct device of this new device, if any
4343  * @devt: the dev_t for the char device to be added
4344  * @drvdata: the data to be added to the device for callbacks
4345  * @groups: NULL-terminated list of attribute groups to be created
4346  * @fmt: string for the device's name
4347  *
4348  * This function can be used by char device classes.  A struct device
4349  * will be created in sysfs, registered to the specified class.
4350  * Additional attributes specified in the groups parameter will also
4351  * be created automatically.
4352  *
4353  * A "dev" file will be created, showing the dev_t for the device, if
4354  * the dev_t is not 0,0.
4355  * If a pointer to a parent struct device is passed in, the newly created
4356  * struct device will be a child of that device in sysfs.
4357  * The pointer to the struct device will be returned from the call.
4358  * Any further sysfs files that might be required can be created using this
4359  * pointer.
4360  *
4361  * Returns &struct device pointer on success, or ERR_PTR() on error.
4362  *
4363  * Note: the struct class passed to this function must have previously
4364  * been created with a call to class_create().
4365  */
4366 struct device *device_create_with_groups(const struct class *class,
4367 					 struct device *parent, dev_t devt,
4368 					 void *drvdata,
4369 					 const struct attribute_group **groups,
4370 					 const char *fmt, ...)
4371 {
4372 	va_list vargs;
4373 	struct device *dev;
4374 
4375 	va_start(vargs, fmt);
4376 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4377 					 fmt, vargs);
4378 	va_end(vargs);
4379 	return dev;
4380 }
4381 EXPORT_SYMBOL_GPL(device_create_with_groups);
4382 
4383 /**
4384  * device_destroy - removes a device that was created with device_create()
4385  * @class: pointer to the struct class that this device was registered with
4386  * @devt: the dev_t of the device that was previously registered
4387  *
4388  * This call unregisters and cleans up a device that was created with a
4389  * call to device_create().
4390  */
4391 void device_destroy(const struct class *class, dev_t devt)
4392 {
4393 	struct device *dev;
4394 
4395 	dev = class_find_device_by_devt(class, devt);
4396 	if (dev) {
4397 		put_device(dev);
4398 		device_unregister(dev);
4399 	}
4400 }
4401 EXPORT_SYMBOL_GPL(device_destroy);
4402 
4403 /**
4404  * device_rename - renames a device
4405  * @dev: the pointer to the struct device to be renamed
4406  * @new_name: the new name of the device
4407  *
4408  * It is the responsibility of the caller to provide mutual
4409  * exclusion between two different calls of device_rename
4410  * on the same device to ensure that new_name is valid and
4411  * won't conflict with other devices.
4412  *
4413  * Note: Don't call this function.  Currently, the networking layer calls this
4414  * function, but that will change.  The following text from Kay Sievers offers
4415  * some insight:
4416  *
4417  * Renaming devices is racy at many levels, symlinks and other stuff are not
4418  * replaced atomically, and you get a "move" uevent, but it's not easy to
4419  * connect the event to the old and new device. Device nodes are not renamed at
4420  * all, there isn't even support for that in the kernel now.
4421  *
4422  * In the meantime, during renaming, your target name might be taken by another
4423  * driver, creating conflicts. Or the old name is taken directly after you
4424  * renamed it -- then you get events for the same DEVPATH, before you even see
4425  * the "move" event. It's just a mess, and nothing new should ever rely on
4426  * kernel device renaming. Besides that, it's not even implemented now for
4427  * other things than (driver-core wise very simple) network devices.
4428  *
4429  * We are currently about to change network renaming in udev to completely
4430  * disallow renaming of devices in the same namespace as the kernel uses,
4431  * because we can't solve the problems properly, that arise with swapping names
4432  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4433  * be allowed to some other name than eth[0-9]*, for the aforementioned
4434  * reasons.
4435  *
4436  * Make up a "real" name in the driver before you register anything, or add
4437  * some other attributes for userspace to find the device, or use udev to add
4438  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4439  * don't even want to get into that and try to implement the missing pieces in
4440  * the core. We really have other pieces to fix in the driver core mess. :)
4441  */
4442 int device_rename(struct device *dev, const char *new_name)
4443 {
4444 	struct kobject *kobj = &dev->kobj;
4445 	char *old_device_name = NULL;
4446 	int error;
4447 
4448 	dev = get_device(dev);
4449 	if (!dev)
4450 		return -EINVAL;
4451 
4452 	dev_dbg(dev, "renaming to %s\n", new_name);
4453 
4454 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4455 	if (!old_device_name) {
4456 		error = -ENOMEM;
4457 		goto out;
4458 	}
4459 
4460 	if (dev->class) {
4461 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4462 					     kobj, old_device_name,
4463 					     new_name, kobject_namespace(kobj));
4464 		if (error)
4465 			goto out;
4466 	}
4467 
4468 	error = kobject_rename(kobj, new_name);
4469 	if (error)
4470 		goto out;
4471 
4472 out:
4473 	put_device(dev);
4474 
4475 	kfree(old_device_name);
4476 
4477 	return error;
4478 }
4479 EXPORT_SYMBOL_GPL(device_rename);
4480 
4481 static int device_move_class_links(struct device *dev,
4482 				   struct device *old_parent,
4483 				   struct device *new_parent)
4484 {
4485 	int error = 0;
4486 
4487 	if (old_parent)
4488 		sysfs_remove_link(&dev->kobj, "device");
4489 	if (new_parent)
4490 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4491 					  "device");
4492 	return error;
4493 }
4494 
4495 /**
4496  * device_move - moves a device to a new parent
4497  * @dev: the pointer to the struct device to be moved
4498  * @new_parent: the new parent of the device (can be NULL)
4499  * @dpm_order: how to reorder the dpm_list
4500  */
4501 int device_move(struct device *dev, struct device *new_parent,
4502 		enum dpm_order dpm_order)
4503 {
4504 	int error;
4505 	struct device *old_parent;
4506 	struct kobject *new_parent_kobj;
4507 
4508 	dev = get_device(dev);
4509 	if (!dev)
4510 		return -EINVAL;
4511 
4512 	device_pm_lock();
4513 	new_parent = get_device(new_parent);
4514 	new_parent_kobj = get_device_parent(dev, new_parent);
4515 	if (IS_ERR(new_parent_kobj)) {
4516 		error = PTR_ERR(new_parent_kobj);
4517 		put_device(new_parent);
4518 		goto out;
4519 	}
4520 
4521 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4522 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4523 	error = kobject_move(&dev->kobj, new_parent_kobj);
4524 	if (error) {
4525 		cleanup_glue_dir(dev, new_parent_kobj);
4526 		put_device(new_parent);
4527 		goto out;
4528 	}
4529 	old_parent = dev->parent;
4530 	dev->parent = new_parent;
4531 	if (old_parent)
4532 		klist_remove(&dev->p->knode_parent);
4533 	if (new_parent) {
4534 		klist_add_tail(&dev->p->knode_parent,
4535 			       &new_parent->p->klist_children);
4536 		set_dev_node(dev, dev_to_node(new_parent));
4537 	}
4538 
4539 	if (dev->class) {
4540 		error = device_move_class_links(dev, old_parent, new_parent);
4541 		if (error) {
4542 			/* We ignore errors on cleanup since we're hosed anyway... */
4543 			device_move_class_links(dev, new_parent, old_parent);
4544 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4545 				if (new_parent)
4546 					klist_remove(&dev->p->knode_parent);
4547 				dev->parent = old_parent;
4548 				if (old_parent) {
4549 					klist_add_tail(&dev->p->knode_parent,
4550 						       &old_parent->p->klist_children);
4551 					set_dev_node(dev, dev_to_node(old_parent));
4552 				}
4553 			}
4554 			cleanup_glue_dir(dev, new_parent_kobj);
4555 			put_device(new_parent);
4556 			goto out;
4557 		}
4558 	}
4559 	switch (dpm_order) {
4560 	case DPM_ORDER_NONE:
4561 		break;
4562 	case DPM_ORDER_DEV_AFTER_PARENT:
4563 		device_pm_move_after(dev, new_parent);
4564 		devices_kset_move_after(dev, new_parent);
4565 		break;
4566 	case DPM_ORDER_PARENT_BEFORE_DEV:
4567 		device_pm_move_before(new_parent, dev);
4568 		devices_kset_move_before(new_parent, dev);
4569 		break;
4570 	case DPM_ORDER_DEV_LAST:
4571 		device_pm_move_last(dev);
4572 		devices_kset_move_last(dev);
4573 		break;
4574 	}
4575 
4576 	put_device(old_parent);
4577 out:
4578 	device_pm_unlock();
4579 	put_device(dev);
4580 	return error;
4581 }
4582 EXPORT_SYMBOL_GPL(device_move);
4583 
4584 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4585 				     kgid_t kgid)
4586 {
4587 	struct kobject *kobj = &dev->kobj;
4588 	const struct class *class = dev->class;
4589 	const struct device_type *type = dev->type;
4590 	int error;
4591 
4592 	if (class) {
4593 		/*
4594 		 * Change the device groups of the device class for @dev to
4595 		 * @kuid/@kgid.
4596 		 */
4597 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4598 						  kgid);
4599 		if (error)
4600 			return error;
4601 	}
4602 
4603 	if (type) {
4604 		/*
4605 		 * Change the device groups of the device type for @dev to
4606 		 * @kuid/@kgid.
4607 		 */
4608 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4609 						  kgid);
4610 		if (error)
4611 			return error;
4612 	}
4613 
4614 	/* Change the device groups of @dev to @kuid/@kgid. */
4615 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4616 	if (error)
4617 		return error;
4618 
4619 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4620 		/* Change online device attributes of @dev to @kuid/@kgid. */
4621 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4622 						kuid, kgid);
4623 		if (error)
4624 			return error;
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 /**
4631  * device_change_owner - change the owner of an existing device.
4632  * @dev: device.
4633  * @kuid: new owner's kuid
4634  * @kgid: new owner's kgid
4635  *
4636  * This changes the owner of @dev and its corresponding sysfs entries to
4637  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4638  * core.
4639  *
4640  * Returns 0 on success or error code on failure.
4641  */
4642 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4643 {
4644 	int error;
4645 	struct kobject *kobj = &dev->kobj;
4646 
4647 	dev = get_device(dev);
4648 	if (!dev)
4649 		return -EINVAL;
4650 
4651 	/*
4652 	 * Change the kobject and the default attributes and groups of the
4653 	 * ktype associated with it to @kuid/@kgid.
4654 	 */
4655 	error = sysfs_change_owner(kobj, kuid, kgid);
4656 	if (error)
4657 		goto out;
4658 
4659 	/*
4660 	 * Change the uevent file for @dev to the new owner. The uevent file
4661 	 * was created in a separate step when @dev got added and we mirror
4662 	 * that step here.
4663 	 */
4664 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4665 					kgid);
4666 	if (error)
4667 		goto out;
4668 
4669 	/*
4670 	 * Change the device groups, the device groups associated with the
4671 	 * device class, and the groups associated with the device type of @dev
4672 	 * to @kuid/@kgid.
4673 	 */
4674 	error = device_attrs_change_owner(dev, kuid, kgid);
4675 	if (error)
4676 		goto out;
4677 
4678 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4679 	if (error)
4680 		goto out;
4681 
4682 	/*
4683 	 * Change the owner of the symlink located in the class directory of
4684 	 * the device class associated with @dev which points to the actual
4685 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4686 	 * symlink shows the same permissions as its target.
4687 	 */
4688 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4689 					dev_name(dev), kuid, kgid);
4690 	if (error)
4691 		goto out;
4692 
4693 out:
4694 	put_device(dev);
4695 	return error;
4696 }
4697 EXPORT_SYMBOL_GPL(device_change_owner);
4698 
4699 /**
4700  * device_shutdown - call ->shutdown() on each device to shutdown.
4701  */
4702 void device_shutdown(void)
4703 {
4704 	struct device *dev, *parent;
4705 
4706 	wait_for_device_probe();
4707 	device_block_probing();
4708 
4709 	cpufreq_suspend();
4710 
4711 	spin_lock(&devices_kset->list_lock);
4712 	/*
4713 	 * Walk the devices list backward, shutting down each in turn.
4714 	 * Beware that device unplug events may also start pulling
4715 	 * devices offline, even as the system is shutting down.
4716 	 */
4717 	while (!list_empty(&devices_kset->list)) {
4718 		dev = list_entry(devices_kset->list.prev, struct device,
4719 				kobj.entry);
4720 
4721 		/*
4722 		 * hold reference count of device's parent to
4723 		 * prevent it from being freed because parent's
4724 		 * lock is to be held
4725 		 */
4726 		parent = get_device(dev->parent);
4727 		get_device(dev);
4728 		/*
4729 		 * Make sure the device is off the kset list, in the
4730 		 * event that dev->*->shutdown() doesn't remove it.
4731 		 */
4732 		list_del_init(&dev->kobj.entry);
4733 		spin_unlock(&devices_kset->list_lock);
4734 
4735 		/* hold lock to avoid race with probe/release */
4736 		if (parent)
4737 			device_lock(parent);
4738 		device_lock(dev);
4739 
4740 		/* Don't allow any more runtime suspends */
4741 		pm_runtime_get_noresume(dev);
4742 		pm_runtime_barrier(dev);
4743 
4744 		if (dev->class && dev->class->shutdown_pre) {
4745 			if (initcall_debug)
4746 				dev_info(dev, "shutdown_pre\n");
4747 			dev->class->shutdown_pre(dev);
4748 		}
4749 		if (dev->bus && dev->bus->shutdown) {
4750 			if (initcall_debug)
4751 				dev_info(dev, "shutdown\n");
4752 			dev->bus->shutdown(dev);
4753 		} else if (dev->driver && dev->driver->shutdown) {
4754 			if (initcall_debug)
4755 				dev_info(dev, "shutdown\n");
4756 			dev->driver->shutdown(dev);
4757 		}
4758 
4759 		device_unlock(dev);
4760 		if (parent)
4761 			device_unlock(parent);
4762 
4763 		put_device(dev);
4764 		put_device(parent);
4765 
4766 		spin_lock(&devices_kset->list_lock);
4767 	}
4768 	spin_unlock(&devices_kset->list_lock);
4769 }
4770 
4771 /*
4772  * Device logging functions
4773  */
4774 
4775 #ifdef CONFIG_PRINTK
4776 static void
4777 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4778 {
4779 	const char *subsys;
4780 
4781 	memset(dev_info, 0, sizeof(*dev_info));
4782 
4783 	if (dev->class)
4784 		subsys = dev->class->name;
4785 	else if (dev->bus)
4786 		subsys = dev->bus->name;
4787 	else
4788 		return;
4789 
4790 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4791 
4792 	/*
4793 	 * Add device identifier DEVICE=:
4794 	 *   b12:8         block dev_t
4795 	 *   c127:3        char dev_t
4796 	 *   n8            netdev ifindex
4797 	 *   +sound:card0  subsystem:devname
4798 	 */
4799 	if (MAJOR(dev->devt)) {
4800 		char c;
4801 
4802 		if (strcmp(subsys, "block") == 0)
4803 			c = 'b';
4804 		else
4805 			c = 'c';
4806 
4807 		snprintf(dev_info->device, sizeof(dev_info->device),
4808 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4809 	} else if (strcmp(subsys, "net") == 0) {
4810 		struct net_device *net = to_net_dev(dev);
4811 
4812 		snprintf(dev_info->device, sizeof(dev_info->device),
4813 			 "n%u", net->ifindex);
4814 	} else {
4815 		snprintf(dev_info->device, sizeof(dev_info->device),
4816 			 "+%s:%s", subsys, dev_name(dev));
4817 	}
4818 }
4819 
4820 int dev_vprintk_emit(int level, const struct device *dev,
4821 		     const char *fmt, va_list args)
4822 {
4823 	struct dev_printk_info dev_info;
4824 
4825 	set_dev_info(dev, &dev_info);
4826 
4827 	return vprintk_emit(0, level, &dev_info, fmt, args);
4828 }
4829 EXPORT_SYMBOL(dev_vprintk_emit);
4830 
4831 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4832 {
4833 	va_list args;
4834 	int r;
4835 
4836 	va_start(args, fmt);
4837 
4838 	r = dev_vprintk_emit(level, dev, fmt, args);
4839 
4840 	va_end(args);
4841 
4842 	return r;
4843 }
4844 EXPORT_SYMBOL(dev_printk_emit);
4845 
4846 static void __dev_printk(const char *level, const struct device *dev,
4847 			struct va_format *vaf)
4848 {
4849 	if (dev)
4850 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4851 				dev_driver_string(dev), dev_name(dev), vaf);
4852 	else
4853 		printk("%s(NULL device *): %pV", level, vaf);
4854 }
4855 
4856 void _dev_printk(const char *level, const struct device *dev,
4857 		 const char *fmt, ...)
4858 {
4859 	struct va_format vaf;
4860 	va_list args;
4861 
4862 	va_start(args, fmt);
4863 
4864 	vaf.fmt = fmt;
4865 	vaf.va = &args;
4866 
4867 	__dev_printk(level, dev, &vaf);
4868 
4869 	va_end(args);
4870 }
4871 EXPORT_SYMBOL(_dev_printk);
4872 
4873 #define define_dev_printk_level(func, kern_level)		\
4874 void func(const struct device *dev, const char *fmt, ...)	\
4875 {								\
4876 	struct va_format vaf;					\
4877 	va_list args;						\
4878 								\
4879 	va_start(args, fmt);					\
4880 								\
4881 	vaf.fmt = fmt;						\
4882 	vaf.va = &args;						\
4883 								\
4884 	__dev_printk(kern_level, dev, &vaf);			\
4885 								\
4886 	va_end(args);						\
4887 }								\
4888 EXPORT_SYMBOL(func);
4889 
4890 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4891 define_dev_printk_level(_dev_alert, KERN_ALERT);
4892 define_dev_printk_level(_dev_crit, KERN_CRIT);
4893 define_dev_printk_level(_dev_err, KERN_ERR);
4894 define_dev_printk_level(_dev_warn, KERN_WARNING);
4895 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4896 define_dev_printk_level(_dev_info, KERN_INFO);
4897 
4898 #endif
4899 
4900 /**
4901  * dev_err_probe - probe error check and log helper
4902  * @dev: the pointer to the struct device
4903  * @err: error value to test
4904  * @fmt: printf-style format string
4905  * @...: arguments as specified in the format string
4906  *
4907  * This helper implements common pattern present in probe functions for error
4908  * checking: print debug or error message depending if the error value is
4909  * -EPROBE_DEFER and propagate error upwards.
4910  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4911  * checked later by reading devices_deferred debugfs attribute.
4912  * It replaces code sequence::
4913  *
4914  * 	if (err != -EPROBE_DEFER)
4915  * 		dev_err(dev, ...);
4916  * 	else
4917  * 		dev_dbg(dev, ...);
4918  * 	return err;
4919  *
4920  * with::
4921  *
4922  * 	return dev_err_probe(dev, err, ...);
4923  *
4924  * Note that it is deemed acceptable to use this function for error
4925  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4926  * The benefit compared to a normal dev_err() is the standardized format
4927  * of the error code and the fact that the error code is returned.
4928  *
4929  * Returns @err.
4930  *
4931  */
4932 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4933 {
4934 	struct va_format vaf;
4935 	va_list args;
4936 
4937 	va_start(args, fmt);
4938 	vaf.fmt = fmt;
4939 	vaf.va = &args;
4940 
4941 	if (err != -EPROBE_DEFER) {
4942 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4943 	} else {
4944 		device_set_deferred_probe_reason(dev, &vaf);
4945 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4946 	}
4947 
4948 	va_end(args);
4949 
4950 	return err;
4951 }
4952 EXPORT_SYMBOL_GPL(dev_err_probe);
4953 
4954 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4955 {
4956 	return fwnode && !IS_ERR(fwnode->secondary);
4957 }
4958 
4959 /**
4960  * set_primary_fwnode - Change the primary firmware node of a given device.
4961  * @dev: Device to handle.
4962  * @fwnode: New primary firmware node of the device.
4963  *
4964  * Set the device's firmware node pointer to @fwnode, but if a secondary
4965  * firmware node of the device is present, preserve it.
4966  *
4967  * Valid fwnode cases are:
4968  *  - primary --> secondary --> -ENODEV
4969  *  - primary --> NULL
4970  *  - secondary --> -ENODEV
4971  *  - NULL
4972  */
4973 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4974 {
4975 	struct device *parent = dev->parent;
4976 	struct fwnode_handle *fn = dev->fwnode;
4977 
4978 	if (fwnode) {
4979 		if (fwnode_is_primary(fn))
4980 			fn = fn->secondary;
4981 
4982 		if (fn) {
4983 			WARN_ON(fwnode->secondary);
4984 			fwnode->secondary = fn;
4985 		}
4986 		dev->fwnode = fwnode;
4987 	} else {
4988 		if (fwnode_is_primary(fn)) {
4989 			dev->fwnode = fn->secondary;
4990 
4991 			/* Skip nullifying fn->secondary if the primary is shared */
4992 			if (parent && fn == parent->fwnode)
4993 				return;
4994 
4995 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4996 			fn->secondary = NULL;
4997 		} else {
4998 			dev->fwnode = NULL;
4999 		}
5000 	}
5001 }
5002 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5003 
5004 /**
5005  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5006  * @dev: Device to handle.
5007  * @fwnode: New secondary firmware node of the device.
5008  *
5009  * If a primary firmware node of the device is present, set its secondary
5010  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5011  * @fwnode.
5012  */
5013 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5014 {
5015 	if (fwnode)
5016 		fwnode->secondary = ERR_PTR(-ENODEV);
5017 
5018 	if (fwnode_is_primary(dev->fwnode))
5019 		dev->fwnode->secondary = fwnode;
5020 	else
5021 		dev->fwnode = fwnode;
5022 }
5023 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5024 
5025 /**
5026  * device_set_of_node_from_dev - reuse device-tree node of another device
5027  * @dev: device whose device-tree node is being set
5028  * @dev2: device whose device-tree node is being reused
5029  *
5030  * Takes another reference to the new device-tree node after first dropping
5031  * any reference held to the old node.
5032  */
5033 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5034 {
5035 	of_node_put(dev->of_node);
5036 	dev->of_node = of_node_get(dev2->of_node);
5037 	dev->of_node_reused = true;
5038 }
5039 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5040 
5041 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5042 {
5043 	dev->fwnode = fwnode;
5044 	dev->of_node = to_of_node(fwnode);
5045 }
5046 EXPORT_SYMBOL_GPL(device_set_node);
5047 
5048 int device_match_name(struct device *dev, const void *name)
5049 {
5050 	return sysfs_streq(dev_name(dev), name);
5051 }
5052 EXPORT_SYMBOL_GPL(device_match_name);
5053 
5054 int device_match_of_node(struct device *dev, const void *np)
5055 {
5056 	return dev->of_node == np;
5057 }
5058 EXPORT_SYMBOL_GPL(device_match_of_node);
5059 
5060 int device_match_fwnode(struct device *dev, const void *fwnode)
5061 {
5062 	return dev_fwnode(dev) == fwnode;
5063 }
5064 EXPORT_SYMBOL_GPL(device_match_fwnode);
5065 
5066 int device_match_devt(struct device *dev, const void *pdevt)
5067 {
5068 	return dev->devt == *(dev_t *)pdevt;
5069 }
5070 EXPORT_SYMBOL_GPL(device_match_devt);
5071 
5072 int device_match_acpi_dev(struct device *dev, const void *adev)
5073 {
5074 	return ACPI_COMPANION(dev) == adev;
5075 }
5076 EXPORT_SYMBOL(device_match_acpi_dev);
5077 
5078 int device_match_acpi_handle(struct device *dev, const void *handle)
5079 {
5080 	return ACPI_HANDLE(dev) == handle;
5081 }
5082 EXPORT_SYMBOL(device_match_acpi_handle);
5083 
5084 int device_match_any(struct device *dev, const void *unused)
5085 {
5086 	return 1;
5087 }
5088 EXPORT_SYMBOL_GPL(device_match_any);
5089