xref: /linux/drivers/base/core.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/rcupdate.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 #include <linux/swiotlb.h>
35 #include <linux/sysfs.h>
36 
37 #include "base.h"
38 #include "physical_location.h"
39 #include "power/power.h"
40 
41 /* Device links support. */
42 static LIST_HEAD(deferred_sync);
43 static unsigned int defer_sync_state_count = 1;
44 static DEFINE_MUTEX(fwnode_link_lock);
45 static bool fw_devlink_is_permissive(void);
46 static void __fw_devlink_link_to_consumers(struct device *dev);
47 static bool fw_devlink_drv_reg_done;
48 static bool fw_devlink_best_effort;
49 static struct workqueue_struct *device_link_wq;
50 
51 /**
52  * __fwnode_link_add - Create a link between two fwnode_handles.
53  * @con: Consumer end of the link.
54  * @sup: Supplier end of the link.
55  * @flags: Link flags.
56  *
57  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
58  * represents the detail that the firmware lists @sup fwnode as supplying a
59  * resource to @con.
60  *
61  * The driver core will use the fwnode link to create a device link between the
62  * two device objects corresponding to @con and @sup when they are created. The
63  * driver core will automatically delete the fwnode link between @con and @sup
64  * after doing that.
65  *
66  * Attempts to create duplicate links between the same pair of fwnode handles
67  * are ignored and there is no reference counting.
68  */
69 static int __fwnode_link_add(struct fwnode_handle *con,
70 			     struct fwnode_handle *sup, u8 flags)
71 {
72 	struct fwnode_link *link;
73 
74 	list_for_each_entry(link, &sup->consumers, s_hook)
75 		if (link->consumer == con) {
76 			link->flags |= flags;
77 			return 0;
78 		}
79 
80 	link = kzalloc(sizeof(*link), GFP_KERNEL);
81 	if (!link)
82 		return -ENOMEM;
83 
84 	link->supplier = sup;
85 	INIT_LIST_HEAD(&link->s_hook);
86 	link->consumer = con;
87 	INIT_LIST_HEAD(&link->c_hook);
88 	link->flags = flags;
89 
90 	list_add(&link->s_hook, &sup->consumers);
91 	list_add(&link->c_hook, &con->suppliers);
92 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
93 		 con, sup);
94 
95 	return 0;
96 }
97 
98 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
99 		    u8 flags)
100 {
101 	guard(mutex)(&fwnode_link_lock);
102 
103 	return __fwnode_link_add(con, sup, flags);
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
123  * @link: the fwnode_link to be marked
124  *
125  * The fwnode_link_lock needs to be held when this function is called.
126  */
127 static void __fwnode_link_cycle(struct fwnode_link *link)
128 {
129 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
130 		 link->consumer, link->supplier);
131 	link->flags |= FWLINK_FLAG_CYCLE;
132 }
133 
134 /**
135  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
136  * @fwnode: fwnode whose supplier links need to be deleted
137  *
138  * Deletes all supplier links connecting directly to @fwnode.
139  */
140 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
141 {
142 	struct fwnode_link *link, *tmp;
143 
144 	guard(mutex)(&fwnode_link_lock);
145 
146 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
147 		__fwnode_link_del(link);
148 }
149 
150 /**
151  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
152  * @fwnode: fwnode whose consumer links need to be deleted
153  *
154  * Deletes all consumer links connecting directly to @fwnode.
155  */
156 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
157 {
158 	struct fwnode_link *link, *tmp;
159 
160 	guard(mutex)(&fwnode_link_lock);
161 
162 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
163 		__fwnode_link_del(link);
164 }
165 
166 /**
167  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
168  * @fwnode: fwnode whose links needs to be deleted
169  *
170  * Deletes all links connecting directly to a fwnode.
171  */
172 void fwnode_links_purge(struct fwnode_handle *fwnode)
173 {
174 	fwnode_links_purge_suppliers(fwnode);
175 	fwnode_links_purge_consumers(fwnode);
176 }
177 
178 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
179 {
180 	struct fwnode_handle *child;
181 
182 	/* Don't purge consumer links of an added child */
183 	if (fwnode->dev)
184 		return;
185 
186 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
187 	fwnode_links_purge_consumers(fwnode);
188 
189 	fwnode_for_each_available_child_node(fwnode, child)
190 		fw_devlink_purge_absent_suppliers(child);
191 }
192 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
193 
194 /**
195  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
196  * @from: move consumers away from this fwnode
197  * @to: move consumers to this fwnode
198  *
199  * Move all consumer links from @from fwnode to @to fwnode.
200  */
201 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
202 					  struct fwnode_handle *to)
203 {
204 	struct fwnode_link *link, *tmp;
205 
206 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
207 		__fwnode_link_add(link->consumer, to, link->flags);
208 		__fwnode_link_del(link);
209 	}
210 }
211 
212 /**
213  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
214  * @fwnode: fwnode from which to pick up dangling consumers
215  * @new_sup: fwnode of new supplier
216  *
217  * If the @fwnode has a corresponding struct device and the device supports
218  * probing (that is, added to a bus), then we want to let fw_devlink create
219  * MANAGED device links to this device, so leave @fwnode and its descendant's
220  * fwnode links alone.
221  *
222  * Otherwise, move its consumers to the new supplier @new_sup.
223  */
224 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
225 						   struct fwnode_handle *new_sup)
226 {
227 	struct fwnode_handle *child;
228 
229 	if (fwnode->dev && fwnode->dev->bus)
230 		return;
231 
232 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
233 	__fwnode_links_move_consumers(fwnode, new_sup);
234 
235 	fwnode_for_each_available_child_node(fwnode, child)
236 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
237 }
238 
239 static DEFINE_MUTEX(device_links_lock);
240 DEFINE_STATIC_SRCU(device_links_srcu);
241 
242 static inline void device_links_write_lock(void)
243 {
244 	mutex_lock(&device_links_lock);
245 }
246 
247 static inline void device_links_write_unlock(void)
248 {
249 	mutex_unlock(&device_links_lock);
250 }
251 
252 int device_links_read_lock(void) __acquires(&device_links_srcu)
253 {
254 	return srcu_read_lock(&device_links_srcu);
255 }
256 
257 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
258 {
259 	srcu_read_unlock(&device_links_srcu, idx);
260 }
261 
262 int device_links_read_lock_held(void)
263 {
264 	return srcu_read_lock_held(&device_links_srcu);
265 }
266 
267 static void device_link_synchronize_removal(void)
268 {
269 	synchronize_srcu(&device_links_srcu);
270 }
271 
272 static void device_link_remove_from_lists(struct device_link *link)
273 {
274 	list_del_rcu(&link->s_node);
275 	list_del_rcu(&link->c_node);
276 }
277 
278 static bool device_is_ancestor(struct device *dev, struct device *target)
279 {
280 	while (target->parent) {
281 		target = target->parent;
282 		if (dev == target)
283 			return true;
284 	}
285 	return false;
286 }
287 
288 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
289 				 DL_FLAG_CYCLE | \
290 				 DL_FLAG_MANAGED)
291 static inline bool device_link_flag_is_sync_state_only(u32 flags)
292 {
293 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
294 }
295 
296 /**
297  * device_is_dependent - Check if one device depends on another one
298  * @dev: Device to check dependencies for.
299  * @target: Device to check against.
300  *
301  * Check if @target depends on @dev or any device dependent on it (its child or
302  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
303  */
304 static int device_is_dependent(struct device *dev, void *target)
305 {
306 	struct device_link *link;
307 	int ret;
308 
309 	/*
310 	 * The "ancestors" check is needed to catch the case when the target
311 	 * device has not been completely initialized yet and it is still
312 	 * missing from the list of children of its parent device.
313 	 */
314 	if (dev == target || device_is_ancestor(dev, target))
315 		return 1;
316 
317 	ret = device_for_each_child(dev, target, device_is_dependent);
318 	if (ret)
319 		return ret;
320 
321 	list_for_each_entry(link, &dev->links.consumers, s_node) {
322 		if (device_link_flag_is_sync_state_only(link->flags))
323 			continue;
324 
325 		if (link->consumer == target)
326 			return 1;
327 
328 		ret = device_is_dependent(link->consumer, target);
329 		if (ret)
330 			break;
331 	}
332 	return ret;
333 }
334 
335 static void device_link_init_status(struct device_link *link,
336 				    struct device *consumer,
337 				    struct device *supplier)
338 {
339 	switch (supplier->links.status) {
340 	case DL_DEV_PROBING:
341 		switch (consumer->links.status) {
342 		case DL_DEV_PROBING:
343 			/*
344 			 * A consumer driver can create a link to a supplier
345 			 * that has not completed its probing yet as long as it
346 			 * knows that the supplier is already functional (for
347 			 * example, it has just acquired some resources from the
348 			 * supplier).
349 			 */
350 			link->status = DL_STATE_CONSUMER_PROBE;
351 			break;
352 		default:
353 			link->status = DL_STATE_DORMANT;
354 			break;
355 		}
356 		break;
357 	case DL_DEV_DRIVER_BOUND:
358 		switch (consumer->links.status) {
359 		case DL_DEV_PROBING:
360 			link->status = DL_STATE_CONSUMER_PROBE;
361 			break;
362 		case DL_DEV_DRIVER_BOUND:
363 			link->status = DL_STATE_ACTIVE;
364 			break;
365 		default:
366 			link->status = DL_STATE_AVAILABLE;
367 			break;
368 		}
369 		break;
370 	case DL_DEV_UNBINDING:
371 		link->status = DL_STATE_SUPPLIER_UNBIND;
372 		break;
373 	default:
374 		link->status = DL_STATE_DORMANT;
375 		break;
376 	}
377 }
378 
379 static int device_reorder_to_tail(struct device *dev, void *not_used)
380 {
381 	struct device_link *link;
382 
383 	/*
384 	 * Devices that have not been registered yet will be put to the ends
385 	 * of the lists during the registration, so skip them here.
386 	 */
387 	if (device_is_registered(dev))
388 		devices_kset_move_last(dev);
389 
390 	if (device_pm_initialized(dev))
391 		device_pm_move_last(dev);
392 
393 	device_for_each_child(dev, NULL, device_reorder_to_tail);
394 	list_for_each_entry(link, &dev->links.consumers, s_node) {
395 		if (device_link_flag_is_sync_state_only(link->flags))
396 			continue;
397 		device_reorder_to_tail(link->consumer, NULL);
398 	}
399 
400 	return 0;
401 }
402 
403 /**
404  * device_pm_move_to_tail - Move set of devices to the end of device lists
405  * @dev: Device to move
406  *
407  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
408  *
409  * It moves the @dev along with all of its children and all of its consumers
410  * to the ends of the device_kset and dpm_list, recursively.
411  */
412 void device_pm_move_to_tail(struct device *dev)
413 {
414 	int idx;
415 
416 	idx = device_links_read_lock();
417 	device_pm_lock();
418 	device_reorder_to_tail(dev, NULL);
419 	device_pm_unlock();
420 	device_links_read_unlock(idx);
421 }
422 
423 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
424 
425 static ssize_t status_show(struct device *dev,
426 			   struct device_attribute *attr, char *buf)
427 {
428 	const char *output;
429 
430 	switch (to_devlink(dev)->status) {
431 	case DL_STATE_NONE:
432 		output = "not tracked";
433 		break;
434 	case DL_STATE_DORMANT:
435 		output = "dormant";
436 		break;
437 	case DL_STATE_AVAILABLE:
438 		output = "available";
439 		break;
440 	case DL_STATE_CONSUMER_PROBE:
441 		output = "consumer probing";
442 		break;
443 	case DL_STATE_ACTIVE:
444 		output = "active";
445 		break;
446 	case DL_STATE_SUPPLIER_UNBIND:
447 		output = "supplier unbinding";
448 		break;
449 	default:
450 		output = "unknown";
451 		break;
452 	}
453 
454 	return sysfs_emit(buf, "%s\n", output);
455 }
456 static DEVICE_ATTR_RO(status);
457 
458 static ssize_t auto_remove_on_show(struct device *dev,
459 				   struct device_attribute *attr, char *buf)
460 {
461 	struct device_link *link = to_devlink(dev);
462 	const char *output;
463 
464 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
465 		output = "supplier unbind";
466 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
467 		output = "consumer unbind";
468 	else
469 		output = "never";
470 
471 	return sysfs_emit(buf, "%s\n", output);
472 }
473 static DEVICE_ATTR_RO(auto_remove_on);
474 
475 static ssize_t runtime_pm_show(struct device *dev,
476 			       struct device_attribute *attr, char *buf)
477 {
478 	struct device_link *link = to_devlink(dev);
479 
480 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
481 }
482 static DEVICE_ATTR_RO(runtime_pm);
483 
484 static ssize_t sync_state_only_show(struct device *dev,
485 				    struct device_attribute *attr, char *buf)
486 {
487 	struct device_link *link = to_devlink(dev);
488 
489 	return sysfs_emit(buf, "%d\n",
490 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
491 }
492 static DEVICE_ATTR_RO(sync_state_only);
493 
494 static struct attribute *devlink_attrs[] = {
495 	&dev_attr_status.attr,
496 	&dev_attr_auto_remove_on.attr,
497 	&dev_attr_runtime_pm.attr,
498 	&dev_attr_sync_state_only.attr,
499 	NULL,
500 };
501 ATTRIBUTE_GROUPS(devlink);
502 
503 static void device_link_release_fn(struct work_struct *work)
504 {
505 	struct device_link *link = container_of(work, struct device_link, rm_work);
506 
507 	/* Ensure that all references to the link object have been dropped. */
508 	device_link_synchronize_removal();
509 
510 	pm_runtime_release_supplier(link);
511 	/*
512 	 * If supplier_preactivated is set, the link has been dropped between
513 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
514 	 * in __driver_probe_device().  In that case, drop the supplier's
515 	 * PM-runtime usage counter to remove the reference taken by
516 	 * pm_runtime_get_suppliers().
517 	 */
518 	if (link->supplier_preactivated)
519 		pm_runtime_put_noidle(link->supplier);
520 
521 	pm_request_idle(link->supplier);
522 
523 	put_device(link->consumer);
524 	put_device(link->supplier);
525 	kfree(link);
526 }
527 
528 static void devlink_dev_release(struct device *dev)
529 {
530 	struct device_link *link = to_devlink(dev);
531 
532 	INIT_WORK(&link->rm_work, device_link_release_fn);
533 	/*
534 	 * It may take a while to complete this work because of the SRCU
535 	 * synchronization in device_link_release_fn() and if the consumer or
536 	 * supplier devices get deleted when it runs, so put it into the
537 	 * dedicated workqueue.
538 	 */
539 	queue_work(device_link_wq, &link->rm_work);
540 }
541 
542 /**
543  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
544  */
545 void device_link_wait_removal(void)
546 {
547 	/*
548 	 * devlink removal jobs are queued in the dedicated work queue.
549 	 * To be sure that all removal jobs are terminated, ensure that any
550 	 * scheduled work has run to completion.
551 	 */
552 	flush_workqueue(device_link_wq);
553 }
554 EXPORT_SYMBOL_GPL(device_link_wait_removal);
555 
556 static struct class devlink_class = {
557 	.name = "devlink",
558 	.dev_groups = devlink_groups,
559 	.dev_release = devlink_dev_release,
560 };
561 
562 static int devlink_add_symlinks(struct device *dev)
563 {
564 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
565 	int ret;
566 	struct device_link *link = to_devlink(dev);
567 	struct device *sup = link->supplier;
568 	struct device *con = link->consumer;
569 
570 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
571 	if (ret)
572 		goto out;
573 
574 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
575 	if (ret)
576 		goto err_con;
577 
578 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
579 	if (!buf_con) {
580 		ret = -ENOMEM;
581 		goto err_con_dev;
582 	}
583 
584 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
585 	if (ret)
586 		goto err_con_dev;
587 
588 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
589 	if (!buf_sup) {
590 		ret = -ENOMEM;
591 		goto err_sup_dev;
592 	}
593 
594 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
595 	if (ret)
596 		goto err_sup_dev;
597 
598 	goto out;
599 
600 err_sup_dev:
601 	sysfs_remove_link(&sup->kobj, buf_con);
602 err_con_dev:
603 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
604 err_con:
605 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
606 out:
607 	return ret;
608 }
609 
610 static void devlink_remove_symlinks(struct device *dev)
611 {
612 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
613 	struct device_link *link = to_devlink(dev);
614 	struct device *sup = link->supplier;
615 	struct device *con = link->consumer;
616 
617 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
618 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
619 
620 	if (device_is_registered(con)) {
621 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
622 		if (!buf_sup)
623 			goto out;
624 		sysfs_remove_link(&con->kobj, buf_sup);
625 	}
626 
627 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
628 	if (!buf_con)
629 		goto out;
630 	sysfs_remove_link(&sup->kobj, buf_con);
631 
632 	return;
633 
634 out:
635 	WARN(1, "Unable to properly free device link symlinks!\n");
636 }
637 
638 static struct class_interface devlink_class_intf = {
639 	.class = &devlink_class,
640 	.add_dev = devlink_add_symlinks,
641 	.remove_dev = devlink_remove_symlinks,
642 };
643 
644 static int __init devlink_class_init(void)
645 {
646 	int ret;
647 
648 	ret = class_register(&devlink_class);
649 	if (ret)
650 		return ret;
651 
652 	ret = class_interface_register(&devlink_class_intf);
653 	if (ret)
654 		class_unregister(&devlink_class);
655 
656 	return ret;
657 }
658 postcore_initcall(devlink_class_init);
659 
660 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
661 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
662 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
663 			       DL_FLAG_SYNC_STATE_ONLY | \
664 			       DL_FLAG_INFERRED | \
665 			       DL_FLAG_CYCLE)
666 
667 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
668 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
669 
670 /**
671  * device_link_add - Create a link between two devices.
672  * @consumer: Consumer end of the link.
673  * @supplier: Supplier end of the link.
674  * @flags: Link flags.
675  *
676  * Return: On success, a device_link struct will be returned.
677  *         On error or invalid flag settings, NULL will be returned.
678  *
679  * The caller is responsible for the proper synchronization of the link creation
680  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
681  * runtime PM framework to take the link into account.  Second, if the
682  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
683  * be forced into the active meta state and reference-counted upon the creation
684  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
685  * ignored.
686  *
687  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
688  * expected to release the link returned by it directly with the help of either
689  * device_link_del() or device_link_remove().
690  *
691  * If that flag is not set, however, the caller of this function is handing the
692  * management of the link over to the driver core entirely and its return value
693  * can only be used to check whether or not the link is present.  In that case,
694  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
695  * flags can be used to indicate to the driver core when the link can be safely
696  * deleted.  Namely, setting one of them in @flags indicates to the driver core
697  * that the link is not going to be used (by the given caller of this function)
698  * after unbinding the consumer or supplier driver, respectively, from its
699  * device, so the link can be deleted at that point.  If none of them is set,
700  * the link will be maintained until one of the devices pointed to by it (either
701  * the consumer or the supplier) is unregistered.
702  *
703  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
704  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
705  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
706  * be used to request the driver core to automatically probe for a consumer
707  * driver after successfully binding a driver to the supplier device.
708  *
709  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
710  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
711  * the same time is invalid and will cause NULL to be returned upfront.
712  * However, if a device link between the given @consumer and @supplier pair
713  * exists already when this function is called for them, the existing link will
714  * be returned regardless of its current type and status (the link's flags may
715  * be modified then).  The caller of this function is then expected to treat
716  * the link as though it has just been created, so (in particular) if
717  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
718  * explicitly when not needed any more (as stated above).
719  *
720  * A side effect of the link creation is re-ordering of dpm_list and the
721  * devices_kset list by moving the consumer device and all devices depending
722  * on it to the ends of these lists (that does not happen to devices that have
723  * not been registered when this function is called).
724  *
725  * The supplier device is required to be registered when this function is called
726  * and NULL will be returned if that is not the case.  The consumer device need
727  * not be registered, however.
728  */
729 struct device_link *device_link_add(struct device *consumer,
730 				    struct device *supplier, u32 flags)
731 {
732 	struct device_link *link;
733 
734 	if (!consumer || !supplier || consumer == supplier ||
735 	    flags & ~DL_ADD_VALID_FLAGS ||
736 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
737 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
738 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
739 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
740 		return NULL;
741 
742 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
743 		if (pm_runtime_get_sync(supplier) < 0) {
744 			pm_runtime_put_noidle(supplier);
745 			return NULL;
746 		}
747 	}
748 
749 	if (!(flags & DL_FLAG_STATELESS))
750 		flags |= DL_FLAG_MANAGED;
751 
752 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
753 	    !device_link_flag_is_sync_state_only(flags))
754 		return NULL;
755 
756 	device_links_write_lock();
757 	device_pm_lock();
758 
759 	/*
760 	 * If the supplier has not been fully registered yet or there is a
761 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
762 	 * the supplier already in the graph, return NULL. If the link is a
763 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
764 	 * because it only affects sync_state() callbacks.
765 	 */
766 	if (!device_pm_initialized(supplier)
767 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
768 		  device_is_dependent(consumer, supplier))) {
769 		link = NULL;
770 		goto out;
771 	}
772 
773 	/*
774 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
775 	 * So, only create it if the consumer hasn't probed yet.
776 	 */
777 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
778 	    consumer->links.status != DL_DEV_NO_DRIVER &&
779 	    consumer->links.status != DL_DEV_PROBING) {
780 		link = NULL;
781 		goto out;
782 	}
783 
784 	/*
785 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
786 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
787 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
788 	 */
789 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
790 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
791 
792 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
793 		if (link->consumer != consumer)
794 			continue;
795 
796 		if (link->flags & DL_FLAG_INFERRED &&
797 		    !(flags & DL_FLAG_INFERRED))
798 			link->flags &= ~DL_FLAG_INFERRED;
799 
800 		if (flags & DL_FLAG_PM_RUNTIME) {
801 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
802 				pm_runtime_new_link(consumer);
803 				link->flags |= DL_FLAG_PM_RUNTIME;
804 			}
805 			if (flags & DL_FLAG_RPM_ACTIVE)
806 				refcount_inc(&link->rpm_active);
807 		}
808 
809 		if (flags & DL_FLAG_STATELESS) {
810 			kref_get(&link->kref);
811 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
812 			    !(link->flags & DL_FLAG_STATELESS)) {
813 				link->flags |= DL_FLAG_STATELESS;
814 				goto reorder;
815 			} else {
816 				link->flags |= DL_FLAG_STATELESS;
817 				goto out;
818 			}
819 		}
820 
821 		/*
822 		 * If the life time of the link following from the new flags is
823 		 * longer than indicated by the flags of the existing link,
824 		 * update the existing link to stay around longer.
825 		 */
826 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
827 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
828 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
829 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
830 			}
831 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
832 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
833 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
834 		}
835 		if (!(link->flags & DL_FLAG_MANAGED)) {
836 			kref_get(&link->kref);
837 			link->flags |= DL_FLAG_MANAGED;
838 			device_link_init_status(link, consumer, supplier);
839 		}
840 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
841 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
842 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
843 			goto reorder;
844 		}
845 
846 		goto out;
847 	}
848 
849 	link = kzalloc(sizeof(*link), GFP_KERNEL);
850 	if (!link)
851 		goto out;
852 
853 	refcount_set(&link->rpm_active, 1);
854 
855 	get_device(supplier);
856 	link->supplier = supplier;
857 	INIT_LIST_HEAD(&link->s_node);
858 	get_device(consumer);
859 	link->consumer = consumer;
860 	INIT_LIST_HEAD(&link->c_node);
861 	link->flags = flags;
862 	kref_init(&link->kref);
863 
864 	link->link_dev.class = &devlink_class;
865 	device_set_pm_not_required(&link->link_dev);
866 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
867 		     dev_bus_name(supplier), dev_name(supplier),
868 		     dev_bus_name(consumer), dev_name(consumer));
869 	if (device_register(&link->link_dev)) {
870 		put_device(&link->link_dev);
871 		link = NULL;
872 		goto out;
873 	}
874 
875 	if (flags & DL_FLAG_PM_RUNTIME) {
876 		if (flags & DL_FLAG_RPM_ACTIVE)
877 			refcount_inc(&link->rpm_active);
878 
879 		pm_runtime_new_link(consumer);
880 	}
881 
882 	/* Determine the initial link state. */
883 	if (flags & DL_FLAG_STATELESS)
884 		link->status = DL_STATE_NONE;
885 	else
886 		device_link_init_status(link, consumer, supplier);
887 
888 	/*
889 	 * Some callers expect the link creation during consumer driver probe to
890 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
891 	 */
892 	if (link->status == DL_STATE_CONSUMER_PROBE &&
893 	    flags & DL_FLAG_PM_RUNTIME)
894 		pm_runtime_resume(supplier);
895 
896 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
897 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
898 
899 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
900 		dev_dbg(consumer,
901 			"Linked as a sync state only consumer to %s\n",
902 			dev_name(supplier));
903 		goto out;
904 	}
905 
906 reorder:
907 	/*
908 	 * Move the consumer and all of the devices depending on it to the end
909 	 * of dpm_list and the devices_kset list.
910 	 *
911 	 * It is necessary to hold dpm_list locked throughout all that or else
912 	 * we may end up suspending with a wrong ordering of it.
913 	 */
914 	device_reorder_to_tail(consumer, NULL);
915 
916 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
917 
918 out:
919 	device_pm_unlock();
920 	device_links_write_unlock();
921 
922 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
923 		pm_runtime_put(supplier);
924 
925 	return link;
926 }
927 EXPORT_SYMBOL_GPL(device_link_add);
928 
929 static void __device_link_del(struct kref *kref)
930 {
931 	struct device_link *link = container_of(kref, struct device_link, kref);
932 
933 	dev_dbg(link->consumer, "Dropping the link to %s\n",
934 		dev_name(link->supplier));
935 
936 	pm_runtime_drop_link(link);
937 
938 	device_link_remove_from_lists(link);
939 	device_unregister(&link->link_dev);
940 }
941 
942 static void device_link_put_kref(struct device_link *link)
943 {
944 	if (link->flags & DL_FLAG_STATELESS)
945 		kref_put(&link->kref, __device_link_del);
946 	else if (!device_is_registered(link->consumer))
947 		__device_link_del(&link->kref);
948 	else
949 		WARN(1, "Unable to drop a managed device link reference\n");
950 }
951 
952 /**
953  * device_link_del - Delete a stateless link between two devices.
954  * @link: Device link to delete.
955  *
956  * The caller must ensure proper synchronization of this function with runtime
957  * PM.  If the link was added multiple times, it needs to be deleted as often.
958  * Care is required for hotplugged devices:  Their links are purged on removal
959  * and calling device_link_del() is then no longer allowed.
960  */
961 void device_link_del(struct device_link *link)
962 {
963 	device_links_write_lock();
964 	device_link_put_kref(link);
965 	device_links_write_unlock();
966 }
967 EXPORT_SYMBOL_GPL(device_link_del);
968 
969 /**
970  * device_link_remove - Delete a stateless link between two devices.
971  * @consumer: Consumer end of the link.
972  * @supplier: Supplier end of the link.
973  *
974  * The caller must ensure proper synchronization of this function with runtime
975  * PM.
976  */
977 void device_link_remove(void *consumer, struct device *supplier)
978 {
979 	struct device_link *link;
980 
981 	if (WARN_ON(consumer == supplier))
982 		return;
983 
984 	device_links_write_lock();
985 
986 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
987 		if (link->consumer == consumer) {
988 			device_link_put_kref(link);
989 			break;
990 		}
991 	}
992 
993 	device_links_write_unlock();
994 }
995 EXPORT_SYMBOL_GPL(device_link_remove);
996 
997 static void device_links_missing_supplier(struct device *dev)
998 {
999 	struct device_link *link;
1000 
1001 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1002 		if (link->status != DL_STATE_CONSUMER_PROBE)
1003 			continue;
1004 
1005 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1006 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1007 		} else {
1008 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1009 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1010 		}
1011 	}
1012 }
1013 
1014 static bool dev_is_best_effort(struct device *dev)
1015 {
1016 	return (fw_devlink_best_effort && dev->can_match) ||
1017 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1018 }
1019 
1020 static struct fwnode_handle *fwnode_links_check_suppliers(
1021 						struct fwnode_handle *fwnode)
1022 {
1023 	struct fwnode_link *link;
1024 
1025 	if (!fwnode || fw_devlink_is_permissive())
1026 		return NULL;
1027 
1028 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1029 		if (!(link->flags &
1030 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1031 			return link->supplier;
1032 
1033 	return NULL;
1034 }
1035 
1036 /**
1037  * device_links_check_suppliers - Check presence of supplier drivers.
1038  * @dev: Consumer device.
1039  *
1040  * Check links from this device to any suppliers.  Walk the list of the device's
1041  * links to suppliers and see if all of them are available.  If not, simply
1042  * return -EPROBE_DEFER.
1043  *
1044  * We need to guarantee that the supplier will not go away after the check has
1045  * been positive here.  It only can go away in __device_release_driver() and
1046  * that function  checks the device's links to consumers.  This means we need to
1047  * mark the link as "consumer probe in progress" to make the supplier removal
1048  * wait for us to complete (or bad things may happen).
1049  *
1050  * Links without the DL_FLAG_MANAGED flag set are ignored.
1051  */
1052 int device_links_check_suppliers(struct device *dev)
1053 {
1054 	struct device_link *link;
1055 	int ret = 0, fwnode_ret = 0;
1056 	struct fwnode_handle *sup_fw;
1057 
1058 	/*
1059 	 * Device waiting for supplier to become available is not allowed to
1060 	 * probe.
1061 	 */
1062 	scoped_guard(mutex, &fwnode_link_lock) {
1063 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1064 		if (sup_fw) {
1065 			if (dev_is_best_effort(dev))
1066 				fwnode_ret = -EAGAIN;
1067 			else
1068 				return dev_err_probe(dev, -EPROBE_DEFER,
1069 						     "wait for supplier %pfwf\n", sup_fw);
1070 		}
1071 	}
1072 
1073 	device_links_write_lock();
1074 
1075 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1076 		if (!(link->flags & DL_FLAG_MANAGED))
1077 			continue;
1078 
1079 		if (link->status != DL_STATE_AVAILABLE &&
1080 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1081 
1082 			if (dev_is_best_effort(dev) &&
1083 			    link->flags & DL_FLAG_INFERRED &&
1084 			    !link->supplier->can_match) {
1085 				ret = -EAGAIN;
1086 				continue;
1087 			}
1088 
1089 			device_links_missing_supplier(dev);
1090 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1091 					    "supplier %s not ready\n", dev_name(link->supplier));
1092 			break;
1093 		}
1094 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1095 	}
1096 	dev->links.status = DL_DEV_PROBING;
1097 
1098 	device_links_write_unlock();
1099 
1100 	return ret ? ret : fwnode_ret;
1101 }
1102 
1103 /**
1104  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1105  * @dev: Device to call sync_state() on
1106  * @list: List head to queue the @dev on
1107  *
1108  * Queues a device for a sync_state() callback when the device links write lock
1109  * isn't held. This allows the sync_state() execution flow to use device links
1110  * APIs.  The caller must ensure this function is called with
1111  * device_links_write_lock() held.
1112  *
1113  * This function does a get_device() to make sure the device is not freed while
1114  * on this list.
1115  *
1116  * So the caller must also ensure that device_links_flush_sync_list() is called
1117  * as soon as the caller releases device_links_write_lock().  This is necessary
1118  * to make sure the sync_state() is called in a timely fashion and the
1119  * put_device() is called on this device.
1120  */
1121 static void __device_links_queue_sync_state(struct device *dev,
1122 					    struct list_head *list)
1123 {
1124 	struct device_link *link;
1125 
1126 	if (!dev_has_sync_state(dev))
1127 		return;
1128 	if (dev->state_synced)
1129 		return;
1130 
1131 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1132 		if (!(link->flags & DL_FLAG_MANAGED))
1133 			continue;
1134 		if (link->status != DL_STATE_ACTIVE)
1135 			return;
1136 	}
1137 
1138 	/*
1139 	 * Set the flag here to avoid adding the same device to a list more
1140 	 * than once. This can happen if new consumers get added to the device
1141 	 * and probed before the list is flushed.
1142 	 */
1143 	dev->state_synced = true;
1144 
1145 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1146 		return;
1147 
1148 	get_device(dev);
1149 	list_add_tail(&dev->links.defer_sync, list);
1150 }
1151 
1152 /**
1153  * device_links_flush_sync_list - Call sync_state() on a list of devices
1154  * @list: List of devices to call sync_state() on
1155  * @dont_lock_dev: Device for which lock is already held by the caller
1156  *
1157  * Calls sync_state() on all the devices that have been queued for it. This
1158  * function is used in conjunction with __device_links_queue_sync_state(). The
1159  * @dont_lock_dev parameter is useful when this function is called from a
1160  * context where a device lock is already held.
1161  */
1162 static void device_links_flush_sync_list(struct list_head *list,
1163 					 struct device *dont_lock_dev)
1164 {
1165 	struct device *dev, *tmp;
1166 
1167 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1168 		list_del_init(&dev->links.defer_sync);
1169 
1170 		if (dev != dont_lock_dev)
1171 			device_lock(dev);
1172 
1173 		dev_sync_state(dev);
1174 
1175 		if (dev != dont_lock_dev)
1176 			device_unlock(dev);
1177 
1178 		put_device(dev);
1179 	}
1180 }
1181 
1182 void device_links_supplier_sync_state_pause(void)
1183 {
1184 	device_links_write_lock();
1185 	defer_sync_state_count++;
1186 	device_links_write_unlock();
1187 }
1188 
1189 void device_links_supplier_sync_state_resume(void)
1190 {
1191 	struct device *dev, *tmp;
1192 	LIST_HEAD(sync_list);
1193 
1194 	device_links_write_lock();
1195 	if (!defer_sync_state_count) {
1196 		WARN(true, "Unmatched sync_state pause/resume!");
1197 		goto out;
1198 	}
1199 	defer_sync_state_count--;
1200 	if (defer_sync_state_count)
1201 		goto out;
1202 
1203 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1204 		/*
1205 		 * Delete from deferred_sync list before queuing it to
1206 		 * sync_list because defer_sync is used for both lists.
1207 		 */
1208 		list_del_init(&dev->links.defer_sync);
1209 		__device_links_queue_sync_state(dev, &sync_list);
1210 	}
1211 out:
1212 	device_links_write_unlock();
1213 
1214 	device_links_flush_sync_list(&sync_list, NULL);
1215 }
1216 
1217 static int sync_state_resume_initcall(void)
1218 {
1219 	device_links_supplier_sync_state_resume();
1220 	return 0;
1221 }
1222 late_initcall(sync_state_resume_initcall);
1223 
1224 static void __device_links_supplier_defer_sync(struct device *sup)
1225 {
1226 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1227 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1228 }
1229 
1230 static void device_link_drop_managed(struct device_link *link)
1231 {
1232 	link->flags &= ~DL_FLAG_MANAGED;
1233 	WRITE_ONCE(link->status, DL_STATE_NONE);
1234 	kref_put(&link->kref, __device_link_del);
1235 }
1236 
1237 static ssize_t waiting_for_supplier_show(struct device *dev,
1238 					 struct device_attribute *attr,
1239 					 char *buf)
1240 {
1241 	bool val;
1242 
1243 	device_lock(dev);
1244 	scoped_guard(mutex, &fwnode_link_lock)
1245 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1246 	device_unlock(dev);
1247 	return sysfs_emit(buf, "%u\n", val);
1248 }
1249 static DEVICE_ATTR_RO(waiting_for_supplier);
1250 
1251 /**
1252  * device_links_force_bind - Prepares device to be force bound
1253  * @dev: Consumer device.
1254  *
1255  * device_bind_driver() force binds a device to a driver without calling any
1256  * driver probe functions. So the consumer really isn't going to wait for any
1257  * supplier before it's bound to the driver. We still want the device link
1258  * states to be sensible when this happens.
1259  *
1260  * In preparation for device_bind_driver(), this function goes through each
1261  * supplier device links and checks if the supplier is bound. If it is, then
1262  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1263  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1264  */
1265 void device_links_force_bind(struct device *dev)
1266 {
1267 	struct device_link *link, *ln;
1268 
1269 	device_links_write_lock();
1270 
1271 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1272 		if (!(link->flags & DL_FLAG_MANAGED))
1273 			continue;
1274 
1275 		if (link->status != DL_STATE_AVAILABLE) {
1276 			device_link_drop_managed(link);
1277 			continue;
1278 		}
1279 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1280 	}
1281 	dev->links.status = DL_DEV_PROBING;
1282 
1283 	device_links_write_unlock();
1284 }
1285 
1286 /**
1287  * device_links_driver_bound - Update device links after probing its driver.
1288  * @dev: Device to update the links for.
1289  *
1290  * The probe has been successful, so update links from this device to any
1291  * consumers by changing their status to "available".
1292  *
1293  * Also change the status of @dev's links to suppliers to "active".
1294  *
1295  * Links without the DL_FLAG_MANAGED flag set are ignored.
1296  */
1297 void device_links_driver_bound(struct device *dev)
1298 {
1299 	struct device_link *link, *ln;
1300 	LIST_HEAD(sync_list);
1301 
1302 	/*
1303 	 * If a device binds successfully, it's expected to have created all
1304 	 * the device links it needs to or make new device links as it needs
1305 	 * them. So, fw_devlink no longer needs to create device links to any
1306 	 * of the device's suppliers.
1307 	 *
1308 	 * Also, if a child firmware node of this bound device is not added as a
1309 	 * device by now, assume it is never going to be added. Make this bound
1310 	 * device the fallback supplier to the dangling consumers of the child
1311 	 * firmware node because this bound device is probably implementing the
1312 	 * child firmware node functionality and we don't want the dangling
1313 	 * consumers to defer probe indefinitely waiting for a device for the
1314 	 * child firmware node.
1315 	 */
1316 	if (dev->fwnode && dev->fwnode->dev == dev) {
1317 		struct fwnode_handle *child;
1318 
1319 		fwnode_links_purge_suppliers(dev->fwnode);
1320 
1321 		guard(mutex)(&fwnode_link_lock);
1322 
1323 		fwnode_for_each_available_child_node(dev->fwnode, child)
1324 			__fw_devlink_pickup_dangling_consumers(child,
1325 							       dev->fwnode);
1326 		__fw_devlink_link_to_consumers(dev);
1327 	}
1328 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1329 
1330 	device_links_write_lock();
1331 
1332 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1333 		if (!(link->flags & DL_FLAG_MANAGED))
1334 			continue;
1335 
1336 		/*
1337 		 * Links created during consumer probe may be in the "consumer
1338 		 * probe" state to start with if the supplier is still probing
1339 		 * when they are created and they may become "active" if the
1340 		 * consumer probe returns first.  Skip them here.
1341 		 */
1342 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1343 		    link->status == DL_STATE_ACTIVE)
1344 			continue;
1345 
1346 		WARN_ON(link->status != DL_STATE_DORMANT);
1347 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1348 
1349 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1350 			driver_deferred_probe_add(link->consumer);
1351 	}
1352 
1353 	if (defer_sync_state_count)
1354 		__device_links_supplier_defer_sync(dev);
1355 	else
1356 		__device_links_queue_sync_state(dev, &sync_list);
1357 
1358 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1359 		struct device *supplier;
1360 
1361 		if (!(link->flags & DL_FLAG_MANAGED))
1362 			continue;
1363 
1364 		supplier = link->supplier;
1365 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1366 			/*
1367 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1368 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1369 			 * save to drop the managed link completely.
1370 			 */
1371 			device_link_drop_managed(link);
1372 		} else if (dev_is_best_effort(dev) &&
1373 			   link->flags & DL_FLAG_INFERRED &&
1374 			   link->status != DL_STATE_CONSUMER_PROBE &&
1375 			   !link->supplier->can_match) {
1376 			/*
1377 			 * When dev_is_best_effort() is true, we ignore device
1378 			 * links to suppliers that don't have a driver.  If the
1379 			 * consumer device still managed to probe, there's no
1380 			 * point in maintaining a device link in a weird state
1381 			 * (consumer probed before supplier). So delete it.
1382 			 */
1383 			device_link_drop_managed(link);
1384 		} else {
1385 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1386 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1387 		}
1388 
1389 		/*
1390 		 * This needs to be done even for the deleted
1391 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1392 		 * device link that was preventing the supplier from getting a
1393 		 * sync_state() call.
1394 		 */
1395 		if (defer_sync_state_count)
1396 			__device_links_supplier_defer_sync(supplier);
1397 		else
1398 			__device_links_queue_sync_state(supplier, &sync_list);
1399 	}
1400 
1401 	dev->links.status = DL_DEV_DRIVER_BOUND;
1402 
1403 	device_links_write_unlock();
1404 
1405 	device_links_flush_sync_list(&sync_list, dev);
1406 }
1407 
1408 /**
1409  * __device_links_no_driver - Update links of a device without a driver.
1410  * @dev: Device without a drvier.
1411  *
1412  * Delete all non-persistent links from this device to any suppliers.
1413  *
1414  * Persistent links stay around, but their status is changed to "available",
1415  * unless they already are in the "supplier unbind in progress" state in which
1416  * case they need not be updated.
1417  *
1418  * Links without the DL_FLAG_MANAGED flag set are ignored.
1419  */
1420 static void __device_links_no_driver(struct device *dev)
1421 {
1422 	struct device_link *link, *ln;
1423 
1424 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1425 		if (!(link->flags & DL_FLAG_MANAGED))
1426 			continue;
1427 
1428 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1429 			device_link_drop_managed(link);
1430 			continue;
1431 		}
1432 
1433 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1434 		    link->status != DL_STATE_ACTIVE)
1435 			continue;
1436 
1437 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1438 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1439 		} else {
1440 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1441 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1442 		}
1443 	}
1444 
1445 	dev->links.status = DL_DEV_NO_DRIVER;
1446 }
1447 
1448 /**
1449  * device_links_no_driver - Update links after failing driver probe.
1450  * @dev: Device whose driver has just failed to probe.
1451  *
1452  * Clean up leftover links to consumers for @dev and invoke
1453  * %__device_links_no_driver() to update links to suppliers for it as
1454  * appropriate.
1455  *
1456  * Links without the DL_FLAG_MANAGED flag set are ignored.
1457  */
1458 void device_links_no_driver(struct device *dev)
1459 {
1460 	struct device_link *link;
1461 
1462 	device_links_write_lock();
1463 
1464 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1465 		if (!(link->flags & DL_FLAG_MANAGED))
1466 			continue;
1467 
1468 		/*
1469 		 * The probe has failed, so if the status of the link is
1470 		 * "consumer probe" or "active", it must have been added by
1471 		 * a probing consumer while this device was still probing.
1472 		 * Change its state to "dormant", as it represents a valid
1473 		 * relationship, but it is not functionally meaningful.
1474 		 */
1475 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1476 		    link->status == DL_STATE_ACTIVE)
1477 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1478 	}
1479 
1480 	__device_links_no_driver(dev);
1481 
1482 	device_links_write_unlock();
1483 }
1484 
1485 /**
1486  * device_links_driver_cleanup - Update links after driver removal.
1487  * @dev: Device whose driver has just gone away.
1488  *
1489  * Update links to consumers for @dev by changing their status to "dormant" and
1490  * invoke %__device_links_no_driver() to update links to suppliers for it as
1491  * appropriate.
1492  *
1493  * Links without the DL_FLAG_MANAGED flag set are ignored.
1494  */
1495 void device_links_driver_cleanup(struct device *dev)
1496 {
1497 	struct device_link *link, *ln;
1498 
1499 	device_links_write_lock();
1500 
1501 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1502 		if (!(link->flags & DL_FLAG_MANAGED))
1503 			continue;
1504 
1505 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1506 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1507 
1508 		/*
1509 		 * autoremove the links between this @dev and its consumer
1510 		 * devices that are not active, i.e. where the link state
1511 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1512 		 */
1513 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1514 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1515 			device_link_drop_managed(link);
1516 
1517 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1518 	}
1519 
1520 	list_del_init(&dev->links.defer_sync);
1521 	__device_links_no_driver(dev);
1522 
1523 	device_links_write_unlock();
1524 }
1525 
1526 /**
1527  * device_links_busy - Check if there are any busy links to consumers.
1528  * @dev: Device to check.
1529  *
1530  * Check each consumer of the device and return 'true' if its link's status
1531  * is one of "consumer probe" or "active" (meaning that the given consumer is
1532  * probing right now or its driver is present).  Otherwise, change the link
1533  * state to "supplier unbind" to prevent the consumer from being probed
1534  * successfully going forward.
1535  *
1536  * Return 'false' if there are no probing or active consumers.
1537  *
1538  * Links without the DL_FLAG_MANAGED flag set are ignored.
1539  */
1540 bool device_links_busy(struct device *dev)
1541 {
1542 	struct device_link *link;
1543 	bool ret = false;
1544 
1545 	device_links_write_lock();
1546 
1547 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1548 		if (!(link->flags & DL_FLAG_MANAGED))
1549 			continue;
1550 
1551 		if (link->status == DL_STATE_CONSUMER_PROBE
1552 		    || link->status == DL_STATE_ACTIVE) {
1553 			ret = true;
1554 			break;
1555 		}
1556 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1557 	}
1558 
1559 	dev->links.status = DL_DEV_UNBINDING;
1560 
1561 	device_links_write_unlock();
1562 	return ret;
1563 }
1564 
1565 /**
1566  * device_links_unbind_consumers - Force unbind consumers of the given device.
1567  * @dev: Device to unbind the consumers of.
1568  *
1569  * Walk the list of links to consumers for @dev and if any of them is in the
1570  * "consumer probe" state, wait for all device probes in progress to complete
1571  * and start over.
1572  *
1573  * If that's not the case, change the status of the link to "supplier unbind"
1574  * and check if the link was in the "active" state.  If so, force the consumer
1575  * driver to unbind and start over (the consumer will not re-probe as we have
1576  * changed the state of the link already).
1577  *
1578  * Links without the DL_FLAG_MANAGED flag set are ignored.
1579  */
1580 void device_links_unbind_consumers(struct device *dev)
1581 {
1582 	struct device_link *link;
1583 
1584  start:
1585 	device_links_write_lock();
1586 
1587 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1588 		enum device_link_state status;
1589 
1590 		if (!(link->flags & DL_FLAG_MANAGED) ||
1591 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1592 			continue;
1593 
1594 		status = link->status;
1595 		if (status == DL_STATE_CONSUMER_PROBE) {
1596 			device_links_write_unlock();
1597 
1598 			wait_for_device_probe();
1599 			goto start;
1600 		}
1601 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1602 		if (status == DL_STATE_ACTIVE) {
1603 			struct device *consumer = link->consumer;
1604 
1605 			get_device(consumer);
1606 
1607 			device_links_write_unlock();
1608 
1609 			device_release_driver_internal(consumer, NULL,
1610 						       consumer->parent);
1611 			put_device(consumer);
1612 			goto start;
1613 		}
1614 	}
1615 
1616 	device_links_write_unlock();
1617 }
1618 
1619 /**
1620  * device_links_purge - Delete existing links to other devices.
1621  * @dev: Target device.
1622  */
1623 static void device_links_purge(struct device *dev)
1624 {
1625 	struct device_link *link, *ln;
1626 
1627 	if (dev->class == &devlink_class)
1628 		return;
1629 
1630 	/*
1631 	 * Delete all of the remaining links from this device to any other
1632 	 * devices (either consumers or suppliers).
1633 	 */
1634 	device_links_write_lock();
1635 
1636 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1637 		WARN_ON(link->status == DL_STATE_ACTIVE);
1638 		__device_link_del(&link->kref);
1639 	}
1640 
1641 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1642 		WARN_ON(link->status != DL_STATE_DORMANT &&
1643 			link->status != DL_STATE_NONE);
1644 		__device_link_del(&link->kref);
1645 	}
1646 
1647 	device_links_write_unlock();
1648 }
1649 
1650 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1651 					 DL_FLAG_SYNC_STATE_ONLY)
1652 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1653 					 DL_FLAG_AUTOPROBE_CONSUMER)
1654 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1655 					 DL_FLAG_PM_RUNTIME)
1656 
1657 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1658 static int __init fw_devlink_setup(char *arg)
1659 {
1660 	if (!arg)
1661 		return -EINVAL;
1662 
1663 	if (strcmp(arg, "off") == 0) {
1664 		fw_devlink_flags = 0;
1665 	} else if (strcmp(arg, "permissive") == 0) {
1666 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1667 	} else if (strcmp(arg, "on") == 0) {
1668 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1669 	} else if (strcmp(arg, "rpm") == 0) {
1670 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1671 	}
1672 	return 0;
1673 }
1674 early_param("fw_devlink", fw_devlink_setup);
1675 
1676 static bool fw_devlink_strict;
1677 static int __init fw_devlink_strict_setup(char *arg)
1678 {
1679 	return kstrtobool(arg, &fw_devlink_strict);
1680 }
1681 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1682 
1683 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1684 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1685 
1686 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1687 static int fw_devlink_sync_state;
1688 #else
1689 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1690 #endif
1691 
1692 static int __init fw_devlink_sync_state_setup(char *arg)
1693 {
1694 	if (!arg)
1695 		return -EINVAL;
1696 
1697 	if (strcmp(arg, "strict") == 0) {
1698 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1699 		return 0;
1700 	} else if (strcmp(arg, "timeout") == 0) {
1701 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1702 		return 0;
1703 	}
1704 	return -EINVAL;
1705 }
1706 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1707 
1708 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1709 {
1710 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1711 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1712 
1713 	return fw_devlink_flags;
1714 }
1715 
1716 static bool fw_devlink_is_permissive(void)
1717 {
1718 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1719 }
1720 
1721 bool fw_devlink_is_strict(void)
1722 {
1723 	return fw_devlink_strict && !fw_devlink_is_permissive();
1724 }
1725 
1726 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1727 {
1728 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1729 		return;
1730 
1731 	fwnode_call_int_op(fwnode, add_links);
1732 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1733 }
1734 
1735 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1736 {
1737 	struct fwnode_handle *child = NULL;
1738 
1739 	fw_devlink_parse_fwnode(fwnode);
1740 
1741 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1742 		fw_devlink_parse_fwtree(child);
1743 }
1744 
1745 static void fw_devlink_relax_link(struct device_link *link)
1746 {
1747 	if (!(link->flags & DL_FLAG_INFERRED))
1748 		return;
1749 
1750 	if (device_link_flag_is_sync_state_only(link->flags))
1751 		return;
1752 
1753 	pm_runtime_drop_link(link);
1754 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1755 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1756 		dev_name(link->supplier));
1757 }
1758 
1759 static int fw_devlink_no_driver(struct device *dev, void *data)
1760 {
1761 	struct device_link *link = to_devlink(dev);
1762 
1763 	if (!link->supplier->can_match)
1764 		fw_devlink_relax_link(link);
1765 
1766 	return 0;
1767 }
1768 
1769 void fw_devlink_drivers_done(void)
1770 {
1771 	fw_devlink_drv_reg_done = true;
1772 	device_links_write_lock();
1773 	class_for_each_device(&devlink_class, NULL, NULL,
1774 			      fw_devlink_no_driver);
1775 	device_links_write_unlock();
1776 }
1777 
1778 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1779 {
1780 	struct device_link *link = to_devlink(dev);
1781 	struct device *sup = link->supplier;
1782 
1783 	if (!(link->flags & DL_FLAG_MANAGED) ||
1784 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1785 	    !dev_has_sync_state(sup))
1786 		return 0;
1787 
1788 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1789 		dev_warn(sup, "sync_state() pending due to %s\n",
1790 			 dev_name(link->consumer));
1791 		return 0;
1792 	}
1793 
1794 	if (!list_empty(&sup->links.defer_sync))
1795 		return 0;
1796 
1797 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1798 	sup->state_synced = true;
1799 	get_device(sup);
1800 	list_add_tail(&sup->links.defer_sync, data);
1801 
1802 	return 0;
1803 }
1804 
1805 void fw_devlink_probing_done(void)
1806 {
1807 	LIST_HEAD(sync_list);
1808 
1809 	device_links_write_lock();
1810 	class_for_each_device(&devlink_class, NULL, &sync_list,
1811 			      fw_devlink_dev_sync_state);
1812 	device_links_write_unlock();
1813 	device_links_flush_sync_list(&sync_list, NULL);
1814 }
1815 
1816 /**
1817  * wait_for_init_devices_probe - Try to probe any device needed for init
1818  *
1819  * Some devices might need to be probed and bound successfully before the kernel
1820  * boot sequence can finish and move on to init/userspace. For example, a
1821  * network interface might need to be bound to be able to mount a NFS rootfs.
1822  *
1823  * With fw_devlink=on by default, some of these devices might be blocked from
1824  * probing because they are waiting on a optional supplier that doesn't have a
1825  * driver. While fw_devlink will eventually identify such devices and unblock
1826  * the probing automatically, it might be too late by the time it unblocks the
1827  * probing of devices. For example, the IP4 autoconfig might timeout before
1828  * fw_devlink unblocks probing of the network interface.
1829  *
1830  * This function is available to temporarily try and probe all devices that have
1831  * a driver even if some of their suppliers haven't been added or don't have
1832  * drivers.
1833  *
1834  * The drivers can then decide which of the suppliers are optional vs mandatory
1835  * and probe the device if possible. By the time this function returns, all such
1836  * "best effort" probes are guaranteed to be completed. If a device successfully
1837  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1838  * device where the supplier hasn't yet probed successfully because they have to
1839  * be optional dependencies.
1840  *
1841  * Any devices that didn't successfully probe go back to being treated as if
1842  * this function was never called.
1843  *
1844  * This also means that some devices that aren't needed for init and could have
1845  * waited for their optional supplier to probe (when the supplier's module is
1846  * loaded later on) would end up probing prematurely with limited functionality.
1847  * So call this function only when boot would fail without it.
1848  */
1849 void __init wait_for_init_devices_probe(void)
1850 {
1851 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1852 		return;
1853 
1854 	/*
1855 	 * Wait for all ongoing probes to finish so that the "best effort" is
1856 	 * only applied to devices that can't probe otherwise.
1857 	 */
1858 	wait_for_device_probe();
1859 
1860 	pr_info("Trying to probe devices needed for running init ...\n");
1861 	fw_devlink_best_effort = true;
1862 	driver_deferred_probe_trigger();
1863 
1864 	/*
1865 	 * Wait for all "best effort" probes to finish before going back to
1866 	 * normal enforcement.
1867 	 */
1868 	wait_for_device_probe();
1869 	fw_devlink_best_effort = false;
1870 }
1871 
1872 static void fw_devlink_unblock_consumers(struct device *dev)
1873 {
1874 	struct device_link *link;
1875 
1876 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1877 		return;
1878 
1879 	device_links_write_lock();
1880 	list_for_each_entry(link, &dev->links.consumers, s_node)
1881 		fw_devlink_relax_link(link);
1882 	device_links_write_unlock();
1883 }
1884 
1885 #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1886 
1887 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1888 {
1889 	struct device *dev;
1890 	bool ret;
1891 
1892 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1893 		return false;
1894 
1895 	dev = get_dev_from_fwnode(fwnode);
1896 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1897 	put_device(dev);
1898 
1899 	return ret;
1900 }
1901 
1902 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1903 {
1904 	struct fwnode_handle *parent;
1905 
1906 	fwnode_for_each_parent_node(fwnode, parent) {
1907 		if (fwnode_init_without_drv(parent)) {
1908 			fwnode_handle_put(parent);
1909 			return true;
1910 		}
1911 	}
1912 
1913 	return false;
1914 }
1915 
1916 /**
1917  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1918  * @ancestor: Firmware which is tested for being an ancestor
1919  * @child: Firmware which is tested for being the child
1920  *
1921  * A node is considered an ancestor of itself too.
1922  *
1923  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1924  */
1925 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1926 				  const struct fwnode_handle *child)
1927 {
1928 	struct fwnode_handle *parent;
1929 
1930 	if (IS_ERR_OR_NULL(ancestor))
1931 		return false;
1932 
1933 	if (child == ancestor)
1934 		return true;
1935 
1936 	fwnode_for_each_parent_node(child, parent) {
1937 		if (parent == ancestor) {
1938 			fwnode_handle_put(parent);
1939 			return true;
1940 		}
1941 	}
1942 	return false;
1943 }
1944 
1945 /**
1946  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1947  * @fwnode: firmware node
1948  *
1949  * Given a firmware node (@fwnode), this function finds its closest ancestor
1950  * firmware node that has a corresponding struct device and returns that struct
1951  * device.
1952  *
1953  * The caller is responsible for calling put_device() on the returned device
1954  * pointer.
1955  *
1956  * Return: a pointer to the device of the @fwnode's closest ancestor.
1957  */
1958 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1959 {
1960 	struct fwnode_handle *parent;
1961 	struct device *dev;
1962 
1963 	fwnode_for_each_parent_node(fwnode, parent) {
1964 		dev = get_dev_from_fwnode(parent);
1965 		if (dev) {
1966 			fwnode_handle_put(parent);
1967 			return dev;
1968 		}
1969 	}
1970 	return NULL;
1971 }
1972 
1973 /**
1974  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1975  * @con: Potential consumer device.
1976  * @sup_handle: Potential supplier's fwnode.
1977  *
1978  * Needs to be called with fwnode_lock and device link lock held.
1979  *
1980  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1981  * depend on @con. This function can detect multiple cyles between @sup_handle
1982  * and @con. When such dependency cycles are found, convert all device links
1983  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1984  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1985  * converted into a device link in the future, they are created as
1986  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1987  * fw_devlink=permissive just between the devices in the cycle. We need to do
1988  * this because, at this point, fw_devlink can't tell which of these
1989  * dependencies is not a real dependency.
1990  *
1991  * Return true if one or more cycles were found. Otherwise, return false.
1992  */
1993 static bool __fw_devlink_relax_cycles(struct device *con,
1994 				 struct fwnode_handle *sup_handle)
1995 {
1996 	struct device *sup_dev = NULL, *par_dev = NULL;
1997 	struct fwnode_link *link;
1998 	struct device_link *dev_link;
1999 	bool ret = false;
2000 
2001 	if (!sup_handle)
2002 		return false;
2003 
2004 	/*
2005 	 * We aren't trying to find all cycles. Just a cycle between con and
2006 	 * sup_handle.
2007 	 */
2008 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2009 		return false;
2010 
2011 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2012 
2013 	sup_dev = get_dev_from_fwnode(sup_handle);
2014 
2015 	/* Termination condition. */
2016 	if (sup_dev == con) {
2017 		pr_debug("----- cycle: start -----\n");
2018 		ret = true;
2019 		goto out;
2020 	}
2021 
2022 	/*
2023 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2024 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2025 	 * further.
2026 	 */
2027 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2028 	    con->links.status == DL_DEV_NO_DRIVER) {
2029 		ret = false;
2030 		goto out;
2031 	}
2032 
2033 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2034 		if (link->flags & FWLINK_FLAG_IGNORE)
2035 			continue;
2036 
2037 		if (__fw_devlink_relax_cycles(con, link->supplier)) {
2038 			__fwnode_link_cycle(link);
2039 			ret = true;
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * Give priority to device parent over fwnode parent to account for any
2045 	 * quirks in how fwnodes are converted to devices.
2046 	 */
2047 	if (sup_dev)
2048 		par_dev = get_device(sup_dev->parent);
2049 	else
2050 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2051 
2052 	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2053 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2054 			 par_dev->fwnode);
2055 		ret = true;
2056 	}
2057 
2058 	if (!sup_dev)
2059 		goto out;
2060 
2061 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2062 		/*
2063 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2064 		 * such due to a cycle.
2065 		 */
2066 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2067 		    !(dev_link->flags & DL_FLAG_CYCLE))
2068 			continue;
2069 
2070 		if (__fw_devlink_relax_cycles(con,
2071 					      dev_link->supplier->fwnode)) {
2072 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2073 				 dev_link->supplier->fwnode);
2074 			fw_devlink_relax_link(dev_link);
2075 			dev_link->flags |= DL_FLAG_CYCLE;
2076 			ret = true;
2077 		}
2078 	}
2079 
2080 out:
2081 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2082 	put_device(sup_dev);
2083 	put_device(par_dev);
2084 	return ret;
2085 }
2086 
2087 /**
2088  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089  * @con: consumer device for the device link
2090  * @sup_handle: fwnode handle of supplier
2091  * @link: fwnode link that's being converted to a device link
2092  *
2093  * This function will try to create a device link between the consumer device
2094  * @con and the supplier device represented by @sup_handle.
2095  *
2096  * The supplier has to be provided as a fwnode because incorrect cycles in
2097  * fwnode links can sometimes cause the supplier device to never be created.
2098  * This function detects such cases and returns an error if it cannot create a
2099  * device link from the consumer to a missing supplier.
2100  *
2101  * Returns,
2102  * 0 on successfully creating a device link
2103  * -EINVAL if the device link cannot be created as expected
2104  * -EAGAIN if the device link cannot be created right now, but it may be
2105  *  possible to do that in the future
2106  */
2107 static int fw_devlink_create_devlink(struct device *con,
2108 				     struct fwnode_handle *sup_handle,
2109 				     struct fwnode_link *link)
2110 {
2111 	struct device *sup_dev;
2112 	int ret = 0;
2113 	u32 flags;
2114 
2115 	if (link->flags & FWLINK_FLAG_IGNORE)
2116 		return 0;
2117 
2118 	if (con->fwnode == link->consumer)
2119 		flags = fw_devlink_get_flags(link->flags);
2120 	else
2121 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2122 
2123 	/*
2124 	 * In some cases, a device P might also be a supplier to its child node
2125 	 * C. However, this would defer the probe of C until the probe of P
2126 	 * completes successfully. This is perfectly fine in the device driver
2127 	 * model. device_add() doesn't guarantee probe completion of the device
2128 	 * by the time it returns.
2129 	 *
2130 	 * However, there are a few drivers that assume C will finish probing
2131 	 * as soon as it's added and before P finishes probing. So, we provide
2132 	 * a flag to let fw_devlink know not to delay the probe of C until the
2133 	 * probe of P completes successfully.
2134 	 *
2135 	 * When such a flag is set, we can't create device links where P is the
2136 	 * supplier of C as that would delay the probe of C.
2137 	 */
2138 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2139 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2140 		return -EINVAL;
2141 
2142 	/*
2143 	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2144 	 * So, one might expect that cycle detection isn't necessary for them.
2145 	 * However, if the device link was marked as SYNC_STATE_ONLY because
2146 	 * it's part of a cycle, then we still need to do cycle detection. This
2147 	 * is because the consumer and supplier might be part of multiple cycles
2148 	 * and we need to detect all those cycles.
2149 	 */
2150 	if (!device_link_flag_is_sync_state_only(flags) ||
2151 	    flags & DL_FLAG_CYCLE) {
2152 		device_links_write_lock();
2153 		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2154 			__fwnode_link_cycle(link);
2155 			flags = fw_devlink_get_flags(link->flags);
2156 			pr_debug("----- cycle: end -----\n");
2157 			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2158 				 sup_handle);
2159 		}
2160 		device_links_write_unlock();
2161 	}
2162 
2163 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2164 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2165 	else
2166 		sup_dev = get_dev_from_fwnode(sup_handle);
2167 
2168 	if (sup_dev) {
2169 		/*
2170 		 * If it's one of those drivers that don't actually bind to
2171 		 * their device using driver core, then don't wait on this
2172 		 * supplier device indefinitely.
2173 		 */
2174 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2175 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2176 			dev_dbg(con,
2177 				"Not linking %pfwf - dev might never probe\n",
2178 				sup_handle);
2179 			ret = -EINVAL;
2180 			goto out;
2181 		}
2182 
2183 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2184 			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2185 				flags, dev_name(sup_dev));
2186 			ret = -EINVAL;
2187 		}
2188 
2189 		goto out;
2190 	}
2191 
2192 	/*
2193 	 * Supplier or supplier's ancestor already initialized without a struct
2194 	 * device or being probed by a driver.
2195 	 */
2196 	if (fwnode_init_without_drv(sup_handle) ||
2197 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2198 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2199 			sup_handle);
2200 		return -EINVAL;
2201 	}
2202 
2203 	ret = -EAGAIN;
2204 out:
2205 	put_device(sup_dev);
2206 	return ret;
2207 }
2208 
2209 /**
2210  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2211  * @dev: Device that needs to be linked to its consumers
2212  *
2213  * This function looks at all the consumer fwnodes of @dev and creates device
2214  * links between the consumer device and @dev (supplier).
2215  *
2216  * If the consumer device has not been added yet, then this function creates a
2217  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2218  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2219  * sync_state() callback before the real consumer device gets to be added and
2220  * then probed.
2221  *
2222  * Once device links are created from the real consumer to @dev (supplier), the
2223  * fwnode links are deleted.
2224  */
2225 static void __fw_devlink_link_to_consumers(struct device *dev)
2226 {
2227 	struct fwnode_handle *fwnode = dev->fwnode;
2228 	struct fwnode_link *link, *tmp;
2229 
2230 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2231 		struct device *con_dev;
2232 		bool own_link = true;
2233 		int ret;
2234 
2235 		con_dev = get_dev_from_fwnode(link->consumer);
2236 		/*
2237 		 * If consumer device is not available yet, make a "proxy"
2238 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2239 		 * the supplier device. This is necessary to make sure the
2240 		 * supplier doesn't get a sync_state() callback before the real
2241 		 * consumer can create a device link to the supplier.
2242 		 *
2243 		 * This proxy link step is needed to handle the case where the
2244 		 * consumer's parent device is added before the supplier.
2245 		 */
2246 		if (!con_dev) {
2247 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2248 			/*
2249 			 * However, if the consumer's parent device is also the
2250 			 * parent of the supplier, don't create a
2251 			 * consumer-supplier link from the parent to its child
2252 			 * device. Such a dependency is impossible.
2253 			 */
2254 			if (con_dev &&
2255 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2256 				put_device(con_dev);
2257 				con_dev = NULL;
2258 			} else {
2259 				own_link = false;
2260 			}
2261 		}
2262 
2263 		if (!con_dev)
2264 			continue;
2265 
2266 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2267 		put_device(con_dev);
2268 		if (!own_link || ret == -EAGAIN)
2269 			continue;
2270 
2271 		__fwnode_link_del(link);
2272 	}
2273 }
2274 
2275 /**
2276  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2277  * @dev: The consumer device that needs to be linked to its suppliers
2278  * @fwnode: Root of the fwnode tree that is used to create device links
2279  *
2280  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2281  * @fwnode and creates device links between @dev (consumer) and all the
2282  * supplier devices of the entire fwnode tree at @fwnode.
2283  *
2284  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2285  * and the real suppliers of @dev. Once these device links are created, the
2286  * fwnode links are deleted.
2287  *
2288  * In addition, it also looks at all the suppliers of the entire fwnode tree
2289  * because some of the child devices of @dev that have not been added yet
2290  * (because @dev hasn't probed) might already have their suppliers added to
2291  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2292  * @dev (consumer) and these suppliers to make sure they don't execute their
2293  * sync_state() callbacks before these child devices have a chance to create
2294  * their device links. The fwnode links that correspond to the child devices
2295  * aren't delete because they are needed later to create the device links
2296  * between the real consumer and supplier devices.
2297  */
2298 static void __fw_devlink_link_to_suppliers(struct device *dev,
2299 					   struct fwnode_handle *fwnode)
2300 {
2301 	bool own_link = (dev->fwnode == fwnode);
2302 	struct fwnode_link *link, *tmp;
2303 	struct fwnode_handle *child = NULL;
2304 
2305 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2306 		int ret;
2307 		struct fwnode_handle *sup = link->supplier;
2308 
2309 		ret = fw_devlink_create_devlink(dev, sup, link);
2310 		if (!own_link || ret == -EAGAIN)
2311 			continue;
2312 
2313 		__fwnode_link_del(link);
2314 	}
2315 
2316 	/*
2317 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2318 	 * all the descendants. This proxy link step is needed to handle the
2319 	 * case where the supplier is added before the consumer's parent device
2320 	 * (@dev).
2321 	 */
2322 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2323 		__fw_devlink_link_to_suppliers(dev, child);
2324 }
2325 
2326 static void fw_devlink_link_device(struct device *dev)
2327 {
2328 	struct fwnode_handle *fwnode = dev->fwnode;
2329 
2330 	if (!fw_devlink_flags)
2331 		return;
2332 
2333 	fw_devlink_parse_fwtree(fwnode);
2334 
2335 	guard(mutex)(&fwnode_link_lock);
2336 
2337 	__fw_devlink_link_to_consumers(dev);
2338 	__fw_devlink_link_to_suppliers(dev, fwnode);
2339 }
2340 
2341 /* Device links support end. */
2342 
2343 static struct kobject *dev_kobj;
2344 
2345 /* /sys/dev/char */
2346 static struct kobject *sysfs_dev_char_kobj;
2347 
2348 /* /sys/dev/block */
2349 static struct kobject *sysfs_dev_block_kobj;
2350 
2351 static DEFINE_MUTEX(device_hotplug_lock);
2352 
2353 void lock_device_hotplug(void)
2354 {
2355 	mutex_lock(&device_hotplug_lock);
2356 }
2357 
2358 void unlock_device_hotplug(void)
2359 {
2360 	mutex_unlock(&device_hotplug_lock);
2361 }
2362 
2363 int lock_device_hotplug_sysfs(void)
2364 {
2365 	if (mutex_trylock(&device_hotplug_lock))
2366 		return 0;
2367 
2368 	/* Avoid busy looping (5 ms of sleep should do). */
2369 	msleep(5);
2370 	return restart_syscall();
2371 }
2372 
2373 #ifdef CONFIG_BLOCK
2374 static inline int device_is_not_partition(struct device *dev)
2375 {
2376 	return !(dev->type == &part_type);
2377 }
2378 #else
2379 static inline int device_is_not_partition(struct device *dev)
2380 {
2381 	return 1;
2382 }
2383 #endif
2384 
2385 static void device_platform_notify(struct device *dev)
2386 {
2387 	acpi_device_notify(dev);
2388 
2389 	software_node_notify(dev);
2390 }
2391 
2392 static void device_platform_notify_remove(struct device *dev)
2393 {
2394 	software_node_notify_remove(dev);
2395 
2396 	acpi_device_notify_remove(dev);
2397 }
2398 
2399 /**
2400  * dev_driver_string - Return a device's driver name, if at all possible
2401  * @dev: struct device to get the name of
2402  *
2403  * Will return the device's driver's name if it is bound to a device.  If
2404  * the device is not bound to a driver, it will return the name of the bus
2405  * it is attached to.  If it is not attached to a bus either, an empty
2406  * string will be returned.
2407  */
2408 const char *dev_driver_string(const struct device *dev)
2409 {
2410 	struct device_driver *drv;
2411 
2412 	/* dev->driver can change to NULL underneath us because of unbinding,
2413 	 * so be careful about accessing it.  dev->bus and dev->class should
2414 	 * never change once they are set, so they don't need special care.
2415 	 */
2416 	drv = READ_ONCE(dev->driver);
2417 	return drv ? drv->name : dev_bus_name(dev);
2418 }
2419 EXPORT_SYMBOL(dev_driver_string);
2420 
2421 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2422 
2423 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2424 			     char *buf)
2425 {
2426 	struct device_attribute *dev_attr = to_dev_attr(attr);
2427 	struct device *dev = kobj_to_dev(kobj);
2428 	ssize_t ret = -EIO;
2429 
2430 	if (dev_attr->show)
2431 		ret = dev_attr->show(dev, dev_attr, buf);
2432 	if (ret >= (ssize_t)PAGE_SIZE) {
2433 		printk("dev_attr_show: %pS returned bad count\n",
2434 				dev_attr->show);
2435 	}
2436 	return ret;
2437 }
2438 
2439 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2440 			      const char *buf, size_t count)
2441 {
2442 	struct device_attribute *dev_attr = to_dev_attr(attr);
2443 	struct device *dev = kobj_to_dev(kobj);
2444 	ssize_t ret = -EIO;
2445 
2446 	if (dev_attr->store)
2447 		ret = dev_attr->store(dev, dev_attr, buf, count);
2448 	return ret;
2449 }
2450 
2451 static const struct sysfs_ops dev_sysfs_ops = {
2452 	.show	= dev_attr_show,
2453 	.store	= dev_attr_store,
2454 };
2455 
2456 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2457 
2458 ssize_t device_store_ulong(struct device *dev,
2459 			   struct device_attribute *attr,
2460 			   const char *buf, size_t size)
2461 {
2462 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2463 	int ret;
2464 	unsigned long new;
2465 
2466 	ret = kstrtoul(buf, 0, &new);
2467 	if (ret)
2468 		return ret;
2469 	*(unsigned long *)(ea->var) = new;
2470 	/* Always return full write size even if we didn't consume all */
2471 	return size;
2472 }
2473 EXPORT_SYMBOL_GPL(device_store_ulong);
2474 
2475 ssize_t device_show_ulong(struct device *dev,
2476 			  struct device_attribute *attr,
2477 			  char *buf)
2478 {
2479 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2480 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2481 }
2482 EXPORT_SYMBOL_GPL(device_show_ulong);
2483 
2484 ssize_t device_store_int(struct device *dev,
2485 			 struct device_attribute *attr,
2486 			 const char *buf, size_t size)
2487 {
2488 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2489 	int ret;
2490 	long new;
2491 
2492 	ret = kstrtol(buf, 0, &new);
2493 	if (ret)
2494 		return ret;
2495 
2496 	if (new > INT_MAX || new < INT_MIN)
2497 		return -EINVAL;
2498 	*(int *)(ea->var) = new;
2499 	/* Always return full write size even if we didn't consume all */
2500 	return size;
2501 }
2502 EXPORT_SYMBOL_GPL(device_store_int);
2503 
2504 ssize_t device_show_int(struct device *dev,
2505 			struct device_attribute *attr,
2506 			char *buf)
2507 {
2508 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2509 
2510 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2511 }
2512 EXPORT_SYMBOL_GPL(device_show_int);
2513 
2514 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2515 			  const char *buf, size_t size)
2516 {
2517 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2518 
2519 	if (kstrtobool(buf, ea->var) < 0)
2520 		return -EINVAL;
2521 
2522 	return size;
2523 }
2524 EXPORT_SYMBOL_GPL(device_store_bool);
2525 
2526 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2527 			 char *buf)
2528 {
2529 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2530 
2531 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2532 }
2533 EXPORT_SYMBOL_GPL(device_show_bool);
2534 
2535 ssize_t device_show_string(struct device *dev,
2536 			   struct device_attribute *attr, char *buf)
2537 {
2538 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2539 
2540 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2541 }
2542 EXPORT_SYMBOL_GPL(device_show_string);
2543 
2544 /**
2545  * device_release - free device structure.
2546  * @kobj: device's kobject.
2547  *
2548  * This is called once the reference count for the object
2549  * reaches 0. We forward the call to the device's release
2550  * method, which should handle actually freeing the structure.
2551  */
2552 static void device_release(struct kobject *kobj)
2553 {
2554 	struct device *dev = kobj_to_dev(kobj);
2555 	struct device_private *p = dev->p;
2556 
2557 	/*
2558 	 * Some platform devices are driven without driver attached
2559 	 * and managed resources may have been acquired.  Make sure
2560 	 * all resources are released.
2561 	 *
2562 	 * Drivers still can add resources into device after device
2563 	 * is deleted but alive, so release devres here to avoid
2564 	 * possible memory leak.
2565 	 */
2566 	devres_release_all(dev);
2567 
2568 	kfree(dev->dma_range_map);
2569 
2570 	if (dev->release)
2571 		dev->release(dev);
2572 	else if (dev->type && dev->type->release)
2573 		dev->type->release(dev);
2574 	else if (dev->class && dev->class->dev_release)
2575 		dev->class->dev_release(dev);
2576 	else
2577 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2578 			dev_name(dev));
2579 	kfree(p);
2580 }
2581 
2582 static const void *device_namespace(const struct kobject *kobj)
2583 {
2584 	const struct device *dev = kobj_to_dev(kobj);
2585 	const void *ns = NULL;
2586 
2587 	if (dev->class && dev->class->namespace)
2588 		ns = dev->class->namespace(dev);
2589 
2590 	return ns;
2591 }
2592 
2593 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2594 {
2595 	const struct device *dev = kobj_to_dev(kobj);
2596 
2597 	if (dev->class && dev->class->get_ownership)
2598 		dev->class->get_ownership(dev, uid, gid);
2599 }
2600 
2601 static const struct kobj_type device_ktype = {
2602 	.release	= device_release,
2603 	.sysfs_ops	= &dev_sysfs_ops,
2604 	.namespace	= device_namespace,
2605 	.get_ownership	= device_get_ownership,
2606 };
2607 
2608 
2609 static int dev_uevent_filter(const struct kobject *kobj)
2610 {
2611 	const struct kobj_type *ktype = get_ktype(kobj);
2612 
2613 	if (ktype == &device_ktype) {
2614 		const struct device *dev = kobj_to_dev(kobj);
2615 		if (dev->bus)
2616 			return 1;
2617 		if (dev->class)
2618 			return 1;
2619 	}
2620 	return 0;
2621 }
2622 
2623 static const char *dev_uevent_name(const struct kobject *kobj)
2624 {
2625 	const struct device *dev = kobj_to_dev(kobj);
2626 
2627 	if (dev->bus)
2628 		return dev->bus->name;
2629 	if (dev->class)
2630 		return dev->class->name;
2631 	return NULL;
2632 }
2633 
2634 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2635 {
2636 	const struct device *dev = kobj_to_dev(kobj);
2637 	struct device_driver *driver;
2638 	int retval = 0;
2639 
2640 	/* add device node properties if present */
2641 	if (MAJOR(dev->devt)) {
2642 		const char *tmp;
2643 		const char *name;
2644 		umode_t mode = 0;
2645 		kuid_t uid = GLOBAL_ROOT_UID;
2646 		kgid_t gid = GLOBAL_ROOT_GID;
2647 
2648 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2649 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2650 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2651 		if (name) {
2652 			add_uevent_var(env, "DEVNAME=%s", name);
2653 			if (mode)
2654 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2655 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2656 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2657 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2658 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2659 			kfree(tmp);
2660 		}
2661 	}
2662 
2663 	if (dev->type && dev->type->name)
2664 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2665 
2666 	/* Synchronize with module_remove_driver() */
2667 	rcu_read_lock();
2668 	driver = READ_ONCE(dev->driver);
2669 	if (driver)
2670 		add_uevent_var(env, "DRIVER=%s", driver->name);
2671 	rcu_read_unlock();
2672 
2673 	/* Add common DT information about the device */
2674 	of_device_uevent(dev, env);
2675 
2676 	/* have the bus specific function add its stuff */
2677 	if (dev->bus && dev->bus->uevent) {
2678 		retval = dev->bus->uevent(dev, env);
2679 		if (retval)
2680 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2681 				 dev_name(dev), __func__, retval);
2682 	}
2683 
2684 	/* have the class specific function add its stuff */
2685 	if (dev->class && dev->class->dev_uevent) {
2686 		retval = dev->class->dev_uevent(dev, env);
2687 		if (retval)
2688 			pr_debug("device: '%s': %s: class uevent() "
2689 				 "returned %d\n", dev_name(dev),
2690 				 __func__, retval);
2691 	}
2692 
2693 	/* have the device type specific function add its stuff */
2694 	if (dev->type && dev->type->uevent) {
2695 		retval = dev->type->uevent(dev, env);
2696 		if (retval)
2697 			pr_debug("device: '%s': %s: dev_type uevent() "
2698 				 "returned %d\n", dev_name(dev),
2699 				 __func__, retval);
2700 	}
2701 
2702 	return retval;
2703 }
2704 
2705 static const struct kset_uevent_ops device_uevent_ops = {
2706 	.filter =	dev_uevent_filter,
2707 	.name =		dev_uevent_name,
2708 	.uevent =	dev_uevent,
2709 };
2710 
2711 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2712 			   char *buf)
2713 {
2714 	struct kobject *top_kobj;
2715 	struct kset *kset;
2716 	struct kobj_uevent_env *env = NULL;
2717 	int i;
2718 	int len = 0;
2719 	int retval;
2720 
2721 	/* search the kset, the device belongs to */
2722 	top_kobj = &dev->kobj;
2723 	while (!top_kobj->kset && top_kobj->parent)
2724 		top_kobj = top_kobj->parent;
2725 	if (!top_kobj->kset)
2726 		goto out;
2727 
2728 	kset = top_kobj->kset;
2729 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2730 		goto out;
2731 
2732 	/* respect filter */
2733 	if (kset->uevent_ops && kset->uevent_ops->filter)
2734 		if (!kset->uevent_ops->filter(&dev->kobj))
2735 			goto out;
2736 
2737 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2738 	if (!env)
2739 		return -ENOMEM;
2740 
2741 	/* let the kset specific function add its keys */
2742 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2743 	if (retval)
2744 		goto out;
2745 
2746 	/* copy keys to file */
2747 	for (i = 0; i < env->envp_idx; i++)
2748 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2749 out:
2750 	kfree(env);
2751 	return len;
2752 }
2753 
2754 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2755 			    const char *buf, size_t count)
2756 {
2757 	int rc;
2758 
2759 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2760 
2761 	if (rc) {
2762 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2763 		return rc;
2764 	}
2765 
2766 	return count;
2767 }
2768 static DEVICE_ATTR_RW(uevent);
2769 
2770 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2771 			   char *buf)
2772 {
2773 	bool val;
2774 
2775 	device_lock(dev);
2776 	val = !dev->offline;
2777 	device_unlock(dev);
2778 	return sysfs_emit(buf, "%u\n", val);
2779 }
2780 
2781 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2782 			    const char *buf, size_t count)
2783 {
2784 	bool val;
2785 	int ret;
2786 
2787 	ret = kstrtobool(buf, &val);
2788 	if (ret < 0)
2789 		return ret;
2790 
2791 	ret = lock_device_hotplug_sysfs();
2792 	if (ret)
2793 		return ret;
2794 
2795 	ret = val ? device_online(dev) : device_offline(dev);
2796 	unlock_device_hotplug();
2797 	return ret < 0 ? ret : count;
2798 }
2799 static DEVICE_ATTR_RW(online);
2800 
2801 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2802 			      char *buf)
2803 {
2804 	const char *loc;
2805 
2806 	switch (dev->removable) {
2807 	case DEVICE_REMOVABLE:
2808 		loc = "removable";
2809 		break;
2810 	case DEVICE_FIXED:
2811 		loc = "fixed";
2812 		break;
2813 	default:
2814 		loc = "unknown";
2815 	}
2816 	return sysfs_emit(buf, "%s\n", loc);
2817 }
2818 static DEVICE_ATTR_RO(removable);
2819 
2820 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2821 {
2822 	return sysfs_create_groups(&dev->kobj, groups);
2823 }
2824 EXPORT_SYMBOL_GPL(device_add_groups);
2825 
2826 void device_remove_groups(struct device *dev,
2827 			  const struct attribute_group **groups)
2828 {
2829 	sysfs_remove_groups(&dev->kobj, groups);
2830 }
2831 EXPORT_SYMBOL_GPL(device_remove_groups);
2832 
2833 union device_attr_group_devres {
2834 	const struct attribute_group *group;
2835 	const struct attribute_group **groups;
2836 };
2837 
2838 static void devm_attr_group_remove(struct device *dev, void *res)
2839 {
2840 	union device_attr_group_devres *devres = res;
2841 	const struct attribute_group *group = devres->group;
2842 
2843 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2844 	sysfs_remove_group(&dev->kobj, group);
2845 }
2846 
2847 /**
2848  * devm_device_add_group - given a device, create a managed attribute group
2849  * @dev:	The device to create the group for
2850  * @grp:	The attribute group to create
2851  *
2852  * This function creates a group for the first time.  It will explicitly
2853  * warn and error if any of the attribute files being created already exist.
2854  *
2855  * Returns 0 on success or error code on failure.
2856  */
2857 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2858 {
2859 	union device_attr_group_devres *devres;
2860 	int error;
2861 
2862 	devres = devres_alloc(devm_attr_group_remove,
2863 			      sizeof(*devres), GFP_KERNEL);
2864 	if (!devres)
2865 		return -ENOMEM;
2866 
2867 	error = sysfs_create_group(&dev->kobj, grp);
2868 	if (error) {
2869 		devres_free(devres);
2870 		return error;
2871 	}
2872 
2873 	devres->group = grp;
2874 	devres_add(dev, devres);
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(devm_device_add_group);
2878 
2879 static int device_add_attrs(struct device *dev)
2880 {
2881 	const struct class *class = dev->class;
2882 	const struct device_type *type = dev->type;
2883 	int error;
2884 
2885 	if (class) {
2886 		error = device_add_groups(dev, class->dev_groups);
2887 		if (error)
2888 			return error;
2889 	}
2890 
2891 	if (type) {
2892 		error = device_add_groups(dev, type->groups);
2893 		if (error)
2894 			goto err_remove_class_groups;
2895 	}
2896 
2897 	error = device_add_groups(dev, dev->groups);
2898 	if (error)
2899 		goto err_remove_type_groups;
2900 
2901 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2902 		error = device_create_file(dev, &dev_attr_online);
2903 		if (error)
2904 			goto err_remove_dev_groups;
2905 	}
2906 
2907 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2908 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2909 		if (error)
2910 			goto err_remove_dev_online;
2911 	}
2912 
2913 	if (dev_removable_is_valid(dev)) {
2914 		error = device_create_file(dev, &dev_attr_removable);
2915 		if (error)
2916 			goto err_remove_dev_waiting_for_supplier;
2917 	}
2918 
2919 	if (dev_add_physical_location(dev)) {
2920 		error = device_add_group(dev,
2921 			&dev_attr_physical_location_group);
2922 		if (error)
2923 			goto err_remove_dev_removable;
2924 	}
2925 
2926 	return 0;
2927 
2928  err_remove_dev_removable:
2929 	device_remove_file(dev, &dev_attr_removable);
2930  err_remove_dev_waiting_for_supplier:
2931 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2932  err_remove_dev_online:
2933 	device_remove_file(dev, &dev_attr_online);
2934  err_remove_dev_groups:
2935 	device_remove_groups(dev, dev->groups);
2936  err_remove_type_groups:
2937 	if (type)
2938 		device_remove_groups(dev, type->groups);
2939  err_remove_class_groups:
2940 	if (class)
2941 		device_remove_groups(dev, class->dev_groups);
2942 
2943 	return error;
2944 }
2945 
2946 static void device_remove_attrs(struct device *dev)
2947 {
2948 	const struct class *class = dev->class;
2949 	const struct device_type *type = dev->type;
2950 
2951 	if (dev->physical_location) {
2952 		device_remove_group(dev, &dev_attr_physical_location_group);
2953 		kfree(dev->physical_location);
2954 	}
2955 
2956 	device_remove_file(dev, &dev_attr_removable);
2957 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2958 	device_remove_file(dev, &dev_attr_online);
2959 	device_remove_groups(dev, dev->groups);
2960 
2961 	if (type)
2962 		device_remove_groups(dev, type->groups);
2963 
2964 	if (class)
2965 		device_remove_groups(dev, class->dev_groups);
2966 }
2967 
2968 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2969 			char *buf)
2970 {
2971 	return print_dev_t(buf, dev->devt);
2972 }
2973 static DEVICE_ATTR_RO(dev);
2974 
2975 /* /sys/devices/ */
2976 struct kset *devices_kset;
2977 
2978 /**
2979  * devices_kset_move_before - Move device in the devices_kset's list.
2980  * @deva: Device to move.
2981  * @devb: Device @deva should come before.
2982  */
2983 static void devices_kset_move_before(struct device *deva, struct device *devb)
2984 {
2985 	if (!devices_kset)
2986 		return;
2987 	pr_debug("devices_kset: Moving %s before %s\n",
2988 		 dev_name(deva), dev_name(devb));
2989 	spin_lock(&devices_kset->list_lock);
2990 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2991 	spin_unlock(&devices_kset->list_lock);
2992 }
2993 
2994 /**
2995  * devices_kset_move_after - Move device in the devices_kset's list.
2996  * @deva: Device to move
2997  * @devb: Device @deva should come after.
2998  */
2999 static void devices_kset_move_after(struct device *deva, struct device *devb)
3000 {
3001 	if (!devices_kset)
3002 		return;
3003 	pr_debug("devices_kset: Moving %s after %s\n",
3004 		 dev_name(deva), dev_name(devb));
3005 	spin_lock(&devices_kset->list_lock);
3006 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3007 	spin_unlock(&devices_kset->list_lock);
3008 }
3009 
3010 /**
3011  * devices_kset_move_last - move the device to the end of devices_kset's list.
3012  * @dev: device to move
3013  */
3014 void devices_kset_move_last(struct device *dev)
3015 {
3016 	if (!devices_kset)
3017 		return;
3018 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3019 	spin_lock(&devices_kset->list_lock);
3020 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3021 	spin_unlock(&devices_kset->list_lock);
3022 }
3023 
3024 /**
3025  * device_create_file - create sysfs attribute file for device.
3026  * @dev: device.
3027  * @attr: device attribute descriptor.
3028  */
3029 int device_create_file(struct device *dev,
3030 		       const struct device_attribute *attr)
3031 {
3032 	int error = 0;
3033 
3034 	if (dev) {
3035 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3036 			"Attribute %s: write permission without 'store'\n",
3037 			attr->attr.name);
3038 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3039 			"Attribute %s: read permission without 'show'\n",
3040 			attr->attr.name);
3041 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3042 	}
3043 
3044 	return error;
3045 }
3046 EXPORT_SYMBOL_GPL(device_create_file);
3047 
3048 /**
3049  * device_remove_file - remove sysfs attribute file.
3050  * @dev: device.
3051  * @attr: device attribute descriptor.
3052  */
3053 void device_remove_file(struct device *dev,
3054 			const struct device_attribute *attr)
3055 {
3056 	if (dev)
3057 		sysfs_remove_file(&dev->kobj, &attr->attr);
3058 }
3059 EXPORT_SYMBOL_GPL(device_remove_file);
3060 
3061 /**
3062  * device_remove_file_self - remove sysfs attribute file from its own method.
3063  * @dev: device.
3064  * @attr: device attribute descriptor.
3065  *
3066  * See kernfs_remove_self() for details.
3067  */
3068 bool device_remove_file_self(struct device *dev,
3069 			     const struct device_attribute *attr)
3070 {
3071 	if (dev)
3072 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3073 	else
3074 		return false;
3075 }
3076 EXPORT_SYMBOL_GPL(device_remove_file_self);
3077 
3078 /**
3079  * device_create_bin_file - create sysfs binary attribute file for device.
3080  * @dev: device.
3081  * @attr: device binary attribute descriptor.
3082  */
3083 int device_create_bin_file(struct device *dev,
3084 			   const struct bin_attribute *attr)
3085 {
3086 	int error = -EINVAL;
3087 	if (dev)
3088 		error = sysfs_create_bin_file(&dev->kobj, attr);
3089 	return error;
3090 }
3091 EXPORT_SYMBOL_GPL(device_create_bin_file);
3092 
3093 /**
3094  * device_remove_bin_file - remove sysfs binary attribute file
3095  * @dev: device.
3096  * @attr: device binary attribute descriptor.
3097  */
3098 void device_remove_bin_file(struct device *dev,
3099 			    const struct bin_attribute *attr)
3100 {
3101 	if (dev)
3102 		sysfs_remove_bin_file(&dev->kobj, attr);
3103 }
3104 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3105 
3106 static void klist_children_get(struct klist_node *n)
3107 {
3108 	struct device_private *p = to_device_private_parent(n);
3109 	struct device *dev = p->device;
3110 
3111 	get_device(dev);
3112 }
3113 
3114 static void klist_children_put(struct klist_node *n)
3115 {
3116 	struct device_private *p = to_device_private_parent(n);
3117 	struct device *dev = p->device;
3118 
3119 	put_device(dev);
3120 }
3121 
3122 /**
3123  * device_initialize - init device structure.
3124  * @dev: device.
3125  *
3126  * This prepares the device for use by other layers by initializing
3127  * its fields.
3128  * It is the first half of device_register(), if called by
3129  * that function, though it can also be called separately, so one
3130  * may use @dev's fields. In particular, get_device()/put_device()
3131  * may be used for reference counting of @dev after calling this
3132  * function.
3133  *
3134  * All fields in @dev must be initialized by the caller to 0, except
3135  * for those explicitly set to some other value.  The simplest
3136  * approach is to use kzalloc() to allocate the structure containing
3137  * @dev.
3138  *
3139  * NOTE: Use put_device() to give up your reference instead of freeing
3140  * @dev directly once you have called this function.
3141  */
3142 void device_initialize(struct device *dev)
3143 {
3144 	dev->kobj.kset = devices_kset;
3145 	kobject_init(&dev->kobj, &device_ktype);
3146 	INIT_LIST_HEAD(&dev->dma_pools);
3147 	mutex_init(&dev->mutex);
3148 	lockdep_set_novalidate_class(&dev->mutex);
3149 	spin_lock_init(&dev->devres_lock);
3150 	INIT_LIST_HEAD(&dev->devres_head);
3151 	device_pm_init(dev);
3152 	set_dev_node(dev, NUMA_NO_NODE);
3153 	INIT_LIST_HEAD(&dev->links.consumers);
3154 	INIT_LIST_HEAD(&dev->links.suppliers);
3155 	INIT_LIST_HEAD(&dev->links.defer_sync);
3156 	dev->links.status = DL_DEV_NO_DRIVER;
3157 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3158     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3159     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3160 	dev->dma_coherent = dma_default_coherent;
3161 #endif
3162 	swiotlb_dev_init(dev);
3163 }
3164 EXPORT_SYMBOL_GPL(device_initialize);
3165 
3166 struct kobject *virtual_device_parent(void)
3167 {
3168 	static struct kobject *virtual_dir = NULL;
3169 
3170 	if (!virtual_dir)
3171 		virtual_dir = kobject_create_and_add("virtual",
3172 						     &devices_kset->kobj);
3173 
3174 	return virtual_dir;
3175 }
3176 
3177 struct class_dir {
3178 	struct kobject kobj;
3179 	const struct class *class;
3180 };
3181 
3182 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3183 
3184 static void class_dir_release(struct kobject *kobj)
3185 {
3186 	struct class_dir *dir = to_class_dir(kobj);
3187 	kfree(dir);
3188 }
3189 
3190 static const
3191 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3192 {
3193 	const struct class_dir *dir = to_class_dir(kobj);
3194 	return dir->class->ns_type;
3195 }
3196 
3197 static const struct kobj_type class_dir_ktype = {
3198 	.release	= class_dir_release,
3199 	.sysfs_ops	= &kobj_sysfs_ops,
3200 	.child_ns_type	= class_dir_child_ns_type
3201 };
3202 
3203 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3204 						struct kobject *parent_kobj)
3205 {
3206 	struct class_dir *dir;
3207 	int retval;
3208 
3209 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3210 	if (!dir)
3211 		return ERR_PTR(-ENOMEM);
3212 
3213 	dir->class = sp->class;
3214 	kobject_init(&dir->kobj, &class_dir_ktype);
3215 
3216 	dir->kobj.kset = &sp->glue_dirs;
3217 
3218 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3219 	if (retval < 0) {
3220 		kobject_put(&dir->kobj);
3221 		return ERR_PTR(retval);
3222 	}
3223 	return &dir->kobj;
3224 }
3225 
3226 static DEFINE_MUTEX(gdp_mutex);
3227 
3228 static struct kobject *get_device_parent(struct device *dev,
3229 					 struct device *parent)
3230 {
3231 	struct subsys_private *sp = class_to_subsys(dev->class);
3232 	struct kobject *kobj = NULL;
3233 
3234 	if (sp) {
3235 		struct kobject *parent_kobj;
3236 		struct kobject *k;
3237 
3238 		/*
3239 		 * If we have no parent, we live in "virtual".
3240 		 * Class-devices with a non class-device as parent, live
3241 		 * in a "glue" directory to prevent namespace collisions.
3242 		 */
3243 		if (parent == NULL)
3244 			parent_kobj = virtual_device_parent();
3245 		else if (parent->class && !dev->class->ns_type) {
3246 			subsys_put(sp);
3247 			return &parent->kobj;
3248 		} else {
3249 			parent_kobj = &parent->kobj;
3250 		}
3251 
3252 		mutex_lock(&gdp_mutex);
3253 
3254 		/* find our class-directory at the parent and reference it */
3255 		spin_lock(&sp->glue_dirs.list_lock);
3256 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3257 			if (k->parent == parent_kobj) {
3258 				kobj = kobject_get(k);
3259 				break;
3260 			}
3261 		spin_unlock(&sp->glue_dirs.list_lock);
3262 		if (kobj) {
3263 			mutex_unlock(&gdp_mutex);
3264 			subsys_put(sp);
3265 			return kobj;
3266 		}
3267 
3268 		/* or create a new class-directory at the parent device */
3269 		k = class_dir_create_and_add(sp, parent_kobj);
3270 		/* do not emit an uevent for this simple "glue" directory */
3271 		mutex_unlock(&gdp_mutex);
3272 		subsys_put(sp);
3273 		return k;
3274 	}
3275 
3276 	/* subsystems can specify a default root directory for their devices */
3277 	if (!parent && dev->bus) {
3278 		struct device *dev_root = bus_get_dev_root(dev->bus);
3279 
3280 		if (dev_root) {
3281 			kobj = &dev_root->kobj;
3282 			put_device(dev_root);
3283 			return kobj;
3284 		}
3285 	}
3286 
3287 	if (parent)
3288 		return &parent->kobj;
3289 	return NULL;
3290 }
3291 
3292 static inline bool live_in_glue_dir(struct kobject *kobj,
3293 				    struct device *dev)
3294 {
3295 	struct subsys_private *sp;
3296 	bool retval;
3297 
3298 	if (!kobj || !dev->class)
3299 		return false;
3300 
3301 	sp = class_to_subsys(dev->class);
3302 	if (!sp)
3303 		return false;
3304 
3305 	if (kobj->kset == &sp->glue_dirs)
3306 		retval = true;
3307 	else
3308 		retval = false;
3309 
3310 	subsys_put(sp);
3311 	return retval;
3312 }
3313 
3314 static inline struct kobject *get_glue_dir(struct device *dev)
3315 {
3316 	return dev->kobj.parent;
3317 }
3318 
3319 /**
3320  * kobject_has_children - Returns whether a kobject has children.
3321  * @kobj: the object to test
3322  *
3323  * This will return whether a kobject has other kobjects as children.
3324  *
3325  * It does NOT account for the presence of attribute files, only sub
3326  * directories. It also assumes there is no concurrent addition or
3327  * removal of such children, and thus relies on external locking.
3328  */
3329 static inline bool kobject_has_children(struct kobject *kobj)
3330 {
3331 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3332 
3333 	return kobj->sd && kobj->sd->dir.subdirs;
3334 }
3335 
3336 /*
3337  * make sure cleaning up dir as the last step, we need to make
3338  * sure .release handler of kobject is run with holding the
3339  * global lock
3340  */
3341 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3342 {
3343 	unsigned int ref;
3344 
3345 	/* see if we live in a "glue" directory */
3346 	if (!live_in_glue_dir(glue_dir, dev))
3347 		return;
3348 
3349 	mutex_lock(&gdp_mutex);
3350 	/**
3351 	 * There is a race condition between removing glue directory
3352 	 * and adding a new device under the glue directory.
3353 	 *
3354 	 * CPU1:                                         CPU2:
3355 	 *
3356 	 * device_add()
3357 	 *   get_device_parent()
3358 	 *     class_dir_create_and_add()
3359 	 *       kobject_add_internal()
3360 	 *         create_dir()    // create glue_dir
3361 	 *
3362 	 *                                               device_add()
3363 	 *                                                 get_device_parent()
3364 	 *                                                   kobject_get() // get glue_dir
3365 	 *
3366 	 * device_del()
3367 	 *   cleanup_glue_dir()
3368 	 *     kobject_del(glue_dir)
3369 	 *
3370 	 *                                               kobject_add()
3371 	 *                                                 kobject_add_internal()
3372 	 *                                                   create_dir() // in glue_dir
3373 	 *                                                     sysfs_create_dir_ns()
3374 	 *                                                       kernfs_create_dir_ns(sd)
3375 	 *
3376 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3377 	 *       sysfs_put()        // free glue_dir->sd
3378 	 *
3379 	 *                                                         // sd is freed
3380 	 *                                                         kernfs_new_node(sd)
3381 	 *                                                           kernfs_get(glue_dir)
3382 	 *                                                           kernfs_add_one()
3383 	 *                                                           kernfs_put()
3384 	 *
3385 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3386 	 * a new device under glue dir, the glue_dir kobject reference count
3387 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3388 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3389 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3390 	 *
3391 	 * Then the CPU2 will see a stale "empty" but still potentially used
3392 	 * glue dir around in kernfs_new_node().
3393 	 *
3394 	 * In order to avoid this happening, we also should make sure that
3395 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3396 	 * for glue_dir kobj is 1.
3397 	 */
3398 	ref = kref_read(&glue_dir->kref);
3399 	if (!kobject_has_children(glue_dir) && !--ref)
3400 		kobject_del(glue_dir);
3401 	kobject_put(glue_dir);
3402 	mutex_unlock(&gdp_mutex);
3403 }
3404 
3405 static int device_add_class_symlinks(struct device *dev)
3406 {
3407 	struct device_node *of_node = dev_of_node(dev);
3408 	struct subsys_private *sp;
3409 	int error;
3410 
3411 	if (of_node) {
3412 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3413 		if (error)
3414 			dev_warn(dev, "Error %d creating of_node link\n",error);
3415 		/* An error here doesn't warrant bringing down the device */
3416 	}
3417 
3418 	sp = class_to_subsys(dev->class);
3419 	if (!sp)
3420 		return 0;
3421 
3422 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3423 	if (error)
3424 		goto out_devnode;
3425 
3426 	if (dev->parent && device_is_not_partition(dev)) {
3427 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3428 					  "device");
3429 		if (error)
3430 			goto out_subsys;
3431 	}
3432 
3433 	/* link in the class directory pointing to the device */
3434 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3435 	if (error)
3436 		goto out_device;
3437 	goto exit;
3438 
3439 out_device:
3440 	sysfs_remove_link(&dev->kobj, "device");
3441 out_subsys:
3442 	sysfs_remove_link(&dev->kobj, "subsystem");
3443 out_devnode:
3444 	sysfs_remove_link(&dev->kobj, "of_node");
3445 exit:
3446 	subsys_put(sp);
3447 	return error;
3448 }
3449 
3450 static void device_remove_class_symlinks(struct device *dev)
3451 {
3452 	struct subsys_private *sp = class_to_subsys(dev->class);
3453 
3454 	if (dev_of_node(dev))
3455 		sysfs_remove_link(&dev->kobj, "of_node");
3456 
3457 	if (!sp)
3458 		return;
3459 
3460 	if (dev->parent && device_is_not_partition(dev))
3461 		sysfs_remove_link(&dev->kobj, "device");
3462 	sysfs_remove_link(&dev->kobj, "subsystem");
3463 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3464 	subsys_put(sp);
3465 }
3466 
3467 /**
3468  * dev_set_name - set a device name
3469  * @dev: device
3470  * @fmt: format string for the device's name
3471  */
3472 int dev_set_name(struct device *dev, const char *fmt, ...)
3473 {
3474 	va_list vargs;
3475 	int err;
3476 
3477 	va_start(vargs, fmt);
3478 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3479 	va_end(vargs);
3480 	return err;
3481 }
3482 EXPORT_SYMBOL_GPL(dev_set_name);
3483 
3484 /* select a /sys/dev/ directory for the device */
3485 static struct kobject *device_to_dev_kobj(struct device *dev)
3486 {
3487 	if (is_blockdev(dev))
3488 		return sysfs_dev_block_kobj;
3489 	else
3490 		return sysfs_dev_char_kobj;
3491 }
3492 
3493 static int device_create_sys_dev_entry(struct device *dev)
3494 {
3495 	struct kobject *kobj = device_to_dev_kobj(dev);
3496 	int error = 0;
3497 	char devt_str[15];
3498 
3499 	if (kobj) {
3500 		format_dev_t(devt_str, dev->devt);
3501 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3502 	}
3503 
3504 	return error;
3505 }
3506 
3507 static void device_remove_sys_dev_entry(struct device *dev)
3508 {
3509 	struct kobject *kobj = device_to_dev_kobj(dev);
3510 	char devt_str[15];
3511 
3512 	if (kobj) {
3513 		format_dev_t(devt_str, dev->devt);
3514 		sysfs_remove_link(kobj, devt_str);
3515 	}
3516 }
3517 
3518 static int device_private_init(struct device *dev)
3519 {
3520 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3521 	if (!dev->p)
3522 		return -ENOMEM;
3523 	dev->p->device = dev;
3524 	klist_init(&dev->p->klist_children, klist_children_get,
3525 		   klist_children_put);
3526 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3527 	return 0;
3528 }
3529 
3530 /**
3531  * device_add - add device to device hierarchy.
3532  * @dev: device.
3533  *
3534  * This is part 2 of device_register(), though may be called
3535  * separately _iff_ device_initialize() has been called separately.
3536  *
3537  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3538  * to the global and sibling lists for the device, then
3539  * adds it to the other relevant subsystems of the driver model.
3540  *
3541  * Do not call this routine or device_register() more than once for
3542  * any device structure.  The driver model core is not designed to work
3543  * with devices that get unregistered and then spring back to life.
3544  * (Among other things, it's very hard to guarantee that all references
3545  * to the previous incarnation of @dev have been dropped.)  Allocate
3546  * and register a fresh new struct device instead.
3547  *
3548  * NOTE: _Never_ directly free @dev after calling this function, even
3549  * if it returned an error! Always use put_device() to give up your
3550  * reference instead.
3551  *
3552  * Rule of thumb is: if device_add() succeeds, you should call
3553  * device_del() when you want to get rid of it. If device_add() has
3554  * *not* succeeded, use *only* put_device() to drop the reference
3555  * count.
3556  */
3557 int device_add(struct device *dev)
3558 {
3559 	struct subsys_private *sp;
3560 	struct device *parent;
3561 	struct kobject *kobj;
3562 	struct class_interface *class_intf;
3563 	int error = -EINVAL;
3564 	struct kobject *glue_dir = NULL;
3565 
3566 	dev = get_device(dev);
3567 	if (!dev)
3568 		goto done;
3569 
3570 	if (!dev->p) {
3571 		error = device_private_init(dev);
3572 		if (error)
3573 			goto done;
3574 	}
3575 
3576 	/*
3577 	 * for statically allocated devices, which should all be converted
3578 	 * some day, we need to initialize the name. We prevent reading back
3579 	 * the name, and force the use of dev_name()
3580 	 */
3581 	if (dev->init_name) {
3582 		error = dev_set_name(dev, "%s", dev->init_name);
3583 		dev->init_name = NULL;
3584 	}
3585 
3586 	if (dev_name(dev))
3587 		error = 0;
3588 	/* subsystems can specify simple device enumeration */
3589 	else if (dev->bus && dev->bus->dev_name)
3590 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3591 	else
3592 		error = -EINVAL;
3593 	if (error)
3594 		goto name_error;
3595 
3596 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3597 
3598 	parent = get_device(dev->parent);
3599 	kobj = get_device_parent(dev, parent);
3600 	if (IS_ERR(kobj)) {
3601 		error = PTR_ERR(kobj);
3602 		goto parent_error;
3603 	}
3604 	if (kobj)
3605 		dev->kobj.parent = kobj;
3606 
3607 	/* use parent numa_node */
3608 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3609 		set_dev_node(dev, dev_to_node(parent));
3610 
3611 	/* first, register with generic layer. */
3612 	/* we require the name to be set before, and pass NULL */
3613 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3614 	if (error) {
3615 		glue_dir = kobj;
3616 		goto Error;
3617 	}
3618 
3619 	/* notify platform of device entry */
3620 	device_platform_notify(dev);
3621 
3622 	error = device_create_file(dev, &dev_attr_uevent);
3623 	if (error)
3624 		goto attrError;
3625 
3626 	error = device_add_class_symlinks(dev);
3627 	if (error)
3628 		goto SymlinkError;
3629 	error = device_add_attrs(dev);
3630 	if (error)
3631 		goto AttrsError;
3632 	error = bus_add_device(dev);
3633 	if (error)
3634 		goto BusError;
3635 	error = dpm_sysfs_add(dev);
3636 	if (error)
3637 		goto DPMError;
3638 	device_pm_add(dev);
3639 
3640 	if (MAJOR(dev->devt)) {
3641 		error = device_create_file(dev, &dev_attr_dev);
3642 		if (error)
3643 			goto DevAttrError;
3644 
3645 		error = device_create_sys_dev_entry(dev);
3646 		if (error)
3647 			goto SysEntryError;
3648 
3649 		devtmpfs_create_node(dev);
3650 	}
3651 
3652 	/* Notify clients of device addition.  This call must come
3653 	 * after dpm_sysfs_add() and before kobject_uevent().
3654 	 */
3655 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3656 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3657 
3658 	/*
3659 	 * Check if any of the other devices (consumers) have been waiting for
3660 	 * this device (supplier) to be added so that they can create a device
3661 	 * link to it.
3662 	 *
3663 	 * This needs to happen after device_pm_add() because device_link_add()
3664 	 * requires the supplier be registered before it's called.
3665 	 *
3666 	 * But this also needs to happen before bus_probe_device() to make sure
3667 	 * waiting consumers can link to it before the driver is bound to the
3668 	 * device and the driver sync_state callback is called for this device.
3669 	 */
3670 	if (dev->fwnode && !dev->fwnode->dev) {
3671 		dev->fwnode->dev = dev;
3672 		fw_devlink_link_device(dev);
3673 	}
3674 
3675 	bus_probe_device(dev);
3676 
3677 	/*
3678 	 * If all driver registration is done and a newly added device doesn't
3679 	 * match with any driver, don't block its consumers from probing in
3680 	 * case the consumer device is able to operate without this supplier.
3681 	 */
3682 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3683 		fw_devlink_unblock_consumers(dev);
3684 
3685 	if (parent)
3686 		klist_add_tail(&dev->p->knode_parent,
3687 			       &parent->p->klist_children);
3688 
3689 	sp = class_to_subsys(dev->class);
3690 	if (sp) {
3691 		mutex_lock(&sp->mutex);
3692 		/* tie the class to the device */
3693 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3694 
3695 		/* notify any interfaces that the device is here */
3696 		list_for_each_entry(class_intf, &sp->interfaces, node)
3697 			if (class_intf->add_dev)
3698 				class_intf->add_dev(dev);
3699 		mutex_unlock(&sp->mutex);
3700 		subsys_put(sp);
3701 	}
3702 done:
3703 	put_device(dev);
3704 	return error;
3705  SysEntryError:
3706 	if (MAJOR(dev->devt))
3707 		device_remove_file(dev, &dev_attr_dev);
3708  DevAttrError:
3709 	device_pm_remove(dev);
3710 	dpm_sysfs_remove(dev);
3711  DPMError:
3712 	dev->driver = NULL;
3713 	bus_remove_device(dev);
3714  BusError:
3715 	device_remove_attrs(dev);
3716  AttrsError:
3717 	device_remove_class_symlinks(dev);
3718  SymlinkError:
3719 	device_remove_file(dev, &dev_attr_uevent);
3720  attrError:
3721 	device_platform_notify_remove(dev);
3722 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3723 	glue_dir = get_glue_dir(dev);
3724 	kobject_del(&dev->kobj);
3725  Error:
3726 	cleanup_glue_dir(dev, glue_dir);
3727 parent_error:
3728 	put_device(parent);
3729 name_error:
3730 	kfree(dev->p);
3731 	dev->p = NULL;
3732 	goto done;
3733 }
3734 EXPORT_SYMBOL_GPL(device_add);
3735 
3736 /**
3737  * device_register - register a device with the system.
3738  * @dev: pointer to the device structure
3739  *
3740  * This happens in two clean steps - initialize the device
3741  * and add it to the system. The two steps can be called
3742  * separately, but this is the easiest and most common.
3743  * I.e. you should only call the two helpers separately if
3744  * have a clearly defined need to use and refcount the device
3745  * before it is added to the hierarchy.
3746  *
3747  * For more information, see the kerneldoc for device_initialize()
3748  * and device_add().
3749  *
3750  * NOTE: _Never_ directly free @dev after calling this function, even
3751  * if it returned an error! Always use put_device() to give up the
3752  * reference initialized in this function instead.
3753  */
3754 int device_register(struct device *dev)
3755 {
3756 	device_initialize(dev);
3757 	return device_add(dev);
3758 }
3759 EXPORT_SYMBOL_GPL(device_register);
3760 
3761 /**
3762  * get_device - increment reference count for device.
3763  * @dev: device.
3764  *
3765  * This simply forwards the call to kobject_get(), though
3766  * we do take care to provide for the case that we get a NULL
3767  * pointer passed in.
3768  */
3769 struct device *get_device(struct device *dev)
3770 {
3771 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3772 }
3773 EXPORT_SYMBOL_GPL(get_device);
3774 
3775 /**
3776  * put_device - decrement reference count.
3777  * @dev: device in question.
3778  */
3779 void put_device(struct device *dev)
3780 {
3781 	/* might_sleep(); */
3782 	if (dev)
3783 		kobject_put(&dev->kobj);
3784 }
3785 EXPORT_SYMBOL_GPL(put_device);
3786 
3787 bool kill_device(struct device *dev)
3788 {
3789 	/*
3790 	 * Require the device lock and set the "dead" flag to guarantee that
3791 	 * the update behavior is consistent with the other bitfields near
3792 	 * it and that we cannot have an asynchronous probe routine trying
3793 	 * to run while we are tearing out the bus/class/sysfs from
3794 	 * underneath the device.
3795 	 */
3796 	device_lock_assert(dev);
3797 
3798 	if (dev->p->dead)
3799 		return false;
3800 	dev->p->dead = true;
3801 	return true;
3802 }
3803 EXPORT_SYMBOL_GPL(kill_device);
3804 
3805 /**
3806  * device_del - delete device from system.
3807  * @dev: device.
3808  *
3809  * This is the first part of the device unregistration
3810  * sequence. This removes the device from the lists we control
3811  * from here, has it removed from the other driver model
3812  * subsystems it was added to in device_add(), and removes it
3813  * from the kobject hierarchy.
3814  *
3815  * NOTE: this should be called manually _iff_ device_add() was
3816  * also called manually.
3817  */
3818 void device_del(struct device *dev)
3819 {
3820 	struct subsys_private *sp;
3821 	struct device *parent = dev->parent;
3822 	struct kobject *glue_dir = NULL;
3823 	struct class_interface *class_intf;
3824 	unsigned int noio_flag;
3825 
3826 	device_lock(dev);
3827 	kill_device(dev);
3828 	device_unlock(dev);
3829 
3830 	if (dev->fwnode && dev->fwnode->dev == dev)
3831 		dev->fwnode->dev = NULL;
3832 
3833 	/* Notify clients of device removal.  This call must come
3834 	 * before dpm_sysfs_remove().
3835 	 */
3836 	noio_flag = memalloc_noio_save();
3837 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3838 
3839 	dpm_sysfs_remove(dev);
3840 	if (parent)
3841 		klist_del(&dev->p->knode_parent);
3842 	if (MAJOR(dev->devt)) {
3843 		devtmpfs_delete_node(dev);
3844 		device_remove_sys_dev_entry(dev);
3845 		device_remove_file(dev, &dev_attr_dev);
3846 	}
3847 
3848 	sp = class_to_subsys(dev->class);
3849 	if (sp) {
3850 		device_remove_class_symlinks(dev);
3851 
3852 		mutex_lock(&sp->mutex);
3853 		/* notify any interfaces that the device is now gone */
3854 		list_for_each_entry(class_intf, &sp->interfaces, node)
3855 			if (class_intf->remove_dev)
3856 				class_intf->remove_dev(dev);
3857 		/* remove the device from the class list */
3858 		klist_del(&dev->p->knode_class);
3859 		mutex_unlock(&sp->mutex);
3860 		subsys_put(sp);
3861 	}
3862 	device_remove_file(dev, &dev_attr_uevent);
3863 	device_remove_attrs(dev);
3864 	bus_remove_device(dev);
3865 	device_pm_remove(dev);
3866 	driver_deferred_probe_del(dev);
3867 	device_platform_notify_remove(dev);
3868 	device_links_purge(dev);
3869 
3870 	/*
3871 	 * If a device does not have a driver attached, we need to clean
3872 	 * up any managed resources. We do this in device_release(), but
3873 	 * it's never called (and we leak the device) if a managed
3874 	 * resource holds a reference to the device. So release all
3875 	 * managed resources here, like we do in driver_detach(). We
3876 	 * still need to do so again in device_release() in case someone
3877 	 * adds a new resource after this point, though.
3878 	 */
3879 	devres_release_all(dev);
3880 
3881 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3882 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3883 	glue_dir = get_glue_dir(dev);
3884 	kobject_del(&dev->kobj);
3885 	cleanup_glue_dir(dev, glue_dir);
3886 	memalloc_noio_restore(noio_flag);
3887 	put_device(parent);
3888 }
3889 EXPORT_SYMBOL_GPL(device_del);
3890 
3891 /**
3892  * device_unregister - unregister device from system.
3893  * @dev: device going away.
3894  *
3895  * We do this in two parts, like we do device_register(). First,
3896  * we remove it from all the subsystems with device_del(), then
3897  * we decrement the reference count via put_device(). If that
3898  * is the final reference count, the device will be cleaned up
3899  * via device_release() above. Otherwise, the structure will
3900  * stick around until the final reference to the device is dropped.
3901  */
3902 void device_unregister(struct device *dev)
3903 {
3904 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3905 	device_del(dev);
3906 	put_device(dev);
3907 }
3908 EXPORT_SYMBOL_GPL(device_unregister);
3909 
3910 static struct device *prev_device(struct klist_iter *i)
3911 {
3912 	struct klist_node *n = klist_prev(i);
3913 	struct device *dev = NULL;
3914 	struct device_private *p;
3915 
3916 	if (n) {
3917 		p = to_device_private_parent(n);
3918 		dev = p->device;
3919 	}
3920 	return dev;
3921 }
3922 
3923 static struct device *next_device(struct klist_iter *i)
3924 {
3925 	struct klist_node *n = klist_next(i);
3926 	struct device *dev = NULL;
3927 	struct device_private *p;
3928 
3929 	if (n) {
3930 		p = to_device_private_parent(n);
3931 		dev = p->device;
3932 	}
3933 	return dev;
3934 }
3935 
3936 /**
3937  * device_get_devnode - path of device node file
3938  * @dev: device
3939  * @mode: returned file access mode
3940  * @uid: returned file owner
3941  * @gid: returned file group
3942  * @tmp: possibly allocated string
3943  *
3944  * Return the relative path of a possible device node.
3945  * Non-default names may need to allocate a memory to compose
3946  * a name. This memory is returned in tmp and needs to be
3947  * freed by the caller.
3948  */
3949 const char *device_get_devnode(const struct device *dev,
3950 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3951 			       const char **tmp)
3952 {
3953 	char *s;
3954 
3955 	*tmp = NULL;
3956 
3957 	/* the device type may provide a specific name */
3958 	if (dev->type && dev->type->devnode)
3959 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3960 	if (*tmp)
3961 		return *tmp;
3962 
3963 	/* the class may provide a specific name */
3964 	if (dev->class && dev->class->devnode)
3965 		*tmp = dev->class->devnode(dev, mode);
3966 	if (*tmp)
3967 		return *tmp;
3968 
3969 	/* return name without allocation, tmp == NULL */
3970 	if (strchr(dev_name(dev), '!') == NULL)
3971 		return dev_name(dev);
3972 
3973 	/* replace '!' in the name with '/' */
3974 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3975 	if (!s)
3976 		return NULL;
3977 	return *tmp = s;
3978 }
3979 
3980 /**
3981  * device_for_each_child - device child iterator.
3982  * @parent: parent struct device.
3983  * @fn: function to be called for each device.
3984  * @data: data for the callback.
3985  *
3986  * Iterate over @parent's child devices, and call @fn for each,
3987  * passing it @data.
3988  *
3989  * We check the return of @fn each time. If it returns anything
3990  * other than 0, we break out and return that value.
3991  */
3992 int device_for_each_child(struct device *parent, void *data,
3993 			  int (*fn)(struct device *dev, void *data))
3994 {
3995 	struct klist_iter i;
3996 	struct device *child;
3997 	int error = 0;
3998 
3999 	if (!parent || !parent->p)
4000 		return 0;
4001 
4002 	klist_iter_init(&parent->p->klist_children, &i);
4003 	while (!error && (child = next_device(&i)))
4004 		error = fn(child, data);
4005 	klist_iter_exit(&i);
4006 	return error;
4007 }
4008 EXPORT_SYMBOL_GPL(device_for_each_child);
4009 
4010 /**
4011  * device_for_each_child_reverse - device child iterator in reversed order.
4012  * @parent: parent struct device.
4013  * @fn: function to be called for each device.
4014  * @data: data for the callback.
4015  *
4016  * Iterate over @parent's child devices, and call @fn for each,
4017  * passing it @data.
4018  *
4019  * We check the return of @fn each time. If it returns anything
4020  * other than 0, we break out and return that value.
4021  */
4022 int device_for_each_child_reverse(struct device *parent, void *data,
4023 				  int (*fn)(struct device *dev, void *data))
4024 {
4025 	struct klist_iter i;
4026 	struct device *child;
4027 	int error = 0;
4028 
4029 	if (!parent || !parent->p)
4030 		return 0;
4031 
4032 	klist_iter_init(&parent->p->klist_children, &i);
4033 	while ((child = prev_device(&i)) && !error)
4034 		error = fn(child, data);
4035 	klist_iter_exit(&i);
4036 	return error;
4037 }
4038 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4039 
4040 /**
4041  * device_find_child - device iterator for locating a particular device.
4042  * @parent: parent struct device
4043  * @match: Callback function to check device
4044  * @data: Data to pass to match function
4045  *
4046  * This is similar to the device_for_each_child() function above, but it
4047  * returns a reference to a device that is 'found' for later use, as
4048  * determined by the @match callback.
4049  *
4050  * The callback should return 0 if the device doesn't match and non-zero
4051  * if it does.  If the callback returns non-zero and a reference to the
4052  * current device can be obtained, this function will return to the caller
4053  * and not iterate over any more devices.
4054  *
4055  * NOTE: you will need to drop the reference with put_device() after use.
4056  */
4057 struct device *device_find_child(struct device *parent, void *data,
4058 				 int (*match)(struct device *dev, void *data))
4059 {
4060 	struct klist_iter i;
4061 	struct device *child;
4062 
4063 	if (!parent || !parent->p)
4064 		return NULL;
4065 
4066 	klist_iter_init(&parent->p->klist_children, &i);
4067 	while ((child = next_device(&i)))
4068 		if (match(child, data) && get_device(child))
4069 			break;
4070 	klist_iter_exit(&i);
4071 	return child;
4072 }
4073 EXPORT_SYMBOL_GPL(device_find_child);
4074 
4075 /**
4076  * device_find_child_by_name - device iterator for locating a child device.
4077  * @parent: parent struct device
4078  * @name: name of the child device
4079  *
4080  * This is similar to the device_find_child() function above, but it
4081  * returns a reference to a device that has the name @name.
4082  *
4083  * NOTE: you will need to drop the reference with put_device() after use.
4084  */
4085 struct device *device_find_child_by_name(struct device *parent,
4086 					 const char *name)
4087 {
4088 	struct klist_iter i;
4089 	struct device *child;
4090 
4091 	if (!parent)
4092 		return NULL;
4093 
4094 	klist_iter_init(&parent->p->klist_children, &i);
4095 	while ((child = next_device(&i)))
4096 		if (sysfs_streq(dev_name(child), name) && get_device(child))
4097 			break;
4098 	klist_iter_exit(&i);
4099 	return child;
4100 }
4101 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4102 
4103 static int match_any(struct device *dev, void *unused)
4104 {
4105 	return 1;
4106 }
4107 
4108 /**
4109  * device_find_any_child - device iterator for locating a child device, if any.
4110  * @parent: parent struct device
4111  *
4112  * This is similar to the device_find_child() function above, but it
4113  * returns a reference to a child device, if any.
4114  *
4115  * NOTE: you will need to drop the reference with put_device() after use.
4116  */
4117 struct device *device_find_any_child(struct device *parent)
4118 {
4119 	return device_find_child(parent, NULL, match_any);
4120 }
4121 EXPORT_SYMBOL_GPL(device_find_any_child);
4122 
4123 int __init devices_init(void)
4124 {
4125 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4126 	if (!devices_kset)
4127 		return -ENOMEM;
4128 	dev_kobj = kobject_create_and_add("dev", NULL);
4129 	if (!dev_kobj)
4130 		goto dev_kobj_err;
4131 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4132 	if (!sysfs_dev_block_kobj)
4133 		goto block_kobj_err;
4134 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4135 	if (!sysfs_dev_char_kobj)
4136 		goto char_kobj_err;
4137 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4138 	if (!device_link_wq)
4139 		goto wq_err;
4140 
4141 	return 0;
4142 
4143  wq_err:
4144 	kobject_put(sysfs_dev_char_kobj);
4145  char_kobj_err:
4146 	kobject_put(sysfs_dev_block_kobj);
4147  block_kobj_err:
4148 	kobject_put(dev_kobj);
4149  dev_kobj_err:
4150 	kset_unregister(devices_kset);
4151 	return -ENOMEM;
4152 }
4153 
4154 static int device_check_offline(struct device *dev, void *not_used)
4155 {
4156 	int ret;
4157 
4158 	ret = device_for_each_child(dev, NULL, device_check_offline);
4159 	if (ret)
4160 		return ret;
4161 
4162 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4163 }
4164 
4165 /**
4166  * device_offline - Prepare the device for hot-removal.
4167  * @dev: Device to be put offline.
4168  *
4169  * Execute the device bus type's .offline() callback, if present, to prepare
4170  * the device for a subsequent hot-removal.  If that succeeds, the device must
4171  * not be used until either it is removed or its bus type's .online() callback
4172  * is executed.
4173  *
4174  * Call under device_hotplug_lock.
4175  */
4176 int device_offline(struct device *dev)
4177 {
4178 	int ret;
4179 
4180 	if (dev->offline_disabled)
4181 		return -EPERM;
4182 
4183 	ret = device_for_each_child(dev, NULL, device_check_offline);
4184 	if (ret)
4185 		return ret;
4186 
4187 	device_lock(dev);
4188 	if (device_supports_offline(dev)) {
4189 		if (dev->offline) {
4190 			ret = 1;
4191 		} else {
4192 			ret = dev->bus->offline(dev);
4193 			if (!ret) {
4194 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4195 				dev->offline = true;
4196 			}
4197 		}
4198 	}
4199 	device_unlock(dev);
4200 
4201 	return ret;
4202 }
4203 
4204 /**
4205  * device_online - Put the device back online after successful device_offline().
4206  * @dev: Device to be put back online.
4207  *
4208  * If device_offline() has been successfully executed for @dev, but the device
4209  * has not been removed subsequently, execute its bus type's .online() callback
4210  * to indicate that the device can be used again.
4211  *
4212  * Call under device_hotplug_lock.
4213  */
4214 int device_online(struct device *dev)
4215 {
4216 	int ret = 0;
4217 
4218 	device_lock(dev);
4219 	if (device_supports_offline(dev)) {
4220 		if (dev->offline) {
4221 			ret = dev->bus->online(dev);
4222 			if (!ret) {
4223 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4224 				dev->offline = false;
4225 			}
4226 		} else {
4227 			ret = 1;
4228 		}
4229 	}
4230 	device_unlock(dev);
4231 
4232 	return ret;
4233 }
4234 
4235 struct root_device {
4236 	struct device dev;
4237 	struct module *owner;
4238 };
4239 
4240 static inline struct root_device *to_root_device(struct device *d)
4241 {
4242 	return container_of(d, struct root_device, dev);
4243 }
4244 
4245 static void root_device_release(struct device *dev)
4246 {
4247 	kfree(to_root_device(dev));
4248 }
4249 
4250 /**
4251  * __root_device_register - allocate and register a root device
4252  * @name: root device name
4253  * @owner: owner module of the root device, usually THIS_MODULE
4254  *
4255  * This function allocates a root device and registers it
4256  * using device_register(). In order to free the returned
4257  * device, use root_device_unregister().
4258  *
4259  * Root devices are dummy devices which allow other devices
4260  * to be grouped under /sys/devices. Use this function to
4261  * allocate a root device and then use it as the parent of
4262  * any device which should appear under /sys/devices/{name}
4263  *
4264  * The /sys/devices/{name} directory will also contain a
4265  * 'module' symlink which points to the @owner directory
4266  * in sysfs.
4267  *
4268  * Returns &struct device pointer on success, or ERR_PTR() on error.
4269  *
4270  * Note: You probably want to use root_device_register().
4271  */
4272 struct device *__root_device_register(const char *name, struct module *owner)
4273 {
4274 	struct root_device *root;
4275 	int err = -ENOMEM;
4276 
4277 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4278 	if (!root)
4279 		return ERR_PTR(err);
4280 
4281 	err = dev_set_name(&root->dev, "%s", name);
4282 	if (err) {
4283 		kfree(root);
4284 		return ERR_PTR(err);
4285 	}
4286 
4287 	root->dev.release = root_device_release;
4288 
4289 	err = device_register(&root->dev);
4290 	if (err) {
4291 		put_device(&root->dev);
4292 		return ERR_PTR(err);
4293 	}
4294 
4295 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4296 	if (owner) {
4297 		struct module_kobject *mk = &owner->mkobj;
4298 
4299 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4300 		if (err) {
4301 			device_unregister(&root->dev);
4302 			return ERR_PTR(err);
4303 		}
4304 		root->owner = owner;
4305 	}
4306 #endif
4307 
4308 	return &root->dev;
4309 }
4310 EXPORT_SYMBOL_GPL(__root_device_register);
4311 
4312 /**
4313  * root_device_unregister - unregister and free a root device
4314  * @dev: device going away
4315  *
4316  * This function unregisters and cleans up a device that was created by
4317  * root_device_register().
4318  */
4319 void root_device_unregister(struct device *dev)
4320 {
4321 	struct root_device *root = to_root_device(dev);
4322 
4323 	if (root->owner)
4324 		sysfs_remove_link(&root->dev.kobj, "module");
4325 
4326 	device_unregister(dev);
4327 }
4328 EXPORT_SYMBOL_GPL(root_device_unregister);
4329 
4330 
4331 static void device_create_release(struct device *dev)
4332 {
4333 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4334 	kfree(dev);
4335 }
4336 
4337 static __printf(6, 0) struct device *
4338 device_create_groups_vargs(const struct class *class, struct device *parent,
4339 			   dev_t devt, void *drvdata,
4340 			   const struct attribute_group **groups,
4341 			   const char *fmt, va_list args)
4342 {
4343 	struct device *dev = NULL;
4344 	int retval = -ENODEV;
4345 
4346 	if (IS_ERR_OR_NULL(class))
4347 		goto error;
4348 
4349 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4350 	if (!dev) {
4351 		retval = -ENOMEM;
4352 		goto error;
4353 	}
4354 
4355 	device_initialize(dev);
4356 	dev->devt = devt;
4357 	dev->class = class;
4358 	dev->parent = parent;
4359 	dev->groups = groups;
4360 	dev->release = device_create_release;
4361 	dev_set_drvdata(dev, drvdata);
4362 
4363 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4364 	if (retval)
4365 		goto error;
4366 
4367 	retval = device_add(dev);
4368 	if (retval)
4369 		goto error;
4370 
4371 	return dev;
4372 
4373 error:
4374 	put_device(dev);
4375 	return ERR_PTR(retval);
4376 }
4377 
4378 /**
4379  * device_create - creates a device and registers it with sysfs
4380  * @class: pointer to the struct class that this device should be registered to
4381  * @parent: pointer to the parent struct device of this new device, if any
4382  * @devt: the dev_t for the char device to be added
4383  * @drvdata: the data to be added to the device for callbacks
4384  * @fmt: string for the device's name
4385  *
4386  * This function can be used by char device classes.  A struct device
4387  * will be created in sysfs, registered to the specified class.
4388  *
4389  * A "dev" file will be created, showing the dev_t for the device, if
4390  * the dev_t is not 0,0.
4391  * If a pointer to a parent struct device is passed in, the newly created
4392  * struct device will be a child of that device in sysfs.
4393  * The pointer to the struct device will be returned from the call.
4394  * Any further sysfs files that might be required can be created using this
4395  * pointer.
4396  *
4397  * Returns &struct device pointer on success, or ERR_PTR() on error.
4398  */
4399 struct device *device_create(const struct class *class, struct device *parent,
4400 			     dev_t devt, void *drvdata, const char *fmt, ...)
4401 {
4402 	va_list vargs;
4403 	struct device *dev;
4404 
4405 	va_start(vargs, fmt);
4406 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4407 					  fmt, vargs);
4408 	va_end(vargs);
4409 	return dev;
4410 }
4411 EXPORT_SYMBOL_GPL(device_create);
4412 
4413 /**
4414  * device_create_with_groups - creates a device and registers it with sysfs
4415  * @class: pointer to the struct class that this device should be registered to
4416  * @parent: pointer to the parent struct device of this new device, if any
4417  * @devt: the dev_t for the char device to be added
4418  * @drvdata: the data to be added to the device for callbacks
4419  * @groups: NULL-terminated list of attribute groups to be created
4420  * @fmt: string for the device's name
4421  *
4422  * This function can be used by char device classes.  A struct device
4423  * will be created in sysfs, registered to the specified class.
4424  * Additional attributes specified in the groups parameter will also
4425  * be created automatically.
4426  *
4427  * A "dev" file will be created, showing the dev_t for the device, if
4428  * the dev_t is not 0,0.
4429  * If a pointer to a parent struct device is passed in, the newly created
4430  * struct device will be a child of that device in sysfs.
4431  * The pointer to the struct device will be returned from the call.
4432  * Any further sysfs files that might be required can be created using this
4433  * pointer.
4434  *
4435  * Returns &struct device pointer on success, or ERR_PTR() on error.
4436  */
4437 struct device *device_create_with_groups(const struct class *class,
4438 					 struct device *parent, dev_t devt,
4439 					 void *drvdata,
4440 					 const struct attribute_group **groups,
4441 					 const char *fmt, ...)
4442 {
4443 	va_list vargs;
4444 	struct device *dev;
4445 
4446 	va_start(vargs, fmt);
4447 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4448 					 fmt, vargs);
4449 	va_end(vargs);
4450 	return dev;
4451 }
4452 EXPORT_SYMBOL_GPL(device_create_with_groups);
4453 
4454 /**
4455  * device_destroy - removes a device that was created with device_create()
4456  * @class: pointer to the struct class that this device was registered with
4457  * @devt: the dev_t of the device that was previously registered
4458  *
4459  * This call unregisters and cleans up a device that was created with a
4460  * call to device_create().
4461  */
4462 void device_destroy(const struct class *class, dev_t devt)
4463 {
4464 	struct device *dev;
4465 
4466 	dev = class_find_device_by_devt(class, devt);
4467 	if (dev) {
4468 		put_device(dev);
4469 		device_unregister(dev);
4470 	}
4471 }
4472 EXPORT_SYMBOL_GPL(device_destroy);
4473 
4474 /**
4475  * device_rename - renames a device
4476  * @dev: the pointer to the struct device to be renamed
4477  * @new_name: the new name of the device
4478  *
4479  * It is the responsibility of the caller to provide mutual
4480  * exclusion between two different calls of device_rename
4481  * on the same device to ensure that new_name is valid and
4482  * won't conflict with other devices.
4483  *
4484  * Note: given that some subsystems (networking and infiniband) use this
4485  * function, with no immediate plans for this to change, we cannot assume or
4486  * require that this function not be called at all.
4487  *
4488  * However, if you're writing new code, do not call this function. The following
4489  * text from Kay Sievers offers some insight:
4490  *
4491  * Renaming devices is racy at many levels, symlinks and other stuff are not
4492  * replaced atomically, and you get a "move" uevent, but it's not easy to
4493  * connect the event to the old and new device. Device nodes are not renamed at
4494  * all, there isn't even support for that in the kernel now.
4495  *
4496  * In the meantime, during renaming, your target name might be taken by another
4497  * driver, creating conflicts. Or the old name is taken directly after you
4498  * renamed it -- then you get events for the same DEVPATH, before you even see
4499  * the "move" event. It's just a mess, and nothing new should ever rely on
4500  * kernel device renaming. Besides that, it's not even implemented now for
4501  * other things than (driver-core wise very simple) network devices.
4502  *
4503  * Make up a "real" name in the driver before you register anything, or add
4504  * some other attributes for userspace to find the device, or use udev to add
4505  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4506  * don't even want to get into that and try to implement the missing pieces in
4507  * the core. We really have other pieces to fix in the driver core mess. :)
4508  */
4509 int device_rename(struct device *dev, const char *new_name)
4510 {
4511 	struct subsys_private *sp = NULL;
4512 	struct kobject *kobj = &dev->kobj;
4513 	char *old_device_name = NULL;
4514 	int error;
4515 	bool is_link_renamed = false;
4516 
4517 	dev = get_device(dev);
4518 	if (!dev)
4519 		return -EINVAL;
4520 
4521 	dev_dbg(dev, "renaming to %s\n", new_name);
4522 
4523 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4524 	if (!old_device_name) {
4525 		error = -ENOMEM;
4526 		goto out;
4527 	}
4528 
4529 	if (dev->class) {
4530 		sp = class_to_subsys(dev->class);
4531 
4532 		if (!sp) {
4533 			error = -EINVAL;
4534 			goto out;
4535 		}
4536 
4537 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4538 					     new_name, kobject_namespace(kobj));
4539 		if (error)
4540 			goto out;
4541 
4542 		is_link_renamed = true;
4543 	}
4544 
4545 	error = kobject_rename(kobj, new_name);
4546 out:
4547 	if (error && is_link_renamed)
4548 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4549 				     old_device_name, kobject_namespace(kobj));
4550 	subsys_put(sp);
4551 
4552 	put_device(dev);
4553 
4554 	kfree(old_device_name);
4555 
4556 	return error;
4557 }
4558 EXPORT_SYMBOL_GPL(device_rename);
4559 
4560 static int device_move_class_links(struct device *dev,
4561 				   struct device *old_parent,
4562 				   struct device *new_parent)
4563 {
4564 	int error = 0;
4565 
4566 	if (old_parent)
4567 		sysfs_remove_link(&dev->kobj, "device");
4568 	if (new_parent)
4569 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4570 					  "device");
4571 	return error;
4572 }
4573 
4574 /**
4575  * device_move - moves a device to a new parent
4576  * @dev: the pointer to the struct device to be moved
4577  * @new_parent: the new parent of the device (can be NULL)
4578  * @dpm_order: how to reorder the dpm_list
4579  */
4580 int device_move(struct device *dev, struct device *new_parent,
4581 		enum dpm_order dpm_order)
4582 {
4583 	int error;
4584 	struct device *old_parent;
4585 	struct kobject *new_parent_kobj;
4586 
4587 	dev = get_device(dev);
4588 	if (!dev)
4589 		return -EINVAL;
4590 
4591 	device_pm_lock();
4592 	new_parent = get_device(new_parent);
4593 	new_parent_kobj = get_device_parent(dev, new_parent);
4594 	if (IS_ERR(new_parent_kobj)) {
4595 		error = PTR_ERR(new_parent_kobj);
4596 		put_device(new_parent);
4597 		goto out;
4598 	}
4599 
4600 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4601 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4602 	error = kobject_move(&dev->kobj, new_parent_kobj);
4603 	if (error) {
4604 		cleanup_glue_dir(dev, new_parent_kobj);
4605 		put_device(new_parent);
4606 		goto out;
4607 	}
4608 	old_parent = dev->parent;
4609 	dev->parent = new_parent;
4610 	if (old_parent)
4611 		klist_remove(&dev->p->knode_parent);
4612 	if (new_parent) {
4613 		klist_add_tail(&dev->p->knode_parent,
4614 			       &new_parent->p->klist_children);
4615 		set_dev_node(dev, dev_to_node(new_parent));
4616 	}
4617 
4618 	if (dev->class) {
4619 		error = device_move_class_links(dev, old_parent, new_parent);
4620 		if (error) {
4621 			/* We ignore errors on cleanup since we're hosed anyway... */
4622 			device_move_class_links(dev, new_parent, old_parent);
4623 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4624 				if (new_parent)
4625 					klist_remove(&dev->p->knode_parent);
4626 				dev->parent = old_parent;
4627 				if (old_parent) {
4628 					klist_add_tail(&dev->p->knode_parent,
4629 						       &old_parent->p->klist_children);
4630 					set_dev_node(dev, dev_to_node(old_parent));
4631 				}
4632 			}
4633 			cleanup_glue_dir(dev, new_parent_kobj);
4634 			put_device(new_parent);
4635 			goto out;
4636 		}
4637 	}
4638 	switch (dpm_order) {
4639 	case DPM_ORDER_NONE:
4640 		break;
4641 	case DPM_ORDER_DEV_AFTER_PARENT:
4642 		device_pm_move_after(dev, new_parent);
4643 		devices_kset_move_after(dev, new_parent);
4644 		break;
4645 	case DPM_ORDER_PARENT_BEFORE_DEV:
4646 		device_pm_move_before(new_parent, dev);
4647 		devices_kset_move_before(new_parent, dev);
4648 		break;
4649 	case DPM_ORDER_DEV_LAST:
4650 		device_pm_move_last(dev);
4651 		devices_kset_move_last(dev);
4652 		break;
4653 	}
4654 
4655 	put_device(old_parent);
4656 out:
4657 	device_pm_unlock();
4658 	put_device(dev);
4659 	return error;
4660 }
4661 EXPORT_SYMBOL_GPL(device_move);
4662 
4663 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4664 				     kgid_t kgid)
4665 {
4666 	struct kobject *kobj = &dev->kobj;
4667 	const struct class *class = dev->class;
4668 	const struct device_type *type = dev->type;
4669 	int error;
4670 
4671 	if (class) {
4672 		/*
4673 		 * Change the device groups of the device class for @dev to
4674 		 * @kuid/@kgid.
4675 		 */
4676 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4677 						  kgid);
4678 		if (error)
4679 			return error;
4680 	}
4681 
4682 	if (type) {
4683 		/*
4684 		 * Change the device groups of the device type for @dev to
4685 		 * @kuid/@kgid.
4686 		 */
4687 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4688 						  kgid);
4689 		if (error)
4690 			return error;
4691 	}
4692 
4693 	/* Change the device groups of @dev to @kuid/@kgid. */
4694 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4695 	if (error)
4696 		return error;
4697 
4698 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4699 		/* Change online device attributes of @dev to @kuid/@kgid. */
4700 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4701 						kuid, kgid);
4702 		if (error)
4703 			return error;
4704 	}
4705 
4706 	return 0;
4707 }
4708 
4709 /**
4710  * device_change_owner - change the owner of an existing device.
4711  * @dev: device.
4712  * @kuid: new owner's kuid
4713  * @kgid: new owner's kgid
4714  *
4715  * This changes the owner of @dev and its corresponding sysfs entries to
4716  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4717  * core.
4718  *
4719  * Returns 0 on success or error code on failure.
4720  */
4721 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4722 {
4723 	int error;
4724 	struct kobject *kobj = &dev->kobj;
4725 	struct subsys_private *sp;
4726 
4727 	dev = get_device(dev);
4728 	if (!dev)
4729 		return -EINVAL;
4730 
4731 	/*
4732 	 * Change the kobject and the default attributes and groups of the
4733 	 * ktype associated with it to @kuid/@kgid.
4734 	 */
4735 	error = sysfs_change_owner(kobj, kuid, kgid);
4736 	if (error)
4737 		goto out;
4738 
4739 	/*
4740 	 * Change the uevent file for @dev to the new owner. The uevent file
4741 	 * was created in a separate step when @dev got added and we mirror
4742 	 * that step here.
4743 	 */
4744 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4745 					kgid);
4746 	if (error)
4747 		goto out;
4748 
4749 	/*
4750 	 * Change the device groups, the device groups associated with the
4751 	 * device class, and the groups associated with the device type of @dev
4752 	 * to @kuid/@kgid.
4753 	 */
4754 	error = device_attrs_change_owner(dev, kuid, kgid);
4755 	if (error)
4756 		goto out;
4757 
4758 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4759 	if (error)
4760 		goto out;
4761 
4762 	/*
4763 	 * Change the owner of the symlink located in the class directory of
4764 	 * the device class associated with @dev which points to the actual
4765 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4766 	 * symlink shows the same permissions as its target.
4767 	 */
4768 	sp = class_to_subsys(dev->class);
4769 	if (!sp) {
4770 		error = -EINVAL;
4771 		goto out;
4772 	}
4773 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4774 	subsys_put(sp);
4775 
4776 out:
4777 	put_device(dev);
4778 	return error;
4779 }
4780 EXPORT_SYMBOL_GPL(device_change_owner);
4781 
4782 /**
4783  * device_shutdown - call ->shutdown() on each device to shutdown.
4784  */
4785 void device_shutdown(void)
4786 {
4787 	struct device *dev, *parent;
4788 
4789 	wait_for_device_probe();
4790 	device_block_probing();
4791 
4792 	cpufreq_suspend();
4793 
4794 	spin_lock(&devices_kset->list_lock);
4795 	/*
4796 	 * Walk the devices list backward, shutting down each in turn.
4797 	 * Beware that device unplug events may also start pulling
4798 	 * devices offline, even as the system is shutting down.
4799 	 */
4800 	while (!list_empty(&devices_kset->list)) {
4801 		dev = list_entry(devices_kset->list.prev, struct device,
4802 				kobj.entry);
4803 
4804 		/*
4805 		 * hold reference count of device's parent to
4806 		 * prevent it from being freed because parent's
4807 		 * lock is to be held
4808 		 */
4809 		parent = get_device(dev->parent);
4810 		get_device(dev);
4811 		/*
4812 		 * Make sure the device is off the kset list, in the
4813 		 * event that dev->*->shutdown() doesn't remove it.
4814 		 */
4815 		list_del_init(&dev->kobj.entry);
4816 		spin_unlock(&devices_kset->list_lock);
4817 
4818 		/* hold lock to avoid race with probe/release */
4819 		if (parent)
4820 			device_lock(parent);
4821 		device_lock(dev);
4822 
4823 		/* Don't allow any more runtime suspends */
4824 		pm_runtime_get_noresume(dev);
4825 		pm_runtime_barrier(dev);
4826 
4827 		if (dev->class && dev->class->shutdown_pre) {
4828 			if (initcall_debug)
4829 				dev_info(dev, "shutdown_pre\n");
4830 			dev->class->shutdown_pre(dev);
4831 		}
4832 		if (dev->bus && dev->bus->shutdown) {
4833 			if (initcall_debug)
4834 				dev_info(dev, "shutdown\n");
4835 			dev->bus->shutdown(dev);
4836 		} else if (dev->driver && dev->driver->shutdown) {
4837 			if (initcall_debug)
4838 				dev_info(dev, "shutdown\n");
4839 			dev->driver->shutdown(dev);
4840 		}
4841 
4842 		device_unlock(dev);
4843 		if (parent)
4844 			device_unlock(parent);
4845 
4846 		put_device(dev);
4847 		put_device(parent);
4848 
4849 		spin_lock(&devices_kset->list_lock);
4850 	}
4851 	spin_unlock(&devices_kset->list_lock);
4852 }
4853 
4854 /*
4855  * Device logging functions
4856  */
4857 
4858 #ifdef CONFIG_PRINTK
4859 static void
4860 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4861 {
4862 	const char *subsys;
4863 
4864 	memset(dev_info, 0, sizeof(*dev_info));
4865 
4866 	if (dev->class)
4867 		subsys = dev->class->name;
4868 	else if (dev->bus)
4869 		subsys = dev->bus->name;
4870 	else
4871 		return;
4872 
4873 	strscpy(dev_info->subsystem, subsys);
4874 
4875 	/*
4876 	 * Add device identifier DEVICE=:
4877 	 *   b12:8         block dev_t
4878 	 *   c127:3        char dev_t
4879 	 *   n8            netdev ifindex
4880 	 *   +sound:card0  subsystem:devname
4881 	 */
4882 	if (MAJOR(dev->devt)) {
4883 		char c;
4884 
4885 		if (strcmp(subsys, "block") == 0)
4886 			c = 'b';
4887 		else
4888 			c = 'c';
4889 
4890 		snprintf(dev_info->device, sizeof(dev_info->device),
4891 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4892 	} else if (strcmp(subsys, "net") == 0) {
4893 		struct net_device *net = to_net_dev(dev);
4894 
4895 		snprintf(dev_info->device, sizeof(dev_info->device),
4896 			 "n%u", net->ifindex);
4897 	} else {
4898 		snprintf(dev_info->device, sizeof(dev_info->device),
4899 			 "+%s:%s", subsys, dev_name(dev));
4900 	}
4901 }
4902 
4903 int dev_vprintk_emit(int level, const struct device *dev,
4904 		     const char *fmt, va_list args)
4905 {
4906 	struct dev_printk_info dev_info;
4907 
4908 	set_dev_info(dev, &dev_info);
4909 
4910 	return vprintk_emit(0, level, &dev_info, fmt, args);
4911 }
4912 EXPORT_SYMBOL(dev_vprintk_emit);
4913 
4914 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4915 {
4916 	va_list args;
4917 	int r;
4918 
4919 	va_start(args, fmt);
4920 
4921 	r = dev_vprintk_emit(level, dev, fmt, args);
4922 
4923 	va_end(args);
4924 
4925 	return r;
4926 }
4927 EXPORT_SYMBOL(dev_printk_emit);
4928 
4929 static void __dev_printk(const char *level, const struct device *dev,
4930 			struct va_format *vaf)
4931 {
4932 	if (dev)
4933 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4934 				dev_driver_string(dev), dev_name(dev), vaf);
4935 	else
4936 		printk("%s(NULL device *): %pV", level, vaf);
4937 }
4938 
4939 void _dev_printk(const char *level, const struct device *dev,
4940 		 const char *fmt, ...)
4941 {
4942 	struct va_format vaf;
4943 	va_list args;
4944 
4945 	va_start(args, fmt);
4946 
4947 	vaf.fmt = fmt;
4948 	vaf.va = &args;
4949 
4950 	__dev_printk(level, dev, &vaf);
4951 
4952 	va_end(args);
4953 }
4954 EXPORT_SYMBOL(_dev_printk);
4955 
4956 #define define_dev_printk_level(func, kern_level)		\
4957 void func(const struct device *dev, const char *fmt, ...)	\
4958 {								\
4959 	struct va_format vaf;					\
4960 	va_list args;						\
4961 								\
4962 	va_start(args, fmt);					\
4963 								\
4964 	vaf.fmt = fmt;						\
4965 	vaf.va = &args;						\
4966 								\
4967 	__dev_printk(kern_level, dev, &vaf);			\
4968 								\
4969 	va_end(args);						\
4970 }								\
4971 EXPORT_SYMBOL(func);
4972 
4973 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4974 define_dev_printk_level(_dev_alert, KERN_ALERT);
4975 define_dev_printk_level(_dev_crit, KERN_CRIT);
4976 define_dev_printk_level(_dev_err, KERN_ERR);
4977 define_dev_printk_level(_dev_warn, KERN_WARNING);
4978 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4979 define_dev_printk_level(_dev_info, KERN_INFO);
4980 
4981 #endif
4982 
4983 /**
4984  * dev_err_probe - probe error check and log helper
4985  * @dev: the pointer to the struct device
4986  * @err: error value to test
4987  * @fmt: printf-style format string
4988  * @...: arguments as specified in the format string
4989  *
4990  * This helper implements common pattern present in probe functions for error
4991  * checking: print debug or error message depending if the error value is
4992  * -EPROBE_DEFER and propagate error upwards.
4993  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4994  * checked later by reading devices_deferred debugfs attribute.
4995  * It replaces code sequence::
4996  *
4997  * 	if (err != -EPROBE_DEFER)
4998  * 		dev_err(dev, ...);
4999  * 	else
5000  * 		dev_dbg(dev, ...);
5001  * 	return err;
5002  *
5003  * with::
5004  *
5005  * 	return dev_err_probe(dev, err, ...);
5006  *
5007  * Using this helper in your probe function is totally fine even if @err is
5008  * known to never be -EPROBE_DEFER.
5009  * The benefit compared to a normal dev_err() is the standardized format
5010  * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5011  * instead of "-35") and the fact that the error code is returned which allows
5012  * more compact error paths.
5013  *
5014  * Returns @err.
5015  */
5016 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5017 {
5018 	struct va_format vaf;
5019 	va_list args;
5020 
5021 	va_start(args, fmt);
5022 	vaf.fmt = fmt;
5023 	vaf.va = &args;
5024 
5025 	switch (err) {
5026 	case -EPROBE_DEFER:
5027 		device_set_deferred_probe_reason(dev, &vaf);
5028 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5029 		break;
5030 
5031 	case -ENOMEM:
5032 		/*
5033 		 * We don't print anything on -ENOMEM, there is already enough
5034 		 * output.
5035 		 */
5036 		break;
5037 
5038 	default:
5039 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5040 		break;
5041 	}
5042 
5043 	va_end(args);
5044 
5045 	return err;
5046 }
5047 EXPORT_SYMBOL_GPL(dev_err_probe);
5048 
5049 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5050 {
5051 	return fwnode && !IS_ERR(fwnode->secondary);
5052 }
5053 
5054 /**
5055  * set_primary_fwnode - Change the primary firmware node of a given device.
5056  * @dev: Device to handle.
5057  * @fwnode: New primary firmware node of the device.
5058  *
5059  * Set the device's firmware node pointer to @fwnode, but if a secondary
5060  * firmware node of the device is present, preserve it.
5061  *
5062  * Valid fwnode cases are:
5063  *  - primary --> secondary --> -ENODEV
5064  *  - primary --> NULL
5065  *  - secondary --> -ENODEV
5066  *  - NULL
5067  */
5068 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5069 {
5070 	struct device *parent = dev->parent;
5071 	struct fwnode_handle *fn = dev->fwnode;
5072 
5073 	if (fwnode) {
5074 		if (fwnode_is_primary(fn))
5075 			fn = fn->secondary;
5076 
5077 		if (fn) {
5078 			WARN_ON(fwnode->secondary);
5079 			fwnode->secondary = fn;
5080 		}
5081 		dev->fwnode = fwnode;
5082 	} else {
5083 		if (fwnode_is_primary(fn)) {
5084 			dev->fwnode = fn->secondary;
5085 
5086 			/* Skip nullifying fn->secondary if the primary is shared */
5087 			if (parent && fn == parent->fwnode)
5088 				return;
5089 
5090 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5091 			fn->secondary = NULL;
5092 		} else {
5093 			dev->fwnode = NULL;
5094 		}
5095 	}
5096 }
5097 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5098 
5099 /**
5100  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5101  * @dev: Device to handle.
5102  * @fwnode: New secondary firmware node of the device.
5103  *
5104  * If a primary firmware node of the device is present, set its secondary
5105  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5106  * @fwnode.
5107  */
5108 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5109 {
5110 	if (fwnode)
5111 		fwnode->secondary = ERR_PTR(-ENODEV);
5112 
5113 	if (fwnode_is_primary(dev->fwnode))
5114 		dev->fwnode->secondary = fwnode;
5115 	else
5116 		dev->fwnode = fwnode;
5117 }
5118 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5119 
5120 /**
5121  * device_set_of_node_from_dev - reuse device-tree node of another device
5122  * @dev: device whose device-tree node is being set
5123  * @dev2: device whose device-tree node is being reused
5124  *
5125  * Takes another reference to the new device-tree node after first dropping
5126  * any reference held to the old node.
5127  */
5128 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5129 {
5130 	of_node_put(dev->of_node);
5131 	dev->of_node = of_node_get(dev2->of_node);
5132 	dev->of_node_reused = true;
5133 }
5134 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5135 
5136 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5137 {
5138 	dev->fwnode = fwnode;
5139 	dev->of_node = to_of_node(fwnode);
5140 }
5141 EXPORT_SYMBOL_GPL(device_set_node);
5142 
5143 int device_match_name(struct device *dev, const void *name)
5144 {
5145 	return sysfs_streq(dev_name(dev), name);
5146 }
5147 EXPORT_SYMBOL_GPL(device_match_name);
5148 
5149 int device_match_of_node(struct device *dev, const void *np)
5150 {
5151 	return dev->of_node == np;
5152 }
5153 EXPORT_SYMBOL_GPL(device_match_of_node);
5154 
5155 int device_match_fwnode(struct device *dev, const void *fwnode)
5156 {
5157 	return dev_fwnode(dev) == fwnode;
5158 }
5159 EXPORT_SYMBOL_GPL(device_match_fwnode);
5160 
5161 int device_match_devt(struct device *dev, const void *pdevt)
5162 {
5163 	return dev->devt == *(dev_t *)pdevt;
5164 }
5165 EXPORT_SYMBOL_GPL(device_match_devt);
5166 
5167 int device_match_acpi_dev(struct device *dev, const void *adev)
5168 {
5169 	return ACPI_COMPANION(dev) == adev;
5170 }
5171 EXPORT_SYMBOL(device_match_acpi_dev);
5172 
5173 int device_match_acpi_handle(struct device *dev, const void *handle)
5174 {
5175 	return ACPI_HANDLE(dev) == handle;
5176 }
5177 EXPORT_SYMBOL(device_match_acpi_handle);
5178 
5179 int device_match_any(struct device *dev, const void *unused)
5180 {
5181 	return 1;
5182 }
5183 EXPORT_SYMBOL_GPL(device_match_any);
5184