xref: /linux/drivers/base/core.c (revision 2f5606afa4c2bcabd45cb34c92faf93ca5ffe75e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35 
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39 
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49 
50 /**
51  * __fwnode_link_add - Create a link between two fwnode_handles.
52  * @con: Consumer end of the link.
53  * @sup: Supplier end of the link.
54  * @flags: Link flags.
55  *
56  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57  * represents the detail that the firmware lists @sup fwnode as supplying a
58  * resource to @con.
59  *
60  * The driver core will use the fwnode link to create a device link between the
61  * two device objects corresponding to @con and @sup when they are created. The
62  * driver core will automatically delete the fwnode link between @con and @sup
63  * after doing that.
64  *
65  * Attempts to create duplicate links between the same pair of fwnode handles
66  * are ignored and there is no reference counting.
67  */
68 static int __fwnode_link_add(struct fwnode_handle *con,
69 			     struct fwnode_handle *sup, u8 flags)
70 {
71 	struct fwnode_link *link;
72 
73 	list_for_each_entry(link, &sup->consumers, s_hook)
74 		if (link->consumer == con) {
75 			link->flags |= flags;
76 			return 0;
77 		}
78 
79 	link = kzalloc(sizeof(*link), GFP_KERNEL);
80 	if (!link)
81 		return -ENOMEM;
82 
83 	link->supplier = sup;
84 	INIT_LIST_HEAD(&link->s_hook);
85 	link->consumer = con;
86 	INIT_LIST_HEAD(&link->c_hook);
87 	link->flags = flags;
88 
89 	list_add(&link->s_hook, &sup->consumers);
90 	list_add(&link->c_hook, &con->suppliers);
91 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 		 con, sup);
93 
94 	return 0;
95 }
96 
97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 		    u8 flags)
99 {
100 	guard(mutex)(&fwnode_link_lock);
101 
102 	return __fwnode_link_add(con, sup, flags);
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	guard(mutex)(&fwnode_link_lock);
144 
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	guard(mutex)(&fwnode_link_lock);
160 
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER))
464 		output = "supplier unbind";
465 	else if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER))
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
489 }
490 static DEVICE_ATTR_RO(sync_state_only);
491 
492 static struct attribute *devlink_attrs[] = {
493 	&dev_attr_status.attr,
494 	&dev_attr_auto_remove_on.attr,
495 	&dev_attr_runtime_pm.attr,
496 	&dev_attr_sync_state_only.attr,
497 	NULL,
498 };
499 ATTRIBUTE_GROUPS(devlink);
500 
501 static void device_link_release_fn(struct work_struct *work)
502 {
503 	struct device_link *link = container_of(work, struct device_link, rm_work);
504 
505 	/* Ensure that all references to the link object have been dropped. */
506 	device_link_synchronize_removal();
507 
508 	pm_runtime_release_supplier(link);
509 	/*
510 	 * If supplier_preactivated is set, the link has been dropped between
511 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
512 	 * in __driver_probe_device().  In that case, drop the supplier's
513 	 * PM-runtime usage counter to remove the reference taken by
514 	 * pm_runtime_get_suppliers().
515 	 */
516 	if (link->supplier_preactivated)
517 		pm_runtime_put_noidle(link->supplier);
518 
519 	pm_request_idle(link->supplier);
520 
521 	put_device(link->consumer);
522 	put_device(link->supplier);
523 	kfree(link);
524 }
525 
526 static void devlink_dev_release(struct device *dev)
527 {
528 	struct device_link *link = to_devlink(dev);
529 
530 	INIT_WORK(&link->rm_work, device_link_release_fn);
531 	/*
532 	 * It may take a while to complete this work because of the SRCU
533 	 * synchronization in device_link_release_fn() and if the consumer or
534 	 * supplier devices get deleted when it runs, so put it into the
535 	 * dedicated workqueue.
536 	 */
537 	queue_work(device_link_wq, &link->rm_work);
538 }
539 
540 /**
541  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
542  */
543 void device_link_wait_removal(void)
544 {
545 	/*
546 	 * devlink removal jobs are queued in the dedicated work queue.
547 	 * To be sure that all removal jobs are terminated, ensure that any
548 	 * scheduled work has run to completion.
549 	 */
550 	flush_workqueue(device_link_wq);
551 }
552 EXPORT_SYMBOL_GPL(device_link_wait_removal);
553 
554 static const struct class devlink_class = {
555 	.name = "devlink",
556 	.dev_groups = devlink_groups,
557 	.dev_release = devlink_dev_release,
558 };
559 
560 static int devlink_add_symlinks(struct device *dev)
561 {
562 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
563 	int ret;
564 	struct device_link *link = to_devlink(dev);
565 	struct device *sup = link->supplier;
566 	struct device *con = link->consumer;
567 
568 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
569 	if (ret)
570 		goto out;
571 
572 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
573 	if (ret)
574 		goto err_con;
575 
576 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
577 	if (!buf_con) {
578 		ret = -ENOMEM;
579 		goto err_con_dev;
580 	}
581 
582 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
583 	if (ret)
584 		goto err_con_dev;
585 
586 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
587 	if (!buf_sup) {
588 		ret = -ENOMEM;
589 		goto err_sup_dev;
590 	}
591 
592 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
593 	if (ret)
594 		goto err_sup_dev;
595 
596 	goto out;
597 
598 err_sup_dev:
599 	sysfs_remove_link(&sup->kobj, buf_con);
600 err_con_dev:
601 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
602 err_con:
603 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
604 out:
605 	return ret;
606 }
607 
608 static void devlink_remove_symlinks(struct device *dev)
609 {
610 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
611 	struct device_link *link = to_devlink(dev);
612 	struct device *sup = link->supplier;
613 	struct device *con = link->consumer;
614 
615 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
616 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
617 
618 	if (device_is_registered(con)) {
619 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
620 		if (!buf_sup)
621 			goto out;
622 		sysfs_remove_link(&con->kobj, buf_sup);
623 	}
624 
625 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
626 	if (!buf_con)
627 		goto out;
628 	sysfs_remove_link(&sup->kobj, buf_con);
629 
630 	return;
631 
632 out:
633 	WARN(1, "Unable to properly free device link symlinks!\n");
634 }
635 
636 static struct class_interface devlink_class_intf = {
637 	.class = &devlink_class,
638 	.add_dev = devlink_add_symlinks,
639 	.remove_dev = devlink_remove_symlinks,
640 };
641 
642 static int __init devlink_class_init(void)
643 {
644 	int ret;
645 
646 	ret = class_register(&devlink_class);
647 	if (ret)
648 		return ret;
649 
650 	ret = class_interface_register(&devlink_class_intf);
651 	if (ret)
652 		class_unregister(&devlink_class);
653 
654 	return ret;
655 }
656 postcore_initcall(devlink_class_init);
657 
658 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
659 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
660 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
661 			       DL_FLAG_SYNC_STATE_ONLY | \
662 			       DL_FLAG_INFERRED | \
663 			       DL_FLAG_CYCLE)
664 
665 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
666 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
667 
668 /**
669  * device_link_add - Create a link between two devices.
670  * @consumer: Consumer end of the link.
671  * @supplier: Supplier end of the link.
672  * @flags: Link flags.
673  *
674  * Return: On success, a device_link struct will be returned.
675  *         On error or invalid flag settings, NULL will be returned.
676  *
677  * The caller is responsible for the proper synchronization of the link creation
678  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
679  * runtime PM framework to take the link into account.  Second, if the
680  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
681  * be forced into the active meta state and reference-counted upon the creation
682  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
683  * ignored.
684  *
685  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
686  * expected to release the link returned by it directly with the help of either
687  * device_link_del() or device_link_remove().
688  *
689  * If that flag is not set, however, the caller of this function is handing the
690  * management of the link over to the driver core entirely and its return value
691  * can only be used to check whether or not the link is present.  In that case,
692  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
693  * flags can be used to indicate to the driver core when the link can be safely
694  * deleted.  Namely, setting one of them in @flags indicates to the driver core
695  * that the link is not going to be used (by the given caller of this function)
696  * after unbinding the consumer or supplier driver, respectively, from its
697  * device, so the link can be deleted at that point.  If none of them is set,
698  * the link will be maintained until one of the devices pointed to by it (either
699  * the consumer or the supplier) is unregistered.
700  *
701  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
702  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
703  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
704  * be used to request the driver core to automatically probe for a consumer
705  * driver after successfully binding a driver to the supplier device.
706  *
707  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
708  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
709  * the same time is invalid and will cause NULL to be returned upfront.
710  * However, if a device link between the given @consumer and @supplier pair
711  * exists already when this function is called for them, the existing link will
712  * be returned regardless of its current type and status (the link's flags may
713  * be modified then).  The caller of this function is then expected to treat
714  * the link as though it has just been created, so (in particular) if
715  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
716  * explicitly when not needed any more (as stated above).
717  *
718  * A side effect of the link creation is re-ordering of dpm_list and the
719  * devices_kset list by moving the consumer device and all devices depending
720  * on it to the ends of these lists (that does not happen to devices that have
721  * not been registered when this function is called).
722  *
723  * The supplier device is required to be registered when this function is called
724  * and NULL will be returned if that is not the case.  The consumer device need
725  * not be registered, however.
726  */
727 struct device_link *device_link_add(struct device *consumer,
728 				    struct device *supplier, u32 flags)
729 {
730 	struct device_link *link;
731 
732 	if (!consumer || !supplier || consumer == supplier ||
733 	    flags & ~DL_ADD_VALID_FLAGS ||
734 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
735 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
736 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
737 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
738 		return NULL;
739 
740 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
741 		if (pm_runtime_get_sync(supplier) < 0) {
742 			pm_runtime_put_noidle(supplier);
743 			return NULL;
744 		}
745 	}
746 
747 	if (!(flags & DL_FLAG_STATELESS))
748 		flags |= DL_FLAG_MANAGED;
749 
750 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
751 	    !device_link_flag_is_sync_state_only(flags))
752 		return NULL;
753 
754 	device_links_write_lock();
755 	device_pm_lock();
756 
757 	/*
758 	 * If the supplier has not been fully registered yet or there is a
759 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
760 	 * the supplier already in the graph, return NULL. If the link is a
761 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
762 	 * because it only affects sync_state() callbacks.
763 	 */
764 	if (!device_pm_initialized(supplier)
765 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
766 		  device_is_dependent(consumer, supplier))) {
767 		link = NULL;
768 		goto out;
769 	}
770 
771 	/*
772 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
773 	 * So, only create it if the consumer hasn't probed yet.
774 	 */
775 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
776 	    consumer->links.status != DL_DEV_NO_DRIVER &&
777 	    consumer->links.status != DL_DEV_PROBING) {
778 		link = NULL;
779 		goto out;
780 	}
781 
782 	/*
783 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
784 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
785 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
786 	 */
787 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
788 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
789 
790 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
791 		if (link->consumer != consumer)
792 			continue;
793 
794 		if (device_link_test(link, DL_FLAG_INFERRED) &&
795 		    !(flags & DL_FLAG_INFERRED))
796 			link->flags &= ~DL_FLAG_INFERRED;
797 
798 		if (flags & DL_FLAG_PM_RUNTIME) {
799 			if (!device_link_test(link, DL_FLAG_PM_RUNTIME)) {
800 				pm_runtime_new_link(consumer);
801 				link->flags |= DL_FLAG_PM_RUNTIME;
802 			}
803 			if (flags & DL_FLAG_RPM_ACTIVE)
804 				refcount_inc(&link->rpm_active);
805 		}
806 
807 		if (flags & DL_FLAG_STATELESS) {
808 			kref_get(&link->kref);
809 			if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) &&
810 			    !device_link_test(link, DL_FLAG_STATELESS)) {
811 				link->flags |= DL_FLAG_STATELESS;
812 				goto reorder;
813 			} else {
814 				link->flags |= DL_FLAG_STATELESS;
815 				goto out;
816 			}
817 		}
818 
819 		/*
820 		 * If the life time of the link following from the new flags is
821 		 * longer than indicated by the flags of the existing link,
822 		 * update the existing link to stay around longer.
823 		 */
824 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
825 			if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) {
826 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
827 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
828 			}
829 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
830 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
831 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
832 		}
833 		if (!device_link_test(link, DL_FLAG_MANAGED)) {
834 			kref_get(&link->kref);
835 			link->flags |= DL_FLAG_MANAGED;
836 			device_link_init_status(link, consumer, supplier);
837 		}
838 		if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) &&
839 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
840 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
841 			goto reorder;
842 		}
843 
844 		goto out;
845 	}
846 
847 	link = kzalloc(sizeof(*link), GFP_KERNEL);
848 	if (!link)
849 		goto out;
850 
851 	refcount_set(&link->rpm_active, 1);
852 
853 	get_device(supplier);
854 	link->supplier = supplier;
855 	INIT_LIST_HEAD(&link->s_node);
856 	get_device(consumer);
857 	link->consumer = consumer;
858 	INIT_LIST_HEAD(&link->c_node);
859 	link->flags = flags;
860 	kref_init(&link->kref);
861 
862 	link->link_dev.class = &devlink_class;
863 	device_set_pm_not_required(&link->link_dev);
864 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
865 		     dev_bus_name(supplier), dev_name(supplier),
866 		     dev_bus_name(consumer), dev_name(consumer));
867 	if (device_register(&link->link_dev)) {
868 		put_device(&link->link_dev);
869 		link = NULL;
870 		goto out;
871 	}
872 
873 	if (flags & DL_FLAG_PM_RUNTIME) {
874 		if (flags & DL_FLAG_RPM_ACTIVE)
875 			refcount_inc(&link->rpm_active);
876 
877 		pm_runtime_new_link(consumer);
878 	}
879 
880 	/* Determine the initial link state. */
881 	if (flags & DL_FLAG_STATELESS)
882 		link->status = DL_STATE_NONE;
883 	else
884 		device_link_init_status(link, consumer, supplier);
885 
886 	/*
887 	 * Some callers expect the link creation during consumer driver probe to
888 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
889 	 */
890 	if (link->status == DL_STATE_CONSUMER_PROBE &&
891 	    flags & DL_FLAG_PM_RUNTIME)
892 		pm_runtime_resume(supplier);
893 
894 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
895 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
896 
897 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
898 		dev_dbg(consumer,
899 			"Linked as a sync state only consumer to %s\n",
900 			dev_name(supplier));
901 		goto out;
902 	}
903 
904 reorder:
905 	/*
906 	 * Move the consumer and all of the devices depending on it to the end
907 	 * of dpm_list and the devices_kset list.
908 	 *
909 	 * It is necessary to hold dpm_list locked throughout all that or else
910 	 * we may end up suspending with a wrong ordering of it.
911 	 */
912 	device_reorder_to_tail(consumer, NULL);
913 
914 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
915 
916 out:
917 	device_pm_unlock();
918 	device_links_write_unlock();
919 
920 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
921 		pm_runtime_put(supplier);
922 
923 	return link;
924 }
925 EXPORT_SYMBOL_GPL(device_link_add);
926 
927 static void __device_link_del(struct kref *kref)
928 {
929 	struct device_link *link = container_of(kref, struct device_link, kref);
930 
931 	dev_dbg(link->consumer, "Dropping the link to %s\n",
932 		dev_name(link->supplier));
933 
934 	pm_runtime_drop_link(link);
935 
936 	device_link_remove_from_lists(link);
937 	device_unregister(&link->link_dev);
938 }
939 
940 static void device_link_put_kref(struct device_link *link)
941 {
942 	if (device_link_test(link, DL_FLAG_STATELESS))
943 		kref_put(&link->kref, __device_link_del);
944 	else if (!device_is_registered(link->consumer))
945 		__device_link_del(&link->kref);
946 	else
947 		WARN(1, "Unable to drop a managed device link reference\n");
948 }
949 
950 /**
951  * device_link_del - Delete a stateless link between two devices.
952  * @link: Device link to delete.
953  *
954  * The caller must ensure proper synchronization of this function with runtime
955  * PM.  If the link was added multiple times, it needs to be deleted as often.
956  * Care is required for hotplugged devices:  Their links are purged on removal
957  * and calling device_link_del() is then no longer allowed.
958  */
959 void device_link_del(struct device_link *link)
960 {
961 	device_links_write_lock();
962 	device_link_put_kref(link);
963 	device_links_write_unlock();
964 }
965 EXPORT_SYMBOL_GPL(device_link_del);
966 
967 /**
968  * device_link_remove - Delete a stateless link between two devices.
969  * @consumer: Consumer end of the link.
970  * @supplier: Supplier end of the link.
971  *
972  * The caller must ensure proper synchronization of this function with runtime
973  * PM.
974  */
975 void device_link_remove(void *consumer, struct device *supplier)
976 {
977 	struct device_link *link;
978 
979 	if (WARN_ON(consumer == supplier))
980 		return;
981 
982 	device_links_write_lock();
983 
984 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
985 		if (link->consumer == consumer) {
986 			device_link_put_kref(link);
987 			break;
988 		}
989 	}
990 
991 	device_links_write_unlock();
992 }
993 EXPORT_SYMBOL_GPL(device_link_remove);
994 
995 static void device_links_missing_supplier(struct device *dev)
996 {
997 	struct device_link *link;
998 
999 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1000 		if (link->status != DL_STATE_CONSUMER_PROBE)
1001 			continue;
1002 
1003 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1004 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1005 		} else {
1006 			WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
1007 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1008 		}
1009 	}
1010 }
1011 
1012 static bool dev_is_best_effort(struct device *dev)
1013 {
1014 	return (fw_devlink_best_effort && dev->can_match) ||
1015 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1016 }
1017 
1018 static struct fwnode_handle *fwnode_links_check_suppliers(
1019 						struct fwnode_handle *fwnode)
1020 {
1021 	struct fwnode_link *link;
1022 
1023 	if (!fwnode || fw_devlink_is_permissive())
1024 		return NULL;
1025 
1026 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1027 		if (!(link->flags &
1028 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1029 			return link->supplier;
1030 
1031 	return NULL;
1032 }
1033 
1034 /**
1035  * device_links_check_suppliers - Check presence of supplier drivers.
1036  * @dev: Consumer device.
1037  *
1038  * Check links from this device to any suppliers.  Walk the list of the device's
1039  * links to suppliers and see if all of them are available.  If not, simply
1040  * return -EPROBE_DEFER.
1041  *
1042  * We need to guarantee that the supplier will not go away after the check has
1043  * been positive here.  It only can go away in __device_release_driver() and
1044  * that function  checks the device's links to consumers.  This means we need to
1045  * mark the link as "consumer probe in progress" to make the supplier removal
1046  * wait for us to complete (or bad things may happen).
1047  *
1048  * Links without the DL_FLAG_MANAGED flag set are ignored.
1049  */
1050 int device_links_check_suppliers(struct device *dev)
1051 {
1052 	struct device_link *link;
1053 	int ret = 0, fwnode_ret = 0;
1054 	struct fwnode_handle *sup_fw;
1055 
1056 	/*
1057 	 * Device waiting for supplier to become available is not allowed to
1058 	 * probe.
1059 	 */
1060 	scoped_guard(mutex, &fwnode_link_lock) {
1061 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1062 		if (sup_fw) {
1063 			if (dev_is_best_effort(dev))
1064 				fwnode_ret = -EAGAIN;
1065 			else
1066 				return dev_err_probe(dev, -EPROBE_DEFER,
1067 						     "wait for supplier %pfwf\n", sup_fw);
1068 		}
1069 	}
1070 
1071 	device_links_write_lock();
1072 
1073 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1074 		if (!device_link_test(link, DL_FLAG_MANAGED))
1075 			continue;
1076 
1077 		if (link->status != DL_STATE_AVAILABLE &&
1078 		    !device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) {
1079 
1080 			if (dev_is_best_effort(dev) &&
1081 			    device_link_test(link, DL_FLAG_INFERRED) &&
1082 			    !link->supplier->can_match) {
1083 				ret = -EAGAIN;
1084 				continue;
1085 			}
1086 
1087 			device_links_missing_supplier(dev);
1088 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1089 					    "supplier %s not ready\n", dev_name(link->supplier));
1090 			break;
1091 		}
1092 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1093 	}
1094 	dev->links.status = DL_DEV_PROBING;
1095 
1096 	device_links_write_unlock();
1097 
1098 	return ret ? ret : fwnode_ret;
1099 }
1100 
1101 /**
1102  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1103  * @dev: Device to call sync_state() on
1104  * @list: List head to queue the @dev on
1105  *
1106  * Queues a device for a sync_state() callback when the device links write lock
1107  * isn't held. This allows the sync_state() execution flow to use device links
1108  * APIs.  The caller must ensure this function is called with
1109  * device_links_write_lock() held.
1110  *
1111  * This function does a get_device() to make sure the device is not freed while
1112  * on this list.
1113  *
1114  * So the caller must also ensure that device_links_flush_sync_list() is called
1115  * as soon as the caller releases device_links_write_lock().  This is necessary
1116  * to make sure the sync_state() is called in a timely fashion and the
1117  * put_device() is called on this device.
1118  */
1119 static void __device_links_queue_sync_state(struct device *dev,
1120 					    struct list_head *list)
1121 {
1122 	struct device_link *link;
1123 
1124 	if (!dev_has_sync_state(dev))
1125 		return;
1126 	if (dev->state_synced)
1127 		return;
1128 
1129 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1130 		if (!device_link_test(link, DL_FLAG_MANAGED))
1131 			continue;
1132 		if (link->status != DL_STATE_ACTIVE)
1133 			return;
1134 	}
1135 
1136 	/*
1137 	 * Set the flag here to avoid adding the same device to a list more
1138 	 * than once. This can happen if new consumers get added to the device
1139 	 * and probed before the list is flushed.
1140 	 */
1141 	dev->state_synced = true;
1142 
1143 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1144 		return;
1145 
1146 	get_device(dev);
1147 	list_add_tail(&dev->links.defer_sync, list);
1148 }
1149 
1150 /**
1151  * device_links_flush_sync_list - Call sync_state() on a list of devices
1152  * @list: List of devices to call sync_state() on
1153  * @dont_lock_dev: Device for which lock is already held by the caller
1154  *
1155  * Calls sync_state() on all the devices that have been queued for it. This
1156  * function is used in conjunction with __device_links_queue_sync_state(). The
1157  * @dont_lock_dev parameter is useful when this function is called from a
1158  * context where a device lock is already held.
1159  */
1160 static void device_links_flush_sync_list(struct list_head *list,
1161 					 struct device *dont_lock_dev)
1162 {
1163 	struct device *dev, *tmp;
1164 
1165 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1166 		list_del_init(&dev->links.defer_sync);
1167 
1168 		if (dev != dont_lock_dev)
1169 			device_lock(dev);
1170 
1171 		dev_sync_state(dev);
1172 
1173 		if (dev != dont_lock_dev)
1174 			device_unlock(dev);
1175 
1176 		put_device(dev);
1177 	}
1178 }
1179 
1180 void device_links_supplier_sync_state_pause(void)
1181 {
1182 	device_links_write_lock();
1183 	defer_sync_state_count++;
1184 	device_links_write_unlock();
1185 }
1186 
1187 void device_links_supplier_sync_state_resume(void)
1188 {
1189 	struct device *dev, *tmp;
1190 	LIST_HEAD(sync_list);
1191 
1192 	device_links_write_lock();
1193 	if (!defer_sync_state_count) {
1194 		WARN(true, "Unmatched sync_state pause/resume!");
1195 		goto out;
1196 	}
1197 	defer_sync_state_count--;
1198 	if (defer_sync_state_count)
1199 		goto out;
1200 
1201 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1202 		/*
1203 		 * Delete from deferred_sync list before queuing it to
1204 		 * sync_list because defer_sync is used for both lists.
1205 		 */
1206 		list_del_init(&dev->links.defer_sync);
1207 		__device_links_queue_sync_state(dev, &sync_list);
1208 	}
1209 out:
1210 	device_links_write_unlock();
1211 
1212 	device_links_flush_sync_list(&sync_list, NULL);
1213 }
1214 
1215 static int sync_state_resume_initcall(void)
1216 {
1217 	device_links_supplier_sync_state_resume();
1218 	return 0;
1219 }
1220 late_initcall(sync_state_resume_initcall);
1221 
1222 static void __device_links_supplier_defer_sync(struct device *sup)
1223 {
1224 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1225 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1226 }
1227 
1228 static void device_link_drop_managed(struct device_link *link)
1229 {
1230 	link->flags &= ~DL_FLAG_MANAGED;
1231 	WRITE_ONCE(link->status, DL_STATE_NONE);
1232 	kref_put(&link->kref, __device_link_del);
1233 }
1234 
1235 static ssize_t waiting_for_supplier_show(struct device *dev,
1236 					 struct device_attribute *attr,
1237 					 char *buf)
1238 {
1239 	bool val;
1240 
1241 	device_lock(dev);
1242 	scoped_guard(mutex, &fwnode_link_lock)
1243 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1244 	device_unlock(dev);
1245 	return sysfs_emit(buf, "%u\n", val);
1246 }
1247 static DEVICE_ATTR_RO(waiting_for_supplier);
1248 
1249 /**
1250  * device_links_force_bind - Prepares device to be force bound
1251  * @dev: Consumer device.
1252  *
1253  * device_bind_driver() force binds a device to a driver without calling any
1254  * driver probe functions. So the consumer really isn't going to wait for any
1255  * supplier before it's bound to the driver. We still want the device link
1256  * states to be sensible when this happens.
1257  *
1258  * In preparation for device_bind_driver(), this function goes through each
1259  * supplier device links and checks if the supplier is bound. If it is, then
1260  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1261  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1262  */
1263 void device_links_force_bind(struct device *dev)
1264 {
1265 	struct device_link *link, *ln;
1266 
1267 	device_links_write_lock();
1268 
1269 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1270 		if (!device_link_test(link, DL_FLAG_MANAGED))
1271 			continue;
1272 
1273 		if (link->status != DL_STATE_AVAILABLE) {
1274 			device_link_drop_managed(link);
1275 			continue;
1276 		}
1277 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1278 	}
1279 	dev->links.status = DL_DEV_PROBING;
1280 
1281 	device_links_write_unlock();
1282 }
1283 
1284 /**
1285  * device_links_driver_bound - Update device links after probing its driver.
1286  * @dev: Device to update the links for.
1287  *
1288  * The probe has been successful, so update links from this device to any
1289  * consumers by changing their status to "available".
1290  *
1291  * Also change the status of @dev's links to suppliers to "active".
1292  *
1293  * Links without the DL_FLAG_MANAGED flag set are ignored.
1294  */
1295 void device_links_driver_bound(struct device *dev)
1296 {
1297 	struct device_link *link, *ln;
1298 	LIST_HEAD(sync_list);
1299 
1300 	/*
1301 	 * If a device binds successfully, it's expected to have created all
1302 	 * the device links it needs to or make new device links as it needs
1303 	 * them. So, fw_devlink no longer needs to create device links to any
1304 	 * of the device's suppliers.
1305 	 *
1306 	 * Also, if a child firmware node of this bound device is not added as a
1307 	 * device by now, assume it is never going to be added. Make this bound
1308 	 * device the fallback supplier to the dangling consumers of the child
1309 	 * firmware node because this bound device is probably implementing the
1310 	 * child firmware node functionality and we don't want the dangling
1311 	 * consumers to defer probe indefinitely waiting for a device for the
1312 	 * child firmware node.
1313 	 */
1314 	if (dev->fwnode && dev->fwnode->dev == dev) {
1315 		struct fwnode_handle *child;
1316 
1317 		fwnode_links_purge_suppliers(dev->fwnode);
1318 
1319 		guard(mutex)(&fwnode_link_lock);
1320 
1321 		fwnode_for_each_available_child_node(dev->fwnode, child)
1322 			__fw_devlink_pickup_dangling_consumers(child,
1323 							       dev->fwnode);
1324 		__fw_devlink_link_to_consumers(dev);
1325 	}
1326 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1327 
1328 	device_links_write_lock();
1329 
1330 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1331 		if (!device_link_test(link, DL_FLAG_MANAGED))
1332 			continue;
1333 
1334 		/*
1335 		 * Links created during consumer probe may be in the "consumer
1336 		 * probe" state to start with if the supplier is still probing
1337 		 * when they are created and they may become "active" if the
1338 		 * consumer probe returns first.  Skip them here.
1339 		 */
1340 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1341 		    link->status == DL_STATE_ACTIVE)
1342 			continue;
1343 
1344 		WARN_ON(link->status != DL_STATE_DORMANT);
1345 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1346 
1347 		if (device_link_test(link, DL_FLAG_AUTOPROBE_CONSUMER))
1348 			driver_deferred_probe_add(link->consumer);
1349 	}
1350 
1351 	if (defer_sync_state_count)
1352 		__device_links_supplier_defer_sync(dev);
1353 	else
1354 		__device_links_queue_sync_state(dev, &sync_list);
1355 
1356 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1357 		struct device *supplier;
1358 
1359 		if (!device_link_test(link, DL_FLAG_MANAGED))
1360 			continue;
1361 
1362 		supplier = link->supplier;
1363 		if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) {
1364 			/*
1365 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1366 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1367 			 * save to drop the managed link completely.
1368 			 */
1369 			device_link_drop_managed(link);
1370 		} else if (dev_is_best_effort(dev) &&
1371 			   device_link_test(link, DL_FLAG_INFERRED) &&
1372 			   link->status != DL_STATE_CONSUMER_PROBE &&
1373 			   !link->supplier->can_match) {
1374 			/*
1375 			 * When dev_is_best_effort() is true, we ignore device
1376 			 * links to suppliers that don't have a driver.  If the
1377 			 * consumer device still managed to probe, there's no
1378 			 * point in maintaining a device link in a weird state
1379 			 * (consumer probed before supplier). So delete it.
1380 			 */
1381 			device_link_drop_managed(link);
1382 		} else {
1383 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1384 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1385 		}
1386 
1387 		/*
1388 		 * This needs to be done even for the deleted
1389 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1390 		 * device link that was preventing the supplier from getting a
1391 		 * sync_state() call.
1392 		 */
1393 		if (defer_sync_state_count)
1394 			__device_links_supplier_defer_sync(supplier);
1395 		else
1396 			__device_links_queue_sync_state(supplier, &sync_list);
1397 	}
1398 
1399 	dev->links.status = DL_DEV_DRIVER_BOUND;
1400 
1401 	device_links_write_unlock();
1402 
1403 	device_links_flush_sync_list(&sync_list, dev);
1404 }
1405 
1406 /**
1407  * __device_links_no_driver - Update links of a device without a driver.
1408  * @dev: Device without a drvier.
1409  *
1410  * Delete all non-persistent links from this device to any suppliers.
1411  *
1412  * Persistent links stay around, but their status is changed to "available",
1413  * unless they already are in the "supplier unbind in progress" state in which
1414  * case they need not be updated.
1415  *
1416  * Links without the DL_FLAG_MANAGED flag set are ignored.
1417  */
1418 static void __device_links_no_driver(struct device *dev)
1419 {
1420 	struct device_link *link, *ln;
1421 
1422 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1423 		if (!device_link_test(link, DL_FLAG_MANAGED))
1424 			continue;
1425 
1426 		if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) {
1427 			device_link_drop_managed(link);
1428 			continue;
1429 		}
1430 
1431 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1432 		    link->status != DL_STATE_ACTIVE)
1433 			continue;
1434 
1435 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1436 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1437 		} else {
1438 			WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
1439 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1440 		}
1441 	}
1442 
1443 	dev->links.status = DL_DEV_NO_DRIVER;
1444 }
1445 
1446 /**
1447  * device_links_no_driver - Update links after failing driver probe.
1448  * @dev: Device whose driver has just failed to probe.
1449  *
1450  * Clean up leftover links to consumers for @dev and invoke
1451  * %__device_links_no_driver() to update links to suppliers for it as
1452  * appropriate.
1453  *
1454  * Links without the DL_FLAG_MANAGED flag set are ignored.
1455  */
1456 void device_links_no_driver(struct device *dev)
1457 {
1458 	struct device_link *link;
1459 
1460 	device_links_write_lock();
1461 
1462 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1463 		if (!device_link_test(link, DL_FLAG_MANAGED))
1464 			continue;
1465 
1466 		/*
1467 		 * The probe has failed, so if the status of the link is
1468 		 * "consumer probe" or "active", it must have been added by
1469 		 * a probing consumer while this device was still probing.
1470 		 * Change its state to "dormant", as it represents a valid
1471 		 * relationship, but it is not functionally meaningful.
1472 		 */
1473 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1474 		    link->status == DL_STATE_ACTIVE)
1475 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1476 	}
1477 
1478 	__device_links_no_driver(dev);
1479 
1480 	device_links_write_unlock();
1481 }
1482 
1483 /**
1484  * device_links_driver_cleanup - Update links after driver removal.
1485  * @dev: Device whose driver has just gone away.
1486  *
1487  * Update links to consumers for @dev by changing their status to "dormant" and
1488  * invoke %__device_links_no_driver() to update links to suppliers for it as
1489  * appropriate.
1490  *
1491  * Links without the DL_FLAG_MANAGED flag set are ignored.
1492  */
1493 void device_links_driver_cleanup(struct device *dev)
1494 {
1495 	struct device_link *link, *ln;
1496 
1497 	device_links_write_lock();
1498 
1499 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1500 		if (!device_link_test(link, DL_FLAG_MANAGED))
1501 			continue;
1502 
1503 		WARN_ON(device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER));
1504 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1505 
1506 		/*
1507 		 * autoremove the links between this @dev and its consumer
1508 		 * devices that are not active, i.e. where the link state
1509 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1510 		 */
1511 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1512 		    device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER))
1513 			device_link_drop_managed(link);
1514 
1515 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1516 	}
1517 
1518 	list_del_init(&dev->links.defer_sync);
1519 	__device_links_no_driver(dev);
1520 
1521 	device_links_write_unlock();
1522 }
1523 
1524 /**
1525  * device_links_busy - Check if there are any busy links to consumers.
1526  * @dev: Device to check.
1527  *
1528  * Check each consumer of the device and return 'true' if its link's status
1529  * is one of "consumer probe" or "active" (meaning that the given consumer is
1530  * probing right now or its driver is present).  Otherwise, change the link
1531  * state to "supplier unbind" to prevent the consumer from being probed
1532  * successfully going forward.
1533  *
1534  * Return 'false' if there are no probing or active consumers.
1535  *
1536  * Links without the DL_FLAG_MANAGED flag set are ignored.
1537  */
1538 bool device_links_busy(struct device *dev)
1539 {
1540 	struct device_link *link;
1541 	bool ret = false;
1542 
1543 	device_links_write_lock();
1544 
1545 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1546 		if (!device_link_test(link, DL_FLAG_MANAGED))
1547 			continue;
1548 
1549 		if (link->status == DL_STATE_CONSUMER_PROBE
1550 		    || link->status == DL_STATE_ACTIVE) {
1551 			ret = true;
1552 			break;
1553 		}
1554 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555 	}
1556 
1557 	dev->links.status = DL_DEV_UNBINDING;
1558 
1559 	device_links_write_unlock();
1560 	return ret;
1561 }
1562 
1563 /**
1564  * device_links_unbind_consumers - Force unbind consumers of the given device.
1565  * @dev: Device to unbind the consumers of.
1566  *
1567  * Walk the list of links to consumers for @dev and if any of them is in the
1568  * "consumer probe" state, wait for all device probes in progress to complete
1569  * and start over.
1570  *
1571  * If that's not the case, change the status of the link to "supplier unbind"
1572  * and check if the link was in the "active" state.  If so, force the consumer
1573  * driver to unbind and start over (the consumer will not re-probe as we have
1574  * changed the state of the link already).
1575  *
1576  * Links without the DL_FLAG_MANAGED flag set are ignored.
1577  */
1578 void device_links_unbind_consumers(struct device *dev)
1579 {
1580 	struct device_link *link;
1581 
1582  start:
1583 	device_links_write_lock();
1584 
1585 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1586 		enum device_link_state status;
1587 
1588 		if (!device_link_test(link, DL_FLAG_MANAGED) ||
1589 		    device_link_test(link, DL_FLAG_SYNC_STATE_ONLY))
1590 			continue;
1591 
1592 		status = link->status;
1593 		if (status == DL_STATE_CONSUMER_PROBE) {
1594 			device_links_write_unlock();
1595 
1596 			wait_for_device_probe();
1597 			goto start;
1598 		}
1599 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1600 		if (status == DL_STATE_ACTIVE) {
1601 			struct device *consumer = link->consumer;
1602 
1603 			get_device(consumer);
1604 
1605 			device_links_write_unlock();
1606 
1607 			device_release_driver_internal(consumer, NULL,
1608 						       consumer->parent);
1609 			put_device(consumer);
1610 			goto start;
1611 		}
1612 	}
1613 
1614 	device_links_write_unlock();
1615 }
1616 
1617 /**
1618  * device_links_purge - Delete existing links to other devices.
1619  * @dev: Target device.
1620  */
1621 static void device_links_purge(struct device *dev)
1622 {
1623 	struct device_link *link, *ln;
1624 
1625 	if (dev->class == &devlink_class)
1626 		return;
1627 
1628 	/*
1629 	 * Delete all of the remaining links from this device to any other
1630 	 * devices (either consumers or suppliers).
1631 	 */
1632 	device_links_write_lock();
1633 
1634 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1635 		WARN_ON(link->status == DL_STATE_ACTIVE);
1636 		__device_link_del(&link->kref);
1637 	}
1638 
1639 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1640 		WARN_ON(link->status != DL_STATE_DORMANT &&
1641 			link->status != DL_STATE_NONE);
1642 		__device_link_del(&link->kref);
1643 	}
1644 
1645 	device_links_write_unlock();
1646 }
1647 
1648 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1649 					 DL_FLAG_SYNC_STATE_ONLY)
1650 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1651 					 DL_FLAG_AUTOPROBE_CONSUMER)
1652 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1653 					 DL_FLAG_PM_RUNTIME)
1654 
1655 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1656 static int __init fw_devlink_setup(char *arg)
1657 {
1658 	if (!arg)
1659 		return -EINVAL;
1660 
1661 	if (strcmp(arg, "off") == 0) {
1662 		fw_devlink_flags = 0;
1663 	} else if (strcmp(arg, "permissive") == 0) {
1664 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1665 	} else if (strcmp(arg, "on") == 0) {
1666 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1667 	} else if (strcmp(arg, "rpm") == 0) {
1668 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1669 	}
1670 	return 0;
1671 }
1672 early_param("fw_devlink", fw_devlink_setup);
1673 
1674 static bool fw_devlink_strict;
1675 static int __init fw_devlink_strict_setup(char *arg)
1676 {
1677 	return kstrtobool(arg, &fw_devlink_strict);
1678 }
1679 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1680 
1681 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1682 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1683 
1684 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1685 static int fw_devlink_sync_state;
1686 #else
1687 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1688 #endif
1689 
1690 static int __init fw_devlink_sync_state_setup(char *arg)
1691 {
1692 	if (!arg)
1693 		return -EINVAL;
1694 
1695 	if (strcmp(arg, "strict") == 0) {
1696 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1697 		return 0;
1698 	} else if (strcmp(arg, "timeout") == 0) {
1699 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1700 		return 0;
1701 	}
1702 	return -EINVAL;
1703 }
1704 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1705 
1706 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1707 {
1708 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1709 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1710 
1711 	return fw_devlink_flags;
1712 }
1713 
1714 static bool fw_devlink_is_permissive(void)
1715 {
1716 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1717 }
1718 
1719 bool fw_devlink_is_strict(void)
1720 {
1721 	return fw_devlink_strict && !fw_devlink_is_permissive();
1722 }
1723 
1724 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1725 {
1726 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1727 		return;
1728 
1729 	fwnode_call_int_op(fwnode, add_links);
1730 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1731 }
1732 
1733 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1734 {
1735 	struct fwnode_handle *child = NULL;
1736 
1737 	fw_devlink_parse_fwnode(fwnode);
1738 
1739 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1740 		fw_devlink_parse_fwtree(child);
1741 }
1742 
1743 static void fw_devlink_relax_link(struct device_link *link)
1744 {
1745 	if (!device_link_test(link, DL_FLAG_INFERRED))
1746 		return;
1747 
1748 	if (device_link_flag_is_sync_state_only(link->flags))
1749 		return;
1750 
1751 	pm_runtime_drop_link(link);
1752 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1753 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1754 		dev_name(link->supplier));
1755 }
1756 
1757 static int fw_devlink_no_driver(struct device *dev, void *data)
1758 {
1759 	struct device_link *link = to_devlink(dev);
1760 
1761 	if (!link->supplier->can_match)
1762 		fw_devlink_relax_link(link);
1763 
1764 	return 0;
1765 }
1766 
1767 void fw_devlink_drivers_done(void)
1768 {
1769 	fw_devlink_drv_reg_done = true;
1770 	device_links_write_lock();
1771 	class_for_each_device(&devlink_class, NULL, NULL,
1772 			      fw_devlink_no_driver);
1773 	device_links_write_unlock();
1774 }
1775 
1776 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1777 {
1778 	struct device_link *link = to_devlink(dev);
1779 	struct device *sup = link->supplier;
1780 
1781 	if (!device_link_test(link, DL_FLAG_MANAGED) ||
1782 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1783 	    !dev_has_sync_state(sup))
1784 		return 0;
1785 
1786 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1787 		dev_warn(sup, "sync_state() pending due to %s\n",
1788 			 dev_name(link->consumer));
1789 		return 0;
1790 	}
1791 
1792 	if (!list_empty(&sup->links.defer_sync))
1793 		return 0;
1794 
1795 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1796 	sup->state_synced = true;
1797 	get_device(sup);
1798 	list_add_tail(&sup->links.defer_sync, data);
1799 
1800 	return 0;
1801 }
1802 
1803 void fw_devlink_probing_done(void)
1804 {
1805 	LIST_HEAD(sync_list);
1806 
1807 	device_links_write_lock();
1808 	class_for_each_device(&devlink_class, NULL, &sync_list,
1809 			      fw_devlink_dev_sync_state);
1810 	device_links_write_unlock();
1811 	device_links_flush_sync_list(&sync_list, NULL);
1812 }
1813 
1814 /**
1815  * wait_for_init_devices_probe - Try to probe any device needed for init
1816  *
1817  * Some devices might need to be probed and bound successfully before the kernel
1818  * boot sequence can finish and move on to init/userspace. For example, a
1819  * network interface might need to be bound to be able to mount a NFS rootfs.
1820  *
1821  * With fw_devlink=on by default, some of these devices might be blocked from
1822  * probing because they are waiting on a optional supplier that doesn't have a
1823  * driver. While fw_devlink will eventually identify such devices and unblock
1824  * the probing automatically, it might be too late by the time it unblocks the
1825  * probing of devices. For example, the IP4 autoconfig might timeout before
1826  * fw_devlink unblocks probing of the network interface.
1827  *
1828  * This function is available to temporarily try and probe all devices that have
1829  * a driver even if some of their suppliers haven't been added or don't have
1830  * drivers.
1831  *
1832  * The drivers can then decide which of the suppliers are optional vs mandatory
1833  * and probe the device if possible. By the time this function returns, all such
1834  * "best effort" probes are guaranteed to be completed. If a device successfully
1835  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1836  * device where the supplier hasn't yet probed successfully because they have to
1837  * be optional dependencies.
1838  *
1839  * Any devices that didn't successfully probe go back to being treated as if
1840  * this function was never called.
1841  *
1842  * This also means that some devices that aren't needed for init and could have
1843  * waited for their optional supplier to probe (when the supplier's module is
1844  * loaded later on) would end up probing prematurely with limited functionality.
1845  * So call this function only when boot would fail without it.
1846  */
1847 void __init wait_for_init_devices_probe(void)
1848 {
1849 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1850 		return;
1851 
1852 	/*
1853 	 * Wait for all ongoing probes to finish so that the "best effort" is
1854 	 * only applied to devices that can't probe otherwise.
1855 	 */
1856 	wait_for_device_probe();
1857 
1858 	pr_info("Trying to probe devices needed for running init ...\n");
1859 	fw_devlink_best_effort = true;
1860 	driver_deferred_probe_trigger();
1861 
1862 	/*
1863 	 * Wait for all "best effort" probes to finish before going back to
1864 	 * normal enforcement.
1865 	 */
1866 	wait_for_device_probe();
1867 	fw_devlink_best_effort = false;
1868 }
1869 
1870 static void fw_devlink_unblock_consumers(struct device *dev)
1871 {
1872 	struct device_link *link;
1873 
1874 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1875 		return;
1876 
1877 	device_links_write_lock();
1878 	list_for_each_entry(link, &dev->links.consumers, s_node)
1879 		fw_devlink_relax_link(link);
1880 	device_links_write_unlock();
1881 }
1882 
1883 #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1884 
1885 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1886 {
1887 	struct device *dev;
1888 	bool ret;
1889 
1890 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1891 		return false;
1892 
1893 	dev = get_dev_from_fwnode(fwnode);
1894 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1895 	put_device(dev);
1896 
1897 	return ret;
1898 }
1899 
1900 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1901 {
1902 	struct fwnode_handle *parent;
1903 
1904 	fwnode_for_each_parent_node(fwnode, parent) {
1905 		if (fwnode_init_without_drv(parent)) {
1906 			fwnode_handle_put(parent);
1907 			return true;
1908 		}
1909 	}
1910 
1911 	return false;
1912 }
1913 
1914 /**
1915  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1916  * @ancestor: Firmware which is tested for being an ancestor
1917  * @child: Firmware which is tested for being the child
1918  *
1919  * A node is considered an ancestor of itself too.
1920  *
1921  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1922  */
1923 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1924 				  const struct fwnode_handle *child)
1925 {
1926 	struct fwnode_handle *parent;
1927 
1928 	if (IS_ERR_OR_NULL(ancestor))
1929 		return false;
1930 
1931 	if (child == ancestor)
1932 		return true;
1933 
1934 	fwnode_for_each_parent_node(child, parent) {
1935 		if (parent == ancestor) {
1936 			fwnode_handle_put(parent);
1937 			return true;
1938 		}
1939 	}
1940 	return false;
1941 }
1942 
1943 /**
1944  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1945  * @fwnode: firmware node
1946  *
1947  * Given a firmware node (@fwnode), this function finds its closest ancestor
1948  * firmware node that has a corresponding struct device and returns that struct
1949  * device.
1950  *
1951  * The caller is responsible for calling put_device() on the returned device
1952  * pointer.
1953  *
1954  * Return: a pointer to the device of the @fwnode's closest ancestor.
1955  */
1956 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1957 {
1958 	struct fwnode_handle *parent;
1959 	struct device *dev;
1960 
1961 	fwnode_for_each_parent_node(fwnode, parent) {
1962 		dev = get_dev_from_fwnode(parent);
1963 		if (dev) {
1964 			fwnode_handle_put(parent);
1965 			return dev;
1966 		}
1967 	}
1968 	return NULL;
1969 }
1970 
1971 /**
1972  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1973  * @con_handle: Potential consumer device fwnode.
1974  * @sup_handle: Potential supplier's fwnode.
1975  *
1976  * Needs to be called with fwnode_lock and device link lock held.
1977  *
1978  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1979  * depend on @con. This function can detect multiple cyles between @sup_handle
1980  * and @con. When such dependency cycles are found, convert all device links
1981  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1982  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1983  * converted into a device link in the future, they are created as
1984  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1985  * fw_devlink=permissive just between the devices in the cycle. We need to do
1986  * this because, at this point, fw_devlink can't tell which of these
1987  * dependencies is not a real dependency.
1988  *
1989  * Return true if one or more cycles were found. Otherwise, return false.
1990  */
1991 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1992 				 struct fwnode_handle *sup_handle)
1993 {
1994 	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1995 	struct fwnode_link *link;
1996 	struct device_link *dev_link;
1997 	bool ret = false;
1998 
1999 	if (!sup_handle)
2000 		return false;
2001 
2002 	/*
2003 	 * We aren't trying to find all cycles. Just a cycle between con and
2004 	 * sup_handle.
2005 	 */
2006 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2007 		return false;
2008 
2009 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2010 
2011 	/* Termination condition. */
2012 	if (sup_handle == con_handle) {
2013 		pr_debug("----- cycle: start -----\n");
2014 		ret = true;
2015 		goto out;
2016 	}
2017 
2018 	sup_dev = get_dev_from_fwnode(sup_handle);
2019 	con_dev = get_dev_from_fwnode(con_handle);
2020 	/*
2021 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2022 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2023 	 * further.
2024 	 */
2025 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2026 	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2027 		ret = false;
2028 		goto out;
2029 	}
2030 
2031 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2032 		if (link->flags & FWLINK_FLAG_IGNORE)
2033 			continue;
2034 
2035 		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2036 			__fwnode_link_cycle(link);
2037 			ret = true;
2038 		}
2039 	}
2040 
2041 	/*
2042 	 * Give priority to device parent over fwnode parent to account for any
2043 	 * quirks in how fwnodes are converted to devices.
2044 	 */
2045 	if (sup_dev)
2046 		par_dev = get_device(sup_dev->parent);
2047 	else
2048 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2049 
2050 	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2051 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2052 			 par_dev->fwnode);
2053 		ret = true;
2054 	}
2055 
2056 	if (!sup_dev)
2057 		goto out;
2058 
2059 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2060 		/*
2061 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2062 		 * such due to a cycle.
2063 		 */
2064 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2065 		    !device_link_test(dev_link, DL_FLAG_CYCLE))
2066 			continue;
2067 
2068 		if (__fw_devlink_relax_cycles(con_handle,
2069 					      dev_link->supplier->fwnode)) {
2070 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2071 				 dev_link->supplier->fwnode);
2072 			fw_devlink_relax_link(dev_link);
2073 			dev_link->flags |= DL_FLAG_CYCLE;
2074 			ret = true;
2075 		}
2076 	}
2077 
2078 out:
2079 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2080 	put_device(sup_dev);
2081 	put_device(con_dev);
2082 	put_device(par_dev);
2083 	return ret;
2084 }
2085 
2086 /**
2087  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2088  * @con: consumer device for the device link
2089  * @sup_handle: fwnode handle of supplier
2090  * @link: fwnode link that's being converted to a device link
2091  *
2092  * This function will try to create a device link between the consumer device
2093  * @con and the supplier device represented by @sup_handle.
2094  *
2095  * The supplier has to be provided as a fwnode because incorrect cycles in
2096  * fwnode links can sometimes cause the supplier device to never be created.
2097  * This function detects such cases and returns an error if it cannot create a
2098  * device link from the consumer to a missing supplier.
2099  *
2100  * Returns,
2101  * 0 on successfully creating a device link
2102  * -EINVAL if the device link cannot be created as expected
2103  * -EAGAIN if the device link cannot be created right now, but it may be
2104  *  possible to do that in the future
2105  */
2106 static int fw_devlink_create_devlink(struct device *con,
2107 				     struct fwnode_handle *sup_handle,
2108 				     struct fwnode_link *link)
2109 {
2110 	struct device *sup_dev;
2111 	int ret = 0;
2112 	u32 flags;
2113 
2114 	if (link->flags & FWLINK_FLAG_IGNORE)
2115 		return 0;
2116 
2117 	/*
2118 	 * In some cases, a device P might also be a supplier to its child node
2119 	 * C. However, this would defer the probe of C until the probe of P
2120 	 * completes successfully. This is perfectly fine in the device driver
2121 	 * model. device_add() doesn't guarantee probe completion of the device
2122 	 * by the time it returns.
2123 	 *
2124 	 * However, there are a few drivers that assume C will finish probing
2125 	 * as soon as it's added and before P finishes probing. So, we provide
2126 	 * a flag to let fw_devlink know not to delay the probe of C until the
2127 	 * probe of P completes successfully.
2128 	 *
2129 	 * When such a flag is set, we can't create device links where P is the
2130 	 * supplier of C as that would delay the probe of C.
2131 	 */
2132 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2133 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2134 		return -EINVAL;
2135 
2136 	/*
2137 	 * Don't try to optimize by not calling the cycle detection logic under
2138 	 * certain conditions. There's always some corner case that won't get
2139 	 * detected.
2140 	 */
2141 	device_links_write_lock();
2142 	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2143 		__fwnode_link_cycle(link);
2144 		pr_debug("----- cycle: end -----\n");
2145 		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2146 			link->consumer, sup_handle);
2147 	}
2148 	device_links_write_unlock();
2149 
2150 	if (con->fwnode == link->consumer)
2151 		flags = fw_devlink_get_flags(link->flags);
2152 	else
2153 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2154 
2155 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2156 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2157 	else
2158 		sup_dev = get_dev_from_fwnode(sup_handle);
2159 
2160 	if (sup_dev) {
2161 		/*
2162 		 * If it's one of those drivers that don't actually bind to
2163 		 * their device using driver core, then don't wait on this
2164 		 * supplier device indefinitely.
2165 		 */
2166 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2167 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2168 			dev_dbg(con,
2169 				"Not linking %pfwf - dev might never probe\n",
2170 				sup_handle);
2171 			ret = -EINVAL;
2172 			goto out;
2173 		}
2174 
2175 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2176 			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2177 				flags, dev_name(sup_dev), link->consumer);
2178 			ret = -EINVAL;
2179 		}
2180 
2181 		goto out;
2182 	}
2183 
2184 	/*
2185 	 * Supplier or supplier's ancestor already initialized without a struct
2186 	 * device or being probed by a driver.
2187 	 */
2188 	if (fwnode_init_without_drv(sup_handle) ||
2189 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2190 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2191 			sup_handle);
2192 		return -EINVAL;
2193 	}
2194 
2195 	ret = -EAGAIN;
2196 out:
2197 	put_device(sup_dev);
2198 	return ret;
2199 }
2200 
2201 /**
2202  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2203  * @dev: Device that needs to be linked to its consumers
2204  *
2205  * This function looks at all the consumer fwnodes of @dev and creates device
2206  * links between the consumer device and @dev (supplier).
2207  *
2208  * If the consumer device has not been added yet, then this function creates a
2209  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2210  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2211  * sync_state() callback before the real consumer device gets to be added and
2212  * then probed.
2213  *
2214  * Once device links are created from the real consumer to @dev (supplier), the
2215  * fwnode links are deleted.
2216  */
2217 static void __fw_devlink_link_to_consumers(struct device *dev)
2218 {
2219 	struct fwnode_handle *fwnode = dev->fwnode;
2220 	struct fwnode_link *link, *tmp;
2221 
2222 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2223 		struct device *con_dev;
2224 		bool own_link = true;
2225 		int ret;
2226 
2227 		con_dev = get_dev_from_fwnode(link->consumer);
2228 		/*
2229 		 * If consumer device is not available yet, make a "proxy"
2230 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2231 		 * the supplier device. This is necessary to make sure the
2232 		 * supplier doesn't get a sync_state() callback before the real
2233 		 * consumer can create a device link to the supplier.
2234 		 *
2235 		 * This proxy link step is needed to handle the case where the
2236 		 * consumer's parent device is added before the supplier.
2237 		 */
2238 		if (!con_dev) {
2239 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2240 			/*
2241 			 * However, if the consumer's parent device is also the
2242 			 * parent of the supplier, don't create a
2243 			 * consumer-supplier link from the parent to its child
2244 			 * device. Such a dependency is impossible.
2245 			 */
2246 			if (con_dev &&
2247 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2248 				put_device(con_dev);
2249 				con_dev = NULL;
2250 			} else {
2251 				own_link = false;
2252 			}
2253 		}
2254 
2255 		if (!con_dev)
2256 			continue;
2257 
2258 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2259 		put_device(con_dev);
2260 		if (!own_link || ret == -EAGAIN)
2261 			continue;
2262 
2263 		__fwnode_link_del(link);
2264 	}
2265 }
2266 
2267 /**
2268  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2269  * @dev: The consumer device that needs to be linked to its suppliers
2270  * @fwnode: Root of the fwnode tree that is used to create device links
2271  *
2272  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2273  * @fwnode and creates device links between @dev (consumer) and all the
2274  * supplier devices of the entire fwnode tree at @fwnode.
2275  *
2276  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2277  * and the real suppliers of @dev. Once these device links are created, the
2278  * fwnode links are deleted.
2279  *
2280  * In addition, it also looks at all the suppliers of the entire fwnode tree
2281  * because some of the child devices of @dev that have not been added yet
2282  * (because @dev hasn't probed) might already have their suppliers added to
2283  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2284  * @dev (consumer) and these suppliers to make sure they don't execute their
2285  * sync_state() callbacks before these child devices have a chance to create
2286  * their device links. The fwnode links that correspond to the child devices
2287  * aren't delete because they are needed later to create the device links
2288  * between the real consumer and supplier devices.
2289  */
2290 static void __fw_devlink_link_to_suppliers(struct device *dev,
2291 					   struct fwnode_handle *fwnode)
2292 {
2293 	bool own_link = (dev->fwnode == fwnode);
2294 	struct fwnode_link *link, *tmp;
2295 	struct fwnode_handle *child = NULL;
2296 
2297 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2298 		int ret;
2299 		struct fwnode_handle *sup = link->supplier;
2300 
2301 		ret = fw_devlink_create_devlink(dev, sup, link);
2302 		if (!own_link || ret == -EAGAIN)
2303 			continue;
2304 
2305 		__fwnode_link_del(link);
2306 	}
2307 
2308 	/*
2309 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2310 	 * all the descendants. This proxy link step is needed to handle the
2311 	 * case where the supplier is added before the consumer's parent device
2312 	 * (@dev).
2313 	 */
2314 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2315 		__fw_devlink_link_to_suppliers(dev, child);
2316 }
2317 
2318 static void fw_devlink_link_device(struct device *dev)
2319 {
2320 	struct fwnode_handle *fwnode = dev->fwnode;
2321 
2322 	if (!fw_devlink_flags)
2323 		return;
2324 
2325 	fw_devlink_parse_fwtree(fwnode);
2326 
2327 	guard(mutex)(&fwnode_link_lock);
2328 
2329 	__fw_devlink_link_to_consumers(dev);
2330 	__fw_devlink_link_to_suppliers(dev, fwnode);
2331 }
2332 
2333 /* Device links support end. */
2334 
2335 static struct kobject *dev_kobj;
2336 
2337 /* /sys/dev/char */
2338 static struct kobject *sysfs_dev_char_kobj;
2339 
2340 /* /sys/dev/block */
2341 static struct kobject *sysfs_dev_block_kobj;
2342 
2343 static DEFINE_MUTEX(device_hotplug_lock);
2344 
2345 void lock_device_hotplug(void)
2346 {
2347 	mutex_lock(&device_hotplug_lock);
2348 }
2349 
2350 void unlock_device_hotplug(void)
2351 {
2352 	mutex_unlock(&device_hotplug_lock);
2353 }
2354 
2355 int lock_device_hotplug_sysfs(void)
2356 {
2357 	if (mutex_trylock(&device_hotplug_lock))
2358 		return 0;
2359 
2360 	/* Avoid busy looping (5 ms of sleep should do). */
2361 	msleep(5);
2362 	return restart_syscall();
2363 }
2364 
2365 #ifdef CONFIG_BLOCK
2366 static inline int device_is_not_partition(struct device *dev)
2367 {
2368 	return !(dev->type == &part_type);
2369 }
2370 #else
2371 static inline int device_is_not_partition(struct device *dev)
2372 {
2373 	return 1;
2374 }
2375 #endif
2376 
2377 static void device_platform_notify(struct device *dev)
2378 {
2379 	acpi_device_notify(dev);
2380 
2381 	software_node_notify(dev);
2382 }
2383 
2384 static void device_platform_notify_remove(struct device *dev)
2385 {
2386 	software_node_notify_remove(dev);
2387 
2388 	acpi_device_notify_remove(dev);
2389 }
2390 
2391 /**
2392  * dev_driver_string - Return a device's driver name, if at all possible
2393  * @dev: struct device to get the name of
2394  *
2395  * Will return the device's driver's name if it is bound to a device.  If
2396  * the device is not bound to a driver, it will return the name of the bus
2397  * it is attached to.  If it is not attached to a bus either, an empty
2398  * string will be returned.
2399  */
2400 const char *dev_driver_string(const struct device *dev)
2401 {
2402 	struct device_driver *drv;
2403 
2404 	/* dev->driver can change to NULL underneath us because of unbinding,
2405 	 * so be careful about accessing it.  dev->bus and dev->class should
2406 	 * never change once they are set, so they don't need special care.
2407 	 */
2408 	drv = READ_ONCE(dev->driver);
2409 	return drv ? drv->name : dev_bus_name(dev);
2410 }
2411 EXPORT_SYMBOL(dev_driver_string);
2412 
2413 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2414 
2415 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2416 			     char *buf)
2417 {
2418 	struct device_attribute *dev_attr = to_dev_attr(attr);
2419 	struct device *dev = kobj_to_dev(kobj);
2420 	ssize_t ret = -EIO;
2421 
2422 	if (dev_attr->show)
2423 		ret = dev_attr->show(dev, dev_attr, buf);
2424 	if (ret >= (ssize_t)PAGE_SIZE) {
2425 		printk("dev_attr_show: %pS returned bad count\n",
2426 				dev_attr->show);
2427 	}
2428 	return ret;
2429 }
2430 
2431 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2432 			      const char *buf, size_t count)
2433 {
2434 	struct device_attribute *dev_attr = to_dev_attr(attr);
2435 	struct device *dev = kobj_to_dev(kobj);
2436 	ssize_t ret = -EIO;
2437 
2438 	if (dev_attr->store)
2439 		ret = dev_attr->store(dev, dev_attr, buf, count);
2440 	return ret;
2441 }
2442 
2443 static const struct sysfs_ops dev_sysfs_ops = {
2444 	.show	= dev_attr_show,
2445 	.store	= dev_attr_store,
2446 };
2447 
2448 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2449 
2450 ssize_t device_store_ulong(struct device *dev,
2451 			   struct device_attribute *attr,
2452 			   const char *buf, size_t size)
2453 {
2454 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2455 	int ret;
2456 	unsigned long new;
2457 
2458 	ret = kstrtoul(buf, 0, &new);
2459 	if (ret)
2460 		return ret;
2461 	*(unsigned long *)(ea->var) = new;
2462 	/* Always return full write size even if we didn't consume all */
2463 	return size;
2464 }
2465 EXPORT_SYMBOL_GPL(device_store_ulong);
2466 
2467 ssize_t device_show_ulong(struct device *dev,
2468 			  struct device_attribute *attr,
2469 			  char *buf)
2470 {
2471 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2472 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2473 }
2474 EXPORT_SYMBOL_GPL(device_show_ulong);
2475 
2476 ssize_t device_store_int(struct device *dev,
2477 			 struct device_attribute *attr,
2478 			 const char *buf, size_t size)
2479 {
2480 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2481 	int ret;
2482 	long new;
2483 
2484 	ret = kstrtol(buf, 0, &new);
2485 	if (ret)
2486 		return ret;
2487 
2488 	if (new > INT_MAX || new < INT_MIN)
2489 		return -EINVAL;
2490 	*(int *)(ea->var) = new;
2491 	/* Always return full write size even if we didn't consume all */
2492 	return size;
2493 }
2494 EXPORT_SYMBOL_GPL(device_store_int);
2495 
2496 ssize_t device_show_int(struct device *dev,
2497 			struct device_attribute *attr,
2498 			char *buf)
2499 {
2500 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2501 
2502 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2503 }
2504 EXPORT_SYMBOL_GPL(device_show_int);
2505 
2506 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2507 			  const char *buf, size_t size)
2508 {
2509 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2510 
2511 	if (kstrtobool(buf, ea->var) < 0)
2512 		return -EINVAL;
2513 
2514 	return size;
2515 }
2516 EXPORT_SYMBOL_GPL(device_store_bool);
2517 
2518 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2519 			 char *buf)
2520 {
2521 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2522 
2523 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2524 }
2525 EXPORT_SYMBOL_GPL(device_show_bool);
2526 
2527 ssize_t device_show_string(struct device *dev,
2528 			   struct device_attribute *attr, char *buf)
2529 {
2530 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2531 
2532 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2533 }
2534 EXPORT_SYMBOL_GPL(device_show_string);
2535 
2536 /**
2537  * device_release - free device structure.
2538  * @kobj: device's kobject.
2539  *
2540  * This is called once the reference count for the object
2541  * reaches 0. We forward the call to the device's release
2542  * method, which should handle actually freeing the structure.
2543  */
2544 static void device_release(struct kobject *kobj)
2545 {
2546 	struct device *dev = kobj_to_dev(kobj);
2547 	struct device_private *p = dev->p;
2548 
2549 	/*
2550 	 * Some platform devices are driven without driver attached
2551 	 * and managed resources may have been acquired.  Make sure
2552 	 * all resources are released.
2553 	 *
2554 	 * Drivers still can add resources into device after device
2555 	 * is deleted but alive, so release devres here to avoid
2556 	 * possible memory leak.
2557 	 */
2558 	devres_release_all(dev);
2559 
2560 	kfree(dev->dma_range_map);
2561 
2562 	if (dev->release)
2563 		dev->release(dev);
2564 	else if (dev->type && dev->type->release)
2565 		dev->type->release(dev);
2566 	else if (dev->class && dev->class->dev_release)
2567 		dev->class->dev_release(dev);
2568 	else
2569 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2570 			dev_name(dev));
2571 	kfree(p);
2572 }
2573 
2574 static const void *device_namespace(const struct kobject *kobj)
2575 {
2576 	const struct device *dev = kobj_to_dev(kobj);
2577 	const void *ns = NULL;
2578 
2579 	if (dev->class && dev->class->namespace)
2580 		ns = dev->class->namespace(dev);
2581 
2582 	return ns;
2583 }
2584 
2585 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2586 {
2587 	const struct device *dev = kobj_to_dev(kobj);
2588 
2589 	if (dev->class && dev->class->get_ownership)
2590 		dev->class->get_ownership(dev, uid, gid);
2591 }
2592 
2593 static const struct kobj_type device_ktype = {
2594 	.release	= device_release,
2595 	.sysfs_ops	= &dev_sysfs_ops,
2596 	.namespace	= device_namespace,
2597 	.get_ownership	= device_get_ownership,
2598 };
2599 
2600 
2601 static int dev_uevent_filter(const struct kobject *kobj)
2602 {
2603 	const struct kobj_type *ktype = get_ktype(kobj);
2604 
2605 	if (ktype == &device_ktype) {
2606 		const struct device *dev = kobj_to_dev(kobj);
2607 		if (dev->bus)
2608 			return 1;
2609 		if (dev->class)
2610 			return 1;
2611 	}
2612 	return 0;
2613 }
2614 
2615 static const char *dev_uevent_name(const struct kobject *kobj)
2616 {
2617 	const struct device *dev = kobj_to_dev(kobj);
2618 
2619 	if (dev->bus)
2620 		return dev->bus->name;
2621 	if (dev->class)
2622 		return dev->class->name;
2623 	return NULL;
2624 }
2625 
2626 /*
2627  * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2628  * function may race with binding and unbinding the device from a driver,
2629  * we need to be careful. Binding is generally safe, at worst we miss the
2630  * fact that the device is already bound to a driver (but the driver
2631  * information that is delivered through uevents is best-effort, it may
2632  * become obsolete as soon as it is generated anyways). Unbinding is more
2633  * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2634  * be used to make sure we are dealing with the same pointer, and to
2635  * ensure that driver structure is not going to disappear from under us
2636  * we take bus' drivers klist lock. The assumption that only registered
2637  * driver can be bound to a device, and to unregister a driver bus code
2638  * will take the same lock.
2639  */
2640 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2641 {
2642 	struct subsys_private *sp = bus_to_subsys(dev->bus);
2643 
2644 	if (sp) {
2645 		scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2646 			struct device_driver *drv = READ_ONCE(dev->driver);
2647 			if (drv)
2648 				add_uevent_var(env, "DRIVER=%s", drv->name);
2649 		}
2650 
2651 		subsys_put(sp);
2652 	}
2653 }
2654 
2655 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2656 {
2657 	const struct device *dev = kobj_to_dev(kobj);
2658 	int retval = 0;
2659 
2660 	/* add device node properties if present */
2661 	if (MAJOR(dev->devt)) {
2662 		const char *tmp;
2663 		const char *name;
2664 		umode_t mode = 0;
2665 		kuid_t uid = GLOBAL_ROOT_UID;
2666 		kgid_t gid = GLOBAL_ROOT_GID;
2667 
2668 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2669 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2670 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2671 		if (name) {
2672 			add_uevent_var(env, "DEVNAME=%s", name);
2673 			if (mode)
2674 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2675 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2676 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2677 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2678 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2679 			kfree(tmp);
2680 		}
2681 	}
2682 
2683 	if (dev->type && dev->type->name)
2684 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2685 
2686 	/* Add "DRIVER=%s" variable if the device is bound to a driver */
2687 	dev_driver_uevent(dev, env);
2688 
2689 	/* Add common DT information about the device */
2690 	of_device_uevent(dev, env);
2691 
2692 	/* have the bus specific function add its stuff */
2693 	if (dev->bus && dev->bus->uevent) {
2694 		retval = dev->bus->uevent(dev, env);
2695 		if (retval)
2696 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2697 				 dev_name(dev), __func__, retval);
2698 	}
2699 
2700 	/* have the class specific function add its stuff */
2701 	if (dev->class && dev->class->dev_uevent) {
2702 		retval = dev->class->dev_uevent(dev, env);
2703 		if (retval)
2704 			pr_debug("device: '%s': %s: class uevent() "
2705 				 "returned %d\n", dev_name(dev),
2706 				 __func__, retval);
2707 	}
2708 
2709 	/* have the device type specific function add its stuff */
2710 	if (dev->type && dev->type->uevent) {
2711 		retval = dev->type->uevent(dev, env);
2712 		if (retval)
2713 			pr_debug("device: '%s': %s: dev_type uevent() "
2714 				 "returned %d\n", dev_name(dev),
2715 				 __func__, retval);
2716 	}
2717 
2718 	return retval;
2719 }
2720 
2721 static const struct kset_uevent_ops device_uevent_ops = {
2722 	.filter =	dev_uevent_filter,
2723 	.name =		dev_uevent_name,
2724 	.uevent =	dev_uevent,
2725 };
2726 
2727 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2728 			   char *buf)
2729 {
2730 	struct kobject *top_kobj;
2731 	struct kset *kset;
2732 	struct kobj_uevent_env *env = NULL;
2733 	int i;
2734 	int len = 0;
2735 	int retval;
2736 
2737 	/* search the kset, the device belongs to */
2738 	top_kobj = &dev->kobj;
2739 	while (!top_kobj->kset && top_kobj->parent)
2740 		top_kobj = top_kobj->parent;
2741 	if (!top_kobj->kset)
2742 		goto out;
2743 
2744 	kset = top_kobj->kset;
2745 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2746 		goto out;
2747 
2748 	/* respect filter */
2749 	if (kset->uevent_ops && kset->uevent_ops->filter)
2750 		if (!kset->uevent_ops->filter(&dev->kobj))
2751 			goto out;
2752 
2753 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2754 	if (!env)
2755 		return -ENOMEM;
2756 
2757 	/* let the kset specific function add its keys */
2758 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2759 	if (retval)
2760 		goto out;
2761 
2762 	/* copy keys to file */
2763 	for (i = 0; i < env->envp_idx; i++)
2764 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2765 out:
2766 	kfree(env);
2767 	return len;
2768 }
2769 
2770 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2771 			    const char *buf, size_t count)
2772 {
2773 	int rc;
2774 
2775 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2776 
2777 	if (rc) {
2778 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2779 		return rc;
2780 	}
2781 
2782 	return count;
2783 }
2784 static DEVICE_ATTR_RW(uevent);
2785 
2786 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2787 			   char *buf)
2788 {
2789 	bool val;
2790 
2791 	device_lock(dev);
2792 	val = !dev->offline;
2793 	device_unlock(dev);
2794 	return sysfs_emit(buf, "%u\n", val);
2795 }
2796 
2797 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2798 			    const char *buf, size_t count)
2799 {
2800 	bool val;
2801 	int ret;
2802 
2803 	ret = kstrtobool(buf, &val);
2804 	if (ret < 0)
2805 		return ret;
2806 
2807 	ret = lock_device_hotplug_sysfs();
2808 	if (ret)
2809 		return ret;
2810 
2811 	ret = val ? device_online(dev) : device_offline(dev);
2812 	unlock_device_hotplug();
2813 	return ret < 0 ? ret : count;
2814 }
2815 static DEVICE_ATTR_RW(online);
2816 
2817 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2818 			      char *buf)
2819 {
2820 	const char *loc;
2821 
2822 	switch (dev->removable) {
2823 	case DEVICE_REMOVABLE:
2824 		loc = "removable";
2825 		break;
2826 	case DEVICE_FIXED:
2827 		loc = "fixed";
2828 		break;
2829 	default:
2830 		loc = "unknown";
2831 	}
2832 	return sysfs_emit(buf, "%s\n", loc);
2833 }
2834 static DEVICE_ATTR_RO(removable);
2835 
2836 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2837 {
2838 	return sysfs_create_groups(&dev->kobj, groups);
2839 }
2840 EXPORT_SYMBOL_GPL(device_add_groups);
2841 
2842 void device_remove_groups(struct device *dev,
2843 			  const struct attribute_group **groups)
2844 {
2845 	sysfs_remove_groups(&dev->kobj, groups);
2846 }
2847 EXPORT_SYMBOL_GPL(device_remove_groups);
2848 
2849 union device_attr_group_devres {
2850 	const struct attribute_group *group;
2851 	const struct attribute_group **groups;
2852 };
2853 
2854 static void devm_attr_group_remove(struct device *dev, void *res)
2855 {
2856 	union device_attr_group_devres *devres = res;
2857 	const struct attribute_group *group = devres->group;
2858 
2859 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2860 	sysfs_remove_group(&dev->kobj, group);
2861 }
2862 
2863 /**
2864  * devm_device_add_group - given a device, create a managed attribute group
2865  * @dev:	The device to create the group for
2866  * @grp:	The attribute group to create
2867  *
2868  * This function creates a group for the first time.  It will explicitly
2869  * warn and error if any of the attribute files being created already exist.
2870  *
2871  * Returns 0 on success or error code on failure.
2872  */
2873 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2874 {
2875 	union device_attr_group_devres *devres;
2876 	int error;
2877 
2878 	devres = devres_alloc(devm_attr_group_remove,
2879 			      sizeof(*devres), GFP_KERNEL);
2880 	if (!devres)
2881 		return -ENOMEM;
2882 
2883 	error = sysfs_create_group(&dev->kobj, grp);
2884 	if (error) {
2885 		devres_free(devres);
2886 		return error;
2887 	}
2888 
2889 	devres->group = grp;
2890 	devres_add(dev, devres);
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(devm_device_add_group);
2894 
2895 static int device_add_attrs(struct device *dev)
2896 {
2897 	const struct class *class = dev->class;
2898 	const struct device_type *type = dev->type;
2899 	int error;
2900 
2901 	if (class) {
2902 		error = device_add_groups(dev, class->dev_groups);
2903 		if (error)
2904 			return error;
2905 	}
2906 
2907 	if (type) {
2908 		error = device_add_groups(dev, type->groups);
2909 		if (error)
2910 			goto err_remove_class_groups;
2911 	}
2912 
2913 	error = device_add_groups(dev, dev->groups);
2914 	if (error)
2915 		goto err_remove_type_groups;
2916 
2917 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2918 		error = device_create_file(dev, &dev_attr_online);
2919 		if (error)
2920 			goto err_remove_dev_groups;
2921 	}
2922 
2923 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2924 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2925 		if (error)
2926 			goto err_remove_dev_online;
2927 	}
2928 
2929 	if (dev_removable_is_valid(dev)) {
2930 		error = device_create_file(dev, &dev_attr_removable);
2931 		if (error)
2932 			goto err_remove_dev_waiting_for_supplier;
2933 	}
2934 
2935 	if (dev_add_physical_location(dev)) {
2936 		error = device_add_group(dev,
2937 			&dev_attr_physical_location_group);
2938 		if (error)
2939 			goto err_remove_dev_removable;
2940 	}
2941 
2942 	return 0;
2943 
2944  err_remove_dev_removable:
2945 	device_remove_file(dev, &dev_attr_removable);
2946  err_remove_dev_waiting_for_supplier:
2947 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2948  err_remove_dev_online:
2949 	device_remove_file(dev, &dev_attr_online);
2950  err_remove_dev_groups:
2951 	device_remove_groups(dev, dev->groups);
2952  err_remove_type_groups:
2953 	if (type)
2954 		device_remove_groups(dev, type->groups);
2955  err_remove_class_groups:
2956 	if (class)
2957 		device_remove_groups(dev, class->dev_groups);
2958 
2959 	return error;
2960 }
2961 
2962 static void device_remove_attrs(struct device *dev)
2963 {
2964 	const struct class *class = dev->class;
2965 	const struct device_type *type = dev->type;
2966 
2967 	if (dev->physical_location) {
2968 		device_remove_group(dev, &dev_attr_physical_location_group);
2969 		kfree(dev->physical_location);
2970 	}
2971 
2972 	device_remove_file(dev, &dev_attr_removable);
2973 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2974 	device_remove_file(dev, &dev_attr_online);
2975 	device_remove_groups(dev, dev->groups);
2976 
2977 	if (type)
2978 		device_remove_groups(dev, type->groups);
2979 
2980 	if (class)
2981 		device_remove_groups(dev, class->dev_groups);
2982 }
2983 
2984 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2985 			char *buf)
2986 {
2987 	return print_dev_t(buf, dev->devt);
2988 }
2989 static DEVICE_ATTR_RO(dev);
2990 
2991 /* /sys/devices/ */
2992 struct kset *devices_kset;
2993 
2994 /**
2995  * devices_kset_move_before - Move device in the devices_kset's list.
2996  * @deva: Device to move.
2997  * @devb: Device @deva should come before.
2998  */
2999 static void devices_kset_move_before(struct device *deva, struct device *devb)
3000 {
3001 	if (!devices_kset)
3002 		return;
3003 	pr_debug("devices_kset: Moving %s before %s\n",
3004 		 dev_name(deva), dev_name(devb));
3005 	spin_lock(&devices_kset->list_lock);
3006 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3007 	spin_unlock(&devices_kset->list_lock);
3008 }
3009 
3010 /**
3011  * devices_kset_move_after - Move device in the devices_kset's list.
3012  * @deva: Device to move
3013  * @devb: Device @deva should come after.
3014  */
3015 static void devices_kset_move_after(struct device *deva, struct device *devb)
3016 {
3017 	if (!devices_kset)
3018 		return;
3019 	pr_debug("devices_kset: Moving %s after %s\n",
3020 		 dev_name(deva), dev_name(devb));
3021 	spin_lock(&devices_kset->list_lock);
3022 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3023 	spin_unlock(&devices_kset->list_lock);
3024 }
3025 
3026 /**
3027  * devices_kset_move_last - move the device to the end of devices_kset's list.
3028  * @dev: device to move
3029  */
3030 void devices_kset_move_last(struct device *dev)
3031 {
3032 	if (!devices_kset)
3033 		return;
3034 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3035 	spin_lock(&devices_kset->list_lock);
3036 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3037 	spin_unlock(&devices_kset->list_lock);
3038 }
3039 
3040 /**
3041  * device_create_file - create sysfs attribute file for device.
3042  * @dev: device.
3043  * @attr: device attribute descriptor.
3044  */
3045 int device_create_file(struct device *dev,
3046 		       const struct device_attribute *attr)
3047 {
3048 	int error = 0;
3049 
3050 	if (dev) {
3051 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3052 			"Attribute %s: write permission without 'store'\n",
3053 			attr->attr.name);
3054 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3055 			"Attribute %s: read permission without 'show'\n",
3056 			attr->attr.name);
3057 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3058 	}
3059 
3060 	return error;
3061 }
3062 EXPORT_SYMBOL_GPL(device_create_file);
3063 
3064 /**
3065  * device_remove_file - remove sysfs attribute file.
3066  * @dev: device.
3067  * @attr: device attribute descriptor.
3068  */
3069 void device_remove_file(struct device *dev,
3070 			const struct device_attribute *attr)
3071 {
3072 	if (dev)
3073 		sysfs_remove_file(&dev->kobj, &attr->attr);
3074 }
3075 EXPORT_SYMBOL_GPL(device_remove_file);
3076 
3077 /**
3078  * device_remove_file_self - remove sysfs attribute file from its own method.
3079  * @dev: device.
3080  * @attr: device attribute descriptor.
3081  *
3082  * See kernfs_remove_self() for details.
3083  */
3084 bool device_remove_file_self(struct device *dev,
3085 			     const struct device_attribute *attr)
3086 {
3087 	if (dev)
3088 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3089 	else
3090 		return false;
3091 }
3092 EXPORT_SYMBOL_GPL(device_remove_file_self);
3093 
3094 /**
3095  * device_create_bin_file - create sysfs binary attribute file for device.
3096  * @dev: device.
3097  * @attr: device binary attribute descriptor.
3098  */
3099 int device_create_bin_file(struct device *dev,
3100 			   const struct bin_attribute *attr)
3101 {
3102 	int error = -EINVAL;
3103 	if (dev)
3104 		error = sysfs_create_bin_file(&dev->kobj, attr);
3105 	return error;
3106 }
3107 EXPORT_SYMBOL_GPL(device_create_bin_file);
3108 
3109 /**
3110  * device_remove_bin_file - remove sysfs binary attribute file
3111  * @dev: device.
3112  * @attr: device binary attribute descriptor.
3113  */
3114 void device_remove_bin_file(struct device *dev,
3115 			    const struct bin_attribute *attr)
3116 {
3117 	if (dev)
3118 		sysfs_remove_bin_file(&dev->kobj, attr);
3119 }
3120 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3121 
3122 static void klist_children_get(struct klist_node *n)
3123 {
3124 	struct device_private *p = to_device_private_parent(n);
3125 	struct device *dev = p->device;
3126 
3127 	get_device(dev);
3128 }
3129 
3130 static void klist_children_put(struct klist_node *n)
3131 {
3132 	struct device_private *p = to_device_private_parent(n);
3133 	struct device *dev = p->device;
3134 
3135 	put_device(dev);
3136 }
3137 
3138 /**
3139  * device_initialize - init device structure.
3140  * @dev: device.
3141  *
3142  * This prepares the device for use by other layers by initializing
3143  * its fields.
3144  * It is the first half of device_register(), if called by
3145  * that function, though it can also be called separately, so one
3146  * may use @dev's fields. In particular, get_device()/put_device()
3147  * may be used for reference counting of @dev after calling this
3148  * function.
3149  *
3150  * All fields in @dev must be initialized by the caller to 0, except
3151  * for those explicitly set to some other value.  The simplest
3152  * approach is to use kzalloc() to allocate the structure containing
3153  * @dev.
3154  *
3155  * NOTE: Use put_device() to give up your reference instead of freeing
3156  * @dev directly once you have called this function.
3157  */
3158 void device_initialize(struct device *dev)
3159 {
3160 	dev->kobj.kset = devices_kset;
3161 	kobject_init(&dev->kobj, &device_ktype);
3162 	INIT_LIST_HEAD(&dev->dma_pools);
3163 	mutex_init(&dev->mutex);
3164 	lockdep_set_novalidate_class(&dev->mutex);
3165 	spin_lock_init(&dev->devres_lock);
3166 	INIT_LIST_HEAD(&dev->devres_head);
3167 	device_pm_init(dev);
3168 	set_dev_node(dev, NUMA_NO_NODE);
3169 	INIT_LIST_HEAD(&dev->links.consumers);
3170 	INIT_LIST_HEAD(&dev->links.suppliers);
3171 	INIT_LIST_HEAD(&dev->links.defer_sync);
3172 	dev->links.status = DL_DEV_NO_DRIVER;
3173 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3174     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3175     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3176 	dev->dma_coherent = dma_default_coherent;
3177 #endif
3178 	swiotlb_dev_init(dev);
3179 }
3180 EXPORT_SYMBOL_GPL(device_initialize);
3181 
3182 struct kobject *virtual_device_parent(void)
3183 {
3184 	static struct kobject *virtual_dir = NULL;
3185 
3186 	if (!virtual_dir)
3187 		virtual_dir = kobject_create_and_add("virtual",
3188 						     &devices_kset->kobj);
3189 
3190 	return virtual_dir;
3191 }
3192 
3193 struct class_dir {
3194 	struct kobject kobj;
3195 	const struct class *class;
3196 };
3197 
3198 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3199 
3200 static void class_dir_release(struct kobject *kobj)
3201 {
3202 	struct class_dir *dir = to_class_dir(kobj);
3203 	kfree(dir);
3204 }
3205 
3206 static const
3207 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3208 {
3209 	const struct class_dir *dir = to_class_dir(kobj);
3210 	return dir->class->ns_type;
3211 }
3212 
3213 static const struct kobj_type class_dir_ktype = {
3214 	.release	= class_dir_release,
3215 	.sysfs_ops	= &kobj_sysfs_ops,
3216 	.child_ns_type	= class_dir_child_ns_type
3217 };
3218 
3219 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3220 						struct kobject *parent_kobj)
3221 {
3222 	struct class_dir *dir;
3223 	int retval;
3224 
3225 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3226 	if (!dir)
3227 		return ERR_PTR(-ENOMEM);
3228 
3229 	dir->class = sp->class;
3230 	kobject_init(&dir->kobj, &class_dir_ktype);
3231 
3232 	dir->kobj.kset = &sp->glue_dirs;
3233 
3234 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3235 	if (retval < 0) {
3236 		kobject_put(&dir->kobj);
3237 		return ERR_PTR(retval);
3238 	}
3239 	return &dir->kobj;
3240 }
3241 
3242 static DEFINE_MUTEX(gdp_mutex);
3243 
3244 static struct kobject *get_device_parent(struct device *dev,
3245 					 struct device *parent)
3246 {
3247 	struct subsys_private *sp = class_to_subsys(dev->class);
3248 	struct kobject *kobj = NULL;
3249 
3250 	if (sp) {
3251 		struct kobject *parent_kobj;
3252 		struct kobject *k;
3253 
3254 		/*
3255 		 * If we have no parent, we live in "virtual".
3256 		 * Class-devices with a non class-device as parent, live
3257 		 * in a "glue" directory to prevent namespace collisions.
3258 		 */
3259 		if (parent == NULL)
3260 			parent_kobj = virtual_device_parent();
3261 		else if (parent->class && !dev->class->ns_type) {
3262 			subsys_put(sp);
3263 			return &parent->kobj;
3264 		} else {
3265 			parent_kobj = &parent->kobj;
3266 		}
3267 
3268 		mutex_lock(&gdp_mutex);
3269 
3270 		/* find our class-directory at the parent and reference it */
3271 		spin_lock(&sp->glue_dirs.list_lock);
3272 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3273 			if (k->parent == parent_kobj) {
3274 				kobj = kobject_get(k);
3275 				break;
3276 			}
3277 		spin_unlock(&sp->glue_dirs.list_lock);
3278 		if (kobj) {
3279 			mutex_unlock(&gdp_mutex);
3280 			subsys_put(sp);
3281 			return kobj;
3282 		}
3283 
3284 		/* or create a new class-directory at the parent device */
3285 		k = class_dir_create_and_add(sp, parent_kobj);
3286 		/* do not emit an uevent for this simple "glue" directory */
3287 		mutex_unlock(&gdp_mutex);
3288 		subsys_put(sp);
3289 		return k;
3290 	}
3291 
3292 	/* subsystems can specify a default root directory for their devices */
3293 	if (!parent && dev->bus) {
3294 		struct device *dev_root = bus_get_dev_root(dev->bus);
3295 
3296 		if (dev_root) {
3297 			kobj = &dev_root->kobj;
3298 			put_device(dev_root);
3299 			return kobj;
3300 		}
3301 	}
3302 
3303 	if (parent)
3304 		return &parent->kobj;
3305 	return NULL;
3306 }
3307 
3308 static inline bool live_in_glue_dir(struct kobject *kobj,
3309 				    struct device *dev)
3310 {
3311 	struct subsys_private *sp;
3312 	bool retval;
3313 
3314 	if (!kobj || !dev->class)
3315 		return false;
3316 
3317 	sp = class_to_subsys(dev->class);
3318 	if (!sp)
3319 		return false;
3320 
3321 	if (kobj->kset == &sp->glue_dirs)
3322 		retval = true;
3323 	else
3324 		retval = false;
3325 
3326 	subsys_put(sp);
3327 	return retval;
3328 }
3329 
3330 static inline struct kobject *get_glue_dir(struct device *dev)
3331 {
3332 	return dev->kobj.parent;
3333 }
3334 
3335 /**
3336  * kobject_has_children - Returns whether a kobject has children.
3337  * @kobj: the object to test
3338  *
3339  * This will return whether a kobject has other kobjects as children.
3340  *
3341  * It does NOT account for the presence of attribute files, only sub
3342  * directories. It also assumes there is no concurrent addition or
3343  * removal of such children, and thus relies on external locking.
3344  */
3345 static inline bool kobject_has_children(struct kobject *kobj)
3346 {
3347 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3348 
3349 	return kobj->sd && kobj->sd->dir.subdirs;
3350 }
3351 
3352 /*
3353  * make sure cleaning up dir as the last step, we need to make
3354  * sure .release handler of kobject is run with holding the
3355  * global lock
3356  */
3357 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3358 {
3359 	unsigned int ref;
3360 
3361 	/* see if we live in a "glue" directory */
3362 	if (!live_in_glue_dir(glue_dir, dev))
3363 		return;
3364 
3365 	mutex_lock(&gdp_mutex);
3366 	/**
3367 	 * There is a race condition between removing glue directory
3368 	 * and adding a new device under the glue directory.
3369 	 *
3370 	 * CPU1:                                         CPU2:
3371 	 *
3372 	 * device_add()
3373 	 *   get_device_parent()
3374 	 *     class_dir_create_and_add()
3375 	 *       kobject_add_internal()
3376 	 *         create_dir()    // create glue_dir
3377 	 *
3378 	 *                                               device_add()
3379 	 *                                                 get_device_parent()
3380 	 *                                                   kobject_get() // get glue_dir
3381 	 *
3382 	 * device_del()
3383 	 *   cleanup_glue_dir()
3384 	 *     kobject_del(glue_dir)
3385 	 *
3386 	 *                                               kobject_add()
3387 	 *                                                 kobject_add_internal()
3388 	 *                                                   create_dir() // in glue_dir
3389 	 *                                                     sysfs_create_dir_ns()
3390 	 *                                                       kernfs_create_dir_ns(sd)
3391 	 *
3392 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3393 	 *       sysfs_put()        // free glue_dir->sd
3394 	 *
3395 	 *                                                         // sd is freed
3396 	 *                                                         kernfs_new_node(sd)
3397 	 *                                                           kernfs_get(glue_dir)
3398 	 *                                                           kernfs_add_one()
3399 	 *                                                           kernfs_put()
3400 	 *
3401 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3402 	 * a new device under glue dir, the glue_dir kobject reference count
3403 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3404 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3405 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3406 	 *
3407 	 * Then the CPU2 will see a stale "empty" but still potentially used
3408 	 * glue dir around in kernfs_new_node().
3409 	 *
3410 	 * In order to avoid this happening, we also should make sure that
3411 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3412 	 * for glue_dir kobj is 1.
3413 	 */
3414 	ref = kref_read(&glue_dir->kref);
3415 	if (!kobject_has_children(glue_dir) && !--ref)
3416 		kobject_del(glue_dir);
3417 	kobject_put(glue_dir);
3418 	mutex_unlock(&gdp_mutex);
3419 }
3420 
3421 static int device_add_class_symlinks(struct device *dev)
3422 {
3423 	struct device_node *of_node = dev_of_node(dev);
3424 	struct subsys_private *sp;
3425 	int error;
3426 
3427 	if (of_node) {
3428 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3429 		if (error)
3430 			dev_warn(dev, "Error %d creating of_node link\n",error);
3431 		/* An error here doesn't warrant bringing down the device */
3432 	}
3433 
3434 	sp = class_to_subsys(dev->class);
3435 	if (!sp)
3436 		return 0;
3437 
3438 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3439 	if (error)
3440 		goto out_devnode;
3441 
3442 	if (dev->parent && device_is_not_partition(dev)) {
3443 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3444 					  "device");
3445 		if (error)
3446 			goto out_subsys;
3447 	}
3448 
3449 	/* link in the class directory pointing to the device */
3450 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3451 	if (error)
3452 		goto out_device;
3453 	goto exit;
3454 
3455 out_device:
3456 	sysfs_remove_link(&dev->kobj, "device");
3457 out_subsys:
3458 	sysfs_remove_link(&dev->kobj, "subsystem");
3459 out_devnode:
3460 	sysfs_remove_link(&dev->kobj, "of_node");
3461 exit:
3462 	subsys_put(sp);
3463 	return error;
3464 }
3465 
3466 static void device_remove_class_symlinks(struct device *dev)
3467 {
3468 	struct subsys_private *sp = class_to_subsys(dev->class);
3469 
3470 	if (dev_of_node(dev))
3471 		sysfs_remove_link(&dev->kobj, "of_node");
3472 
3473 	if (!sp)
3474 		return;
3475 
3476 	if (dev->parent && device_is_not_partition(dev))
3477 		sysfs_remove_link(&dev->kobj, "device");
3478 	sysfs_remove_link(&dev->kobj, "subsystem");
3479 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3480 	subsys_put(sp);
3481 }
3482 
3483 /**
3484  * dev_set_name - set a device name
3485  * @dev: device
3486  * @fmt: format string for the device's name
3487  */
3488 int dev_set_name(struct device *dev, const char *fmt, ...)
3489 {
3490 	va_list vargs;
3491 	int err;
3492 
3493 	va_start(vargs, fmt);
3494 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3495 	va_end(vargs);
3496 	return err;
3497 }
3498 EXPORT_SYMBOL_GPL(dev_set_name);
3499 
3500 /* select a /sys/dev/ directory for the device */
3501 static struct kobject *device_to_dev_kobj(struct device *dev)
3502 {
3503 	if (is_blockdev(dev))
3504 		return sysfs_dev_block_kobj;
3505 	else
3506 		return sysfs_dev_char_kobj;
3507 }
3508 
3509 static int device_create_sys_dev_entry(struct device *dev)
3510 {
3511 	struct kobject *kobj = device_to_dev_kobj(dev);
3512 	int error = 0;
3513 	char devt_str[15];
3514 
3515 	if (kobj) {
3516 		format_dev_t(devt_str, dev->devt);
3517 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3518 	}
3519 
3520 	return error;
3521 }
3522 
3523 static void device_remove_sys_dev_entry(struct device *dev)
3524 {
3525 	struct kobject *kobj = device_to_dev_kobj(dev);
3526 	char devt_str[15];
3527 
3528 	if (kobj) {
3529 		format_dev_t(devt_str, dev->devt);
3530 		sysfs_remove_link(kobj, devt_str);
3531 	}
3532 }
3533 
3534 static int device_private_init(struct device *dev)
3535 {
3536 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3537 	if (!dev->p)
3538 		return -ENOMEM;
3539 	dev->p->device = dev;
3540 	klist_init(&dev->p->klist_children, klist_children_get,
3541 		   klist_children_put);
3542 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3543 	return 0;
3544 }
3545 
3546 /**
3547  * device_add - add device to device hierarchy.
3548  * @dev: device.
3549  *
3550  * This is part 2 of device_register(), though may be called
3551  * separately _iff_ device_initialize() has been called separately.
3552  *
3553  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3554  * to the global and sibling lists for the device, then
3555  * adds it to the other relevant subsystems of the driver model.
3556  *
3557  * Do not call this routine or device_register() more than once for
3558  * any device structure.  The driver model core is not designed to work
3559  * with devices that get unregistered and then spring back to life.
3560  * (Among other things, it's very hard to guarantee that all references
3561  * to the previous incarnation of @dev have been dropped.)  Allocate
3562  * and register a fresh new struct device instead.
3563  *
3564  * NOTE: _Never_ directly free @dev after calling this function, even
3565  * if it returned an error! Always use put_device() to give up your
3566  * reference instead.
3567  *
3568  * Rule of thumb is: if device_add() succeeds, you should call
3569  * device_del() when you want to get rid of it. If device_add() has
3570  * *not* succeeded, use *only* put_device() to drop the reference
3571  * count.
3572  */
3573 int device_add(struct device *dev)
3574 {
3575 	struct subsys_private *sp;
3576 	struct device *parent;
3577 	struct kobject *kobj;
3578 	struct class_interface *class_intf;
3579 	int error = -EINVAL;
3580 	struct kobject *glue_dir = NULL;
3581 
3582 	dev = get_device(dev);
3583 	if (!dev)
3584 		goto done;
3585 
3586 	if (!dev->p) {
3587 		error = device_private_init(dev);
3588 		if (error)
3589 			goto done;
3590 	}
3591 
3592 	/*
3593 	 * for statically allocated devices, which should all be converted
3594 	 * some day, we need to initialize the name. We prevent reading back
3595 	 * the name, and force the use of dev_name()
3596 	 */
3597 	if (dev->init_name) {
3598 		error = dev_set_name(dev, "%s", dev->init_name);
3599 		dev->init_name = NULL;
3600 	}
3601 
3602 	if (dev_name(dev))
3603 		error = 0;
3604 	/* subsystems can specify simple device enumeration */
3605 	else if (dev->bus && dev->bus->dev_name)
3606 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3607 	else
3608 		error = -EINVAL;
3609 	if (error)
3610 		goto name_error;
3611 
3612 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3613 
3614 	parent = get_device(dev->parent);
3615 	kobj = get_device_parent(dev, parent);
3616 	if (IS_ERR(kobj)) {
3617 		error = PTR_ERR(kobj);
3618 		goto parent_error;
3619 	}
3620 	if (kobj)
3621 		dev->kobj.parent = kobj;
3622 
3623 	/* use parent numa_node */
3624 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3625 		set_dev_node(dev, dev_to_node(parent));
3626 
3627 	/* first, register with generic layer. */
3628 	/* we require the name to be set before, and pass NULL */
3629 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3630 	if (error) {
3631 		glue_dir = kobj;
3632 		goto Error;
3633 	}
3634 
3635 	/* notify platform of device entry */
3636 	device_platform_notify(dev);
3637 
3638 	error = device_create_file(dev, &dev_attr_uevent);
3639 	if (error)
3640 		goto attrError;
3641 
3642 	error = device_add_class_symlinks(dev);
3643 	if (error)
3644 		goto SymlinkError;
3645 	error = device_add_attrs(dev);
3646 	if (error)
3647 		goto AttrsError;
3648 	error = bus_add_device(dev);
3649 	if (error)
3650 		goto BusError;
3651 	error = dpm_sysfs_add(dev);
3652 	if (error)
3653 		goto DPMError;
3654 	device_pm_add(dev);
3655 
3656 	if (MAJOR(dev->devt)) {
3657 		error = device_create_file(dev, &dev_attr_dev);
3658 		if (error)
3659 			goto DevAttrError;
3660 
3661 		error = device_create_sys_dev_entry(dev);
3662 		if (error)
3663 			goto SysEntryError;
3664 
3665 		devtmpfs_create_node(dev);
3666 	}
3667 
3668 	/* Notify clients of device addition.  This call must come
3669 	 * after dpm_sysfs_add() and before kobject_uevent().
3670 	 */
3671 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3672 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3673 
3674 	/*
3675 	 * Check if any of the other devices (consumers) have been waiting for
3676 	 * this device (supplier) to be added so that they can create a device
3677 	 * link to it.
3678 	 *
3679 	 * This needs to happen after device_pm_add() because device_link_add()
3680 	 * requires the supplier be registered before it's called.
3681 	 *
3682 	 * But this also needs to happen before bus_probe_device() to make sure
3683 	 * waiting consumers can link to it before the driver is bound to the
3684 	 * device and the driver sync_state callback is called for this device.
3685 	 */
3686 	if (dev->fwnode && !dev->fwnode->dev) {
3687 		dev->fwnode->dev = dev;
3688 		fw_devlink_link_device(dev);
3689 	}
3690 
3691 	bus_probe_device(dev);
3692 
3693 	/*
3694 	 * If all driver registration is done and a newly added device doesn't
3695 	 * match with any driver, don't block its consumers from probing in
3696 	 * case the consumer device is able to operate without this supplier.
3697 	 */
3698 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3699 		fw_devlink_unblock_consumers(dev);
3700 
3701 	if (parent)
3702 		klist_add_tail(&dev->p->knode_parent,
3703 			       &parent->p->klist_children);
3704 
3705 	sp = class_to_subsys(dev->class);
3706 	if (sp) {
3707 		mutex_lock(&sp->mutex);
3708 		/* tie the class to the device */
3709 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3710 
3711 		/* notify any interfaces that the device is here */
3712 		list_for_each_entry(class_intf, &sp->interfaces, node)
3713 			if (class_intf->add_dev)
3714 				class_intf->add_dev(dev);
3715 		mutex_unlock(&sp->mutex);
3716 		subsys_put(sp);
3717 	}
3718 done:
3719 	put_device(dev);
3720 	return error;
3721  SysEntryError:
3722 	if (MAJOR(dev->devt))
3723 		device_remove_file(dev, &dev_attr_dev);
3724  DevAttrError:
3725 	device_pm_remove(dev);
3726 	dpm_sysfs_remove(dev);
3727  DPMError:
3728 	device_set_driver(dev, NULL);
3729 	bus_remove_device(dev);
3730  BusError:
3731 	device_remove_attrs(dev);
3732  AttrsError:
3733 	device_remove_class_symlinks(dev);
3734  SymlinkError:
3735 	device_remove_file(dev, &dev_attr_uevent);
3736  attrError:
3737 	device_platform_notify_remove(dev);
3738 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3739 	glue_dir = get_glue_dir(dev);
3740 	kobject_del(&dev->kobj);
3741  Error:
3742 	cleanup_glue_dir(dev, glue_dir);
3743 parent_error:
3744 	put_device(parent);
3745 name_error:
3746 	kfree(dev->p);
3747 	dev->p = NULL;
3748 	goto done;
3749 }
3750 EXPORT_SYMBOL_GPL(device_add);
3751 
3752 /**
3753  * device_register - register a device with the system.
3754  * @dev: pointer to the device structure
3755  *
3756  * This happens in two clean steps - initialize the device
3757  * and add it to the system. The two steps can be called
3758  * separately, but this is the easiest and most common.
3759  * I.e. you should only call the two helpers separately if
3760  * have a clearly defined need to use and refcount the device
3761  * before it is added to the hierarchy.
3762  *
3763  * For more information, see the kerneldoc for device_initialize()
3764  * and device_add().
3765  *
3766  * NOTE: _Never_ directly free @dev after calling this function, even
3767  * if it returned an error! Always use put_device() to give up the
3768  * reference initialized in this function instead.
3769  */
3770 int device_register(struct device *dev)
3771 {
3772 	device_initialize(dev);
3773 	return device_add(dev);
3774 }
3775 EXPORT_SYMBOL_GPL(device_register);
3776 
3777 /**
3778  * get_device - increment reference count for device.
3779  * @dev: device.
3780  *
3781  * This simply forwards the call to kobject_get(), though
3782  * we do take care to provide for the case that we get a NULL
3783  * pointer passed in.
3784  */
3785 struct device *get_device(struct device *dev)
3786 {
3787 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3788 }
3789 EXPORT_SYMBOL_GPL(get_device);
3790 
3791 /**
3792  * put_device - decrement reference count.
3793  * @dev: device in question.
3794  */
3795 void put_device(struct device *dev)
3796 {
3797 	/* might_sleep(); */
3798 	if (dev)
3799 		kobject_put(&dev->kobj);
3800 }
3801 EXPORT_SYMBOL_GPL(put_device);
3802 
3803 bool kill_device(struct device *dev)
3804 {
3805 	/*
3806 	 * Require the device lock and set the "dead" flag to guarantee that
3807 	 * the update behavior is consistent with the other bitfields near
3808 	 * it and that we cannot have an asynchronous probe routine trying
3809 	 * to run while we are tearing out the bus/class/sysfs from
3810 	 * underneath the device.
3811 	 */
3812 	device_lock_assert(dev);
3813 
3814 	if (dev->p->dead)
3815 		return false;
3816 	dev->p->dead = true;
3817 	return true;
3818 }
3819 EXPORT_SYMBOL_GPL(kill_device);
3820 
3821 /**
3822  * device_del - delete device from system.
3823  * @dev: device.
3824  *
3825  * This is the first part of the device unregistration
3826  * sequence. This removes the device from the lists we control
3827  * from here, has it removed from the other driver model
3828  * subsystems it was added to in device_add(), and removes it
3829  * from the kobject hierarchy.
3830  *
3831  * NOTE: this should be called manually _iff_ device_add() was
3832  * also called manually.
3833  */
3834 void device_del(struct device *dev)
3835 {
3836 	struct subsys_private *sp;
3837 	struct device *parent = dev->parent;
3838 	struct kobject *glue_dir = NULL;
3839 	struct class_interface *class_intf;
3840 	unsigned int noio_flag;
3841 
3842 	device_lock(dev);
3843 	kill_device(dev);
3844 	device_unlock(dev);
3845 
3846 	if (dev->fwnode && dev->fwnode->dev == dev)
3847 		dev->fwnode->dev = NULL;
3848 
3849 	/* Notify clients of device removal.  This call must come
3850 	 * before dpm_sysfs_remove().
3851 	 */
3852 	noio_flag = memalloc_noio_save();
3853 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3854 
3855 	dpm_sysfs_remove(dev);
3856 	if (parent)
3857 		klist_del(&dev->p->knode_parent);
3858 	if (MAJOR(dev->devt)) {
3859 		devtmpfs_delete_node(dev);
3860 		device_remove_sys_dev_entry(dev);
3861 		device_remove_file(dev, &dev_attr_dev);
3862 	}
3863 
3864 	sp = class_to_subsys(dev->class);
3865 	if (sp) {
3866 		device_remove_class_symlinks(dev);
3867 
3868 		mutex_lock(&sp->mutex);
3869 		/* notify any interfaces that the device is now gone */
3870 		list_for_each_entry(class_intf, &sp->interfaces, node)
3871 			if (class_intf->remove_dev)
3872 				class_intf->remove_dev(dev);
3873 		/* remove the device from the class list */
3874 		klist_del(&dev->p->knode_class);
3875 		mutex_unlock(&sp->mutex);
3876 		subsys_put(sp);
3877 	}
3878 	device_remove_file(dev, &dev_attr_uevent);
3879 	device_remove_attrs(dev);
3880 	bus_remove_device(dev);
3881 	device_pm_remove(dev);
3882 	driver_deferred_probe_del(dev);
3883 	device_platform_notify_remove(dev);
3884 	device_links_purge(dev);
3885 
3886 	/*
3887 	 * If a device does not have a driver attached, we need to clean
3888 	 * up any managed resources. We do this in device_release(), but
3889 	 * it's never called (and we leak the device) if a managed
3890 	 * resource holds a reference to the device. So release all
3891 	 * managed resources here, like we do in driver_detach(). We
3892 	 * still need to do so again in device_release() in case someone
3893 	 * adds a new resource after this point, though.
3894 	 */
3895 	devres_release_all(dev);
3896 
3897 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3898 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3899 	glue_dir = get_glue_dir(dev);
3900 	kobject_del(&dev->kobj);
3901 	cleanup_glue_dir(dev, glue_dir);
3902 	memalloc_noio_restore(noio_flag);
3903 	put_device(parent);
3904 }
3905 EXPORT_SYMBOL_GPL(device_del);
3906 
3907 /**
3908  * device_unregister - unregister device from system.
3909  * @dev: device going away.
3910  *
3911  * We do this in two parts, like we do device_register(). First,
3912  * we remove it from all the subsystems with device_del(), then
3913  * we decrement the reference count via put_device(). If that
3914  * is the final reference count, the device will be cleaned up
3915  * via device_release() above. Otherwise, the structure will
3916  * stick around until the final reference to the device is dropped.
3917  */
3918 void device_unregister(struct device *dev)
3919 {
3920 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3921 	device_del(dev);
3922 	put_device(dev);
3923 }
3924 EXPORT_SYMBOL_GPL(device_unregister);
3925 
3926 static struct device *prev_device(struct klist_iter *i)
3927 {
3928 	struct klist_node *n = klist_prev(i);
3929 	struct device *dev = NULL;
3930 	struct device_private *p;
3931 
3932 	if (n) {
3933 		p = to_device_private_parent(n);
3934 		dev = p->device;
3935 	}
3936 	return dev;
3937 }
3938 
3939 static struct device *next_device(struct klist_iter *i)
3940 {
3941 	struct klist_node *n = klist_next(i);
3942 	struct device *dev = NULL;
3943 	struct device_private *p;
3944 
3945 	if (n) {
3946 		p = to_device_private_parent(n);
3947 		dev = p->device;
3948 	}
3949 	return dev;
3950 }
3951 
3952 /**
3953  * device_get_devnode - path of device node file
3954  * @dev: device
3955  * @mode: returned file access mode
3956  * @uid: returned file owner
3957  * @gid: returned file group
3958  * @tmp: possibly allocated string
3959  *
3960  * Return the relative path of a possible device node.
3961  * Non-default names may need to allocate a memory to compose
3962  * a name. This memory is returned in tmp and needs to be
3963  * freed by the caller.
3964  */
3965 const char *device_get_devnode(const struct device *dev,
3966 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3967 			       const char **tmp)
3968 {
3969 	char *s;
3970 
3971 	*tmp = NULL;
3972 
3973 	/* the device type may provide a specific name */
3974 	if (dev->type && dev->type->devnode)
3975 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3976 	if (*tmp)
3977 		return *tmp;
3978 
3979 	/* the class may provide a specific name */
3980 	if (dev->class && dev->class->devnode)
3981 		*tmp = dev->class->devnode(dev, mode);
3982 	if (*tmp)
3983 		return *tmp;
3984 
3985 	/* return name without allocation, tmp == NULL */
3986 	if (strchr(dev_name(dev), '!') == NULL)
3987 		return dev_name(dev);
3988 
3989 	/* replace '!' in the name with '/' */
3990 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3991 	if (!s)
3992 		return NULL;
3993 	return *tmp = s;
3994 }
3995 
3996 /**
3997  * device_for_each_child - device child iterator.
3998  * @parent: parent struct device.
3999  * @fn: function to be called for each device.
4000  * @data: data for the callback.
4001  *
4002  * Iterate over @parent's child devices, and call @fn for each,
4003  * passing it @data.
4004  *
4005  * We check the return of @fn each time. If it returns anything
4006  * other than 0, we break out and return that value.
4007  */
4008 int device_for_each_child(struct device *parent, void *data,
4009 			  device_iter_t fn)
4010 {
4011 	struct klist_iter i;
4012 	struct device *child;
4013 	int error = 0;
4014 
4015 	if (!parent || !parent->p)
4016 		return 0;
4017 
4018 	klist_iter_init(&parent->p->klist_children, &i);
4019 	while (!error && (child = next_device(&i)))
4020 		error = fn(child, data);
4021 	klist_iter_exit(&i);
4022 	return error;
4023 }
4024 EXPORT_SYMBOL_GPL(device_for_each_child);
4025 
4026 /**
4027  * device_for_each_child_reverse - device child iterator in reversed order.
4028  * @parent: parent struct device.
4029  * @fn: function to be called for each device.
4030  * @data: data for the callback.
4031  *
4032  * Iterate over @parent's child devices, and call @fn for each,
4033  * passing it @data.
4034  *
4035  * We check the return of @fn each time. If it returns anything
4036  * other than 0, we break out and return that value.
4037  */
4038 int device_for_each_child_reverse(struct device *parent, void *data,
4039 				  device_iter_t fn)
4040 {
4041 	struct klist_iter i;
4042 	struct device *child;
4043 	int error = 0;
4044 
4045 	if (!parent || !parent->p)
4046 		return 0;
4047 
4048 	klist_iter_init(&parent->p->klist_children, &i);
4049 	while ((child = prev_device(&i)) && !error)
4050 		error = fn(child, data);
4051 	klist_iter_exit(&i);
4052 	return error;
4053 }
4054 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4055 
4056 /**
4057  * device_for_each_child_reverse_from - device child iterator in reversed order.
4058  * @parent: parent struct device.
4059  * @from: optional starting point in child list
4060  * @fn: function to be called for each device.
4061  * @data: data for the callback.
4062  *
4063  * Iterate over @parent's child devices, starting at @from, and call @fn
4064  * for each, passing it @data. This helper is identical to
4065  * device_for_each_child_reverse() when @from is NULL.
4066  *
4067  * @fn is checked each iteration. If it returns anything other than 0,
4068  * iteration stop and that value is returned to the caller of
4069  * device_for_each_child_reverse_from();
4070  */
4071 int device_for_each_child_reverse_from(struct device *parent,
4072 				       struct device *from, void *data,
4073 				       device_iter_t fn)
4074 {
4075 	struct klist_iter i;
4076 	struct device *child;
4077 	int error = 0;
4078 
4079 	if (!parent || !parent->p)
4080 		return 0;
4081 
4082 	klist_iter_init_node(&parent->p->klist_children, &i,
4083 			     (from ? &from->p->knode_parent : NULL));
4084 	while ((child = prev_device(&i)) && !error)
4085 		error = fn(child, data);
4086 	klist_iter_exit(&i);
4087 	return error;
4088 }
4089 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4090 
4091 /**
4092  * device_find_child - device iterator for locating a particular device.
4093  * @parent: parent struct device
4094  * @match: Callback function to check device
4095  * @data: Data to pass to match function
4096  *
4097  * This is similar to the device_for_each_child() function above, but it
4098  * returns a reference to a device that is 'found' for later use, as
4099  * determined by the @match callback.
4100  *
4101  * The callback should return 0 if the device doesn't match and non-zero
4102  * if it does.  If the callback returns non-zero and a reference to the
4103  * current device can be obtained, this function will return to the caller
4104  * and not iterate over any more devices.
4105  *
4106  * NOTE: you will need to drop the reference with put_device() after use.
4107  */
4108 struct device *device_find_child(struct device *parent, const void *data,
4109 				 device_match_t match)
4110 {
4111 	struct klist_iter i;
4112 	struct device *child;
4113 
4114 	if (!parent || !parent->p)
4115 		return NULL;
4116 
4117 	klist_iter_init(&parent->p->klist_children, &i);
4118 	while ((child = next_device(&i))) {
4119 		if (match(child, data)) {
4120 			get_device(child);
4121 			break;
4122 		}
4123 	}
4124 	klist_iter_exit(&i);
4125 	return child;
4126 }
4127 EXPORT_SYMBOL_GPL(device_find_child);
4128 
4129 int __init devices_init(void)
4130 {
4131 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4132 	if (!devices_kset)
4133 		return -ENOMEM;
4134 	dev_kobj = kobject_create_and_add("dev", NULL);
4135 	if (!dev_kobj)
4136 		goto dev_kobj_err;
4137 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4138 	if (!sysfs_dev_block_kobj)
4139 		goto block_kobj_err;
4140 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4141 	if (!sysfs_dev_char_kobj)
4142 		goto char_kobj_err;
4143 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4144 	if (!device_link_wq)
4145 		goto wq_err;
4146 
4147 	return 0;
4148 
4149  wq_err:
4150 	kobject_put(sysfs_dev_char_kobj);
4151  char_kobj_err:
4152 	kobject_put(sysfs_dev_block_kobj);
4153  block_kobj_err:
4154 	kobject_put(dev_kobj);
4155  dev_kobj_err:
4156 	kset_unregister(devices_kset);
4157 	return -ENOMEM;
4158 }
4159 
4160 static int device_check_offline(struct device *dev, void *not_used)
4161 {
4162 	int ret;
4163 
4164 	ret = device_for_each_child(dev, NULL, device_check_offline);
4165 	if (ret)
4166 		return ret;
4167 
4168 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4169 }
4170 
4171 /**
4172  * device_offline - Prepare the device for hot-removal.
4173  * @dev: Device to be put offline.
4174  *
4175  * Execute the device bus type's .offline() callback, if present, to prepare
4176  * the device for a subsequent hot-removal.  If that succeeds, the device must
4177  * not be used until either it is removed or its bus type's .online() callback
4178  * is executed.
4179  *
4180  * Call under device_hotplug_lock.
4181  */
4182 int device_offline(struct device *dev)
4183 {
4184 	int ret;
4185 
4186 	if (dev->offline_disabled)
4187 		return -EPERM;
4188 
4189 	ret = device_for_each_child(dev, NULL, device_check_offline);
4190 	if (ret)
4191 		return ret;
4192 
4193 	device_lock(dev);
4194 	if (device_supports_offline(dev)) {
4195 		if (dev->offline) {
4196 			ret = 1;
4197 		} else {
4198 			ret = dev->bus->offline(dev);
4199 			if (!ret) {
4200 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4201 				dev->offline = true;
4202 			}
4203 		}
4204 	}
4205 	device_unlock(dev);
4206 
4207 	return ret;
4208 }
4209 
4210 /**
4211  * device_online - Put the device back online after successful device_offline().
4212  * @dev: Device to be put back online.
4213  *
4214  * If device_offline() has been successfully executed for @dev, but the device
4215  * has not been removed subsequently, execute its bus type's .online() callback
4216  * to indicate that the device can be used again.
4217  *
4218  * Call under device_hotplug_lock.
4219  */
4220 int device_online(struct device *dev)
4221 {
4222 	int ret = 0;
4223 
4224 	device_lock(dev);
4225 	if (device_supports_offline(dev)) {
4226 		if (dev->offline) {
4227 			ret = dev->bus->online(dev);
4228 			if (!ret) {
4229 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4230 				dev->offline = false;
4231 			}
4232 		} else {
4233 			ret = 1;
4234 		}
4235 	}
4236 	device_unlock(dev);
4237 
4238 	return ret;
4239 }
4240 
4241 struct root_device {
4242 	struct device dev;
4243 	struct module *owner;
4244 };
4245 
4246 static inline struct root_device *to_root_device(struct device *d)
4247 {
4248 	return container_of(d, struct root_device, dev);
4249 }
4250 
4251 static void root_device_release(struct device *dev)
4252 {
4253 	kfree(to_root_device(dev));
4254 }
4255 
4256 /**
4257  * __root_device_register - allocate and register a root device
4258  * @name: root device name
4259  * @owner: owner module of the root device, usually THIS_MODULE
4260  *
4261  * This function allocates a root device and registers it
4262  * using device_register(). In order to free the returned
4263  * device, use root_device_unregister().
4264  *
4265  * Root devices are dummy devices which allow other devices
4266  * to be grouped under /sys/devices. Use this function to
4267  * allocate a root device and then use it as the parent of
4268  * any device which should appear under /sys/devices/{name}
4269  *
4270  * The /sys/devices/{name} directory will also contain a
4271  * 'module' symlink which points to the @owner directory
4272  * in sysfs.
4273  *
4274  * Returns &struct device pointer on success, or ERR_PTR() on error.
4275  *
4276  * Note: You probably want to use root_device_register().
4277  */
4278 struct device *__root_device_register(const char *name, struct module *owner)
4279 {
4280 	struct root_device *root;
4281 	int err = -ENOMEM;
4282 
4283 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4284 	if (!root)
4285 		return ERR_PTR(err);
4286 
4287 	err = dev_set_name(&root->dev, "%s", name);
4288 	if (err) {
4289 		kfree(root);
4290 		return ERR_PTR(err);
4291 	}
4292 
4293 	root->dev.release = root_device_release;
4294 
4295 	err = device_register(&root->dev);
4296 	if (err) {
4297 		put_device(&root->dev);
4298 		return ERR_PTR(err);
4299 	}
4300 
4301 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4302 	if (owner) {
4303 		struct module_kobject *mk = &owner->mkobj;
4304 
4305 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4306 		if (err) {
4307 			device_unregister(&root->dev);
4308 			return ERR_PTR(err);
4309 		}
4310 		root->owner = owner;
4311 	}
4312 #endif
4313 
4314 	return &root->dev;
4315 }
4316 EXPORT_SYMBOL_GPL(__root_device_register);
4317 
4318 /**
4319  * root_device_unregister - unregister and free a root device
4320  * @dev: device going away
4321  *
4322  * This function unregisters and cleans up a device that was created by
4323  * root_device_register().
4324  */
4325 void root_device_unregister(struct device *dev)
4326 {
4327 	struct root_device *root = to_root_device(dev);
4328 
4329 	if (root->owner)
4330 		sysfs_remove_link(&root->dev.kobj, "module");
4331 
4332 	device_unregister(dev);
4333 }
4334 EXPORT_SYMBOL_GPL(root_device_unregister);
4335 
4336 
4337 static void device_create_release(struct device *dev)
4338 {
4339 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4340 	kfree(dev);
4341 }
4342 
4343 static __printf(6, 0) struct device *
4344 device_create_groups_vargs(const struct class *class, struct device *parent,
4345 			   dev_t devt, void *drvdata,
4346 			   const struct attribute_group **groups,
4347 			   const char *fmt, va_list args)
4348 {
4349 	struct device *dev = NULL;
4350 	int retval = -ENODEV;
4351 
4352 	if (IS_ERR_OR_NULL(class))
4353 		goto error;
4354 
4355 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4356 	if (!dev) {
4357 		retval = -ENOMEM;
4358 		goto error;
4359 	}
4360 
4361 	device_initialize(dev);
4362 	dev->devt = devt;
4363 	dev->class = class;
4364 	dev->parent = parent;
4365 	dev->groups = groups;
4366 	dev->release = device_create_release;
4367 	dev_set_drvdata(dev, drvdata);
4368 
4369 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4370 	if (retval)
4371 		goto error;
4372 
4373 	retval = device_add(dev);
4374 	if (retval)
4375 		goto error;
4376 
4377 	return dev;
4378 
4379 error:
4380 	put_device(dev);
4381 	return ERR_PTR(retval);
4382 }
4383 
4384 /**
4385  * device_create - creates a device and registers it with sysfs
4386  * @class: pointer to the struct class that this device should be registered to
4387  * @parent: pointer to the parent struct device of this new device, if any
4388  * @devt: the dev_t for the char device to be added
4389  * @drvdata: the data to be added to the device for callbacks
4390  * @fmt: string for the device's name
4391  *
4392  * This function can be used by char device classes.  A struct device
4393  * will be created in sysfs, registered to the specified class.
4394  *
4395  * A "dev" file will be created, showing the dev_t for the device, if
4396  * the dev_t is not 0,0.
4397  * If a pointer to a parent struct device is passed in, the newly created
4398  * struct device will be a child of that device in sysfs.
4399  * The pointer to the struct device will be returned from the call.
4400  * Any further sysfs files that might be required can be created using this
4401  * pointer.
4402  *
4403  * Returns &struct device pointer on success, or ERR_PTR() on error.
4404  */
4405 struct device *device_create(const struct class *class, struct device *parent,
4406 			     dev_t devt, void *drvdata, const char *fmt, ...)
4407 {
4408 	va_list vargs;
4409 	struct device *dev;
4410 
4411 	va_start(vargs, fmt);
4412 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4413 					  fmt, vargs);
4414 	va_end(vargs);
4415 	return dev;
4416 }
4417 EXPORT_SYMBOL_GPL(device_create);
4418 
4419 /**
4420  * device_create_with_groups - creates a device and registers it with sysfs
4421  * @class: pointer to the struct class that this device should be registered to
4422  * @parent: pointer to the parent struct device of this new device, if any
4423  * @devt: the dev_t for the char device to be added
4424  * @drvdata: the data to be added to the device for callbacks
4425  * @groups: NULL-terminated list of attribute groups to be created
4426  * @fmt: string for the device's name
4427  *
4428  * This function can be used by char device classes.  A struct device
4429  * will be created in sysfs, registered to the specified class.
4430  * Additional attributes specified in the groups parameter will also
4431  * be created automatically.
4432  *
4433  * A "dev" file will be created, showing the dev_t for the device, if
4434  * the dev_t is not 0,0.
4435  * If a pointer to a parent struct device is passed in, the newly created
4436  * struct device will be a child of that device in sysfs.
4437  * The pointer to the struct device will be returned from the call.
4438  * Any further sysfs files that might be required can be created using this
4439  * pointer.
4440  *
4441  * Returns &struct device pointer on success, or ERR_PTR() on error.
4442  */
4443 struct device *device_create_with_groups(const struct class *class,
4444 					 struct device *parent, dev_t devt,
4445 					 void *drvdata,
4446 					 const struct attribute_group **groups,
4447 					 const char *fmt, ...)
4448 {
4449 	va_list vargs;
4450 	struct device *dev;
4451 
4452 	va_start(vargs, fmt);
4453 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4454 					 fmt, vargs);
4455 	va_end(vargs);
4456 	return dev;
4457 }
4458 EXPORT_SYMBOL_GPL(device_create_with_groups);
4459 
4460 /**
4461  * device_destroy - removes a device that was created with device_create()
4462  * @class: pointer to the struct class that this device was registered with
4463  * @devt: the dev_t of the device that was previously registered
4464  *
4465  * This call unregisters and cleans up a device that was created with a
4466  * call to device_create().
4467  */
4468 void device_destroy(const struct class *class, dev_t devt)
4469 {
4470 	struct device *dev;
4471 
4472 	dev = class_find_device_by_devt(class, devt);
4473 	if (dev) {
4474 		put_device(dev);
4475 		device_unregister(dev);
4476 	}
4477 }
4478 EXPORT_SYMBOL_GPL(device_destroy);
4479 
4480 /**
4481  * device_rename - renames a device
4482  * @dev: the pointer to the struct device to be renamed
4483  * @new_name: the new name of the device
4484  *
4485  * It is the responsibility of the caller to provide mutual
4486  * exclusion between two different calls of device_rename
4487  * on the same device to ensure that new_name is valid and
4488  * won't conflict with other devices.
4489  *
4490  * Note: given that some subsystems (networking and infiniband) use this
4491  * function, with no immediate plans for this to change, we cannot assume or
4492  * require that this function not be called at all.
4493  *
4494  * However, if you're writing new code, do not call this function. The following
4495  * text from Kay Sievers offers some insight:
4496  *
4497  * Renaming devices is racy at many levels, symlinks and other stuff are not
4498  * replaced atomically, and you get a "move" uevent, but it's not easy to
4499  * connect the event to the old and new device. Device nodes are not renamed at
4500  * all, there isn't even support for that in the kernel now.
4501  *
4502  * In the meantime, during renaming, your target name might be taken by another
4503  * driver, creating conflicts. Or the old name is taken directly after you
4504  * renamed it -- then you get events for the same DEVPATH, before you even see
4505  * the "move" event. It's just a mess, and nothing new should ever rely on
4506  * kernel device renaming. Besides that, it's not even implemented now for
4507  * other things than (driver-core wise very simple) network devices.
4508  *
4509  * Make up a "real" name in the driver before you register anything, or add
4510  * some other attributes for userspace to find the device, or use udev to add
4511  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4512  * don't even want to get into that and try to implement the missing pieces in
4513  * the core. We really have other pieces to fix in the driver core mess. :)
4514  */
4515 int device_rename(struct device *dev, const char *new_name)
4516 {
4517 	struct subsys_private *sp = NULL;
4518 	struct kobject *kobj = &dev->kobj;
4519 	char *old_device_name = NULL;
4520 	int error;
4521 	bool is_link_renamed = false;
4522 
4523 	dev = get_device(dev);
4524 	if (!dev)
4525 		return -EINVAL;
4526 
4527 	dev_dbg(dev, "renaming to %s\n", new_name);
4528 
4529 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4530 	if (!old_device_name) {
4531 		error = -ENOMEM;
4532 		goto out;
4533 	}
4534 
4535 	if (dev->class) {
4536 		sp = class_to_subsys(dev->class);
4537 
4538 		if (!sp) {
4539 			error = -EINVAL;
4540 			goto out;
4541 		}
4542 
4543 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4544 					     new_name, kobject_namespace(kobj));
4545 		if (error)
4546 			goto out;
4547 
4548 		is_link_renamed = true;
4549 	}
4550 
4551 	error = kobject_rename(kobj, new_name);
4552 out:
4553 	if (error && is_link_renamed)
4554 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4555 				     old_device_name, kobject_namespace(kobj));
4556 	subsys_put(sp);
4557 
4558 	put_device(dev);
4559 
4560 	kfree(old_device_name);
4561 
4562 	return error;
4563 }
4564 EXPORT_SYMBOL_GPL(device_rename);
4565 
4566 static int device_move_class_links(struct device *dev,
4567 				   struct device *old_parent,
4568 				   struct device *new_parent)
4569 {
4570 	int error = 0;
4571 
4572 	if (old_parent)
4573 		sysfs_remove_link(&dev->kobj, "device");
4574 	if (new_parent)
4575 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4576 					  "device");
4577 	return error;
4578 }
4579 
4580 /**
4581  * device_move - moves a device to a new parent
4582  * @dev: the pointer to the struct device to be moved
4583  * @new_parent: the new parent of the device (can be NULL)
4584  * @dpm_order: how to reorder the dpm_list
4585  */
4586 int device_move(struct device *dev, struct device *new_parent,
4587 		enum dpm_order dpm_order)
4588 {
4589 	int error;
4590 	struct device *old_parent;
4591 	struct kobject *new_parent_kobj;
4592 
4593 	dev = get_device(dev);
4594 	if (!dev)
4595 		return -EINVAL;
4596 
4597 	device_pm_lock();
4598 	new_parent = get_device(new_parent);
4599 	new_parent_kobj = get_device_parent(dev, new_parent);
4600 	if (IS_ERR(new_parent_kobj)) {
4601 		error = PTR_ERR(new_parent_kobj);
4602 		put_device(new_parent);
4603 		goto out;
4604 	}
4605 
4606 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4607 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4608 	error = kobject_move(&dev->kobj, new_parent_kobj);
4609 	if (error) {
4610 		cleanup_glue_dir(dev, new_parent_kobj);
4611 		put_device(new_parent);
4612 		goto out;
4613 	}
4614 	old_parent = dev->parent;
4615 	dev->parent = new_parent;
4616 	if (old_parent)
4617 		klist_remove(&dev->p->knode_parent);
4618 	if (new_parent) {
4619 		klist_add_tail(&dev->p->knode_parent,
4620 			       &new_parent->p->klist_children);
4621 		set_dev_node(dev, dev_to_node(new_parent));
4622 	}
4623 
4624 	if (dev->class) {
4625 		error = device_move_class_links(dev, old_parent, new_parent);
4626 		if (error) {
4627 			/* We ignore errors on cleanup since we're hosed anyway... */
4628 			device_move_class_links(dev, new_parent, old_parent);
4629 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4630 				if (new_parent)
4631 					klist_remove(&dev->p->knode_parent);
4632 				dev->parent = old_parent;
4633 				if (old_parent) {
4634 					klist_add_tail(&dev->p->knode_parent,
4635 						       &old_parent->p->klist_children);
4636 					set_dev_node(dev, dev_to_node(old_parent));
4637 				}
4638 			}
4639 			cleanup_glue_dir(dev, new_parent_kobj);
4640 			put_device(new_parent);
4641 			goto out;
4642 		}
4643 	}
4644 	switch (dpm_order) {
4645 	case DPM_ORDER_NONE:
4646 		break;
4647 	case DPM_ORDER_DEV_AFTER_PARENT:
4648 		device_pm_move_after(dev, new_parent);
4649 		devices_kset_move_after(dev, new_parent);
4650 		break;
4651 	case DPM_ORDER_PARENT_BEFORE_DEV:
4652 		device_pm_move_before(new_parent, dev);
4653 		devices_kset_move_before(new_parent, dev);
4654 		break;
4655 	case DPM_ORDER_DEV_LAST:
4656 		device_pm_move_last(dev);
4657 		devices_kset_move_last(dev);
4658 		break;
4659 	}
4660 
4661 	put_device(old_parent);
4662 out:
4663 	device_pm_unlock();
4664 	put_device(dev);
4665 	return error;
4666 }
4667 EXPORT_SYMBOL_GPL(device_move);
4668 
4669 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4670 				     kgid_t kgid)
4671 {
4672 	struct kobject *kobj = &dev->kobj;
4673 	const struct class *class = dev->class;
4674 	const struct device_type *type = dev->type;
4675 	int error;
4676 
4677 	if (class) {
4678 		/*
4679 		 * Change the device groups of the device class for @dev to
4680 		 * @kuid/@kgid.
4681 		 */
4682 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4683 						  kgid);
4684 		if (error)
4685 			return error;
4686 	}
4687 
4688 	if (type) {
4689 		/*
4690 		 * Change the device groups of the device type for @dev to
4691 		 * @kuid/@kgid.
4692 		 */
4693 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4694 						  kgid);
4695 		if (error)
4696 			return error;
4697 	}
4698 
4699 	/* Change the device groups of @dev to @kuid/@kgid. */
4700 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4701 	if (error)
4702 		return error;
4703 
4704 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4705 		/* Change online device attributes of @dev to @kuid/@kgid. */
4706 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4707 						kuid, kgid);
4708 		if (error)
4709 			return error;
4710 	}
4711 
4712 	return 0;
4713 }
4714 
4715 /**
4716  * device_change_owner - change the owner of an existing device.
4717  * @dev: device.
4718  * @kuid: new owner's kuid
4719  * @kgid: new owner's kgid
4720  *
4721  * This changes the owner of @dev and its corresponding sysfs entries to
4722  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4723  * core.
4724  *
4725  * Returns 0 on success or error code on failure.
4726  */
4727 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4728 {
4729 	int error;
4730 	struct kobject *kobj = &dev->kobj;
4731 	struct subsys_private *sp;
4732 
4733 	dev = get_device(dev);
4734 	if (!dev)
4735 		return -EINVAL;
4736 
4737 	/*
4738 	 * Change the kobject and the default attributes and groups of the
4739 	 * ktype associated with it to @kuid/@kgid.
4740 	 */
4741 	error = sysfs_change_owner(kobj, kuid, kgid);
4742 	if (error)
4743 		goto out;
4744 
4745 	/*
4746 	 * Change the uevent file for @dev to the new owner. The uevent file
4747 	 * was created in a separate step when @dev got added and we mirror
4748 	 * that step here.
4749 	 */
4750 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4751 					kgid);
4752 	if (error)
4753 		goto out;
4754 
4755 	/*
4756 	 * Change the device groups, the device groups associated with the
4757 	 * device class, and the groups associated with the device type of @dev
4758 	 * to @kuid/@kgid.
4759 	 */
4760 	error = device_attrs_change_owner(dev, kuid, kgid);
4761 	if (error)
4762 		goto out;
4763 
4764 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4765 	if (error)
4766 		goto out;
4767 
4768 	/*
4769 	 * Change the owner of the symlink located in the class directory of
4770 	 * the device class associated with @dev which points to the actual
4771 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4772 	 * symlink shows the same permissions as its target.
4773 	 */
4774 	sp = class_to_subsys(dev->class);
4775 	if (!sp) {
4776 		error = -EINVAL;
4777 		goto out;
4778 	}
4779 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4780 	subsys_put(sp);
4781 
4782 out:
4783 	put_device(dev);
4784 	return error;
4785 }
4786 EXPORT_SYMBOL_GPL(device_change_owner);
4787 
4788 /**
4789  * device_shutdown - call ->shutdown() on each device to shutdown.
4790  */
4791 void device_shutdown(void)
4792 {
4793 	struct device *dev, *parent;
4794 
4795 	wait_for_device_probe();
4796 	device_block_probing();
4797 
4798 	cpufreq_suspend();
4799 
4800 	spin_lock(&devices_kset->list_lock);
4801 	/*
4802 	 * Walk the devices list backward, shutting down each in turn.
4803 	 * Beware that device unplug events may also start pulling
4804 	 * devices offline, even as the system is shutting down.
4805 	 */
4806 	while (!list_empty(&devices_kset->list)) {
4807 		dev = list_entry(devices_kset->list.prev, struct device,
4808 				kobj.entry);
4809 
4810 		/*
4811 		 * hold reference count of device's parent to
4812 		 * prevent it from being freed because parent's
4813 		 * lock is to be held
4814 		 */
4815 		parent = get_device(dev->parent);
4816 		get_device(dev);
4817 		/*
4818 		 * Make sure the device is off the kset list, in the
4819 		 * event that dev->*->shutdown() doesn't remove it.
4820 		 */
4821 		list_del_init(&dev->kobj.entry);
4822 		spin_unlock(&devices_kset->list_lock);
4823 
4824 		/* hold lock to avoid race with probe/release */
4825 		if (parent)
4826 			device_lock(parent);
4827 		device_lock(dev);
4828 
4829 		/* Don't allow any more runtime suspends */
4830 		pm_runtime_get_noresume(dev);
4831 		pm_runtime_barrier(dev);
4832 
4833 		if (dev->class && dev->class->shutdown_pre) {
4834 			if (initcall_debug)
4835 				dev_info(dev, "shutdown_pre\n");
4836 			dev->class->shutdown_pre(dev);
4837 		}
4838 		if (dev->bus && dev->bus->shutdown) {
4839 			if (initcall_debug)
4840 				dev_info(dev, "shutdown\n");
4841 			dev->bus->shutdown(dev);
4842 		} else if (dev->driver && dev->driver->shutdown) {
4843 			if (initcall_debug)
4844 				dev_info(dev, "shutdown\n");
4845 			dev->driver->shutdown(dev);
4846 		}
4847 
4848 		device_unlock(dev);
4849 		if (parent)
4850 			device_unlock(parent);
4851 
4852 		put_device(dev);
4853 		put_device(parent);
4854 
4855 		spin_lock(&devices_kset->list_lock);
4856 	}
4857 	spin_unlock(&devices_kset->list_lock);
4858 }
4859 
4860 /*
4861  * Device logging functions
4862  */
4863 
4864 #ifdef CONFIG_PRINTK
4865 static void
4866 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4867 {
4868 	const char *subsys;
4869 
4870 	memset(dev_info, 0, sizeof(*dev_info));
4871 
4872 	if (dev->class)
4873 		subsys = dev->class->name;
4874 	else if (dev->bus)
4875 		subsys = dev->bus->name;
4876 	else
4877 		return;
4878 
4879 	strscpy(dev_info->subsystem, subsys);
4880 
4881 	/*
4882 	 * Add device identifier DEVICE=:
4883 	 *   b12:8         block dev_t
4884 	 *   c127:3        char dev_t
4885 	 *   n8            netdev ifindex
4886 	 *   +sound:card0  subsystem:devname
4887 	 */
4888 	if (MAJOR(dev->devt)) {
4889 		char c;
4890 
4891 		if (strcmp(subsys, "block") == 0)
4892 			c = 'b';
4893 		else
4894 			c = 'c';
4895 
4896 		snprintf(dev_info->device, sizeof(dev_info->device),
4897 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4898 	} else if (strcmp(subsys, "net") == 0) {
4899 		struct net_device *net = to_net_dev(dev);
4900 
4901 		snprintf(dev_info->device, sizeof(dev_info->device),
4902 			 "n%u", net->ifindex);
4903 	} else {
4904 		snprintf(dev_info->device, sizeof(dev_info->device),
4905 			 "+%s:%s", subsys, dev_name(dev));
4906 	}
4907 }
4908 
4909 int dev_vprintk_emit(int level, const struct device *dev,
4910 		     const char *fmt, va_list args)
4911 {
4912 	struct dev_printk_info dev_info;
4913 
4914 	set_dev_info(dev, &dev_info);
4915 
4916 	return vprintk_emit(0, level, &dev_info, fmt, args);
4917 }
4918 EXPORT_SYMBOL(dev_vprintk_emit);
4919 
4920 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4921 {
4922 	va_list args;
4923 	int r;
4924 
4925 	va_start(args, fmt);
4926 
4927 	r = dev_vprintk_emit(level, dev, fmt, args);
4928 
4929 	va_end(args);
4930 
4931 	return r;
4932 }
4933 EXPORT_SYMBOL(dev_printk_emit);
4934 
4935 static void __dev_printk(const char *level, const struct device *dev,
4936 			struct va_format *vaf)
4937 {
4938 	if (dev)
4939 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4940 				dev_driver_string(dev), dev_name(dev), vaf);
4941 	else
4942 		printk("%s(NULL device *): %pV", level, vaf);
4943 }
4944 
4945 void _dev_printk(const char *level, const struct device *dev,
4946 		 const char *fmt, ...)
4947 {
4948 	struct va_format vaf;
4949 	va_list args;
4950 
4951 	va_start(args, fmt);
4952 
4953 	vaf.fmt = fmt;
4954 	vaf.va = &args;
4955 
4956 	__dev_printk(level, dev, &vaf);
4957 
4958 	va_end(args);
4959 }
4960 EXPORT_SYMBOL(_dev_printk);
4961 
4962 #define define_dev_printk_level(func, kern_level)		\
4963 void func(const struct device *dev, const char *fmt, ...)	\
4964 {								\
4965 	struct va_format vaf;					\
4966 	va_list args;						\
4967 								\
4968 	va_start(args, fmt);					\
4969 								\
4970 	vaf.fmt = fmt;						\
4971 	vaf.va = &args;						\
4972 								\
4973 	__dev_printk(kern_level, dev, &vaf);			\
4974 								\
4975 	va_end(args);						\
4976 }								\
4977 EXPORT_SYMBOL(func);
4978 
4979 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4980 define_dev_printk_level(_dev_alert, KERN_ALERT);
4981 define_dev_printk_level(_dev_crit, KERN_CRIT);
4982 define_dev_printk_level(_dev_err, KERN_ERR);
4983 define_dev_printk_level(_dev_warn, KERN_WARNING);
4984 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4985 define_dev_printk_level(_dev_info, KERN_INFO);
4986 
4987 #endif
4988 
4989 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4990 			       const char *fmt, va_list vargsp)
4991 {
4992 	struct va_format vaf;
4993 	va_list vargs;
4994 
4995 	/*
4996 	 * On x86_64 and possibly on other architectures, va_list is actually a
4997 	 * size-1 array containing a structure.  As a result, function parameter
4998 	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
4999 	 * T(*)[1], which is expected by its assignment to vaf.va below.
5000 	 *
5001 	 * One standard way to solve this mess is by creating a copy in a local
5002 	 * variable of type va_list and then using a pointer to that local copy
5003 	 * instead, which is the approach employed here.
5004 	 */
5005 	va_copy(vargs, vargsp);
5006 
5007 	vaf.fmt = fmt;
5008 	vaf.va = &vargs;
5009 
5010 	switch (err) {
5011 	case -EPROBE_DEFER:
5012 		device_set_deferred_probe_reason(dev, &vaf);
5013 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5014 		break;
5015 
5016 	case -ENOMEM:
5017 		/* Don't print anything on -ENOMEM, there's already enough output */
5018 		break;
5019 
5020 	default:
5021 		/* Log fatal final failures as errors, otherwise produce warnings */
5022 		if (fatal)
5023 			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5024 		else
5025 			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5026 		break;
5027 	}
5028 
5029 	va_end(vargs);
5030 }
5031 
5032 /**
5033  * dev_err_probe - probe error check and log helper
5034  * @dev: the pointer to the struct device
5035  * @err: error value to test
5036  * @fmt: printf-style format string
5037  * @...: arguments as specified in the format string
5038  *
5039  * This helper implements common pattern present in probe functions for error
5040  * checking: print debug or error message depending if the error value is
5041  * -EPROBE_DEFER and propagate error upwards.
5042  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5043  * checked later by reading devices_deferred debugfs attribute.
5044  * It replaces the following code sequence::
5045  *
5046  * 	if (err != -EPROBE_DEFER)
5047  * 		dev_err(dev, ...);
5048  * 	else
5049  * 		dev_dbg(dev, ...);
5050  * 	return err;
5051  *
5052  * with::
5053  *
5054  * 	return dev_err_probe(dev, err, ...);
5055  *
5056  * Using this helper in your probe function is totally fine even if @err
5057  * is known to never be -EPROBE_DEFER.
5058  * The benefit compared to a normal dev_err() is the standardized format
5059  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5060  * instead of "-35"), and having the error code returned allows more
5061  * compact error paths.
5062  *
5063  * Returns @err.
5064  */
5065 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5066 {
5067 	va_list vargs;
5068 
5069 	va_start(vargs, fmt);
5070 
5071 	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5072 	__dev_probe_failed(dev, err, true, fmt, vargs);
5073 
5074 	va_end(vargs);
5075 
5076 	return err;
5077 }
5078 EXPORT_SYMBOL_GPL(dev_err_probe);
5079 
5080 /**
5081  * dev_warn_probe - probe error check and log helper
5082  * @dev: the pointer to the struct device
5083  * @err: error value to test
5084  * @fmt: printf-style format string
5085  * @...: arguments as specified in the format string
5086  *
5087  * This helper implements common pattern present in probe functions for error
5088  * checking: print debug or warning message depending if the error value is
5089  * -EPROBE_DEFER and propagate error upwards.
5090  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5091  * checked later by reading devices_deferred debugfs attribute.
5092  * It replaces the following code sequence::
5093  *
5094  * 	if (err != -EPROBE_DEFER)
5095  * 		dev_warn(dev, ...);
5096  * 	else
5097  * 		dev_dbg(dev, ...);
5098  * 	return err;
5099  *
5100  * with::
5101  *
5102  * 	return dev_warn_probe(dev, err, ...);
5103  *
5104  * Using this helper in your probe function is totally fine even if @err
5105  * is known to never be -EPROBE_DEFER.
5106  * The benefit compared to a normal dev_warn() is the standardized format
5107  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5108  * instead of "-35"), and having the error code returned allows more
5109  * compact error paths.
5110  *
5111  * Returns @err.
5112  */
5113 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5114 {
5115 	va_list vargs;
5116 
5117 	va_start(vargs, fmt);
5118 
5119 	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5120 	__dev_probe_failed(dev, err, false, fmt, vargs);
5121 
5122 	va_end(vargs);
5123 
5124 	return err;
5125 }
5126 EXPORT_SYMBOL_GPL(dev_warn_probe);
5127 
5128 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5129 {
5130 	return fwnode && !IS_ERR(fwnode->secondary);
5131 }
5132 
5133 /**
5134  * set_primary_fwnode - Change the primary firmware node of a given device.
5135  * @dev: Device to handle.
5136  * @fwnode: New primary firmware node of the device.
5137  *
5138  * Set the device's firmware node pointer to @fwnode, but if a secondary
5139  * firmware node of the device is present, preserve it.
5140  *
5141  * Valid fwnode cases are:
5142  *  - primary --> secondary --> -ENODEV
5143  *  - primary --> NULL
5144  *  - secondary --> -ENODEV
5145  *  - NULL
5146  */
5147 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5148 {
5149 	struct device *parent = dev->parent;
5150 	struct fwnode_handle *fn = dev->fwnode;
5151 
5152 	if (fwnode) {
5153 		if (fwnode_is_primary(fn))
5154 			fn = fn->secondary;
5155 
5156 		if (fn) {
5157 			WARN_ON(fwnode->secondary);
5158 			fwnode->secondary = fn;
5159 		}
5160 		dev->fwnode = fwnode;
5161 	} else {
5162 		if (fwnode_is_primary(fn)) {
5163 			dev->fwnode = fn->secondary;
5164 
5165 			/* Skip nullifying fn->secondary if the primary is shared */
5166 			if (parent && fn == parent->fwnode)
5167 				return;
5168 
5169 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5170 			fn->secondary = NULL;
5171 		} else {
5172 			dev->fwnode = NULL;
5173 		}
5174 	}
5175 }
5176 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5177 
5178 /**
5179  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5180  * @dev: Device to handle.
5181  * @fwnode: New secondary firmware node of the device.
5182  *
5183  * If a primary firmware node of the device is present, set its secondary
5184  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5185  * @fwnode.
5186  */
5187 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5188 {
5189 	if (fwnode)
5190 		fwnode->secondary = ERR_PTR(-ENODEV);
5191 
5192 	if (fwnode_is_primary(dev->fwnode))
5193 		dev->fwnode->secondary = fwnode;
5194 	else
5195 		dev->fwnode = fwnode;
5196 }
5197 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5198 
5199 /**
5200  * device_remove_of_node - Remove an of_node from a device
5201  * @dev: device whose device tree node is being removed
5202  */
5203 void device_remove_of_node(struct device *dev)
5204 {
5205 	dev = get_device(dev);
5206 	if (!dev)
5207 		return;
5208 
5209 	if (!dev->of_node)
5210 		goto end;
5211 
5212 	if (dev->fwnode == of_fwnode_handle(dev->of_node))
5213 		dev->fwnode = NULL;
5214 
5215 	of_node_put(dev->of_node);
5216 	dev->of_node = NULL;
5217 
5218 end:
5219 	put_device(dev);
5220 }
5221 EXPORT_SYMBOL_GPL(device_remove_of_node);
5222 
5223 /**
5224  * device_add_of_node - Add an of_node to an existing device
5225  * @dev: device whose device tree node is being added
5226  * @of_node: of_node to add
5227  *
5228  * Return: 0 on success or error code on failure.
5229  */
5230 int device_add_of_node(struct device *dev, struct device_node *of_node)
5231 {
5232 	int ret;
5233 
5234 	if (!of_node)
5235 		return -EINVAL;
5236 
5237 	dev = get_device(dev);
5238 	if (!dev)
5239 		return -EINVAL;
5240 
5241 	if (dev->of_node) {
5242 		dev_err(dev, "Cannot replace node %pOF with %pOF\n",
5243 			dev->of_node, of_node);
5244 		ret = -EBUSY;
5245 		goto end;
5246 	}
5247 
5248 	dev->of_node = of_node_get(of_node);
5249 
5250 	if (!dev->fwnode)
5251 		dev->fwnode = of_fwnode_handle(of_node);
5252 
5253 	ret = 0;
5254 end:
5255 	put_device(dev);
5256 	return ret;
5257 }
5258 EXPORT_SYMBOL_GPL(device_add_of_node);
5259 
5260 /**
5261  * device_set_of_node_from_dev - reuse device-tree node of another device
5262  * @dev: device whose device-tree node is being set
5263  * @dev2: device whose device-tree node is being reused
5264  *
5265  * Takes another reference to the new device-tree node after first dropping
5266  * any reference held to the old node.
5267  */
5268 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5269 {
5270 	of_node_put(dev->of_node);
5271 	dev->of_node = of_node_get(dev2->of_node);
5272 	dev->of_node_reused = true;
5273 }
5274 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5275 
5276 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5277 {
5278 	dev->fwnode = fwnode;
5279 	dev->of_node = to_of_node(fwnode);
5280 }
5281 EXPORT_SYMBOL_GPL(device_set_node);
5282 
5283 int device_match_name(struct device *dev, const void *name)
5284 {
5285 	return sysfs_streq(dev_name(dev), name);
5286 }
5287 EXPORT_SYMBOL_GPL(device_match_name);
5288 
5289 int device_match_type(struct device *dev, const void *type)
5290 {
5291 	return dev->type == type;
5292 }
5293 EXPORT_SYMBOL_GPL(device_match_type);
5294 
5295 int device_match_of_node(struct device *dev, const void *np)
5296 {
5297 	return np && dev->of_node == np;
5298 }
5299 EXPORT_SYMBOL_GPL(device_match_of_node);
5300 
5301 int device_match_fwnode(struct device *dev, const void *fwnode)
5302 {
5303 	return fwnode && dev_fwnode(dev) == fwnode;
5304 }
5305 EXPORT_SYMBOL_GPL(device_match_fwnode);
5306 
5307 int device_match_devt(struct device *dev, const void *pdevt)
5308 {
5309 	return dev->devt == *(dev_t *)pdevt;
5310 }
5311 EXPORT_SYMBOL_GPL(device_match_devt);
5312 
5313 int device_match_acpi_dev(struct device *dev, const void *adev)
5314 {
5315 	return adev && ACPI_COMPANION(dev) == adev;
5316 }
5317 EXPORT_SYMBOL(device_match_acpi_dev);
5318 
5319 int device_match_acpi_handle(struct device *dev, const void *handle)
5320 {
5321 	return handle && ACPI_HANDLE(dev) == handle;
5322 }
5323 EXPORT_SYMBOL(device_match_acpi_handle);
5324 
5325 int device_match_any(struct device *dev, const void *unused)
5326 {
5327 	return 1;
5328 }
5329 EXPORT_SYMBOL_GPL(device_match_any);
5330