1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/rcupdate.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/slab.h> 33 #include <linux/string_helpers.h> 34 #include <linux/swiotlb.h> 35 #include <linux/sysfs.h> 36 37 #include "base.h" 38 #include "physical_location.h" 39 #include "power/power.h" 40 41 /* Device links support. */ 42 static LIST_HEAD(deferred_sync); 43 static unsigned int defer_sync_state_count = 1; 44 static DEFINE_MUTEX(fwnode_link_lock); 45 static bool fw_devlink_is_permissive(void); 46 static void __fw_devlink_link_to_consumers(struct device *dev); 47 static bool fw_devlink_drv_reg_done; 48 static bool fw_devlink_best_effort; 49 static struct workqueue_struct *device_link_wq; 50 51 /** 52 * __fwnode_link_add - Create a link between two fwnode_handles. 53 * @con: Consumer end of the link. 54 * @sup: Supplier end of the link. 55 * @flags: Link flags. 56 * 57 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 58 * represents the detail that the firmware lists @sup fwnode as supplying a 59 * resource to @con. 60 * 61 * The driver core will use the fwnode link to create a device link between the 62 * two device objects corresponding to @con and @sup when they are created. The 63 * driver core will automatically delete the fwnode link between @con and @sup 64 * after doing that. 65 * 66 * Attempts to create duplicate links between the same pair of fwnode handles 67 * are ignored and there is no reference counting. 68 */ 69 static int __fwnode_link_add(struct fwnode_handle *con, 70 struct fwnode_handle *sup, u8 flags) 71 { 72 struct fwnode_link *link; 73 74 list_for_each_entry(link, &sup->consumers, s_hook) 75 if (link->consumer == con) { 76 link->flags |= flags; 77 return 0; 78 } 79 80 link = kzalloc(sizeof(*link), GFP_KERNEL); 81 if (!link) 82 return -ENOMEM; 83 84 link->supplier = sup; 85 INIT_LIST_HEAD(&link->s_hook); 86 link->consumer = con; 87 INIT_LIST_HEAD(&link->c_hook); 88 link->flags = flags; 89 90 list_add(&link->s_hook, &sup->consumers); 91 list_add(&link->c_hook, &con->suppliers); 92 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 93 con, sup); 94 95 return 0; 96 } 97 98 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 99 u8 flags) 100 { 101 guard(mutex)(&fwnode_link_lock); 102 103 return __fwnode_link_add(con, sup, flags); 104 } 105 106 /** 107 * __fwnode_link_del - Delete a link between two fwnode_handles. 108 * @link: the fwnode_link to be deleted 109 * 110 * The fwnode_link_lock needs to be held when this function is called. 111 */ 112 static void __fwnode_link_del(struct fwnode_link *link) 113 { 114 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 115 link->consumer, link->supplier); 116 list_del(&link->s_hook); 117 list_del(&link->c_hook); 118 kfree(link); 119 } 120 121 /** 122 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 123 * @link: the fwnode_link to be marked 124 * 125 * The fwnode_link_lock needs to be held when this function is called. 126 */ 127 static void __fwnode_link_cycle(struct fwnode_link *link) 128 { 129 pr_debug("%pfwf: cycle: depends on %pfwf\n", 130 link->consumer, link->supplier); 131 link->flags |= FWLINK_FLAG_CYCLE; 132 } 133 134 /** 135 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 136 * @fwnode: fwnode whose supplier links need to be deleted 137 * 138 * Deletes all supplier links connecting directly to @fwnode. 139 */ 140 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 141 { 142 struct fwnode_link *link, *tmp; 143 144 guard(mutex)(&fwnode_link_lock); 145 146 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 147 __fwnode_link_del(link); 148 } 149 150 /** 151 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 152 * @fwnode: fwnode whose consumer links need to be deleted 153 * 154 * Deletes all consumer links connecting directly to @fwnode. 155 */ 156 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 157 { 158 struct fwnode_link *link, *tmp; 159 160 guard(mutex)(&fwnode_link_lock); 161 162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 163 __fwnode_link_del(link); 164 } 165 166 /** 167 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 168 * @fwnode: fwnode whose links needs to be deleted 169 * 170 * Deletes all links connecting directly to a fwnode. 171 */ 172 void fwnode_links_purge(struct fwnode_handle *fwnode) 173 { 174 fwnode_links_purge_suppliers(fwnode); 175 fwnode_links_purge_consumers(fwnode); 176 } 177 178 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 179 { 180 struct fwnode_handle *child; 181 182 /* Don't purge consumer links of an added child */ 183 if (fwnode->dev) 184 return; 185 186 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 187 fwnode_links_purge_consumers(fwnode); 188 189 fwnode_for_each_available_child_node(fwnode, child) 190 fw_devlink_purge_absent_suppliers(child); 191 } 192 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 193 194 /** 195 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 196 * @from: move consumers away from this fwnode 197 * @to: move consumers to this fwnode 198 * 199 * Move all consumer links from @from fwnode to @to fwnode. 200 */ 201 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 202 struct fwnode_handle *to) 203 { 204 struct fwnode_link *link, *tmp; 205 206 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 207 __fwnode_link_add(link->consumer, to, link->flags); 208 __fwnode_link_del(link); 209 } 210 } 211 212 /** 213 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 214 * @fwnode: fwnode from which to pick up dangling consumers 215 * @new_sup: fwnode of new supplier 216 * 217 * If the @fwnode has a corresponding struct device and the device supports 218 * probing (that is, added to a bus), then we want to let fw_devlink create 219 * MANAGED device links to this device, so leave @fwnode and its descendant's 220 * fwnode links alone. 221 * 222 * Otherwise, move its consumers to the new supplier @new_sup. 223 */ 224 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 225 struct fwnode_handle *new_sup) 226 { 227 struct fwnode_handle *child; 228 229 if (fwnode->dev && fwnode->dev->bus) 230 return; 231 232 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 233 __fwnode_links_move_consumers(fwnode, new_sup); 234 235 fwnode_for_each_available_child_node(fwnode, child) 236 __fw_devlink_pickup_dangling_consumers(child, new_sup); 237 } 238 239 static DEFINE_MUTEX(device_links_lock); 240 DEFINE_STATIC_SRCU(device_links_srcu); 241 242 static inline void device_links_write_lock(void) 243 { 244 mutex_lock(&device_links_lock); 245 } 246 247 static inline void device_links_write_unlock(void) 248 { 249 mutex_unlock(&device_links_lock); 250 } 251 252 int device_links_read_lock(void) __acquires(&device_links_srcu) 253 { 254 return srcu_read_lock(&device_links_srcu); 255 } 256 257 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 258 { 259 srcu_read_unlock(&device_links_srcu, idx); 260 } 261 262 int device_links_read_lock_held(void) 263 { 264 return srcu_read_lock_held(&device_links_srcu); 265 } 266 267 static void device_link_synchronize_removal(void) 268 { 269 synchronize_srcu(&device_links_srcu); 270 } 271 272 static void device_link_remove_from_lists(struct device_link *link) 273 { 274 list_del_rcu(&link->s_node); 275 list_del_rcu(&link->c_node); 276 } 277 278 static bool device_is_ancestor(struct device *dev, struct device *target) 279 { 280 while (target->parent) { 281 target = target->parent; 282 if (dev == target) 283 return true; 284 } 285 return false; 286 } 287 288 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 289 DL_FLAG_CYCLE | \ 290 DL_FLAG_MANAGED) 291 static inline bool device_link_flag_is_sync_state_only(u32 flags) 292 { 293 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 294 } 295 296 /** 297 * device_is_dependent - Check if one device depends on another one 298 * @dev: Device to check dependencies for. 299 * @target: Device to check against. 300 * 301 * Check if @target depends on @dev or any device dependent on it (its child or 302 * its consumer etc). Return 1 if that is the case or 0 otherwise. 303 */ 304 static int device_is_dependent(struct device *dev, void *target) 305 { 306 struct device_link *link; 307 int ret; 308 309 /* 310 * The "ancestors" check is needed to catch the case when the target 311 * device has not been completely initialized yet and it is still 312 * missing from the list of children of its parent device. 313 */ 314 if (dev == target || device_is_ancestor(dev, target)) 315 return 1; 316 317 ret = device_for_each_child(dev, target, device_is_dependent); 318 if (ret) 319 return ret; 320 321 list_for_each_entry(link, &dev->links.consumers, s_node) { 322 if (device_link_flag_is_sync_state_only(link->flags)) 323 continue; 324 325 if (link->consumer == target) 326 return 1; 327 328 ret = device_is_dependent(link->consumer, target); 329 if (ret) 330 break; 331 } 332 return ret; 333 } 334 335 static void device_link_init_status(struct device_link *link, 336 struct device *consumer, 337 struct device *supplier) 338 { 339 switch (supplier->links.status) { 340 case DL_DEV_PROBING: 341 switch (consumer->links.status) { 342 case DL_DEV_PROBING: 343 /* 344 * A consumer driver can create a link to a supplier 345 * that has not completed its probing yet as long as it 346 * knows that the supplier is already functional (for 347 * example, it has just acquired some resources from the 348 * supplier). 349 */ 350 link->status = DL_STATE_CONSUMER_PROBE; 351 break; 352 default: 353 link->status = DL_STATE_DORMANT; 354 break; 355 } 356 break; 357 case DL_DEV_DRIVER_BOUND: 358 switch (consumer->links.status) { 359 case DL_DEV_PROBING: 360 link->status = DL_STATE_CONSUMER_PROBE; 361 break; 362 case DL_DEV_DRIVER_BOUND: 363 link->status = DL_STATE_ACTIVE; 364 break; 365 default: 366 link->status = DL_STATE_AVAILABLE; 367 break; 368 } 369 break; 370 case DL_DEV_UNBINDING: 371 link->status = DL_STATE_SUPPLIER_UNBIND; 372 break; 373 default: 374 link->status = DL_STATE_DORMANT; 375 break; 376 } 377 } 378 379 static int device_reorder_to_tail(struct device *dev, void *not_used) 380 { 381 struct device_link *link; 382 383 /* 384 * Devices that have not been registered yet will be put to the ends 385 * of the lists during the registration, so skip them here. 386 */ 387 if (device_is_registered(dev)) 388 devices_kset_move_last(dev); 389 390 if (device_pm_initialized(dev)) 391 device_pm_move_last(dev); 392 393 device_for_each_child(dev, NULL, device_reorder_to_tail); 394 list_for_each_entry(link, &dev->links.consumers, s_node) { 395 if (device_link_flag_is_sync_state_only(link->flags)) 396 continue; 397 device_reorder_to_tail(link->consumer, NULL); 398 } 399 400 return 0; 401 } 402 403 /** 404 * device_pm_move_to_tail - Move set of devices to the end of device lists 405 * @dev: Device to move 406 * 407 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 408 * 409 * It moves the @dev along with all of its children and all of its consumers 410 * to the ends of the device_kset and dpm_list, recursively. 411 */ 412 void device_pm_move_to_tail(struct device *dev) 413 { 414 int idx; 415 416 idx = device_links_read_lock(); 417 device_pm_lock(); 418 device_reorder_to_tail(dev, NULL); 419 device_pm_unlock(); 420 device_links_read_unlock(idx); 421 } 422 423 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 424 425 static ssize_t status_show(struct device *dev, 426 struct device_attribute *attr, char *buf) 427 { 428 const char *output; 429 430 switch (to_devlink(dev)->status) { 431 case DL_STATE_NONE: 432 output = "not tracked"; 433 break; 434 case DL_STATE_DORMANT: 435 output = "dormant"; 436 break; 437 case DL_STATE_AVAILABLE: 438 output = "available"; 439 break; 440 case DL_STATE_CONSUMER_PROBE: 441 output = "consumer probing"; 442 break; 443 case DL_STATE_ACTIVE: 444 output = "active"; 445 break; 446 case DL_STATE_SUPPLIER_UNBIND: 447 output = "supplier unbinding"; 448 break; 449 default: 450 output = "unknown"; 451 break; 452 } 453 454 return sysfs_emit(buf, "%s\n", output); 455 } 456 static DEVICE_ATTR_RO(status); 457 458 static ssize_t auto_remove_on_show(struct device *dev, 459 struct device_attribute *attr, char *buf) 460 { 461 struct device_link *link = to_devlink(dev); 462 const char *output; 463 464 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 465 output = "supplier unbind"; 466 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 467 output = "consumer unbind"; 468 else 469 output = "never"; 470 471 return sysfs_emit(buf, "%s\n", output); 472 } 473 static DEVICE_ATTR_RO(auto_remove_on); 474 475 static ssize_t runtime_pm_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct device_link *link = to_devlink(dev); 479 480 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 481 } 482 static DEVICE_ATTR_RO(runtime_pm); 483 484 static ssize_t sync_state_only_show(struct device *dev, 485 struct device_attribute *attr, char *buf) 486 { 487 struct device_link *link = to_devlink(dev); 488 489 return sysfs_emit(buf, "%d\n", 490 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 491 } 492 static DEVICE_ATTR_RO(sync_state_only); 493 494 static struct attribute *devlink_attrs[] = { 495 &dev_attr_status.attr, 496 &dev_attr_auto_remove_on.attr, 497 &dev_attr_runtime_pm.attr, 498 &dev_attr_sync_state_only.attr, 499 NULL, 500 }; 501 ATTRIBUTE_GROUPS(devlink); 502 503 static void device_link_release_fn(struct work_struct *work) 504 { 505 struct device_link *link = container_of(work, struct device_link, rm_work); 506 507 /* Ensure that all references to the link object have been dropped. */ 508 device_link_synchronize_removal(); 509 510 pm_runtime_release_supplier(link); 511 /* 512 * If supplier_preactivated is set, the link has been dropped between 513 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 514 * in __driver_probe_device(). In that case, drop the supplier's 515 * PM-runtime usage counter to remove the reference taken by 516 * pm_runtime_get_suppliers(). 517 */ 518 if (link->supplier_preactivated) 519 pm_runtime_put_noidle(link->supplier); 520 521 pm_request_idle(link->supplier); 522 523 put_device(link->consumer); 524 put_device(link->supplier); 525 kfree(link); 526 } 527 528 static void devlink_dev_release(struct device *dev) 529 { 530 struct device_link *link = to_devlink(dev); 531 532 INIT_WORK(&link->rm_work, device_link_release_fn); 533 /* 534 * It may take a while to complete this work because of the SRCU 535 * synchronization in device_link_release_fn() and if the consumer or 536 * supplier devices get deleted when it runs, so put it into the 537 * dedicated workqueue. 538 */ 539 queue_work(device_link_wq, &link->rm_work); 540 } 541 542 /** 543 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 544 */ 545 void device_link_wait_removal(void) 546 { 547 /* 548 * devlink removal jobs are queued in the dedicated work queue. 549 * To be sure that all removal jobs are terminated, ensure that any 550 * scheduled work has run to completion. 551 */ 552 flush_workqueue(device_link_wq); 553 } 554 EXPORT_SYMBOL_GPL(device_link_wait_removal); 555 556 static struct class devlink_class = { 557 .name = "devlink", 558 .dev_groups = devlink_groups, 559 .dev_release = devlink_dev_release, 560 }; 561 562 static int devlink_add_symlinks(struct device *dev) 563 { 564 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 565 int ret; 566 struct device_link *link = to_devlink(dev); 567 struct device *sup = link->supplier; 568 struct device *con = link->consumer; 569 570 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 571 if (ret) 572 goto out; 573 574 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 575 if (ret) 576 goto err_con; 577 578 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 579 if (!buf_con) { 580 ret = -ENOMEM; 581 goto err_con_dev; 582 } 583 584 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 585 if (ret) 586 goto err_con_dev; 587 588 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 589 if (!buf_sup) { 590 ret = -ENOMEM; 591 goto err_sup_dev; 592 } 593 594 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 595 if (ret) 596 goto err_sup_dev; 597 598 goto out; 599 600 err_sup_dev: 601 sysfs_remove_link(&sup->kobj, buf_con); 602 err_con_dev: 603 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 604 err_con: 605 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 606 out: 607 return ret; 608 } 609 610 static void devlink_remove_symlinks(struct device *dev) 611 { 612 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 613 struct device_link *link = to_devlink(dev); 614 struct device *sup = link->supplier; 615 struct device *con = link->consumer; 616 617 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 618 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 619 620 if (device_is_registered(con)) { 621 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 622 if (!buf_sup) 623 goto out; 624 sysfs_remove_link(&con->kobj, buf_sup); 625 } 626 627 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 628 if (!buf_con) 629 goto out; 630 sysfs_remove_link(&sup->kobj, buf_con); 631 632 return; 633 634 out: 635 WARN(1, "Unable to properly free device link symlinks!\n"); 636 } 637 638 static struct class_interface devlink_class_intf = { 639 .class = &devlink_class, 640 .add_dev = devlink_add_symlinks, 641 .remove_dev = devlink_remove_symlinks, 642 }; 643 644 static int __init devlink_class_init(void) 645 { 646 int ret; 647 648 ret = class_register(&devlink_class); 649 if (ret) 650 return ret; 651 652 ret = class_interface_register(&devlink_class_intf); 653 if (ret) 654 class_unregister(&devlink_class); 655 656 return ret; 657 } 658 postcore_initcall(devlink_class_init); 659 660 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 661 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 662 DL_FLAG_AUTOPROBE_CONSUMER | \ 663 DL_FLAG_SYNC_STATE_ONLY | \ 664 DL_FLAG_INFERRED | \ 665 DL_FLAG_CYCLE) 666 667 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 668 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 669 670 /** 671 * device_link_add - Create a link between two devices. 672 * @consumer: Consumer end of the link. 673 * @supplier: Supplier end of the link. 674 * @flags: Link flags. 675 * 676 * Return: On success, a device_link struct will be returned. 677 * On error or invalid flag settings, NULL will be returned. 678 * 679 * The caller is responsible for the proper synchronization of the link creation 680 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 681 * runtime PM framework to take the link into account. Second, if the 682 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 683 * be forced into the active meta state and reference-counted upon the creation 684 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 685 * ignored. 686 * 687 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 688 * expected to release the link returned by it directly with the help of either 689 * device_link_del() or device_link_remove(). 690 * 691 * If that flag is not set, however, the caller of this function is handing the 692 * management of the link over to the driver core entirely and its return value 693 * can only be used to check whether or not the link is present. In that case, 694 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 695 * flags can be used to indicate to the driver core when the link can be safely 696 * deleted. Namely, setting one of them in @flags indicates to the driver core 697 * that the link is not going to be used (by the given caller of this function) 698 * after unbinding the consumer or supplier driver, respectively, from its 699 * device, so the link can be deleted at that point. If none of them is set, 700 * the link will be maintained until one of the devices pointed to by it (either 701 * the consumer or the supplier) is unregistered. 702 * 703 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 704 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 705 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 706 * be used to request the driver core to automatically probe for a consumer 707 * driver after successfully binding a driver to the supplier device. 708 * 709 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 710 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 711 * the same time is invalid and will cause NULL to be returned upfront. 712 * However, if a device link between the given @consumer and @supplier pair 713 * exists already when this function is called for them, the existing link will 714 * be returned regardless of its current type and status (the link's flags may 715 * be modified then). The caller of this function is then expected to treat 716 * the link as though it has just been created, so (in particular) if 717 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 718 * explicitly when not needed any more (as stated above). 719 * 720 * A side effect of the link creation is re-ordering of dpm_list and the 721 * devices_kset list by moving the consumer device and all devices depending 722 * on it to the ends of these lists (that does not happen to devices that have 723 * not been registered when this function is called). 724 * 725 * The supplier device is required to be registered when this function is called 726 * and NULL will be returned if that is not the case. The consumer device need 727 * not be registered, however. 728 */ 729 struct device_link *device_link_add(struct device *consumer, 730 struct device *supplier, u32 flags) 731 { 732 struct device_link *link; 733 734 if (!consumer || !supplier || consumer == supplier || 735 flags & ~DL_ADD_VALID_FLAGS || 736 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 737 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 738 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 739 DL_FLAG_AUTOREMOVE_SUPPLIER))) 740 return NULL; 741 742 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 743 if (pm_runtime_get_sync(supplier) < 0) { 744 pm_runtime_put_noidle(supplier); 745 return NULL; 746 } 747 } 748 749 if (!(flags & DL_FLAG_STATELESS)) 750 flags |= DL_FLAG_MANAGED; 751 752 if (flags & DL_FLAG_SYNC_STATE_ONLY && 753 !device_link_flag_is_sync_state_only(flags)) 754 return NULL; 755 756 device_links_write_lock(); 757 device_pm_lock(); 758 759 /* 760 * If the supplier has not been fully registered yet or there is a 761 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 762 * the supplier already in the graph, return NULL. If the link is a 763 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 764 * because it only affects sync_state() callbacks. 765 */ 766 if (!device_pm_initialized(supplier) 767 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 768 device_is_dependent(consumer, supplier))) { 769 link = NULL; 770 goto out; 771 } 772 773 /* 774 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 775 * So, only create it if the consumer hasn't probed yet. 776 */ 777 if (flags & DL_FLAG_SYNC_STATE_ONLY && 778 consumer->links.status != DL_DEV_NO_DRIVER && 779 consumer->links.status != DL_DEV_PROBING) { 780 link = NULL; 781 goto out; 782 } 783 784 /* 785 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 786 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 787 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 788 */ 789 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 790 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 791 792 list_for_each_entry(link, &supplier->links.consumers, s_node) { 793 if (link->consumer != consumer) 794 continue; 795 796 if (link->flags & DL_FLAG_INFERRED && 797 !(flags & DL_FLAG_INFERRED)) 798 link->flags &= ~DL_FLAG_INFERRED; 799 800 if (flags & DL_FLAG_PM_RUNTIME) { 801 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 802 pm_runtime_new_link(consumer); 803 link->flags |= DL_FLAG_PM_RUNTIME; 804 } 805 if (flags & DL_FLAG_RPM_ACTIVE) 806 refcount_inc(&link->rpm_active); 807 } 808 809 if (flags & DL_FLAG_STATELESS) { 810 kref_get(&link->kref); 811 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 812 !(link->flags & DL_FLAG_STATELESS)) { 813 link->flags |= DL_FLAG_STATELESS; 814 goto reorder; 815 } else { 816 link->flags |= DL_FLAG_STATELESS; 817 goto out; 818 } 819 } 820 821 /* 822 * If the life time of the link following from the new flags is 823 * longer than indicated by the flags of the existing link, 824 * update the existing link to stay around longer. 825 */ 826 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 827 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 828 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 829 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 830 } 831 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 832 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 833 DL_FLAG_AUTOREMOVE_SUPPLIER); 834 } 835 if (!(link->flags & DL_FLAG_MANAGED)) { 836 kref_get(&link->kref); 837 link->flags |= DL_FLAG_MANAGED; 838 device_link_init_status(link, consumer, supplier); 839 } 840 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 841 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 842 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 843 goto reorder; 844 } 845 846 goto out; 847 } 848 849 link = kzalloc(sizeof(*link), GFP_KERNEL); 850 if (!link) 851 goto out; 852 853 refcount_set(&link->rpm_active, 1); 854 855 get_device(supplier); 856 link->supplier = supplier; 857 INIT_LIST_HEAD(&link->s_node); 858 get_device(consumer); 859 link->consumer = consumer; 860 INIT_LIST_HEAD(&link->c_node); 861 link->flags = flags; 862 kref_init(&link->kref); 863 864 link->link_dev.class = &devlink_class; 865 device_set_pm_not_required(&link->link_dev); 866 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 867 dev_bus_name(supplier), dev_name(supplier), 868 dev_bus_name(consumer), dev_name(consumer)); 869 if (device_register(&link->link_dev)) { 870 put_device(&link->link_dev); 871 link = NULL; 872 goto out; 873 } 874 875 if (flags & DL_FLAG_PM_RUNTIME) { 876 if (flags & DL_FLAG_RPM_ACTIVE) 877 refcount_inc(&link->rpm_active); 878 879 pm_runtime_new_link(consumer); 880 } 881 882 /* Determine the initial link state. */ 883 if (flags & DL_FLAG_STATELESS) 884 link->status = DL_STATE_NONE; 885 else 886 device_link_init_status(link, consumer, supplier); 887 888 /* 889 * Some callers expect the link creation during consumer driver probe to 890 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 891 */ 892 if (link->status == DL_STATE_CONSUMER_PROBE && 893 flags & DL_FLAG_PM_RUNTIME) 894 pm_runtime_resume(supplier); 895 896 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 897 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 898 899 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 900 dev_dbg(consumer, 901 "Linked as a sync state only consumer to %s\n", 902 dev_name(supplier)); 903 goto out; 904 } 905 906 reorder: 907 /* 908 * Move the consumer and all of the devices depending on it to the end 909 * of dpm_list and the devices_kset list. 910 * 911 * It is necessary to hold dpm_list locked throughout all that or else 912 * we may end up suspending with a wrong ordering of it. 913 */ 914 device_reorder_to_tail(consumer, NULL); 915 916 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 917 918 out: 919 device_pm_unlock(); 920 device_links_write_unlock(); 921 922 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 923 pm_runtime_put(supplier); 924 925 return link; 926 } 927 EXPORT_SYMBOL_GPL(device_link_add); 928 929 static void __device_link_del(struct kref *kref) 930 { 931 struct device_link *link = container_of(kref, struct device_link, kref); 932 933 dev_dbg(link->consumer, "Dropping the link to %s\n", 934 dev_name(link->supplier)); 935 936 pm_runtime_drop_link(link); 937 938 device_link_remove_from_lists(link); 939 device_unregister(&link->link_dev); 940 } 941 942 static void device_link_put_kref(struct device_link *link) 943 { 944 if (link->flags & DL_FLAG_STATELESS) 945 kref_put(&link->kref, __device_link_del); 946 else if (!device_is_registered(link->consumer)) 947 __device_link_del(&link->kref); 948 else 949 WARN(1, "Unable to drop a managed device link reference\n"); 950 } 951 952 /** 953 * device_link_del - Delete a stateless link between two devices. 954 * @link: Device link to delete. 955 * 956 * The caller must ensure proper synchronization of this function with runtime 957 * PM. If the link was added multiple times, it needs to be deleted as often. 958 * Care is required for hotplugged devices: Their links are purged on removal 959 * and calling device_link_del() is then no longer allowed. 960 */ 961 void device_link_del(struct device_link *link) 962 { 963 device_links_write_lock(); 964 device_link_put_kref(link); 965 device_links_write_unlock(); 966 } 967 EXPORT_SYMBOL_GPL(device_link_del); 968 969 /** 970 * device_link_remove - Delete a stateless link between two devices. 971 * @consumer: Consumer end of the link. 972 * @supplier: Supplier end of the link. 973 * 974 * The caller must ensure proper synchronization of this function with runtime 975 * PM. 976 */ 977 void device_link_remove(void *consumer, struct device *supplier) 978 { 979 struct device_link *link; 980 981 if (WARN_ON(consumer == supplier)) 982 return; 983 984 device_links_write_lock(); 985 986 list_for_each_entry(link, &supplier->links.consumers, s_node) { 987 if (link->consumer == consumer) { 988 device_link_put_kref(link); 989 break; 990 } 991 } 992 993 device_links_write_unlock(); 994 } 995 EXPORT_SYMBOL_GPL(device_link_remove); 996 997 static void device_links_missing_supplier(struct device *dev) 998 { 999 struct device_link *link; 1000 1001 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1002 if (link->status != DL_STATE_CONSUMER_PROBE) 1003 continue; 1004 1005 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1006 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1007 } else { 1008 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1009 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1010 } 1011 } 1012 } 1013 1014 static bool dev_is_best_effort(struct device *dev) 1015 { 1016 return (fw_devlink_best_effort && dev->can_match) || 1017 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1018 } 1019 1020 static struct fwnode_handle *fwnode_links_check_suppliers( 1021 struct fwnode_handle *fwnode) 1022 { 1023 struct fwnode_link *link; 1024 1025 if (!fwnode || fw_devlink_is_permissive()) 1026 return NULL; 1027 1028 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1029 if (!(link->flags & 1030 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1031 return link->supplier; 1032 1033 return NULL; 1034 } 1035 1036 /** 1037 * device_links_check_suppliers - Check presence of supplier drivers. 1038 * @dev: Consumer device. 1039 * 1040 * Check links from this device to any suppliers. Walk the list of the device's 1041 * links to suppliers and see if all of them are available. If not, simply 1042 * return -EPROBE_DEFER. 1043 * 1044 * We need to guarantee that the supplier will not go away after the check has 1045 * been positive here. It only can go away in __device_release_driver() and 1046 * that function checks the device's links to consumers. This means we need to 1047 * mark the link as "consumer probe in progress" to make the supplier removal 1048 * wait for us to complete (or bad things may happen). 1049 * 1050 * Links without the DL_FLAG_MANAGED flag set are ignored. 1051 */ 1052 int device_links_check_suppliers(struct device *dev) 1053 { 1054 struct device_link *link; 1055 int ret = 0, fwnode_ret = 0; 1056 struct fwnode_handle *sup_fw; 1057 1058 /* 1059 * Device waiting for supplier to become available is not allowed to 1060 * probe. 1061 */ 1062 scoped_guard(mutex, &fwnode_link_lock) { 1063 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1064 if (sup_fw) { 1065 if (dev_is_best_effort(dev)) 1066 fwnode_ret = -EAGAIN; 1067 else 1068 return dev_err_probe(dev, -EPROBE_DEFER, 1069 "wait for supplier %pfwf\n", sup_fw); 1070 } 1071 } 1072 1073 device_links_write_lock(); 1074 1075 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1076 if (!(link->flags & DL_FLAG_MANAGED)) 1077 continue; 1078 1079 if (link->status != DL_STATE_AVAILABLE && 1080 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1081 1082 if (dev_is_best_effort(dev) && 1083 link->flags & DL_FLAG_INFERRED && 1084 !link->supplier->can_match) { 1085 ret = -EAGAIN; 1086 continue; 1087 } 1088 1089 device_links_missing_supplier(dev); 1090 ret = dev_err_probe(dev, -EPROBE_DEFER, 1091 "supplier %s not ready\n", dev_name(link->supplier)); 1092 break; 1093 } 1094 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1095 } 1096 dev->links.status = DL_DEV_PROBING; 1097 1098 device_links_write_unlock(); 1099 1100 return ret ? ret : fwnode_ret; 1101 } 1102 1103 /** 1104 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1105 * @dev: Device to call sync_state() on 1106 * @list: List head to queue the @dev on 1107 * 1108 * Queues a device for a sync_state() callback when the device links write lock 1109 * isn't held. This allows the sync_state() execution flow to use device links 1110 * APIs. The caller must ensure this function is called with 1111 * device_links_write_lock() held. 1112 * 1113 * This function does a get_device() to make sure the device is not freed while 1114 * on this list. 1115 * 1116 * So the caller must also ensure that device_links_flush_sync_list() is called 1117 * as soon as the caller releases device_links_write_lock(). This is necessary 1118 * to make sure the sync_state() is called in a timely fashion and the 1119 * put_device() is called on this device. 1120 */ 1121 static void __device_links_queue_sync_state(struct device *dev, 1122 struct list_head *list) 1123 { 1124 struct device_link *link; 1125 1126 if (!dev_has_sync_state(dev)) 1127 return; 1128 if (dev->state_synced) 1129 return; 1130 1131 list_for_each_entry(link, &dev->links.consumers, s_node) { 1132 if (!(link->flags & DL_FLAG_MANAGED)) 1133 continue; 1134 if (link->status != DL_STATE_ACTIVE) 1135 return; 1136 } 1137 1138 /* 1139 * Set the flag here to avoid adding the same device to a list more 1140 * than once. This can happen if new consumers get added to the device 1141 * and probed before the list is flushed. 1142 */ 1143 dev->state_synced = true; 1144 1145 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1146 return; 1147 1148 get_device(dev); 1149 list_add_tail(&dev->links.defer_sync, list); 1150 } 1151 1152 /** 1153 * device_links_flush_sync_list - Call sync_state() on a list of devices 1154 * @list: List of devices to call sync_state() on 1155 * @dont_lock_dev: Device for which lock is already held by the caller 1156 * 1157 * Calls sync_state() on all the devices that have been queued for it. This 1158 * function is used in conjunction with __device_links_queue_sync_state(). The 1159 * @dont_lock_dev parameter is useful when this function is called from a 1160 * context where a device lock is already held. 1161 */ 1162 static void device_links_flush_sync_list(struct list_head *list, 1163 struct device *dont_lock_dev) 1164 { 1165 struct device *dev, *tmp; 1166 1167 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1168 list_del_init(&dev->links.defer_sync); 1169 1170 if (dev != dont_lock_dev) 1171 device_lock(dev); 1172 1173 dev_sync_state(dev); 1174 1175 if (dev != dont_lock_dev) 1176 device_unlock(dev); 1177 1178 put_device(dev); 1179 } 1180 } 1181 1182 void device_links_supplier_sync_state_pause(void) 1183 { 1184 device_links_write_lock(); 1185 defer_sync_state_count++; 1186 device_links_write_unlock(); 1187 } 1188 1189 void device_links_supplier_sync_state_resume(void) 1190 { 1191 struct device *dev, *tmp; 1192 LIST_HEAD(sync_list); 1193 1194 device_links_write_lock(); 1195 if (!defer_sync_state_count) { 1196 WARN(true, "Unmatched sync_state pause/resume!"); 1197 goto out; 1198 } 1199 defer_sync_state_count--; 1200 if (defer_sync_state_count) 1201 goto out; 1202 1203 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1204 /* 1205 * Delete from deferred_sync list before queuing it to 1206 * sync_list because defer_sync is used for both lists. 1207 */ 1208 list_del_init(&dev->links.defer_sync); 1209 __device_links_queue_sync_state(dev, &sync_list); 1210 } 1211 out: 1212 device_links_write_unlock(); 1213 1214 device_links_flush_sync_list(&sync_list, NULL); 1215 } 1216 1217 static int sync_state_resume_initcall(void) 1218 { 1219 device_links_supplier_sync_state_resume(); 1220 return 0; 1221 } 1222 late_initcall(sync_state_resume_initcall); 1223 1224 static void __device_links_supplier_defer_sync(struct device *sup) 1225 { 1226 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1227 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1228 } 1229 1230 static void device_link_drop_managed(struct device_link *link) 1231 { 1232 link->flags &= ~DL_FLAG_MANAGED; 1233 WRITE_ONCE(link->status, DL_STATE_NONE); 1234 kref_put(&link->kref, __device_link_del); 1235 } 1236 1237 static ssize_t waiting_for_supplier_show(struct device *dev, 1238 struct device_attribute *attr, 1239 char *buf) 1240 { 1241 bool val; 1242 1243 device_lock(dev); 1244 scoped_guard(mutex, &fwnode_link_lock) 1245 val = !!fwnode_links_check_suppliers(dev->fwnode); 1246 device_unlock(dev); 1247 return sysfs_emit(buf, "%u\n", val); 1248 } 1249 static DEVICE_ATTR_RO(waiting_for_supplier); 1250 1251 /** 1252 * device_links_force_bind - Prepares device to be force bound 1253 * @dev: Consumer device. 1254 * 1255 * device_bind_driver() force binds a device to a driver without calling any 1256 * driver probe functions. So the consumer really isn't going to wait for any 1257 * supplier before it's bound to the driver. We still want the device link 1258 * states to be sensible when this happens. 1259 * 1260 * In preparation for device_bind_driver(), this function goes through each 1261 * supplier device links and checks if the supplier is bound. If it is, then 1262 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1263 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1264 */ 1265 void device_links_force_bind(struct device *dev) 1266 { 1267 struct device_link *link, *ln; 1268 1269 device_links_write_lock(); 1270 1271 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1272 if (!(link->flags & DL_FLAG_MANAGED)) 1273 continue; 1274 1275 if (link->status != DL_STATE_AVAILABLE) { 1276 device_link_drop_managed(link); 1277 continue; 1278 } 1279 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1280 } 1281 dev->links.status = DL_DEV_PROBING; 1282 1283 device_links_write_unlock(); 1284 } 1285 1286 /** 1287 * device_links_driver_bound - Update device links after probing its driver. 1288 * @dev: Device to update the links for. 1289 * 1290 * The probe has been successful, so update links from this device to any 1291 * consumers by changing their status to "available". 1292 * 1293 * Also change the status of @dev's links to suppliers to "active". 1294 * 1295 * Links without the DL_FLAG_MANAGED flag set are ignored. 1296 */ 1297 void device_links_driver_bound(struct device *dev) 1298 { 1299 struct device_link *link, *ln; 1300 LIST_HEAD(sync_list); 1301 1302 /* 1303 * If a device binds successfully, it's expected to have created all 1304 * the device links it needs to or make new device links as it needs 1305 * them. So, fw_devlink no longer needs to create device links to any 1306 * of the device's suppliers. 1307 * 1308 * Also, if a child firmware node of this bound device is not added as a 1309 * device by now, assume it is never going to be added. Make this bound 1310 * device the fallback supplier to the dangling consumers of the child 1311 * firmware node because this bound device is probably implementing the 1312 * child firmware node functionality and we don't want the dangling 1313 * consumers to defer probe indefinitely waiting for a device for the 1314 * child firmware node. 1315 */ 1316 if (dev->fwnode && dev->fwnode->dev == dev) { 1317 struct fwnode_handle *child; 1318 1319 fwnode_links_purge_suppliers(dev->fwnode); 1320 1321 guard(mutex)(&fwnode_link_lock); 1322 1323 fwnode_for_each_available_child_node(dev->fwnode, child) 1324 __fw_devlink_pickup_dangling_consumers(child, 1325 dev->fwnode); 1326 __fw_devlink_link_to_consumers(dev); 1327 } 1328 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1329 1330 device_links_write_lock(); 1331 1332 list_for_each_entry(link, &dev->links.consumers, s_node) { 1333 if (!(link->flags & DL_FLAG_MANAGED)) 1334 continue; 1335 1336 /* 1337 * Links created during consumer probe may be in the "consumer 1338 * probe" state to start with if the supplier is still probing 1339 * when they are created and they may become "active" if the 1340 * consumer probe returns first. Skip them here. 1341 */ 1342 if (link->status == DL_STATE_CONSUMER_PROBE || 1343 link->status == DL_STATE_ACTIVE) 1344 continue; 1345 1346 WARN_ON(link->status != DL_STATE_DORMANT); 1347 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1348 1349 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1350 driver_deferred_probe_add(link->consumer); 1351 } 1352 1353 if (defer_sync_state_count) 1354 __device_links_supplier_defer_sync(dev); 1355 else 1356 __device_links_queue_sync_state(dev, &sync_list); 1357 1358 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1359 struct device *supplier; 1360 1361 if (!(link->flags & DL_FLAG_MANAGED)) 1362 continue; 1363 1364 supplier = link->supplier; 1365 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1366 /* 1367 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1368 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1369 * save to drop the managed link completely. 1370 */ 1371 device_link_drop_managed(link); 1372 } else if (dev_is_best_effort(dev) && 1373 link->flags & DL_FLAG_INFERRED && 1374 link->status != DL_STATE_CONSUMER_PROBE && 1375 !link->supplier->can_match) { 1376 /* 1377 * When dev_is_best_effort() is true, we ignore device 1378 * links to suppliers that don't have a driver. If the 1379 * consumer device still managed to probe, there's no 1380 * point in maintaining a device link in a weird state 1381 * (consumer probed before supplier). So delete it. 1382 */ 1383 device_link_drop_managed(link); 1384 } else { 1385 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1386 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1387 } 1388 1389 /* 1390 * This needs to be done even for the deleted 1391 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1392 * device link that was preventing the supplier from getting a 1393 * sync_state() call. 1394 */ 1395 if (defer_sync_state_count) 1396 __device_links_supplier_defer_sync(supplier); 1397 else 1398 __device_links_queue_sync_state(supplier, &sync_list); 1399 } 1400 1401 dev->links.status = DL_DEV_DRIVER_BOUND; 1402 1403 device_links_write_unlock(); 1404 1405 device_links_flush_sync_list(&sync_list, dev); 1406 } 1407 1408 /** 1409 * __device_links_no_driver - Update links of a device without a driver. 1410 * @dev: Device without a drvier. 1411 * 1412 * Delete all non-persistent links from this device to any suppliers. 1413 * 1414 * Persistent links stay around, but their status is changed to "available", 1415 * unless they already are in the "supplier unbind in progress" state in which 1416 * case they need not be updated. 1417 * 1418 * Links without the DL_FLAG_MANAGED flag set are ignored. 1419 */ 1420 static void __device_links_no_driver(struct device *dev) 1421 { 1422 struct device_link *link, *ln; 1423 1424 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1425 if (!(link->flags & DL_FLAG_MANAGED)) 1426 continue; 1427 1428 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1429 device_link_drop_managed(link); 1430 continue; 1431 } 1432 1433 if (link->status != DL_STATE_CONSUMER_PROBE && 1434 link->status != DL_STATE_ACTIVE) 1435 continue; 1436 1437 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1438 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1439 } else { 1440 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1441 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1442 } 1443 } 1444 1445 dev->links.status = DL_DEV_NO_DRIVER; 1446 } 1447 1448 /** 1449 * device_links_no_driver - Update links after failing driver probe. 1450 * @dev: Device whose driver has just failed to probe. 1451 * 1452 * Clean up leftover links to consumers for @dev and invoke 1453 * %__device_links_no_driver() to update links to suppliers for it as 1454 * appropriate. 1455 * 1456 * Links without the DL_FLAG_MANAGED flag set are ignored. 1457 */ 1458 void device_links_no_driver(struct device *dev) 1459 { 1460 struct device_link *link; 1461 1462 device_links_write_lock(); 1463 1464 list_for_each_entry(link, &dev->links.consumers, s_node) { 1465 if (!(link->flags & DL_FLAG_MANAGED)) 1466 continue; 1467 1468 /* 1469 * The probe has failed, so if the status of the link is 1470 * "consumer probe" or "active", it must have been added by 1471 * a probing consumer while this device was still probing. 1472 * Change its state to "dormant", as it represents a valid 1473 * relationship, but it is not functionally meaningful. 1474 */ 1475 if (link->status == DL_STATE_CONSUMER_PROBE || 1476 link->status == DL_STATE_ACTIVE) 1477 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1478 } 1479 1480 __device_links_no_driver(dev); 1481 1482 device_links_write_unlock(); 1483 } 1484 1485 /** 1486 * device_links_driver_cleanup - Update links after driver removal. 1487 * @dev: Device whose driver has just gone away. 1488 * 1489 * Update links to consumers for @dev by changing their status to "dormant" and 1490 * invoke %__device_links_no_driver() to update links to suppliers for it as 1491 * appropriate. 1492 * 1493 * Links without the DL_FLAG_MANAGED flag set are ignored. 1494 */ 1495 void device_links_driver_cleanup(struct device *dev) 1496 { 1497 struct device_link *link, *ln; 1498 1499 device_links_write_lock(); 1500 1501 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1502 if (!(link->flags & DL_FLAG_MANAGED)) 1503 continue; 1504 1505 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1506 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1507 1508 /* 1509 * autoremove the links between this @dev and its consumer 1510 * devices that are not active, i.e. where the link state 1511 * has moved to DL_STATE_SUPPLIER_UNBIND. 1512 */ 1513 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1514 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1515 device_link_drop_managed(link); 1516 1517 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1518 } 1519 1520 list_del_init(&dev->links.defer_sync); 1521 __device_links_no_driver(dev); 1522 1523 device_links_write_unlock(); 1524 } 1525 1526 /** 1527 * device_links_busy - Check if there are any busy links to consumers. 1528 * @dev: Device to check. 1529 * 1530 * Check each consumer of the device and return 'true' if its link's status 1531 * is one of "consumer probe" or "active" (meaning that the given consumer is 1532 * probing right now or its driver is present). Otherwise, change the link 1533 * state to "supplier unbind" to prevent the consumer from being probed 1534 * successfully going forward. 1535 * 1536 * Return 'false' if there are no probing or active consumers. 1537 * 1538 * Links without the DL_FLAG_MANAGED flag set are ignored. 1539 */ 1540 bool device_links_busy(struct device *dev) 1541 { 1542 struct device_link *link; 1543 bool ret = false; 1544 1545 device_links_write_lock(); 1546 1547 list_for_each_entry(link, &dev->links.consumers, s_node) { 1548 if (!(link->flags & DL_FLAG_MANAGED)) 1549 continue; 1550 1551 if (link->status == DL_STATE_CONSUMER_PROBE 1552 || link->status == DL_STATE_ACTIVE) { 1553 ret = true; 1554 break; 1555 } 1556 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1557 } 1558 1559 dev->links.status = DL_DEV_UNBINDING; 1560 1561 device_links_write_unlock(); 1562 return ret; 1563 } 1564 1565 /** 1566 * device_links_unbind_consumers - Force unbind consumers of the given device. 1567 * @dev: Device to unbind the consumers of. 1568 * 1569 * Walk the list of links to consumers for @dev and if any of them is in the 1570 * "consumer probe" state, wait for all device probes in progress to complete 1571 * and start over. 1572 * 1573 * If that's not the case, change the status of the link to "supplier unbind" 1574 * and check if the link was in the "active" state. If so, force the consumer 1575 * driver to unbind and start over (the consumer will not re-probe as we have 1576 * changed the state of the link already). 1577 * 1578 * Links without the DL_FLAG_MANAGED flag set are ignored. 1579 */ 1580 void device_links_unbind_consumers(struct device *dev) 1581 { 1582 struct device_link *link; 1583 1584 start: 1585 device_links_write_lock(); 1586 1587 list_for_each_entry(link, &dev->links.consumers, s_node) { 1588 enum device_link_state status; 1589 1590 if (!(link->flags & DL_FLAG_MANAGED) || 1591 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1592 continue; 1593 1594 status = link->status; 1595 if (status == DL_STATE_CONSUMER_PROBE) { 1596 device_links_write_unlock(); 1597 1598 wait_for_device_probe(); 1599 goto start; 1600 } 1601 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1602 if (status == DL_STATE_ACTIVE) { 1603 struct device *consumer = link->consumer; 1604 1605 get_device(consumer); 1606 1607 device_links_write_unlock(); 1608 1609 device_release_driver_internal(consumer, NULL, 1610 consumer->parent); 1611 put_device(consumer); 1612 goto start; 1613 } 1614 } 1615 1616 device_links_write_unlock(); 1617 } 1618 1619 /** 1620 * device_links_purge - Delete existing links to other devices. 1621 * @dev: Target device. 1622 */ 1623 static void device_links_purge(struct device *dev) 1624 { 1625 struct device_link *link, *ln; 1626 1627 if (dev->class == &devlink_class) 1628 return; 1629 1630 /* 1631 * Delete all of the remaining links from this device to any other 1632 * devices (either consumers or suppliers). 1633 */ 1634 device_links_write_lock(); 1635 1636 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1637 WARN_ON(link->status == DL_STATE_ACTIVE); 1638 __device_link_del(&link->kref); 1639 } 1640 1641 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1642 WARN_ON(link->status != DL_STATE_DORMANT && 1643 link->status != DL_STATE_NONE); 1644 __device_link_del(&link->kref); 1645 } 1646 1647 device_links_write_unlock(); 1648 } 1649 1650 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1651 DL_FLAG_SYNC_STATE_ONLY) 1652 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1653 DL_FLAG_AUTOPROBE_CONSUMER) 1654 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1655 DL_FLAG_PM_RUNTIME) 1656 1657 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1658 static int __init fw_devlink_setup(char *arg) 1659 { 1660 if (!arg) 1661 return -EINVAL; 1662 1663 if (strcmp(arg, "off") == 0) { 1664 fw_devlink_flags = 0; 1665 } else if (strcmp(arg, "permissive") == 0) { 1666 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1667 } else if (strcmp(arg, "on") == 0) { 1668 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1669 } else if (strcmp(arg, "rpm") == 0) { 1670 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1671 } 1672 return 0; 1673 } 1674 early_param("fw_devlink", fw_devlink_setup); 1675 1676 static bool fw_devlink_strict; 1677 static int __init fw_devlink_strict_setup(char *arg) 1678 { 1679 return kstrtobool(arg, &fw_devlink_strict); 1680 } 1681 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1682 1683 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1684 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1685 1686 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1687 static int fw_devlink_sync_state; 1688 #else 1689 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1690 #endif 1691 1692 static int __init fw_devlink_sync_state_setup(char *arg) 1693 { 1694 if (!arg) 1695 return -EINVAL; 1696 1697 if (strcmp(arg, "strict") == 0) { 1698 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1699 return 0; 1700 } else if (strcmp(arg, "timeout") == 0) { 1701 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1702 return 0; 1703 } 1704 return -EINVAL; 1705 } 1706 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1707 1708 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1709 { 1710 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1711 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1712 1713 return fw_devlink_flags; 1714 } 1715 1716 static bool fw_devlink_is_permissive(void) 1717 { 1718 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1719 } 1720 1721 bool fw_devlink_is_strict(void) 1722 { 1723 return fw_devlink_strict && !fw_devlink_is_permissive(); 1724 } 1725 1726 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1727 { 1728 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1729 return; 1730 1731 fwnode_call_int_op(fwnode, add_links); 1732 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1733 } 1734 1735 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1736 { 1737 struct fwnode_handle *child = NULL; 1738 1739 fw_devlink_parse_fwnode(fwnode); 1740 1741 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1742 fw_devlink_parse_fwtree(child); 1743 } 1744 1745 static void fw_devlink_relax_link(struct device_link *link) 1746 { 1747 if (!(link->flags & DL_FLAG_INFERRED)) 1748 return; 1749 1750 if (device_link_flag_is_sync_state_only(link->flags)) 1751 return; 1752 1753 pm_runtime_drop_link(link); 1754 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1755 dev_dbg(link->consumer, "Relaxing link with %s\n", 1756 dev_name(link->supplier)); 1757 } 1758 1759 static int fw_devlink_no_driver(struct device *dev, void *data) 1760 { 1761 struct device_link *link = to_devlink(dev); 1762 1763 if (!link->supplier->can_match) 1764 fw_devlink_relax_link(link); 1765 1766 return 0; 1767 } 1768 1769 void fw_devlink_drivers_done(void) 1770 { 1771 fw_devlink_drv_reg_done = true; 1772 device_links_write_lock(); 1773 class_for_each_device(&devlink_class, NULL, NULL, 1774 fw_devlink_no_driver); 1775 device_links_write_unlock(); 1776 } 1777 1778 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1779 { 1780 struct device_link *link = to_devlink(dev); 1781 struct device *sup = link->supplier; 1782 1783 if (!(link->flags & DL_FLAG_MANAGED) || 1784 link->status == DL_STATE_ACTIVE || sup->state_synced || 1785 !dev_has_sync_state(sup)) 1786 return 0; 1787 1788 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1789 dev_warn(sup, "sync_state() pending due to %s\n", 1790 dev_name(link->consumer)); 1791 return 0; 1792 } 1793 1794 if (!list_empty(&sup->links.defer_sync)) 1795 return 0; 1796 1797 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1798 sup->state_synced = true; 1799 get_device(sup); 1800 list_add_tail(&sup->links.defer_sync, data); 1801 1802 return 0; 1803 } 1804 1805 void fw_devlink_probing_done(void) 1806 { 1807 LIST_HEAD(sync_list); 1808 1809 device_links_write_lock(); 1810 class_for_each_device(&devlink_class, NULL, &sync_list, 1811 fw_devlink_dev_sync_state); 1812 device_links_write_unlock(); 1813 device_links_flush_sync_list(&sync_list, NULL); 1814 } 1815 1816 /** 1817 * wait_for_init_devices_probe - Try to probe any device needed for init 1818 * 1819 * Some devices might need to be probed and bound successfully before the kernel 1820 * boot sequence can finish and move on to init/userspace. For example, a 1821 * network interface might need to be bound to be able to mount a NFS rootfs. 1822 * 1823 * With fw_devlink=on by default, some of these devices might be blocked from 1824 * probing because they are waiting on a optional supplier that doesn't have a 1825 * driver. While fw_devlink will eventually identify such devices and unblock 1826 * the probing automatically, it might be too late by the time it unblocks the 1827 * probing of devices. For example, the IP4 autoconfig might timeout before 1828 * fw_devlink unblocks probing of the network interface. 1829 * 1830 * This function is available to temporarily try and probe all devices that have 1831 * a driver even if some of their suppliers haven't been added or don't have 1832 * drivers. 1833 * 1834 * The drivers can then decide which of the suppliers are optional vs mandatory 1835 * and probe the device if possible. By the time this function returns, all such 1836 * "best effort" probes are guaranteed to be completed. If a device successfully 1837 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1838 * device where the supplier hasn't yet probed successfully because they have to 1839 * be optional dependencies. 1840 * 1841 * Any devices that didn't successfully probe go back to being treated as if 1842 * this function was never called. 1843 * 1844 * This also means that some devices that aren't needed for init and could have 1845 * waited for their optional supplier to probe (when the supplier's module is 1846 * loaded later on) would end up probing prematurely with limited functionality. 1847 * So call this function only when boot would fail without it. 1848 */ 1849 void __init wait_for_init_devices_probe(void) 1850 { 1851 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1852 return; 1853 1854 /* 1855 * Wait for all ongoing probes to finish so that the "best effort" is 1856 * only applied to devices that can't probe otherwise. 1857 */ 1858 wait_for_device_probe(); 1859 1860 pr_info("Trying to probe devices needed for running init ...\n"); 1861 fw_devlink_best_effort = true; 1862 driver_deferred_probe_trigger(); 1863 1864 /* 1865 * Wait for all "best effort" probes to finish before going back to 1866 * normal enforcement. 1867 */ 1868 wait_for_device_probe(); 1869 fw_devlink_best_effort = false; 1870 } 1871 1872 static void fw_devlink_unblock_consumers(struct device *dev) 1873 { 1874 struct device_link *link; 1875 1876 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1877 return; 1878 1879 device_links_write_lock(); 1880 list_for_each_entry(link, &dev->links.consumers, s_node) 1881 fw_devlink_relax_link(link); 1882 device_links_write_unlock(); 1883 } 1884 1885 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1886 1887 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1888 { 1889 struct device *dev; 1890 bool ret; 1891 1892 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1893 return false; 1894 1895 dev = get_dev_from_fwnode(fwnode); 1896 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1897 put_device(dev); 1898 1899 return ret; 1900 } 1901 1902 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1903 { 1904 struct fwnode_handle *parent; 1905 1906 fwnode_for_each_parent_node(fwnode, parent) { 1907 if (fwnode_init_without_drv(parent)) { 1908 fwnode_handle_put(parent); 1909 return true; 1910 } 1911 } 1912 1913 return false; 1914 } 1915 1916 /** 1917 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1918 * @ancestor: Firmware which is tested for being an ancestor 1919 * @child: Firmware which is tested for being the child 1920 * 1921 * A node is considered an ancestor of itself too. 1922 * 1923 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1924 */ 1925 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1926 const struct fwnode_handle *child) 1927 { 1928 struct fwnode_handle *parent; 1929 1930 if (IS_ERR_OR_NULL(ancestor)) 1931 return false; 1932 1933 if (child == ancestor) 1934 return true; 1935 1936 fwnode_for_each_parent_node(child, parent) { 1937 if (parent == ancestor) { 1938 fwnode_handle_put(parent); 1939 return true; 1940 } 1941 } 1942 return false; 1943 } 1944 1945 /** 1946 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1947 * @fwnode: firmware node 1948 * 1949 * Given a firmware node (@fwnode), this function finds its closest ancestor 1950 * firmware node that has a corresponding struct device and returns that struct 1951 * device. 1952 * 1953 * The caller is responsible for calling put_device() on the returned device 1954 * pointer. 1955 * 1956 * Return: a pointer to the device of the @fwnode's closest ancestor. 1957 */ 1958 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1959 { 1960 struct fwnode_handle *parent; 1961 struct device *dev; 1962 1963 fwnode_for_each_parent_node(fwnode, parent) { 1964 dev = get_dev_from_fwnode(parent); 1965 if (dev) { 1966 fwnode_handle_put(parent); 1967 return dev; 1968 } 1969 } 1970 return NULL; 1971 } 1972 1973 /** 1974 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1975 * @con: Potential consumer device. 1976 * @sup_handle: Potential supplier's fwnode. 1977 * 1978 * Needs to be called with fwnode_lock and device link lock held. 1979 * 1980 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1981 * depend on @con. This function can detect multiple cyles between @sup_handle 1982 * and @con. When such dependency cycles are found, convert all device links 1983 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1984 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1985 * converted into a device link in the future, they are created as 1986 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1987 * fw_devlink=permissive just between the devices in the cycle. We need to do 1988 * this because, at this point, fw_devlink can't tell which of these 1989 * dependencies is not a real dependency. 1990 * 1991 * Return true if one or more cycles were found. Otherwise, return false. 1992 */ 1993 static bool __fw_devlink_relax_cycles(struct device *con, 1994 struct fwnode_handle *sup_handle) 1995 { 1996 struct device *sup_dev = NULL, *par_dev = NULL; 1997 struct fwnode_link *link; 1998 struct device_link *dev_link; 1999 bool ret = false; 2000 2001 if (!sup_handle) 2002 return false; 2003 2004 /* 2005 * We aren't trying to find all cycles. Just a cycle between con and 2006 * sup_handle. 2007 */ 2008 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2009 return false; 2010 2011 sup_handle->flags |= FWNODE_FLAG_VISITED; 2012 2013 sup_dev = get_dev_from_fwnode(sup_handle); 2014 2015 /* Termination condition. */ 2016 if (sup_dev == con) { 2017 pr_debug("----- cycle: start -----\n"); 2018 ret = true; 2019 goto out; 2020 } 2021 2022 /* 2023 * If sup_dev is bound to a driver and @con hasn't started binding to a 2024 * driver, sup_dev can't be a consumer of @con. So, no need to check 2025 * further. 2026 */ 2027 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2028 con->links.status == DL_DEV_NO_DRIVER) { 2029 ret = false; 2030 goto out; 2031 } 2032 2033 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2034 if (link->flags & FWLINK_FLAG_IGNORE) 2035 continue; 2036 2037 if (__fw_devlink_relax_cycles(con, link->supplier)) { 2038 __fwnode_link_cycle(link); 2039 ret = true; 2040 } 2041 } 2042 2043 /* 2044 * Give priority to device parent over fwnode parent to account for any 2045 * quirks in how fwnodes are converted to devices. 2046 */ 2047 if (sup_dev) 2048 par_dev = get_device(sup_dev->parent); 2049 else 2050 par_dev = fwnode_get_next_parent_dev(sup_handle); 2051 2052 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 2053 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2054 par_dev->fwnode); 2055 ret = true; 2056 } 2057 2058 if (!sup_dev) 2059 goto out; 2060 2061 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2062 /* 2063 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2064 * such due to a cycle. 2065 */ 2066 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2067 !(dev_link->flags & DL_FLAG_CYCLE)) 2068 continue; 2069 2070 if (__fw_devlink_relax_cycles(con, 2071 dev_link->supplier->fwnode)) { 2072 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2073 dev_link->supplier->fwnode); 2074 fw_devlink_relax_link(dev_link); 2075 dev_link->flags |= DL_FLAG_CYCLE; 2076 ret = true; 2077 } 2078 } 2079 2080 out: 2081 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2082 put_device(sup_dev); 2083 put_device(par_dev); 2084 return ret; 2085 } 2086 2087 /** 2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2089 * @con: consumer device for the device link 2090 * @sup_handle: fwnode handle of supplier 2091 * @link: fwnode link that's being converted to a device link 2092 * 2093 * This function will try to create a device link between the consumer device 2094 * @con and the supplier device represented by @sup_handle. 2095 * 2096 * The supplier has to be provided as a fwnode because incorrect cycles in 2097 * fwnode links can sometimes cause the supplier device to never be created. 2098 * This function detects such cases and returns an error if it cannot create a 2099 * device link from the consumer to a missing supplier. 2100 * 2101 * Returns, 2102 * 0 on successfully creating a device link 2103 * -EINVAL if the device link cannot be created as expected 2104 * -EAGAIN if the device link cannot be created right now, but it may be 2105 * possible to do that in the future 2106 */ 2107 static int fw_devlink_create_devlink(struct device *con, 2108 struct fwnode_handle *sup_handle, 2109 struct fwnode_link *link) 2110 { 2111 struct device *sup_dev; 2112 int ret = 0; 2113 u32 flags; 2114 2115 if (link->flags & FWLINK_FLAG_IGNORE) 2116 return 0; 2117 2118 if (con->fwnode == link->consumer) 2119 flags = fw_devlink_get_flags(link->flags); 2120 else 2121 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2122 2123 /* 2124 * In some cases, a device P might also be a supplier to its child node 2125 * C. However, this would defer the probe of C until the probe of P 2126 * completes successfully. This is perfectly fine in the device driver 2127 * model. device_add() doesn't guarantee probe completion of the device 2128 * by the time it returns. 2129 * 2130 * However, there are a few drivers that assume C will finish probing 2131 * as soon as it's added and before P finishes probing. So, we provide 2132 * a flag to let fw_devlink know not to delay the probe of C until the 2133 * probe of P completes successfully. 2134 * 2135 * When such a flag is set, we can't create device links where P is the 2136 * supplier of C as that would delay the probe of C. 2137 */ 2138 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2139 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2140 return -EINVAL; 2141 2142 /* 2143 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2144 * So, one might expect that cycle detection isn't necessary for them. 2145 * However, if the device link was marked as SYNC_STATE_ONLY because 2146 * it's part of a cycle, then we still need to do cycle detection. This 2147 * is because the consumer and supplier might be part of multiple cycles 2148 * and we need to detect all those cycles. 2149 */ 2150 if (!device_link_flag_is_sync_state_only(flags) || 2151 flags & DL_FLAG_CYCLE) { 2152 device_links_write_lock(); 2153 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2154 __fwnode_link_cycle(link); 2155 flags = fw_devlink_get_flags(link->flags); 2156 pr_debug("----- cycle: end -----\n"); 2157 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2158 sup_handle); 2159 } 2160 device_links_write_unlock(); 2161 } 2162 2163 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2164 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2165 else 2166 sup_dev = get_dev_from_fwnode(sup_handle); 2167 2168 if (sup_dev) { 2169 /* 2170 * If it's one of those drivers that don't actually bind to 2171 * their device using driver core, then don't wait on this 2172 * supplier device indefinitely. 2173 */ 2174 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2175 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2176 dev_dbg(con, 2177 "Not linking %pfwf - dev might never probe\n", 2178 sup_handle); 2179 ret = -EINVAL; 2180 goto out; 2181 } 2182 2183 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2184 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2185 flags, dev_name(sup_dev)); 2186 ret = -EINVAL; 2187 } 2188 2189 goto out; 2190 } 2191 2192 /* 2193 * Supplier or supplier's ancestor already initialized without a struct 2194 * device or being probed by a driver. 2195 */ 2196 if (fwnode_init_without_drv(sup_handle) || 2197 fwnode_ancestor_init_without_drv(sup_handle)) { 2198 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2199 sup_handle); 2200 return -EINVAL; 2201 } 2202 2203 ret = -EAGAIN; 2204 out: 2205 put_device(sup_dev); 2206 return ret; 2207 } 2208 2209 /** 2210 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2211 * @dev: Device that needs to be linked to its consumers 2212 * 2213 * This function looks at all the consumer fwnodes of @dev and creates device 2214 * links between the consumer device and @dev (supplier). 2215 * 2216 * If the consumer device has not been added yet, then this function creates a 2217 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2218 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2219 * sync_state() callback before the real consumer device gets to be added and 2220 * then probed. 2221 * 2222 * Once device links are created from the real consumer to @dev (supplier), the 2223 * fwnode links are deleted. 2224 */ 2225 static void __fw_devlink_link_to_consumers(struct device *dev) 2226 { 2227 struct fwnode_handle *fwnode = dev->fwnode; 2228 struct fwnode_link *link, *tmp; 2229 2230 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2231 struct device *con_dev; 2232 bool own_link = true; 2233 int ret; 2234 2235 con_dev = get_dev_from_fwnode(link->consumer); 2236 /* 2237 * If consumer device is not available yet, make a "proxy" 2238 * SYNC_STATE_ONLY link from the consumer's parent device to 2239 * the supplier device. This is necessary to make sure the 2240 * supplier doesn't get a sync_state() callback before the real 2241 * consumer can create a device link to the supplier. 2242 * 2243 * This proxy link step is needed to handle the case where the 2244 * consumer's parent device is added before the supplier. 2245 */ 2246 if (!con_dev) { 2247 con_dev = fwnode_get_next_parent_dev(link->consumer); 2248 /* 2249 * However, if the consumer's parent device is also the 2250 * parent of the supplier, don't create a 2251 * consumer-supplier link from the parent to its child 2252 * device. Such a dependency is impossible. 2253 */ 2254 if (con_dev && 2255 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2256 put_device(con_dev); 2257 con_dev = NULL; 2258 } else { 2259 own_link = false; 2260 } 2261 } 2262 2263 if (!con_dev) 2264 continue; 2265 2266 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2267 put_device(con_dev); 2268 if (!own_link || ret == -EAGAIN) 2269 continue; 2270 2271 __fwnode_link_del(link); 2272 } 2273 } 2274 2275 /** 2276 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2277 * @dev: The consumer device that needs to be linked to its suppliers 2278 * @fwnode: Root of the fwnode tree that is used to create device links 2279 * 2280 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2281 * @fwnode and creates device links between @dev (consumer) and all the 2282 * supplier devices of the entire fwnode tree at @fwnode. 2283 * 2284 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2285 * and the real suppliers of @dev. Once these device links are created, the 2286 * fwnode links are deleted. 2287 * 2288 * In addition, it also looks at all the suppliers of the entire fwnode tree 2289 * because some of the child devices of @dev that have not been added yet 2290 * (because @dev hasn't probed) might already have their suppliers added to 2291 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2292 * @dev (consumer) and these suppliers to make sure they don't execute their 2293 * sync_state() callbacks before these child devices have a chance to create 2294 * their device links. The fwnode links that correspond to the child devices 2295 * aren't delete because they are needed later to create the device links 2296 * between the real consumer and supplier devices. 2297 */ 2298 static void __fw_devlink_link_to_suppliers(struct device *dev, 2299 struct fwnode_handle *fwnode) 2300 { 2301 bool own_link = (dev->fwnode == fwnode); 2302 struct fwnode_link *link, *tmp; 2303 struct fwnode_handle *child = NULL; 2304 2305 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2306 int ret; 2307 struct fwnode_handle *sup = link->supplier; 2308 2309 ret = fw_devlink_create_devlink(dev, sup, link); 2310 if (!own_link || ret == -EAGAIN) 2311 continue; 2312 2313 __fwnode_link_del(link); 2314 } 2315 2316 /* 2317 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2318 * all the descendants. This proxy link step is needed to handle the 2319 * case where the supplier is added before the consumer's parent device 2320 * (@dev). 2321 */ 2322 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2323 __fw_devlink_link_to_suppliers(dev, child); 2324 } 2325 2326 static void fw_devlink_link_device(struct device *dev) 2327 { 2328 struct fwnode_handle *fwnode = dev->fwnode; 2329 2330 if (!fw_devlink_flags) 2331 return; 2332 2333 fw_devlink_parse_fwtree(fwnode); 2334 2335 guard(mutex)(&fwnode_link_lock); 2336 2337 __fw_devlink_link_to_consumers(dev); 2338 __fw_devlink_link_to_suppliers(dev, fwnode); 2339 } 2340 2341 /* Device links support end. */ 2342 2343 static struct kobject *dev_kobj; 2344 2345 /* /sys/dev/char */ 2346 static struct kobject *sysfs_dev_char_kobj; 2347 2348 /* /sys/dev/block */ 2349 static struct kobject *sysfs_dev_block_kobj; 2350 2351 static DEFINE_MUTEX(device_hotplug_lock); 2352 2353 void lock_device_hotplug(void) 2354 { 2355 mutex_lock(&device_hotplug_lock); 2356 } 2357 2358 void unlock_device_hotplug(void) 2359 { 2360 mutex_unlock(&device_hotplug_lock); 2361 } 2362 2363 int lock_device_hotplug_sysfs(void) 2364 { 2365 if (mutex_trylock(&device_hotplug_lock)) 2366 return 0; 2367 2368 /* Avoid busy looping (5 ms of sleep should do). */ 2369 msleep(5); 2370 return restart_syscall(); 2371 } 2372 2373 #ifdef CONFIG_BLOCK 2374 static inline int device_is_not_partition(struct device *dev) 2375 { 2376 return !(dev->type == &part_type); 2377 } 2378 #else 2379 static inline int device_is_not_partition(struct device *dev) 2380 { 2381 return 1; 2382 } 2383 #endif 2384 2385 static void device_platform_notify(struct device *dev) 2386 { 2387 acpi_device_notify(dev); 2388 2389 software_node_notify(dev); 2390 } 2391 2392 static void device_platform_notify_remove(struct device *dev) 2393 { 2394 software_node_notify_remove(dev); 2395 2396 acpi_device_notify_remove(dev); 2397 } 2398 2399 /** 2400 * dev_driver_string - Return a device's driver name, if at all possible 2401 * @dev: struct device to get the name of 2402 * 2403 * Will return the device's driver's name if it is bound to a device. If 2404 * the device is not bound to a driver, it will return the name of the bus 2405 * it is attached to. If it is not attached to a bus either, an empty 2406 * string will be returned. 2407 */ 2408 const char *dev_driver_string(const struct device *dev) 2409 { 2410 struct device_driver *drv; 2411 2412 /* dev->driver can change to NULL underneath us because of unbinding, 2413 * so be careful about accessing it. dev->bus and dev->class should 2414 * never change once they are set, so they don't need special care. 2415 */ 2416 drv = READ_ONCE(dev->driver); 2417 return drv ? drv->name : dev_bus_name(dev); 2418 } 2419 EXPORT_SYMBOL(dev_driver_string); 2420 2421 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2422 2423 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2424 char *buf) 2425 { 2426 struct device_attribute *dev_attr = to_dev_attr(attr); 2427 struct device *dev = kobj_to_dev(kobj); 2428 ssize_t ret = -EIO; 2429 2430 if (dev_attr->show) 2431 ret = dev_attr->show(dev, dev_attr, buf); 2432 if (ret >= (ssize_t)PAGE_SIZE) { 2433 printk("dev_attr_show: %pS returned bad count\n", 2434 dev_attr->show); 2435 } 2436 return ret; 2437 } 2438 2439 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2440 const char *buf, size_t count) 2441 { 2442 struct device_attribute *dev_attr = to_dev_attr(attr); 2443 struct device *dev = kobj_to_dev(kobj); 2444 ssize_t ret = -EIO; 2445 2446 if (dev_attr->store) 2447 ret = dev_attr->store(dev, dev_attr, buf, count); 2448 return ret; 2449 } 2450 2451 static const struct sysfs_ops dev_sysfs_ops = { 2452 .show = dev_attr_show, 2453 .store = dev_attr_store, 2454 }; 2455 2456 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2457 2458 ssize_t device_store_ulong(struct device *dev, 2459 struct device_attribute *attr, 2460 const char *buf, size_t size) 2461 { 2462 struct dev_ext_attribute *ea = to_ext_attr(attr); 2463 int ret; 2464 unsigned long new; 2465 2466 ret = kstrtoul(buf, 0, &new); 2467 if (ret) 2468 return ret; 2469 *(unsigned long *)(ea->var) = new; 2470 /* Always return full write size even if we didn't consume all */ 2471 return size; 2472 } 2473 EXPORT_SYMBOL_GPL(device_store_ulong); 2474 2475 ssize_t device_show_ulong(struct device *dev, 2476 struct device_attribute *attr, 2477 char *buf) 2478 { 2479 struct dev_ext_attribute *ea = to_ext_attr(attr); 2480 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2481 } 2482 EXPORT_SYMBOL_GPL(device_show_ulong); 2483 2484 ssize_t device_store_int(struct device *dev, 2485 struct device_attribute *attr, 2486 const char *buf, size_t size) 2487 { 2488 struct dev_ext_attribute *ea = to_ext_attr(attr); 2489 int ret; 2490 long new; 2491 2492 ret = kstrtol(buf, 0, &new); 2493 if (ret) 2494 return ret; 2495 2496 if (new > INT_MAX || new < INT_MIN) 2497 return -EINVAL; 2498 *(int *)(ea->var) = new; 2499 /* Always return full write size even if we didn't consume all */ 2500 return size; 2501 } 2502 EXPORT_SYMBOL_GPL(device_store_int); 2503 2504 ssize_t device_show_int(struct device *dev, 2505 struct device_attribute *attr, 2506 char *buf) 2507 { 2508 struct dev_ext_attribute *ea = to_ext_attr(attr); 2509 2510 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2511 } 2512 EXPORT_SYMBOL_GPL(device_show_int); 2513 2514 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2515 const char *buf, size_t size) 2516 { 2517 struct dev_ext_attribute *ea = to_ext_attr(attr); 2518 2519 if (kstrtobool(buf, ea->var) < 0) 2520 return -EINVAL; 2521 2522 return size; 2523 } 2524 EXPORT_SYMBOL_GPL(device_store_bool); 2525 2526 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2527 char *buf) 2528 { 2529 struct dev_ext_attribute *ea = to_ext_attr(attr); 2530 2531 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2532 } 2533 EXPORT_SYMBOL_GPL(device_show_bool); 2534 2535 ssize_t device_show_string(struct device *dev, 2536 struct device_attribute *attr, char *buf) 2537 { 2538 struct dev_ext_attribute *ea = to_ext_attr(attr); 2539 2540 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2541 } 2542 EXPORT_SYMBOL_GPL(device_show_string); 2543 2544 /** 2545 * device_release - free device structure. 2546 * @kobj: device's kobject. 2547 * 2548 * This is called once the reference count for the object 2549 * reaches 0. We forward the call to the device's release 2550 * method, which should handle actually freeing the structure. 2551 */ 2552 static void device_release(struct kobject *kobj) 2553 { 2554 struct device *dev = kobj_to_dev(kobj); 2555 struct device_private *p = dev->p; 2556 2557 /* 2558 * Some platform devices are driven without driver attached 2559 * and managed resources may have been acquired. Make sure 2560 * all resources are released. 2561 * 2562 * Drivers still can add resources into device after device 2563 * is deleted but alive, so release devres here to avoid 2564 * possible memory leak. 2565 */ 2566 devres_release_all(dev); 2567 2568 kfree(dev->dma_range_map); 2569 2570 if (dev->release) 2571 dev->release(dev); 2572 else if (dev->type && dev->type->release) 2573 dev->type->release(dev); 2574 else if (dev->class && dev->class->dev_release) 2575 dev->class->dev_release(dev); 2576 else 2577 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2578 dev_name(dev)); 2579 kfree(p); 2580 } 2581 2582 static const void *device_namespace(const struct kobject *kobj) 2583 { 2584 const struct device *dev = kobj_to_dev(kobj); 2585 const void *ns = NULL; 2586 2587 if (dev->class && dev->class->namespace) 2588 ns = dev->class->namespace(dev); 2589 2590 return ns; 2591 } 2592 2593 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2594 { 2595 const struct device *dev = kobj_to_dev(kobj); 2596 2597 if (dev->class && dev->class->get_ownership) 2598 dev->class->get_ownership(dev, uid, gid); 2599 } 2600 2601 static const struct kobj_type device_ktype = { 2602 .release = device_release, 2603 .sysfs_ops = &dev_sysfs_ops, 2604 .namespace = device_namespace, 2605 .get_ownership = device_get_ownership, 2606 }; 2607 2608 2609 static int dev_uevent_filter(const struct kobject *kobj) 2610 { 2611 const struct kobj_type *ktype = get_ktype(kobj); 2612 2613 if (ktype == &device_ktype) { 2614 const struct device *dev = kobj_to_dev(kobj); 2615 if (dev->bus) 2616 return 1; 2617 if (dev->class) 2618 return 1; 2619 } 2620 return 0; 2621 } 2622 2623 static const char *dev_uevent_name(const struct kobject *kobj) 2624 { 2625 const struct device *dev = kobj_to_dev(kobj); 2626 2627 if (dev->bus) 2628 return dev->bus->name; 2629 if (dev->class) 2630 return dev->class->name; 2631 return NULL; 2632 } 2633 2634 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2635 { 2636 const struct device *dev = kobj_to_dev(kobj); 2637 struct device_driver *driver; 2638 int retval = 0; 2639 2640 /* add device node properties if present */ 2641 if (MAJOR(dev->devt)) { 2642 const char *tmp; 2643 const char *name; 2644 umode_t mode = 0; 2645 kuid_t uid = GLOBAL_ROOT_UID; 2646 kgid_t gid = GLOBAL_ROOT_GID; 2647 2648 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2649 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2650 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2651 if (name) { 2652 add_uevent_var(env, "DEVNAME=%s", name); 2653 if (mode) 2654 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2655 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2656 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2657 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2658 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2659 kfree(tmp); 2660 } 2661 } 2662 2663 if (dev->type && dev->type->name) 2664 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2665 2666 /* Synchronize with module_remove_driver() */ 2667 rcu_read_lock(); 2668 driver = READ_ONCE(dev->driver); 2669 if (driver) 2670 add_uevent_var(env, "DRIVER=%s", driver->name); 2671 rcu_read_unlock(); 2672 2673 /* Add common DT information about the device */ 2674 of_device_uevent(dev, env); 2675 2676 /* have the bus specific function add its stuff */ 2677 if (dev->bus && dev->bus->uevent) { 2678 retval = dev->bus->uevent(dev, env); 2679 if (retval) 2680 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2681 dev_name(dev), __func__, retval); 2682 } 2683 2684 /* have the class specific function add its stuff */ 2685 if (dev->class && dev->class->dev_uevent) { 2686 retval = dev->class->dev_uevent(dev, env); 2687 if (retval) 2688 pr_debug("device: '%s': %s: class uevent() " 2689 "returned %d\n", dev_name(dev), 2690 __func__, retval); 2691 } 2692 2693 /* have the device type specific function add its stuff */ 2694 if (dev->type && dev->type->uevent) { 2695 retval = dev->type->uevent(dev, env); 2696 if (retval) 2697 pr_debug("device: '%s': %s: dev_type uevent() " 2698 "returned %d\n", dev_name(dev), 2699 __func__, retval); 2700 } 2701 2702 return retval; 2703 } 2704 2705 static const struct kset_uevent_ops device_uevent_ops = { 2706 .filter = dev_uevent_filter, 2707 .name = dev_uevent_name, 2708 .uevent = dev_uevent, 2709 }; 2710 2711 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2712 char *buf) 2713 { 2714 struct kobject *top_kobj; 2715 struct kset *kset; 2716 struct kobj_uevent_env *env = NULL; 2717 int i; 2718 int len = 0; 2719 int retval; 2720 2721 /* search the kset, the device belongs to */ 2722 top_kobj = &dev->kobj; 2723 while (!top_kobj->kset && top_kobj->parent) 2724 top_kobj = top_kobj->parent; 2725 if (!top_kobj->kset) 2726 goto out; 2727 2728 kset = top_kobj->kset; 2729 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2730 goto out; 2731 2732 /* respect filter */ 2733 if (kset->uevent_ops && kset->uevent_ops->filter) 2734 if (!kset->uevent_ops->filter(&dev->kobj)) 2735 goto out; 2736 2737 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2738 if (!env) 2739 return -ENOMEM; 2740 2741 /* let the kset specific function add its keys */ 2742 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2743 if (retval) 2744 goto out; 2745 2746 /* copy keys to file */ 2747 for (i = 0; i < env->envp_idx; i++) 2748 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2749 out: 2750 kfree(env); 2751 return len; 2752 } 2753 2754 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2755 const char *buf, size_t count) 2756 { 2757 int rc; 2758 2759 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2760 2761 if (rc) { 2762 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2763 return rc; 2764 } 2765 2766 return count; 2767 } 2768 static DEVICE_ATTR_RW(uevent); 2769 2770 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2771 char *buf) 2772 { 2773 bool val; 2774 2775 device_lock(dev); 2776 val = !dev->offline; 2777 device_unlock(dev); 2778 return sysfs_emit(buf, "%u\n", val); 2779 } 2780 2781 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2782 const char *buf, size_t count) 2783 { 2784 bool val; 2785 int ret; 2786 2787 ret = kstrtobool(buf, &val); 2788 if (ret < 0) 2789 return ret; 2790 2791 ret = lock_device_hotplug_sysfs(); 2792 if (ret) 2793 return ret; 2794 2795 ret = val ? device_online(dev) : device_offline(dev); 2796 unlock_device_hotplug(); 2797 return ret < 0 ? ret : count; 2798 } 2799 static DEVICE_ATTR_RW(online); 2800 2801 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2802 char *buf) 2803 { 2804 const char *loc; 2805 2806 switch (dev->removable) { 2807 case DEVICE_REMOVABLE: 2808 loc = "removable"; 2809 break; 2810 case DEVICE_FIXED: 2811 loc = "fixed"; 2812 break; 2813 default: 2814 loc = "unknown"; 2815 } 2816 return sysfs_emit(buf, "%s\n", loc); 2817 } 2818 static DEVICE_ATTR_RO(removable); 2819 2820 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2821 { 2822 return sysfs_create_groups(&dev->kobj, groups); 2823 } 2824 EXPORT_SYMBOL_GPL(device_add_groups); 2825 2826 void device_remove_groups(struct device *dev, 2827 const struct attribute_group **groups) 2828 { 2829 sysfs_remove_groups(&dev->kobj, groups); 2830 } 2831 EXPORT_SYMBOL_GPL(device_remove_groups); 2832 2833 union device_attr_group_devres { 2834 const struct attribute_group *group; 2835 const struct attribute_group **groups; 2836 }; 2837 2838 static void devm_attr_group_remove(struct device *dev, void *res) 2839 { 2840 union device_attr_group_devres *devres = res; 2841 const struct attribute_group *group = devres->group; 2842 2843 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2844 sysfs_remove_group(&dev->kobj, group); 2845 } 2846 2847 /** 2848 * devm_device_add_group - given a device, create a managed attribute group 2849 * @dev: The device to create the group for 2850 * @grp: The attribute group to create 2851 * 2852 * This function creates a group for the first time. It will explicitly 2853 * warn and error if any of the attribute files being created already exist. 2854 * 2855 * Returns 0 on success or error code on failure. 2856 */ 2857 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2858 { 2859 union device_attr_group_devres *devres; 2860 int error; 2861 2862 devres = devres_alloc(devm_attr_group_remove, 2863 sizeof(*devres), GFP_KERNEL); 2864 if (!devres) 2865 return -ENOMEM; 2866 2867 error = sysfs_create_group(&dev->kobj, grp); 2868 if (error) { 2869 devres_free(devres); 2870 return error; 2871 } 2872 2873 devres->group = grp; 2874 devres_add(dev, devres); 2875 return 0; 2876 } 2877 EXPORT_SYMBOL_GPL(devm_device_add_group); 2878 2879 static int device_add_attrs(struct device *dev) 2880 { 2881 const struct class *class = dev->class; 2882 const struct device_type *type = dev->type; 2883 int error; 2884 2885 if (class) { 2886 error = device_add_groups(dev, class->dev_groups); 2887 if (error) 2888 return error; 2889 } 2890 2891 if (type) { 2892 error = device_add_groups(dev, type->groups); 2893 if (error) 2894 goto err_remove_class_groups; 2895 } 2896 2897 error = device_add_groups(dev, dev->groups); 2898 if (error) 2899 goto err_remove_type_groups; 2900 2901 if (device_supports_offline(dev) && !dev->offline_disabled) { 2902 error = device_create_file(dev, &dev_attr_online); 2903 if (error) 2904 goto err_remove_dev_groups; 2905 } 2906 2907 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2908 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2909 if (error) 2910 goto err_remove_dev_online; 2911 } 2912 2913 if (dev_removable_is_valid(dev)) { 2914 error = device_create_file(dev, &dev_attr_removable); 2915 if (error) 2916 goto err_remove_dev_waiting_for_supplier; 2917 } 2918 2919 if (dev_add_physical_location(dev)) { 2920 error = device_add_group(dev, 2921 &dev_attr_physical_location_group); 2922 if (error) 2923 goto err_remove_dev_removable; 2924 } 2925 2926 return 0; 2927 2928 err_remove_dev_removable: 2929 device_remove_file(dev, &dev_attr_removable); 2930 err_remove_dev_waiting_for_supplier: 2931 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2932 err_remove_dev_online: 2933 device_remove_file(dev, &dev_attr_online); 2934 err_remove_dev_groups: 2935 device_remove_groups(dev, dev->groups); 2936 err_remove_type_groups: 2937 if (type) 2938 device_remove_groups(dev, type->groups); 2939 err_remove_class_groups: 2940 if (class) 2941 device_remove_groups(dev, class->dev_groups); 2942 2943 return error; 2944 } 2945 2946 static void device_remove_attrs(struct device *dev) 2947 { 2948 const struct class *class = dev->class; 2949 const struct device_type *type = dev->type; 2950 2951 if (dev->physical_location) { 2952 device_remove_group(dev, &dev_attr_physical_location_group); 2953 kfree(dev->physical_location); 2954 } 2955 2956 device_remove_file(dev, &dev_attr_removable); 2957 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2958 device_remove_file(dev, &dev_attr_online); 2959 device_remove_groups(dev, dev->groups); 2960 2961 if (type) 2962 device_remove_groups(dev, type->groups); 2963 2964 if (class) 2965 device_remove_groups(dev, class->dev_groups); 2966 } 2967 2968 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2969 char *buf) 2970 { 2971 return print_dev_t(buf, dev->devt); 2972 } 2973 static DEVICE_ATTR_RO(dev); 2974 2975 /* /sys/devices/ */ 2976 struct kset *devices_kset; 2977 2978 /** 2979 * devices_kset_move_before - Move device in the devices_kset's list. 2980 * @deva: Device to move. 2981 * @devb: Device @deva should come before. 2982 */ 2983 static void devices_kset_move_before(struct device *deva, struct device *devb) 2984 { 2985 if (!devices_kset) 2986 return; 2987 pr_debug("devices_kset: Moving %s before %s\n", 2988 dev_name(deva), dev_name(devb)); 2989 spin_lock(&devices_kset->list_lock); 2990 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2991 spin_unlock(&devices_kset->list_lock); 2992 } 2993 2994 /** 2995 * devices_kset_move_after - Move device in the devices_kset's list. 2996 * @deva: Device to move 2997 * @devb: Device @deva should come after. 2998 */ 2999 static void devices_kset_move_after(struct device *deva, struct device *devb) 3000 { 3001 if (!devices_kset) 3002 return; 3003 pr_debug("devices_kset: Moving %s after %s\n", 3004 dev_name(deva), dev_name(devb)); 3005 spin_lock(&devices_kset->list_lock); 3006 list_move(&deva->kobj.entry, &devb->kobj.entry); 3007 spin_unlock(&devices_kset->list_lock); 3008 } 3009 3010 /** 3011 * devices_kset_move_last - move the device to the end of devices_kset's list. 3012 * @dev: device to move 3013 */ 3014 void devices_kset_move_last(struct device *dev) 3015 { 3016 if (!devices_kset) 3017 return; 3018 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3019 spin_lock(&devices_kset->list_lock); 3020 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3021 spin_unlock(&devices_kset->list_lock); 3022 } 3023 3024 /** 3025 * device_create_file - create sysfs attribute file for device. 3026 * @dev: device. 3027 * @attr: device attribute descriptor. 3028 */ 3029 int device_create_file(struct device *dev, 3030 const struct device_attribute *attr) 3031 { 3032 int error = 0; 3033 3034 if (dev) { 3035 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3036 "Attribute %s: write permission without 'store'\n", 3037 attr->attr.name); 3038 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3039 "Attribute %s: read permission without 'show'\n", 3040 attr->attr.name); 3041 error = sysfs_create_file(&dev->kobj, &attr->attr); 3042 } 3043 3044 return error; 3045 } 3046 EXPORT_SYMBOL_GPL(device_create_file); 3047 3048 /** 3049 * device_remove_file - remove sysfs attribute file. 3050 * @dev: device. 3051 * @attr: device attribute descriptor. 3052 */ 3053 void device_remove_file(struct device *dev, 3054 const struct device_attribute *attr) 3055 { 3056 if (dev) 3057 sysfs_remove_file(&dev->kobj, &attr->attr); 3058 } 3059 EXPORT_SYMBOL_GPL(device_remove_file); 3060 3061 /** 3062 * device_remove_file_self - remove sysfs attribute file from its own method. 3063 * @dev: device. 3064 * @attr: device attribute descriptor. 3065 * 3066 * See kernfs_remove_self() for details. 3067 */ 3068 bool device_remove_file_self(struct device *dev, 3069 const struct device_attribute *attr) 3070 { 3071 if (dev) 3072 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3073 else 3074 return false; 3075 } 3076 EXPORT_SYMBOL_GPL(device_remove_file_self); 3077 3078 /** 3079 * device_create_bin_file - create sysfs binary attribute file for device. 3080 * @dev: device. 3081 * @attr: device binary attribute descriptor. 3082 */ 3083 int device_create_bin_file(struct device *dev, 3084 const struct bin_attribute *attr) 3085 { 3086 int error = -EINVAL; 3087 if (dev) 3088 error = sysfs_create_bin_file(&dev->kobj, attr); 3089 return error; 3090 } 3091 EXPORT_SYMBOL_GPL(device_create_bin_file); 3092 3093 /** 3094 * device_remove_bin_file - remove sysfs binary attribute file 3095 * @dev: device. 3096 * @attr: device binary attribute descriptor. 3097 */ 3098 void device_remove_bin_file(struct device *dev, 3099 const struct bin_attribute *attr) 3100 { 3101 if (dev) 3102 sysfs_remove_bin_file(&dev->kobj, attr); 3103 } 3104 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3105 3106 static void klist_children_get(struct klist_node *n) 3107 { 3108 struct device_private *p = to_device_private_parent(n); 3109 struct device *dev = p->device; 3110 3111 get_device(dev); 3112 } 3113 3114 static void klist_children_put(struct klist_node *n) 3115 { 3116 struct device_private *p = to_device_private_parent(n); 3117 struct device *dev = p->device; 3118 3119 put_device(dev); 3120 } 3121 3122 /** 3123 * device_initialize - init device structure. 3124 * @dev: device. 3125 * 3126 * This prepares the device for use by other layers by initializing 3127 * its fields. 3128 * It is the first half of device_register(), if called by 3129 * that function, though it can also be called separately, so one 3130 * may use @dev's fields. In particular, get_device()/put_device() 3131 * may be used for reference counting of @dev after calling this 3132 * function. 3133 * 3134 * All fields in @dev must be initialized by the caller to 0, except 3135 * for those explicitly set to some other value. The simplest 3136 * approach is to use kzalloc() to allocate the structure containing 3137 * @dev. 3138 * 3139 * NOTE: Use put_device() to give up your reference instead of freeing 3140 * @dev directly once you have called this function. 3141 */ 3142 void device_initialize(struct device *dev) 3143 { 3144 dev->kobj.kset = devices_kset; 3145 kobject_init(&dev->kobj, &device_ktype); 3146 INIT_LIST_HEAD(&dev->dma_pools); 3147 mutex_init(&dev->mutex); 3148 lockdep_set_novalidate_class(&dev->mutex); 3149 spin_lock_init(&dev->devres_lock); 3150 INIT_LIST_HEAD(&dev->devres_head); 3151 device_pm_init(dev); 3152 set_dev_node(dev, NUMA_NO_NODE); 3153 INIT_LIST_HEAD(&dev->links.consumers); 3154 INIT_LIST_HEAD(&dev->links.suppliers); 3155 INIT_LIST_HEAD(&dev->links.defer_sync); 3156 dev->links.status = DL_DEV_NO_DRIVER; 3157 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3158 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3159 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3160 dev->dma_coherent = dma_default_coherent; 3161 #endif 3162 swiotlb_dev_init(dev); 3163 } 3164 EXPORT_SYMBOL_GPL(device_initialize); 3165 3166 struct kobject *virtual_device_parent(void) 3167 { 3168 static struct kobject *virtual_dir = NULL; 3169 3170 if (!virtual_dir) 3171 virtual_dir = kobject_create_and_add("virtual", 3172 &devices_kset->kobj); 3173 3174 return virtual_dir; 3175 } 3176 3177 struct class_dir { 3178 struct kobject kobj; 3179 const struct class *class; 3180 }; 3181 3182 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3183 3184 static void class_dir_release(struct kobject *kobj) 3185 { 3186 struct class_dir *dir = to_class_dir(kobj); 3187 kfree(dir); 3188 } 3189 3190 static const 3191 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3192 { 3193 const struct class_dir *dir = to_class_dir(kobj); 3194 return dir->class->ns_type; 3195 } 3196 3197 static const struct kobj_type class_dir_ktype = { 3198 .release = class_dir_release, 3199 .sysfs_ops = &kobj_sysfs_ops, 3200 .child_ns_type = class_dir_child_ns_type 3201 }; 3202 3203 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3204 struct kobject *parent_kobj) 3205 { 3206 struct class_dir *dir; 3207 int retval; 3208 3209 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3210 if (!dir) 3211 return ERR_PTR(-ENOMEM); 3212 3213 dir->class = sp->class; 3214 kobject_init(&dir->kobj, &class_dir_ktype); 3215 3216 dir->kobj.kset = &sp->glue_dirs; 3217 3218 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3219 if (retval < 0) { 3220 kobject_put(&dir->kobj); 3221 return ERR_PTR(retval); 3222 } 3223 return &dir->kobj; 3224 } 3225 3226 static DEFINE_MUTEX(gdp_mutex); 3227 3228 static struct kobject *get_device_parent(struct device *dev, 3229 struct device *parent) 3230 { 3231 struct subsys_private *sp = class_to_subsys(dev->class); 3232 struct kobject *kobj = NULL; 3233 3234 if (sp) { 3235 struct kobject *parent_kobj; 3236 struct kobject *k; 3237 3238 /* 3239 * If we have no parent, we live in "virtual". 3240 * Class-devices with a non class-device as parent, live 3241 * in a "glue" directory to prevent namespace collisions. 3242 */ 3243 if (parent == NULL) 3244 parent_kobj = virtual_device_parent(); 3245 else if (parent->class && !dev->class->ns_type) { 3246 subsys_put(sp); 3247 return &parent->kobj; 3248 } else { 3249 parent_kobj = &parent->kobj; 3250 } 3251 3252 mutex_lock(&gdp_mutex); 3253 3254 /* find our class-directory at the parent and reference it */ 3255 spin_lock(&sp->glue_dirs.list_lock); 3256 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3257 if (k->parent == parent_kobj) { 3258 kobj = kobject_get(k); 3259 break; 3260 } 3261 spin_unlock(&sp->glue_dirs.list_lock); 3262 if (kobj) { 3263 mutex_unlock(&gdp_mutex); 3264 subsys_put(sp); 3265 return kobj; 3266 } 3267 3268 /* or create a new class-directory at the parent device */ 3269 k = class_dir_create_and_add(sp, parent_kobj); 3270 /* do not emit an uevent for this simple "glue" directory */ 3271 mutex_unlock(&gdp_mutex); 3272 subsys_put(sp); 3273 return k; 3274 } 3275 3276 /* subsystems can specify a default root directory for their devices */ 3277 if (!parent && dev->bus) { 3278 struct device *dev_root = bus_get_dev_root(dev->bus); 3279 3280 if (dev_root) { 3281 kobj = &dev_root->kobj; 3282 put_device(dev_root); 3283 return kobj; 3284 } 3285 } 3286 3287 if (parent) 3288 return &parent->kobj; 3289 return NULL; 3290 } 3291 3292 static inline bool live_in_glue_dir(struct kobject *kobj, 3293 struct device *dev) 3294 { 3295 struct subsys_private *sp; 3296 bool retval; 3297 3298 if (!kobj || !dev->class) 3299 return false; 3300 3301 sp = class_to_subsys(dev->class); 3302 if (!sp) 3303 return false; 3304 3305 if (kobj->kset == &sp->glue_dirs) 3306 retval = true; 3307 else 3308 retval = false; 3309 3310 subsys_put(sp); 3311 return retval; 3312 } 3313 3314 static inline struct kobject *get_glue_dir(struct device *dev) 3315 { 3316 return dev->kobj.parent; 3317 } 3318 3319 /** 3320 * kobject_has_children - Returns whether a kobject has children. 3321 * @kobj: the object to test 3322 * 3323 * This will return whether a kobject has other kobjects as children. 3324 * 3325 * It does NOT account for the presence of attribute files, only sub 3326 * directories. It also assumes there is no concurrent addition or 3327 * removal of such children, and thus relies on external locking. 3328 */ 3329 static inline bool kobject_has_children(struct kobject *kobj) 3330 { 3331 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3332 3333 return kobj->sd && kobj->sd->dir.subdirs; 3334 } 3335 3336 /* 3337 * make sure cleaning up dir as the last step, we need to make 3338 * sure .release handler of kobject is run with holding the 3339 * global lock 3340 */ 3341 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3342 { 3343 unsigned int ref; 3344 3345 /* see if we live in a "glue" directory */ 3346 if (!live_in_glue_dir(glue_dir, dev)) 3347 return; 3348 3349 mutex_lock(&gdp_mutex); 3350 /** 3351 * There is a race condition between removing glue directory 3352 * and adding a new device under the glue directory. 3353 * 3354 * CPU1: CPU2: 3355 * 3356 * device_add() 3357 * get_device_parent() 3358 * class_dir_create_and_add() 3359 * kobject_add_internal() 3360 * create_dir() // create glue_dir 3361 * 3362 * device_add() 3363 * get_device_parent() 3364 * kobject_get() // get glue_dir 3365 * 3366 * device_del() 3367 * cleanup_glue_dir() 3368 * kobject_del(glue_dir) 3369 * 3370 * kobject_add() 3371 * kobject_add_internal() 3372 * create_dir() // in glue_dir 3373 * sysfs_create_dir_ns() 3374 * kernfs_create_dir_ns(sd) 3375 * 3376 * sysfs_remove_dir() // glue_dir->sd=NULL 3377 * sysfs_put() // free glue_dir->sd 3378 * 3379 * // sd is freed 3380 * kernfs_new_node(sd) 3381 * kernfs_get(glue_dir) 3382 * kernfs_add_one() 3383 * kernfs_put() 3384 * 3385 * Before CPU1 remove last child device under glue dir, if CPU2 add 3386 * a new device under glue dir, the glue_dir kobject reference count 3387 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3388 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3389 * and sysfs_put(). This result in glue_dir->sd is freed. 3390 * 3391 * Then the CPU2 will see a stale "empty" but still potentially used 3392 * glue dir around in kernfs_new_node(). 3393 * 3394 * In order to avoid this happening, we also should make sure that 3395 * kernfs_node for glue_dir is released in CPU1 only when refcount 3396 * for glue_dir kobj is 1. 3397 */ 3398 ref = kref_read(&glue_dir->kref); 3399 if (!kobject_has_children(glue_dir) && !--ref) 3400 kobject_del(glue_dir); 3401 kobject_put(glue_dir); 3402 mutex_unlock(&gdp_mutex); 3403 } 3404 3405 static int device_add_class_symlinks(struct device *dev) 3406 { 3407 struct device_node *of_node = dev_of_node(dev); 3408 struct subsys_private *sp; 3409 int error; 3410 3411 if (of_node) { 3412 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3413 if (error) 3414 dev_warn(dev, "Error %d creating of_node link\n",error); 3415 /* An error here doesn't warrant bringing down the device */ 3416 } 3417 3418 sp = class_to_subsys(dev->class); 3419 if (!sp) 3420 return 0; 3421 3422 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3423 if (error) 3424 goto out_devnode; 3425 3426 if (dev->parent && device_is_not_partition(dev)) { 3427 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3428 "device"); 3429 if (error) 3430 goto out_subsys; 3431 } 3432 3433 /* link in the class directory pointing to the device */ 3434 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3435 if (error) 3436 goto out_device; 3437 goto exit; 3438 3439 out_device: 3440 sysfs_remove_link(&dev->kobj, "device"); 3441 out_subsys: 3442 sysfs_remove_link(&dev->kobj, "subsystem"); 3443 out_devnode: 3444 sysfs_remove_link(&dev->kobj, "of_node"); 3445 exit: 3446 subsys_put(sp); 3447 return error; 3448 } 3449 3450 static void device_remove_class_symlinks(struct device *dev) 3451 { 3452 struct subsys_private *sp = class_to_subsys(dev->class); 3453 3454 if (dev_of_node(dev)) 3455 sysfs_remove_link(&dev->kobj, "of_node"); 3456 3457 if (!sp) 3458 return; 3459 3460 if (dev->parent && device_is_not_partition(dev)) 3461 sysfs_remove_link(&dev->kobj, "device"); 3462 sysfs_remove_link(&dev->kobj, "subsystem"); 3463 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3464 subsys_put(sp); 3465 } 3466 3467 /** 3468 * dev_set_name - set a device name 3469 * @dev: device 3470 * @fmt: format string for the device's name 3471 */ 3472 int dev_set_name(struct device *dev, const char *fmt, ...) 3473 { 3474 va_list vargs; 3475 int err; 3476 3477 va_start(vargs, fmt); 3478 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3479 va_end(vargs); 3480 return err; 3481 } 3482 EXPORT_SYMBOL_GPL(dev_set_name); 3483 3484 /* select a /sys/dev/ directory for the device */ 3485 static struct kobject *device_to_dev_kobj(struct device *dev) 3486 { 3487 if (is_blockdev(dev)) 3488 return sysfs_dev_block_kobj; 3489 else 3490 return sysfs_dev_char_kobj; 3491 } 3492 3493 static int device_create_sys_dev_entry(struct device *dev) 3494 { 3495 struct kobject *kobj = device_to_dev_kobj(dev); 3496 int error = 0; 3497 char devt_str[15]; 3498 3499 if (kobj) { 3500 format_dev_t(devt_str, dev->devt); 3501 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3502 } 3503 3504 return error; 3505 } 3506 3507 static void device_remove_sys_dev_entry(struct device *dev) 3508 { 3509 struct kobject *kobj = device_to_dev_kobj(dev); 3510 char devt_str[15]; 3511 3512 if (kobj) { 3513 format_dev_t(devt_str, dev->devt); 3514 sysfs_remove_link(kobj, devt_str); 3515 } 3516 } 3517 3518 static int device_private_init(struct device *dev) 3519 { 3520 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3521 if (!dev->p) 3522 return -ENOMEM; 3523 dev->p->device = dev; 3524 klist_init(&dev->p->klist_children, klist_children_get, 3525 klist_children_put); 3526 INIT_LIST_HEAD(&dev->p->deferred_probe); 3527 return 0; 3528 } 3529 3530 /** 3531 * device_add - add device to device hierarchy. 3532 * @dev: device. 3533 * 3534 * This is part 2 of device_register(), though may be called 3535 * separately _iff_ device_initialize() has been called separately. 3536 * 3537 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3538 * to the global and sibling lists for the device, then 3539 * adds it to the other relevant subsystems of the driver model. 3540 * 3541 * Do not call this routine or device_register() more than once for 3542 * any device structure. The driver model core is not designed to work 3543 * with devices that get unregistered and then spring back to life. 3544 * (Among other things, it's very hard to guarantee that all references 3545 * to the previous incarnation of @dev have been dropped.) Allocate 3546 * and register a fresh new struct device instead. 3547 * 3548 * NOTE: _Never_ directly free @dev after calling this function, even 3549 * if it returned an error! Always use put_device() to give up your 3550 * reference instead. 3551 * 3552 * Rule of thumb is: if device_add() succeeds, you should call 3553 * device_del() when you want to get rid of it. If device_add() has 3554 * *not* succeeded, use *only* put_device() to drop the reference 3555 * count. 3556 */ 3557 int device_add(struct device *dev) 3558 { 3559 struct subsys_private *sp; 3560 struct device *parent; 3561 struct kobject *kobj; 3562 struct class_interface *class_intf; 3563 int error = -EINVAL; 3564 struct kobject *glue_dir = NULL; 3565 3566 dev = get_device(dev); 3567 if (!dev) 3568 goto done; 3569 3570 if (!dev->p) { 3571 error = device_private_init(dev); 3572 if (error) 3573 goto done; 3574 } 3575 3576 /* 3577 * for statically allocated devices, which should all be converted 3578 * some day, we need to initialize the name. We prevent reading back 3579 * the name, and force the use of dev_name() 3580 */ 3581 if (dev->init_name) { 3582 error = dev_set_name(dev, "%s", dev->init_name); 3583 dev->init_name = NULL; 3584 } 3585 3586 if (dev_name(dev)) 3587 error = 0; 3588 /* subsystems can specify simple device enumeration */ 3589 else if (dev->bus && dev->bus->dev_name) 3590 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3591 else 3592 error = -EINVAL; 3593 if (error) 3594 goto name_error; 3595 3596 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3597 3598 parent = get_device(dev->parent); 3599 kobj = get_device_parent(dev, parent); 3600 if (IS_ERR(kobj)) { 3601 error = PTR_ERR(kobj); 3602 goto parent_error; 3603 } 3604 if (kobj) 3605 dev->kobj.parent = kobj; 3606 3607 /* use parent numa_node */ 3608 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3609 set_dev_node(dev, dev_to_node(parent)); 3610 3611 /* first, register with generic layer. */ 3612 /* we require the name to be set before, and pass NULL */ 3613 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3614 if (error) { 3615 glue_dir = kobj; 3616 goto Error; 3617 } 3618 3619 /* notify platform of device entry */ 3620 device_platform_notify(dev); 3621 3622 error = device_create_file(dev, &dev_attr_uevent); 3623 if (error) 3624 goto attrError; 3625 3626 error = device_add_class_symlinks(dev); 3627 if (error) 3628 goto SymlinkError; 3629 error = device_add_attrs(dev); 3630 if (error) 3631 goto AttrsError; 3632 error = bus_add_device(dev); 3633 if (error) 3634 goto BusError; 3635 error = dpm_sysfs_add(dev); 3636 if (error) 3637 goto DPMError; 3638 device_pm_add(dev); 3639 3640 if (MAJOR(dev->devt)) { 3641 error = device_create_file(dev, &dev_attr_dev); 3642 if (error) 3643 goto DevAttrError; 3644 3645 error = device_create_sys_dev_entry(dev); 3646 if (error) 3647 goto SysEntryError; 3648 3649 devtmpfs_create_node(dev); 3650 } 3651 3652 /* Notify clients of device addition. This call must come 3653 * after dpm_sysfs_add() and before kobject_uevent(). 3654 */ 3655 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3656 kobject_uevent(&dev->kobj, KOBJ_ADD); 3657 3658 /* 3659 * Check if any of the other devices (consumers) have been waiting for 3660 * this device (supplier) to be added so that they can create a device 3661 * link to it. 3662 * 3663 * This needs to happen after device_pm_add() because device_link_add() 3664 * requires the supplier be registered before it's called. 3665 * 3666 * But this also needs to happen before bus_probe_device() to make sure 3667 * waiting consumers can link to it before the driver is bound to the 3668 * device and the driver sync_state callback is called for this device. 3669 */ 3670 if (dev->fwnode && !dev->fwnode->dev) { 3671 dev->fwnode->dev = dev; 3672 fw_devlink_link_device(dev); 3673 } 3674 3675 bus_probe_device(dev); 3676 3677 /* 3678 * If all driver registration is done and a newly added device doesn't 3679 * match with any driver, don't block its consumers from probing in 3680 * case the consumer device is able to operate without this supplier. 3681 */ 3682 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3683 fw_devlink_unblock_consumers(dev); 3684 3685 if (parent) 3686 klist_add_tail(&dev->p->knode_parent, 3687 &parent->p->klist_children); 3688 3689 sp = class_to_subsys(dev->class); 3690 if (sp) { 3691 mutex_lock(&sp->mutex); 3692 /* tie the class to the device */ 3693 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3694 3695 /* notify any interfaces that the device is here */ 3696 list_for_each_entry(class_intf, &sp->interfaces, node) 3697 if (class_intf->add_dev) 3698 class_intf->add_dev(dev); 3699 mutex_unlock(&sp->mutex); 3700 subsys_put(sp); 3701 } 3702 done: 3703 put_device(dev); 3704 return error; 3705 SysEntryError: 3706 if (MAJOR(dev->devt)) 3707 device_remove_file(dev, &dev_attr_dev); 3708 DevAttrError: 3709 device_pm_remove(dev); 3710 dpm_sysfs_remove(dev); 3711 DPMError: 3712 dev->driver = NULL; 3713 bus_remove_device(dev); 3714 BusError: 3715 device_remove_attrs(dev); 3716 AttrsError: 3717 device_remove_class_symlinks(dev); 3718 SymlinkError: 3719 device_remove_file(dev, &dev_attr_uevent); 3720 attrError: 3721 device_platform_notify_remove(dev); 3722 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3723 glue_dir = get_glue_dir(dev); 3724 kobject_del(&dev->kobj); 3725 Error: 3726 cleanup_glue_dir(dev, glue_dir); 3727 parent_error: 3728 put_device(parent); 3729 name_error: 3730 kfree(dev->p); 3731 dev->p = NULL; 3732 goto done; 3733 } 3734 EXPORT_SYMBOL_GPL(device_add); 3735 3736 /** 3737 * device_register - register a device with the system. 3738 * @dev: pointer to the device structure 3739 * 3740 * This happens in two clean steps - initialize the device 3741 * and add it to the system. The two steps can be called 3742 * separately, but this is the easiest and most common. 3743 * I.e. you should only call the two helpers separately if 3744 * have a clearly defined need to use and refcount the device 3745 * before it is added to the hierarchy. 3746 * 3747 * For more information, see the kerneldoc for device_initialize() 3748 * and device_add(). 3749 * 3750 * NOTE: _Never_ directly free @dev after calling this function, even 3751 * if it returned an error! Always use put_device() to give up the 3752 * reference initialized in this function instead. 3753 */ 3754 int device_register(struct device *dev) 3755 { 3756 device_initialize(dev); 3757 return device_add(dev); 3758 } 3759 EXPORT_SYMBOL_GPL(device_register); 3760 3761 /** 3762 * get_device - increment reference count for device. 3763 * @dev: device. 3764 * 3765 * This simply forwards the call to kobject_get(), though 3766 * we do take care to provide for the case that we get a NULL 3767 * pointer passed in. 3768 */ 3769 struct device *get_device(struct device *dev) 3770 { 3771 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3772 } 3773 EXPORT_SYMBOL_GPL(get_device); 3774 3775 /** 3776 * put_device - decrement reference count. 3777 * @dev: device in question. 3778 */ 3779 void put_device(struct device *dev) 3780 { 3781 /* might_sleep(); */ 3782 if (dev) 3783 kobject_put(&dev->kobj); 3784 } 3785 EXPORT_SYMBOL_GPL(put_device); 3786 3787 bool kill_device(struct device *dev) 3788 { 3789 /* 3790 * Require the device lock and set the "dead" flag to guarantee that 3791 * the update behavior is consistent with the other bitfields near 3792 * it and that we cannot have an asynchronous probe routine trying 3793 * to run while we are tearing out the bus/class/sysfs from 3794 * underneath the device. 3795 */ 3796 device_lock_assert(dev); 3797 3798 if (dev->p->dead) 3799 return false; 3800 dev->p->dead = true; 3801 return true; 3802 } 3803 EXPORT_SYMBOL_GPL(kill_device); 3804 3805 /** 3806 * device_del - delete device from system. 3807 * @dev: device. 3808 * 3809 * This is the first part of the device unregistration 3810 * sequence. This removes the device from the lists we control 3811 * from here, has it removed from the other driver model 3812 * subsystems it was added to in device_add(), and removes it 3813 * from the kobject hierarchy. 3814 * 3815 * NOTE: this should be called manually _iff_ device_add() was 3816 * also called manually. 3817 */ 3818 void device_del(struct device *dev) 3819 { 3820 struct subsys_private *sp; 3821 struct device *parent = dev->parent; 3822 struct kobject *glue_dir = NULL; 3823 struct class_interface *class_intf; 3824 unsigned int noio_flag; 3825 3826 device_lock(dev); 3827 kill_device(dev); 3828 device_unlock(dev); 3829 3830 if (dev->fwnode && dev->fwnode->dev == dev) 3831 dev->fwnode->dev = NULL; 3832 3833 /* Notify clients of device removal. This call must come 3834 * before dpm_sysfs_remove(). 3835 */ 3836 noio_flag = memalloc_noio_save(); 3837 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3838 3839 dpm_sysfs_remove(dev); 3840 if (parent) 3841 klist_del(&dev->p->knode_parent); 3842 if (MAJOR(dev->devt)) { 3843 devtmpfs_delete_node(dev); 3844 device_remove_sys_dev_entry(dev); 3845 device_remove_file(dev, &dev_attr_dev); 3846 } 3847 3848 sp = class_to_subsys(dev->class); 3849 if (sp) { 3850 device_remove_class_symlinks(dev); 3851 3852 mutex_lock(&sp->mutex); 3853 /* notify any interfaces that the device is now gone */ 3854 list_for_each_entry(class_intf, &sp->interfaces, node) 3855 if (class_intf->remove_dev) 3856 class_intf->remove_dev(dev); 3857 /* remove the device from the class list */ 3858 klist_del(&dev->p->knode_class); 3859 mutex_unlock(&sp->mutex); 3860 subsys_put(sp); 3861 } 3862 device_remove_file(dev, &dev_attr_uevent); 3863 device_remove_attrs(dev); 3864 bus_remove_device(dev); 3865 device_pm_remove(dev); 3866 driver_deferred_probe_del(dev); 3867 device_platform_notify_remove(dev); 3868 device_links_purge(dev); 3869 3870 /* 3871 * If a device does not have a driver attached, we need to clean 3872 * up any managed resources. We do this in device_release(), but 3873 * it's never called (and we leak the device) if a managed 3874 * resource holds a reference to the device. So release all 3875 * managed resources here, like we do in driver_detach(). We 3876 * still need to do so again in device_release() in case someone 3877 * adds a new resource after this point, though. 3878 */ 3879 devres_release_all(dev); 3880 3881 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3882 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3883 glue_dir = get_glue_dir(dev); 3884 kobject_del(&dev->kobj); 3885 cleanup_glue_dir(dev, glue_dir); 3886 memalloc_noio_restore(noio_flag); 3887 put_device(parent); 3888 } 3889 EXPORT_SYMBOL_GPL(device_del); 3890 3891 /** 3892 * device_unregister - unregister device from system. 3893 * @dev: device going away. 3894 * 3895 * We do this in two parts, like we do device_register(). First, 3896 * we remove it from all the subsystems with device_del(), then 3897 * we decrement the reference count via put_device(). If that 3898 * is the final reference count, the device will be cleaned up 3899 * via device_release() above. Otherwise, the structure will 3900 * stick around until the final reference to the device is dropped. 3901 */ 3902 void device_unregister(struct device *dev) 3903 { 3904 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3905 device_del(dev); 3906 put_device(dev); 3907 } 3908 EXPORT_SYMBOL_GPL(device_unregister); 3909 3910 static struct device *prev_device(struct klist_iter *i) 3911 { 3912 struct klist_node *n = klist_prev(i); 3913 struct device *dev = NULL; 3914 struct device_private *p; 3915 3916 if (n) { 3917 p = to_device_private_parent(n); 3918 dev = p->device; 3919 } 3920 return dev; 3921 } 3922 3923 static struct device *next_device(struct klist_iter *i) 3924 { 3925 struct klist_node *n = klist_next(i); 3926 struct device *dev = NULL; 3927 struct device_private *p; 3928 3929 if (n) { 3930 p = to_device_private_parent(n); 3931 dev = p->device; 3932 } 3933 return dev; 3934 } 3935 3936 /** 3937 * device_get_devnode - path of device node file 3938 * @dev: device 3939 * @mode: returned file access mode 3940 * @uid: returned file owner 3941 * @gid: returned file group 3942 * @tmp: possibly allocated string 3943 * 3944 * Return the relative path of a possible device node. 3945 * Non-default names may need to allocate a memory to compose 3946 * a name. This memory is returned in tmp and needs to be 3947 * freed by the caller. 3948 */ 3949 const char *device_get_devnode(const struct device *dev, 3950 umode_t *mode, kuid_t *uid, kgid_t *gid, 3951 const char **tmp) 3952 { 3953 char *s; 3954 3955 *tmp = NULL; 3956 3957 /* the device type may provide a specific name */ 3958 if (dev->type && dev->type->devnode) 3959 *tmp = dev->type->devnode(dev, mode, uid, gid); 3960 if (*tmp) 3961 return *tmp; 3962 3963 /* the class may provide a specific name */ 3964 if (dev->class && dev->class->devnode) 3965 *tmp = dev->class->devnode(dev, mode); 3966 if (*tmp) 3967 return *tmp; 3968 3969 /* return name without allocation, tmp == NULL */ 3970 if (strchr(dev_name(dev), '!') == NULL) 3971 return dev_name(dev); 3972 3973 /* replace '!' in the name with '/' */ 3974 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3975 if (!s) 3976 return NULL; 3977 return *tmp = s; 3978 } 3979 3980 /** 3981 * device_for_each_child - device child iterator. 3982 * @parent: parent struct device. 3983 * @fn: function to be called for each device. 3984 * @data: data for the callback. 3985 * 3986 * Iterate over @parent's child devices, and call @fn for each, 3987 * passing it @data. 3988 * 3989 * We check the return of @fn each time. If it returns anything 3990 * other than 0, we break out and return that value. 3991 */ 3992 int device_for_each_child(struct device *parent, void *data, 3993 int (*fn)(struct device *dev, void *data)) 3994 { 3995 struct klist_iter i; 3996 struct device *child; 3997 int error = 0; 3998 3999 if (!parent || !parent->p) 4000 return 0; 4001 4002 klist_iter_init(&parent->p->klist_children, &i); 4003 while (!error && (child = next_device(&i))) 4004 error = fn(child, data); 4005 klist_iter_exit(&i); 4006 return error; 4007 } 4008 EXPORT_SYMBOL_GPL(device_for_each_child); 4009 4010 /** 4011 * device_for_each_child_reverse - device child iterator in reversed order. 4012 * @parent: parent struct device. 4013 * @fn: function to be called for each device. 4014 * @data: data for the callback. 4015 * 4016 * Iterate over @parent's child devices, and call @fn for each, 4017 * passing it @data. 4018 * 4019 * We check the return of @fn each time. If it returns anything 4020 * other than 0, we break out and return that value. 4021 */ 4022 int device_for_each_child_reverse(struct device *parent, void *data, 4023 int (*fn)(struct device *dev, void *data)) 4024 { 4025 struct klist_iter i; 4026 struct device *child; 4027 int error = 0; 4028 4029 if (!parent || !parent->p) 4030 return 0; 4031 4032 klist_iter_init(&parent->p->klist_children, &i); 4033 while ((child = prev_device(&i)) && !error) 4034 error = fn(child, data); 4035 klist_iter_exit(&i); 4036 return error; 4037 } 4038 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4039 4040 /** 4041 * device_find_child - device iterator for locating a particular device. 4042 * @parent: parent struct device 4043 * @match: Callback function to check device 4044 * @data: Data to pass to match function 4045 * 4046 * This is similar to the device_for_each_child() function above, but it 4047 * returns a reference to a device that is 'found' for later use, as 4048 * determined by the @match callback. 4049 * 4050 * The callback should return 0 if the device doesn't match and non-zero 4051 * if it does. If the callback returns non-zero and a reference to the 4052 * current device can be obtained, this function will return to the caller 4053 * and not iterate over any more devices. 4054 * 4055 * NOTE: you will need to drop the reference with put_device() after use. 4056 */ 4057 struct device *device_find_child(struct device *parent, void *data, 4058 int (*match)(struct device *dev, void *data)) 4059 { 4060 struct klist_iter i; 4061 struct device *child; 4062 4063 if (!parent || !parent->p) 4064 return NULL; 4065 4066 klist_iter_init(&parent->p->klist_children, &i); 4067 while ((child = next_device(&i))) 4068 if (match(child, data) && get_device(child)) 4069 break; 4070 klist_iter_exit(&i); 4071 return child; 4072 } 4073 EXPORT_SYMBOL_GPL(device_find_child); 4074 4075 /** 4076 * device_find_child_by_name - device iterator for locating a child device. 4077 * @parent: parent struct device 4078 * @name: name of the child device 4079 * 4080 * This is similar to the device_find_child() function above, but it 4081 * returns a reference to a device that has the name @name. 4082 * 4083 * NOTE: you will need to drop the reference with put_device() after use. 4084 */ 4085 struct device *device_find_child_by_name(struct device *parent, 4086 const char *name) 4087 { 4088 struct klist_iter i; 4089 struct device *child; 4090 4091 if (!parent) 4092 return NULL; 4093 4094 klist_iter_init(&parent->p->klist_children, &i); 4095 while ((child = next_device(&i))) 4096 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4097 break; 4098 klist_iter_exit(&i); 4099 return child; 4100 } 4101 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4102 4103 static int match_any(struct device *dev, void *unused) 4104 { 4105 return 1; 4106 } 4107 4108 /** 4109 * device_find_any_child - device iterator for locating a child device, if any. 4110 * @parent: parent struct device 4111 * 4112 * This is similar to the device_find_child() function above, but it 4113 * returns a reference to a child device, if any. 4114 * 4115 * NOTE: you will need to drop the reference with put_device() after use. 4116 */ 4117 struct device *device_find_any_child(struct device *parent) 4118 { 4119 return device_find_child(parent, NULL, match_any); 4120 } 4121 EXPORT_SYMBOL_GPL(device_find_any_child); 4122 4123 int __init devices_init(void) 4124 { 4125 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4126 if (!devices_kset) 4127 return -ENOMEM; 4128 dev_kobj = kobject_create_and_add("dev", NULL); 4129 if (!dev_kobj) 4130 goto dev_kobj_err; 4131 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4132 if (!sysfs_dev_block_kobj) 4133 goto block_kobj_err; 4134 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4135 if (!sysfs_dev_char_kobj) 4136 goto char_kobj_err; 4137 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4138 if (!device_link_wq) 4139 goto wq_err; 4140 4141 return 0; 4142 4143 wq_err: 4144 kobject_put(sysfs_dev_char_kobj); 4145 char_kobj_err: 4146 kobject_put(sysfs_dev_block_kobj); 4147 block_kobj_err: 4148 kobject_put(dev_kobj); 4149 dev_kobj_err: 4150 kset_unregister(devices_kset); 4151 return -ENOMEM; 4152 } 4153 4154 static int device_check_offline(struct device *dev, void *not_used) 4155 { 4156 int ret; 4157 4158 ret = device_for_each_child(dev, NULL, device_check_offline); 4159 if (ret) 4160 return ret; 4161 4162 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4163 } 4164 4165 /** 4166 * device_offline - Prepare the device for hot-removal. 4167 * @dev: Device to be put offline. 4168 * 4169 * Execute the device bus type's .offline() callback, if present, to prepare 4170 * the device for a subsequent hot-removal. If that succeeds, the device must 4171 * not be used until either it is removed or its bus type's .online() callback 4172 * is executed. 4173 * 4174 * Call under device_hotplug_lock. 4175 */ 4176 int device_offline(struct device *dev) 4177 { 4178 int ret; 4179 4180 if (dev->offline_disabled) 4181 return -EPERM; 4182 4183 ret = device_for_each_child(dev, NULL, device_check_offline); 4184 if (ret) 4185 return ret; 4186 4187 device_lock(dev); 4188 if (device_supports_offline(dev)) { 4189 if (dev->offline) { 4190 ret = 1; 4191 } else { 4192 ret = dev->bus->offline(dev); 4193 if (!ret) { 4194 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4195 dev->offline = true; 4196 } 4197 } 4198 } 4199 device_unlock(dev); 4200 4201 return ret; 4202 } 4203 4204 /** 4205 * device_online - Put the device back online after successful device_offline(). 4206 * @dev: Device to be put back online. 4207 * 4208 * If device_offline() has been successfully executed for @dev, but the device 4209 * has not been removed subsequently, execute its bus type's .online() callback 4210 * to indicate that the device can be used again. 4211 * 4212 * Call under device_hotplug_lock. 4213 */ 4214 int device_online(struct device *dev) 4215 { 4216 int ret = 0; 4217 4218 device_lock(dev); 4219 if (device_supports_offline(dev)) { 4220 if (dev->offline) { 4221 ret = dev->bus->online(dev); 4222 if (!ret) { 4223 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4224 dev->offline = false; 4225 } 4226 } else { 4227 ret = 1; 4228 } 4229 } 4230 device_unlock(dev); 4231 4232 return ret; 4233 } 4234 4235 struct root_device { 4236 struct device dev; 4237 struct module *owner; 4238 }; 4239 4240 static inline struct root_device *to_root_device(struct device *d) 4241 { 4242 return container_of(d, struct root_device, dev); 4243 } 4244 4245 static void root_device_release(struct device *dev) 4246 { 4247 kfree(to_root_device(dev)); 4248 } 4249 4250 /** 4251 * __root_device_register - allocate and register a root device 4252 * @name: root device name 4253 * @owner: owner module of the root device, usually THIS_MODULE 4254 * 4255 * This function allocates a root device and registers it 4256 * using device_register(). In order to free the returned 4257 * device, use root_device_unregister(). 4258 * 4259 * Root devices are dummy devices which allow other devices 4260 * to be grouped under /sys/devices. Use this function to 4261 * allocate a root device and then use it as the parent of 4262 * any device which should appear under /sys/devices/{name} 4263 * 4264 * The /sys/devices/{name} directory will also contain a 4265 * 'module' symlink which points to the @owner directory 4266 * in sysfs. 4267 * 4268 * Returns &struct device pointer on success, or ERR_PTR() on error. 4269 * 4270 * Note: You probably want to use root_device_register(). 4271 */ 4272 struct device *__root_device_register(const char *name, struct module *owner) 4273 { 4274 struct root_device *root; 4275 int err = -ENOMEM; 4276 4277 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4278 if (!root) 4279 return ERR_PTR(err); 4280 4281 err = dev_set_name(&root->dev, "%s", name); 4282 if (err) { 4283 kfree(root); 4284 return ERR_PTR(err); 4285 } 4286 4287 root->dev.release = root_device_release; 4288 4289 err = device_register(&root->dev); 4290 if (err) { 4291 put_device(&root->dev); 4292 return ERR_PTR(err); 4293 } 4294 4295 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4296 if (owner) { 4297 struct module_kobject *mk = &owner->mkobj; 4298 4299 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4300 if (err) { 4301 device_unregister(&root->dev); 4302 return ERR_PTR(err); 4303 } 4304 root->owner = owner; 4305 } 4306 #endif 4307 4308 return &root->dev; 4309 } 4310 EXPORT_SYMBOL_GPL(__root_device_register); 4311 4312 /** 4313 * root_device_unregister - unregister and free a root device 4314 * @dev: device going away 4315 * 4316 * This function unregisters and cleans up a device that was created by 4317 * root_device_register(). 4318 */ 4319 void root_device_unregister(struct device *dev) 4320 { 4321 struct root_device *root = to_root_device(dev); 4322 4323 if (root->owner) 4324 sysfs_remove_link(&root->dev.kobj, "module"); 4325 4326 device_unregister(dev); 4327 } 4328 EXPORT_SYMBOL_GPL(root_device_unregister); 4329 4330 4331 static void device_create_release(struct device *dev) 4332 { 4333 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4334 kfree(dev); 4335 } 4336 4337 static __printf(6, 0) struct device * 4338 device_create_groups_vargs(const struct class *class, struct device *parent, 4339 dev_t devt, void *drvdata, 4340 const struct attribute_group **groups, 4341 const char *fmt, va_list args) 4342 { 4343 struct device *dev = NULL; 4344 int retval = -ENODEV; 4345 4346 if (IS_ERR_OR_NULL(class)) 4347 goto error; 4348 4349 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4350 if (!dev) { 4351 retval = -ENOMEM; 4352 goto error; 4353 } 4354 4355 device_initialize(dev); 4356 dev->devt = devt; 4357 dev->class = class; 4358 dev->parent = parent; 4359 dev->groups = groups; 4360 dev->release = device_create_release; 4361 dev_set_drvdata(dev, drvdata); 4362 4363 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4364 if (retval) 4365 goto error; 4366 4367 retval = device_add(dev); 4368 if (retval) 4369 goto error; 4370 4371 return dev; 4372 4373 error: 4374 put_device(dev); 4375 return ERR_PTR(retval); 4376 } 4377 4378 /** 4379 * device_create - creates a device and registers it with sysfs 4380 * @class: pointer to the struct class that this device should be registered to 4381 * @parent: pointer to the parent struct device of this new device, if any 4382 * @devt: the dev_t for the char device to be added 4383 * @drvdata: the data to be added to the device for callbacks 4384 * @fmt: string for the device's name 4385 * 4386 * This function can be used by char device classes. A struct device 4387 * will be created in sysfs, registered to the specified class. 4388 * 4389 * A "dev" file will be created, showing the dev_t for the device, if 4390 * the dev_t is not 0,0. 4391 * If a pointer to a parent struct device is passed in, the newly created 4392 * struct device will be a child of that device in sysfs. 4393 * The pointer to the struct device will be returned from the call. 4394 * Any further sysfs files that might be required can be created using this 4395 * pointer. 4396 * 4397 * Returns &struct device pointer on success, or ERR_PTR() on error. 4398 */ 4399 struct device *device_create(const struct class *class, struct device *parent, 4400 dev_t devt, void *drvdata, const char *fmt, ...) 4401 { 4402 va_list vargs; 4403 struct device *dev; 4404 4405 va_start(vargs, fmt); 4406 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4407 fmt, vargs); 4408 va_end(vargs); 4409 return dev; 4410 } 4411 EXPORT_SYMBOL_GPL(device_create); 4412 4413 /** 4414 * device_create_with_groups - creates a device and registers it with sysfs 4415 * @class: pointer to the struct class that this device should be registered to 4416 * @parent: pointer to the parent struct device of this new device, if any 4417 * @devt: the dev_t for the char device to be added 4418 * @drvdata: the data to be added to the device for callbacks 4419 * @groups: NULL-terminated list of attribute groups to be created 4420 * @fmt: string for the device's name 4421 * 4422 * This function can be used by char device classes. A struct device 4423 * will be created in sysfs, registered to the specified class. 4424 * Additional attributes specified in the groups parameter will also 4425 * be created automatically. 4426 * 4427 * A "dev" file will be created, showing the dev_t for the device, if 4428 * the dev_t is not 0,0. 4429 * If a pointer to a parent struct device is passed in, the newly created 4430 * struct device will be a child of that device in sysfs. 4431 * The pointer to the struct device will be returned from the call. 4432 * Any further sysfs files that might be required can be created using this 4433 * pointer. 4434 * 4435 * Returns &struct device pointer on success, or ERR_PTR() on error. 4436 */ 4437 struct device *device_create_with_groups(const struct class *class, 4438 struct device *parent, dev_t devt, 4439 void *drvdata, 4440 const struct attribute_group **groups, 4441 const char *fmt, ...) 4442 { 4443 va_list vargs; 4444 struct device *dev; 4445 4446 va_start(vargs, fmt); 4447 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4448 fmt, vargs); 4449 va_end(vargs); 4450 return dev; 4451 } 4452 EXPORT_SYMBOL_GPL(device_create_with_groups); 4453 4454 /** 4455 * device_destroy - removes a device that was created with device_create() 4456 * @class: pointer to the struct class that this device was registered with 4457 * @devt: the dev_t of the device that was previously registered 4458 * 4459 * This call unregisters and cleans up a device that was created with a 4460 * call to device_create(). 4461 */ 4462 void device_destroy(const struct class *class, dev_t devt) 4463 { 4464 struct device *dev; 4465 4466 dev = class_find_device_by_devt(class, devt); 4467 if (dev) { 4468 put_device(dev); 4469 device_unregister(dev); 4470 } 4471 } 4472 EXPORT_SYMBOL_GPL(device_destroy); 4473 4474 /** 4475 * device_rename - renames a device 4476 * @dev: the pointer to the struct device to be renamed 4477 * @new_name: the new name of the device 4478 * 4479 * It is the responsibility of the caller to provide mutual 4480 * exclusion between two different calls of device_rename 4481 * on the same device to ensure that new_name is valid and 4482 * won't conflict with other devices. 4483 * 4484 * Note: given that some subsystems (networking and infiniband) use this 4485 * function, with no immediate plans for this to change, we cannot assume or 4486 * require that this function not be called at all. 4487 * 4488 * However, if you're writing new code, do not call this function. The following 4489 * text from Kay Sievers offers some insight: 4490 * 4491 * Renaming devices is racy at many levels, symlinks and other stuff are not 4492 * replaced atomically, and you get a "move" uevent, but it's not easy to 4493 * connect the event to the old and new device. Device nodes are not renamed at 4494 * all, there isn't even support for that in the kernel now. 4495 * 4496 * In the meantime, during renaming, your target name might be taken by another 4497 * driver, creating conflicts. Or the old name is taken directly after you 4498 * renamed it -- then you get events for the same DEVPATH, before you even see 4499 * the "move" event. It's just a mess, and nothing new should ever rely on 4500 * kernel device renaming. Besides that, it's not even implemented now for 4501 * other things than (driver-core wise very simple) network devices. 4502 * 4503 * Make up a "real" name in the driver before you register anything, or add 4504 * some other attributes for userspace to find the device, or use udev to add 4505 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4506 * don't even want to get into that and try to implement the missing pieces in 4507 * the core. We really have other pieces to fix in the driver core mess. :) 4508 */ 4509 int device_rename(struct device *dev, const char *new_name) 4510 { 4511 struct subsys_private *sp = NULL; 4512 struct kobject *kobj = &dev->kobj; 4513 char *old_device_name = NULL; 4514 int error; 4515 bool is_link_renamed = false; 4516 4517 dev = get_device(dev); 4518 if (!dev) 4519 return -EINVAL; 4520 4521 dev_dbg(dev, "renaming to %s\n", new_name); 4522 4523 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4524 if (!old_device_name) { 4525 error = -ENOMEM; 4526 goto out; 4527 } 4528 4529 if (dev->class) { 4530 sp = class_to_subsys(dev->class); 4531 4532 if (!sp) { 4533 error = -EINVAL; 4534 goto out; 4535 } 4536 4537 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4538 new_name, kobject_namespace(kobj)); 4539 if (error) 4540 goto out; 4541 4542 is_link_renamed = true; 4543 } 4544 4545 error = kobject_rename(kobj, new_name); 4546 out: 4547 if (error && is_link_renamed) 4548 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4549 old_device_name, kobject_namespace(kobj)); 4550 subsys_put(sp); 4551 4552 put_device(dev); 4553 4554 kfree(old_device_name); 4555 4556 return error; 4557 } 4558 EXPORT_SYMBOL_GPL(device_rename); 4559 4560 static int device_move_class_links(struct device *dev, 4561 struct device *old_parent, 4562 struct device *new_parent) 4563 { 4564 int error = 0; 4565 4566 if (old_parent) 4567 sysfs_remove_link(&dev->kobj, "device"); 4568 if (new_parent) 4569 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4570 "device"); 4571 return error; 4572 } 4573 4574 /** 4575 * device_move - moves a device to a new parent 4576 * @dev: the pointer to the struct device to be moved 4577 * @new_parent: the new parent of the device (can be NULL) 4578 * @dpm_order: how to reorder the dpm_list 4579 */ 4580 int device_move(struct device *dev, struct device *new_parent, 4581 enum dpm_order dpm_order) 4582 { 4583 int error; 4584 struct device *old_parent; 4585 struct kobject *new_parent_kobj; 4586 4587 dev = get_device(dev); 4588 if (!dev) 4589 return -EINVAL; 4590 4591 device_pm_lock(); 4592 new_parent = get_device(new_parent); 4593 new_parent_kobj = get_device_parent(dev, new_parent); 4594 if (IS_ERR(new_parent_kobj)) { 4595 error = PTR_ERR(new_parent_kobj); 4596 put_device(new_parent); 4597 goto out; 4598 } 4599 4600 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4601 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4602 error = kobject_move(&dev->kobj, new_parent_kobj); 4603 if (error) { 4604 cleanup_glue_dir(dev, new_parent_kobj); 4605 put_device(new_parent); 4606 goto out; 4607 } 4608 old_parent = dev->parent; 4609 dev->parent = new_parent; 4610 if (old_parent) 4611 klist_remove(&dev->p->knode_parent); 4612 if (new_parent) { 4613 klist_add_tail(&dev->p->knode_parent, 4614 &new_parent->p->klist_children); 4615 set_dev_node(dev, dev_to_node(new_parent)); 4616 } 4617 4618 if (dev->class) { 4619 error = device_move_class_links(dev, old_parent, new_parent); 4620 if (error) { 4621 /* We ignore errors on cleanup since we're hosed anyway... */ 4622 device_move_class_links(dev, new_parent, old_parent); 4623 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4624 if (new_parent) 4625 klist_remove(&dev->p->knode_parent); 4626 dev->parent = old_parent; 4627 if (old_parent) { 4628 klist_add_tail(&dev->p->knode_parent, 4629 &old_parent->p->klist_children); 4630 set_dev_node(dev, dev_to_node(old_parent)); 4631 } 4632 } 4633 cleanup_glue_dir(dev, new_parent_kobj); 4634 put_device(new_parent); 4635 goto out; 4636 } 4637 } 4638 switch (dpm_order) { 4639 case DPM_ORDER_NONE: 4640 break; 4641 case DPM_ORDER_DEV_AFTER_PARENT: 4642 device_pm_move_after(dev, new_parent); 4643 devices_kset_move_after(dev, new_parent); 4644 break; 4645 case DPM_ORDER_PARENT_BEFORE_DEV: 4646 device_pm_move_before(new_parent, dev); 4647 devices_kset_move_before(new_parent, dev); 4648 break; 4649 case DPM_ORDER_DEV_LAST: 4650 device_pm_move_last(dev); 4651 devices_kset_move_last(dev); 4652 break; 4653 } 4654 4655 put_device(old_parent); 4656 out: 4657 device_pm_unlock(); 4658 put_device(dev); 4659 return error; 4660 } 4661 EXPORT_SYMBOL_GPL(device_move); 4662 4663 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4664 kgid_t kgid) 4665 { 4666 struct kobject *kobj = &dev->kobj; 4667 const struct class *class = dev->class; 4668 const struct device_type *type = dev->type; 4669 int error; 4670 4671 if (class) { 4672 /* 4673 * Change the device groups of the device class for @dev to 4674 * @kuid/@kgid. 4675 */ 4676 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4677 kgid); 4678 if (error) 4679 return error; 4680 } 4681 4682 if (type) { 4683 /* 4684 * Change the device groups of the device type for @dev to 4685 * @kuid/@kgid. 4686 */ 4687 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4688 kgid); 4689 if (error) 4690 return error; 4691 } 4692 4693 /* Change the device groups of @dev to @kuid/@kgid. */ 4694 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4695 if (error) 4696 return error; 4697 4698 if (device_supports_offline(dev) && !dev->offline_disabled) { 4699 /* Change online device attributes of @dev to @kuid/@kgid. */ 4700 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4701 kuid, kgid); 4702 if (error) 4703 return error; 4704 } 4705 4706 return 0; 4707 } 4708 4709 /** 4710 * device_change_owner - change the owner of an existing device. 4711 * @dev: device. 4712 * @kuid: new owner's kuid 4713 * @kgid: new owner's kgid 4714 * 4715 * This changes the owner of @dev and its corresponding sysfs entries to 4716 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4717 * core. 4718 * 4719 * Returns 0 on success or error code on failure. 4720 */ 4721 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4722 { 4723 int error; 4724 struct kobject *kobj = &dev->kobj; 4725 struct subsys_private *sp; 4726 4727 dev = get_device(dev); 4728 if (!dev) 4729 return -EINVAL; 4730 4731 /* 4732 * Change the kobject and the default attributes and groups of the 4733 * ktype associated with it to @kuid/@kgid. 4734 */ 4735 error = sysfs_change_owner(kobj, kuid, kgid); 4736 if (error) 4737 goto out; 4738 4739 /* 4740 * Change the uevent file for @dev to the new owner. The uevent file 4741 * was created in a separate step when @dev got added and we mirror 4742 * that step here. 4743 */ 4744 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4745 kgid); 4746 if (error) 4747 goto out; 4748 4749 /* 4750 * Change the device groups, the device groups associated with the 4751 * device class, and the groups associated with the device type of @dev 4752 * to @kuid/@kgid. 4753 */ 4754 error = device_attrs_change_owner(dev, kuid, kgid); 4755 if (error) 4756 goto out; 4757 4758 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4759 if (error) 4760 goto out; 4761 4762 /* 4763 * Change the owner of the symlink located in the class directory of 4764 * the device class associated with @dev which points to the actual 4765 * directory entry for @dev to @kuid/@kgid. This ensures that the 4766 * symlink shows the same permissions as its target. 4767 */ 4768 sp = class_to_subsys(dev->class); 4769 if (!sp) { 4770 error = -EINVAL; 4771 goto out; 4772 } 4773 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4774 subsys_put(sp); 4775 4776 out: 4777 put_device(dev); 4778 return error; 4779 } 4780 EXPORT_SYMBOL_GPL(device_change_owner); 4781 4782 /** 4783 * device_shutdown - call ->shutdown() on each device to shutdown. 4784 */ 4785 void device_shutdown(void) 4786 { 4787 struct device *dev, *parent; 4788 4789 wait_for_device_probe(); 4790 device_block_probing(); 4791 4792 cpufreq_suspend(); 4793 4794 spin_lock(&devices_kset->list_lock); 4795 /* 4796 * Walk the devices list backward, shutting down each in turn. 4797 * Beware that device unplug events may also start pulling 4798 * devices offline, even as the system is shutting down. 4799 */ 4800 while (!list_empty(&devices_kset->list)) { 4801 dev = list_entry(devices_kset->list.prev, struct device, 4802 kobj.entry); 4803 4804 /* 4805 * hold reference count of device's parent to 4806 * prevent it from being freed because parent's 4807 * lock is to be held 4808 */ 4809 parent = get_device(dev->parent); 4810 get_device(dev); 4811 /* 4812 * Make sure the device is off the kset list, in the 4813 * event that dev->*->shutdown() doesn't remove it. 4814 */ 4815 list_del_init(&dev->kobj.entry); 4816 spin_unlock(&devices_kset->list_lock); 4817 4818 /* hold lock to avoid race with probe/release */ 4819 if (parent) 4820 device_lock(parent); 4821 device_lock(dev); 4822 4823 /* Don't allow any more runtime suspends */ 4824 pm_runtime_get_noresume(dev); 4825 pm_runtime_barrier(dev); 4826 4827 if (dev->class && dev->class->shutdown_pre) { 4828 if (initcall_debug) 4829 dev_info(dev, "shutdown_pre\n"); 4830 dev->class->shutdown_pre(dev); 4831 } 4832 if (dev->bus && dev->bus->shutdown) { 4833 if (initcall_debug) 4834 dev_info(dev, "shutdown\n"); 4835 dev->bus->shutdown(dev); 4836 } else if (dev->driver && dev->driver->shutdown) { 4837 if (initcall_debug) 4838 dev_info(dev, "shutdown\n"); 4839 dev->driver->shutdown(dev); 4840 } 4841 4842 device_unlock(dev); 4843 if (parent) 4844 device_unlock(parent); 4845 4846 put_device(dev); 4847 put_device(parent); 4848 4849 spin_lock(&devices_kset->list_lock); 4850 } 4851 spin_unlock(&devices_kset->list_lock); 4852 } 4853 4854 /* 4855 * Device logging functions 4856 */ 4857 4858 #ifdef CONFIG_PRINTK 4859 static void 4860 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4861 { 4862 const char *subsys; 4863 4864 memset(dev_info, 0, sizeof(*dev_info)); 4865 4866 if (dev->class) 4867 subsys = dev->class->name; 4868 else if (dev->bus) 4869 subsys = dev->bus->name; 4870 else 4871 return; 4872 4873 strscpy(dev_info->subsystem, subsys); 4874 4875 /* 4876 * Add device identifier DEVICE=: 4877 * b12:8 block dev_t 4878 * c127:3 char dev_t 4879 * n8 netdev ifindex 4880 * +sound:card0 subsystem:devname 4881 */ 4882 if (MAJOR(dev->devt)) { 4883 char c; 4884 4885 if (strcmp(subsys, "block") == 0) 4886 c = 'b'; 4887 else 4888 c = 'c'; 4889 4890 snprintf(dev_info->device, sizeof(dev_info->device), 4891 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4892 } else if (strcmp(subsys, "net") == 0) { 4893 struct net_device *net = to_net_dev(dev); 4894 4895 snprintf(dev_info->device, sizeof(dev_info->device), 4896 "n%u", net->ifindex); 4897 } else { 4898 snprintf(dev_info->device, sizeof(dev_info->device), 4899 "+%s:%s", subsys, dev_name(dev)); 4900 } 4901 } 4902 4903 int dev_vprintk_emit(int level, const struct device *dev, 4904 const char *fmt, va_list args) 4905 { 4906 struct dev_printk_info dev_info; 4907 4908 set_dev_info(dev, &dev_info); 4909 4910 return vprintk_emit(0, level, &dev_info, fmt, args); 4911 } 4912 EXPORT_SYMBOL(dev_vprintk_emit); 4913 4914 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4915 { 4916 va_list args; 4917 int r; 4918 4919 va_start(args, fmt); 4920 4921 r = dev_vprintk_emit(level, dev, fmt, args); 4922 4923 va_end(args); 4924 4925 return r; 4926 } 4927 EXPORT_SYMBOL(dev_printk_emit); 4928 4929 static void __dev_printk(const char *level, const struct device *dev, 4930 struct va_format *vaf) 4931 { 4932 if (dev) 4933 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4934 dev_driver_string(dev), dev_name(dev), vaf); 4935 else 4936 printk("%s(NULL device *): %pV", level, vaf); 4937 } 4938 4939 void _dev_printk(const char *level, const struct device *dev, 4940 const char *fmt, ...) 4941 { 4942 struct va_format vaf; 4943 va_list args; 4944 4945 va_start(args, fmt); 4946 4947 vaf.fmt = fmt; 4948 vaf.va = &args; 4949 4950 __dev_printk(level, dev, &vaf); 4951 4952 va_end(args); 4953 } 4954 EXPORT_SYMBOL(_dev_printk); 4955 4956 #define define_dev_printk_level(func, kern_level) \ 4957 void func(const struct device *dev, const char *fmt, ...) \ 4958 { \ 4959 struct va_format vaf; \ 4960 va_list args; \ 4961 \ 4962 va_start(args, fmt); \ 4963 \ 4964 vaf.fmt = fmt; \ 4965 vaf.va = &args; \ 4966 \ 4967 __dev_printk(kern_level, dev, &vaf); \ 4968 \ 4969 va_end(args); \ 4970 } \ 4971 EXPORT_SYMBOL(func); 4972 4973 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4974 define_dev_printk_level(_dev_alert, KERN_ALERT); 4975 define_dev_printk_level(_dev_crit, KERN_CRIT); 4976 define_dev_printk_level(_dev_err, KERN_ERR); 4977 define_dev_printk_level(_dev_warn, KERN_WARNING); 4978 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4979 define_dev_printk_level(_dev_info, KERN_INFO); 4980 4981 #endif 4982 4983 /** 4984 * dev_err_probe - probe error check and log helper 4985 * @dev: the pointer to the struct device 4986 * @err: error value to test 4987 * @fmt: printf-style format string 4988 * @...: arguments as specified in the format string 4989 * 4990 * This helper implements common pattern present in probe functions for error 4991 * checking: print debug or error message depending if the error value is 4992 * -EPROBE_DEFER and propagate error upwards. 4993 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4994 * checked later by reading devices_deferred debugfs attribute. 4995 * It replaces code sequence:: 4996 * 4997 * if (err != -EPROBE_DEFER) 4998 * dev_err(dev, ...); 4999 * else 5000 * dev_dbg(dev, ...); 5001 * return err; 5002 * 5003 * with:: 5004 * 5005 * return dev_err_probe(dev, err, ...); 5006 * 5007 * Using this helper in your probe function is totally fine even if @err is 5008 * known to never be -EPROBE_DEFER. 5009 * The benefit compared to a normal dev_err() is the standardized format 5010 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 5011 * instead of "-35") and the fact that the error code is returned which allows 5012 * more compact error paths. 5013 * 5014 * Returns @err. 5015 */ 5016 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5017 { 5018 struct va_format vaf; 5019 va_list args; 5020 5021 va_start(args, fmt); 5022 vaf.fmt = fmt; 5023 vaf.va = &args; 5024 5025 switch (err) { 5026 case -EPROBE_DEFER: 5027 device_set_deferred_probe_reason(dev, &vaf); 5028 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5029 break; 5030 5031 case -ENOMEM: 5032 /* 5033 * We don't print anything on -ENOMEM, there is already enough 5034 * output. 5035 */ 5036 break; 5037 5038 default: 5039 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5040 break; 5041 } 5042 5043 va_end(args); 5044 5045 return err; 5046 } 5047 EXPORT_SYMBOL_GPL(dev_err_probe); 5048 5049 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5050 { 5051 return fwnode && !IS_ERR(fwnode->secondary); 5052 } 5053 5054 /** 5055 * set_primary_fwnode - Change the primary firmware node of a given device. 5056 * @dev: Device to handle. 5057 * @fwnode: New primary firmware node of the device. 5058 * 5059 * Set the device's firmware node pointer to @fwnode, but if a secondary 5060 * firmware node of the device is present, preserve it. 5061 * 5062 * Valid fwnode cases are: 5063 * - primary --> secondary --> -ENODEV 5064 * - primary --> NULL 5065 * - secondary --> -ENODEV 5066 * - NULL 5067 */ 5068 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5069 { 5070 struct device *parent = dev->parent; 5071 struct fwnode_handle *fn = dev->fwnode; 5072 5073 if (fwnode) { 5074 if (fwnode_is_primary(fn)) 5075 fn = fn->secondary; 5076 5077 if (fn) { 5078 WARN_ON(fwnode->secondary); 5079 fwnode->secondary = fn; 5080 } 5081 dev->fwnode = fwnode; 5082 } else { 5083 if (fwnode_is_primary(fn)) { 5084 dev->fwnode = fn->secondary; 5085 5086 /* Skip nullifying fn->secondary if the primary is shared */ 5087 if (parent && fn == parent->fwnode) 5088 return; 5089 5090 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5091 fn->secondary = NULL; 5092 } else { 5093 dev->fwnode = NULL; 5094 } 5095 } 5096 } 5097 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5098 5099 /** 5100 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5101 * @dev: Device to handle. 5102 * @fwnode: New secondary firmware node of the device. 5103 * 5104 * If a primary firmware node of the device is present, set its secondary 5105 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5106 * @fwnode. 5107 */ 5108 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5109 { 5110 if (fwnode) 5111 fwnode->secondary = ERR_PTR(-ENODEV); 5112 5113 if (fwnode_is_primary(dev->fwnode)) 5114 dev->fwnode->secondary = fwnode; 5115 else 5116 dev->fwnode = fwnode; 5117 } 5118 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5119 5120 /** 5121 * device_set_of_node_from_dev - reuse device-tree node of another device 5122 * @dev: device whose device-tree node is being set 5123 * @dev2: device whose device-tree node is being reused 5124 * 5125 * Takes another reference to the new device-tree node after first dropping 5126 * any reference held to the old node. 5127 */ 5128 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5129 { 5130 of_node_put(dev->of_node); 5131 dev->of_node = of_node_get(dev2->of_node); 5132 dev->of_node_reused = true; 5133 } 5134 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5135 5136 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5137 { 5138 dev->fwnode = fwnode; 5139 dev->of_node = to_of_node(fwnode); 5140 } 5141 EXPORT_SYMBOL_GPL(device_set_node); 5142 5143 int device_match_name(struct device *dev, const void *name) 5144 { 5145 return sysfs_streq(dev_name(dev), name); 5146 } 5147 EXPORT_SYMBOL_GPL(device_match_name); 5148 5149 int device_match_of_node(struct device *dev, const void *np) 5150 { 5151 return dev->of_node == np; 5152 } 5153 EXPORT_SYMBOL_GPL(device_match_of_node); 5154 5155 int device_match_fwnode(struct device *dev, const void *fwnode) 5156 { 5157 return dev_fwnode(dev) == fwnode; 5158 } 5159 EXPORT_SYMBOL_GPL(device_match_fwnode); 5160 5161 int device_match_devt(struct device *dev, const void *pdevt) 5162 { 5163 return dev->devt == *(dev_t *)pdevt; 5164 } 5165 EXPORT_SYMBOL_GPL(device_match_devt); 5166 5167 int device_match_acpi_dev(struct device *dev, const void *adev) 5168 { 5169 return ACPI_COMPANION(dev) == adev; 5170 } 5171 EXPORT_SYMBOL(device_match_acpi_dev); 5172 5173 int device_match_acpi_handle(struct device *dev, const void *handle) 5174 { 5175 return ACPI_HANDLE(dev) == handle; 5176 } 5177 EXPORT_SYMBOL(device_match_acpi_handle); 5178 5179 int device_match_any(struct device *dev, const void *unused) 5180 { 5181 return 1; 5182 } 5183 EXPORT_SYMBOL_GPL(device_match_any); 5184