xref: /linux/drivers/base/core.c (revision 62a31d6e38bd0faef7c956b358d651f7bdc4ae0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 #ifdef CONFIG_SYSFS_DEPRECATED
40 #ifdef CONFIG_SYSFS_DEPRECATED_V2
41 long sysfs_deprecated = 1;
42 #else
43 long sysfs_deprecated = 0;
44 #endif
45 static int __init sysfs_deprecated_setup(char *arg)
46 {
47 	return kstrtol(arg, 10, &sysfs_deprecated);
48 }
49 early_param("sysfs.deprecated", sysfs_deprecated_setup);
50 #endif
51 
52 /* Device links support. */
53 static LIST_HEAD(deferred_sync);
54 static unsigned int defer_sync_state_count = 1;
55 static DEFINE_MUTEX(fwnode_link_lock);
56 static bool fw_devlink_is_permissive(void);
57 static void __fw_devlink_link_to_consumers(struct device *dev);
58 static bool fw_devlink_drv_reg_done;
59 static bool fw_devlink_best_effort;
60 
61 /**
62  * __fwnode_link_add - Create a link between two fwnode_handles.
63  * @con: Consumer end of the link.
64  * @sup: Supplier end of the link.
65  *
66  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
67  * represents the detail that the firmware lists @sup fwnode as supplying a
68  * resource to @con.
69  *
70  * The driver core will use the fwnode link to create a device link between the
71  * two device objects corresponding to @con and @sup when they are created. The
72  * driver core will automatically delete the fwnode link between @con and @sup
73  * after doing that.
74  *
75  * Attempts to create duplicate links between the same pair of fwnode handles
76  * are ignored and there is no reference counting.
77  */
78 static int __fwnode_link_add(struct fwnode_handle *con,
79 			     struct fwnode_handle *sup, u8 flags)
80 {
81 	struct fwnode_link *link;
82 
83 	list_for_each_entry(link, &sup->consumers, s_hook)
84 		if (link->consumer == con) {
85 			link->flags |= flags;
86 			return 0;
87 		}
88 
89 	link = kzalloc(sizeof(*link), GFP_KERNEL);
90 	if (!link)
91 		return -ENOMEM;
92 
93 	link->supplier = sup;
94 	INIT_LIST_HEAD(&link->s_hook);
95 	link->consumer = con;
96 	INIT_LIST_HEAD(&link->c_hook);
97 	link->flags = flags;
98 
99 	list_add(&link->s_hook, &sup->consumers);
100 	list_add(&link->c_hook, &con->suppliers);
101 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
102 		 con, sup);
103 
104 	return 0;
105 }
106 
107 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
108 {
109 	int ret;
110 
111 	mutex_lock(&fwnode_link_lock);
112 	ret = __fwnode_link_add(con, sup, 0);
113 	mutex_unlock(&fwnode_link_lock);
114 	return ret;
115 }
116 
117 /**
118  * __fwnode_link_del - Delete a link between two fwnode_handles.
119  * @link: the fwnode_link to be deleted
120  *
121  * The fwnode_link_lock needs to be held when this function is called.
122  */
123 static void __fwnode_link_del(struct fwnode_link *link)
124 {
125 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
126 		 link->consumer, link->supplier);
127 	list_del(&link->s_hook);
128 	list_del(&link->c_hook);
129 	kfree(link);
130 }
131 
132 /**
133  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
134  * @link: the fwnode_link to be marked
135  *
136  * The fwnode_link_lock needs to be held when this function is called.
137  */
138 static void __fwnode_link_cycle(struct fwnode_link *link)
139 {
140 	pr_debug("%pfwf: Relaxing link with %pfwf\n",
141 		 link->consumer, link->supplier);
142 	link->flags |= FWLINK_FLAG_CYCLE;
143 }
144 
145 /**
146  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
147  * @fwnode: fwnode whose supplier links need to be deleted
148  *
149  * Deletes all supplier links connecting directly to @fwnode.
150  */
151 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
152 {
153 	struct fwnode_link *link, *tmp;
154 
155 	mutex_lock(&fwnode_link_lock);
156 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
157 		__fwnode_link_del(link);
158 	mutex_unlock(&fwnode_link_lock);
159 }
160 
161 /**
162  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
163  * @fwnode: fwnode whose consumer links need to be deleted
164  *
165  * Deletes all consumer links connecting directly to @fwnode.
166  */
167 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
168 {
169 	struct fwnode_link *link, *tmp;
170 
171 	mutex_lock(&fwnode_link_lock);
172 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
173 		__fwnode_link_del(link);
174 	mutex_unlock(&fwnode_link_lock);
175 }
176 
177 /**
178  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
179  * @fwnode: fwnode whose links needs to be deleted
180  *
181  * Deletes all links connecting directly to a fwnode.
182  */
183 void fwnode_links_purge(struct fwnode_handle *fwnode)
184 {
185 	fwnode_links_purge_suppliers(fwnode);
186 	fwnode_links_purge_consumers(fwnode);
187 }
188 
189 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
190 {
191 	struct fwnode_handle *child;
192 
193 	/* Don't purge consumer links of an added child */
194 	if (fwnode->dev)
195 		return;
196 
197 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
198 	fwnode_links_purge_consumers(fwnode);
199 
200 	fwnode_for_each_available_child_node(fwnode, child)
201 		fw_devlink_purge_absent_suppliers(child);
202 }
203 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
204 
205 /**
206  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
207  * @from: move consumers away from this fwnode
208  * @to: move consumers to this fwnode
209  *
210  * Move all consumer links from @from fwnode to @to fwnode.
211  */
212 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
213 					  struct fwnode_handle *to)
214 {
215 	struct fwnode_link *link, *tmp;
216 
217 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
218 		__fwnode_link_add(link->consumer, to, link->flags);
219 		__fwnode_link_del(link);
220 	}
221 }
222 
223 /**
224  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
225  * @fwnode: fwnode from which to pick up dangling consumers
226  * @new_sup: fwnode of new supplier
227  *
228  * If the @fwnode has a corresponding struct device and the device supports
229  * probing (that is, added to a bus), then we want to let fw_devlink create
230  * MANAGED device links to this device, so leave @fwnode and its descendant's
231  * fwnode links alone.
232  *
233  * Otherwise, move its consumers to the new supplier @new_sup.
234  */
235 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
236 						   struct fwnode_handle *new_sup)
237 {
238 	struct fwnode_handle *child;
239 
240 	if (fwnode->dev && fwnode->dev->bus)
241 		return;
242 
243 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
244 	__fwnode_links_move_consumers(fwnode, new_sup);
245 
246 	fwnode_for_each_available_child_node(fwnode, child)
247 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
248 }
249 
250 static DEFINE_MUTEX(device_links_lock);
251 DEFINE_STATIC_SRCU(device_links_srcu);
252 
253 static inline void device_links_write_lock(void)
254 {
255 	mutex_lock(&device_links_lock);
256 }
257 
258 static inline void device_links_write_unlock(void)
259 {
260 	mutex_unlock(&device_links_lock);
261 }
262 
263 int device_links_read_lock(void) __acquires(&device_links_srcu)
264 {
265 	return srcu_read_lock(&device_links_srcu);
266 }
267 
268 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
269 {
270 	srcu_read_unlock(&device_links_srcu, idx);
271 }
272 
273 int device_links_read_lock_held(void)
274 {
275 	return srcu_read_lock_held(&device_links_srcu);
276 }
277 
278 static void device_link_synchronize_removal(void)
279 {
280 	synchronize_srcu(&device_links_srcu);
281 }
282 
283 static void device_link_remove_from_lists(struct device_link *link)
284 {
285 	list_del_rcu(&link->s_node);
286 	list_del_rcu(&link->c_node);
287 }
288 
289 static bool device_is_ancestor(struct device *dev, struct device *target)
290 {
291 	while (target->parent) {
292 		target = target->parent;
293 		if (dev == target)
294 			return true;
295 	}
296 	return false;
297 }
298 
299 static inline bool device_link_flag_is_sync_state_only(u32 flags)
300 {
301 	return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) ==
302 		(DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED);
303 }
304 
305 /**
306  * device_is_dependent - Check if one device depends on another one
307  * @dev: Device to check dependencies for.
308  * @target: Device to check against.
309  *
310  * Check if @target depends on @dev or any device dependent on it (its child or
311  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
312  */
313 int device_is_dependent(struct device *dev, void *target)
314 {
315 	struct device_link *link;
316 	int ret;
317 
318 	/*
319 	 * The "ancestors" check is needed to catch the case when the target
320 	 * device has not been completely initialized yet and it is still
321 	 * missing from the list of children of its parent device.
322 	 */
323 	if (dev == target || device_is_ancestor(dev, target))
324 		return 1;
325 
326 	ret = device_for_each_child(dev, target, device_is_dependent);
327 	if (ret)
328 		return ret;
329 
330 	list_for_each_entry(link, &dev->links.consumers, s_node) {
331 		if (device_link_flag_is_sync_state_only(link->flags))
332 			continue;
333 
334 		if (link->consumer == target)
335 			return 1;
336 
337 		ret = device_is_dependent(link->consumer, target);
338 		if (ret)
339 			break;
340 	}
341 	return ret;
342 }
343 
344 static void device_link_init_status(struct device_link *link,
345 				    struct device *consumer,
346 				    struct device *supplier)
347 {
348 	switch (supplier->links.status) {
349 	case DL_DEV_PROBING:
350 		switch (consumer->links.status) {
351 		case DL_DEV_PROBING:
352 			/*
353 			 * A consumer driver can create a link to a supplier
354 			 * that has not completed its probing yet as long as it
355 			 * knows that the supplier is already functional (for
356 			 * example, it has just acquired some resources from the
357 			 * supplier).
358 			 */
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		default:
362 			link->status = DL_STATE_DORMANT;
363 			break;
364 		}
365 		break;
366 	case DL_DEV_DRIVER_BOUND:
367 		switch (consumer->links.status) {
368 		case DL_DEV_PROBING:
369 			link->status = DL_STATE_CONSUMER_PROBE;
370 			break;
371 		case DL_DEV_DRIVER_BOUND:
372 			link->status = DL_STATE_ACTIVE;
373 			break;
374 		default:
375 			link->status = DL_STATE_AVAILABLE;
376 			break;
377 		}
378 		break;
379 	case DL_DEV_UNBINDING:
380 		link->status = DL_STATE_SUPPLIER_UNBIND;
381 		break;
382 	default:
383 		link->status = DL_STATE_DORMANT;
384 		break;
385 	}
386 }
387 
388 static int device_reorder_to_tail(struct device *dev, void *not_used)
389 {
390 	struct device_link *link;
391 
392 	/*
393 	 * Devices that have not been registered yet will be put to the ends
394 	 * of the lists during the registration, so skip them here.
395 	 */
396 	if (device_is_registered(dev))
397 		devices_kset_move_last(dev);
398 
399 	if (device_pm_initialized(dev))
400 		device_pm_move_last(dev);
401 
402 	device_for_each_child(dev, NULL, device_reorder_to_tail);
403 	list_for_each_entry(link, &dev->links.consumers, s_node) {
404 		if (device_link_flag_is_sync_state_only(link->flags))
405 			continue;
406 		device_reorder_to_tail(link->consumer, NULL);
407 	}
408 
409 	return 0;
410 }
411 
412 /**
413  * device_pm_move_to_tail - Move set of devices to the end of device lists
414  * @dev: Device to move
415  *
416  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
417  *
418  * It moves the @dev along with all of its children and all of its consumers
419  * to the ends of the device_kset and dpm_list, recursively.
420  */
421 void device_pm_move_to_tail(struct device *dev)
422 {
423 	int idx;
424 
425 	idx = device_links_read_lock();
426 	device_pm_lock();
427 	device_reorder_to_tail(dev, NULL);
428 	device_pm_unlock();
429 	device_links_read_unlock(idx);
430 }
431 
432 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
433 
434 static ssize_t status_show(struct device *dev,
435 			   struct device_attribute *attr, char *buf)
436 {
437 	const char *output;
438 
439 	switch (to_devlink(dev)->status) {
440 	case DL_STATE_NONE:
441 		output = "not tracked";
442 		break;
443 	case DL_STATE_DORMANT:
444 		output = "dormant";
445 		break;
446 	case DL_STATE_AVAILABLE:
447 		output = "available";
448 		break;
449 	case DL_STATE_CONSUMER_PROBE:
450 		output = "consumer probing";
451 		break;
452 	case DL_STATE_ACTIVE:
453 		output = "active";
454 		break;
455 	case DL_STATE_SUPPLIER_UNBIND:
456 		output = "supplier unbinding";
457 		break;
458 	default:
459 		output = "unknown";
460 		break;
461 	}
462 
463 	return sysfs_emit(buf, "%s\n", output);
464 }
465 static DEVICE_ATTR_RO(status);
466 
467 static ssize_t auto_remove_on_show(struct device *dev,
468 				   struct device_attribute *attr, char *buf)
469 {
470 	struct device_link *link = to_devlink(dev);
471 	const char *output;
472 
473 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
474 		output = "supplier unbind";
475 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
476 		output = "consumer unbind";
477 	else
478 		output = "never";
479 
480 	return sysfs_emit(buf, "%s\n", output);
481 }
482 static DEVICE_ATTR_RO(auto_remove_on);
483 
484 static ssize_t runtime_pm_show(struct device *dev,
485 			       struct device_attribute *attr, char *buf)
486 {
487 	struct device_link *link = to_devlink(dev);
488 
489 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
490 }
491 static DEVICE_ATTR_RO(runtime_pm);
492 
493 static ssize_t sync_state_only_show(struct device *dev,
494 				    struct device_attribute *attr, char *buf)
495 {
496 	struct device_link *link = to_devlink(dev);
497 
498 	return sysfs_emit(buf, "%d\n",
499 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
500 }
501 static DEVICE_ATTR_RO(sync_state_only);
502 
503 static struct attribute *devlink_attrs[] = {
504 	&dev_attr_status.attr,
505 	&dev_attr_auto_remove_on.attr,
506 	&dev_attr_runtime_pm.attr,
507 	&dev_attr_sync_state_only.attr,
508 	NULL,
509 };
510 ATTRIBUTE_GROUPS(devlink);
511 
512 static void device_link_release_fn(struct work_struct *work)
513 {
514 	struct device_link *link = container_of(work, struct device_link, rm_work);
515 
516 	/* Ensure that all references to the link object have been dropped. */
517 	device_link_synchronize_removal();
518 
519 	pm_runtime_release_supplier(link);
520 	/*
521 	 * If supplier_preactivated is set, the link has been dropped between
522 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
523 	 * in __driver_probe_device().  In that case, drop the supplier's
524 	 * PM-runtime usage counter to remove the reference taken by
525 	 * pm_runtime_get_suppliers().
526 	 */
527 	if (link->supplier_preactivated)
528 		pm_runtime_put_noidle(link->supplier);
529 
530 	pm_request_idle(link->supplier);
531 
532 	put_device(link->consumer);
533 	put_device(link->supplier);
534 	kfree(link);
535 }
536 
537 static void devlink_dev_release(struct device *dev)
538 {
539 	struct device_link *link = to_devlink(dev);
540 
541 	INIT_WORK(&link->rm_work, device_link_release_fn);
542 	/*
543 	 * It may take a while to complete this work because of the SRCU
544 	 * synchronization in device_link_release_fn() and if the consumer or
545 	 * supplier devices get deleted when it runs, so put it into the "long"
546 	 * workqueue.
547 	 */
548 	queue_work(system_long_wq, &link->rm_work);
549 }
550 
551 static struct class devlink_class = {
552 	.name = "devlink",
553 	.owner = THIS_MODULE,
554 	.dev_groups = devlink_groups,
555 	.dev_release = devlink_dev_release,
556 };
557 
558 static int devlink_add_symlinks(struct device *dev,
559 				struct class_interface *class_intf)
560 {
561 	int ret;
562 	size_t len;
563 	struct device_link *link = to_devlink(dev);
564 	struct device *sup = link->supplier;
565 	struct device *con = link->consumer;
566 	char *buf;
567 
568 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
569 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
570 	len += strlen(":");
571 	len += strlen("supplier:") + 1;
572 	buf = kzalloc(len, GFP_KERNEL);
573 	if (!buf)
574 		return -ENOMEM;
575 
576 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
577 	if (ret)
578 		goto out;
579 
580 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
581 	if (ret)
582 		goto err_con;
583 
584 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
585 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
586 	if (ret)
587 		goto err_con_dev;
588 
589 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
590 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
591 	if (ret)
592 		goto err_sup_dev;
593 
594 	goto out;
595 
596 err_sup_dev:
597 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
598 	sysfs_remove_link(&sup->kobj, buf);
599 err_con_dev:
600 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
601 err_con:
602 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
603 out:
604 	kfree(buf);
605 	return ret;
606 }
607 
608 static void devlink_remove_symlinks(struct device *dev,
609 				   struct class_interface *class_intf)
610 {
611 	struct device_link *link = to_devlink(dev);
612 	size_t len;
613 	struct device *sup = link->supplier;
614 	struct device *con = link->consumer;
615 	char *buf;
616 
617 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
618 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
619 
620 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
621 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
622 	len += strlen(":");
623 	len += strlen("supplier:") + 1;
624 	buf = kzalloc(len, GFP_KERNEL);
625 	if (!buf) {
626 		WARN(1, "Unable to properly free device link symlinks!\n");
627 		return;
628 	}
629 
630 	if (device_is_registered(con)) {
631 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
632 		sysfs_remove_link(&con->kobj, buf);
633 	}
634 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
635 	sysfs_remove_link(&sup->kobj, buf);
636 	kfree(buf);
637 }
638 
639 static struct class_interface devlink_class_intf = {
640 	.class = &devlink_class,
641 	.add_dev = devlink_add_symlinks,
642 	.remove_dev = devlink_remove_symlinks,
643 };
644 
645 static int __init devlink_class_init(void)
646 {
647 	int ret;
648 
649 	ret = class_register(&devlink_class);
650 	if (ret)
651 		return ret;
652 
653 	ret = class_interface_register(&devlink_class_intf);
654 	if (ret)
655 		class_unregister(&devlink_class);
656 
657 	return ret;
658 }
659 postcore_initcall(devlink_class_init);
660 
661 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
662 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
663 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
664 			       DL_FLAG_SYNC_STATE_ONLY | \
665 			       DL_FLAG_INFERRED | \
666 			       DL_FLAG_CYCLE)
667 
668 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
669 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
670 
671 /**
672  * device_link_add - Create a link between two devices.
673  * @consumer: Consumer end of the link.
674  * @supplier: Supplier end of the link.
675  * @flags: Link flags.
676  *
677  * The caller is responsible for the proper synchronization of the link creation
678  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
679  * runtime PM framework to take the link into account.  Second, if the
680  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
681  * be forced into the active meta state and reference-counted upon the creation
682  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
683  * ignored.
684  *
685  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
686  * expected to release the link returned by it directly with the help of either
687  * device_link_del() or device_link_remove().
688  *
689  * If that flag is not set, however, the caller of this function is handing the
690  * management of the link over to the driver core entirely and its return value
691  * can only be used to check whether or not the link is present.  In that case,
692  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
693  * flags can be used to indicate to the driver core when the link can be safely
694  * deleted.  Namely, setting one of them in @flags indicates to the driver core
695  * that the link is not going to be used (by the given caller of this function)
696  * after unbinding the consumer or supplier driver, respectively, from its
697  * device, so the link can be deleted at that point.  If none of them is set,
698  * the link will be maintained until one of the devices pointed to by it (either
699  * the consumer or the supplier) is unregistered.
700  *
701  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
702  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
703  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
704  * be used to request the driver core to automatically probe for a consumer
705  * driver after successfully binding a driver to the supplier device.
706  *
707  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
708  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
709  * the same time is invalid and will cause NULL to be returned upfront.
710  * However, if a device link between the given @consumer and @supplier pair
711  * exists already when this function is called for them, the existing link will
712  * be returned regardless of its current type and status (the link's flags may
713  * be modified then).  The caller of this function is then expected to treat
714  * the link as though it has just been created, so (in particular) if
715  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
716  * explicitly when not needed any more (as stated above).
717  *
718  * A side effect of the link creation is re-ordering of dpm_list and the
719  * devices_kset list by moving the consumer device and all devices depending
720  * on it to the ends of these lists (that does not happen to devices that have
721  * not been registered when this function is called).
722  *
723  * The supplier device is required to be registered when this function is called
724  * and NULL will be returned if that is not the case.  The consumer device need
725  * not be registered, however.
726  */
727 struct device_link *device_link_add(struct device *consumer,
728 				    struct device *supplier, u32 flags)
729 {
730 	struct device_link *link;
731 
732 	if (!consumer || !supplier || consumer == supplier ||
733 	    flags & ~DL_ADD_VALID_FLAGS ||
734 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
735 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
736 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
737 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
738 		return NULL;
739 
740 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
741 		if (pm_runtime_get_sync(supplier) < 0) {
742 			pm_runtime_put_noidle(supplier);
743 			return NULL;
744 		}
745 	}
746 
747 	if (!(flags & DL_FLAG_STATELESS))
748 		flags |= DL_FLAG_MANAGED;
749 
750 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
751 	    !device_link_flag_is_sync_state_only(flags))
752 		return NULL;
753 
754 	device_links_write_lock();
755 	device_pm_lock();
756 
757 	/*
758 	 * If the supplier has not been fully registered yet or there is a
759 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
760 	 * the supplier already in the graph, return NULL. If the link is a
761 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
762 	 * because it only affects sync_state() callbacks.
763 	 */
764 	if (!device_pm_initialized(supplier)
765 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
766 		  device_is_dependent(consumer, supplier))) {
767 		link = NULL;
768 		goto out;
769 	}
770 
771 	/*
772 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
773 	 * So, only create it if the consumer hasn't probed yet.
774 	 */
775 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
776 	    consumer->links.status != DL_DEV_NO_DRIVER &&
777 	    consumer->links.status != DL_DEV_PROBING) {
778 		link = NULL;
779 		goto out;
780 	}
781 
782 	/*
783 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
784 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
785 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
786 	 */
787 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
788 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
789 
790 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
791 		if (link->consumer != consumer)
792 			continue;
793 
794 		if (link->flags & DL_FLAG_INFERRED &&
795 		    !(flags & DL_FLAG_INFERRED))
796 			link->flags &= ~DL_FLAG_INFERRED;
797 
798 		if (flags & DL_FLAG_PM_RUNTIME) {
799 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
800 				pm_runtime_new_link(consumer);
801 				link->flags |= DL_FLAG_PM_RUNTIME;
802 			}
803 			if (flags & DL_FLAG_RPM_ACTIVE)
804 				refcount_inc(&link->rpm_active);
805 		}
806 
807 		if (flags & DL_FLAG_STATELESS) {
808 			kref_get(&link->kref);
809 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
810 			    !(link->flags & DL_FLAG_STATELESS)) {
811 				link->flags |= DL_FLAG_STATELESS;
812 				goto reorder;
813 			} else {
814 				link->flags |= DL_FLAG_STATELESS;
815 				goto out;
816 			}
817 		}
818 
819 		/*
820 		 * If the life time of the link following from the new flags is
821 		 * longer than indicated by the flags of the existing link,
822 		 * update the existing link to stay around longer.
823 		 */
824 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
825 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
826 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
827 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
828 			}
829 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
830 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
831 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
832 		}
833 		if (!(link->flags & DL_FLAG_MANAGED)) {
834 			kref_get(&link->kref);
835 			link->flags |= DL_FLAG_MANAGED;
836 			device_link_init_status(link, consumer, supplier);
837 		}
838 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
839 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
840 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
841 			goto reorder;
842 		}
843 
844 		goto out;
845 	}
846 
847 	link = kzalloc(sizeof(*link), GFP_KERNEL);
848 	if (!link)
849 		goto out;
850 
851 	refcount_set(&link->rpm_active, 1);
852 
853 	get_device(supplier);
854 	link->supplier = supplier;
855 	INIT_LIST_HEAD(&link->s_node);
856 	get_device(consumer);
857 	link->consumer = consumer;
858 	INIT_LIST_HEAD(&link->c_node);
859 	link->flags = flags;
860 	kref_init(&link->kref);
861 
862 	link->link_dev.class = &devlink_class;
863 	device_set_pm_not_required(&link->link_dev);
864 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
865 		     dev_bus_name(supplier), dev_name(supplier),
866 		     dev_bus_name(consumer), dev_name(consumer));
867 	if (device_register(&link->link_dev)) {
868 		put_device(&link->link_dev);
869 		link = NULL;
870 		goto out;
871 	}
872 
873 	if (flags & DL_FLAG_PM_RUNTIME) {
874 		if (flags & DL_FLAG_RPM_ACTIVE)
875 			refcount_inc(&link->rpm_active);
876 
877 		pm_runtime_new_link(consumer);
878 	}
879 
880 	/* Determine the initial link state. */
881 	if (flags & DL_FLAG_STATELESS)
882 		link->status = DL_STATE_NONE;
883 	else
884 		device_link_init_status(link, consumer, supplier);
885 
886 	/*
887 	 * Some callers expect the link creation during consumer driver probe to
888 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
889 	 */
890 	if (link->status == DL_STATE_CONSUMER_PROBE &&
891 	    flags & DL_FLAG_PM_RUNTIME)
892 		pm_runtime_resume(supplier);
893 
894 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
895 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
896 
897 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
898 		dev_dbg(consumer,
899 			"Linked as a sync state only consumer to %s\n",
900 			dev_name(supplier));
901 		goto out;
902 	}
903 
904 reorder:
905 	/*
906 	 * Move the consumer and all of the devices depending on it to the end
907 	 * of dpm_list and the devices_kset list.
908 	 *
909 	 * It is necessary to hold dpm_list locked throughout all that or else
910 	 * we may end up suspending with a wrong ordering of it.
911 	 */
912 	device_reorder_to_tail(consumer, NULL);
913 
914 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
915 
916 out:
917 	device_pm_unlock();
918 	device_links_write_unlock();
919 
920 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
921 		pm_runtime_put(supplier);
922 
923 	return link;
924 }
925 EXPORT_SYMBOL_GPL(device_link_add);
926 
927 static void __device_link_del(struct kref *kref)
928 {
929 	struct device_link *link = container_of(kref, struct device_link, kref);
930 
931 	dev_dbg(link->consumer, "Dropping the link to %s\n",
932 		dev_name(link->supplier));
933 
934 	pm_runtime_drop_link(link);
935 
936 	device_link_remove_from_lists(link);
937 	device_unregister(&link->link_dev);
938 }
939 
940 static void device_link_put_kref(struct device_link *link)
941 {
942 	if (link->flags & DL_FLAG_STATELESS)
943 		kref_put(&link->kref, __device_link_del);
944 	else if (!device_is_registered(link->consumer))
945 		__device_link_del(&link->kref);
946 	else
947 		WARN(1, "Unable to drop a managed device link reference\n");
948 }
949 
950 /**
951  * device_link_del - Delete a stateless link between two devices.
952  * @link: Device link to delete.
953  *
954  * The caller must ensure proper synchronization of this function with runtime
955  * PM.  If the link was added multiple times, it needs to be deleted as often.
956  * Care is required for hotplugged devices:  Their links are purged on removal
957  * and calling device_link_del() is then no longer allowed.
958  */
959 void device_link_del(struct device_link *link)
960 {
961 	device_links_write_lock();
962 	device_link_put_kref(link);
963 	device_links_write_unlock();
964 }
965 EXPORT_SYMBOL_GPL(device_link_del);
966 
967 /**
968  * device_link_remove - Delete a stateless link between two devices.
969  * @consumer: Consumer end of the link.
970  * @supplier: Supplier end of the link.
971  *
972  * The caller must ensure proper synchronization of this function with runtime
973  * PM.
974  */
975 void device_link_remove(void *consumer, struct device *supplier)
976 {
977 	struct device_link *link;
978 
979 	if (WARN_ON(consumer == supplier))
980 		return;
981 
982 	device_links_write_lock();
983 
984 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
985 		if (link->consumer == consumer) {
986 			device_link_put_kref(link);
987 			break;
988 		}
989 	}
990 
991 	device_links_write_unlock();
992 }
993 EXPORT_SYMBOL_GPL(device_link_remove);
994 
995 static void device_links_missing_supplier(struct device *dev)
996 {
997 	struct device_link *link;
998 
999 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1000 		if (link->status != DL_STATE_CONSUMER_PROBE)
1001 			continue;
1002 
1003 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1004 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1005 		} else {
1006 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1007 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1008 		}
1009 	}
1010 }
1011 
1012 static bool dev_is_best_effort(struct device *dev)
1013 {
1014 	return (fw_devlink_best_effort && dev->can_match) ||
1015 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1016 }
1017 
1018 static struct fwnode_handle *fwnode_links_check_suppliers(
1019 						struct fwnode_handle *fwnode)
1020 {
1021 	struct fwnode_link *link;
1022 
1023 	if (!fwnode || fw_devlink_is_permissive())
1024 		return NULL;
1025 
1026 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1027 		if (!(link->flags & FWLINK_FLAG_CYCLE))
1028 			return link->supplier;
1029 
1030 	return NULL;
1031 }
1032 
1033 /**
1034  * device_links_check_suppliers - Check presence of supplier drivers.
1035  * @dev: Consumer device.
1036  *
1037  * Check links from this device to any suppliers.  Walk the list of the device's
1038  * links to suppliers and see if all of them are available.  If not, simply
1039  * return -EPROBE_DEFER.
1040  *
1041  * We need to guarantee that the supplier will not go away after the check has
1042  * been positive here.  It only can go away in __device_release_driver() and
1043  * that function  checks the device's links to consumers.  This means we need to
1044  * mark the link as "consumer probe in progress" to make the supplier removal
1045  * wait for us to complete (or bad things may happen).
1046  *
1047  * Links without the DL_FLAG_MANAGED flag set are ignored.
1048  */
1049 int device_links_check_suppliers(struct device *dev)
1050 {
1051 	struct device_link *link;
1052 	int ret = 0, fwnode_ret = 0;
1053 	struct fwnode_handle *sup_fw;
1054 
1055 	/*
1056 	 * Device waiting for supplier to become available is not allowed to
1057 	 * probe.
1058 	 */
1059 	mutex_lock(&fwnode_link_lock);
1060 	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1061 	if (sup_fw) {
1062 		if (!dev_is_best_effort(dev)) {
1063 			fwnode_ret = -EPROBE_DEFER;
1064 			dev_err_probe(dev, -EPROBE_DEFER,
1065 				    "wait for supplier %pfwf\n", sup_fw);
1066 		} else {
1067 			fwnode_ret = -EAGAIN;
1068 		}
1069 	}
1070 	mutex_unlock(&fwnode_link_lock);
1071 	if (fwnode_ret == -EPROBE_DEFER)
1072 		return fwnode_ret;
1073 
1074 	device_links_write_lock();
1075 
1076 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1077 		if (!(link->flags & DL_FLAG_MANAGED))
1078 			continue;
1079 
1080 		if (link->status != DL_STATE_AVAILABLE &&
1081 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1082 
1083 			if (dev_is_best_effort(dev) &&
1084 			    link->flags & DL_FLAG_INFERRED &&
1085 			    !link->supplier->can_match) {
1086 				ret = -EAGAIN;
1087 				continue;
1088 			}
1089 
1090 			device_links_missing_supplier(dev);
1091 			dev_err_probe(dev, -EPROBE_DEFER,
1092 				      "supplier %s not ready\n",
1093 				      dev_name(link->supplier));
1094 			ret = -EPROBE_DEFER;
1095 			break;
1096 		}
1097 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1098 	}
1099 	dev->links.status = DL_DEV_PROBING;
1100 
1101 	device_links_write_unlock();
1102 
1103 	return ret ? ret : fwnode_ret;
1104 }
1105 
1106 /**
1107  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1108  * @dev: Device to call sync_state() on
1109  * @list: List head to queue the @dev on
1110  *
1111  * Queues a device for a sync_state() callback when the device links write lock
1112  * isn't held. This allows the sync_state() execution flow to use device links
1113  * APIs.  The caller must ensure this function is called with
1114  * device_links_write_lock() held.
1115  *
1116  * This function does a get_device() to make sure the device is not freed while
1117  * on this list.
1118  *
1119  * So the caller must also ensure that device_links_flush_sync_list() is called
1120  * as soon as the caller releases device_links_write_lock().  This is necessary
1121  * to make sure the sync_state() is called in a timely fashion and the
1122  * put_device() is called on this device.
1123  */
1124 static void __device_links_queue_sync_state(struct device *dev,
1125 					    struct list_head *list)
1126 {
1127 	struct device_link *link;
1128 
1129 	if (!dev_has_sync_state(dev))
1130 		return;
1131 	if (dev->state_synced)
1132 		return;
1133 
1134 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1135 		if (!(link->flags & DL_FLAG_MANAGED))
1136 			continue;
1137 		if (link->status != DL_STATE_ACTIVE)
1138 			return;
1139 	}
1140 
1141 	/*
1142 	 * Set the flag here to avoid adding the same device to a list more
1143 	 * than once. This can happen if new consumers get added to the device
1144 	 * and probed before the list is flushed.
1145 	 */
1146 	dev->state_synced = true;
1147 
1148 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1149 		return;
1150 
1151 	get_device(dev);
1152 	list_add_tail(&dev->links.defer_sync, list);
1153 }
1154 
1155 /**
1156  * device_links_flush_sync_list - Call sync_state() on a list of devices
1157  * @list: List of devices to call sync_state() on
1158  * @dont_lock_dev: Device for which lock is already held by the caller
1159  *
1160  * Calls sync_state() on all the devices that have been queued for it. This
1161  * function is used in conjunction with __device_links_queue_sync_state(). The
1162  * @dont_lock_dev parameter is useful when this function is called from a
1163  * context where a device lock is already held.
1164  */
1165 static void device_links_flush_sync_list(struct list_head *list,
1166 					 struct device *dont_lock_dev)
1167 {
1168 	struct device *dev, *tmp;
1169 
1170 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1171 		list_del_init(&dev->links.defer_sync);
1172 
1173 		if (dev != dont_lock_dev)
1174 			device_lock(dev);
1175 
1176 		if (dev->bus->sync_state)
1177 			dev->bus->sync_state(dev);
1178 		else if (dev->driver && dev->driver->sync_state)
1179 			dev->driver->sync_state(dev);
1180 
1181 		if (dev != dont_lock_dev)
1182 			device_unlock(dev);
1183 
1184 		put_device(dev);
1185 	}
1186 }
1187 
1188 void device_links_supplier_sync_state_pause(void)
1189 {
1190 	device_links_write_lock();
1191 	defer_sync_state_count++;
1192 	device_links_write_unlock();
1193 }
1194 
1195 void device_links_supplier_sync_state_resume(void)
1196 {
1197 	struct device *dev, *tmp;
1198 	LIST_HEAD(sync_list);
1199 
1200 	device_links_write_lock();
1201 	if (!defer_sync_state_count) {
1202 		WARN(true, "Unmatched sync_state pause/resume!");
1203 		goto out;
1204 	}
1205 	defer_sync_state_count--;
1206 	if (defer_sync_state_count)
1207 		goto out;
1208 
1209 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1210 		/*
1211 		 * Delete from deferred_sync list before queuing it to
1212 		 * sync_list because defer_sync is used for both lists.
1213 		 */
1214 		list_del_init(&dev->links.defer_sync);
1215 		__device_links_queue_sync_state(dev, &sync_list);
1216 	}
1217 out:
1218 	device_links_write_unlock();
1219 
1220 	device_links_flush_sync_list(&sync_list, NULL);
1221 }
1222 
1223 static int sync_state_resume_initcall(void)
1224 {
1225 	device_links_supplier_sync_state_resume();
1226 	return 0;
1227 }
1228 late_initcall(sync_state_resume_initcall);
1229 
1230 static void __device_links_supplier_defer_sync(struct device *sup)
1231 {
1232 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1233 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1234 }
1235 
1236 static void device_link_drop_managed(struct device_link *link)
1237 {
1238 	link->flags &= ~DL_FLAG_MANAGED;
1239 	WRITE_ONCE(link->status, DL_STATE_NONE);
1240 	kref_put(&link->kref, __device_link_del);
1241 }
1242 
1243 static ssize_t waiting_for_supplier_show(struct device *dev,
1244 					 struct device_attribute *attr,
1245 					 char *buf)
1246 {
1247 	bool val;
1248 
1249 	device_lock(dev);
1250 	mutex_lock(&fwnode_link_lock);
1251 	val = !!fwnode_links_check_suppliers(dev->fwnode);
1252 	mutex_unlock(&fwnode_link_lock);
1253 	device_unlock(dev);
1254 	return sysfs_emit(buf, "%u\n", val);
1255 }
1256 static DEVICE_ATTR_RO(waiting_for_supplier);
1257 
1258 /**
1259  * device_links_force_bind - Prepares device to be force bound
1260  * @dev: Consumer device.
1261  *
1262  * device_bind_driver() force binds a device to a driver without calling any
1263  * driver probe functions. So the consumer really isn't going to wait for any
1264  * supplier before it's bound to the driver. We still want the device link
1265  * states to be sensible when this happens.
1266  *
1267  * In preparation for device_bind_driver(), this function goes through each
1268  * supplier device links and checks if the supplier is bound. If it is, then
1269  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1270  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1271  */
1272 void device_links_force_bind(struct device *dev)
1273 {
1274 	struct device_link *link, *ln;
1275 
1276 	device_links_write_lock();
1277 
1278 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1279 		if (!(link->flags & DL_FLAG_MANAGED))
1280 			continue;
1281 
1282 		if (link->status != DL_STATE_AVAILABLE) {
1283 			device_link_drop_managed(link);
1284 			continue;
1285 		}
1286 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1287 	}
1288 	dev->links.status = DL_DEV_PROBING;
1289 
1290 	device_links_write_unlock();
1291 }
1292 
1293 /**
1294  * device_links_driver_bound - Update device links after probing its driver.
1295  * @dev: Device to update the links for.
1296  *
1297  * The probe has been successful, so update links from this device to any
1298  * consumers by changing their status to "available".
1299  *
1300  * Also change the status of @dev's links to suppliers to "active".
1301  *
1302  * Links without the DL_FLAG_MANAGED flag set are ignored.
1303  */
1304 void device_links_driver_bound(struct device *dev)
1305 {
1306 	struct device_link *link, *ln;
1307 	LIST_HEAD(sync_list);
1308 
1309 	/*
1310 	 * If a device binds successfully, it's expected to have created all
1311 	 * the device links it needs to or make new device links as it needs
1312 	 * them. So, fw_devlink no longer needs to create device links to any
1313 	 * of the device's suppliers.
1314 	 *
1315 	 * Also, if a child firmware node of this bound device is not added as a
1316 	 * device by now, assume it is never going to be added. Make this bound
1317 	 * device the fallback supplier to the dangling consumers of the child
1318 	 * firmware node because this bound device is probably implementing the
1319 	 * child firmware node functionality and we don't want the dangling
1320 	 * consumers to defer probe indefinitely waiting for a device for the
1321 	 * child firmware node.
1322 	 */
1323 	if (dev->fwnode && dev->fwnode->dev == dev) {
1324 		struct fwnode_handle *child;
1325 		fwnode_links_purge_suppliers(dev->fwnode);
1326 		mutex_lock(&fwnode_link_lock);
1327 		fwnode_for_each_available_child_node(dev->fwnode, child)
1328 			__fw_devlink_pickup_dangling_consumers(child,
1329 							       dev->fwnode);
1330 		__fw_devlink_link_to_consumers(dev);
1331 		mutex_unlock(&fwnode_link_lock);
1332 	}
1333 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1334 
1335 	device_links_write_lock();
1336 
1337 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 		if (!(link->flags & DL_FLAG_MANAGED))
1339 			continue;
1340 
1341 		/*
1342 		 * Links created during consumer probe may be in the "consumer
1343 		 * probe" state to start with if the supplier is still probing
1344 		 * when they are created and they may become "active" if the
1345 		 * consumer probe returns first.  Skip them here.
1346 		 */
1347 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1348 		    link->status == DL_STATE_ACTIVE)
1349 			continue;
1350 
1351 		WARN_ON(link->status != DL_STATE_DORMANT);
1352 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1353 
1354 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1355 			driver_deferred_probe_add(link->consumer);
1356 	}
1357 
1358 	if (defer_sync_state_count)
1359 		__device_links_supplier_defer_sync(dev);
1360 	else
1361 		__device_links_queue_sync_state(dev, &sync_list);
1362 
1363 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1364 		struct device *supplier;
1365 
1366 		if (!(link->flags & DL_FLAG_MANAGED))
1367 			continue;
1368 
1369 		supplier = link->supplier;
1370 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1371 			/*
1372 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1373 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1374 			 * save to drop the managed link completely.
1375 			 */
1376 			device_link_drop_managed(link);
1377 		} else if (dev_is_best_effort(dev) &&
1378 			   link->flags & DL_FLAG_INFERRED &&
1379 			   link->status != DL_STATE_CONSUMER_PROBE &&
1380 			   !link->supplier->can_match) {
1381 			/*
1382 			 * When dev_is_best_effort() is true, we ignore device
1383 			 * links to suppliers that don't have a driver.  If the
1384 			 * consumer device still managed to probe, there's no
1385 			 * point in maintaining a device link in a weird state
1386 			 * (consumer probed before supplier). So delete it.
1387 			 */
1388 			device_link_drop_managed(link);
1389 		} else {
1390 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1391 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1392 		}
1393 
1394 		/*
1395 		 * This needs to be done even for the deleted
1396 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1397 		 * device link that was preventing the supplier from getting a
1398 		 * sync_state() call.
1399 		 */
1400 		if (defer_sync_state_count)
1401 			__device_links_supplier_defer_sync(supplier);
1402 		else
1403 			__device_links_queue_sync_state(supplier, &sync_list);
1404 	}
1405 
1406 	dev->links.status = DL_DEV_DRIVER_BOUND;
1407 
1408 	device_links_write_unlock();
1409 
1410 	device_links_flush_sync_list(&sync_list, dev);
1411 }
1412 
1413 /**
1414  * __device_links_no_driver - Update links of a device without a driver.
1415  * @dev: Device without a drvier.
1416  *
1417  * Delete all non-persistent links from this device to any suppliers.
1418  *
1419  * Persistent links stay around, but their status is changed to "available",
1420  * unless they already are in the "supplier unbind in progress" state in which
1421  * case they need not be updated.
1422  *
1423  * Links without the DL_FLAG_MANAGED flag set are ignored.
1424  */
1425 static void __device_links_no_driver(struct device *dev)
1426 {
1427 	struct device_link *link, *ln;
1428 
1429 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1430 		if (!(link->flags & DL_FLAG_MANAGED))
1431 			continue;
1432 
1433 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1434 			device_link_drop_managed(link);
1435 			continue;
1436 		}
1437 
1438 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1439 		    link->status != DL_STATE_ACTIVE)
1440 			continue;
1441 
1442 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1443 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1444 		} else {
1445 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1446 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1447 		}
1448 	}
1449 
1450 	dev->links.status = DL_DEV_NO_DRIVER;
1451 }
1452 
1453 /**
1454  * device_links_no_driver - Update links after failing driver probe.
1455  * @dev: Device whose driver has just failed to probe.
1456  *
1457  * Clean up leftover links to consumers for @dev and invoke
1458  * %__device_links_no_driver() to update links to suppliers for it as
1459  * appropriate.
1460  *
1461  * Links without the DL_FLAG_MANAGED flag set are ignored.
1462  */
1463 void device_links_no_driver(struct device *dev)
1464 {
1465 	struct device_link *link;
1466 
1467 	device_links_write_lock();
1468 
1469 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1470 		if (!(link->flags & DL_FLAG_MANAGED))
1471 			continue;
1472 
1473 		/*
1474 		 * The probe has failed, so if the status of the link is
1475 		 * "consumer probe" or "active", it must have been added by
1476 		 * a probing consumer while this device was still probing.
1477 		 * Change its state to "dormant", as it represents a valid
1478 		 * relationship, but it is not functionally meaningful.
1479 		 */
1480 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1481 		    link->status == DL_STATE_ACTIVE)
1482 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1483 	}
1484 
1485 	__device_links_no_driver(dev);
1486 
1487 	device_links_write_unlock();
1488 }
1489 
1490 /**
1491  * device_links_driver_cleanup - Update links after driver removal.
1492  * @dev: Device whose driver has just gone away.
1493  *
1494  * Update links to consumers for @dev by changing their status to "dormant" and
1495  * invoke %__device_links_no_driver() to update links to suppliers for it as
1496  * appropriate.
1497  *
1498  * Links without the DL_FLAG_MANAGED flag set are ignored.
1499  */
1500 void device_links_driver_cleanup(struct device *dev)
1501 {
1502 	struct device_link *link, *ln;
1503 
1504 	device_links_write_lock();
1505 
1506 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1507 		if (!(link->flags & DL_FLAG_MANAGED))
1508 			continue;
1509 
1510 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1511 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1512 
1513 		/*
1514 		 * autoremove the links between this @dev and its consumer
1515 		 * devices that are not active, i.e. where the link state
1516 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1517 		 */
1518 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1519 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1520 			device_link_drop_managed(link);
1521 
1522 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1523 	}
1524 
1525 	list_del_init(&dev->links.defer_sync);
1526 	__device_links_no_driver(dev);
1527 
1528 	device_links_write_unlock();
1529 }
1530 
1531 /**
1532  * device_links_busy - Check if there are any busy links to consumers.
1533  * @dev: Device to check.
1534  *
1535  * Check each consumer of the device and return 'true' if its link's status
1536  * is one of "consumer probe" or "active" (meaning that the given consumer is
1537  * probing right now or its driver is present).  Otherwise, change the link
1538  * state to "supplier unbind" to prevent the consumer from being probed
1539  * successfully going forward.
1540  *
1541  * Return 'false' if there are no probing or active consumers.
1542  *
1543  * Links without the DL_FLAG_MANAGED flag set are ignored.
1544  */
1545 bool device_links_busy(struct device *dev)
1546 {
1547 	struct device_link *link;
1548 	bool ret = false;
1549 
1550 	device_links_write_lock();
1551 
1552 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1553 		if (!(link->flags & DL_FLAG_MANAGED))
1554 			continue;
1555 
1556 		if (link->status == DL_STATE_CONSUMER_PROBE
1557 		    || link->status == DL_STATE_ACTIVE) {
1558 			ret = true;
1559 			break;
1560 		}
1561 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1562 	}
1563 
1564 	dev->links.status = DL_DEV_UNBINDING;
1565 
1566 	device_links_write_unlock();
1567 	return ret;
1568 }
1569 
1570 /**
1571  * device_links_unbind_consumers - Force unbind consumers of the given device.
1572  * @dev: Device to unbind the consumers of.
1573  *
1574  * Walk the list of links to consumers for @dev and if any of them is in the
1575  * "consumer probe" state, wait for all device probes in progress to complete
1576  * and start over.
1577  *
1578  * If that's not the case, change the status of the link to "supplier unbind"
1579  * and check if the link was in the "active" state.  If so, force the consumer
1580  * driver to unbind and start over (the consumer will not re-probe as we have
1581  * changed the state of the link already).
1582  *
1583  * Links without the DL_FLAG_MANAGED flag set are ignored.
1584  */
1585 void device_links_unbind_consumers(struct device *dev)
1586 {
1587 	struct device_link *link;
1588 
1589  start:
1590 	device_links_write_lock();
1591 
1592 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1593 		enum device_link_state status;
1594 
1595 		if (!(link->flags & DL_FLAG_MANAGED) ||
1596 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1597 			continue;
1598 
1599 		status = link->status;
1600 		if (status == DL_STATE_CONSUMER_PROBE) {
1601 			device_links_write_unlock();
1602 
1603 			wait_for_device_probe();
1604 			goto start;
1605 		}
1606 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1607 		if (status == DL_STATE_ACTIVE) {
1608 			struct device *consumer = link->consumer;
1609 
1610 			get_device(consumer);
1611 
1612 			device_links_write_unlock();
1613 
1614 			device_release_driver_internal(consumer, NULL,
1615 						       consumer->parent);
1616 			put_device(consumer);
1617 			goto start;
1618 		}
1619 	}
1620 
1621 	device_links_write_unlock();
1622 }
1623 
1624 /**
1625  * device_links_purge - Delete existing links to other devices.
1626  * @dev: Target device.
1627  */
1628 static void device_links_purge(struct device *dev)
1629 {
1630 	struct device_link *link, *ln;
1631 
1632 	if (dev->class == &devlink_class)
1633 		return;
1634 
1635 	/*
1636 	 * Delete all of the remaining links from this device to any other
1637 	 * devices (either consumers or suppliers).
1638 	 */
1639 	device_links_write_lock();
1640 
1641 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1642 		WARN_ON(link->status == DL_STATE_ACTIVE);
1643 		__device_link_del(&link->kref);
1644 	}
1645 
1646 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1647 		WARN_ON(link->status != DL_STATE_DORMANT &&
1648 			link->status != DL_STATE_NONE);
1649 		__device_link_del(&link->kref);
1650 	}
1651 
1652 	device_links_write_unlock();
1653 }
1654 
1655 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1656 					 DL_FLAG_SYNC_STATE_ONLY)
1657 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1658 					 DL_FLAG_AUTOPROBE_CONSUMER)
1659 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1660 					 DL_FLAG_PM_RUNTIME)
1661 
1662 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1663 static int __init fw_devlink_setup(char *arg)
1664 {
1665 	if (!arg)
1666 		return -EINVAL;
1667 
1668 	if (strcmp(arg, "off") == 0) {
1669 		fw_devlink_flags = 0;
1670 	} else if (strcmp(arg, "permissive") == 0) {
1671 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1672 	} else if (strcmp(arg, "on") == 0) {
1673 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1674 	} else if (strcmp(arg, "rpm") == 0) {
1675 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1676 	}
1677 	return 0;
1678 }
1679 early_param("fw_devlink", fw_devlink_setup);
1680 
1681 static bool fw_devlink_strict;
1682 static int __init fw_devlink_strict_setup(char *arg)
1683 {
1684 	return kstrtobool(arg, &fw_devlink_strict);
1685 }
1686 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1687 
1688 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1689 {
1690 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1691 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1692 
1693 	return fw_devlink_flags;
1694 }
1695 
1696 static bool fw_devlink_is_permissive(void)
1697 {
1698 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1699 }
1700 
1701 bool fw_devlink_is_strict(void)
1702 {
1703 	return fw_devlink_strict && !fw_devlink_is_permissive();
1704 }
1705 
1706 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1707 {
1708 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1709 		return;
1710 
1711 	fwnode_call_int_op(fwnode, add_links);
1712 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1713 }
1714 
1715 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1716 {
1717 	struct fwnode_handle *child = NULL;
1718 
1719 	fw_devlink_parse_fwnode(fwnode);
1720 
1721 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1722 		fw_devlink_parse_fwtree(child);
1723 }
1724 
1725 static void fw_devlink_relax_link(struct device_link *link)
1726 {
1727 	if (!(link->flags & DL_FLAG_INFERRED))
1728 		return;
1729 
1730 	if (device_link_flag_is_sync_state_only(link->flags))
1731 		return;
1732 
1733 	pm_runtime_drop_link(link);
1734 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1735 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1736 		dev_name(link->supplier));
1737 }
1738 
1739 static int fw_devlink_no_driver(struct device *dev, void *data)
1740 {
1741 	struct device_link *link = to_devlink(dev);
1742 
1743 	if (!link->supplier->can_match)
1744 		fw_devlink_relax_link(link);
1745 
1746 	return 0;
1747 }
1748 
1749 void fw_devlink_drivers_done(void)
1750 {
1751 	fw_devlink_drv_reg_done = true;
1752 	device_links_write_lock();
1753 	class_for_each_device(&devlink_class, NULL, NULL,
1754 			      fw_devlink_no_driver);
1755 	device_links_write_unlock();
1756 }
1757 
1758 /**
1759  * wait_for_init_devices_probe - Try to probe any device needed for init
1760  *
1761  * Some devices might need to be probed and bound successfully before the kernel
1762  * boot sequence can finish and move on to init/userspace. For example, a
1763  * network interface might need to be bound to be able to mount a NFS rootfs.
1764  *
1765  * With fw_devlink=on by default, some of these devices might be blocked from
1766  * probing because they are waiting on a optional supplier that doesn't have a
1767  * driver. While fw_devlink will eventually identify such devices and unblock
1768  * the probing automatically, it might be too late by the time it unblocks the
1769  * probing of devices. For example, the IP4 autoconfig might timeout before
1770  * fw_devlink unblocks probing of the network interface.
1771  *
1772  * This function is available to temporarily try and probe all devices that have
1773  * a driver even if some of their suppliers haven't been added or don't have
1774  * drivers.
1775  *
1776  * The drivers can then decide which of the suppliers are optional vs mandatory
1777  * and probe the device if possible. By the time this function returns, all such
1778  * "best effort" probes are guaranteed to be completed. If a device successfully
1779  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1780  * device where the supplier hasn't yet probed successfully because they have to
1781  * be optional dependencies.
1782  *
1783  * Any devices that didn't successfully probe go back to being treated as if
1784  * this function was never called.
1785  *
1786  * This also means that some devices that aren't needed for init and could have
1787  * waited for their optional supplier to probe (when the supplier's module is
1788  * loaded later on) would end up probing prematurely with limited functionality.
1789  * So call this function only when boot would fail without it.
1790  */
1791 void __init wait_for_init_devices_probe(void)
1792 {
1793 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1794 		return;
1795 
1796 	/*
1797 	 * Wait for all ongoing probes to finish so that the "best effort" is
1798 	 * only applied to devices that can't probe otherwise.
1799 	 */
1800 	wait_for_device_probe();
1801 
1802 	pr_info("Trying to probe devices needed for running init ...\n");
1803 	fw_devlink_best_effort = true;
1804 	driver_deferred_probe_trigger();
1805 
1806 	/*
1807 	 * Wait for all "best effort" probes to finish before going back to
1808 	 * normal enforcement.
1809 	 */
1810 	wait_for_device_probe();
1811 	fw_devlink_best_effort = false;
1812 }
1813 
1814 static void fw_devlink_unblock_consumers(struct device *dev)
1815 {
1816 	struct device_link *link;
1817 
1818 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1819 		return;
1820 
1821 	device_links_write_lock();
1822 	list_for_each_entry(link, &dev->links.consumers, s_node)
1823 		fw_devlink_relax_link(link);
1824 	device_links_write_unlock();
1825 }
1826 
1827 
1828 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1829 {
1830 	struct device *dev;
1831 	bool ret;
1832 
1833 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1834 		return false;
1835 
1836 	dev = get_dev_from_fwnode(fwnode);
1837 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1838 	put_device(dev);
1839 
1840 	return ret;
1841 }
1842 
1843 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1844 {
1845 	struct fwnode_handle *parent;
1846 
1847 	fwnode_for_each_parent_node(fwnode, parent) {
1848 		if (fwnode_init_without_drv(parent)) {
1849 			fwnode_handle_put(parent);
1850 			return true;
1851 		}
1852 	}
1853 
1854 	return false;
1855 }
1856 
1857 /**
1858  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1859  * @con: Potential consumer device.
1860  * @sup_handle: Potential supplier's fwnode.
1861  *
1862  * Needs to be called with fwnode_lock and device link lock held.
1863  *
1864  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1865  * depend on @con. This function can detect multiple cyles between @sup_handle
1866  * and @con. When such dependency cycles are found, convert all device links
1867  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1868  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1869  * converted into a device link in the future, they are created as
1870  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1871  * fw_devlink=permissive just between the devices in the cycle. We need to do
1872  * this because, at this point, fw_devlink can't tell which of these
1873  * dependencies is not a real dependency.
1874  *
1875  * Return true if one or more cycles were found. Otherwise, return false.
1876  */
1877 static bool __fw_devlink_relax_cycles(struct device *con,
1878 				 struct fwnode_handle *sup_handle)
1879 {
1880 	struct device *sup_dev = NULL, *par_dev = NULL;
1881 	struct fwnode_link *link;
1882 	struct device_link *dev_link;
1883 	bool ret = false;
1884 
1885 	if (!sup_handle)
1886 		return false;
1887 
1888 	/*
1889 	 * We aren't trying to find all cycles. Just a cycle between con and
1890 	 * sup_handle.
1891 	 */
1892 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
1893 		return false;
1894 
1895 	sup_handle->flags |= FWNODE_FLAG_VISITED;
1896 
1897 	sup_dev = get_dev_from_fwnode(sup_handle);
1898 
1899 	/* Termination condition. */
1900 	if (sup_dev == con) {
1901 		ret = true;
1902 		goto out;
1903 	}
1904 
1905 	/*
1906 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
1907 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
1908 	 * further.
1909 	 */
1910 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
1911 	    con->links.status == DL_DEV_NO_DRIVER) {
1912 		ret = false;
1913 		goto out;
1914 	}
1915 
1916 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1917 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
1918 			__fwnode_link_cycle(link);
1919 			ret = true;
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * Give priority to device parent over fwnode parent to account for any
1925 	 * quirks in how fwnodes are converted to devices.
1926 	 */
1927 	if (sup_dev)
1928 		par_dev = get_device(sup_dev->parent);
1929 	else
1930 		par_dev = fwnode_get_next_parent_dev(sup_handle);
1931 
1932 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1933 		ret = true;
1934 
1935 	if (!sup_dev)
1936 		goto out;
1937 
1938 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1939 		/*
1940 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1941 		 * such due to a cycle.
1942 		 */
1943 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1944 		    !(dev_link->flags & DL_FLAG_CYCLE))
1945 			continue;
1946 
1947 		if (__fw_devlink_relax_cycles(con,
1948 					      dev_link->supplier->fwnode)) {
1949 			fw_devlink_relax_link(dev_link);
1950 			dev_link->flags |= DL_FLAG_CYCLE;
1951 			ret = true;
1952 		}
1953 	}
1954 
1955 out:
1956 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
1957 	put_device(sup_dev);
1958 	put_device(par_dev);
1959 	return ret;
1960 }
1961 
1962 /**
1963  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1964  * @con: consumer device for the device link
1965  * @sup_handle: fwnode handle of supplier
1966  * @link: fwnode link that's being converted to a device link
1967  *
1968  * This function will try to create a device link between the consumer device
1969  * @con and the supplier device represented by @sup_handle.
1970  *
1971  * The supplier has to be provided as a fwnode because incorrect cycles in
1972  * fwnode links can sometimes cause the supplier device to never be created.
1973  * This function detects such cases and returns an error if it cannot create a
1974  * device link from the consumer to a missing supplier.
1975  *
1976  * Returns,
1977  * 0 on successfully creating a device link
1978  * -EINVAL if the device link cannot be created as expected
1979  * -EAGAIN if the device link cannot be created right now, but it may be
1980  *  possible to do that in the future
1981  */
1982 static int fw_devlink_create_devlink(struct device *con,
1983 				     struct fwnode_handle *sup_handle,
1984 				     struct fwnode_link *link)
1985 {
1986 	struct device *sup_dev;
1987 	int ret = 0;
1988 	u32 flags;
1989 
1990 	if (con->fwnode == link->consumer)
1991 		flags = fw_devlink_get_flags(link->flags);
1992 	else
1993 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1994 
1995 	/*
1996 	 * In some cases, a device P might also be a supplier to its child node
1997 	 * C. However, this would defer the probe of C until the probe of P
1998 	 * completes successfully. This is perfectly fine in the device driver
1999 	 * model. device_add() doesn't guarantee probe completion of the device
2000 	 * by the time it returns.
2001 	 *
2002 	 * However, there are a few drivers that assume C will finish probing
2003 	 * as soon as it's added and before P finishes probing. So, we provide
2004 	 * a flag to let fw_devlink know not to delay the probe of C until the
2005 	 * probe of P completes successfully.
2006 	 *
2007 	 * When such a flag is set, we can't create device links where P is the
2008 	 * supplier of C as that would delay the probe of C.
2009 	 */
2010 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2011 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2012 		return -EINVAL;
2013 
2014 	/*
2015 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2016 	 * So cycle detection isn't necessary and shouldn't be done.
2017 	 */
2018 	if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
2019 		device_links_write_lock();
2020 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2021 			__fwnode_link_cycle(link);
2022 			flags = fw_devlink_get_flags(link->flags);
2023 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2024 				 sup_handle);
2025 		}
2026 		device_links_write_unlock();
2027 	}
2028 
2029 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2030 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2031 	else
2032 		sup_dev = get_dev_from_fwnode(sup_handle);
2033 
2034 	if (sup_dev) {
2035 		/*
2036 		 * If it's one of those drivers that don't actually bind to
2037 		 * their device using driver core, then don't wait on this
2038 		 * supplier device indefinitely.
2039 		 */
2040 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2041 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2042 			dev_dbg(con,
2043 				"Not linking %pfwf - dev might never probe\n",
2044 				sup_handle);
2045 			ret = -EINVAL;
2046 			goto out;
2047 		}
2048 
2049 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2050 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2051 				flags, dev_name(sup_dev));
2052 			ret = -EINVAL;
2053 		}
2054 
2055 		goto out;
2056 	}
2057 
2058 	/*
2059 	 * Supplier or supplier's ancestor already initialized without a struct
2060 	 * device or being probed by a driver.
2061 	 */
2062 	if (fwnode_init_without_drv(sup_handle) ||
2063 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2064 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2065 			sup_handle);
2066 		return -EINVAL;
2067 	}
2068 
2069 	ret = -EAGAIN;
2070 out:
2071 	put_device(sup_dev);
2072 	return ret;
2073 }
2074 
2075 /**
2076  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2077  * @dev: Device that needs to be linked to its consumers
2078  *
2079  * This function looks at all the consumer fwnodes of @dev and creates device
2080  * links between the consumer device and @dev (supplier).
2081  *
2082  * If the consumer device has not been added yet, then this function creates a
2083  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2084  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2085  * sync_state() callback before the real consumer device gets to be added and
2086  * then probed.
2087  *
2088  * Once device links are created from the real consumer to @dev (supplier), the
2089  * fwnode links are deleted.
2090  */
2091 static void __fw_devlink_link_to_consumers(struct device *dev)
2092 {
2093 	struct fwnode_handle *fwnode = dev->fwnode;
2094 	struct fwnode_link *link, *tmp;
2095 
2096 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2097 		struct device *con_dev;
2098 		bool own_link = true;
2099 		int ret;
2100 
2101 		con_dev = get_dev_from_fwnode(link->consumer);
2102 		/*
2103 		 * If consumer device is not available yet, make a "proxy"
2104 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2105 		 * the supplier device. This is necessary to make sure the
2106 		 * supplier doesn't get a sync_state() callback before the real
2107 		 * consumer can create a device link to the supplier.
2108 		 *
2109 		 * This proxy link step is needed to handle the case where the
2110 		 * consumer's parent device is added before the supplier.
2111 		 */
2112 		if (!con_dev) {
2113 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2114 			/*
2115 			 * However, if the consumer's parent device is also the
2116 			 * parent of the supplier, don't create a
2117 			 * consumer-supplier link from the parent to its child
2118 			 * device. Such a dependency is impossible.
2119 			 */
2120 			if (con_dev &&
2121 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2122 				put_device(con_dev);
2123 				con_dev = NULL;
2124 			} else {
2125 				own_link = false;
2126 			}
2127 		}
2128 
2129 		if (!con_dev)
2130 			continue;
2131 
2132 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2133 		put_device(con_dev);
2134 		if (!own_link || ret == -EAGAIN)
2135 			continue;
2136 
2137 		__fwnode_link_del(link);
2138 	}
2139 }
2140 
2141 /**
2142  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2143  * @dev: The consumer device that needs to be linked to its suppliers
2144  * @fwnode: Root of the fwnode tree that is used to create device links
2145  *
2146  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2147  * @fwnode and creates device links between @dev (consumer) and all the
2148  * supplier devices of the entire fwnode tree at @fwnode.
2149  *
2150  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2151  * and the real suppliers of @dev. Once these device links are created, the
2152  * fwnode links are deleted.
2153  *
2154  * In addition, it also looks at all the suppliers of the entire fwnode tree
2155  * because some of the child devices of @dev that have not been added yet
2156  * (because @dev hasn't probed) might already have their suppliers added to
2157  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2158  * @dev (consumer) and these suppliers to make sure they don't execute their
2159  * sync_state() callbacks before these child devices have a chance to create
2160  * their device links. The fwnode links that correspond to the child devices
2161  * aren't delete because they are needed later to create the device links
2162  * between the real consumer and supplier devices.
2163  */
2164 static void __fw_devlink_link_to_suppliers(struct device *dev,
2165 					   struct fwnode_handle *fwnode)
2166 {
2167 	bool own_link = (dev->fwnode == fwnode);
2168 	struct fwnode_link *link, *tmp;
2169 	struct fwnode_handle *child = NULL;
2170 
2171 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2172 		int ret;
2173 		struct fwnode_handle *sup = link->supplier;
2174 
2175 		ret = fw_devlink_create_devlink(dev, sup, link);
2176 		if (!own_link || ret == -EAGAIN)
2177 			continue;
2178 
2179 		__fwnode_link_del(link);
2180 	}
2181 
2182 	/*
2183 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2184 	 * all the descendants. This proxy link step is needed to handle the
2185 	 * case where the supplier is added before the consumer's parent device
2186 	 * (@dev).
2187 	 */
2188 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2189 		__fw_devlink_link_to_suppliers(dev, child);
2190 }
2191 
2192 static void fw_devlink_link_device(struct device *dev)
2193 {
2194 	struct fwnode_handle *fwnode = dev->fwnode;
2195 
2196 	if (!fw_devlink_flags)
2197 		return;
2198 
2199 	fw_devlink_parse_fwtree(fwnode);
2200 
2201 	mutex_lock(&fwnode_link_lock);
2202 	__fw_devlink_link_to_consumers(dev);
2203 	__fw_devlink_link_to_suppliers(dev, fwnode);
2204 	mutex_unlock(&fwnode_link_lock);
2205 }
2206 
2207 /* Device links support end. */
2208 
2209 int (*platform_notify)(struct device *dev) = NULL;
2210 int (*platform_notify_remove)(struct device *dev) = NULL;
2211 static struct kobject *dev_kobj;
2212 struct kobject *sysfs_dev_char_kobj;
2213 struct kobject *sysfs_dev_block_kobj;
2214 
2215 static DEFINE_MUTEX(device_hotplug_lock);
2216 
2217 void lock_device_hotplug(void)
2218 {
2219 	mutex_lock(&device_hotplug_lock);
2220 }
2221 
2222 void unlock_device_hotplug(void)
2223 {
2224 	mutex_unlock(&device_hotplug_lock);
2225 }
2226 
2227 int lock_device_hotplug_sysfs(void)
2228 {
2229 	if (mutex_trylock(&device_hotplug_lock))
2230 		return 0;
2231 
2232 	/* Avoid busy looping (5 ms of sleep should do). */
2233 	msleep(5);
2234 	return restart_syscall();
2235 }
2236 
2237 #ifdef CONFIG_BLOCK
2238 static inline int device_is_not_partition(struct device *dev)
2239 {
2240 	return !(dev->type == &part_type);
2241 }
2242 #else
2243 static inline int device_is_not_partition(struct device *dev)
2244 {
2245 	return 1;
2246 }
2247 #endif
2248 
2249 static void device_platform_notify(struct device *dev)
2250 {
2251 	acpi_device_notify(dev);
2252 
2253 	software_node_notify(dev);
2254 
2255 	if (platform_notify)
2256 		platform_notify(dev);
2257 }
2258 
2259 static void device_platform_notify_remove(struct device *dev)
2260 {
2261 	acpi_device_notify_remove(dev);
2262 
2263 	software_node_notify_remove(dev);
2264 
2265 	if (platform_notify_remove)
2266 		platform_notify_remove(dev);
2267 }
2268 
2269 /**
2270  * dev_driver_string - Return a device's driver name, if at all possible
2271  * @dev: struct device to get the name of
2272  *
2273  * Will return the device's driver's name if it is bound to a device.  If
2274  * the device is not bound to a driver, it will return the name of the bus
2275  * it is attached to.  If it is not attached to a bus either, an empty
2276  * string will be returned.
2277  */
2278 const char *dev_driver_string(const struct device *dev)
2279 {
2280 	struct device_driver *drv;
2281 
2282 	/* dev->driver can change to NULL underneath us because of unbinding,
2283 	 * so be careful about accessing it.  dev->bus and dev->class should
2284 	 * never change once they are set, so they don't need special care.
2285 	 */
2286 	drv = READ_ONCE(dev->driver);
2287 	return drv ? drv->name : dev_bus_name(dev);
2288 }
2289 EXPORT_SYMBOL(dev_driver_string);
2290 
2291 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2292 
2293 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2294 			     char *buf)
2295 {
2296 	struct device_attribute *dev_attr = to_dev_attr(attr);
2297 	struct device *dev = kobj_to_dev(kobj);
2298 	ssize_t ret = -EIO;
2299 
2300 	if (dev_attr->show)
2301 		ret = dev_attr->show(dev, dev_attr, buf);
2302 	if (ret >= (ssize_t)PAGE_SIZE) {
2303 		printk("dev_attr_show: %pS returned bad count\n",
2304 				dev_attr->show);
2305 	}
2306 	return ret;
2307 }
2308 
2309 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2310 			      const char *buf, size_t count)
2311 {
2312 	struct device_attribute *dev_attr = to_dev_attr(attr);
2313 	struct device *dev = kobj_to_dev(kobj);
2314 	ssize_t ret = -EIO;
2315 
2316 	if (dev_attr->store)
2317 		ret = dev_attr->store(dev, dev_attr, buf, count);
2318 	return ret;
2319 }
2320 
2321 static const struct sysfs_ops dev_sysfs_ops = {
2322 	.show	= dev_attr_show,
2323 	.store	= dev_attr_store,
2324 };
2325 
2326 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2327 
2328 ssize_t device_store_ulong(struct device *dev,
2329 			   struct device_attribute *attr,
2330 			   const char *buf, size_t size)
2331 {
2332 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2333 	int ret;
2334 	unsigned long new;
2335 
2336 	ret = kstrtoul(buf, 0, &new);
2337 	if (ret)
2338 		return ret;
2339 	*(unsigned long *)(ea->var) = new;
2340 	/* Always return full write size even if we didn't consume all */
2341 	return size;
2342 }
2343 EXPORT_SYMBOL_GPL(device_store_ulong);
2344 
2345 ssize_t device_show_ulong(struct device *dev,
2346 			  struct device_attribute *attr,
2347 			  char *buf)
2348 {
2349 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2350 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2351 }
2352 EXPORT_SYMBOL_GPL(device_show_ulong);
2353 
2354 ssize_t device_store_int(struct device *dev,
2355 			 struct device_attribute *attr,
2356 			 const char *buf, size_t size)
2357 {
2358 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2359 	int ret;
2360 	long new;
2361 
2362 	ret = kstrtol(buf, 0, &new);
2363 	if (ret)
2364 		return ret;
2365 
2366 	if (new > INT_MAX || new < INT_MIN)
2367 		return -EINVAL;
2368 	*(int *)(ea->var) = new;
2369 	/* Always return full write size even if we didn't consume all */
2370 	return size;
2371 }
2372 EXPORT_SYMBOL_GPL(device_store_int);
2373 
2374 ssize_t device_show_int(struct device *dev,
2375 			struct device_attribute *attr,
2376 			char *buf)
2377 {
2378 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2379 
2380 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2381 }
2382 EXPORT_SYMBOL_GPL(device_show_int);
2383 
2384 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2385 			  const char *buf, size_t size)
2386 {
2387 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2388 
2389 	if (kstrtobool(buf, ea->var) < 0)
2390 		return -EINVAL;
2391 
2392 	return size;
2393 }
2394 EXPORT_SYMBOL_GPL(device_store_bool);
2395 
2396 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2397 			 char *buf)
2398 {
2399 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2400 
2401 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2402 }
2403 EXPORT_SYMBOL_GPL(device_show_bool);
2404 
2405 /**
2406  * device_release - free device structure.
2407  * @kobj: device's kobject.
2408  *
2409  * This is called once the reference count for the object
2410  * reaches 0. We forward the call to the device's release
2411  * method, which should handle actually freeing the structure.
2412  */
2413 static void device_release(struct kobject *kobj)
2414 {
2415 	struct device *dev = kobj_to_dev(kobj);
2416 	struct device_private *p = dev->p;
2417 
2418 	/*
2419 	 * Some platform devices are driven without driver attached
2420 	 * and managed resources may have been acquired.  Make sure
2421 	 * all resources are released.
2422 	 *
2423 	 * Drivers still can add resources into device after device
2424 	 * is deleted but alive, so release devres here to avoid
2425 	 * possible memory leak.
2426 	 */
2427 	devres_release_all(dev);
2428 
2429 	kfree(dev->dma_range_map);
2430 
2431 	if (dev->release)
2432 		dev->release(dev);
2433 	else if (dev->type && dev->type->release)
2434 		dev->type->release(dev);
2435 	else if (dev->class && dev->class->dev_release)
2436 		dev->class->dev_release(dev);
2437 	else
2438 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2439 			dev_name(dev));
2440 	kfree(p);
2441 }
2442 
2443 static const void *device_namespace(const struct kobject *kobj)
2444 {
2445 	const struct device *dev = kobj_to_dev(kobj);
2446 	const void *ns = NULL;
2447 
2448 	if (dev->class && dev->class->ns_type)
2449 		ns = dev->class->namespace(dev);
2450 
2451 	return ns;
2452 }
2453 
2454 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2455 {
2456 	const struct device *dev = kobj_to_dev(kobj);
2457 
2458 	if (dev->class && dev->class->get_ownership)
2459 		dev->class->get_ownership(dev, uid, gid);
2460 }
2461 
2462 static const struct kobj_type device_ktype = {
2463 	.release	= device_release,
2464 	.sysfs_ops	= &dev_sysfs_ops,
2465 	.namespace	= device_namespace,
2466 	.get_ownership	= device_get_ownership,
2467 };
2468 
2469 
2470 static int dev_uevent_filter(const struct kobject *kobj)
2471 {
2472 	const struct kobj_type *ktype = get_ktype(kobj);
2473 
2474 	if (ktype == &device_ktype) {
2475 		const struct device *dev = kobj_to_dev(kobj);
2476 		if (dev->bus)
2477 			return 1;
2478 		if (dev->class)
2479 			return 1;
2480 	}
2481 	return 0;
2482 }
2483 
2484 static const char *dev_uevent_name(const struct kobject *kobj)
2485 {
2486 	const struct device *dev = kobj_to_dev(kobj);
2487 
2488 	if (dev->bus)
2489 		return dev->bus->name;
2490 	if (dev->class)
2491 		return dev->class->name;
2492 	return NULL;
2493 }
2494 
2495 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2496 {
2497 	const struct device *dev = kobj_to_dev(kobj);
2498 	int retval = 0;
2499 
2500 	/* add device node properties if present */
2501 	if (MAJOR(dev->devt)) {
2502 		const char *tmp;
2503 		const char *name;
2504 		umode_t mode = 0;
2505 		kuid_t uid = GLOBAL_ROOT_UID;
2506 		kgid_t gid = GLOBAL_ROOT_GID;
2507 
2508 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2509 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2510 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2511 		if (name) {
2512 			add_uevent_var(env, "DEVNAME=%s", name);
2513 			if (mode)
2514 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2515 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2516 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2517 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2518 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2519 			kfree(tmp);
2520 		}
2521 	}
2522 
2523 	if (dev->type && dev->type->name)
2524 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2525 
2526 	if (dev->driver)
2527 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2528 
2529 	/* Add common DT information about the device */
2530 	of_device_uevent(dev, env);
2531 
2532 	/* have the bus specific function add its stuff */
2533 	if (dev->bus && dev->bus->uevent) {
2534 		retval = dev->bus->uevent(dev, env);
2535 		if (retval)
2536 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2537 				 dev_name(dev), __func__, retval);
2538 	}
2539 
2540 	/* have the class specific function add its stuff */
2541 	if (dev->class && dev->class->dev_uevent) {
2542 		retval = dev->class->dev_uevent(dev, env);
2543 		if (retval)
2544 			pr_debug("device: '%s': %s: class uevent() "
2545 				 "returned %d\n", dev_name(dev),
2546 				 __func__, retval);
2547 	}
2548 
2549 	/* have the device type specific function add its stuff */
2550 	if (dev->type && dev->type->uevent) {
2551 		retval = dev->type->uevent(dev, env);
2552 		if (retval)
2553 			pr_debug("device: '%s': %s: dev_type uevent() "
2554 				 "returned %d\n", dev_name(dev),
2555 				 __func__, retval);
2556 	}
2557 
2558 	return retval;
2559 }
2560 
2561 static const struct kset_uevent_ops device_uevent_ops = {
2562 	.filter =	dev_uevent_filter,
2563 	.name =		dev_uevent_name,
2564 	.uevent =	dev_uevent,
2565 };
2566 
2567 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2568 			   char *buf)
2569 {
2570 	struct kobject *top_kobj;
2571 	struct kset *kset;
2572 	struct kobj_uevent_env *env = NULL;
2573 	int i;
2574 	int len = 0;
2575 	int retval;
2576 
2577 	/* search the kset, the device belongs to */
2578 	top_kobj = &dev->kobj;
2579 	while (!top_kobj->kset && top_kobj->parent)
2580 		top_kobj = top_kobj->parent;
2581 	if (!top_kobj->kset)
2582 		goto out;
2583 
2584 	kset = top_kobj->kset;
2585 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2586 		goto out;
2587 
2588 	/* respect filter */
2589 	if (kset->uevent_ops && kset->uevent_ops->filter)
2590 		if (!kset->uevent_ops->filter(&dev->kobj))
2591 			goto out;
2592 
2593 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2594 	if (!env)
2595 		return -ENOMEM;
2596 
2597 	/* let the kset specific function add its keys */
2598 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2599 	if (retval)
2600 		goto out;
2601 
2602 	/* copy keys to file */
2603 	for (i = 0; i < env->envp_idx; i++)
2604 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2605 out:
2606 	kfree(env);
2607 	return len;
2608 }
2609 
2610 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2611 			    const char *buf, size_t count)
2612 {
2613 	int rc;
2614 
2615 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2616 
2617 	if (rc) {
2618 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2619 		return rc;
2620 	}
2621 
2622 	return count;
2623 }
2624 static DEVICE_ATTR_RW(uevent);
2625 
2626 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2627 			   char *buf)
2628 {
2629 	bool val;
2630 
2631 	device_lock(dev);
2632 	val = !dev->offline;
2633 	device_unlock(dev);
2634 	return sysfs_emit(buf, "%u\n", val);
2635 }
2636 
2637 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2638 			    const char *buf, size_t count)
2639 {
2640 	bool val;
2641 	int ret;
2642 
2643 	ret = kstrtobool(buf, &val);
2644 	if (ret < 0)
2645 		return ret;
2646 
2647 	ret = lock_device_hotplug_sysfs();
2648 	if (ret)
2649 		return ret;
2650 
2651 	ret = val ? device_online(dev) : device_offline(dev);
2652 	unlock_device_hotplug();
2653 	return ret < 0 ? ret : count;
2654 }
2655 static DEVICE_ATTR_RW(online);
2656 
2657 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2658 			      char *buf)
2659 {
2660 	const char *loc;
2661 
2662 	switch (dev->removable) {
2663 	case DEVICE_REMOVABLE:
2664 		loc = "removable";
2665 		break;
2666 	case DEVICE_FIXED:
2667 		loc = "fixed";
2668 		break;
2669 	default:
2670 		loc = "unknown";
2671 	}
2672 	return sysfs_emit(buf, "%s\n", loc);
2673 }
2674 static DEVICE_ATTR_RO(removable);
2675 
2676 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2677 {
2678 	return sysfs_create_groups(&dev->kobj, groups);
2679 }
2680 EXPORT_SYMBOL_GPL(device_add_groups);
2681 
2682 void device_remove_groups(struct device *dev,
2683 			  const struct attribute_group **groups)
2684 {
2685 	sysfs_remove_groups(&dev->kobj, groups);
2686 }
2687 EXPORT_SYMBOL_GPL(device_remove_groups);
2688 
2689 union device_attr_group_devres {
2690 	const struct attribute_group *group;
2691 	const struct attribute_group **groups;
2692 };
2693 
2694 static void devm_attr_group_remove(struct device *dev, void *res)
2695 {
2696 	union device_attr_group_devres *devres = res;
2697 	const struct attribute_group *group = devres->group;
2698 
2699 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2700 	sysfs_remove_group(&dev->kobj, group);
2701 }
2702 
2703 static void devm_attr_groups_remove(struct device *dev, void *res)
2704 {
2705 	union device_attr_group_devres *devres = res;
2706 	const struct attribute_group **groups = devres->groups;
2707 
2708 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2709 	sysfs_remove_groups(&dev->kobj, groups);
2710 }
2711 
2712 /**
2713  * devm_device_add_group - given a device, create a managed attribute group
2714  * @dev:	The device to create the group for
2715  * @grp:	The attribute group to create
2716  *
2717  * This function creates a group for the first time.  It will explicitly
2718  * warn and error if any of the attribute files being created already exist.
2719  *
2720  * Returns 0 on success or error code on failure.
2721  */
2722 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2723 {
2724 	union device_attr_group_devres *devres;
2725 	int error;
2726 
2727 	devres = devres_alloc(devm_attr_group_remove,
2728 			      sizeof(*devres), GFP_KERNEL);
2729 	if (!devres)
2730 		return -ENOMEM;
2731 
2732 	error = sysfs_create_group(&dev->kobj, grp);
2733 	if (error) {
2734 		devres_free(devres);
2735 		return error;
2736 	}
2737 
2738 	devres->group = grp;
2739 	devres_add(dev, devres);
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(devm_device_add_group);
2743 
2744 /**
2745  * devm_device_add_groups - create a bunch of managed attribute groups
2746  * @dev:	The device to create the group for
2747  * @groups:	The attribute groups to create, NULL terminated
2748  *
2749  * This function creates a bunch of managed attribute groups.  If an error
2750  * occurs when creating a group, all previously created groups will be
2751  * removed, unwinding everything back to the original state when this
2752  * function was called.  It will explicitly warn and error if any of the
2753  * attribute files being created already exist.
2754  *
2755  * Returns 0 on success or error code from sysfs_create_group on failure.
2756  */
2757 int devm_device_add_groups(struct device *dev,
2758 			   const struct attribute_group **groups)
2759 {
2760 	union device_attr_group_devres *devres;
2761 	int error;
2762 
2763 	devres = devres_alloc(devm_attr_groups_remove,
2764 			      sizeof(*devres), GFP_KERNEL);
2765 	if (!devres)
2766 		return -ENOMEM;
2767 
2768 	error = sysfs_create_groups(&dev->kobj, groups);
2769 	if (error) {
2770 		devres_free(devres);
2771 		return error;
2772 	}
2773 
2774 	devres->groups = groups;
2775 	devres_add(dev, devres);
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2779 
2780 static int device_add_attrs(struct device *dev)
2781 {
2782 	struct class *class = dev->class;
2783 	const struct device_type *type = dev->type;
2784 	int error;
2785 
2786 	if (class) {
2787 		error = device_add_groups(dev, class->dev_groups);
2788 		if (error)
2789 			return error;
2790 	}
2791 
2792 	if (type) {
2793 		error = device_add_groups(dev, type->groups);
2794 		if (error)
2795 			goto err_remove_class_groups;
2796 	}
2797 
2798 	error = device_add_groups(dev, dev->groups);
2799 	if (error)
2800 		goto err_remove_type_groups;
2801 
2802 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2803 		error = device_create_file(dev, &dev_attr_online);
2804 		if (error)
2805 			goto err_remove_dev_groups;
2806 	}
2807 
2808 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2809 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2810 		if (error)
2811 			goto err_remove_dev_online;
2812 	}
2813 
2814 	if (dev_removable_is_valid(dev)) {
2815 		error = device_create_file(dev, &dev_attr_removable);
2816 		if (error)
2817 			goto err_remove_dev_waiting_for_supplier;
2818 	}
2819 
2820 	if (dev_add_physical_location(dev)) {
2821 		error = device_add_group(dev,
2822 			&dev_attr_physical_location_group);
2823 		if (error)
2824 			goto err_remove_dev_removable;
2825 	}
2826 
2827 	return 0;
2828 
2829  err_remove_dev_removable:
2830 	device_remove_file(dev, &dev_attr_removable);
2831  err_remove_dev_waiting_for_supplier:
2832 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2833  err_remove_dev_online:
2834 	device_remove_file(dev, &dev_attr_online);
2835  err_remove_dev_groups:
2836 	device_remove_groups(dev, dev->groups);
2837  err_remove_type_groups:
2838 	if (type)
2839 		device_remove_groups(dev, type->groups);
2840  err_remove_class_groups:
2841 	if (class)
2842 		device_remove_groups(dev, class->dev_groups);
2843 
2844 	return error;
2845 }
2846 
2847 static void device_remove_attrs(struct device *dev)
2848 {
2849 	struct class *class = dev->class;
2850 	const struct device_type *type = dev->type;
2851 
2852 	if (dev->physical_location) {
2853 		device_remove_group(dev, &dev_attr_physical_location_group);
2854 		kfree(dev->physical_location);
2855 	}
2856 
2857 	device_remove_file(dev, &dev_attr_removable);
2858 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2859 	device_remove_file(dev, &dev_attr_online);
2860 	device_remove_groups(dev, dev->groups);
2861 
2862 	if (type)
2863 		device_remove_groups(dev, type->groups);
2864 
2865 	if (class)
2866 		device_remove_groups(dev, class->dev_groups);
2867 }
2868 
2869 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2870 			char *buf)
2871 {
2872 	return print_dev_t(buf, dev->devt);
2873 }
2874 static DEVICE_ATTR_RO(dev);
2875 
2876 /* /sys/devices/ */
2877 struct kset *devices_kset;
2878 
2879 /**
2880  * devices_kset_move_before - Move device in the devices_kset's list.
2881  * @deva: Device to move.
2882  * @devb: Device @deva should come before.
2883  */
2884 static void devices_kset_move_before(struct device *deva, struct device *devb)
2885 {
2886 	if (!devices_kset)
2887 		return;
2888 	pr_debug("devices_kset: Moving %s before %s\n",
2889 		 dev_name(deva), dev_name(devb));
2890 	spin_lock(&devices_kset->list_lock);
2891 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2892 	spin_unlock(&devices_kset->list_lock);
2893 }
2894 
2895 /**
2896  * devices_kset_move_after - Move device in the devices_kset's list.
2897  * @deva: Device to move
2898  * @devb: Device @deva should come after.
2899  */
2900 static void devices_kset_move_after(struct device *deva, struct device *devb)
2901 {
2902 	if (!devices_kset)
2903 		return;
2904 	pr_debug("devices_kset: Moving %s after %s\n",
2905 		 dev_name(deva), dev_name(devb));
2906 	spin_lock(&devices_kset->list_lock);
2907 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2908 	spin_unlock(&devices_kset->list_lock);
2909 }
2910 
2911 /**
2912  * devices_kset_move_last - move the device to the end of devices_kset's list.
2913  * @dev: device to move
2914  */
2915 void devices_kset_move_last(struct device *dev)
2916 {
2917 	if (!devices_kset)
2918 		return;
2919 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2920 	spin_lock(&devices_kset->list_lock);
2921 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2922 	spin_unlock(&devices_kset->list_lock);
2923 }
2924 
2925 /**
2926  * device_create_file - create sysfs attribute file for device.
2927  * @dev: device.
2928  * @attr: device attribute descriptor.
2929  */
2930 int device_create_file(struct device *dev,
2931 		       const struct device_attribute *attr)
2932 {
2933 	int error = 0;
2934 
2935 	if (dev) {
2936 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2937 			"Attribute %s: write permission without 'store'\n",
2938 			attr->attr.name);
2939 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2940 			"Attribute %s: read permission without 'show'\n",
2941 			attr->attr.name);
2942 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2943 	}
2944 
2945 	return error;
2946 }
2947 EXPORT_SYMBOL_GPL(device_create_file);
2948 
2949 /**
2950  * device_remove_file - remove sysfs attribute file.
2951  * @dev: device.
2952  * @attr: device attribute descriptor.
2953  */
2954 void device_remove_file(struct device *dev,
2955 			const struct device_attribute *attr)
2956 {
2957 	if (dev)
2958 		sysfs_remove_file(&dev->kobj, &attr->attr);
2959 }
2960 EXPORT_SYMBOL_GPL(device_remove_file);
2961 
2962 /**
2963  * device_remove_file_self - remove sysfs attribute file from its own method.
2964  * @dev: device.
2965  * @attr: device attribute descriptor.
2966  *
2967  * See kernfs_remove_self() for details.
2968  */
2969 bool device_remove_file_self(struct device *dev,
2970 			     const struct device_attribute *attr)
2971 {
2972 	if (dev)
2973 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2974 	else
2975 		return false;
2976 }
2977 EXPORT_SYMBOL_GPL(device_remove_file_self);
2978 
2979 /**
2980  * device_create_bin_file - create sysfs binary attribute file for device.
2981  * @dev: device.
2982  * @attr: device binary attribute descriptor.
2983  */
2984 int device_create_bin_file(struct device *dev,
2985 			   const struct bin_attribute *attr)
2986 {
2987 	int error = -EINVAL;
2988 	if (dev)
2989 		error = sysfs_create_bin_file(&dev->kobj, attr);
2990 	return error;
2991 }
2992 EXPORT_SYMBOL_GPL(device_create_bin_file);
2993 
2994 /**
2995  * device_remove_bin_file - remove sysfs binary attribute file
2996  * @dev: device.
2997  * @attr: device binary attribute descriptor.
2998  */
2999 void device_remove_bin_file(struct device *dev,
3000 			    const struct bin_attribute *attr)
3001 {
3002 	if (dev)
3003 		sysfs_remove_bin_file(&dev->kobj, attr);
3004 }
3005 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3006 
3007 static void klist_children_get(struct klist_node *n)
3008 {
3009 	struct device_private *p = to_device_private_parent(n);
3010 	struct device *dev = p->device;
3011 
3012 	get_device(dev);
3013 }
3014 
3015 static void klist_children_put(struct klist_node *n)
3016 {
3017 	struct device_private *p = to_device_private_parent(n);
3018 	struct device *dev = p->device;
3019 
3020 	put_device(dev);
3021 }
3022 
3023 /**
3024  * device_initialize - init device structure.
3025  * @dev: device.
3026  *
3027  * This prepares the device for use by other layers by initializing
3028  * its fields.
3029  * It is the first half of device_register(), if called by
3030  * that function, though it can also be called separately, so one
3031  * may use @dev's fields. In particular, get_device()/put_device()
3032  * may be used for reference counting of @dev after calling this
3033  * function.
3034  *
3035  * All fields in @dev must be initialized by the caller to 0, except
3036  * for those explicitly set to some other value.  The simplest
3037  * approach is to use kzalloc() to allocate the structure containing
3038  * @dev.
3039  *
3040  * NOTE: Use put_device() to give up your reference instead of freeing
3041  * @dev directly once you have called this function.
3042  */
3043 void device_initialize(struct device *dev)
3044 {
3045 	dev->kobj.kset = devices_kset;
3046 	kobject_init(&dev->kobj, &device_ktype);
3047 	INIT_LIST_HEAD(&dev->dma_pools);
3048 	mutex_init(&dev->mutex);
3049 	lockdep_set_novalidate_class(&dev->mutex);
3050 	spin_lock_init(&dev->devres_lock);
3051 	INIT_LIST_HEAD(&dev->devres_head);
3052 	device_pm_init(dev);
3053 	set_dev_node(dev, NUMA_NO_NODE);
3054 	INIT_LIST_HEAD(&dev->links.consumers);
3055 	INIT_LIST_HEAD(&dev->links.suppliers);
3056 	INIT_LIST_HEAD(&dev->links.defer_sync);
3057 	dev->links.status = DL_DEV_NO_DRIVER;
3058 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3059     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3060     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3061 	dev->dma_coherent = dma_default_coherent;
3062 #endif
3063 #ifdef CONFIG_SWIOTLB
3064 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
3065 #endif
3066 }
3067 EXPORT_SYMBOL_GPL(device_initialize);
3068 
3069 struct kobject *virtual_device_parent(struct device *dev)
3070 {
3071 	static struct kobject *virtual_dir = NULL;
3072 
3073 	if (!virtual_dir)
3074 		virtual_dir = kobject_create_and_add("virtual",
3075 						     &devices_kset->kobj);
3076 
3077 	return virtual_dir;
3078 }
3079 
3080 struct class_dir {
3081 	struct kobject kobj;
3082 	struct class *class;
3083 };
3084 
3085 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3086 
3087 static void class_dir_release(struct kobject *kobj)
3088 {
3089 	struct class_dir *dir = to_class_dir(kobj);
3090 	kfree(dir);
3091 }
3092 
3093 static const
3094 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3095 {
3096 	const struct class_dir *dir = to_class_dir(kobj);
3097 	return dir->class->ns_type;
3098 }
3099 
3100 static const struct kobj_type class_dir_ktype = {
3101 	.release	= class_dir_release,
3102 	.sysfs_ops	= &kobj_sysfs_ops,
3103 	.child_ns_type	= class_dir_child_ns_type
3104 };
3105 
3106 static struct kobject *
3107 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3108 {
3109 	struct class_dir *dir;
3110 	int retval;
3111 
3112 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3113 	if (!dir)
3114 		return ERR_PTR(-ENOMEM);
3115 
3116 	dir->class = class;
3117 	kobject_init(&dir->kobj, &class_dir_ktype);
3118 
3119 	dir->kobj.kset = &class->p->glue_dirs;
3120 
3121 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3122 	if (retval < 0) {
3123 		kobject_put(&dir->kobj);
3124 		return ERR_PTR(retval);
3125 	}
3126 	return &dir->kobj;
3127 }
3128 
3129 static DEFINE_MUTEX(gdp_mutex);
3130 
3131 static struct kobject *get_device_parent(struct device *dev,
3132 					 struct device *parent)
3133 {
3134 	struct kobject *kobj = NULL;
3135 
3136 	if (dev->class) {
3137 		struct kobject *parent_kobj;
3138 		struct kobject *k;
3139 
3140 #ifdef CONFIG_BLOCK
3141 		/* block disks show up in /sys/block */
3142 		if (sysfs_deprecated && dev->class == &block_class) {
3143 			if (parent && parent->class == &block_class)
3144 				return &parent->kobj;
3145 			return &block_class.p->subsys.kobj;
3146 		}
3147 #endif
3148 
3149 		/*
3150 		 * If we have no parent, we live in "virtual".
3151 		 * Class-devices with a non class-device as parent, live
3152 		 * in a "glue" directory to prevent namespace collisions.
3153 		 */
3154 		if (parent == NULL)
3155 			parent_kobj = virtual_device_parent(dev);
3156 		else if (parent->class && !dev->class->ns_type)
3157 			return &parent->kobj;
3158 		else
3159 			parent_kobj = &parent->kobj;
3160 
3161 		mutex_lock(&gdp_mutex);
3162 
3163 		/* find our class-directory at the parent and reference it */
3164 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3165 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3166 			if (k->parent == parent_kobj) {
3167 				kobj = kobject_get(k);
3168 				break;
3169 			}
3170 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3171 		if (kobj) {
3172 			mutex_unlock(&gdp_mutex);
3173 			return kobj;
3174 		}
3175 
3176 		/* or create a new class-directory at the parent device */
3177 		k = class_dir_create_and_add(dev->class, parent_kobj);
3178 		/* do not emit an uevent for this simple "glue" directory */
3179 		mutex_unlock(&gdp_mutex);
3180 		return k;
3181 	}
3182 
3183 	/* subsystems can specify a default root directory for their devices */
3184 	if (!parent && dev->bus) {
3185 		struct device *dev_root = bus_get_dev_root(dev->bus);
3186 
3187 		if (dev_root) {
3188 			kobj = &dev_root->kobj;
3189 			put_device(dev_root);
3190 			return kobj;
3191 		}
3192 	}
3193 
3194 	if (parent)
3195 		return &parent->kobj;
3196 	return NULL;
3197 }
3198 
3199 static inline bool live_in_glue_dir(struct kobject *kobj,
3200 				    struct device *dev)
3201 {
3202 	if (!kobj || !dev->class ||
3203 	    kobj->kset != &dev->class->p->glue_dirs)
3204 		return false;
3205 	return true;
3206 }
3207 
3208 static inline struct kobject *get_glue_dir(struct device *dev)
3209 {
3210 	return dev->kobj.parent;
3211 }
3212 
3213 /**
3214  * kobject_has_children - Returns whether a kobject has children.
3215  * @kobj: the object to test
3216  *
3217  * This will return whether a kobject has other kobjects as children.
3218  *
3219  * It does NOT account for the presence of attribute files, only sub
3220  * directories. It also assumes there is no concurrent addition or
3221  * removal of such children, and thus relies on external locking.
3222  */
3223 static inline bool kobject_has_children(struct kobject *kobj)
3224 {
3225 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3226 
3227 	return kobj->sd && kobj->sd->dir.subdirs;
3228 }
3229 
3230 /*
3231  * make sure cleaning up dir as the last step, we need to make
3232  * sure .release handler of kobject is run with holding the
3233  * global lock
3234  */
3235 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3236 {
3237 	unsigned int ref;
3238 
3239 	/* see if we live in a "glue" directory */
3240 	if (!live_in_glue_dir(glue_dir, dev))
3241 		return;
3242 
3243 	mutex_lock(&gdp_mutex);
3244 	/**
3245 	 * There is a race condition between removing glue directory
3246 	 * and adding a new device under the glue directory.
3247 	 *
3248 	 * CPU1:                                         CPU2:
3249 	 *
3250 	 * device_add()
3251 	 *   get_device_parent()
3252 	 *     class_dir_create_and_add()
3253 	 *       kobject_add_internal()
3254 	 *         create_dir()    // create glue_dir
3255 	 *
3256 	 *                                               device_add()
3257 	 *                                                 get_device_parent()
3258 	 *                                                   kobject_get() // get glue_dir
3259 	 *
3260 	 * device_del()
3261 	 *   cleanup_glue_dir()
3262 	 *     kobject_del(glue_dir)
3263 	 *
3264 	 *                                               kobject_add()
3265 	 *                                                 kobject_add_internal()
3266 	 *                                                   create_dir() // in glue_dir
3267 	 *                                                     sysfs_create_dir_ns()
3268 	 *                                                       kernfs_create_dir_ns(sd)
3269 	 *
3270 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3271 	 *       sysfs_put()        // free glue_dir->sd
3272 	 *
3273 	 *                                                         // sd is freed
3274 	 *                                                         kernfs_new_node(sd)
3275 	 *                                                           kernfs_get(glue_dir)
3276 	 *                                                           kernfs_add_one()
3277 	 *                                                           kernfs_put()
3278 	 *
3279 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3280 	 * a new device under glue dir, the glue_dir kobject reference count
3281 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3282 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3283 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3284 	 *
3285 	 * Then the CPU2 will see a stale "empty" but still potentially used
3286 	 * glue dir around in kernfs_new_node().
3287 	 *
3288 	 * In order to avoid this happening, we also should make sure that
3289 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3290 	 * for glue_dir kobj is 1.
3291 	 */
3292 	ref = kref_read(&glue_dir->kref);
3293 	if (!kobject_has_children(glue_dir) && !--ref)
3294 		kobject_del(glue_dir);
3295 	kobject_put(glue_dir);
3296 	mutex_unlock(&gdp_mutex);
3297 }
3298 
3299 static int device_add_class_symlinks(struct device *dev)
3300 {
3301 	struct device_node *of_node = dev_of_node(dev);
3302 	int error;
3303 
3304 	if (of_node) {
3305 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3306 		if (error)
3307 			dev_warn(dev, "Error %d creating of_node link\n",error);
3308 		/* An error here doesn't warrant bringing down the device */
3309 	}
3310 
3311 	if (!dev->class)
3312 		return 0;
3313 
3314 	error = sysfs_create_link(&dev->kobj,
3315 				  &dev->class->p->subsys.kobj,
3316 				  "subsystem");
3317 	if (error)
3318 		goto out_devnode;
3319 
3320 	if (dev->parent && device_is_not_partition(dev)) {
3321 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3322 					  "device");
3323 		if (error)
3324 			goto out_subsys;
3325 	}
3326 
3327 #ifdef CONFIG_BLOCK
3328 	/* /sys/block has directories and does not need symlinks */
3329 	if (sysfs_deprecated && dev->class == &block_class)
3330 		return 0;
3331 #endif
3332 
3333 	/* link in the class directory pointing to the device */
3334 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3335 				  &dev->kobj, dev_name(dev));
3336 	if (error)
3337 		goto out_device;
3338 
3339 	return 0;
3340 
3341 out_device:
3342 	sysfs_remove_link(&dev->kobj, "device");
3343 
3344 out_subsys:
3345 	sysfs_remove_link(&dev->kobj, "subsystem");
3346 out_devnode:
3347 	sysfs_remove_link(&dev->kobj, "of_node");
3348 	return error;
3349 }
3350 
3351 static void device_remove_class_symlinks(struct device *dev)
3352 {
3353 	if (dev_of_node(dev))
3354 		sysfs_remove_link(&dev->kobj, "of_node");
3355 
3356 	if (!dev->class)
3357 		return;
3358 
3359 	if (dev->parent && device_is_not_partition(dev))
3360 		sysfs_remove_link(&dev->kobj, "device");
3361 	sysfs_remove_link(&dev->kobj, "subsystem");
3362 #ifdef CONFIG_BLOCK
3363 	if (sysfs_deprecated && dev->class == &block_class)
3364 		return;
3365 #endif
3366 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3367 }
3368 
3369 /**
3370  * dev_set_name - set a device name
3371  * @dev: device
3372  * @fmt: format string for the device's name
3373  */
3374 int dev_set_name(struct device *dev, const char *fmt, ...)
3375 {
3376 	va_list vargs;
3377 	int err;
3378 
3379 	va_start(vargs, fmt);
3380 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3381 	va_end(vargs);
3382 	return err;
3383 }
3384 EXPORT_SYMBOL_GPL(dev_set_name);
3385 
3386 /**
3387  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3388  * @dev: device
3389  *
3390  * By default we select char/ for new entries.  Setting class->dev_obj
3391  * to NULL prevents an entry from being created.  class->dev_kobj must
3392  * be set (or cleared) before any devices are registered to the class
3393  * otherwise device_create_sys_dev_entry() and
3394  * device_remove_sys_dev_entry() will disagree about the presence of
3395  * the link.
3396  */
3397 static struct kobject *device_to_dev_kobj(struct device *dev)
3398 {
3399 	struct kobject *kobj;
3400 
3401 	if (dev->class)
3402 		kobj = dev->class->dev_kobj;
3403 	else
3404 		kobj = sysfs_dev_char_kobj;
3405 
3406 	return kobj;
3407 }
3408 
3409 static int device_create_sys_dev_entry(struct device *dev)
3410 {
3411 	struct kobject *kobj = device_to_dev_kobj(dev);
3412 	int error = 0;
3413 	char devt_str[15];
3414 
3415 	if (kobj) {
3416 		format_dev_t(devt_str, dev->devt);
3417 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3418 	}
3419 
3420 	return error;
3421 }
3422 
3423 static void device_remove_sys_dev_entry(struct device *dev)
3424 {
3425 	struct kobject *kobj = device_to_dev_kobj(dev);
3426 	char devt_str[15];
3427 
3428 	if (kobj) {
3429 		format_dev_t(devt_str, dev->devt);
3430 		sysfs_remove_link(kobj, devt_str);
3431 	}
3432 }
3433 
3434 static int device_private_init(struct device *dev)
3435 {
3436 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3437 	if (!dev->p)
3438 		return -ENOMEM;
3439 	dev->p->device = dev;
3440 	klist_init(&dev->p->klist_children, klist_children_get,
3441 		   klist_children_put);
3442 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3443 	return 0;
3444 }
3445 
3446 /**
3447  * device_add - add device to device hierarchy.
3448  * @dev: device.
3449  *
3450  * This is part 2 of device_register(), though may be called
3451  * separately _iff_ device_initialize() has been called separately.
3452  *
3453  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3454  * to the global and sibling lists for the device, then
3455  * adds it to the other relevant subsystems of the driver model.
3456  *
3457  * Do not call this routine or device_register() more than once for
3458  * any device structure.  The driver model core is not designed to work
3459  * with devices that get unregistered and then spring back to life.
3460  * (Among other things, it's very hard to guarantee that all references
3461  * to the previous incarnation of @dev have been dropped.)  Allocate
3462  * and register a fresh new struct device instead.
3463  *
3464  * NOTE: _Never_ directly free @dev after calling this function, even
3465  * if it returned an error! Always use put_device() to give up your
3466  * reference instead.
3467  *
3468  * Rule of thumb is: if device_add() succeeds, you should call
3469  * device_del() when you want to get rid of it. If device_add() has
3470  * *not* succeeded, use *only* put_device() to drop the reference
3471  * count.
3472  */
3473 int device_add(struct device *dev)
3474 {
3475 	struct device *parent;
3476 	struct kobject *kobj;
3477 	struct class_interface *class_intf;
3478 	int error = -EINVAL;
3479 	struct kobject *glue_dir = NULL;
3480 
3481 	dev = get_device(dev);
3482 	if (!dev)
3483 		goto done;
3484 
3485 	if (!dev->p) {
3486 		error = device_private_init(dev);
3487 		if (error)
3488 			goto done;
3489 	}
3490 
3491 	/*
3492 	 * for statically allocated devices, which should all be converted
3493 	 * some day, we need to initialize the name. We prevent reading back
3494 	 * the name, and force the use of dev_name()
3495 	 */
3496 	if (dev->init_name) {
3497 		dev_set_name(dev, "%s", dev->init_name);
3498 		dev->init_name = NULL;
3499 	}
3500 
3501 	/* subsystems can specify simple device enumeration */
3502 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3503 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3504 
3505 	if (!dev_name(dev)) {
3506 		error = -EINVAL;
3507 		goto name_error;
3508 	}
3509 
3510 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3511 
3512 	parent = get_device(dev->parent);
3513 	kobj = get_device_parent(dev, parent);
3514 	if (IS_ERR(kobj)) {
3515 		error = PTR_ERR(kobj);
3516 		goto parent_error;
3517 	}
3518 	if (kobj)
3519 		dev->kobj.parent = kobj;
3520 
3521 	/* use parent numa_node */
3522 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3523 		set_dev_node(dev, dev_to_node(parent));
3524 
3525 	/* first, register with generic layer. */
3526 	/* we require the name to be set before, and pass NULL */
3527 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3528 	if (error) {
3529 		glue_dir = kobj;
3530 		goto Error;
3531 	}
3532 
3533 	/* notify platform of device entry */
3534 	device_platform_notify(dev);
3535 
3536 	error = device_create_file(dev, &dev_attr_uevent);
3537 	if (error)
3538 		goto attrError;
3539 
3540 	error = device_add_class_symlinks(dev);
3541 	if (error)
3542 		goto SymlinkError;
3543 	error = device_add_attrs(dev);
3544 	if (error)
3545 		goto AttrsError;
3546 	error = bus_add_device(dev);
3547 	if (error)
3548 		goto BusError;
3549 	error = dpm_sysfs_add(dev);
3550 	if (error)
3551 		goto DPMError;
3552 	device_pm_add(dev);
3553 
3554 	if (MAJOR(dev->devt)) {
3555 		error = device_create_file(dev, &dev_attr_dev);
3556 		if (error)
3557 			goto DevAttrError;
3558 
3559 		error = device_create_sys_dev_entry(dev);
3560 		if (error)
3561 			goto SysEntryError;
3562 
3563 		devtmpfs_create_node(dev);
3564 	}
3565 
3566 	/* Notify clients of device addition.  This call must come
3567 	 * after dpm_sysfs_add() and before kobject_uevent().
3568 	 */
3569 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3570 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3571 
3572 	/*
3573 	 * Check if any of the other devices (consumers) have been waiting for
3574 	 * this device (supplier) to be added so that they can create a device
3575 	 * link to it.
3576 	 *
3577 	 * This needs to happen after device_pm_add() because device_link_add()
3578 	 * requires the supplier be registered before it's called.
3579 	 *
3580 	 * But this also needs to happen before bus_probe_device() to make sure
3581 	 * waiting consumers can link to it before the driver is bound to the
3582 	 * device and the driver sync_state callback is called for this device.
3583 	 */
3584 	if (dev->fwnode && !dev->fwnode->dev) {
3585 		dev->fwnode->dev = dev;
3586 		fw_devlink_link_device(dev);
3587 	}
3588 
3589 	bus_probe_device(dev);
3590 
3591 	/*
3592 	 * If all driver registration is done and a newly added device doesn't
3593 	 * match with any driver, don't block its consumers from probing in
3594 	 * case the consumer device is able to operate without this supplier.
3595 	 */
3596 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3597 		fw_devlink_unblock_consumers(dev);
3598 
3599 	if (parent)
3600 		klist_add_tail(&dev->p->knode_parent,
3601 			       &parent->p->klist_children);
3602 
3603 	if (dev->class) {
3604 		mutex_lock(&dev->class->p->mutex);
3605 		/* tie the class to the device */
3606 		klist_add_tail(&dev->p->knode_class,
3607 			       &dev->class->p->klist_devices);
3608 
3609 		/* notify any interfaces that the device is here */
3610 		list_for_each_entry(class_intf,
3611 				    &dev->class->p->interfaces, node)
3612 			if (class_intf->add_dev)
3613 				class_intf->add_dev(dev, class_intf);
3614 		mutex_unlock(&dev->class->p->mutex);
3615 	}
3616 done:
3617 	put_device(dev);
3618 	return error;
3619  SysEntryError:
3620 	if (MAJOR(dev->devt))
3621 		device_remove_file(dev, &dev_attr_dev);
3622  DevAttrError:
3623 	device_pm_remove(dev);
3624 	dpm_sysfs_remove(dev);
3625  DPMError:
3626 	dev->driver = NULL;
3627 	bus_remove_device(dev);
3628  BusError:
3629 	device_remove_attrs(dev);
3630  AttrsError:
3631 	device_remove_class_symlinks(dev);
3632  SymlinkError:
3633 	device_remove_file(dev, &dev_attr_uevent);
3634  attrError:
3635 	device_platform_notify_remove(dev);
3636 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3637 	glue_dir = get_glue_dir(dev);
3638 	kobject_del(&dev->kobj);
3639  Error:
3640 	cleanup_glue_dir(dev, glue_dir);
3641 parent_error:
3642 	put_device(parent);
3643 name_error:
3644 	kfree(dev->p);
3645 	dev->p = NULL;
3646 	goto done;
3647 }
3648 EXPORT_SYMBOL_GPL(device_add);
3649 
3650 /**
3651  * device_register - register a device with the system.
3652  * @dev: pointer to the device structure
3653  *
3654  * This happens in two clean steps - initialize the device
3655  * and add it to the system. The two steps can be called
3656  * separately, but this is the easiest and most common.
3657  * I.e. you should only call the two helpers separately if
3658  * have a clearly defined need to use and refcount the device
3659  * before it is added to the hierarchy.
3660  *
3661  * For more information, see the kerneldoc for device_initialize()
3662  * and device_add().
3663  *
3664  * NOTE: _Never_ directly free @dev after calling this function, even
3665  * if it returned an error! Always use put_device() to give up the
3666  * reference initialized in this function instead.
3667  */
3668 int device_register(struct device *dev)
3669 {
3670 	device_initialize(dev);
3671 	return device_add(dev);
3672 }
3673 EXPORT_SYMBOL_GPL(device_register);
3674 
3675 /**
3676  * get_device - increment reference count for device.
3677  * @dev: device.
3678  *
3679  * This simply forwards the call to kobject_get(), though
3680  * we do take care to provide for the case that we get a NULL
3681  * pointer passed in.
3682  */
3683 struct device *get_device(struct device *dev)
3684 {
3685 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3686 }
3687 EXPORT_SYMBOL_GPL(get_device);
3688 
3689 /**
3690  * put_device - decrement reference count.
3691  * @dev: device in question.
3692  */
3693 void put_device(struct device *dev)
3694 {
3695 	/* might_sleep(); */
3696 	if (dev)
3697 		kobject_put(&dev->kobj);
3698 }
3699 EXPORT_SYMBOL_GPL(put_device);
3700 
3701 bool kill_device(struct device *dev)
3702 {
3703 	/*
3704 	 * Require the device lock and set the "dead" flag to guarantee that
3705 	 * the update behavior is consistent with the other bitfields near
3706 	 * it and that we cannot have an asynchronous probe routine trying
3707 	 * to run while we are tearing out the bus/class/sysfs from
3708 	 * underneath the device.
3709 	 */
3710 	device_lock_assert(dev);
3711 
3712 	if (dev->p->dead)
3713 		return false;
3714 	dev->p->dead = true;
3715 	return true;
3716 }
3717 EXPORT_SYMBOL_GPL(kill_device);
3718 
3719 /**
3720  * device_del - delete device from system.
3721  * @dev: device.
3722  *
3723  * This is the first part of the device unregistration
3724  * sequence. This removes the device from the lists we control
3725  * from here, has it removed from the other driver model
3726  * subsystems it was added to in device_add(), and removes it
3727  * from the kobject hierarchy.
3728  *
3729  * NOTE: this should be called manually _iff_ device_add() was
3730  * also called manually.
3731  */
3732 void device_del(struct device *dev)
3733 {
3734 	struct device *parent = dev->parent;
3735 	struct kobject *glue_dir = NULL;
3736 	struct class_interface *class_intf;
3737 	unsigned int noio_flag;
3738 
3739 	device_lock(dev);
3740 	kill_device(dev);
3741 	device_unlock(dev);
3742 
3743 	if (dev->fwnode && dev->fwnode->dev == dev)
3744 		dev->fwnode->dev = NULL;
3745 
3746 	/* Notify clients of device removal.  This call must come
3747 	 * before dpm_sysfs_remove().
3748 	 */
3749 	noio_flag = memalloc_noio_save();
3750 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3751 
3752 	dpm_sysfs_remove(dev);
3753 	if (parent)
3754 		klist_del(&dev->p->knode_parent);
3755 	if (MAJOR(dev->devt)) {
3756 		devtmpfs_delete_node(dev);
3757 		device_remove_sys_dev_entry(dev);
3758 		device_remove_file(dev, &dev_attr_dev);
3759 	}
3760 	if (dev->class) {
3761 		device_remove_class_symlinks(dev);
3762 
3763 		mutex_lock(&dev->class->p->mutex);
3764 		/* notify any interfaces that the device is now gone */
3765 		list_for_each_entry(class_intf,
3766 				    &dev->class->p->interfaces, node)
3767 			if (class_intf->remove_dev)
3768 				class_intf->remove_dev(dev, class_intf);
3769 		/* remove the device from the class list */
3770 		klist_del(&dev->p->knode_class);
3771 		mutex_unlock(&dev->class->p->mutex);
3772 	}
3773 	device_remove_file(dev, &dev_attr_uevent);
3774 	device_remove_attrs(dev);
3775 	bus_remove_device(dev);
3776 	device_pm_remove(dev);
3777 	driver_deferred_probe_del(dev);
3778 	device_platform_notify_remove(dev);
3779 	device_links_purge(dev);
3780 
3781 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3782 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3783 	glue_dir = get_glue_dir(dev);
3784 	kobject_del(&dev->kobj);
3785 	cleanup_glue_dir(dev, glue_dir);
3786 	memalloc_noio_restore(noio_flag);
3787 	put_device(parent);
3788 }
3789 EXPORT_SYMBOL_GPL(device_del);
3790 
3791 /**
3792  * device_unregister - unregister device from system.
3793  * @dev: device going away.
3794  *
3795  * We do this in two parts, like we do device_register(). First,
3796  * we remove it from all the subsystems with device_del(), then
3797  * we decrement the reference count via put_device(). If that
3798  * is the final reference count, the device will be cleaned up
3799  * via device_release() above. Otherwise, the structure will
3800  * stick around until the final reference to the device is dropped.
3801  */
3802 void device_unregister(struct device *dev)
3803 {
3804 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3805 	device_del(dev);
3806 	put_device(dev);
3807 }
3808 EXPORT_SYMBOL_GPL(device_unregister);
3809 
3810 static struct device *prev_device(struct klist_iter *i)
3811 {
3812 	struct klist_node *n = klist_prev(i);
3813 	struct device *dev = NULL;
3814 	struct device_private *p;
3815 
3816 	if (n) {
3817 		p = to_device_private_parent(n);
3818 		dev = p->device;
3819 	}
3820 	return dev;
3821 }
3822 
3823 static struct device *next_device(struct klist_iter *i)
3824 {
3825 	struct klist_node *n = klist_next(i);
3826 	struct device *dev = NULL;
3827 	struct device_private *p;
3828 
3829 	if (n) {
3830 		p = to_device_private_parent(n);
3831 		dev = p->device;
3832 	}
3833 	return dev;
3834 }
3835 
3836 /**
3837  * device_get_devnode - path of device node file
3838  * @dev: device
3839  * @mode: returned file access mode
3840  * @uid: returned file owner
3841  * @gid: returned file group
3842  * @tmp: possibly allocated string
3843  *
3844  * Return the relative path of a possible device node.
3845  * Non-default names may need to allocate a memory to compose
3846  * a name. This memory is returned in tmp and needs to be
3847  * freed by the caller.
3848  */
3849 const char *device_get_devnode(const struct device *dev,
3850 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3851 			       const char **tmp)
3852 {
3853 	char *s;
3854 
3855 	*tmp = NULL;
3856 
3857 	/* the device type may provide a specific name */
3858 	if (dev->type && dev->type->devnode)
3859 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3860 	if (*tmp)
3861 		return *tmp;
3862 
3863 	/* the class may provide a specific name */
3864 	if (dev->class && dev->class->devnode)
3865 		*tmp = dev->class->devnode(dev, mode);
3866 	if (*tmp)
3867 		return *tmp;
3868 
3869 	/* return name without allocation, tmp == NULL */
3870 	if (strchr(dev_name(dev), '!') == NULL)
3871 		return dev_name(dev);
3872 
3873 	/* replace '!' in the name with '/' */
3874 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3875 	if (!s)
3876 		return NULL;
3877 	strreplace(s, '!', '/');
3878 	return *tmp = s;
3879 }
3880 
3881 /**
3882  * device_for_each_child - device child iterator.
3883  * @parent: parent struct device.
3884  * @fn: function to be called for each device.
3885  * @data: data for the callback.
3886  *
3887  * Iterate over @parent's child devices, and call @fn for each,
3888  * passing it @data.
3889  *
3890  * We check the return of @fn each time. If it returns anything
3891  * other than 0, we break out and return that value.
3892  */
3893 int device_for_each_child(struct device *parent, void *data,
3894 			  int (*fn)(struct device *dev, void *data))
3895 {
3896 	struct klist_iter i;
3897 	struct device *child;
3898 	int error = 0;
3899 
3900 	if (!parent->p)
3901 		return 0;
3902 
3903 	klist_iter_init(&parent->p->klist_children, &i);
3904 	while (!error && (child = next_device(&i)))
3905 		error = fn(child, data);
3906 	klist_iter_exit(&i);
3907 	return error;
3908 }
3909 EXPORT_SYMBOL_GPL(device_for_each_child);
3910 
3911 /**
3912  * device_for_each_child_reverse - device child iterator in reversed order.
3913  * @parent: parent struct device.
3914  * @fn: function to be called for each device.
3915  * @data: data for the callback.
3916  *
3917  * Iterate over @parent's child devices, and call @fn for each,
3918  * passing it @data.
3919  *
3920  * We check the return of @fn each time. If it returns anything
3921  * other than 0, we break out and return that value.
3922  */
3923 int device_for_each_child_reverse(struct device *parent, void *data,
3924 				  int (*fn)(struct device *dev, void *data))
3925 {
3926 	struct klist_iter i;
3927 	struct device *child;
3928 	int error = 0;
3929 
3930 	if (!parent->p)
3931 		return 0;
3932 
3933 	klist_iter_init(&parent->p->klist_children, &i);
3934 	while ((child = prev_device(&i)) && !error)
3935 		error = fn(child, data);
3936 	klist_iter_exit(&i);
3937 	return error;
3938 }
3939 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3940 
3941 /**
3942  * device_find_child - device iterator for locating a particular device.
3943  * @parent: parent struct device
3944  * @match: Callback function to check device
3945  * @data: Data to pass to match function
3946  *
3947  * This is similar to the device_for_each_child() function above, but it
3948  * returns a reference to a device that is 'found' for later use, as
3949  * determined by the @match callback.
3950  *
3951  * The callback should return 0 if the device doesn't match and non-zero
3952  * if it does.  If the callback returns non-zero and a reference to the
3953  * current device can be obtained, this function will return to the caller
3954  * and not iterate over any more devices.
3955  *
3956  * NOTE: you will need to drop the reference with put_device() after use.
3957  */
3958 struct device *device_find_child(struct device *parent, void *data,
3959 				 int (*match)(struct device *dev, void *data))
3960 {
3961 	struct klist_iter i;
3962 	struct device *child;
3963 
3964 	if (!parent)
3965 		return NULL;
3966 
3967 	klist_iter_init(&parent->p->klist_children, &i);
3968 	while ((child = next_device(&i)))
3969 		if (match(child, data) && get_device(child))
3970 			break;
3971 	klist_iter_exit(&i);
3972 	return child;
3973 }
3974 EXPORT_SYMBOL_GPL(device_find_child);
3975 
3976 /**
3977  * device_find_child_by_name - device iterator for locating a child device.
3978  * @parent: parent struct device
3979  * @name: name of the child device
3980  *
3981  * This is similar to the device_find_child() function above, but it
3982  * returns a reference to a device that has the name @name.
3983  *
3984  * NOTE: you will need to drop the reference with put_device() after use.
3985  */
3986 struct device *device_find_child_by_name(struct device *parent,
3987 					 const char *name)
3988 {
3989 	struct klist_iter i;
3990 	struct device *child;
3991 
3992 	if (!parent)
3993 		return NULL;
3994 
3995 	klist_iter_init(&parent->p->klist_children, &i);
3996 	while ((child = next_device(&i)))
3997 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3998 			break;
3999 	klist_iter_exit(&i);
4000 	return child;
4001 }
4002 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4003 
4004 static int match_any(struct device *dev, void *unused)
4005 {
4006 	return 1;
4007 }
4008 
4009 /**
4010  * device_find_any_child - device iterator for locating a child device, if any.
4011  * @parent: parent struct device
4012  *
4013  * This is similar to the device_find_child() function above, but it
4014  * returns a reference to a child device, if any.
4015  *
4016  * NOTE: you will need to drop the reference with put_device() after use.
4017  */
4018 struct device *device_find_any_child(struct device *parent)
4019 {
4020 	return device_find_child(parent, NULL, match_any);
4021 }
4022 EXPORT_SYMBOL_GPL(device_find_any_child);
4023 
4024 int __init devices_init(void)
4025 {
4026 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4027 	if (!devices_kset)
4028 		return -ENOMEM;
4029 	dev_kobj = kobject_create_and_add("dev", NULL);
4030 	if (!dev_kobj)
4031 		goto dev_kobj_err;
4032 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4033 	if (!sysfs_dev_block_kobj)
4034 		goto block_kobj_err;
4035 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4036 	if (!sysfs_dev_char_kobj)
4037 		goto char_kobj_err;
4038 
4039 	return 0;
4040 
4041  char_kobj_err:
4042 	kobject_put(sysfs_dev_block_kobj);
4043  block_kobj_err:
4044 	kobject_put(dev_kobj);
4045  dev_kobj_err:
4046 	kset_unregister(devices_kset);
4047 	return -ENOMEM;
4048 }
4049 
4050 static int device_check_offline(struct device *dev, void *not_used)
4051 {
4052 	int ret;
4053 
4054 	ret = device_for_each_child(dev, NULL, device_check_offline);
4055 	if (ret)
4056 		return ret;
4057 
4058 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4059 }
4060 
4061 /**
4062  * device_offline - Prepare the device for hot-removal.
4063  * @dev: Device to be put offline.
4064  *
4065  * Execute the device bus type's .offline() callback, if present, to prepare
4066  * the device for a subsequent hot-removal.  If that succeeds, the device must
4067  * not be used until either it is removed or its bus type's .online() callback
4068  * is executed.
4069  *
4070  * Call under device_hotplug_lock.
4071  */
4072 int device_offline(struct device *dev)
4073 {
4074 	int ret;
4075 
4076 	if (dev->offline_disabled)
4077 		return -EPERM;
4078 
4079 	ret = device_for_each_child(dev, NULL, device_check_offline);
4080 	if (ret)
4081 		return ret;
4082 
4083 	device_lock(dev);
4084 	if (device_supports_offline(dev)) {
4085 		if (dev->offline) {
4086 			ret = 1;
4087 		} else {
4088 			ret = dev->bus->offline(dev);
4089 			if (!ret) {
4090 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4091 				dev->offline = true;
4092 			}
4093 		}
4094 	}
4095 	device_unlock(dev);
4096 
4097 	return ret;
4098 }
4099 
4100 /**
4101  * device_online - Put the device back online after successful device_offline().
4102  * @dev: Device to be put back online.
4103  *
4104  * If device_offline() has been successfully executed for @dev, but the device
4105  * has not been removed subsequently, execute its bus type's .online() callback
4106  * to indicate that the device can be used again.
4107  *
4108  * Call under device_hotplug_lock.
4109  */
4110 int device_online(struct device *dev)
4111 {
4112 	int ret = 0;
4113 
4114 	device_lock(dev);
4115 	if (device_supports_offline(dev)) {
4116 		if (dev->offline) {
4117 			ret = dev->bus->online(dev);
4118 			if (!ret) {
4119 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4120 				dev->offline = false;
4121 			}
4122 		} else {
4123 			ret = 1;
4124 		}
4125 	}
4126 	device_unlock(dev);
4127 
4128 	return ret;
4129 }
4130 
4131 struct root_device {
4132 	struct device dev;
4133 	struct module *owner;
4134 };
4135 
4136 static inline struct root_device *to_root_device(struct device *d)
4137 {
4138 	return container_of(d, struct root_device, dev);
4139 }
4140 
4141 static void root_device_release(struct device *dev)
4142 {
4143 	kfree(to_root_device(dev));
4144 }
4145 
4146 /**
4147  * __root_device_register - allocate and register a root device
4148  * @name: root device name
4149  * @owner: owner module of the root device, usually THIS_MODULE
4150  *
4151  * This function allocates a root device and registers it
4152  * using device_register(). In order to free the returned
4153  * device, use root_device_unregister().
4154  *
4155  * Root devices are dummy devices which allow other devices
4156  * to be grouped under /sys/devices. Use this function to
4157  * allocate a root device and then use it as the parent of
4158  * any device which should appear under /sys/devices/{name}
4159  *
4160  * The /sys/devices/{name} directory will also contain a
4161  * 'module' symlink which points to the @owner directory
4162  * in sysfs.
4163  *
4164  * Returns &struct device pointer on success, or ERR_PTR() on error.
4165  *
4166  * Note: You probably want to use root_device_register().
4167  */
4168 struct device *__root_device_register(const char *name, struct module *owner)
4169 {
4170 	struct root_device *root;
4171 	int err = -ENOMEM;
4172 
4173 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4174 	if (!root)
4175 		return ERR_PTR(err);
4176 
4177 	err = dev_set_name(&root->dev, "%s", name);
4178 	if (err) {
4179 		kfree(root);
4180 		return ERR_PTR(err);
4181 	}
4182 
4183 	root->dev.release = root_device_release;
4184 
4185 	err = device_register(&root->dev);
4186 	if (err) {
4187 		put_device(&root->dev);
4188 		return ERR_PTR(err);
4189 	}
4190 
4191 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4192 	if (owner) {
4193 		struct module_kobject *mk = &owner->mkobj;
4194 
4195 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4196 		if (err) {
4197 			device_unregister(&root->dev);
4198 			return ERR_PTR(err);
4199 		}
4200 		root->owner = owner;
4201 	}
4202 #endif
4203 
4204 	return &root->dev;
4205 }
4206 EXPORT_SYMBOL_GPL(__root_device_register);
4207 
4208 /**
4209  * root_device_unregister - unregister and free a root device
4210  * @dev: device going away
4211  *
4212  * This function unregisters and cleans up a device that was created by
4213  * root_device_register().
4214  */
4215 void root_device_unregister(struct device *dev)
4216 {
4217 	struct root_device *root = to_root_device(dev);
4218 
4219 	if (root->owner)
4220 		sysfs_remove_link(&root->dev.kobj, "module");
4221 
4222 	device_unregister(dev);
4223 }
4224 EXPORT_SYMBOL_GPL(root_device_unregister);
4225 
4226 
4227 static void device_create_release(struct device *dev)
4228 {
4229 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4230 	kfree(dev);
4231 }
4232 
4233 static __printf(6, 0) struct device *
4234 device_create_groups_vargs(struct class *class, struct device *parent,
4235 			   dev_t devt, void *drvdata,
4236 			   const struct attribute_group **groups,
4237 			   const char *fmt, va_list args)
4238 {
4239 	struct device *dev = NULL;
4240 	int retval = -ENODEV;
4241 
4242 	if (IS_ERR_OR_NULL(class))
4243 		goto error;
4244 
4245 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4246 	if (!dev) {
4247 		retval = -ENOMEM;
4248 		goto error;
4249 	}
4250 
4251 	device_initialize(dev);
4252 	dev->devt = devt;
4253 	dev->class = class;
4254 	dev->parent = parent;
4255 	dev->groups = groups;
4256 	dev->release = device_create_release;
4257 	dev_set_drvdata(dev, drvdata);
4258 
4259 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4260 	if (retval)
4261 		goto error;
4262 
4263 	retval = device_add(dev);
4264 	if (retval)
4265 		goto error;
4266 
4267 	return dev;
4268 
4269 error:
4270 	put_device(dev);
4271 	return ERR_PTR(retval);
4272 }
4273 
4274 /**
4275  * device_create - creates a device and registers it with sysfs
4276  * @class: pointer to the struct class that this device should be registered to
4277  * @parent: pointer to the parent struct device of this new device, if any
4278  * @devt: the dev_t for the char device to be added
4279  * @drvdata: the data to be added to the device for callbacks
4280  * @fmt: string for the device's name
4281  *
4282  * This function can be used by char device classes.  A struct device
4283  * will be created in sysfs, registered to the specified class.
4284  *
4285  * A "dev" file will be created, showing the dev_t for the device, if
4286  * the dev_t is not 0,0.
4287  * If a pointer to a parent struct device is passed in, the newly created
4288  * struct device will be a child of that device in sysfs.
4289  * The pointer to the struct device will be returned from the call.
4290  * Any further sysfs files that might be required can be created using this
4291  * pointer.
4292  *
4293  * Returns &struct device pointer on success, or ERR_PTR() on error.
4294  *
4295  * Note: the struct class passed to this function must have previously
4296  * been created with a call to class_create().
4297  */
4298 struct device *device_create(struct class *class, struct device *parent,
4299 			     dev_t devt, void *drvdata, const char *fmt, ...)
4300 {
4301 	va_list vargs;
4302 	struct device *dev;
4303 
4304 	va_start(vargs, fmt);
4305 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4306 					  fmt, vargs);
4307 	va_end(vargs);
4308 	return dev;
4309 }
4310 EXPORT_SYMBOL_GPL(device_create);
4311 
4312 /**
4313  * device_create_with_groups - creates a device and registers it with sysfs
4314  * @class: pointer to the struct class that this device should be registered to
4315  * @parent: pointer to the parent struct device of this new device, if any
4316  * @devt: the dev_t for the char device to be added
4317  * @drvdata: the data to be added to the device for callbacks
4318  * @groups: NULL-terminated list of attribute groups to be created
4319  * @fmt: string for the device's name
4320  *
4321  * This function can be used by char device classes.  A struct device
4322  * will be created in sysfs, registered to the specified class.
4323  * Additional attributes specified in the groups parameter will also
4324  * be created automatically.
4325  *
4326  * A "dev" file will be created, showing the dev_t for the device, if
4327  * the dev_t is not 0,0.
4328  * If a pointer to a parent struct device is passed in, the newly created
4329  * struct device will be a child of that device in sysfs.
4330  * The pointer to the struct device will be returned from the call.
4331  * Any further sysfs files that might be required can be created using this
4332  * pointer.
4333  *
4334  * Returns &struct device pointer on success, or ERR_PTR() on error.
4335  *
4336  * Note: the struct class passed to this function must have previously
4337  * been created with a call to class_create().
4338  */
4339 struct device *device_create_with_groups(struct class *class,
4340 					 struct device *parent, dev_t devt,
4341 					 void *drvdata,
4342 					 const struct attribute_group **groups,
4343 					 const char *fmt, ...)
4344 {
4345 	va_list vargs;
4346 	struct device *dev;
4347 
4348 	va_start(vargs, fmt);
4349 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4350 					 fmt, vargs);
4351 	va_end(vargs);
4352 	return dev;
4353 }
4354 EXPORT_SYMBOL_GPL(device_create_with_groups);
4355 
4356 /**
4357  * device_destroy - removes a device that was created with device_create()
4358  * @class: pointer to the struct class that this device was registered with
4359  * @devt: the dev_t of the device that was previously registered
4360  *
4361  * This call unregisters and cleans up a device that was created with a
4362  * call to device_create().
4363  */
4364 void device_destroy(struct class *class, dev_t devt)
4365 {
4366 	struct device *dev;
4367 
4368 	dev = class_find_device_by_devt(class, devt);
4369 	if (dev) {
4370 		put_device(dev);
4371 		device_unregister(dev);
4372 	}
4373 }
4374 EXPORT_SYMBOL_GPL(device_destroy);
4375 
4376 /**
4377  * device_rename - renames a device
4378  * @dev: the pointer to the struct device to be renamed
4379  * @new_name: the new name of the device
4380  *
4381  * It is the responsibility of the caller to provide mutual
4382  * exclusion between two different calls of device_rename
4383  * on the same device to ensure that new_name is valid and
4384  * won't conflict with other devices.
4385  *
4386  * Note: Don't call this function.  Currently, the networking layer calls this
4387  * function, but that will change.  The following text from Kay Sievers offers
4388  * some insight:
4389  *
4390  * Renaming devices is racy at many levels, symlinks and other stuff are not
4391  * replaced atomically, and you get a "move" uevent, but it's not easy to
4392  * connect the event to the old and new device. Device nodes are not renamed at
4393  * all, there isn't even support for that in the kernel now.
4394  *
4395  * In the meantime, during renaming, your target name might be taken by another
4396  * driver, creating conflicts. Or the old name is taken directly after you
4397  * renamed it -- then you get events for the same DEVPATH, before you even see
4398  * the "move" event. It's just a mess, and nothing new should ever rely on
4399  * kernel device renaming. Besides that, it's not even implemented now for
4400  * other things than (driver-core wise very simple) network devices.
4401  *
4402  * We are currently about to change network renaming in udev to completely
4403  * disallow renaming of devices in the same namespace as the kernel uses,
4404  * because we can't solve the problems properly, that arise with swapping names
4405  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4406  * be allowed to some other name than eth[0-9]*, for the aforementioned
4407  * reasons.
4408  *
4409  * Make up a "real" name in the driver before you register anything, or add
4410  * some other attributes for userspace to find the device, or use udev to add
4411  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4412  * don't even want to get into that and try to implement the missing pieces in
4413  * the core. We really have other pieces to fix in the driver core mess. :)
4414  */
4415 int device_rename(struct device *dev, const char *new_name)
4416 {
4417 	struct kobject *kobj = &dev->kobj;
4418 	char *old_device_name = NULL;
4419 	int error;
4420 
4421 	dev = get_device(dev);
4422 	if (!dev)
4423 		return -EINVAL;
4424 
4425 	dev_dbg(dev, "renaming to %s\n", new_name);
4426 
4427 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4428 	if (!old_device_name) {
4429 		error = -ENOMEM;
4430 		goto out;
4431 	}
4432 
4433 	if (dev->class) {
4434 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4435 					     kobj, old_device_name,
4436 					     new_name, kobject_namespace(kobj));
4437 		if (error)
4438 			goto out;
4439 	}
4440 
4441 	error = kobject_rename(kobj, new_name);
4442 	if (error)
4443 		goto out;
4444 
4445 out:
4446 	put_device(dev);
4447 
4448 	kfree(old_device_name);
4449 
4450 	return error;
4451 }
4452 EXPORT_SYMBOL_GPL(device_rename);
4453 
4454 static int device_move_class_links(struct device *dev,
4455 				   struct device *old_parent,
4456 				   struct device *new_parent)
4457 {
4458 	int error = 0;
4459 
4460 	if (old_parent)
4461 		sysfs_remove_link(&dev->kobj, "device");
4462 	if (new_parent)
4463 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4464 					  "device");
4465 	return error;
4466 }
4467 
4468 /**
4469  * device_move - moves a device to a new parent
4470  * @dev: the pointer to the struct device to be moved
4471  * @new_parent: the new parent of the device (can be NULL)
4472  * @dpm_order: how to reorder the dpm_list
4473  */
4474 int device_move(struct device *dev, struct device *new_parent,
4475 		enum dpm_order dpm_order)
4476 {
4477 	int error;
4478 	struct device *old_parent;
4479 	struct kobject *new_parent_kobj;
4480 
4481 	dev = get_device(dev);
4482 	if (!dev)
4483 		return -EINVAL;
4484 
4485 	device_pm_lock();
4486 	new_parent = get_device(new_parent);
4487 	new_parent_kobj = get_device_parent(dev, new_parent);
4488 	if (IS_ERR(new_parent_kobj)) {
4489 		error = PTR_ERR(new_parent_kobj);
4490 		put_device(new_parent);
4491 		goto out;
4492 	}
4493 
4494 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4495 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4496 	error = kobject_move(&dev->kobj, new_parent_kobj);
4497 	if (error) {
4498 		cleanup_glue_dir(dev, new_parent_kobj);
4499 		put_device(new_parent);
4500 		goto out;
4501 	}
4502 	old_parent = dev->parent;
4503 	dev->parent = new_parent;
4504 	if (old_parent)
4505 		klist_remove(&dev->p->knode_parent);
4506 	if (new_parent) {
4507 		klist_add_tail(&dev->p->knode_parent,
4508 			       &new_parent->p->klist_children);
4509 		set_dev_node(dev, dev_to_node(new_parent));
4510 	}
4511 
4512 	if (dev->class) {
4513 		error = device_move_class_links(dev, old_parent, new_parent);
4514 		if (error) {
4515 			/* We ignore errors on cleanup since we're hosed anyway... */
4516 			device_move_class_links(dev, new_parent, old_parent);
4517 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4518 				if (new_parent)
4519 					klist_remove(&dev->p->knode_parent);
4520 				dev->parent = old_parent;
4521 				if (old_parent) {
4522 					klist_add_tail(&dev->p->knode_parent,
4523 						       &old_parent->p->klist_children);
4524 					set_dev_node(dev, dev_to_node(old_parent));
4525 				}
4526 			}
4527 			cleanup_glue_dir(dev, new_parent_kobj);
4528 			put_device(new_parent);
4529 			goto out;
4530 		}
4531 	}
4532 	switch (dpm_order) {
4533 	case DPM_ORDER_NONE:
4534 		break;
4535 	case DPM_ORDER_DEV_AFTER_PARENT:
4536 		device_pm_move_after(dev, new_parent);
4537 		devices_kset_move_after(dev, new_parent);
4538 		break;
4539 	case DPM_ORDER_PARENT_BEFORE_DEV:
4540 		device_pm_move_before(new_parent, dev);
4541 		devices_kset_move_before(new_parent, dev);
4542 		break;
4543 	case DPM_ORDER_DEV_LAST:
4544 		device_pm_move_last(dev);
4545 		devices_kset_move_last(dev);
4546 		break;
4547 	}
4548 
4549 	put_device(old_parent);
4550 out:
4551 	device_pm_unlock();
4552 	put_device(dev);
4553 	return error;
4554 }
4555 EXPORT_SYMBOL_GPL(device_move);
4556 
4557 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4558 				     kgid_t kgid)
4559 {
4560 	struct kobject *kobj = &dev->kobj;
4561 	struct class *class = dev->class;
4562 	const struct device_type *type = dev->type;
4563 	int error;
4564 
4565 	if (class) {
4566 		/*
4567 		 * Change the device groups of the device class for @dev to
4568 		 * @kuid/@kgid.
4569 		 */
4570 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4571 						  kgid);
4572 		if (error)
4573 			return error;
4574 	}
4575 
4576 	if (type) {
4577 		/*
4578 		 * Change the device groups of the device type for @dev to
4579 		 * @kuid/@kgid.
4580 		 */
4581 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4582 						  kgid);
4583 		if (error)
4584 			return error;
4585 	}
4586 
4587 	/* Change the device groups of @dev to @kuid/@kgid. */
4588 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4589 	if (error)
4590 		return error;
4591 
4592 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4593 		/* Change online device attributes of @dev to @kuid/@kgid. */
4594 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4595 						kuid, kgid);
4596 		if (error)
4597 			return error;
4598 	}
4599 
4600 	return 0;
4601 }
4602 
4603 /**
4604  * device_change_owner - change the owner of an existing device.
4605  * @dev: device.
4606  * @kuid: new owner's kuid
4607  * @kgid: new owner's kgid
4608  *
4609  * This changes the owner of @dev and its corresponding sysfs entries to
4610  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4611  * core.
4612  *
4613  * Returns 0 on success or error code on failure.
4614  */
4615 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4616 {
4617 	int error;
4618 	struct kobject *kobj = &dev->kobj;
4619 
4620 	dev = get_device(dev);
4621 	if (!dev)
4622 		return -EINVAL;
4623 
4624 	/*
4625 	 * Change the kobject and the default attributes and groups of the
4626 	 * ktype associated with it to @kuid/@kgid.
4627 	 */
4628 	error = sysfs_change_owner(kobj, kuid, kgid);
4629 	if (error)
4630 		goto out;
4631 
4632 	/*
4633 	 * Change the uevent file for @dev to the new owner. The uevent file
4634 	 * was created in a separate step when @dev got added and we mirror
4635 	 * that step here.
4636 	 */
4637 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4638 					kgid);
4639 	if (error)
4640 		goto out;
4641 
4642 	/*
4643 	 * Change the device groups, the device groups associated with the
4644 	 * device class, and the groups associated with the device type of @dev
4645 	 * to @kuid/@kgid.
4646 	 */
4647 	error = device_attrs_change_owner(dev, kuid, kgid);
4648 	if (error)
4649 		goto out;
4650 
4651 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4652 	if (error)
4653 		goto out;
4654 
4655 #ifdef CONFIG_BLOCK
4656 	if (sysfs_deprecated && dev->class == &block_class)
4657 		goto out;
4658 #endif
4659 
4660 	/*
4661 	 * Change the owner of the symlink located in the class directory of
4662 	 * the device class associated with @dev which points to the actual
4663 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4664 	 * symlink shows the same permissions as its target.
4665 	 */
4666 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4667 					dev_name(dev), kuid, kgid);
4668 	if (error)
4669 		goto out;
4670 
4671 out:
4672 	put_device(dev);
4673 	return error;
4674 }
4675 EXPORT_SYMBOL_GPL(device_change_owner);
4676 
4677 /**
4678  * device_shutdown - call ->shutdown() on each device to shutdown.
4679  */
4680 void device_shutdown(void)
4681 {
4682 	struct device *dev, *parent;
4683 
4684 	wait_for_device_probe();
4685 	device_block_probing();
4686 
4687 	cpufreq_suspend();
4688 
4689 	spin_lock(&devices_kset->list_lock);
4690 	/*
4691 	 * Walk the devices list backward, shutting down each in turn.
4692 	 * Beware that device unplug events may also start pulling
4693 	 * devices offline, even as the system is shutting down.
4694 	 */
4695 	while (!list_empty(&devices_kset->list)) {
4696 		dev = list_entry(devices_kset->list.prev, struct device,
4697 				kobj.entry);
4698 
4699 		/*
4700 		 * hold reference count of device's parent to
4701 		 * prevent it from being freed because parent's
4702 		 * lock is to be held
4703 		 */
4704 		parent = get_device(dev->parent);
4705 		get_device(dev);
4706 		/*
4707 		 * Make sure the device is off the kset list, in the
4708 		 * event that dev->*->shutdown() doesn't remove it.
4709 		 */
4710 		list_del_init(&dev->kobj.entry);
4711 		spin_unlock(&devices_kset->list_lock);
4712 
4713 		/* hold lock to avoid race with probe/release */
4714 		if (parent)
4715 			device_lock(parent);
4716 		device_lock(dev);
4717 
4718 		/* Don't allow any more runtime suspends */
4719 		pm_runtime_get_noresume(dev);
4720 		pm_runtime_barrier(dev);
4721 
4722 		if (dev->class && dev->class->shutdown_pre) {
4723 			if (initcall_debug)
4724 				dev_info(dev, "shutdown_pre\n");
4725 			dev->class->shutdown_pre(dev);
4726 		}
4727 		if (dev->bus && dev->bus->shutdown) {
4728 			if (initcall_debug)
4729 				dev_info(dev, "shutdown\n");
4730 			dev->bus->shutdown(dev);
4731 		} else if (dev->driver && dev->driver->shutdown) {
4732 			if (initcall_debug)
4733 				dev_info(dev, "shutdown\n");
4734 			dev->driver->shutdown(dev);
4735 		}
4736 
4737 		device_unlock(dev);
4738 		if (parent)
4739 			device_unlock(parent);
4740 
4741 		put_device(dev);
4742 		put_device(parent);
4743 
4744 		spin_lock(&devices_kset->list_lock);
4745 	}
4746 	spin_unlock(&devices_kset->list_lock);
4747 }
4748 
4749 /*
4750  * Device logging functions
4751  */
4752 
4753 #ifdef CONFIG_PRINTK
4754 static void
4755 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4756 {
4757 	const char *subsys;
4758 
4759 	memset(dev_info, 0, sizeof(*dev_info));
4760 
4761 	if (dev->class)
4762 		subsys = dev->class->name;
4763 	else if (dev->bus)
4764 		subsys = dev->bus->name;
4765 	else
4766 		return;
4767 
4768 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4769 
4770 	/*
4771 	 * Add device identifier DEVICE=:
4772 	 *   b12:8         block dev_t
4773 	 *   c127:3        char dev_t
4774 	 *   n8            netdev ifindex
4775 	 *   +sound:card0  subsystem:devname
4776 	 */
4777 	if (MAJOR(dev->devt)) {
4778 		char c;
4779 
4780 		if (strcmp(subsys, "block") == 0)
4781 			c = 'b';
4782 		else
4783 			c = 'c';
4784 
4785 		snprintf(dev_info->device, sizeof(dev_info->device),
4786 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4787 	} else if (strcmp(subsys, "net") == 0) {
4788 		struct net_device *net = to_net_dev(dev);
4789 
4790 		snprintf(dev_info->device, sizeof(dev_info->device),
4791 			 "n%u", net->ifindex);
4792 	} else {
4793 		snprintf(dev_info->device, sizeof(dev_info->device),
4794 			 "+%s:%s", subsys, dev_name(dev));
4795 	}
4796 }
4797 
4798 int dev_vprintk_emit(int level, const struct device *dev,
4799 		     const char *fmt, va_list args)
4800 {
4801 	struct dev_printk_info dev_info;
4802 
4803 	set_dev_info(dev, &dev_info);
4804 
4805 	return vprintk_emit(0, level, &dev_info, fmt, args);
4806 }
4807 EXPORT_SYMBOL(dev_vprintk_emit);
4808 
4809 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4810 {
4811 	va_list args;
4812 	int r;
4813 
4814 	va_start(args, fmt);
4815 
4816 	r = dev_vprintk_emit(level, dev, fmt, args);
4817 
4818 	va_end(args);
4819 
4820 	return r;
4821 }
4822 EXPORT_SYMBOL(dev_printk_emit);
4823 
4824 static void __dev_printk(const char *level, const struct device *dev,
4825 			struct va_format *vaf)
4826 {
4827 	if (dev)
4828 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4829 				dev_driver_string(dev), dev_name(dev), vaf);
4830 	else
4831 		printk("%s(NULL device *): %pV", level, vaf);
4832 }
4833 
4834 void _dev_printk(const char *level, const struct device *dev,
4835 		 const char *fmt, ...)
4836 {
4837 	struct va_format vaf;
4838 	va_list args;
4839 
4840 	va_start(args, fmt);
4841 
4842 	vaf.fmt = fmt;
4843 	vaf.va = &args;
4844 
4845 	__dev_printk(level, dev, &vaf);
4846 
4847 	va_end(args);
4848 }
4849 EXPORT_SYMBOL(_dev_printk);
4850 
4851 #define define_dev_printk_level(func, kern_level)		\
4852 void func(const struct device *dev, const char *fmt, ...)	\
4853 {								\
4854 	struct va_format vaf;					\
4855 	va_list args;						\
4856 								\
4857 	va_start(args, fmt);					\
4858 								\
4859 	vaf.fmt = fmt;						\
4860 	vaf.va = &args;						\
4861 								\
4862 	__dev_printk(kern_level, dev, &vaf);			\
4863 								\
4864 	va_end(args);						\
4865 }								\
4866 EXPORT_SYMBOL(func);
4867 
4868 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4869 define_dev_printk_level(_dev_alert, KERN_ALERT);
4870 define_dev_printk_level(_dev_crit, KERN_CRIT);
4871 define_dev_printk_level(_dev_err, KERN_ERR);
4872 define_dev_printk_level(_dev_warn, KERN_WARNING);
4873 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4874 define_dev_printk_level(_dev_info, KERN_INFO);
4875 
4876 #endif
4877 
4878 /**
4879  * dev_err_probe - probe error check and log helper
4880  * @dev: the pointer to the struct device
4881  * @err: error value to test
4882  * @fmt: printf-style format string
4883  * @...: arguments as specified in the format string
4884  *
4885  * This helper implements common pattern present in probe functions for error
4886  * checking: print debug or error message depending if the error value is
4887  * -EPROBE_DEFER and propagate error upwards.
4888  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4889  * checked later by reading devices_deferred debugfs attribute.
4890  * It replaces code sequence::
4891  *
4892  * 	if (err != -EPROBE_DEFER)
4893  * 		dev_err(dev, ...);
4894  * 	else
4895  * 		dev_dbg(dev, ...);
4896  * 	return err;
4897  *
4898  * with::
4899  *
4900  * 	return dev_err_probe(dev, err, ...);
4901  *
4902  * Note that it is deemed acceptable to use this function for error
4903  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4904  * The benefit compared to a normal dev_err() is the standardized format
4905  * of the error code and the fact that the error code is returned.
4906  *
4907  * Returns @err.
4908  *
4909  */
4910 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4911 {
4912 	struct va_format vaf;
4913 	va_list args;
4914 
4915 	va_start(args, fmt);
4916 	vaf.fmt = fmt;
4917 	vaf.va = &args;
4918 
4919 	if (err != -EPROBE_DEFER) {
4920 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4921 	} else {
4922 		device_set_deferred_probe_reason(dev, &vaf);
4923 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4924 	}
4925 
4926 	va_end(args);
4927 
4928 	return err;
4929 }
4930 EXPORT_SYMBOL_GPL(dev_err_probe);
4931 
4932 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4933 {
4934 	return fwnode && !IS_ERR(fwnode->secondary);
4935 }
4936 
4937 /**
4938  * set_primary_fwnode - Change the primary firmware node of a given device.
4939  * @dev: Device to handle.
4940  * @fwnode: New primary firmware node of the device.
4941  *
4942  * Set the device's firmware node pointer to @fwnode, but if a secondary
4943  * firmware node of the device is present, preserve it.
4944  *
4945  * Valid fwnode cases are:
4946  *  - primary --> secondary --> -ENODEV
4947  *  - primary --> NULL
4948  *  - secondary --> -ENODEV
4949  *  - NULL
4950  */
4951 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4952 {
4953 	struct device *parent = dev->parent;
4954 	struct fwnode_handle *fn = dev->fwnode;
4955 
4956 	if (fwnode) {
4957 		if (fwnode_is_primary(fn))
4958 			fn = fn->secondary;
4959 
4960 		if (fn) {
4961 			WARN_ON(fwnode->secondary);
4962 			fwnode->secondary = fn;
4963 		}
4964 		dev->fwnode = fwnode;
4965 	} else {
4966 		if (fwnode_is_primary(fn)) {
4967 			dev->fwnode = fn->secondary;
4968 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4969 			if (!(parent && fn == parent->fwnode))
4970 				fn->secondary = NULL;
4971 		} else {
4972 			dev->fwnode = NULL;
4973 		}
4974 	}
4975 }
4976 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4977 
4978 /**
4979  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4980  * @dev: Device to handle.
4981  * @fwnode: New secondary firmware node of the device.
4982  *
4983  * If a primary firmware node of the device is present, set its secondary
4984  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4985  * @fwnode.
4986  */
4987 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4988 {
4989 	if (fwnode)
4990 		fwnode->secondary = ERR_PTR(-ENODEV);
4991 
4992 	if (fwnode_is_primary(dev->fwnode))
4993 		dev->fwnode->secondary = fwnode;
4994 	else
4995 		dev->fwnode = fwnode;
4996 }
4997 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4998 
4999 /**
5000  * device_set_of_node_from_dev - reuse device-tree node of another device
5001  * @dev: device whose device-tree node is being set
5002  * @dev2: device whose device-tree node is being reused
5003  *
5004  * Takes another reference to the new device-tree node after first dropping
5005  * any reference held to the old node.
5006  */
5007 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5008 {
5009 	of_node_put(dev->of_node);
5010 	dev->of_node = of_node_get(dev2->of_node);
5011 	dev->of_node_reused = true;
5012 }
5013 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5014 
5015 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5016 {
5017 	dev->fwnode = fwnode;
5018 	dev->of_node = to_of_node(fwnode);
5019 }
5020 EXPORT_SYMBOL_GPL(device_set_node);
5021 
5022 int device_match_name(struct device *dev, const void *name)
5023 {
5024 	return sysfs_streq(dev_name(dev), name);
5025 }
5026 EXPORT_SYMBOL_GPL(device_match_name);
5027 
5028 int device_match_of_node(struct device *dev, const void *np)
5029 {
5030 	return dev->of_node == np;
5031 }
5032 EXPORT_SYMBOL_GPL(device_match_of_node);
5033 
5034 int device_match_fwnode(struct device *dev, const void *fwnode)
5035 {
5036 	return dev_fwnode(dev) == fwnode;
5037 }
5038 EXPORT_SYMBOL_GPL(device_match_fwnode);
5039 
5040 int device_match_devt(struct device *dev, const void *pdevt)
5041 {
5042 	return dev->devt == *(dev_t *)pdevt;
5043 }
5044 EXPORT_SYMBOL_GPL(device_match_devt);
5045 
5046 int device_match_acpi_dev(struct device *dev, const void *adev)
5047 {
5048 	return ACPI_COMPANION(dev) == adev;
5049 }
5050 EXPORT_SYMBOL(device_match_acpi_dev);
5051 
5052 int device_match_acpi_handle(struct device *dev, const void *handle)
5053 {
5054 	return ACPI_HANDLE(dev) == handle;
5055 }
5056 EXPORT_SYMBOL(device_match_acpi_handle);
5057 
5058 int device_match_any(struct device *dev, const void *unused)
5059 {
5060 	return 1;
5061 }
5062 EXPORT_SYMBOL_GPL(device_match_any);
5063