1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 static struct workqueue_struct *device_link_wq; 48 49 /** 50 * __fwnode_link_add - Create a link between two fwnode_handles. 51 * @con: Consumer end of the link. 52 * @sup: Supplier end of the link. 53 * @flags: Link flags. 54 * 55 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 56 * represents the detail that the firmware lists @sup fwnode as supplying a 57 * resource to @con. 58 * 59 * The driver core will use the fwnode link to create a device link between the 60 * two device objects corresponding to @con and @sup when they are created. The 61 * driver core will automatically delete the fwnode link between @con and @sup 62 * after doing that. 63 * 64 * Attempts to create duplicate links between the same pair of fwnode handles 65 * are ignored and there is no reference counting. 66 */ 67 static int __fwnode_link_add(struct fwnode_handle *con, 68 struct fwnode_handle *sup, u8 flags) 69 { 70 struct fwnode_link *link; 71 72 list_for_each_entry(link, &sup->consumers, s_hook) 73 if (link->consumer == con) { 74 link->flags |= flags; 75 return 0; 76 } 77 78 link = kzalloc(sizeof(*link), GFP_KERNEL); 79 if (!link) 80 return -ENOMEM; 81 82 link->supplier = sup; 83 INIT_LIST_HEAD(&link->s_hook); 84 link->consumer = con; 85 INIT_LIST_HEAD(&link->c_hook); 86 link->flags = flags; 87 88 list_add(&link->s_hook, &sup->consumers); 89 list_add(&link->c_hook, &con->suppliers); 90 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 91 con, sup); 92 93 return 0; 94 } 95 96 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 97 u8 flags) 98 { 99 int ret; 100 101 mutex_lock(&fwnode_link_lock); 102 ret = __fwnode_link_add(con, sup, flags); 103 mutex_unlock(&fwnode_link_lock); 104 return ret; 105 } 106 107 /** 108 * __fwnode_link_del - Delete a link between two fwnode_handles. 109 * @link: the fwnode_link to be deleted 110 * 111 * The fwnode_link_lock needs to be held when this function is called. 112 */ 113 static void __fwnode_link_del(struct fwnode_link *link) 114 { 115 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 116 link->consumer, link->supplier); 117 list_del(&link->s_hook); 118 list_del(&link->c_hook); 119 kfree(link); 120 } 121 122 /** 123 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 124 * @link: the fwnode_link to be marked 125 * 126 * The fwnode_link_lock needs to be held when this function is called. 127 */ 128 static void __fwnode_link_cycle(struct fwnode_link *link) 129 { 130 pr_debug("%pfwf: cycle: depends on %pfwf\n", 131 link->consumer, link->supplier); 132 link->flags |= FWLINK_FLAG_CYCLE; 133 } 134 135 /** 136 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 137 * @fwnode: fwnode whose supplier links need to be deleted 138 * 139 * Deletes all supplier links connecting directly to @fwnode. 140 */ 141 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 142 { 143 struct fwnode_link *link, *tmp; 144 145 mutex_lock(&fwnode_link_lock); 146 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 147 __fwnode_link_del(link); 148 mutex_unlock(&fwnode_link_lock); 149 } 150 151 /** 152 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 153 * @fwnode: fwnode whose consumer links need to be deleted 154 * 155 * Deletes all consumer links connecting directly to @fwnode. 156 */ 157 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 158 { 159 struct fwnode_link *link, *tmp; 160 161 mutex_lock(&fwnode_link_lock); 162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 163 __fwnode_link_del(link); 164 mutex_unlock(&fwnode_link_lock); 165 } 166 167 /** 168 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 169 * @fwnode: fwnode whose links needs to be deleted 170 * 171 * Deletes all links connecting directly to a fwnode. 172 */ 173 void fwnode_links_purge(struct fwnode_handle *fwnode) 174 { 175 fwnode_links_purge_suppliers(fwnode); 176 fwnode_links_purge_consumers(fwnode); 177 } 178 179 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 180 { 181 struct fwnode_handle *child; 182 183 /* Don't purge consumer links of an added child */ 184 if (fwnode->dev) 185 return; 186 187 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 188 fwnode_links_purge_consumers(fwnode); 189 190 fwnode_for_each_available_child_node(fwnode, child) 191 fw_devlink_purge_absent_suppliers(child); 192 } 193 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 194 195 /** 196 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 197 * @from: move consumers away from this fwnode 198 * @to: move consumers to this fwnode 199 * 200 * Move all consumer links from @from fwnode to @to fwnode. 201 */ 202 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 203 struct fwnode_handle *to) 204 { 205 struct fwnode_link *link, *tmp; 206 207 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 208 __fwnode_link_add(link->consumer, to, link->flags); 209 __fwnode_link_del(link); 210 } 211 } 212 213 /** 214 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 215 * @fwnode: fwnode from which to pick up dangling consumers 216 * @new_sup: fwnode of new supplier 217 * 218 * If the @fwnode has a corresponding struct device and the device supports 219 * probing (that is, added to a bus), then we want to let fw_devlink create 220 * MANAGED device links to this device, so leave @fwnode and its descendant's 221 * fwnode links alone. 222 * 223 * Otherwise, move its consumers to the new supplier @new_sup. 224 */ 225 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 226 struct fwnode_handle *new_sup) 227 { 228 struct fwnode_handle *child; 229 230 if (fwnode->dev && fwnode->dev->bus) 231 return; 232 233 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 234 __fwnode_links_move_consumers(fwnode, new_sup); 235 236 fwnode_for_each_available_child_node(fwnode, child) 237 __fw_devlink_pickup_dangling_consumers(child, new_sup); 238 } 239 240 static DEFINE_MUTEX(device_links_lock); 241 DEFINE_STATIC_SRCU(device_links_srcu); 242 243 static inline void device_links_write_lock(void) 244 { 245 mutex_lock(&device_links_lock); 246 } 247 248 static inline void device_links_write_unlock(void) 249 { 250 mutex_unlock(&device_links_lock); 251 } 252 253 int device_links_read_lock(void) __acquires(&device_links_srcu) 254 { 255 return srcu_read_lock(&device_links_srcu); 256 } 257 258 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 259 { 260 srcu_read_unlock(&device_links_srcu, idx); 261 } 262 263 int device_links_read_lock_held(void) 264 { 265 return srcu_read_lock_held(&device_links_srcu); 266 } 267 268 static void device_link_synchronize_removal(void) 269 { 270 synchronize_srcu(&device_links_srcu); 271 } 272 273 static void device_link_remove_from_lists(struct device_link *link) 274 { 275 list_del_rcu(&link->s_node); 276 list_del_rcu(&link->c_node); 277 } 278 279 static bool device_is_ancestor(struct device *dev, struct device *target) 280 { 281 while (target->parent) { 282 target = target->parent; 283 if (dev == target) 284 return true; 285 } 286 return false; 287 } 288 289 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 290 DL_FLAG_CYCLE | \ 291 DL_FLAG_MANAGED) 292 static inline bool device_link_flag_is_sync_state_only(u32 flags) 293 { 294 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 295 } 296 297 /** 298 * device_is_dependent - Check if one device depends on another one 299 * @dev: Device to check dependencies for. 300 * @target: Device to check against. 301 * 302 * Check if @target depends on @dev or any device dependent on it (its child or 303 * its consumer etc). Return 1 if that is the case or 0 otherwise. 304 */ 305 static int device_is_dependent(struct device *dev, void *target) 306 { 307 struct device_link *link; 308 int ret; 309 310 /* 311 * The "ancestors" check is needed to catch the case when the target 312 * device has not been completely initialized yet and it is still 313 * missing from the list of children of its parent device. 314 */ 315 if (dev == target || device_is_ancestor(dev, target)) 316 return 1; 317 318 ret = device_for_each_child(dev, target, device_is_dependent); 319 if (ret) 320 return ret; 321 322 list_for_each_entry(link, &dev->links.consumers, s_node) { 323 if (device_link_flag_is_sync_state_only(link->flags)) 324 continue; 325 326 if (link->consumer == target) 327 return 1; 328 329 ret = device_is_dependent(link->consumer, target); 330 if (ret) 331 break; 332 } 333 return ret; 334 } 335 336 static void device_link_init_status(struct device_link *link, 337 struct device *consumer, 338 struct device *supplier) 339 { 340 switch (supplier->links.status) { 341 case DL_DEV_PROBING: 342 switch (consumer->links.status) { 343 case DL_DEV_PROBING: 344 /* 345 * A consumer driver can create a link to a supplier 346 * that has not completed its probing yet as long as it 347 * knows that the supplier is already functional (for 348 * example, it has just acquired some resources from the 349 * supplier). 350 */ 351 link->status = DL_STATE_CONSUMER_PROBE; 352 break; 353 default: 354 link->status = DL_STATE_DORMANT; 355 break; 356 } 357 break; 358 case DL_DEV_DRIVER_BOUND: 359 switch (consumer->links.status) { 360 case DL_DEV_PROBING: 361 link->status = DL_STATE_CONSUMER_PROBE; 362 break; 363 case DL_DEV_DRIVER_BOUND: 364 link->status = DL_STATE_ACTIVE; 365 break; 366 default: 367 link->status = DL_STATE_AVAILABLE; 368 break; 369 } 370 break; 371 case DL_DEV_UNBINDING: 372 link->status = DL_STATE_SUPPLIER_UNBIND; 373 break; 374 default: 375 link->status = DL_STATE_DORMANT; 376 break; 377 } 378 } 379 380 static int device_reorder_to_tail(struct device *dev, void *not_used) 381 { 382 struct device_link *link; 383 384 /* 385 * Devices that have not been registered yet will be put to the ends 386 * of the lists during the registration, so skip them here. 387 */ 388 if (device_is_registered(dev)) 389 devices_kset_move_last(dev); 390 391 if (device_pm_initialized(dev)) 392 device_pm_move_last(dev); 393 394 device_for_each_child(dev, NULL, device_reorder_to_tail); 395 list_for_each_entry(link, &dev->links.consumers, s_node) { 396 if (device_link_flag_is_sync_state_only(link->flags)) 397 continue; 398 device_reorder_to_tail(link->consumer, NULL); 399 } 400 401 return 0; 402 } 403 404 /** 405 * device_pm_move_to_tail - Move set of devices to the end of device lists 406 * @dev: Device to move 407 * 408 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 409 * 410 * It moves the @dev along with all of its children and all of its consumers 411 * to the ends of the device_kset and dpm_list, recursively. 412 */ 413 void device_pm_move_to_tail(struct device *dev) 414 { 415 int idx; 416 417 idx = device_links_read_lock(); 418 device_pm_lock(); 419 device_reorder_to_tail(dev, NULL); 420 device_pm_unlock(); 421 device_links_read_unlock(idx); 422 } 423 424 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 425 426 static ssize_t status_show(struct device *dev, 427 struct device_attribute *attr, char *buf) 428 { 429 const char *output; 430 431 switch (to_devlink(dev)->status) { 432 case DL_STATE_NONE: 433 output = "not tracked"; 434 break; 435 case DL_STATE_DORMANT: 436 output = "dormant"; 437 break; 438 case DL_STATE_AVAILABLE: 439 output = "available"; 440 break; 441 case DL_STATE_CONSUMER_PROBE: 442 output = "consumer probing"; 443 break; 444 case DL_STATE_ACTIVE: 445 output = "active"; 446 break; 447 case DL_STATE_SUPPLIER_UNBIND: 448 output = "supplier unbinding"; 449 break; 450 default: 451 output = "unknown"; 452 break; 453 } 454 455 return sysfs_emit(buf, "%s\n", output); 456 } 457 static DEVICE_ATTR_RO(status); 458 459 static ssize_t auto_remove_on_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 struct device_link *link = to_devlink(dev); 463 const char *output; 464 465 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 466 output = "supplier unbind"; 467 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 468 output = "consumer unbind"; 469 else 470 output = "never"; 471 472 return sysfs_emit(buf, "%s\n", output); 473 } 474 static DEVICE_ATTR_RO(auto_remove_on); 475 476 static ssize_t runtime_pm_show(struct device *dev, 477 struct device_attribute *attr, char *buf) 478 { 479 struct device_link *link = to_devlink(dev); 480 481 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 482 } 483 static DEVICE_ATTR_RO(runtime_pm); 484 485 static ssize_t sync_state_only_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct device_link *link = to_devlink(dev); 489 490 return sysfs_emit(buf, "%d\n", 491 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 492 } 493 static DEVICE_ATTR_RO(sync_state_only); 494 495 static struct attribute *devlink_attrs[] = { 496 &dev_attr_status.attr, 497 &dev_attr_auto_remove_on.attr, 498 &dev_attr_runtime_pm.attr, 499 &dev_attr_sync_state_only.attr, 500 NULL, 501 }; 502 ATTRIBUTE_GROUPS(devlink); 503 504 static void device_link_release_fn(struct work_struct *work) 505 { 506 struct device_link *link = container_of(work, struct device_link, rm_work); 507 508 /* Ensure that all references to the link object have been dropped. */ 509 device_link_synchronize_removal(); 510 511 pm_runtime_release_supplier(link); 512 /* 513 * If supplier_preactivated is set, the link has been dropped between 514 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 515 * in __driver_probe_device(). In that case, drop the supplier's 516 * PM-runtime usage counter to remove the reference taken by 517 * pm_runtime_get_suppliers(). 518 */ 519 if (link->supplier_preactivated) 520 pm_runtime_put_noidle(link->supplier); 521 522 pm_request_idle(link->supplier); 523 524 put_device(link->consumer); 525 put_device(link->supplier); 526 kfree(link); 527 } 528 529 static void devlink_dev_release(struct device *dev) 530 { 531 struct device_link *link = to_devlink(dev); 532 533 INIT_WORK(&link->rm_work, device_link_release_fn); 534 /* 535 * It may take a while to complete this work because of the SRCU 536 * synchronization in device_link_release_fn() and if the consumer or 537 * supplier devices get deleted when it runs, so put it into the 538 * dedicated workqueue. 539 */ 540 queue_work(device_link_wq, &link->rm_work); 541 } 542 543 /** 544 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 545 */ 546 void device_link_wait_removal(void) 547 { 548 /* 549 * devlink removal jobs are queued in the dedicated work queue. 550 * To be sure that all removal jobs are terminated, ensure that any 551 * scheduled work has run to completion. 552 */ 553 flush_workqueue(device_link_wq); 554 } 555 EXPORT_SYMBOL_GPL(device_link_wait_removal); 556 557 static struct class devlink_class = { 558 .name = "devlink", 559 .dev_groups = devlink_groups, 560 .dev_release = devlink_dev_release, 561 }; 562 563 static int devlink_add_symlinks(struct device *dev) 564 { 565 int ret; 566 size_t len; 567 struct device_link *link = to_devlink(dev); 568 struct device *sup = link->supplier; 569 struct device *con = link->consumer; 570 char *buf; 571 572 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 573 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 574 len += strlen(":"); 575 len += strlen("supplier:") + 1; 576 buf = kzalloc(len, GFP_KERNEL); 577 if (!buf) 578 return -ENOMEM; 579 580 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 581 if (ret) 582 goto out; 583 584 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 585 if (ret) 586 goto err_con; 587 588 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 589 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 590 if (ret) 591 goto err_con_dev; 592 593 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 594 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 595 if (ret) 596 goto err_sup_dev; 597 598 goto out; 599 600 err_sup_dev: 601 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 602 sysfs_remove_link(&sup->kobj, buf); 603 err_con_dev: 604 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 605 err_con: 606 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 607 out: 608 kfree(buf); 609 return ret; 610 } 611 612 static void devlink_remove_symlinks(struct device *dev) 613 { 614 struct device_link *link = to_devlink(dev); 615 size_t len; 616 struct device *sup = link->supplier; 617 struct device *con = link->consumer; 618 char *buf; 619 620 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 621 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 622 623 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 624 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 625 len += strlen(":"); 626 len += strlen("supplier:") + 1; 627 buf = kzalloc(len, GFP_KERNEL); 628 if (!buf) { 629 WARN(1, "Unable to properly free device link symlinks!\n"); 630 return; 631 } 632 633 if (device_is_registered(con)) { 634 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 635 sysfs_remove_link(&con->kobj, buf); 636 } 637 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 638 sysfs_remove_link(&sup->kobj, buf); 639 kfree(buf); 640 } 641 642 static struct class_interface devlink_class_intf = { 643 .class = &devlink_class, 644 .add_dev = devlink_add_symlinks, 645 .remove_dev = devlink_remove_symlinks, 646 }; 647 648 static int __init devlink_class_init(void) 649 { 650 int ret; 651 652 ret = class_register(&devlink_class); 653 if (ret) 654 return ret; 655 656 ret = class_interface_register(&devlink_class_intf); 657 if (ret) 658 class_unregister(&devlink_class); 659 660 return ret; 661 } 662 postcore_initcall(devlink_class_init); 663 664 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 665 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 666 DL_FLAG_AUTOPROBE_CONSUMER | \ 667 DL_FLAG_SYNC_STATE_ONLY | \ 668 DL_FLAG_INFERRED | \ 669 DL_FLAG_CYCLE) 670 671 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 672 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 673 674 /** 675 * device_link_add - Create a link between two devices. 676 * @consumer: Consumer end of the link. 677 * @supplier: Supplier end of the link. 678 * @flags: Link flags. 679 * 680 * The caller is responsible for the proper synchronization of the link creation 681 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 682 * runtime PM framework to take the link into account. Second, if the 683 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 684 * be forced into the active meta state and reference-counted upon the creation 685 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 686 * ignored. 687 * 688 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 689 * expected to release the link returned by it directly with the help of either 690 * device_link_del() or device_link_remove(). 691 * 692 * If that flag is not set, however, the caller of this function is handing the 693 * management of the link over to the driver core entirely and its return value 694 * can only be used to check whether or not the link is present. In that case, 695 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 696 * flags can be used to indicate to the driver core when the link can be safely 697 * deleted. Namely, setting one of them in @flags indicates to the driver core 698 * that the link is not going to be used (by the given caller of this function) 699 * after unbinding the consumer or supplier driver, respectively, from its 700 * device, so the link can be deleted at that point. If none of them is set, 701 * the link will be maintained until one of the devices pointed to by it (either 702 * the consumer or the supplier) is unregistered. 703 * 704 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 705 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 706 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 707 * be used to request the driver core to automatically probe for a consumer 708 * driver after successfully binding a driver to the supplier device. 709 * 710 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 711 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 712 * the same time is invalid and will cause NULL to be returned upfront. 713 * However, if a device link between the given @consumer and @supplier pair 714 * exists already when this function is called for them, the existing link will 715 * be returned regardless of its current type and status (the link's flags may 716 * be modified then). The caller of this function is then expected to treat 717 * the link as though it has just been created, so (in particular) if 718 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 719 * explicitly when not needed any more (as stated above). 720 * 721 * A side effect of the link creation is re-ordering of dpm_list and the 722 * devices_kset list by moving the consumer device and all devices depending 723 * on it to the ends of these lists (that does not happen to devices that have 724 * not been registered when this function is called). 725 * 726 * The supplier device is required to be registered when this function is called 727 * and NULL will be returned if that is not the case. The consumer device need 728 * not be registered, however. 729 */ 730 struct device_link *device_link_add(struct device *consumer, 731 struct device *supplier, u32 flags) 732 { 733 struct device_link *link; 734 735 if (!consumer || !supplier || consumer == supplier || 736 flags & ~DL_ADD_VALID_FLAGS || 737 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 738 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 739 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 740 DL_FLAG_AUTOREMOVE_SUPPLIER))) 741 return NULL; 742 743 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 744 if (pm_runtime_get_sync(supplier) < 0) { 745 pm_runtime_put_noidle(supplier); 746 return NULL; 747 } 748 } 749 750 if (!(flags & DL_FLAG_STATELESS)) 751 flags |= DL_FLAG_MANAGED; 752 753 if (flags & DL_FLAG_SYNC_STATE_ONLY && 754 !device_link_flag_is_sync_state_only(flags)) 755 return NULL; 756 757 device_links_write_lock(); 758 device_pm_lock(); 759 760 /* 761 * If the supplier has not been fully registered yet or there is a 762 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 763 * the supplier already in the graph, return NULL. If the link is a 764 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 765 * because it only affects sync_state() callbacks. 766 */ 767 if (!device_pm_initialized(supplier) 768 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 769 device_is_dependent(consumer, supplier))) { 770 link = NULL; 771 goto out; 772 } 773 774 /* 775 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 776 * So, only create it if the consumer hasn't probed yet. 777 */ 778 if (flags & DL_FLAG_SYNC_STATE_ONLY && 779 consumer->links.status != DL_DEV_NO_DRIVER && 780 consumer->links.status != DL_DEV_PROBING) { 781 link = NULL; 782 goto out; 783 } 784 785 /* 786 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 787 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 788 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 789 */ 790 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 791 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 792 793 list_for_each_entry(link, &supplier->links.consumers, s_node) { 794 if (link->consumer != consumer) 795 continue; 796 797 if (link->flags & DL_FLAG_INFERRED && 798 !(flags & DL_FLAG_INFERRED)) 799 link->flags &= ~DL_FLAG_INFERRED; 800 801 if (flags & DL_FLAG_PM_RUNTIME) { 802 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 803 pm_runtime_new_link(consumer); 804 link->flags |= DL_FLAG_PM_RUNTIME; 805 } 806 if (flags & DL_FLAG_RPM_ACTIVE) 807 refcount_inc(&link->rpm_active); 808 } 809 810 if (flags & DL_FLAG_STATELESS) { 811 kref_get(&link->kref); 812 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 813 !(link->flags & DL_FLAG_STATELESS)) { 814 link->flags |= DL_FLAG_STATELESS; 815 goto reorder; 816 } else { 817 link->flags |= DL_FLAG_STATELESS; 818 goto out; 819 } 820 } 821 822 /* 823 * If the life time of the link following from the new flags is 824 * longer than indicated by the flags of the existing link, 825 * update the existing link to stay around longer. 826 */ 827 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 828 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 829 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 830 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 831 } 832 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 833 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 834 DL_FLAG_AUTOREMOVE_SUPPLIER); 835 } 836 if (!(link->flags & DL_FLAG_MANAGED)) { 837 kref_get(&link->kref); 838 link->flags |= DL_FLAG_MANAGED; 839 device_link_init_status(link, consumer, supplier); 840 } 841 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 842 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 843 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 844 goto reorder; 845 } 846 847 goto out; 848 } 849 850 link = kzalloc(sizeof(*link), GFP_KERNEL); 851 if (!link) 852 goto out; 853 854 refcount_set(&link->rpm_active, 1); 855 856 get_device(supplier); 857 link->supplier = supplier; 858 INIT_LIST_HEAD(&link->s_node); 859 get_device(consumer); 860 link->consumer = consumer; 861 INIT_LIST_HEAD(&link->c_node); 862 link->flags = flags; 863 kref_init(&link->kref); 864 865 link->link_dev.class = &devlink_class; 866 device_set_pm_not_required(&link->link_dev); 867 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 868 dev_bus_name(supplier), dev_name(supplier), 869 dev_bus_name(consumer), dev_name(consumer)); 870 if (device_register(&link->link_dev)) { 871 put_device(&link->link_dev); 872 link = NULL; 873 goto out; 874 } 875 876 if (flags & DL_FLAG_PM_RUNTIME) { 877 if (flags & DL_FLAG_RPM_ACTIVE) 878 refcount_inc(&link->rpm_active); 879 880 pm_runtime_new_link(consumer); 881 } 882 883 /* Determine the initial link state. */ 884 if (flags & DL_FLAG_STATELESS) 885 link->status = DL_STATE_NONE; 886 else 887 device_link_init_status(link, consumer, supplier); 888 889 /* 890 * Some callers expect the link creation during consumer driver probe to 891 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 892 */ 893 if (link->status == DL_STATE_CONSUMER_PROBE && 894 flags & DL_FLAG_PM_RUNTIME) 895 pm_runtime_resume(supplier); 896 897 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 898 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 899 900 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 901 dev_dbg(consumer, 902 "Linked as a sync state only consumer to %s\n", 903 dev_name(supplier)); 904 goto out; 905 } 906 907 reorder: 908 /* 909 * Move the consumer and all of the devices depending on it to the end 910 * of dpm_list and the devices_kset list. 911 * 912 * It is necessary to hold dpm_list locked throughout all that or else 913 * we may end up suspending with a wrong ordering of it. 914 */ 915 device_reorder_to_tail(consumer, NULL); 916 917 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 918 919 out: 920 device_pm_unlock(); 921 device_links_write_unlock(); 922 923 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 924 pm_runtime_put(supplier); 925 926 return link; 927 } 928 EXPORT_SYMBOL_GPL(device_link_add); 929 930 static void __device_link_del(struct kref *kref) 931 { 932 struct device_link *link = container_of(kref, struct device_link, kref); 933 934 dev_dbg(link->consumer, "Dropping the link to %s\n", 935 dev_name(link->supplier)); 936 937 pm_runtime_drop_link(link); 938 939 device_link_remove_from_lists(link); 940 device_unregister(&link->link_dev); 941 } 942 943 static void device_link_put_kref(struct device_link *link) 944 { 945 if (link->flags & DL_FLAG_STATELESS) 946 kref_put(&link->kref, __device_link_del); 947 else if (!device_is_registered(link->consumer)) 948 __device_link_del(&link->kref); 949 else 950 WARN(1, "Unable to drop a managed device link reference\n"); 951 } 952 953 /** 954 * device_link_del - Delete a stateless link between two devices. 955 * @link: Device link to delete. 956 * 957 * The caller must ensure proper synchronization of this function with runtime 958 * PM. If the link was added multiple times, it needs to be deleted as often. 959 * Care is required for hotplugged devices: Their links are purged on removal 960 * and calling device_link_del() is then no longer allowed. 961 */ 962 void device_link_del(struct device_link *link) 963 { 964 device_links_write_lock(); 965 device_link_put_kref(link); 966 device_links_write_unlock(); 967 } 968 EXPORT_SYMBOL_GPL(device_link_del); 969 970 /** 971 * device_link_remove - Delete a stateless link between two devices. 972 * @consumer: Consumer end of the link. 973 * @supplier: Supplier end of the link. 974 * 975 * The caller must ensure proper synchronization of this function with runtime 976 * PM. 977 */ 978 void device_link_remove(void *consumer, struct device *supplier) 979 { 980 struct device_link *link; 981 982 if (WARN_ON(consumer == supplier)) 983 return; 984 985 device_links_write_lock(); 986 987 list_for_each_entry(link, &supplier->links.consumers, s_node) { 988 if (link->consumer == consumer) { 989 device_link_put_kref(link); 990 break; 991 } 992 } 993 994 device_links_write_unlock(); 995 } 996 EXPORT_SYMBOL_GPL(device_link_remove); 997 998 static void device_links_missing_supplier(struct device *dev) 999 { 1000 struct device_link *link; 1001 1002 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1003 if (link->status != DL_STATE_CONSUMER_PROBE) 1004 continue; 1005 1006 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1007 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1008 } else { 1009 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1010 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1011 } 1012 } 1013 } 1014 1015 static bool dev_is_best_effort(struct device *dev) 1016 { 1017 return (fw_devlink_best_effort && dev->can_match) || 1018 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1019 } 1020 1021 static struct fwnode_handle *fwnode_links_check_suppliers( 1022 struct fwnode_handle *fwnode) 1023 { 1024 struct fwnode_link *link; 1025 1026 if (!fwnode || fw_devlink_is_permissive()) 1027 return NULL; 1028 1029 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1030 if (!(link->flags & 1031 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1032 return link->supplier; 1033 1034 return NULL; 1035 } 1036 1037 /** 1038 * device_links_check_suppliers - Check presence of supplier drivers. 1039 * @dev: Consumer device. 1040 * 1041 * Check links from this device to any suppliers. Walk the list of the device's 1042 * links to suppliers and see if all of them are available. If not, simply 1043 * return -EPROBE_DEFER. 1044 * 1045 * We need to guarantee that the supplier will not go away after the check has 1046 * been positive here. It only can go away in __device_release_driver() and 1047 * that function checks the device's links to consumers. This means we need to 1048 * mark the link as "consumer probe in progress" to make the supplier removal 1049 * wait for us to complete (or bad things may happen). 1050 * 1051 * Links without the DL_FLAG_MANAGED flag set are ignored. 1052 */ 1053 int device_links_check_suppliers(struct device *dev) 1054 { 1055 struct device_link *link; 1056 int ret = 0, fwnode_ret = 0; 1057 struct fwnode_handle *sup_fw; 1058 1059 /* 1060 * Device waiting for supplier to become available is not allowed to 1061 * probe. 1062 */ 1063 mutex_lock(&fwnode_link_lock); 1064 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1065 if (sup_fw) { 1066 if (!dev_is_best_effort(dev)) { 1067 fwnode_ret = -EPROBE_DEFER; 1068 dev_err_probe(dev, -EPROBE_DEFER, 1069 "wait for supplier %pfwf\n", sup_fw); 1070 } else { 1071 fwnode_ret = -EAGAIN; 1072 } 1073 } 1074 mutex_unlock(&fwnode_link_lock); 1075 if (fwnode_ret == -EPROBE_DEFER) 1076 return fwnode_ret; 1077 1078 device_links_write_lock(); 1079 1080 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1081 if (!(link->flags & DL_FLAG_MANAGED)) 1082 continue; 1083 1084 if (link->status != DL_STATE_AVAILABLE && 1085 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1086 1087 if (dev_is_best_effort(dev) && 1088 link->flags & DL_FLAG_INFERRED && 1089 !link->supplier->can_match) { 1090 ret = -EAGAIN; 1091 continue; 1092 } 1093 1094 device_links_missing_supplier(dev); 1095 dev_err_probe(dev, -EPROBE_DEFER, 1096 "supplier %s not ready\n", 1097 dev_name(link->supplier)); 1098 ret = -EPROBE_DEFER; 1099 break; 1100 } 1101 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1102 } 1103 dev->links.status = DL_DEV_PROBING; 1104 1105 device_links_write_unlock(); 1106 1107 return ret ? ret : fwnode_ret; 1108 } 1109 1110 /** 1111 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1112 * @dev: Device to call sync_state() on 1113 * @list: List head to queue the @dev on 1114 * 1115 * Queues a device for a sync_state() callback when the device links write lock 1116 * isn't held. This allows the sync_state() execution flow to use device links 1117 * APIs. The caller must ensure this function is called with 1118 * device_links_write_lock() held. 1119 * 1120 * This function does a get_device() to make sure the device is not freed while 1121 * on this list. 1122 * 1123 * So the caller must also ensure that device_links_flush_sync_list() is called 1124 * as soon as the caller releases device_links_write_lock(). This is necessary 1125 * to make sure the sync_state() is called in a timely fashion and the 1126 * put_device() is called on this device. 1127 */ 1128 static void __device_links_queue_sync_state(struct device *dev, 1129 struct list_head *list) 1130 { 1131 struct device_link *link; 1132 1133 if (!dev_has_sync_state(dev)) 1134 return; 1135 if (dev->state_synced) 1136 return; 1137 1138 list_for_each_entry(link, &dev->links.consumers, s_node) { 1139 if (!(link->flags & DL_FLAG_MANAGED)) 1140 continue; 1141 if (link->status != DL_STATE_ACTIVE) 1142 return; 1143 } 1144 1145 /* 1146 * Set the flag here to avoid adding the same device to a list more 1147 * than once. This can happen if new consumers get added to the device 1148 * and probed before the list is flushed. 1149 */ 1150 dev->state_synced = true; 1151 1152 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1153 return; 1154 1155 get_device(dev); 1156 list_add_tail(&dev->links.defer_sync, list); 1157 } 1158 1159 /** 1160 * device_links_flush_sync_list - Call sync_state() on a list of devices 1161 * @list: List of devices to call sync_state() on 1162 * @dont_lock_dev: Device for which lock is already held by the caller 1163 * 1164 * Calls sync_state() on all the devices that have been queued for it. This 1165 * function is used in conjunction with __device_links_queue_sync_state(). The 1166 * @dont_lock_dev parameter is useful when this function is called from a 1167 * context where a device lock is already held. 1168 */ 1169 static void device_links_flush_sync_list(struct list_head *list, 1170 struct device *dont_lock_dev) 1171 { 1172 struct device *dev, *tmp; 1173 1174 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1175 list_del_init(&dev->links.defer_sync); 1176 1177 if (dev != dont_lock_dev) 1178 device_lock(dev); 1179 1180 dev_sync_state(dev); 1181 1182 if (dev != dont_lock_dev) 1183 device_unlock(dev); 1184 1185 put_device(dev); 1186 } 1187 } 1188 1189 void device_links_supplier_sync_state_pause(void) 1190 { 1191 device_links_write_lock(); 1192 defer_sync_state_count++; 1193 device_links_write_unlock(); 1194 } 1195 1196 void device_links_supplier_sync_state_resume(void) 1197 { 1198 struct device *dev, *tmp; 1199 LIST_HEAD(sync_list); 1200 1201 device_links_write_lock(); 1202 if (!defer_sync_state_count) { 1203 WARN(true, "Unmatched sync_state pause/resume!"); 1204 goto out; 1205 } 1206 defer_sync_state_count--; 1207 if (defer_sync_state_count) 1208 goto out; 1209 1210 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1211 /* 1212 * Delete from deferred_sync list before queuing it to 1213 * sync_list because defer_sync is used for both lists. 1214 */ 1215 list_del_init(&dev->links.defer_sync); 1216 __device_links_queue_sync_state(dev, &sync_list); 1217 } 1218 out: 1219 device_links_write_unlock(); 1220 1221 device_links_flush_sync_list(&sync_list, NULL); 1222 } 1223 1224 static int sync_state_resume_initcall(void) 1225 { 1226 device_links_supplier_sync_state_resume(); 1227 return 0; 1228 } 1229 late_initcall(sync_state_resume_initcall); 1230 1231 static void __device_links_supplier_defer_sync(struct device *sup) 1232 { 1233 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1234 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1235 } 1236 1237 static void device_link_drop_managed(struct device_link *link) 1238 { 1239 link->flags &= ~DL_FLAG_MANAGED; 1240 WRITE_ONCE(link->status, DL_STATE_NONE); 1241 kref_put(&link->kref, __device_link_del); 1242 } 1243 1244 static ssize_t waiting_for_supplier_show(struct device *dev, 1245 struct device_attribute *attr, 1246 char *buf) 1247 { 1248 bool val; 1249 1250 device_lock(dev); 1251 mutex_lock(&fwnode_link_lock); 1252 val = !!fwnode_links_check_suppliers(dev->fwnode); 1253 mutex_unlock(&fwnode_link_lock); 1254 device_unlock(dev); 1255 return sysfs_emit(buf, "%u\n", val); 1256 } 1257 static DEVICE_ATTR_RO(waiting_for_supplier); 1258 1259 /** 1260 * device_links_force_bind - Prepares device to be force bound 1261 * @dev: Consumer device. 1262 * 1263 * device_bind_driver() force binds a device to a driver without calling any 1264 * driver probe functions. So the consumer really isn't going to wait for any 1265 * supplier before it's bound to the driver. We still want the device link 1266 * states to be sensible when this happens. 1267 * 1268 * In preparation for device_bind_driver(), this function goes through each 1269 * supplier device links and checks if the supplier is bound. If it is, then 1270 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1271 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1272 */ 1273 void device_links_force_bind(struct device *dev) 1274 { 1275 struct device_link *link, *ln; 1276 1277 device_links_write_lock(); 1278 1279 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1280 if (!(link->flags & DL_FLAG_MANAGED)) 1281 continue; 1282 1283 if (link->status != DL_STATE_AVAILABLE) { 1284 device_link_drop_managed(link); 1285 continue; 1286 } 1287 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1288 } 1289 dev->links.status = DL_DEV_PROBING; 1290 1291 device_links_write_unlock(); 1292 } 1293 1294 /** 1295 * device_links_driver_bound - Update device links after probing its driver. 1296 * @dev: Device to update the links for. 1297 * 1298 * The probe has been successful, so update links from this device to any 1299 * consumers by changing their status to "available". 1300 * 1301 * Also change the status of @dev's links to suppliers to "active". 1302 * 1303 * Links without the DL_FLAG_MANAGED flag set are ignored. 1304 */ 1305 void device_links_driver_bound(struct device *dev) 1306 { 1307 struct device_link *link, *ln; 1308 LIST_HEAD(sync_list); 1309 1310 /* 1311 * If a device binds successfully, it's expected to have created all 1312 * the device links it needs to or make new device links as it needs 1313 * them. So, fw_devlink no longer needs to create device links to any 1314 * of the device's suppliers. 1315 * 1316 * Also, if a child firmware node of this bound device is not added as a 1317 * device by now, assume it is never going to be added. Make this bound 1318 * device the fallback supplier to the dangling consumers of the child 1319 * firmware node because this bound device is probably implementing the 1320 * child firmware node functionality and we don't want the dangling 1321 * consumers to defer probe indefinitely waiting for a device for the 1322 * child firmware node. 1323 */ 1324 if (dev->fwnode && dev->fwnode->dev == dev) { 1325 struct fwnode_handle *child; 1326 fwnode_links_purge_suppliers(dev->fwnode); 1327 mutex_lock(&fwnode_link_lock); 1328 fwnode_for_each_available_child_node(dev->fwnode, child) 1329 __fw_devlink_pickup_dangling_consumers(child, 1330 dev->fwnode); 1331 __fw_devlink_link_to_consumers(dev); 1332 mutex_unlock(&fwnode_link_lock); 1333 } 1334 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1335 1336 device_links_write_lock(); 1337 1338 list_for_each_entry(link, &dev->links.consumers, s_node) { 1339 if (!(link->flags & DL_FLAG_MANAGED)) 1340 continue; 1341 1342 /* 1343 * Links created during consumer probe may be in the "consumer 1344 * probe" state to start with if the supplier is still probing 1345 * when they are created and they may become "active" if the 1346 * consumer probe returns first. Skip them here. 1347 */ 1348 if (link->status == DL_STATE_CONSUMER_PROBE || 1349 link->status == DL_STATE_ACTIVE) 1350 continue; 1351 1352 WARN_ON(link->status != DL_STATE_DORMANT); 1353 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1354 1355 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1356 driver_deferred_probe_add(link->consumer); 1357 } 1358 1359 if (defer_sync_state_count) 1360 __device_links_supplier_defer_sync(dev); 1361 else 1362 __device_links_queue_sync_state(dev, &sync_list); 1363 1364 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1365 struct device *supplier; 1366 1367 if (!(link->flags & DL_FLAG_MANAGED)) 1368 continue; 1369 1370 supplier = link->supplier; 1371 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1372 /* 1373 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1374 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1375 * save to drop the managed link completely. 1376 */ 1377 device_link_drop_managed(link); 1378 } else if (dev_is_best_effort(dev) && 1379 link->flags & DL_FLAG_INFERRED && 1380 link->status != DL_STATE_CONSUMER_PROBE && 1381 !link->supplier->can_match) { 1382 /* 1383 * When dev_is_best_effort() is true, we ignore device 1384 * links to suppliers that don't have a driver. If the 1385 * consumer device still managed to probe, there's no 1386 * point in maintaining a device link in a weird state 1387 * (consumer probed before supplier). So delete it. 1388 */ 1389 device_link_drop_managed(link); 1390 } else { 1391 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1392 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1393 } 1394 1395 /* 1396 * This needs to be done even for the deleted 1397 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1398 * device link that was preventing the supplier from getting a 1399 * sync_state() call. 1400 */ 1401 if (defer_sync_state_count) 1402 __device_links_supplier_defer_sync(supplier); 1403 else 1404 __device_links_queue_sync_state(supplier, &sync_list); 1405 } 1406 1407 dev->links.status = DL_DEV_DRIVER_BOUND; 1408 1409 device_links_write_unlock(); 1410 1411 device_links_flush_sync_list(&sync_list, dev); 1412 } 1413 1414 /** 1415 * __device_links_no_driver - Update links of a device without a driver. 1416 * @dev: Device without a drvier. 1417 * 1418 * Delete all non-persistent links from this device to any suppliers. 1419 * 1420 * Persistent links stay around, but their status is changed to "available", 1421 * unless they already are in the "supplier unbind in progress" state in which 1422 * case they need not be updated. 1423 * 1424 * Links without the DL_FLAG_MANAGED flag set are ignored. 1425 */ 1426 static void __device_links_no_driver(struct device *dev) 1427 { 1428 struct device_link *link, *ln; 1429 1430 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1431 if (!(link->flags & DL_FLAG_MANAGED)) 1432 continue; 1433 1434 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1435 device_link_drop_managed(link); 1436 continue; 1437 } 1438 1439 if (link->status != DL_STATE_CONSUMER_PROBE && 1440 link->status != DL_STATE_ACTIVE) 1441 continue; 1442 1443 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1444 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1445 } else { 1446 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1447 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1448 } 1449 } 1450 1451 dev->links.status = DL_DEV_NO_DRIVER; 1452 } 1453 1454 /** 1455 * device_links_no_driver - Update links after failing driver probe. 1456 * @dev: Device whose driver has just failed to probe. 1457 * 1458 * Clean up leftover links to consumers for @dev and invoke 1459 * %__device_links_no_driver() to update links to suppliers for it as 1460 * appropriate. 1461 * 1462 * Links without the DL_FLAG_MANAGED flag set are ignored. 1463 */ 1464 void device_links_no_driver(struct device *dev) 1465 { 1466 struct device_link *link; 1467 1468 device_links_write_lock(); 1469 1470 list_for_each_entry(link, &dev->links.consumers, s_node) { 1471 if (!(link->flags & DL_FLAG_MANAGED)) 1472 continue; 1473 1474 /* 1475 * The probe has failed, so if the status of the link is 1476 * "consumer probe" or "active", it must have been added by 1477 * a probing consumer while this device was still probing. 1478 * Change its state to "dormant", as it represents a valid 1479 * relationship, but it is not functionally meaningful. 1480 */ 1481 if (link->status == DL_STATE_CONSUMER_PROBE || 1482 link->status == DL_STATE_ACTIVE) 1483 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1484 } 1485 1486 __device_links_no_driver(dev); 1487 1488 device_links_write_unlock(); 1489 } 1490 1491 /** 1492 * device_links_driver_cleanup - Update links after driver removal. 1493 * @dev: Device whose driver has just gone away. 1494 * 1495 * Update links to consumers for @dev by changing their status to "dormant" and 1496 * invoke %__device_links_no_driver() to update links to suppliers for it as 1497 * appropriate. 1498 * 1499 * Links without the DL_FLAG_MANAGED flag set are ignored. 1500 */ 1501 void device_links_driver_cleanup(struct device *dev) 1502 { 1503 struct device_link *link, *ln; 1504 1505 device_links_write_lock(); 1506 1507 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1508 if (!(link->flags & DL_FLAG_MANAGED)) 1509 continue; 1510 1511 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1512 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1513 1514 /* 1515 * autoremove the links between this @dev and its consumer 1516 * devices that are not active, i.e. where the link state 1517 * has moved to DL_STATE_SUPPLIER_UNBIND. 1518 */ 1519 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1520 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1521 device_link_drop_managed(link); 1522 1523 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1524 } 1525 1526 list_del_init(&dev->links.defer_sync); 1527 __device_links_no_driver(dev); 1528 1529 device_links_write_unlock(); 1530 } 1531 1532 /** 1533 * device_links_busy - Check if there are any busy links to consumers. 1534 * @dev: Device to check. 1535 * 1536 * Check each consumer of the device and return 'true' if its link's status 1537 * is one of "consumer probe" or "active" (meaning that the given consumer is 1538 * probing right now or its driver is present). Otherwise, change the link 1539 * state to "supplier unbind" to prevent the consumer from being probed 1540 * successfully going forward. 1541 * 1542 * Return 'false' if there are no probing or active consumers. 1543 * 1544 * Links without the DL_FLAG_MANAGED flag set are ignored. 1545 */ 1546 bool device_links_busy(struct device *dev) 1547 { 1548 struct device_link *link; 1549 bool ret = false; 1550 1551 device_links_write_lock(); 1552 1553 list_for_each_entry(link, &dev->links.consumers, s_node) { 1554 if (!(link->flags & DL_FLAG_MANAGED)) 1555 continue; 1556 1557 if (link->status == DL_STATE_CONSUMER_PROBE 1558 || link->status == DL_STATE_ACTIVE) { 1559 ret = true; 1560 break; 1561 } 1562 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1563 } 1564 1565 dev->links.status = DL_DEV_UNBINDING; 1566 1567 device_links_write_unlock(); 1568 return ret; 1569 } 1570 1571 /** 1572 * device_links_unbind_consumers - Force unbind consumers of the given device. 1573 * @dev: Device to unbind the consumers of. 1574 * 1575 * Walk the list of links to consumers for @dev and if any of them is in the 1576 * "consumer probe" state, wait for all device probes in progress to complete 1577 * and start over. 1578 * 1579 * If that's not the case, change the status of the link to "supplier unbind" 1580 * and check if the link was in the "active" state. If so, force the consumer 1581 * driver to unbind and start over (the consumer will not re-probe as we have 1582 * changed the state of the link already). 1583 * 1584 * Links without the DL_FLAG_MANAGED flag set are ignored. 1585 */ 1586 void device_links_unbind_consumers(struct device *dev) 1587 { 1588 struct device_link *link; 1589 1590 start: 1591 device_links_write_lock(); 1592 1593 list_for_each_entry(link, &dev->links.consumers, s_node) { 1594 enum device_link_state status; 1595 1596 if (!(link->flags & DL_FLAG_MANAGED) || 1597 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1598 continue; 1599 1600 status = link->status; 1601 if (status == DL_STATE_CONSUMER_PROBE) { 1602 device_links_write_unlock(); 1603 1604 wait_for_device_probe(); 1605 goto start; 1606 } 1607 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1608 if (status == DL_STATE_ACTIVE) { 1609 struct device *consumer = link->consumer; 1610 1611 get_device(consumer); 1612 1613 device_links_write_unlock(); 1614 1615 device_release_driver_internal(consumer, NULL, 1616 consumer->parent); 1617 put_device(consumer); 1618 goto start; 1619 } 1620 } 1621 1622 device_links_write_unlock(); 1623 } 1624 1625 /** 1626 * device_links_purge - Delete existing links to other devices. 1627 * @dev: Target device. 1628 */ 1629 static void device_links_purge(struct device *dev) 1630 { 1631 struct device_link *link, *ln; 1632 1633 if (dev->class == &devlink_class) 1634 return; 1635 1636 /* 1637 * Delete all of the remaining links from this device to any other 1638 * devices (either consumers or suppliers). 1639 */ 1640 device_links_write_lock(); 1641 1642 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1643 WARN_ON(link->status == DL_STATE_ACTIVE); 1644 __device_link_del(&link->kref); 1645 } 1646 1647 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1648 WARN_ON(link->status != DL_STATE_DORMANT && 1649 link->status != DL_STATE_NONE); 1650 __device_link_del(&link->kref); 1651 } 1652 1653 device_links_write_unlock(); 1654 } 1655 1656 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1657 DL_FLAG_SYNC_STATE_ONLY) 1658 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1659 DL_FLAG_AUTOPROBE_CONSUMER) 1660 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1661 DL_FLAG_PM_RUNTIME) 1662 1663 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1664 static int __init fw_devlink_setup(char *arg) 1665 { 1666 if (!arg) 1667 return -EINVAL; 1668 1669 if (strcmp(arg, "off") == 0) { 1670 fw_devlink_flags = 0; 1671 } else if (strcmp(arg, "permissive") == 0) { 1672 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1673 } else if (strcmp(arg, "on") == 0) { 1674 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1675 } else if (strcmp(arg, "rpm") == 0) { 1676 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1677 } 1678 return 0; 1679 } 1680 early_param("fw_devlink", fw_devlink_setup); 1681 1682 static bool fw_devlink_strict; 1683 static int __init fw_devlink_strict_setup(char *arg) 1684 { 1685 return kstrtobool(arg, &fw_devlink_strict); 1686 } 1687 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1688 1689 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1690 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1691 1692 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1693 static int fw_devlink_sync_state; 1694 #else 1695 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1696 #endif 1697 1698 static int __init fw_devlink_sync_state_setup(char *arg) 1699 { 1700 if (!arg) 1701 return -EINVAL; 1702 1703 if (strcmp(arg, "strict") == 0) { 1704 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1705 return 0; 1706 } else if (strcmp(arg, "timeout") == 0) { 1707 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1708 return 0; 1709 } 1710 return -EINVAL; 1711 } 1712 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1713 1714 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1715 { 1716 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1717 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1718 1719 return fw_devlink_flags; 1720 } 1721 1722 static bool fw_devlink_is_permissive(void) 1723 { 1724 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1725 } 1726 1727 bool fw_devlink_is_strict(void) 1728 { 1729 return fw_devlink_strict && !fw_devlink_is_permissive(); 1730 } 1731 1732 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1733 { 1734 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1735 return; 1736 1737 fwnode_call_int_op(fwnode, add_links); 1738 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1739 } 1740 1741 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1742 { 1743 struct fwnode_handle *child = NULL; 1744 1745 fw_devlink_parse_fwnode(fwnode); 1746 1747 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1748 fw_devlink_parse_fwtree(child); 1749 } 1750 1751 static void fw_devlink_relax_link(struct device_link *link) 1752 { 1753 if (!(link->flags & DL_FLAG_INFERRED)) 1754 return; 1755 1756 if (device_link_flag_is_sync_state_only(link->flags)) 1757 return; 1758 1759 pm_runtime_drop_link(link); 1760 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1761 dev_dbg(link->consumer, "Relaxing link with %s\n", 1762 dev_name(link->supplier)); 1763 } 1764 1765 static int fw_devlink_no_driver(struct device *dev, void *data) 1766 { 1767 struct device_link *link = to_devlink(dev); 1768 1769 if (!link->supplier->can_match) 1770 fw_devlink_relax_link(link); 1771 1772 return 0; 1773 } 1774 1775 void fw_devlink_drivers_done(void) 1776 { 1777 fw_devlink_drv_reg_done = true; 1778 device_links_write_lock(); 1779 class_for_each_device(&devlink_class, NULL, NULL, 1780 fw_devlink_no_driver); 1781 device_links_write_unlock(); 1782 } 1783 1784 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1785 { 1786 struct device_link *link = to_devlink(dev); 1787 struct device *sup = link->supplier; 1788 1789 if (!(link->flags & DL_FLAG_MANAGED) || 1790 link->status == DL_STATE_ACTIVE || sup->state_synced || 1791 !dev_has_sync_state(sup)) 1792 return 0; 1793 1794 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1795 dev_warn(sup, "sync_state() pending due to %s\n", 1796 dev_name(link->consumer)); 1797 return 0; 1798 } 1799 1800 if (!list_empty(&sup->links.defer_sync)) 1801 return 0; 1802 1803 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1804 sup->state_synced = true; 1805 get_device(sup); 1806 list_add_tail(&sup->links.defer_sync, data); 1807 1808 return 0; 1809 } 1810 1811 void fw_devlink_probing_done(void) 1812 { 1813 LIST_HEAD(sync_list); 1814 1815 device_links_write_lock(); 1816 class_for_each_device(&devlink_class, NULL, &sync_list, 1817 fw_devlink_dev_sync_state); 1818 device_links_write_unlock(); 1819 device_links_flush_sync_list(&sync_list, NULL); 1820 } 1821 1822 /** 1823 * wait_for_init_devices_probe - Try to probe any device needed for init 1824 * 1825 * Some devices might need to be probed and bound successfully before the kernel 1826 * boot sequence can finish and move on to init/userspace. For example, a 1827 * network interface might need to be bound to be able to mount a NFS rootfs. 1828 * 1829 * With fw_devlink=on by default, some of these devices might be blocked from 1830 * probing because they are waiting on a optional supplier that doesn't have a 1831 * driver. While fw_devlink will eventually identify such devices and unblock 1832 * the probing automatically, it might be too late by the time it unblocks the 1833 * probing of devices. For example, the IP4 autoconfig might timeout before 1834 * fw_devlink unblocks probing of the network interface. 1835 * 1836 * This function is available to temporarily try and probe all devices that have 1837 * a driver even if some of their suppliers haven't been added or don't have 1838 * drivers. 1839 * 1840 * The drivers can then decide which of the suppliers are optional vs mandatory 1841 * and probe the device if possible. By the time this function returns, all such 1842 * "best effort" probes are guaranteed to be completed. If a device successfully 1843 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1844 * device where the supplier hasn't yet probed successfully because they have to 1845 * be optional dependencies. 1846 * 1847 * Any devices that didn't successfully probe go back to being treated as if 1848 * this function was never called. 1849 * 1850 * This also means that some devices that aren't needed for init and could have 1851 * waited for their optional supplier to probe (when the supplier's module is 1852 * loaded later on) would end up probing prematurely with limited functionality. 1853 * So call this function only when boot would fail without it. 1854 */ 1855 void __init wait_for_init_devices_probe(void) 1856 { 1857 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1858 return; 1859 1860 /* 1861 * Wait for all ongoing probes to finish so that the "best effort" is 1862 * only applied to devices that can't probe otherwise. 1863 */ 1864 wait_for_device_probe(); 1865 1866 pr_info("Trying to probe devices needed for running init ...\n"); 1867 fw_devlink_best_effort = true; 1868 driver_deferred_probe_trigger(); 1869 1870 /* 1871 * Wait for all "best effort" probes to finish before going back to 1872 * normal enforcement. 1873 */ 1874 wait_for_device_probe(); 1875 fw_devlink_best_effort = false; 1876 } 1877 1878 static void fw_devlink_unblock_consumers(struct device *dev) 1879 { 1880 struct device_link *link; 1881 1882 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1883 return; 1884 1885 device_links_write_lock(); 1886 list_for_each_entry(link, &dev->links.consumers, s_node) 1887 fw_devlink_relax_link(link); 1888 device_links_write_unlock(); 1889 } 1890 1891 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1892 1893 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1894 { 1895 struct device *dev; 1896 bool ret; 1897 1898 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1899 return false; 1900 1901 dev = get_dev_from_fwnode(fwnode); 1902 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1903 put_device(dev); 1904 1905 return ret; 1906 } 1907 1908 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1909 { 1910 struct fwnode_handle *parent; 1911 1912 fwnode_for_each_parent_node(fwnode, parent) { 1913 if (fwnode_init_without_drv(parent)) { 1914 fwnode_handle_put(parent); 1915 return true; 1916 } 1917 } 1918 1919 return false; 1920 } 1921 1922 /** 1923 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1924 * @ancestor: Firmware which is tested for being an ancestor 1925 * @child: Firmware which is tested for being the child 1926 * 1927 * A node is considered an ancestor of itself too. 1928 * 1929 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1930 */ 1931 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1932 const struct fwnode_handle *child) 1933 { 1934 struct fwnode_handle *parent; 1935 1936 if (IS_ERR_OR_NULL(ancestor)) 1937 return false; 1938 1939 if (child == ancestor) 1940 return true; 1941 1942 fwnode_for_each_parent_node(child, parent) { 1943 if (parent == ancestor) { 1944 fwnode_handle_put(parent); 1945 return true; 1946 } 1947 } 1948 return false; 1949 } 1950 1951 /** 1952 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1953 * @fwnode: firmware node 1954 * 1955 * Given a firmware node (@fwnode), this function finds its closest ancestor 1956 * firmware node that has a corresponding struct device and returns that struct 1957 * device. 1958 * 1959 * The caller is responsible for calling put_device() on the returned device 1960 * pointer. 1961 * 1962 * Return: a pointer to the device of the @fwnode's closest ancestor. 1963 */ 1964 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1965 { 1966 struct fwnode_handle *parent; 1967 struct device *dev; 1968 1969 fwnode_for_each_parent_node(fwnode, parent) { 1970 dev = get_dev_from_fwnode(parent); 1971 if (dev) { 1972 fwnode_handle_put(parent); 1973 return dev; 1974 } 1975 } 1976 return NULL; 1977 } 1978 1979 /** 1980 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1981 * @con: Potential consumer device. 1982 * @sup_handle: Potential supplier's fwnode. 1983 * 1984 * Needs to be called with fwnode_lock and device link lock held. 1985 * 1986 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1987 * depend on @con. This function can detect multiple cyles between @sup_handle 1988 * and @con. When such dependency cycles are found, convert all device links 1989 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1990 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1991 * converted into a device link in the future, they are created as 1992 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1993 * fw_devlink=permissive just between the devices in the cycle. We need to do 1994 * this because, at this point, fw_devlink can't tell which of these 1995 * dependencies is not a real dependency. 1996 * 1997 * Return true if one or more cycles were found. Otherwise, return false. 1998 */ 1999 static bool __fw_devlink_relax_cycles(struct device *con, 2000 struct fwnode_handle *sup_handle) 2001 { 2002 struct device *sup_dev = NULL, *par_dev = NULL; 2003 struct fwnode_link *link; 2004 struct device_link *dev_link; 2005 bool ret = false; 2006 2007 if (!sup_handle) 2008 return false; 2009 2010 /* 2011 * We aren't trying to find all cycles. Just a cycle between con and 2012 * sup_handle. 2013 */ 2014 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2015 return false; 2016 2017 sup_handle->flags |= FWNODE_FLAG_VISITED; 2018 2019 sup_dev = get_dev_from_fwnode(sup_handle); 2020 2021 /* Termination condition. */ 2022 if (sup_dev == con) { 2023 pr_debug("----- cycle: start -----\n"); 2024 ret = true; 2025 goto out; 2026 } 2027 2028 /* 2029 * If sup_dev is bound to a driver and @con hasn't started binding to a 2030 * driver, sup_dev can't be a consumer of @con. So, no need to check 2031 * further. 2032 */ 2033 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2034 con->links.status == DL_DEV_NO_DRIVER) { 2035 ret = false; 2036 goto out; 2037 } 2038 2039 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2040 if (link->flags & FWLINK_FLAG_IGNORE) 2041 continue; 2042 2043 if (__fw_devlink_relax_cycles(con, link->supplier)) { 2044 __fwnode_link_cycle(link); 2045 ret = true; 2046 } 2047 } 2048 2049 /* 2050 * Give priority to device parent over fwnode parent to account for any 2051 * quirks in how fwnodes are converted to devices. 2052 */ 2053 if (sup_dev) 2054 par_dev = get_device(sup_dev->parent); 2055 else 2056 par_dev = fwnode_get_next_parent_dev(sup_handle); 2057 2058 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 2059 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2060 par_dev->fwnode); 2061 ret = true; 2062 } 2063 2064 if (!sup_dev) 2065 goto out; 2066 2067 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2068 /* 2069 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2070 * such due to a cycle. 2071 */ 2072 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2073 !(dev_link->flags & DL_FLAG_CYCLE)) 2074 continue; 2075 2076 if (__fw_devlink_relax_cycles(con, 2077 dev_link->supplier->fwnode)) { 2078 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2079 dev_link->supplier->fwnode); 2080 fw_devlink_relax_link(dev_link); 2081 dev_link->flags |= DL_FLAG_CYCLE; 2082 ret = true; 2083 } 2084 } 2085 2086 out: 2087 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2088 put_device(sup_dev); 2089 put_device(par_dev); 2090 return ret; 2091 } 2092 2093 /** 2094 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2095 * @con: consumer device for the device link 2096 * @sup_handle: fwnode handle of supplier 2097 * @link: fwnode link that's being converted to a device link 2098 * 2099 * This function will try to create a device link between the consumer device 2100 * @con and the supplier device represented by @sup_handle. 2101 * 2102 * The supplier has to be provided as a fwnode because incorrect cycles in 2103 * fwnode links can sometimes cause the supplier device to never be created. 2104 * This function detects such cases and returns an error if it cannot create a 2105 * device link from the consumer to a missing supplier. 2106 * 2107 * Returns, 2108 * 0 on successfully creating a device link 2109 * -EINVAL if the device link cannot be created as expected 2110 * -EAGAIN if the device link cannot be created right now, but it may be 2111 * possible to do that in the future 2112 */ 2113 static int fw_devlink_create_devlink(struct device *con, 2114 struct fwnode_handle *sup_handle, 2115 struct fwnode_link *link) 2116 { 2117 struct device *sup_dev; 2118 int ret = 0; 2119 u32 flags; 2120 2121 if (link->flags & FWLINK_FLAG_IGNORE) 2122 return 0; 2123 2124 if (con->fwnode == link->consumer) 2125 flags = fw_devlink_get_flags(link->flags); 2126 else 2127 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2128 2129 /* 2130 * In some cases, a device P might also be a supplier to its child node 2131 * C. However, this would defer the probe of C until the probe of P 2132 * completes successfully. This is perfectly fine in the device driver 2133 * model. device_add() doesn't guarantee probe completion of the device 2134 * by the time it returns. 2135 * 2136 * However, there are a few drivers that assume C will finish probing 2137 * as soon as it's added and before P finishes probing. So, we provide 2138 * a flag to let fw_devlink know not to delay the probe of C until the 2139 * probe of P completes successfully. 2140 * 2141 * When such a flag is set, we can't create device links where P is the 2142 * supplier of C as that would delay the probe of C. 2143 */ 2144 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2145 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2146 return -EINVAL; 2147 2148 /* 2149 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2150 * So, one might expect that cycle detection isn't necessary for them. 2151 * However, if the device link was marked as SYNC_STATE_ONLY because 2152 * it's part of a cycle, then we still need to do cycle detection. This 2153 * is because the consumer and supplier might be part of multiple cycles 2154 * and we need to detect all those cycles. 2155 */ 2156 if (!device_link_flag_is_sync_state_only(flags) || 2157 flags & DL_FLAG_CYCLE) { 2158 device_links_write_lock(); 2159 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2160 __fwnode_link_cycle(link); 2161 flags = fw_devlink_get_flags(link->flags); 2162 pr_debug("----- cycle: end -----\n"); 2163 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2164 sup_handle); 2165 } 2166 device_links_write_unlock(); 2167 } 2168 2169 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2170 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2171 else 2172 sup_dev = get_dev_from_fwnode(sup_handle); 2173 2174 if (sup_dev) { 2175 /* 2176 * If it's one of those drivers that don't actually bind to 2177 * their device using driver core, then don't wait on this 2178 * supplier device indefinitely. 2179 */ 2180 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2181 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2182 dev_dbg(con, 2183 "Not linking %pfwf - dev might never probe\n", 2184 sup_handle); 2185 ret = -EINVAL; 2186 goto out; 2187 } 2188 2189 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2190 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2191 flags, dev_name(sup_dev)); 2192 ret = -EINVAL; 2193 } 2194 2195 goto out; 2196 } 2197 2198 /* 2199 * Supplier or supplier's ancestor already initialized without a struct 2200 * device or being probed by a driver. 2201 */ 2202 if (fwnode_init_without_drv(sup_handle) || 2203 fwnode_ancestor_init_without_drv(sup_handle)) { 2204 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2205 sup_handle); 2206 return -EINVAL; 2207 } 2208 2209 ret = -EAGAIN; 2210 out: 2211 put_device(sup_dev); 2212 return ret; 2213 } 2214 2215 /** 2216 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2217 * @dev: Device that needs to be linked to its consumers 2218 * 2219 * This function looks at all the consumer fwnodes of @dev and creates device 2220 * links between the consumer device and @dev (supplier). 2221 * 2222 * If the consumer device has not been added yet, then this function creates a 2223 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2224 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2225 * sync_state() callback before the real consumer device gets to be added and 2226 * then probed. 2227 * 2228 * Once device links are created from the real consumer to @dev (supplier), the 2229 * fwnode links are deleted. 2230 */ 2231 static void __fw_devlink_link_to_consumers(struct device *dev) 2232 { 2233 struct fwnode_handle *fwnode = dev->fwnode; 2234 struct fwnode_link *link, *tmp; 2235 2236 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2237 struct device *con_dev; 2238 bool own_link = true; 2239 int ret; 2240 2241 con_dev = get_dev_from_fwnode(link->consumer); 2242 /* 2243 * If consumer device is not available yet, make a "proxy" 2244 * SYNC_STATE_ONLY link from the consumer's parent device to 2245 * the supplier device. This is necessary to make sure the 2246 * supplier doesn't get a sync_state() callback before the real 2247 * consumer can create a device link to the supplier. 2248 * 2249 * This proxy link step is needed to handle the case where the 2250 * consumer's parent device is added before the supplier. 2251 */ 2252 if (!con_dev) { 2253 con_dev = fwnode_get_next_parent_dev(link->consumer); 2254 /* 2255 * However, if the consumer's parent device is also the 2256 * parent of the supplier, don't create a 2257 * consumer-supplier link from the parent to its child 2258 * device. Such a dependency is impossible. 2259 */ 2260 if (con_dev && 2261 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2262 put_device(con_dev); 2263 con_dev = NULL; 2264 } else { 2265 own_link = false; 2266 } 2267 } 2268 2269 if (!con_dev) 2270 continue; 2271 2272 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2273 put_device(con_dev); 2274 if (!own_link || ret == -EAGAIN) 2275 continue; 2276 2277 __fwnode_link_del(link); 2278 } 2279 } 2280 2281 /** 2282 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2283 * @dev: The consumer device that needs to be linked to its suppliers 2284 * @fwnode: Root of the fwnode tree that is used to create device links 2285 * 2286 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2287 * @fwnode and creates device links between @dev (consumer) and all the 2288 * supplier devices of the entire fwnode tree at @fwnode. 2289 * 2290 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2291 * and the real suppliers of @dev. Once these device links are created, the 2292 * fwnode links are deleted. 2293 * 2294 * In addition, it also looks at all the suppliers of the entire fwnode tree 2295 * because some of the child devices of @dev that have not been added yet 2296 * (because @dev hasn't probed) might already have their suppliers added to 2297 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2298 * @dev (consumer) and these suppliers to make sure they don't execute their 2299 * sync_state() callbacks before these child devices have a chance to create 2300 * their device links. The fwnode links that correspond to the child devices 2301 * aren't delete because they are needed later to create the device links 2302 * between the real consumer and supplier devices. 2303 */ 2304 static void __fw_devlink_link_to_suppliers(struct device *dev, 2305 struct fwnode_handle *fwnode) 2306 { 2307 bool own_link = (dev->fwnode == fwnode); 2308 struct fwnode_link *link, *tmp; 2309 struct fwnode_handle *child = NULL; 2310 2311 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2312 int ret; 2313 struct fwnode_handle *sup = link->supplier; 2314 2315 ret = fw_devlink_create_devlink(dev, sup, link); 2316 if (!own_link || ret == -EAGAIN) 2317 continue; 2318 2319 __fwnode_link_del(link); 2320 } 2321 2322 /* 2323 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2324 * all the descendants. This proxy link step is needed to handle the 2325 * case where the supplier is added before the consumer's parent device 2326 * (@dev). 2327 */ 2328 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2329 __fw_devlink_link_to_suppliers(dev, child); 2330 } 2331 2332 static void fw_devlink_link_device(struct device *dev) 2333 { 2334 struct fwnode_handle *fwnode = dev->fwnode; 2335 2336 if (!fw_devlink_flags) 2337 return; 2338 2339 fw_devlink_parse_fwtree(fwnode); 2340 2341 mutex_lock(&fwnode_link_lock); 2342 __fw_devlink_link_to_consumers(dev); 2343 __fw_devlink_link_to_suppliers(dev, fwnode); 2344 mutex_unlock(&fwnode_link_lock); 2345 } 2346 2347 /* Device links support end. */ 2348 2349 int (*platform_notify)(struct device *dev) = NULL; 2350 int (*platform_notify_remove)(struct device *dev) = NULL; 2351 static struct kobject *dev_kobj; 2352 2353 /* /sys/dev/char */ 2354 static struct kobject *sysfs_dev_char_kobj; 2355 2356 /* /sys/dev/block */ 2357 static struct kobject *sysfs_dev_block_kobj; 2358 2359 static DEFINE_MUTEX(device_hotplug_lock); 2360 2361 void lock_device_hotplug(void) 2362 { 2363 mutex_lock(&device_hotplug_lock); 2364 } 2365 2366 void unlock_device_hotplug(void) 2367 { 2368 mutex_unlock(&device_hotplug_lock); 2369 } 2370 2371 int lock_device_hotplug_sysfs(void) 2372 { 2373 if (mutex_trylock(&device_hotplug_lock)) 2374 return 0; 2375 2376 /* Avoid busy looping (5 ms of sleep should do). */ 2377 msleep(5); 2378 return restart_syscall(); 2379 } 2380 2381 #ifdef CONFIG_BLOCK 2382 static inline int device_is_not_partition(struct device *dev) 2383 { 2384 return !(dev->type == &part_type); 2385 } 2386 #else 2387 static inline int device_is_not_partition(struct device *dev) 2388 { 2389 return 1; 2390 } 2391 #endif 2392 2393 static void device_platform_notify(struct device *dev) 2394 { 2395 acpi_device_notify(dev); 2396 2397 software_node_notify(dev); 2398 2399 if (platform_notify) 2400 platform_notify(dev); 2401 } 2402 2403 static void device_platform_notify_remove(struct device *dev) 2404 { 2405 if (platform_notify_remove) 2406 platform_notify_remove(dev); 2407 2408 software_node_notify_remove(dev); 2409 2410 acpi_device_notify_remove(dev); 2411 } 2412 2413 /** 2414 * dev_driver_string - Return a device's driver name, if at all possible 2415 * @dev: struct device to get the name of 2416 * 2417 * Will return the device's driver's name if it is bound to a device. If 2418 * the device is not bound to a driver, it will return the name of the bus 2419 * it is attached to. If it is not attached to a bus either, an empty 2420 * string will be returned. 2421 */ 2422 const char *dev_driver_string(const struct device *dev) 2423 { 2424 struct device_driver *drv; 2425 2426 /* dev->driver can change to NULL underneath us because of unbinding, 2427 * so be careful about accessing it. dev->bus and dev->class should 2428 * never change once they are set, so they don't need special care. 2429 */ 2430 drv = READ_ONCE(dev->driver); 2431 return drv ? drv->name : dev_bus_name(dev); 2432 } 2433 EXPORT_SYMBOL(dev_driver_string); 2434 2435 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2436 2437 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2438 char *buf) 2439 { 2440 struct device_attribute *dev_attr = to_dev_attr(attr); 2441 struct device *dev = kobj_to_dev(kobj); 2442 ssize_t ret = -EIO; 2443 2444 if (dev_attr->show) 2445 ret = dev_attr->show(dev, dev_attr, buf); 2446 if (ret >= (ssize_t)PAGE_SIZE) { 2447 printk("dev_attr_show: %pS returned bad count\n", 2448 dev_attr->show); 2449 } 2450 return ret; 2451 } 2452 2453 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2454 const char *buf, size_t count) 2455 { 2456 struct device_attribute *dev_attr = to_dev_attr(attr); 2457 struct device *dev = kobj_to_dev(kobj); 2458 ssize_t ret = -EIO; 2459 2460 if (dev_attr->store) 2461 ret = dev_attr->store(dev, dev_attr, buf, count); 2462 return ret; 2463 } 2464 2465 static const struct sysfs_ops dev_sysfs_ops = { 2466 .show = dev_attr_show, 2467 .store = dev_attr_store, 2468 }; 2469 2470 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2471 2472 ssize_t device_store_ulong(struct device *dev, 2473 struct device_attribute *attr, 2474 const char *buf, size_t size) 2475 { 2476 struct dev_ext_attribute *ea = to_ext_attr(attr); 2477 int ret; 2478 unsigned long new; 2479 2480 ret = kstrtoul(buf, 0, &new); 2481 if (ret) 2482 return ret; 2483 *(unsigned long *)(ea->var) = new; 2484 /* Always return full write size even if we didn't consume all */ 2485 return size; 2486 } 2487 EXPORT_SYMBOL_GPL(device_store_ulong); 2488 2489 ssize_t device_show_ulong(struct device *dev, 2490 struct device_attribute *attr, 2491 char *buf) 2492 { 2493 struct dev_ext_attribute *ea = to_ext_attr(attr); 2494 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2495 } 2496 EXPORT_SYMBOL_GPL(device_show_ulong); 2497 2498 ssize_t device_store_int(struct device *dev, 2499 struct device_attribute *attr, 2500 const char *buf, size_t size) 2501 { 2502 struct dev_ext_attribute *ea = to_ext_attr(attr); 2503 int ret; 2504 long new; 2505 2506 ret = kstrtol(buf, 0, &new); 2507 if (ret) 2508 return ret; 2509 2510 if (new > INT_MAX || new < INT_MIN) 2511 return -EINVAL; 2512 *(int *)(ea->var) = new; 2513 /* Always return full write size even if we didn't consume all */ 2514 return size; 2515 } 2516 EXPORT_SYMBOL_GPL(device_store_int); 2517 2518 ssize_t device_show_int(struct device *dev, 2519 struct device_attribute *attr, 2520 char *buf) 2521 { 2522 struct dev_ext_attribute *ea = to_ext_attr(attr); 2523 2524 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2525 } 2526 EXPORT_SYMBOL_GPL(device_show_int); 2527 2528 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2529 const char *buf, size_t size) 2530 { 2531 struct dev_ext_attribute *ea = to_ext_attr(attr); 2532 2533 if (kstrtobool(buf, ea->var) < 0) 2534 return -EINVAL; 2535 2536 return size; 2537 } 2538 EXPORT_SYMBOL_GPL(device_store_bool); 2539 2540 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2541 char *buf) 2542 { 2543 struct dev_ext_attribute *ea = to_ext_attr(attr); 2544 2545 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2546 } 2547 EXPORT_SYMBOL_GPL(device_show_bool); 2548 2549 /** 2550 * device_release - free device structure. 2551 * @kobj: device's kobject. 2552 * 2553 * This is called once the reference count for the object 2554 * reaches 0. We forward the call to the device's release 2555 * method, which should handle actually freeing the structure. 2556 */ 2557 static void device_release(struct kobject *kobj) 2558 { 2559 struct device *dev = kobj_to_dev(kobj); 2560 struct device_private *p = dev->p; 2561 2562 /* 2563 * Some platform devices are driven without driver attached 2564 * and managed resources may have been acquired. Make sure 2565 * all resources are released. 2566 * 2567 * Drivers still can add resources into device after device 2568 * is deleted but alive, so release devres here to avoid 2569 * possible memory leak. 2570 */ 2571 devres_release_all(dev); 2572 2573 kfree(dev->dma_range_map); 2574 2575 if (dev->release) 2576 dev->release(dev); 2577 else if (dev->type && dev->type->release) 2578 dev->type->release(dev); 2579 else if (dev->class && dev->class->dev_release) 2580 dev->class->dev_release(dev); 2581 else 2582 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2583 dev_name(dev)); 2584 kfree(p); 2585 } 2586 2587 static const void *device_namespace(const struct kobject *kobj) 2588 { 2589 const struct device *dev = kobj_to_dev(kobj); 2590 const void *ns = NULL; 2591 2592 if (dev->class && dev->class->ns_type) 2593 ns = dev->class->namespace(dev); 2594 2595 return ns; 2596 } 2597 2598 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2599 { 2600 const struct device *dev = kobj_to_dev(kobj); 2601 2602 if (dev->class && dev->class->get_ownership) 2603 dev->class->get_ownership(dev, uid, gid); 2604 } 2605 2606 static const struct kobj_type device_ktype = { 2607 .release = device_release, 2608 .sysfs_ops = &dev_sysfs_ops, 2609 .namespace = device_namespace, 2610 .get_ownership = device_get_ownership, 2611 }; 2612 2613 2614 static int dev_uevent_filter(const struct kobject *kobj) 2615 { 2616 const struct kobj_type *ktype = get_ktype(kobj); 2617 2618 if (ktype == &device_ktype) { 2619 const struct device *dev = kobj_to_dev(kobj); 2620 if (dev->bus) 2621 return 1; 2622 if (dev->class) 2623 return 1; 2624 } 2625 return 0; 2626 } 2627 2628 static const char *dev_uevent_name(const struct kobject *kobj) 2629 { 2630 const struct device *dev = kobj_to_dev(kobj); 2631 2632 if (dev->bus) 2633 return dev->bus->name; 2634 if (dev->class) 2635 return dev->class->name; 2636 return NULL; 2637 } 2638 2639 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2640 { 2641 const struct device *dev = kobj_to_dev(kobj); 2642 int retval = 0; 2643 2644 /* add device node properties if present */ 2645 if (MAJOR(dev->devt)) { 2646 const char *tmp; 2647 const char *name; 2648 umode_t mode = 0; 2649 kuid_t uid = GLOBAL_ROOT_UID; 2650 kgid_t gid = GLOBAL_ROOT_GID; 2651 2652 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2653 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2654 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2655 if (name) { 2656 add_uevent_var(env, "DEVNAME=%s", name); 2657 if (mode) 2658 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2659 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2660 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2661 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2662 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2663 kfree(tmp); 2664 } 2665 } 2666 2667 if (dev->type && dev->type->name) 2668 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2669 2670 if (dev->driver) 2671 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2672 2673 /* Add common DT information about the device */ 2674 of_device_uevent(dev, env); 2675 2676 /* have the bus specific function add its stuff */ 2677 if (dev->bus && dev->bus->uevent) { 2678 retval = dev->bus->uevent(dev, env); 2679 if (retval) 2680 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2681 dev_name(dev), __func__, retval); 2682 } 2683 2684 /* have the class specific function add its stuff */ 2685 if (dev->class && dev->class->dev_uevent) { 2686 retval = dev->class->dev_uevent(dev, env); 2687 if (retval) 2688 pr_debug("device: '%s': %s: class uevent() " 2689 "returned %d\n", dev_name(dev), 2690 __func__, retval); 2691 } 2692 2693 /* have the device type specific function add its stuff */ 2694 if (dev->type && dev->type->uevent) { 2695 retval = dev->type->uevent(dev, env); 2696 if (retval) 2697 pr_debug("device: '%s': %s: dev_type uevent() " 2698 "returned %d\n", dev_name(dev), 2699 __func__, retval); 2700 } 2701 2702 return retval; 2703 } 2704 2705 static const struct kset_uevent_ops device_uevent_ops = { 2706 .filter = dev_uevent_filter, 2707 .name = dev_uevent_name, 2708 .uevent = dev_uevent, 2709 }; 2710 2711 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2712 char *buf) 2713 { 2714 struct kobject *top_kobj; 2715 struct kset *kset; 2716 struct kobj_uevent_env *env = NULL; 2717 int i; 2718 int len = 0; 2719 int retval; 2720 2721 /* search the kset, the device belongs to */ 2722 top_kobj = &dev->kobj; 2723 while (!top_kobj->kset && top_kobj->parent) 2724 top_kobj = top_kobj->parent; 2725 if (!top_kobj->kset) 2726 goto out; 2727 2728 kset = top_kobj->kset; 2729 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2730 goto out; 2731 2732 /* respect filter */ 2733 if (kset->uevent_ops && kset->uevent_ops->filter) 2734 if (!kset->uevent_ops->filter(&dev->kobj)) 2735 goto out; 2736 2737 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2738 if (!env) 2739 return -ENOMEM; 2740 2741 /* let the kset specific function add its keys */ 2742 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2743 if (retval) 2744 goto out; 2745 2746 /* copy keys to file */ 2747 for (i = 0; i < env->envp_idx; i++) 2748 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2749 out: 2750 kfree(env); 2751 return len; 2752 } 2753 2754 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2755 const char *buf, size_t count) 2756 { 2757 int rc; 2758 2759 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2760 2761 if (rc) { 2762 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2763 return rc; 2764 } 2765 2766 return count; 2767 } 2768 static DEVICE_ATTR_RW(uevent); 2769 2770 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2771 char *buf) 2772 { 2773 bool val; 2774 2775 device_lock(dev); 2776 val = !dev->offline; 2777 device_unlock(dev); 2778 return sysfs_emit(buf, "%u\n", val); 2779 } 2780 2781 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2782 const char *buf, size_t count) 2783 { 2784 bool val; 2785 int ret; 2786 2787 ret = kstrtobool(buf, &val); 2788 if (ret < 0) 2789 return ret; 2790 2791 ret = lock_device_hotplug_sysfs(); 2792 if (ret) 2793 return ret; 2794 2795 ret = val ? device_online(dev) : device_offline(dev); 2796 unlock_device_hotplug(); 2797 return ret < 0 ? ret : count; 2798 } 2799 static DEVICE_ATTR_RW(online); 2800 2801 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2802 char *buf) 2803 { 2804 const char *loc; 2805 2806 switch (dev->removable) { 2807 case DEVICE_REMOVABLE: 2808 loc = "removable"; 2809 break; 2810 case DEVICE_FIXED: 2811 loc = "fixed"; 2812 break; 2813 default: 2814 loc = "unknown"; 2815 } 2816 return sysfs_emit(buf, "%s\n", loc); 2817 } 2818 static DEVICE_ATTR_RO(removable); 2819 2820 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2821 { 2822 return sysfs_create_groups(&dev->kobj, groups); 2823 } 2824 EXPORT_SYMBOL_GPL(device_add_groups); 2825 2826 void device_remove_groups(struct device *dev, 2827 const struct attribute_group **groups) 2828 { 2829 sysfs_remove_groups(&dev->kobj, groups); 2830 } 2831 EXPORT_SYMBOL_GPL(device_remove_groups); 2832 2833 union device_attr_group_devres { 2834 const struct attribute_group *group; 2835 const struct attribute_group **groups; 2836 }; 2837 2838 static void devm_attr_group_remove(struct device *dev, void *res) 2839 { 2840 union device_attr_group_devres *devres = res; 2841 const struct attribute_group *group = devres->group; 2842 2843 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2844 sysfs_remove_group(&dev->kobj, group); 2845 } 2846 2847 static void devm_attr_groups_remove(struct device *dev, void *res) 2848 { 2849 union device_attr_group_devres *devres = res; 2850 const struct attribute_group **groups = devres->groups; 2851 2852 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2853 sysfs_remove_groups(&dev->kobj, groups); 2854 } 2855 2856 /** 2857 * devm_device_add_group - given a device, create a managed attribute group 2858 * @dev: The device to create the group for 2859 * @grp: The attribute group to create 2860 * 2861 * This function creates a group for the first time. It will explicitly 2862 * warn and error if any of the attribute files being created already exist. 2863 * 2864 * Returns 0 on success or error code on failure. 2865 */ 2866 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2867 { 2868 union device_attr_group_devres *devres; 2869 int error; 2870 2871 devres = devres_alloc(devm_attr_group_remove, 2872 sizeof(*devres), GFP_KERNEL); 2873 if (!devres) 2874 return -ENOMEM; 2875 2876 error = sysfs_create_group(&dev->kobj, grp); 2877 if (error) { 2878 devres_free(devres); 2879 return error; 2880 } 2881 2882 devres->group = grp; 2883 devres_add(dev, devres); 2884 return 0; 2885 } 2886 EXPORT_SYMBOL_GPL(devm_device_add_group); 2887 2888 /** 2889 * devm_device_add_groups - create a bunch of managed attribute groups 2890 * @dev: The device to create the group for 2891 * @groups: The attribute groups to create, NULL terminated 2892 * 2893 * This function creates a bunch of managed attribute groups. If an error 2894 * occurs when creating a group, all previously created groups will be 2895 * removed, unwinding everything back to the original state when this 2896 * function was called. It will explicitly warn and error if any of the 2897 * attribute files being created already exist. 2898 * 2899 * Returns 0 on success or error code from sysfs_create_group on failure. 2900 */ 2901 int devm_device_add_groups(struct device *dev, 2902 const struct attribute_group **groups) 2903 { 2904 union device_attr_group_devres *devres; 2905 int error; 2906 2907 devres = devres_alloc(devm_attr_groups_remove, 2908 sizeof(*devres), GFP_KERNEL); 2909 if (!devres) 2910 return -ENOMEM; 2911 2912 error = sysfs_create_groups(&dev->kobj, groups); 2913 if (error) { 2914 devres_free(devres); 2915 return error; 2916 } 2917 2918 devres->groups = groups; 2919 devres_add(dev, devres); 2920 return 0; 2921 } 2922 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2923 2924 static int device_add_attrs(struct device *dev) 2925 { 2926 const struct class *class = dev->class; 2927 const struct device_type *type = dev->type; 2928 int error; 2929 2930 if (class) { 2931 error = device_add_groups(dev, class->dev_groups); 2932 if (error) 2933 return error; 2934 } 2935 2936 if (type) { 2937 error = device_add_groups(dev, type->groups); 2938 if (error) 2939 goto err_remove_class_groups; 2940 } 2941 2942 error = device_add_groups(dev, dev->groups); 2943 if (error) 2944 goto err_remove_type_groups; 2945 2946 if (device_supports_offline(dev) && !dev->offline_disabled) { 2947 error = device_create_file(dev, &dev_attr_online); 2948 if (error) 2949 goto err_remove_dev_groups; 2950 } 2951 2952 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2953 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2954 if (error) 2955 goto err_remove_dev_online; 2956 } 2957 2958 if (dev_removable_is_valid(dev)) { 2959 error = device_create_file(dev, &dev_attr_removable); 2960 if (error) 2961 goto err_remove_dev_waiting_for_supplier; 2962 } 2963 2964 if (dev_add_physical_location(dev)) { 2965 error = device_add_group(dev, 2966 &dev_attr_physical_location_group); 2967 if (error) 2968 goto err_remove_dev_removable; 2969 } 2970 2971 return 0; 2972 2973 err_remove_dev_removable: 2974 device_remove_file(dev, &dev_attr_removable); 2975 err_remove_dev_waiting_for_supplier: 2976 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2977 err_remove_dev_online: 2978 device_remove_file(dev, &dev_attr_online); 2979 err_remove_dev_groups: 2980 device_remove_groups(dev, dev->groups); 2981 err_remove_type_groups: 2982 if (type) 2983 device_remove_groups(dev, type->groups); 2984 err_remove_class_groups: 2985 if (class) 2986 device_remove_groups(dev, class->dev_groups); 2987 2988 return error; 2989 } 2990 2991 static void device_remove_attrs(struct device *dev) 2992 { 2993 const struct class *class = dev->class; 2994 const struct device_type *type = dev->type; 2995 2996 if (dev->physical_location) { 2997 device_remove_group(dev, &dev_attr_physical_location_group); 2998 kfree(dev->physical_location); 2999 } 3000 3001 device_remove_file(dev, &dev_attr_removable); 3002 device_remove_file(dev, &dev_attr_waiting_for_supplier); 3003 device_remove_file(dev, &dev_attr_online); 3004 device_remove_groups(dev, dev->groups); 3005 3006 if (type) 3007 device_remove_groups(dev, type->groups); 3008 3009 if (class) 3010 device_remove_groups(dev, class->dev_groups); 3011 } 3012 3013 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 3014 char *buf) 3015 { 3016 return print_dev_t(buf, dev->devt); 3017 } 3018 static DEVICE_ATTR_RO(dev); 3019 3020 /* /sys/devices/ */ 3021 struct kset *devices_kset; 3022 3023 /** 3024 * devices_kset_move_before - Move device in the devices_kset's list. 3025 * @deva: Device to move. 3026 * @devb: Device @deva should come before. 3027 */ 3028 static void devices_kset_move_before(struct device *deva, struct device *devb) 3029 { 3030 if (!devices_kset) 3031 return; 3032 pr_debug("devices_kset: Moving %s before %s\n", 3033 dev_name(deva), dev_name(devb)); 3034 spin_lock(&devices_kset->list_lock); 3035 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3036 spin_unlock(&devices_kset->list_lock); 3037 } 3038 3039 /** 3040 * devices_kset_move_after - Move device in the devices_kset's list. 3041 * @deva: Device to move 3042 * @devb: Device @deva should come after. 3043 */ 3044 static void devices_kset_move_after(struct device *deva, struct device *devb) 3045 { 3046 if (!devices_kset) 3047 return; 3048 pr_debug("devices_kset: Moving %s after %s\n", 3049 dev_name(deva), dev_name(devb)); 3050 spin_lock(&devices_kset->list_lock); 3051 list_move(&deva->kobj.entry, &devb->kobj.entry); 3052 spin_unlock(&devices_kset->list_lock); 3053 } 3054 3055 /** 3056 * devices_kset_move_last - move the device to the end of devices_kset's list. 3057 * @dev: device to move 3058 */ 3059 void devices_kset_move_last(struct device *dev) 3060 { 3061 if (!devices_kset) 3062 return; 3063 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3064 spin_lock(&devices_kset->list_lock); 3065 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3066 spin_unlock(&devices_kset->list_lock); 3067 } 3068 3069 /** 3070 * device_create_file - create sysfs attribute file for device. 3071 * @dev: device. 3072 * @attr: device attribute descriptor. 3073 */ 3074 int device_create_file(struct device *dev, 3075 const struct device_attribute *attr) 3076 { 3077 int error = 0; 3078 3079 if (dev) { 3080 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3081 "Attribute %s: write permission without 'store'\n", 3082 attr->attr.name); 3083 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3084 "Attribute %s: read permission without 'show'\n", 3085 attr->attr.name); 3086 error = sysfs_create_file(&dev->kobj, &attr->attr); 3087 } 3088 3089 return error; 3090 } 3091 EXPORT_SYMBOL_GPL(device_create_file); 3092 3093 /** 3094 * device_remove_file - remove sysfs attribute file. 3095 * @dev: device. 3096 * @attr: device attribute descriptor. 3097 */ 3098 void device_remove_file(struct device *dev, 3099 const struct device_attribute *attr) 3100 { 3101 if (dev) 3102 sysfs_remove_file(&dev->kobj, &attr->attr); 3103 } 3104 EXPORT_SYMBOL_GPL(device_remove_file); 3105 3106 /** 3107 * device_remove_file_self - remove sysfs attribute file from its own method. 3108 * @dev: device. 3109 * @attr: device attribute descriptor. 3110 * 3111 * See kernfs_remove_self() for details. 3112 */ 3113 bool device_remove_file_self(struct device *dev, 3114 const struct device_attribute *attr) 3115 { 3116 if (dev) 3117 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3118 else 3119 return false; 3120 } 3121 EXPORT_SYMBOL_GPL(device_remove_file_self); 3122 3123 /** 3124 * device_create_bin_file - create sysfs binary attribute file for device. 3125 * @dev: device. 3126 * @attr: device binary attribute descriptor. 3127 */ 3128 int device_create_bin_file(struct device *dev, 3129 const struct bin_attribute *attr) 3130 { 3131 int error = -EINVAL; 3132 if (dev) 3133 error = sysfs_create_bin_file(&dev->kobj, attr); 3134 return error; 3135 } 3136 EXPORT_SYMBOL_GPL(device_create_bin_file); 3137 3138 /** 3139 * device_remove_bin_file - remove sysfs binary attribute file 3140 * @dev: device. 3141 * @attr: device binary attribute descriptor. 3142 */ 3143 void device_remove_bin_file(struct device *dev, 3144 const struct bin_attribute *attr) 3145 { 3146 if (dev) 3147 sysfs_remove_bin_file(&dev->kobj, attr); 3148 } 3149 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3150 3151 static void klist_children_get(struct klist_node *n) 3152 { 3153 struct device_private *p = to_device_private_parent(n); 3154 struct device *dev = p->device; 3155 3156 get_device(dev); 3157 } 3158 3159 static void klist_children_put(struct klist_node *n) 3160 { 3161 struct device_private *p = to_device_private_parent(n); 3162 struct device *dev = p->device; 3163 3164 put_device(dev); 3165 } 3166 3167 /** 3168 * device_initialize - init device structure. 3169 * @dev: device. 3170 * 3171 * This prepares the device for use by other layers by initializing 3172 * its fields. 3173 * It is the first half of device_register(), if called by 3174 * that function, though it can also be called separately, so one 3175 * may use @dev's fields. In particular, get_device()/put_device() 3176 * may be used for reference counting of @dev after calling this 3177 * function. 3178 * 3179 * All fields in @dev must be initialized by the caller to 0, except 3180 * for those explicitly set to some other value. The simplest 3181 * approach is to use kzalloc() to allocate the structure containing 3182 * @dev. 3183 * 3184 * NOTE: Use put_device() to give up your reference instead of freeing 3185 * @dev directly once you have called this function. 3186 */ 3187 void device_initialize(struct device *dev) 3188 { 3189 dev->kobj.kset = devices_kset; 3190 kobject_init(&dev->kobj, &device_ktype); 3191 INIT_LIST_HEAD(&dev->dma_pools); 3192 mutex_init(&dev->mutex); 3193 lockdep_set_novalidate_class(&dev->mutex); 3194 spin_lock_init(&dev->devres_lock); 3195 INIT_LIST_HEAD(&dev->devres_head); 3196 device_pm_init(dev); 3197 set_dev_node(dev, NUMA_NO_NODE); 3198 INIT_LIST_HEAD(&dev->links.consumers); 3199 INIT_LIST_HEAD(&dev->links.suppliers); 3200 INIT_LIST_HEAD(&dev->links.defer_sync); 3201 dev->links.status = DL_DEV_NO_DRIVER; 3202 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3203 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3204 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3205 dev->dma_coherent = dma_default_coherent; 3206 #endif 3207 swiotlb_dev_init(dev); 3208 } 3209 EXPORT_SYMBOL_GPL(device_initialize); 3210 3211 struct kobject *virtual_device_parent(struct device *dev) 3212 { 3213 static struct kobject *virtual_dir = NULL; 3214 3215 if (!virtual_dir) 3216 virtual_dir = kobject_create_and_add("virtual", 3217 &devices_kset->kobj); 3218 3219 return virtual_dir; 3220 } 3221 3222 struct class_dir { 3223 struct kobject kobj; 3224 const struct class *class; 3225 }; 3226 3227 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3228 3229 static void class_dir_release(struct kobject *kobj) 3230 { 3231 struct class_dir *dir = to_class_dir(kobj); 3232 kfree(dir); 3233 } 3234 3235 static const 3236 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3237 { 3238 const struct class_dir *dir = to_class_dir(kobj); 3239 return dir->class->ns_type; 3240 } 3241 3242 static const struct kobj_type class_dir_ktype = { 3243 .release = class_dir_release, 3244 .sysfs_ops = &kobj_sysfs_ops, 3245 .child_ns_type = class_dir_child_ns_type 3246 }; 3247 3248 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3249 struct kobject *parent_kobj) 3250 { 3251 struct class_dir *dir; 3252 int retval; 3253 3254 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3255 if (!dir) 3256 return ERR_PTR(-ENOMEM); 3257 3258 dir->class = sp->class; 3259 kobject_init(&dir->kobj, &class_dir_ktype); 3260 3261 dir->kobj.kset = &sp->glue_dirs; 3262 3263 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3264 if (retval < 0) { 3265 kobject_put(&dir->kobj); 3266 return ERR_PTR(retval); 3267 } 3268 return &dir->kobj; 3269 } 3270 3271 static DEFINE_MUTEX(gdp_mutex); 3272 3273 static struct kobject *get_device_parent(struct device *dev, 3274 struct device *parent) 3275 { 3276 struct subsys_private *sp = class_to_subsys(dev->class); 3277 struct kobject *kobj = NULL; 3278 3279 if (sp) { 3280 struct kobject *parent_kobj; 3281 struct kobject *k; 3282 3283 /* 3284 * If we have no parent, we live in "virtual". 3285 * Class-devices with a non class-device as parent, live 3286 * in a "glue" directory to prevent namespace collisions. 3287 */ 3288 if (parent == NULL) 3289 parent_kobj = virtual_device_parent(dev); 3290 else if (parent->class && !dev->class->ns_type) { 3291 subsys_put(sp); 3292 return &parent->kobj; 3293 } else { 3294 parent_kobj = &parent->kobj; 3295 } 3296 3297 mutex_lock(&gdp_mutex); 3298 3299 /* find our class-directory at the parent and reference it */ 3300 spin_lock(&sp->glue_dirs.list_lock); 3301 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3302 if (k->parent == parent_kobj) { 3303 kobj = kobject_get(k); 3304 break; 3305 } 3306 spin_unlock(&sp->glue_dirs.list_lock); 3307 if (kobj) { 3308 mutex_unlock(&gdp_mutex); 3309 subsys_put(sp); 3310 return kobj; 3311 } 3312 3313 /* or create a new class-directory at the parent device */ 3314 k = class_dir_create_and_add(sp, parent_kobj); 3315 /* do not emit an uevent for this simple "glue" directory */ 3316 mutex_unlock(&gdp_mutex); 3317 subsys_put(sp); 3318 return k; 3319 } 3320 3321 /* subsystems can specify a default root directory for their devices */ 3322 if (!parent && dev->bus) { 3323 struct device *dev_root = bus_get_dev_root(dev->bus); 3324 3325 if (dev_root) { 3326 kobj = &dev_root->kobj; 3327 put_device(dev_root); 3328 return kobj; 3329 } 3330 } 3331 3332 if (parent) 3333 return &parent->kobj; 3334 return NULL; 3335 } 3336 3337 static inline bool live_in_glue_dir(struct kobject *kobj, 3338 struct device *dev) 3339 { 3340 struct subsys_private *sp; 3341 bool retval; 3342 3343 if (!kobj || !dev->class) 3344 return false; 3345 3346 sp = class_to_subsys(dev->class); 3347 if (!sp) 3348 return false; 3349 3350 if (kobj->kset == &sp->glue_dirs) 3351 retval = true; 3352 else 3353 retval = false; 3354 3355 subsys_put(sp); 3356 return retval; 3357 } 3358 3359 static inline struct kobject *get_glue_dir(struct device *dev) 3360 { 3361 return dev->kobj.parent; 3362 } 3363 3364 /** 3365 * kobject_has_children - Returns whether a kobject has children. 3366 * @kobj: the object to test 3367 * 3368 * This will return whether a kobject has other kobjects as children. 3369 * 3370 * It does NOT account for the presence of attribute files, only sub 3371 * directories. It also assumes there is no concurrent addition or 3372 * removal of such children, and thus relies on external locking. 3373 */ 3374 static inline bool kobject_has_children(struct kobject *kobj) 3375 { 3376 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3377 3378 return kobj->sd && kobj->sd->dir.subdirs; 3379 } 3380 3381 /* 3382 * make sure cleaning up dir as the last step, we need to make 3383 * sure .release handler of kobject is run with holding the 3384 * global lock 3385 */ 3386 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3387 { 3388 unsigned int ref; 3389 3390 /* see if we live in a "glue" directory */ 3391 if (!live_in_glue_dir(glue_dir, dev)) 3392 return; 3393 3394 mutex_lock(&gdp_mutex); 3395 /** 3396 * There is a race condition between removing glue directory 3397 * and adding a new device under the glue directory. 3398 * 3399 * CPU1: CPU2: 3400 * 3401 * device_add() 3402 * get_device_parent() 3403 * class_dir_create_and_add() 3404 * kobject_add_internal() 3405 * create_dir() // create glue_dir 3406 * 3407 * device_add() 3408 * get_device_parent() 3409 * kobject_get() // get glue_dir 3410 * 3411 * device_del() 3412 * cleanup_glue_dir() 3413 * kobject_del(glue_dir) 3414 * 3415 * kobject_add() 3416 * kobject_add_internal() 3417 * create_dir() // in glue_dir 3418 * sysfs_create_dir_ns() 3419 * kernfs_create_dir_ns(sd) 3420 * 3421 * sysfs_remove_dir() // glue_dir->sd=NULL 3422 * sysfs_put() // free glue_dir->sd 3423 * 3424 * // sd is freed 3425 * kernfs_new_node(sd) 3426 * kernfs_get(glue_dir) 3427 * kernfs_add_one() 3428 * kernfs_put() 3429 * 3430 * Before CPU1 remove last child device under glue dir, if CPU2 add 3431 * a new device under glue dir, the glue_dir kobject reference count 3432 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3433 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3434 * and sysfs_put(). This result in glue_dir->sd is freed. 3435 * 3436 * Then the CPU2 will see a stale "empty" but still potentially used 3437 * glue dir around in kernfs_new_node(). 3438 * 3439 * In order to avoid this happening, we also should make sure that 3440 * kernfs_node for glue_dir is released in CPU1 only when refcount 3441 * for glue_dir kobj is 1. 3442 */ 3443 ref = kref_read(&glue_dir->kref); 3444 if (!kobject_has_children(glue_dir) && !--ref) 3445 kobject_del(glue_dir); 3446 kobject_put(glue_dir); 3447 mutex_unlock(&gdp_mutex); 3448 } 3449 3450 static int device_add_class_symlinks(struct device *dev) 3451 { 3452 struct device_node *of_node = dev_of_node(dev); 3453 struct subsys_private *sp; 3454 int error; 3455 3456 if (of_node) { 3457 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3458 if (error) 3459 dev_warn(dev, "Error %d creating of_node link\n",error); 3460 /* An error here doesn't warrant bringing down the device */ 3461 } 3462 3463 sp = class_to_subsys(dev->class); 3464 if (!sp) 3465 return 0; 3466 3467 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3468 if (error) 3469 goto out_devnode; 3470 3471 if (dev->parent && device_is_not_partition(dev)) { 3472 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3473 "device"); 3474 if (error) 3475 goto out_subsys; 3476 } 3477 3478 /* link in the class directory pointing to the device */ 3479 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3480 if (error) 3481 goto out_device; 3482 goto exit; 3483 3484 out_device: 3485 sysfs_remove_link(&dev->kobj, "device"); 3486 out_subsys: 3487 sysfs_remove_link(&dev->kobj, "subsystem"); 3488 out_devnode: 3489 sysfs_remove_link(&dev->kobj, "of_node"); 3490 exit: 3491 subsys_put(sp); 3492 return error; 3493 } 3494 3495 static void device_remove_class_symlinks(struct device *dev) 3496 { 3497 struct subsys_private *sp = class_to_subsys(dev->class); 3498 3499 if (dev_of_node(dev)) 3500 sysfs_remove_link(&dev->kobj, "of_node"); 3501 3502 if (!sp) 3503 return; 3504 3505 if (dev->parent && device_is_not_partition(dev)) 3506 sysfs_remove_link(&dev->kobj, "device"); 3507 sysfs_remove_link(&dev->kobj, "subsystem"); 3508 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3509 subsys_put(sp); 3510 } 3511 3512 /** 3513 * dev_set_name - set a device name 3514 * @dev: device 3515 * @fmt: format string for the device's name 3516 */ 3517 int dev_set_name(struct device *dev, const char *fmt, ...) 3518 { 3519 va_list vargs; 3520 int err; 3521 3522 va_start(vargs, fmt); 3523 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3524 va_end(vargs); 3525 return err; 3526 } 3527 EXPORT_SYMBOL_GPL(dev_set_name); 3528 3529 /* select a /sys/dev/ directory for the device */ 3530 static struct kobject *device_to_dev_kobj(struct device *dev) 3531 { 3532 if (is_blockdev(dev)) 3533 return sysfs_dev_block_kobj; 3534 else 3535 return sysfs_dev_char_kobj; 3536 } 3537 3538 static int device_create_sys_dev_entry(struct device *dev) 3539 { 3540 struct kobject *kobj = device_to_dev_kobj(dev); 3541 int error = 0; 3542 char devt_str[15]; 3543 3544 if (kobj) { 3545 format_dev_t(devt_str, dev->devt); 3546 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3547 } 3548 3549 return error; 3550 } 3551 3552 static void device_remove_sys_dev_entry(struct device *dev) 3553 { 3554 struct kobject *kobj = device_to_dev_kobj(dev); 3555 char devt_str[15]; 3556 3557 if (kobj) { 3558 format_dev_t(devt_str, dev->devt); 3559 sysfs_remove_link(kobj, devt_str); 3560 } 3561 } 3562 3563 static int device_private_init(struct device *dev) 3564 { 3565 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3566 if (!dev->p) 3567 return -ENOMEM; 3568 dev->p->device = dev; 3569 klist_init(&dev->p->klist_children, klist_children_get, 3570 klist_children_put); 3571 INIT_LIST_HEAD(&dev->p->deferred_probe); 3572 return 0; 3573 } 3574 3575 /** 3576 * device_add - add device to device hierarchy. 3577 * @dev: device. 3578 * 3579 * This is part 2 of device_register(), though may be called 3580 * separately _iff_ device_initialize() has been called separately. 3581 * 3582 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3583 * to the global and sibling lists for the device, then 3584 * adds it to the other relevant subsystems of the driver model. 3585 * 3586 * Do not call this routine or device_register() more than once for 3587 * any device structure. The driver model core is not designed to work 3588 * with devices that get unregistered and then spring back to life. 3589 * (Among other things, it's very hard to guarantee that all references 3590 * to the previous incarnation of @dev have been dropped.) Allocate 3591 * and register a fresh new struct device instead. 3592 * 3593 * NOTE: _Never_ directly free @dev after calling this function, even 3594 * if it returned an error! Always use put_device() to give up your 3595 * reference instead. 3596 * 3597 * Rule of thumb is: if device_add() succeeds, you should call 3598 * device_del() when you want to get rid of it. If device_add() has 3599 * *not* succeeded, use *only* put_device() to drop the reference 3600 * count. 3601 */ 3602 int device_add(struct device *dev) 3603 { 3604 struct subsys_private *sp; 3605 struct device *parent; 3606 struct kobject *kobj; 3607 struct class_interface *class_intf; 3608 int error = -EINVAL; 3609 struct kobject *glue_dir = NULL; 3610 3611 dev = get_device(dev); 3612 if (!dev) 3613 goto done; 3614 3615 if (!dev->p) { 3616 error = device_private_init(dev); 3617 if (error) 3618 goto done; 3619 } 3620 3621 /* 3622 * for statically allocated devices, which should all be converted 3623 * some day, we need to initialize the name. We prevent reading back 3624 * the name, and force the use of dev_name() 3625 */ 3626 if (dev->init_name) { 3627 error = dev_set_name(dev, "%s", dev->init_name); 3628 dev->init_name = NULL; 3629 } 3630 3631 if (dev_name(dev)) 3632 error = 0; 3633 /* subsystems can specify simple device enumeration */ 3634 else if (dev->bus && dev->bus->dev_name) 3635 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3636 else 3637 error = -EINVAL; 3638 if (error) 3639 goto name_error; 3640 3641 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3642 3643 parent = get_device(dev->parent); 3644 kobj = get_device_parent(dev, parent); 3645 if (IS_ERR(kobj)) { 3646 error = PTR_ERR(kobj); 3647 goto parent_error; 3648 } 3649 if (kobj) 3650 dev->kobj.parent = kobj; 3651 3652 /* use parent numa_node */ 3653 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3654 set_dev_node(dev, dev_to_node(parent)); 3655 3656 /* first, register with generic layer. */ 3657 /* we require the name to be set before, and pass NULL */ 3658 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3659 if (error) { 3660 glue_dir = kobj; 3661 goto Error; 3662 } 3663 3664 /* notify platform of device entry */ 3665 device_platform_notify(dev); 3666 3667 error = device_create_file(dev, &dev_attr_uevent); 3668 if (error) 3669 goto attrError; 3670 3671 error = device_add_class_symlinks(dev); 3672 if (error) 3673 goto SymlinkError; 3674 error = device_add_attrs(dev); 3675 if (error) 3676 goto AttrsError; 3677 error = bus_add_device(dev); 3678 if (error) 3679 goto BusError; 3680 error = dpm_sysfs_add(dev); 3681 if (error) 3682 goto DPMError; 3683 device_pm_add(dev); 3684 3685 if (MAJOR(dev->devt)) { 3686 error = device_create_file(dev, &dev_attr_dev); 3687 if (error) 3688 goto DevAttrError; 3689 3690 error = device_create_sys_dev_entry(dev); 3691 if (error) 3692 goto SysEntryError; 3693 3694 devtmpfs_create_node(dev); 3695 } 3696 3697 /* Notify clients of device addition. This call must come 3698 * after dpm_sysfs_add() and before kobject_uevent(). 3699 */ 3700 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3701 kobject_uevent(&dev->kobj, KOBJ_ADD); 3702 3703 /* 3704 * Check if any of the other devices (consumers) have been waiting for 3705 * this device (supplier) to be added so that they can create a device 3706 * link to it. 3707 * 3708 * This needs to happen after device_pm_add() because device_link_add() 3709 * requires the supplier be registered before it's called. 3710 * 3711 * But this also needs to happen before bus_probe_device() to make sure 3712 * waiting consumers can link to it before the driver is bound to the 3713 * device and the driver sync_state callback is called for this device. 3714 */ 3715 if (dev->fwnode && !dev->fwnode->dev) { 3716 dev->fwnode->dev = dev; 3717 fw_devlink_link_device(dev); 3718 } 3719 3720 bus_probe_device(dev); 3721 3722 /* 3723 * If all driver registration is done and a newly added device doesn't 3724 * match with any driver, don't block its consumers from probing in 3725 * case the consumer device is able to operate without this supplier. 3726 */ 3727 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3728 fw_devlink_unblock_consumers(dev); 3729 3730 if (parent) 3731 klist_add_tail(&dev->p->knode_parent, 3732 &parent->p->klist_children); 3733 3734 sp = class_to_subsys(dev->class); 3735 if (sp) { 3736 mutex_lock(&sp->mutex); 3737 /* tie the class to the device */ 3738 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3739 3740 /* notify any interfaces that the device is here */ 3741 list_for_each_entry(class_intf, &sp->interfaces, node) 3742 if (class_intf->add_dev) 3743 class_intf->add_dev(dev); 3744 mutex_unlock(&sp->mutex); 3745 subsys_put(sp); 3746 } 3747 done: 3748 put_device(dev); 3749 return error; 3750 SysEntryError: 3751 if (MAJOR(dev->devt)) 3752 device_remove_file(dev, &dev_attr_dev); 3753 DevAttrError: 3754 device_pm_remove(dev); 3755 dpm_sysfs_remove(dev); 3756 DPMError: 3757 dev->driver = NULL; 3758 bus_remove_device(dev); 3759 BusError: 3760 device_remove_attrs(dev); 3761 AttrsError: 3762 device_remove_class_symlinks(dev); 3763 SymlinkError: 3764 device_remove_file(dev, &dev_attr_uevent); 3765 attrError: 3766 device_platform_notify_remove(dev); 3767 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3768 glue_dir = get_glue_dir(dev); 3769 kobject_del(&dev->kobj); 3770 Error: 3771 cleanup_glue_dir(dev, glue_dir); 3772 parent_error: 3773 put_device(parent); 3774 name_error: 3775 kfree(dev->p); 3776 dev->p = NULL; 3777 goto done; 3778 } 3779 EXPORT_SYMBOL_GPL(device_add); 3780 3781 /** 3782 * device_register - register a device with the system. 3783 * @dev: pointer to the device structure 3784 * 3785 * This happens in two clean steps - initialize the device 3786 * and add it to the system. The two steps can be called 3787 * separately, but this is the easiest and most common. 3788 * I.e. you should only call the two helpers separately if 3789 * have a clearly defined need to use and refcount the device 3790 * before it is added to the hierarchy. 3791 * 3792 * For more information, see the kerneldoc for device_initialize() 3793 * and device_add(). 3794 * 3795 * NOTE: _Never_ directly free @dev after calling this function, even 3796 * if it returned an error! Always use put_device() to give up the 3797 * reference initialized in this function instead. 3798 */ 3799 int device_register(struct device *dev) 3800 { 3801 device_initialize(dev); 3802 return device_add(dev); 3803 } 3804 EXPORT_SYMBOL_GPL(device_register); 3805 3806 /** 3807 * get_device - increment reference count for device. 3808 * @dev: device. 3809 * 3810 * This simply forwards the call to kobject_get(), though 3811 * we do take care to provide for the case that we get a NULL 3812 * pointer passed in. 3813 */ 3814 struct device *get_device(struct device *dev) 3815 { 3816 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3817 } 3818 EXPORT_SYMBOL_GPL(get_device); 3819 3820 /** 3821 * put_device - decrement reference count. 3822 * @dev: device in question. 3823 */ 3824 void put_device(struct device *dev) 3825 { 3826 /* might_sleep(); */ 3827 if (dev) 3828 kobject_put(&dev->kobj); 3829 } 3830 EXPORT_SYMBOL_GPL(put_device); 3831 3832 bool kill_device(struct device *dev) 3833 { 3834 /* 3835 * Require the device lock and set the "dead" flag to guarantee that 3836 * the update behavior is consistent with the other bitfields near 3837 * it and that we cannot have an asynchronous probe routine trying 3838 * to run while we are tearing out the bus/class/sysfs from 3839 * underneath the device. 3840 */ 3841 device_lock_assert(dev); 3842 3843 if (dev->p->dead) 3844 return false; 3845 dev->p->dead = true; 3846 return true; 3847 } 3848 EXPORT_SYMBOL_GPL(kill_device); 3849 3850 /** 3851 * device_del - delete device from system. 3852 * @dev: device. 3853 * 3854 * This is the first part of the device unregistration 3855 * sequence. This removes the device from the lists we control 3856 * from here, has it removed from the other driver model 3857 * subsystems it was added to in device_add(), and removes it 3858 * from the kobject hierarchy. 3859 * 3860 * NOTE: this should be called manually _iff_ device_add() was 3861 * also called manually. 3862 */ 3863 void device_del(struct device *dev) 3864 { 3865 struct subsys_private *sp; 3866 struct device *parent = dev->parent; 3867 struct kobject *glue_dir = NULL; 3868 struct class_interface *class_intf; 3869 unsigned int noio_flag; 3870 3871 device_lock(dev); 3872 kill_device(dev); 3873 device_unlock(dev); 3874 3875 if (dev->fwnode && dev->fwnode->dev == dev) 3876 dev->fwnode->dev = NULL; 3877 3878 /* Notify clients of device removal. This call must come 3879 * before dpm_sysfs_remove(). 3880 */ 3881 noio_flag = memalloc_noio_save(); 3882 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3883 3884 dpm_sysfs_remove(dev); 3885 if (parent) 3886 klist_del(&dev->p->knode_parent); 3887 if (MAJOR(dev->devt)) { 3888 devtmpfs_delete_node(dev); 3889 device_remove_sys_dev_entry(dev); 3890 device_remove_file(dev, &dev_attr_dev); 3891 } 3892 3893 sp = class_to_subsys(dev->class); 3894 if (sp) { 3895 device_remove_class_symlinks(dev); 3896 3897 mutex_lock(&sp->mutex); 3898 /* notify any interfaces that the device is now gone */ 3899 list_for_each_entry(class_intf, &sp->interfaces, node) 3900 if (class_intf->remove_dev) 3901 class_intf->remove_dev(dev); 3902 /* remove the device from the class list */ 3903 klist_del(&dev->p->knode_class); 3904 mutex_unlock(&sp->mutex); 3905 subsys_put(sp); 3906 } 3907 device_remove_file(dev, &dev_attr_uevent); 3908 device_remove_attrs(dev); 3909 bus_remove_device(dev); 3910 device_pm_remove(dev); 3911 driver_deferred_probe_del(dev); 3912 device_platform_notify_remove(dev); 3913 device_links_purge(dev); 3914 3915 /* 3916 * If a device does not have a driver attached, we need to clean 3917 * up any managed resources. We do this in device_release(), but 3918 * it's never called (and we leak the device) if a managed 3919 * resource holds a reference to the device. So release all 3920 * managed resources here, like we do in driver_detach(). We 3921 * still need to do so again in device_release() in case someone 3922 * adds a new resource after this point, though. 3923 */ 3924 devres_release_all(dev); 3925 3926 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3927 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3928 glue_dir = get_glue_dir(dev); 3929 kobject_del(&dev->kobj); 3930 cleanup_glue_dir(dev, glue_dir); 3931 memalloc_noio_restore(noio_flag); 3932 put_device(parent); 3933 } 3934 EXPORT_SYMBOL_GPL(device_del); 3935 3936 /** 3937 * device_unregister - unregister device from system. 3938 * @dev: device going away. 3939 * 3940 * We do this in two parts, like we do device_register(). First, 3941 * we remove it from all the subsystems with device_del(), then 3942 * we decrement the reference count via put_device(). If that 3943 * is the final reference count, the device will be cleaned up 3944 * via device_release() above. Otherwise, the structure will 3945 * stick around until the final reference to the device is dropped. 3946 */ 3947 void device_unregister(struct device *dev) 3948 { 3949 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3950 device_del(dev); 3951 put_device(dev); 3952 } 3953 EXPORT_SYMBOL_GPL(device_unregister); 3954 3955 static struct device *prev_device(struct klist_iter *i) 3956 { 3957 struct klist_node *n = klist_prev(i); 3958 struct device *dev = NULL; 3959 struct device_private *p; 3960 3961 if (n) { 3962 p = to_device_private_parent(n); 3963 dev = p->device; 3964 } 3965 return dev; 3966 } 3967 3968 static struct device *next_device(struct klist_iter *i) 3969 { 3970 struct klist_node *n = klist_next(i); 3971 struct device *dev = NULL; 3972 struct device_private *p; 3973 3974 if (n) { 3975 p = to_device_private_parent(n); 3976 dev = p->device; 3977 } 3978 return dev; 3979 } 3980 3981 /** 3982 * device_get_devnode - path of device node file 3983 * @dev: device 3984 * @mode: returned file access mode 3985 * @uid: returned file owner 3986 * @gid: returned file group 3987 * @tmp: possibly allocated string 3988 * 3989 * Return the relative path of a possible device node. 3990 * Non-default names may need to allocate a memory to compose 3991 * a name. This memory is returned in tmp and needs to be 3992 * freed by the caller. 3993 */ 3994 const char *device_get_devnode(const struct device *dev, 3995 umode_t *mode, kuid_t *uid, kgid_t *gid, 3996 const char **tmp) 3997 { 3998 char *s; 3999 4000 *tmp = NULL; 4001 4002 /* the device type may provide a specific name */ 4003 if (dev->type && dev->type->devnode) 4004 *tmp = dev->type->devnode(dev, mode, uid, gid); 4005 if (*tmp) 4006 return *tmp; 4007 4008 /* the class may provide a specific name */ 4009 if (dev->class && dev->class->devnode) 4010 *tmp = dev->class->devnode(dev, mode); 4011 if (*tmp) 4012 return *tmp; 4013 4014 /* return name without allocation, tmp == NULL */ 4015 if (strchr(dev_name(dev), '!') == NULL) 4016 return dev_name(dev); 4017 4018 /* replace '!' in the name with '/' */ 4019 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 4020 if (!s) 4021 return NULL; 4022 return *tmp = s; 4023 } 4024 4025 /** 4026 * device_for_each_child - device child iterator. 4027 * @parent: parent struct device. 4028 * @fn: function to be called for each device. 4029 * @data: data for the callback. 4030 * 4031 * Iterate over @parent's child devices, and call @fn for each, 4032 * passing it @data. 4033 * 4034 * We check the return of @fn each time. If it returns anything 4035 * other than 0, we break out and return that value. 4036 */ 4037 int device_for_each_child(struct device *parent, void *data, 4038 int (*fn)(struct device *dev, void *data)) 4039 { 4040 struct klist_iter i; 4041 struct device *child; 4042 int error = 0; 4043 4044 if (!parent->p) 4045 return 0; 4046 4047 klist_iter_init(&parent->p->klist_children, &i); 4048 while (!error && (child = next_device(&i))) 4049 error = fn(child, data); 4050 klist_iter_exit(&i); 4051 return error; 4052 } 4053 EXPORT_SYMBOL_GPL(device_for_each_child); 4054 4055 /** 4056 * device_for_each_child_reverse - device child iterator in reversed order. 4057 * @parent: parent struct device. 4058 * @fn: function to be called for each device. 4059 * @data: data for the callback. 4060 * 4061 * Iterate over @parent's child devices, and call @fn for each, 4062 * passing it @data. 4063 * 4064 * We check the return of @fn each time. If it returns anything 4065 * other than 0, we break out and return that value. 4066 */ 4067 int device_for_each_child_reverse(struct device *parent, void *data, 4068 int (*fn)(struct device *dev, void *data)) 4069 { 4070 struct klist_iter i; 4071 struct device *child; 4072 int error = 0; 4073 4074 if (!parent->p) 4075 return 0; 4076 4077 klist_iter_init(&parent->p->klist_children, &i); 4078 while ((child = prev_device(&i)) && !error) 4079 error = fn(child, data); 4080 klist_iter_exit(&i); 4081 return error; 4082 } 4083 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4084 4085 /** 4086 * device_find_child - device iterator for locating a particular device. 4087 * @parent: parent struct device 4088 * @match: Callback function to check device 4089 * @data: Data to pass to match function 4090 * 4091 * This is similar to the device_for_each_child() function above, but it 4092 * returns a reference to a device that is 'found' for later use, as 4093 * determined by the @match callback. 4094 * 4095 * The callback should return 0 if the device doesn't match and non-zero 4096 * if it does. If the callback returns non-zero and a reference to the 4097 * current device can be obtained, this function will return to the caller 4098 * and not iterate over any more devices. 4099 * 4100 * NOTE: you will need to drop the reference with put_device() after use. 4101 */ 4102 struct device *device_find_child(struct device *parent, void *data, 4103 int (*match)(struct device *dev, void *data)) 4104 { 4105 struct klist_iter i; 4106 struct device *child; 4107 4108 if (!parent) 4109 return NULL; 4110 4111 klist_iter_init(&parent->p->klist_children, &i); 4112 while ((child = next_device(&i))) 4113 if (match(child, data) && get_device(child)) 4114 break; 4115 klist_iter_exit(&i); 4116 return child; 4117 } 4118 EXPORT_SYMBOL_GPL(device_find_child); 4119 4120 /** 4121 * device_find_child_by_name - device iterator for locating a child device. 4122 * @parent: parent struct device 4123 * @name: name of the child device 4124 * 4125 * This is similar to the device_find_child() function above, but it 4126 * returns a reference to a device that has the name @name. 4127 * 4128 * NOTE: you will need to drop the reference with put_device() after use. 4129 */ 4130 struct device *device_find_child_by_name(struct device *parent, 4131 const char *name) 4132 { 4133 struct klist_iter i; 4134 struct device *child; 4135 4136 if (!parent) 4137 return NULL; 4138 4139 klist_iter_init(&parent->p->klist_children, &i); 4140 while ((child = next_device(&i))) 4141 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4142 break; 4143 klist_iter_exit(&i); 4144 return child; 4145 } 4146 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4147 4148 static int match_any(struct device *dev, void *unused) 4149 { 4150 return 1; 4151 } 4152 4153 /** 4154 * device_find_any_child - device iterator for locating a child device, if any. 4155 * @parent: parent struct device 4156 * 4157 * This is similar to the device_find_child() function above, but it 4158 * returns a reference to a child device, if any. 4159 * 4160 * NOTE: you will need to drop the reference with put_device() after use. 4161 */ 4162 struct device *device_find_any_child(struct device *parent) 4163 { 4164 return device_find_child(parent, NULL, match_any); 4165 } 4166 EXPORT_SYMBOL_GPL(device_find_any_child); 4167 4168 int __init devices_init(void) 4169 { 4170 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4171 if (!devices_kset) 4172 return -ENOMEM; 4173 dev_kobj = kobject_create_and_add("dev", NULL); 4174 if (!dev_kobj) 4175 goto dev_kobj_err; 4176 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4177 if (!sysfs_dev_block_kobj) 4178 goto block_kobj_err; 4179 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4180 if (!sysfs_dev_char_kobj) 4181 goto char_kobj_err; 4182 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4183 if (!device_link_wq) 4184 goto wq_err; 4185 4186 return 0; 4187 4188 wq_err: 4189 kobject_put(sysfs_dev_char_kobj); 4190 char_kobj_err: 4191 kobject_put(sysfs_dev_block_kobj); 4192 block_kobj_err: 4193 kobject_put(dev_kobj); 4194 dev_kobj_err: 4195 kset_unregister(devices_kset); 4196 return -ENOMEM; 4197 } 4198 4199 static int device_check_offline(struct device *dev, void *not_used) 4200 { 4201 int ret; 4202 4203 ret = device_for_each_child(dev, NULL, device_check_offline); 4204 if (ret) 4205 return ret; 4206 4207 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4208 } 4209 4210 /** 4211 * device_offline - Prepare the device for hot-removal. 4212 * @dev: Device to be put offline. 4213 * 4214 * Execute the device bus type's .offline() callback, if present, to prepare 4215 * the device for a subsequent hot-removal. If that succeeds, the device must 4216 * not be used until either it is removed or its bus type's .online() callback 4217 * is executed. 4218 * 4219 * Call under device_hotplug_lock. 4220 */ 4221 int device_offline(struct device *dev) 4222 { 4223 int ret; 4224 4225 if (dev->offline_disabled) 4226 return -EPERM; 4227 4228 ret = device_for_each_child(dev, NULL, device_check_offline); 4229 if (ret) 4230 return ret; 4231 4232 device_lock(dev); 4233 if (device_supports_offline(dev)) { 4234 if (dev->offline) { 4235 ret = 1; 4236 } else { 4237 ret = dev->bus->offline(dev); 4238 if (!ret) { 4239 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4240 dev->offline = true; 4241 } 4242 } 4243 } 4244 device_unlock(dev); 4245 4246 return ret; 4247 } 4248 4249 /** 4250 * device_online - Put the device back online after successful device_offline(). 4251 * @dev: Device to be put back online. 4252 * 4253 * If device_offline() has been successfully executed for @dev, but the device 4254 * has not been removed subsequently, execute its bus type's .online() callback 4255 * to indicate that the device can be used again. 4256 * 4257 * Call under device_hotplug_lock. 4258 */ 4259 int device_online(struct device *dev) 4260 { 4261 int ret = 0; 4262 4263 device_lock(dev); 4264 if (device_supports_offline(dev)) { 4265 if (dev->offline) { 4266 ret = dev->bus->online(dev); 4267 if (!ret) { 4268 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4269 dev->offline = false; 4270 } 4271 } else { 4272 ret = 1; 4273 } 4274 } 4275 device_unlock(dev); 4276 4277 return ret; 4278 } 4279 4280 struct root_device { 4281 struct device dev; 4282 struct module *owner; 4283 }; 4284 4285 static inline struct root_device *to_root_device(struct device *d) 4286 { 4287 return container_of(d, struct root_device, dev); 4288 } 4289 4290 static void root_device_release(struct device *dev) 4291 { 4292 kfree(to_root_device(dev)); 4293 } 4294 4295 /** 4296 * __root_device_register - allocate and register a root device 4297 * @name: root device name 4298 * @owner: owner module of the root device, usually THIS_MODULE 4299 * 4300 * This function allocates a root device and registers it 4301 * using device_register(). In order to free the returned 4302 * device, use root_device_unregister(). 4303 * 4304 * Root devices are dummy devices which allow other devices 4305 * to be grouped under /sys/devices. Use this function to 4306 * allocate a root device and then use it as the parent of 4307 * any device which should appear under /sys/devices/{name} 4308 * 4309 * The /sys/devices/{name} directory will also contain a 4310 * 'module' symlink which points to the @owner directory 4311 * in sysfs. 4312 * 4313 * Returns &struct device pointer on success, or ERR_PTR() on error. 4314 * 4315 * Note: You probably want to use root_device_register(). 4316 */ 4317 struct device *__root_device_register(const char *name, struct module *owner) 4318 { 4319 struct root_device *root; 4320 int err = -ENOMEM; 4321 4322 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4323 if (!root) 4324 return ERR_PTR(err); 4325 4326 err = dev_set_name(&root->dev, "%s", name); 4327 if (err) { 4328 kfree(root); 4329 return ERR_PTR(err); 4330 } 4331 4332 root->dev.release = root_device_release; 4333 4334 err = device_register(&root->dev); 4335 if (err) { 4336 put_device(&root->dev); 4337 return ERR_PTR(err); 4338 } 4339 4340 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4341 if (owner) { 4342 struct module_kobject *mk = &owner->mkobj; 4343 4344 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4345 if (err) { 4346 device_unregister(&root->dev); 4347 return ERR_PTR(err); 4348 } 4349 root->owner = owner; 4350 } 4351 #endif 4352 4353 return &root->dev; 4354 } 4355 EXPORT_SYMBOL_GPL(__root_device_register); 4356 4357 /** 4358 * root_device_unregister - unregister and free a root device 4359 * @dev: device going away 4360 * 4361 * This function unregisters and cleans up a device that was created by 4362 * root_device_register(). 4363 */ 4364 void root_device_unregister(struct device *dev) 4365 { 4366 struct root_device *root = to_root_device(dev); 4367 4368 if (root->owner) 4369 sysfs_remove_link(&root->dev.kobj, "module"); 4370 4371 device_unregister(dev); 4372 } 4373 EXPORT_SYMBOL_GPL(root_device_unregister); 4374 4375 4376 static void device_create_release(struct device *dev) 4377 { 4378 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4379 kfree(dev); 4380 } 4381 4382 static __printf(6, 0) struct device * 4383 device_create_groups_vargs(const struct class *class, struct device *parent, 4384 dev_t devt, void *drvdata, 4385 const struct attribute_group **groups, 4386 const char *fmt, va_list args) 4387 { 4388 struct device *dev = NULL; 4389 int retval = -ENODEV; 4390 4391 if (IS_ERR_OR_NULL(class)) 4392 goto error; 4393 4394 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4395 if (!dev) { 4396 retval = -ENOMEM; 4397 goto error; 4398 } 4399 4400 device_initialize(dev); 4401 dev->devt = devt; 4402 dev->class = class; 4403 dev->parent = parent; 4404 dev->groups = groups; 4405 dev->release = device_create_release; 4406 dev_set_drvdata(dev, drvdata); 4407 4408 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4409 if (retval) 4410 goto error; 4411 4412 retval = device_add(dev); 4413 if (retval) 4414 goto error; 4415 4416 return dev; 4417 4418 error: 4419 put_device(dev); 4420 return ERR_PTR(retval); 4421 } 4422 4423 /** 4424 * device_create - creates a device and registers it with sysfs 4425 * @class: pointer to the struct class that this device should be registered to 4426 * @parent: pointer to the parent struct device of this new device, if any 4427 * @devt: the dev_t for the char device to be added 4428 * @drvdata: the data to be added to the device for callbacks 4429 * @fmt: string for the device's name 4430 * 4431 * This function can be used by char device classes. A struct device 4432 * will be created in sysfs, registered to the specified class. 4433 * 4434 * A "dev" file will be created, showing the dev_t for the device, if 4435 * the dev_t is not 0,0. 4436 * If a pointer to a parent struct device is passed in, the newly created 4437 * struct device will be a child of that device in sysfs. 4438 * The pointer to the struct device will be returned from the call. 4439 * Any further sysfs files that might be required can be created using this 4440 * pointer. 4441 * 4442 * Returns &struct device pointer on success, or ERR_PTR() on error. 4443 */ 4444 struct device *device_create(const struct class *class, struct device *parent, 4445 dev_t devt, void *drvdata, const char *fmt, ...) 4446 { 4447 va_list vargs; 4448 struct device *dev; 4449 4450 va_start(vargs, fmt); 4451 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4452 fmt, vargs); 4453 va_end(vargs); 4454 return dev; 4455 } 4456 EXPORT_SYMBOL_GPL(device_create); 4457 4458 /** 4459 * device_create_with_groups - creates a device and registers it with sysfs 4460 * @class: pointer to the struct class that this device should be registered to 4461 * @parent: pointer to the parent struct device of this new device, if any 4462 * @devt: the dev_t for the char device to be added 4463 * @drvdata: the data to be added to the device for callbacks 4464 * @groups: NULL-terminated list of attribute groups to be created 4465 * @fmt: string for the device's name 4466 * 4467 * This function can be used by char device classes. A struct device 4468 * will be created in sysfs, registered to the specified class. 4469 * Additional attributes specified in the groups parameter will also 4470 * be created automatically. 4471 * 4472 * A "dev" file will be created, showing the dev_t for the device, if 4473 * the dev_t is not 0,0. 4474 * If a pointer to a parent struct device is passed in, the newly created 4475 * struct device will be a child of that device in sysfs. 4476 * The pointer to the struct device will be returned from the call. 4477 * Any further sysfs files that might be required can be created using this 4478 * pointer. 4479 * 4480 * Returns &struct device pointer on success, or ERR_PTR() on error. 4481 */ 4482 struct device *device_create_with_groups(const struct class *class, 4483 struct device *parent, dev_t devt, 4484 void *drvdata, 4485 const struct attribute_group **groups, 4486 const char *fmt, ...) 4487 { 4488 va_list vargs; 4489 struct device *dev; 4490 4491 va_start(vargs, fmt); 4492 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4493 fmt, vargs); 4494 va_end(vargs); 4495 return dev; 4496 } 4497 EXPORT_SYMBOL_GPL(device_create_with_groups); 4498 4499 /** 4500 * device_destroy - removes a device that was created with device_create() 4501 * @class: pointer to the struct class that this device was registered with 4502 * @devt: the dev_t of the device that was previously registered 4503 * 4504 * This call unregisters and cleans up a device that was created with a 4505 * call to device_create(). 4506 */ 4507 void device_destroy(const struct class *class, dev_t devt) 4508 { 4509 struct device *dev; 4510 4511 dev = class_find_device_by_devt(class, devt); 4512 if (dev) { 4513 put_device(dev); 4514 device_unregister(dev); 4515 } 4516 } 4517 EXPORT_SYMBOL_GPL(device_destroy); 4518 4519 /** 4520 * device_rename - renames a device 4521 * @dev: the pointer to the struct device to be renamed 4522 * @new_name: the new name of the device 4523 * 4524 * It is the responsibility of the caller to provide mutual 4525 * exclusion between two different calls of device_rename 4526 * on the same device to ensure that new_name is valid and 4527 * won't conflict with other devices. 4528 * 4529 * Note: given that some subsystems (networking and infiniband) use this 4530 * function, with no immediate plans for this to change, we cannot assume or 4531 * require that this function not be called at all. 4532 * 4533 * However, if you're writing new code, do not call this function. The following 4534 * text from Kay Sievers offers some insight: 4535 * 4536 * Renaming devices is racy at many levels, symlinks and other stuff are not 4537 * replaced atomically, and you get a "move" uevent, but it's not easy to 4538 * connect the event to the old and new device. Device nodes are not renamed at 4539 * all, there isn't even support for that in the kernel now. 4540 * 4541 * In the meantime, during renaming, your target name might be taken by another 4542 * driver, creating conflicts. Or the old name is taken directly after you 4543 * renamed it -- then you get events for the same DEVPATH, before you even see 4544 * the "move" event. It's just a mess, and nothing new should ever rely on 4545 * kernel device renaming. Besides that, it's not even implemented now for 4546 * other things than (driver-core wise very simple) network devices. 4547 * 4548 * Make up a "real" name in the driver before you register anything, or add 4549 * some other attributes for userspace to find the device, or use udev to add 4550 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4551 * don't even want to get into that and try to implement the missing pieces in 4552 * the core. We really have other pieces to fix in the driver core mess. :) 4553 */ 4554 int device_rename(struct device *dev, const char *new_name) 4555 { 4556 struct kobject *kobj = &dev->kobj; 4557 char *old_device_name = NULL; 4558 int error; 4559 4560 dev = get_device(dev); 4561 if (!dev) 4562 return -EINVAL; 4563 4564 dev_dbg(dev, "renaming to %s\n", new_name); 4565 4566 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4567 if (!old_device_name) { 4568 error = -ENOMEM; 4569 goto out; 4570 } 4571 4572 if (dev->class) { 4573 struct subsys_private *sp = class_to_subsys(dev->class); 4574 4575 if (!sp) { 4576 error = -EINVAL; 4577 goto out; 4578 } 4579 4580 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4581 new_name, kobject_namespace(kobj)); 4582 subsys_put(sp); 4583 if (error) 4584 goto out; 4585 } 4586 4587 error = kobject_rename(kobj, new_name); 4588 if (error) 4589 goto out; 4590 4591 out: 4592 put_device(dev); 4593 4594 kfree(old_device_name); 4595 4596 return error; 4597 } 4598 EXPORT_SYMBOL_GPL(device_rename); 4599 4600 static int device_move_class_links(struct device *dev, 4601 struct device *old_parent, 4602 struct device *new_parent) 4603 { 4604 int error = 0; 4605 4606 if (old_parent) 4607 sysfs_remove_link(&dev->kobj, "device"); 4608 if (new_parent) 4609 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4610 "device"); 4611 return error; 4612 } 4613 4614 /** 4615 * device_move - moves a device to a new parent 4616 * @dev: the pointer to the struct device to be moved 4617 * @new_parent: the new parent of the device (can be NULL) 4618 * @dpm_order: how to reorder the dpm_list 4619 */ 4620 int device_move(struct device *dev, struct device *new_parent, 4621 enum dpm_order dpm_order) 4622 { 4623 int error; 4624 struct device *old_parent; 4625 struct kobject *new_parent_kobj; 4626 4627 dev = get_device(dev); 4628 if (!dev) 4629 return -EINVAL; 4630 4631 device_pm_lock(); 4632 new_parent = get_device(new_parent); 4633 new_parent_kobj = get_device_parent(dev, new_parent); 4634 if (IS_ERR(new_parent_kobj)) { 4635 error = PTR_ERR(new_parent_kobj); 4636 put_device(new_parent); 4637 goto out; 4638 } 4639 4640 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4641 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4642 error = kobject_move(&dev->kobj, new_parent_kobj); 4643 if (error) { 4644 cleanup_glue_dir(dev, new_parent_kobj); 4645 put_device(new_parent); 4646 goto out; 4647 } 4648 old_parent = dev->parent; 4649 dev->parent = new_parent; 4650 if (old_parent) 4651 klist_remove(&dev->p->knode_parent); 4652 if (new_parent) { 4653 klist_add_tail(&dev->p->knode_parent, 4654 &new_parent->p->klist_children); 4655 set_dev_node(dev, dev_to_node(new_parent)); 4656 } 4657 4658 if (dev->class) { 4659 error = device_move_class_links(dev, old_parent, new_parent); 4660 if (error) { 4661 /* We ignore errors on cleanup since we're hosed anyway... */ 4662 device_move_class_links(dev, new_parent, old_parent); 4663 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4664 if (new_parent) 4665 klist_remove(&dev->p->knode_parent); 4666 dev->parent = old_parent; 4667 if (old_parent) { 4668 klist_add_tail(&dev->p->knode_parent, 4669 &old_parent->p->klist_children); 4670 set_dev_node(dev, dev_to_node(old_parent)); 4671 } 4672 } 4673 cleanup_glue_dir(dev, new_parent_kobj); 4674 put_device(new_parent); 4675 goto out; 4676 } 4677 } 4678 switch (dpm_order) { 4679 case DPM_ORDER_NONE: 4680 break; 4681 case DPM_ORDER_DEV_AFTER_PARENT: 4682 device_pm_move_after(dev, new_parent); 4683 devices_kset_move_after(dev, new_parent); 4684 break; 4685 case DPM_ORDER_PARENT_BEFORE_DEV: 4686 device_pm_move_before(new_parent, dev); 4687 devices_kset_move_before(new_parent, dev); 4688 break; 4689 case DPM_ORDER_DEV_LAST: 4690 device_pm_move_last(dev); 4691 devices_kset_move_last(dev); 4692 break; 4693 } 4694 4695 put_device(old_parent); 4696 out: 4697 device_pm_unlock(); 4698 put_device(dev); 4699 return error; 4700 } 4701 EXPORT_SYMBOL_GPL(device_move); 4702 4703 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4704 kgid_t kgid) 4705 { 4706 struct kobject *kobj = &dev->kobj; 4707 const struct class *class = dev->class; 4708 const struct device_type *type = dev->type; 4709 int error; 4710 4711 if (class) { 4712 /* 4713 * Change the device groups of the device class for @dev to 4714 * @kuid/@kgid. 4715 */ 4716 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4717 kgid); 4718 if (error) 4719 return error; 4720 } 4721 4722 if (type) { 4723 /* 4724 * Change the device groups of the device type for @dev to 4725 * @kuid/@kgid. 4726 */ 4727 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4728 kgid); 4729 if (error) 4730 return error; 4731 } 4732 4733 /* Change the device groups of @dev to @kuid/@kgid. */ 4734 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4735 if (error) 4736 return error; 4737 4738 if (device_supports_offline(dev) && !dev->offline_disabled) { 4739 /* Change online device attributes of @dev to @kuid/@kgid. */ 4740 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4741 kuid, kgid); 4742 if (error) 4743 return error; 4744 } 4745 4746 return 0; 4747 } 4748 4749 /** 4750 * device_change_owner - change the owner of an existing device. 4751 * @dev: device. 4752 * @kuid: new owner's kuid 4753 * @kgid: new owner's kgid 4754 * 4755 * This changes the owner of @dev and its corresponding sysfs entries to 4756 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4757 * core. 4758 * 4759 * Returns 0 on success or error code on failure. 4760 */ 4761 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4762 { 4763 int error; 4764 struct kobject *kobj = &dev->kobj; 4765 struct subsys_private *sp; 4766 4767 dev = get_device(dev); 4768 if (!dev) 4769 return -EINVAL; 4770 4771 /* 4772 * Change the kobject and the default attributes and groups of the 4773 * ktype associated with it to @kuid/@kgid. 4774 */ 4775 error = sysfs_change_owner(kobj, kuid, kgid); 4776 if (error) 4777 goto out; 4778 4779 /* 4780 * Change the uevent file for @dev to the new owner. The uevent file 4781 * was created in a separate step when @dev got added and we mirror 4782 * that step here. 4783 */ 4784 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4785 kgid); 4786 if (error) 4787 goto out; 4788 4789 /* 4790 * Change the device groups, the device groups associated with the 4791 * device class, and the groups associated with the device type of @dev 4792 * to @kuid/@kgid. 4793 */ 4794 error = device_attrs_change_owner(dev, kuid, kgid); 4795 if (error) 4796 goto out; 4797 4798 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4799 if (error) 4800 goto out; 4801 4802 /* 4803 * Change the owner of the symlink located in the class directory of 4804 * the device class associated with @dev which points to the actual 4805 * directory entry for @dev to @kuid/@kgid. This ensures that the 4806 * symlink shows the same permissions as its target. 4807 */ 4808 sp = class_to_subsys(dev->class); 4809 if (!sp) { 4810 error = -EINVAL; 4811 goto out; 4812 } 4813 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4814 subsys_put(sp); 4815 4816 out: 4817 put_device(dev); 4818 return error; 4819 } 4820 EXPORT_SYMBOL_GPL(device_change_owner); 4821 4822 /** 4823 * device_shutdown - call ->shutdown() on each device to shutdown. 4824 */ 4825 void device_shutdown(void) 4826 { 4827 struct device *dev, *parent; 4828 4829 wait_for_device_probe(); 4830 device_block_probing(); 4831 4832 cpufreq_suspend(); 4833 4834 spin_lock(&devices_kset->list_lock); 4835 /* 4836 * Walk the devices list backward, shutting down each in turn. 4837 * Beware that device unplug events may also start pulling 4838 * devices offline, even as the system is shutting down. 4839 */ 4840 while (!list_empty(&devices_kset->list)) { 4841 dev = list_entry(devices_kset->list.prev, struct device, 4842 kobj.entry); 4843 4844 /* 4845 * hold reference count of device's parent to 4846 * prevent it from being freed because parent's 4847 * lock is to be held 4848 */ 4849 parent = get_device(dev->parent); 4850 get_device(dev); 4851 /* 4852 * Make sure the device is off the kset list, in the 4853 * event that dev->*->shutdown() doesn't remove it. 4854 */ 4855 list_del_init(&dev->kobj.entry); 4856 spin_unlock(&devices_kset->list_lock); 4857 4858 /* hold lock to avoid race with probe/release */ 4859 if (parent) 4860 device_lock(parent); 4861 device_lock(dev); 4862 4863 /* Don't allow any more runtime suspends */ 4864 pm_runtime_get_noresume(dev); 4865 pm_runtime_barrier(dev); 4866 4867 if (dev->class && dev->class->shutdown_pre) { 4868 if (initcall_debug) 4869 dev_info(dev, "shutdown_pre\n"); 4870 dev->class->shutdown_pre(dev); 4871 } 4872 if (dev->bus && dev->bus->shutdown) { 4873 if (initcall_debug) 4874 dev_info(dev, "shutdown\n"); 4875 dev->bus->shutdown(dev); 4876 } else if (dev->driver && dev->driver->shutdown) { 4877 if (initcall_debug) 4878 dev_info(dev, "shutdown\n"); 4879 dev->driver->shutdown(dev); 4880 } 4881 4882 device_unlock(dev); 4883 if (parent) 4884 device_unlock(parent); 4885 4886 put_device(dev); 4887 put_device(parent); 4888 4889 spin_lock(&devices_kset->list_lock); 4890 } 4891 spin_unlock(&devices_kset->list_lock); 4892 } 4893 4894 /* 4895 * Device logging functions 4896 */ 4897 4898 #ifdef CONFIG_PRINTK 4899 static void 4900 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4901 { 4902 const char *subsys; 4903 4904 memset(dev_info, 0, sizeof(*dev_info)); 4905 4906 if (dev->class) 4907 subsys = dev->class->name; 4908 else if (dev->bus) 4909 subsys = dev->bus->name; 4910 else 4911 return; 4912 4913 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4914 4915 /* 4916 * Add device identifier DEVICE=: 4917 * b12:8 block dev_t 4918 * c127:3 char dev_t 4919 * n8 netdev ifindex 4920 * +sound:card0 subsystem:devname 4921 */ 4922 if (MAJOR(dev->devt)) { 4923 char c; 4924 4925 if (strcmp(subsys, "block") == 0) 4926 c = 'b'; 4927 else 4928 c = 'c'; 4929 4930 snprintf(dev_info->device, sizeof(dev_info->device), 4931 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4932 } else if (strcmp(subsys, "net") == 0) { 4933 struct net_device *net = to_net_dev(dev); 4934 4935 snprintf(dev_info->device, sizeof(dev_info->device), 4936 "n%u", net->ifindex); 4937 } else { 4938 snprintf(dev_info->device, sizeof(dev_info->device), 4939 "+%s:%s", subsys, dev_name(dev)); 4940 } 4941 } 4942 4943 int dev_vprintk_emit(int level, const struct device *dev, 4944 const char *fmt, va_list args) 4945 { 4946 struct dev_printk_info dev_info; 4947 4948 set_dev_info(dev, &dev_info); 4949 4950 return vprintk_emit(0, level, &dev_info, fmt, args); 4951 } 4952 EXPORT_SYMBOL(dev_vprintk_emit); 4953 4954 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4955 { 4956 va_list args; 4957 int r; 4958 4959 va_start(args, fmt); 4960 4961 r = dev_vprintk_emit(level, dev, fmt, args); 4962 4963 va_end(args); 4964 4965 return r; 4966 } 4967 EXPORT_SYMBOL(dev_printk_emit); 4968 4969 static void __dev_printk(const char *level, const struct device *dev, 4970 struct va_format *vaf) 4971 { 4972 if (dev) 4973 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4974 dev_driver_string(dev), dev_name(dev), vaf); 4975 else 4976 printk("%s(NULL device *): %pV", level, vaf); 4977 } 4978 4979 void _dev_printk(const char *level, const struct device *dev, 4980 const char *fmt, ...) 4981 { 4982 struct va_format vaf; 4983 va_list args; 4984 4985 va_start(args, fmt); 4986 4987 vaf.fmt = fmt; 4988 vaf.va = &args; 4989 4990 __dev_printk(level, dev, &vaf); 4991 4992 va_end(args); 4993 } 4994 EXPORT_SYMBOL(_dev_printk); 4995 4996 #define define_dev_printk_level(func, kern_level) \ 4997 void func(const struct device *dev, const char *fmt, ...) \ 4998 { \ 4999 struct va_format vaf; \ 5000 va_list args; \ 5001 \ 5002 va_start(args, fmt); \ 5003 \ 5004 vaf.fmt = fmt; \ 5005 vaf.va = &args; \ 5006 \ 5007 __dev_printk(kern_level, dev, &vaf); \ 5008 \ 5009 va_end(args); \ 5010 } \ 5011 EXPORT_SYMBOL(func); 5012 5013 define_dev_printk_level(_dev_emerg, KERN_EMERG); 5014 define_dev_printk_level(_dev_alert, KERN_ALERT); 5015 define_dev_printk_level(_dev_crit, KERN_CRIT); 5016 define_dev_printk_level(_dev_err, KERN_ERR); 5017 define_dev_printk_level(_dev_warn, KERN_WARNING); 5018 define_dev_printk_level(_dev_notice, KERN_NOTICE); 5019 define_dev_printk_level(_dev_info, KERN_INFO); 5020 5021 #endif 5022 5023 /** 5024 * dev_err_probe - probe error check and log helper 5025 * @dev: the pointer to the struct device 5026 * @err: error value to test 5027 * @fmt: printf-style format string 5028 * @...: arguments as specified in the format string 5029 * 5030 * This helper implements common pattern present in probe functions for error 5031 * checking: print debug or error message depending if the error value is 5032 * -EPROBE_DEFER and propagate error upwards. 5033 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5034 * checked later by reading devices_deferred debugfs attribute. 5035 * It replaces code sequence:: 5036 * 5037 * if (err != -EPROBE_DEFER) 5038 * dev_err(dev, ...); 5039 * else 5040 * dev_dbg(dev, ...); 5041 * return err; 5042 * 5043 * with:: 5044 * 5045 * return dev_err_probe(dev, err, ...); 5046 * 5047 * Using this helper in your probe function is totally fine even if @err is 5048 * known to never be -EPROBE_DEFER. 5049 * The benefit compared to a normal dev_err() is the standardized format 5050 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 5051 * instead of "-35") and the fact that the error code is returned which allows 5052 * more compact error paths. 5053 * 5054 * Returns @err. 5055 */ 5056 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5057 { 5058 struct va_format vaf; 5059 va_list args; 5060 5061 va_start(args, fmt); 5062 vaf.fmt = fmt; 5063 vaf.va = &args; 5064 5065 if (err != -EPROBE_DEFER) { 5066 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5067 } else { 5068 device_set_deferred_probe_reason(dev, &vaf); 5069 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5070 } 5071 5072 va_end(args); 5073 5074 return err; 5075 } 5076 EXPORT_SYMBOL_GPL(dev_err_probe); 5077 5078 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5079 { 5080 return fwnode && !IS_ERR(fwnode->secondary); 5081 } 5082 5083 /** 5084 * set_primary_fwnode - Change the primary firmware node of a given device. 5085 * @dev: Device to handle. 5086 * @fwnode: New primary firmware node of the device. 5087 * 5088 * Set the device's firmware node pointer to @fwnode, but if a secondary 5089 * firmware node of the device is present, preserve it. 5090 * 5091 * Valid fwnode cases are: 5092 * - primary --> secondary --> -ENODEV 5093 * - primary --> NULL 5094 * - secondary --> -ENODEV 5095 * - NULL 5096 */ 5097 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5098 { 5099 struct device *parent = dev->parent; 5100 struct fwnode_handle *fn = dev->fwnode; 5101 5102 if (fwnode) { 5103 if (fwnode_is_primary(fn)) 5104 fn = fn->secondary; 5105 5106 if (fn) { 5107 WARN_ON(fwnode->secondary); 5108 fwnode->secondary = fn; 5109 } 5110 dev->fwnode = fwnode; 5111 } else { 5112 if (fwnode_is_primary(fn)) { 5113 dev->fwnode = fn->secondary; 5114 5115 /* Skip nullifying fn->secondary if the primary is shared */ 5116 if (parent && fn == parent->fwnode) 5117 return; 5118 5119 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5120 fn->secondary = NULL; 5121 } else { 5122 dev->fwnode = NULL; 5123 } 5124 } 5125 } 5126 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5127 5128 /** 5129 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5130 * @dev: Device to handle. 5131 * @fwnode: New secondary firmware node of the device. 5132 * 5133 * If a primary firmware node of the device is present, set its secondary 5134 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5135 * @fwnode. 5136 */ 5137 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5138 { 5139 if (fwnode) 5140 fwnode->secondary = ERR_PTR(-ENODEV); 5141 5142 if (fwnode_is_primary(dev->fwnode)) 5143 dev->fwnode->secondary = fwnode; 5144 else 5145 dev->fwnode = fwnode; 5146 } 5147 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5148 5149 /** 5150 * device_set_of_node_from_dev - reuse device-tree node of another device 5151 * @dev: device whose device-tree node is being set 5152 * @dev2: device whose device-tree node is being reused 5153 * 5154 * Takes another reference to the new device-tree node after first dropping 5155 * any reference held to the old node. 5156 */ 5157 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5158 { 5159 of_node_put(dev->of_node); 5160 dev->of_node = of_node_get(dev2->of_node); 5161 dev->of_node_reused = true; 5162 } 5163 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5164 5165 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5166 { 5167 dev->fwnode = fwnode; 5168 dev->of_node = to_of_node(fwnode); 5169 } 5170 EXPORT_SYMBOL_GPL(device_set_node); 5171 5172 int device_match_name(struct device *dev, const void *name) 5173 { 5174 return sysfs_streq(dev_name(dev), name); 5175 } 5176 EXPORT_SYMBOL_GPL(device_match_name); 5177 5178 int device_match_of_node(struct device *dev, const void *np) 5179 { 5180 return dev->of_node == np; 5181 } 5182 EXPORT_SYMBOL_GPL(device_match_of_node); 5183 5184 int device_match_fwnode(struct device *dev, const void *fwnode) 5185 { 5186 return dev_fwnode(dev) == fwnode; 5187 } 5188 EXPORT_SYMBOL_GPL(device_match_fwnode); 5189 5190 int device_match_devt(struct device *dev, const void *pdevt) 5191 { 5192 return dev->devt == *(dev_t *)pdevt; 5193 } 5194 EXPORT_SYMBOL_GPL(device_match_devt); 5195 5196 int device_match_acpi_dev(struct device *dev, const void *adev) 5197 { 5198 return ACPI_COMPANION(dev) == adev; 5199 } 5200 EXPORT_SYMBOL(device_match_acpi_dev); 5201 5202 int device_match_acpi_handle(struct device *dev, const void *handle) 5203 { 5204 return ACPI_HANDLE(dev) == handle; 5205 } 5206 EXPORT_SYMBOL(device_match_acpi_handle); 5207 5208 int device_match_any(struct device *dev, const void *unused) 5209 { 5210 return 1; 5211 } 5212 EXPORT_SYMBOL_GPL(device_match_any); 5213