1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 49 #ifdef CONFIG_SRCU 50 static DEFINE_MUTEX(device_links_lock); 51 DEFINE_STATIC_SRCU(device_links_srcu); 52 53 static inline void device_links_write_lock(void) 54 { 55 mutex_lock(&device_links_lock); 56 } 57 58 static inline void device_links_write_unlock(void) 59 { 60 mutex_unlock(&device_links_lock); 61 } 62 63 int device_links_read_lock(void) 64 { 65 return srcu_read_lock(&device_links_srcu); 66 } 67 68 void device_links_read_unlock(int idx) 69 { 70 srcu_read_unlock(&device_links_srcu, idx); 71 } 72 73 int device_links_read_lock_held(void) 74 { 75 return srcu_read_lock_held(&device_links_srcu); 76 } 77 #else /* !CONFIG_SRCU */ 78 static DECLARE_RWSEM(device_links_lock); 79 80 static inline void device_links_write_lock(void) 81 { 82 down_write(&device_links_lock); 83 } 84 85 static inline void device_links_write_unlock(void) 86 { 87 up_write(&device_links_lock); 88 } 89 90 int device_links_read_lock(void) 91 { 92 down_read(&device_links_lock); 93 return 0; 94 } 95 96 void device_links_read_unlock(int not_used) 97 { 98 up_read(&device_links_lock); 99 } 100 101 #ifdef CONFIG_DEBUG_LOCK_ALLOC 102 int device_links_read_lock_held(void) 103 { 104 return lockdep_is_held(&device_links_lock); 105 } 106 #endif 107 #endif /* !CONFIG_SRCU */ 108 109 /** 110 * device_is_dependent - Check if one device depends on another one 111 * @dev: Device to check dependencies for. 112 * @target: Device to check against. 113 * 114 * Check if @target depends on @dev or any device dependent on it (its child or 115 * its consumer etc). Return 1 if that is the case or 0 otherwise. 116 */ 117 static int device_is_dependent(struct device *dev, void *target) 118 { 119 struct device_link *link; 120 int ret; 121 122 if (dev == target) 123 return 1; 124 125 ret = device_for_each_child(dev, target, device_is_dependent); 126 if (ret) 127 return ret; 128 129 list_for_each_entry(link, &dev->links.consumers, s_node) { 130 if (link->consumer == target) 131 return 1; 132 133 ret = device_is_dependent(link->consumer, target); 134 if (ret) 135 break; 136 } 137 return ret; 138 } 139 140 static void device_link_init_status(struct device_link *link, 141 struct device *consumer, 142 struct device *supplier) 143 { 144 switch (supplier->links.status) { 145 case DL_DEV_PROBING: 146 switch (consumer->links.status) { 147 case DL_DEV_PROBING: 148 /* 149 * A consumer driver can create a link to a supplier 150 * that has not completed its probing yet as long as it 151 * knows that the supplier is already functional (for 152 * example, it has just acquired some resources from the 153 * supplier). 154 */ 155 link->status = DL_STATE_CONSUMER_PROBE; 156 break; 157 default: 158 link->status = DL_STATE_DORMANT; 159 break; 160 } 161 break; 162 case DL_DEV_DRIVER_BOUND: 163 switch (consumer->links.status) { 164 case DL_DEV_PROBING: 165 link->status = DL_STATE_CONSUMER_PROBE; 166 break; 167 case DL_DEV_DRIVER_BOUND: 168 link->status = DL_STATE_ACTIVE; 169 break; 170 default: 171 link->status = DL_STATE_AVAILABLE; 172 break; 173 } 174 break; 175 case DL_DEV_UNBINDING: 176 link->status = DL_STATE_SUPPLIER_UNBIND; 177 break; 178 default: 179 link->status = DL_STATE_DORMANT; 180 break; 181 } 182 } 183 184 static int device_reorder_to_tail(struct device *dev, void *not_used) 185 { 186 struct device_link *link; 187 188 /* 189 * Devices that have not been registered yet will be put to the ends 190 * of the lists during the registration, so skip them here. 191 */ 192 if (device_is_registered(dev)) 193 devices_kset_move_last(dev); 194 195 if (device_pm_initialized(dev)) 196 device_pm_move_last(dev); 197 198 device_for_each_child(dev, NULL, device_reorder_to_tail); 199 list_for_each_entry(link, &dev->links.consumers, s_node) 200 device_reorder_to_tail(link->consumer, NULL); 201 202 return 0; 203 } 204 205 /** 206 * device_pm_move_to_tail - Move set of devices to the end of device lists 207 * @dev: Device to move 208 * 209 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 210 * 211 * It moves the @dev along with all of its children and all of its consumers 212 * to the ends of the device_kset and dpm_list, recursively. 213 */ 214 void device_pm_move_to_tail(struct device *dev) 215 { 216 int idx; 217 218 idx = device_links_read_lock(); 219 device_pm_lock(); 220 device_reorder_to_tail(dev, NULL); 221 device_pm_unlock(); 222 device_links_read_unlock(idx); 223 } 224 225 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 226 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 227 DL_FLAG_AUTOPROBE_CONSUMER) 228 229 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 230 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 231 232 /** 233 * device_link_add - Create a link between two devices. 234 * @consumer: Consumer end of the link. 235 * @supplier: Supplier end of the link. 236 * @flags: Link flags. 237 * 238 * The caller is responsible for the proper synchronization of the link creation 239 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 240 * runtime PM framework to take the link into account. Second, if the 241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 242 * be forced into the active metastate and reference-counted upon the creation 243 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 244 * ignored. 245 * 246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 247 * expected to release the link returned by it directly with the help of either 248 * device_link_del() or device_link_remove(). 249 * 250 * If that flag is not set, however, the caller of this function is handing the 251 * management of the link over to the driver core entirely and its return value 252 * can only be used to check whether or not the link is present. In that case, 253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 254 * flags can be used to indicate to the driver core when the link can be safely 255 * deleted. Namely, setting one of them in @flags indicates to the driver core 256 * that the link is not going to be used (by the given caller of this function) 257 * after unbinding the consumer or supplier driver, respectively, from its 258 * device, so the link can be deleted at that point. If none of them is set, 259 * the link will be maintained until one of the devices pointed to by it (either 260 * the consumer or the supplier) is unregistered. 261 * 262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 265 * be used to request the driver core to automaticall probe for a consmer 266 * driver after successfully binding a driver to the supplier device. 267 * 268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 270 * the same time is invalid and will cause NULL to be returned upfront. 271 * However, if a device link between the given @consumer and @supplier pair 272 * exists already when this function is called for them, the existing link will 273 * be returned regardless of its current type and status (the link's flags may 274 * be modified then). The caller of this function is then expected to treat 275 * the link as though it has just been created, so (in particular) if 276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 277 * explicitly when not needed any more (as stated above). 278 * 279 * A side effect of the link creation is re-ordering of dpm_list and the 280 * devices_kset list by moving the consumer device and all devices depending 281 * on it to the ends of these lists (that does not happen to devices that have 282 * not been registered when this function is called). 283 * 284 * The supplier device is required to be registered when this function is called 285 * and NULL will be returned if that is not the case. The consumer device need 286 * not be registered, however. 287 */ 288 struct device_link *device_link_add(struct device *consumer, 289 struct device *supplier, u32 flags) 290 { 291 struct device_link *link; 292 293 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 294 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 295 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 296 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 297 DL_FLAG_AUTOREMOVE_SUPPLIER))) 298 return NULL; 299 300 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 301 if (pm_runtime_get_sync(supplier) < 0) { 302 pm_runtime_put_noidle(supplier); 303 return NULL; 304 } 305 } 306 307 if (!(flags & DL_FLAG_STATELESS)) 308 flags |= DL_FLAG_MANAGED; 309 310 device_links_write_lock(); 311 device_pm_lock(); 312 313 /* 314 * If the supplier has not been fully registered yet or there is a 315 * reverse dependency between the consumer and the supplier already in 316 * the graph, return NULL. 317 */ 318 if (!device_pm_initialized(supplier) 319 || device_is_dependent(consumer, supplier)) { 320 link = NULL; 321 goto out; 322 } 323 324 /* 325 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 326 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 327 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 328 */ 329 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 330 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 331 332 list_for_each_entry(link, &supplier->links.consumers, s_node) { 333 if (link->consumer != consumer) 334 continue; 335 336 if (flags & DL_FLAG_PM_RUNTIME) { 337 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 338 pm_runtime_new_link(consumer); 339 link->flags |= DL_FLAG_PM_RUNTIME; 340 } 341 if (flags & DL_FLAG_RPM_ACTIVE) 342 refcount_inc(&link->rpm_active); 343 } 344 345 if (flags & DL_FLAG_STATELESS) { 346 link->flags |= DL_FLAG_STATELESS; 347 kref_get(&link->kref); 348 goto out; 349 } 350 351 /* 352 * If the life time of the link following from the new flags is 353 * longer than indicated by the flags of the existing link, 354 * update the existing link to stay around longer. 355 */ 356 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 357 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 358 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 359 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 360 } 361 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 362 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 363 DL_FLAG_AUTOREMOVE_SUPPLIER); 364 } 365 if (!(link->flags & DL_FLAG_MANAGED)) { 366 kref_get(&link->kref); 367 link->flags |= DL_FLAG_MANAGED; 368 device_link_init_status(link, consumer, supplier); 369 } 370 goto out; 371 } 372 373 link = kzalloc(sizeof(*link), GFP_KERNEL); 374 if (!link) 375 goto out; 376 377 refcount_set(&link->rpm_active, 1); 378 379 if (flags & DL_FLAG_PM_RUNTIME) { 380 if (flags & DL_FLAG_RPM_ACTIVE) 381 refcount_inc(&link->rpm_active); 382 383 pm_runtime_new_link(consumer); 384 } 385 386 get_device(supplier); 387 link->supplier = supplier; 388 INIT_LIST_HEAD(&link->s_node); 389 get_device(consumer); 390 link->consumer = consumer; 391 INIT_LIST_HEAD(&link->c_node); 392 link->flags = flags; 393 kref_init(&link->kref); 394 395 /* Determine the initial link state. */ 396 if (flags & DL_FLAG_STATELESS) 397 link->status = DL_STATE_NONE; 398 else 399 device_link_init_status(link, consumer, supplier); 400 401 /* 402 * Some callers expect the link creation during consumer driver probe to 403 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 404 */ 405 if (link->status == DL_STATE_CONSUMER_PROBE && 406 flags & DL_FLAG_PM_RUNTIME) 407 pm_runtime_resume(supplier); 408 409 /* 410 * Move the consumer and all of the devices depending on it to the end 411 * of dpm_list and the devices_kset list. 412 * 413 * It is necessary to hold dpm_list locked throughout all that or else 414 * we may end up suspending with a wrong ordering of it. 415 */ 416 device_reorder_to_tail(consumer, NULL); 417 418 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 419 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 420 421 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 422 423 out: 424 device_pm_unlock(); 425 device_links_write_unlock(); 426 427 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 428 pm_runtime_put(supplier); 429 430 return link; 431 } 432 EXPORT_SYMBOL_GPL(device_link_add); 433 434 static void device_link_free(struct device_link *link) 435 { 436 while (refcount_dec_not_one(&link->rpm_active)) 437 pm_runtime_put(link->supplier); 438 439 put_device(link->consumer); 440 put_device(link->supplier); 441 kfree(link); 442 } 443 444 #ifdef CONFIG_SRCU 445 static void __device_link_free_srcu(struct rcu_head *rhead) 446 { 447 device_link_free(container_of(rhead, struct device_link, rcu_head)); 448 } 449 450 static void __device_link_del(struct kref *kref) 451 { 452 struct device_link *link = container_of(kref, struct device_link, kref); 453 454 dev_dbg(link->consumer, "Dropping the link to %s\n", 455 dev_name(link->supplier)); 456 457 if (link->flags & DL_FLAG_PM_RUNTIME) 458 pm_runtime_drop_link(link->consumer); 459 460 list_del_rcu(&link->s_node); 461 list_del_rcu(&link->c_node); 462 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 463 } 464 #else /* !CONFIG_SRCU */ 465 static void __device_link_del(struct kref *kref) 466 { 467 struct device_link *link = container_of(kref, struct device_link, kref); 468 469 dev_info(link->consumer, "Dropping the link to %s\n", 470 dev_name(link->supplier)); 471 472 if (link->flags & DL_FLAG_PM_RUNTIME) 473 pm_runtime_drop_link(link->consumer); 474 475 list_del(&link->s_node); 476 list_del(&link->c_node); 477 device_link_free(link); 478 } 479 #endif /* !CONFIG_SRCU */ 480 481 static void device_link_put_kref(struct device_link *link) 482 { 483 if (link->flags & DL_FLAG_STATELESS) 484 kref_put(&link->kref, __device_link_del); 485 else 486 WARN(1, "Unable to drop a managed device link reference\n"); 487 } 488 489 /** 490 * device_link_del - Delete a stateless link between two devices. 491 * @link: Device link to delete. 492 * 493 * The caller must ensure proper synchronization of this function with runtime 494 * PM. If the link was added multiple times, it needs to be deleted as often. 495 * Care is required for hotplugged devices: Their links are purged on removal 496 * and calling device_link_del() is then no longer allowed. 497 */ 498 void device_link_del(struct device_link *link) 499 { 500 device_links_write_lock(); 501 device_pm_lock(); 502 device_link_put_kref(link); 503 device_pm_unlock(); 504 device_links_write_unlock(); 505 } 506 EXPORT_SYMBOL_GPL(device_link_del); 507 508 /** 509 * device_link_remove - Delete a stateless link between two devices. 510 * @consumer: Consumer end of the link. 511 * @supplier: Supplier end of the link. 512 * 513 * The caller must ensure proper synchronization of this function with runtime 514 * PM. 515 */ 516 void device_link_remove(void *consumer, struct device *supplier) 517 { 518 struct device_link *link; 519 520 if (WARN_ON(consumer == supplier)) 521 return; 522 523 device_links_write_lock(); 524 device_pm_lock(); 525 526 list_for_each_entry(link, &supplier->links.consumers, s_node) { 527 if (link->consumer == consumer) { 528 device_link_put_kref(link); 529 break; 530 } 531 } 532 533 device_pm_unlock(); 534 device_links_write_unlock(); 535 } 536 EXPORT_SYMBOL_GPL(device_link_remove); 537 538 static void device_links_missing_supplier(struct device *dev) 539 { 540 struct device_link *link; 541 542 list_for_each_entry(link, &dev->links.suppliers, c_node) 543 if (link->status == DL_STATE_CONSUMER_PROBE) 544 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 545 } 546 547 /** 548 * device_links_check_suppliers - Check presence of supplier drivers. 549 * @dev: Consumer device. 550 * 551 * Check links from this device to any suppliers. Walk the list of the device's 552 * links to suppliers and see if all of them are available. If not, simply 553 * return -EPROBE_DEFER. 554 * 555 * We need to guarantee that the supplier will not go away after the check has 556 * been positive here. It only can go away in __device_release_driver() and 557 * that function checks the device's links to consumers. This means we need to 558 * mark the link as "consumer probe in progress" to make the supplier removal 559 * wait for us to complete (or bad things may happen). 560 * 561 * Links without the DL_FLAG_MANAGED flag set are ignored. 562 */ 563 int device_links_check_suppliers(struct device *dev) 564 { 565 struct device_link *link; 566 int ret = 0; 567 568 device_links_write_lock(); 569 570 list_for_each_entry(link, &dev->links.suppliers, c_node) { 571 if (!(link->flags & DL_FLAG_MANAGED)) 572 continue; 573 574 if (link->status != DL_STATE_AVAILABLE) { 575 device_links_missing_supplier(dev); 576 ret = -EPROBE_DEFER; 577 break; 578 } 579 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 580 } 581 dev->links.status = DL_DEV_PROBING; 582 583 device_links_write_unlock(); 584 return ret; 585 } 586 587 /** 588 * device_links_driver_bound - Update device links after probing its driver. 589 * @dev: Device to update the links for. 590 * 591 * The probe has been successful, so update links from this device to any 592 * consumers by changing their status to "available". 593 * 594 * Also change the status of @dev's links to suppliers to "active". 595 * 596 * Links without the DL_FLAG_MANAGED flag set are ignored. 597 */ 598 void device_links_driver_bound(struct device *dev) 599 { 600 struct device_link *link; 601 602 device_links_write_lock(); 603 604 list_for_each_entry(link, &dev->links.consumers, s_node) { 605 if (!(link->flags & DL_FLAG_MANAGED)) 606 continue; 607 608 /* 609 * Links created during consumer probe may be in the "consumer 610 * probe" state to start with if the supplier is still probing 611 * when they are created and they may become "active" if the 612 * consumer probe returns first. Skip them here. 613 */ 614 if (link->status == DL_STATE_CONSUMER_PROBE || 615 link->status == DL_STATE_ACTIVE) 616 continue; 617 618 WARN_ON(link->status != DL_STATE_DORMANT); 619 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 620 621 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 622 driver_deferred_probe_add(link->consumer); 623 } 624 625 list_for_each_entry(link, &dev->links.suppliers, c_node) { 626 if (!(link->flags & DL_FLAG_MANAGED)) 627 continue; 628 629 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 630 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 631 } 632 633 dev->links.status = DL_DEV_DRIVER_BOUND; 634 635 device_links_write_unlock(); 636 } 637 638 static void device_link_drop_managed(struct device_link *link) 639 { 640 link->flags &= ~DL_FLAG_MANAGED; 641 WRITE_ONCE(link->status, DL_STATE_NONE); 642 kref_put(&link->kref, __device_link_del); 643 } 644 645 /** 646 * __device_links_no_driver - Update links of a device without a driver. 647 * @dev: Device without a drvier. 648 * 649 * Delete all non-persistent links from this device to any suppliers. 650 * 651 * Persistent links stay around, but their status is changed to "available", 652 * unless they already are in the "supplier unbind in progress" state in which 653 * case they need not be updated. 654 * 655 * Links without the DL_FLAG_MANAGED flag set are ignored. 656 */ 657 static void __device_links_no_driver(struct device *dev) 658 { 659 struct device_link *link, *ln; 660 661 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 662 if (!(link->flags & DL_FLAG_MANAGED)) 663 continue; 664 665 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 666 device_link_drop_managed(link); 667 else if (link->status == DL_STATE_CONSUMER_PROBE || 668 link->status == DL_STATE_ACTIVE) 669 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 670 } 671 672 dev->links.status = DL_DEV_NO_DRIVER; 673 } 674 675 /** 676 * device_links_no_driver - Update links after failing driver probe. 677 * @dev: Device whose driver has just failed to probe. 678 * 679 * Clean up leftover links to consumers for @dev and invoke 680 * %__device_links_no_driver() to update links to suppliers for it as 681 * appropriate. 682 * 683 * Links without the DL_FLAG_MANAGED flag set are ignored. 684 */ 685 void device_links_no_driver(struct device *dev) 686 { 687 struct device_link *link; 688 689 device_links_write_lock(); 690 691 list_for_each_entry(link, &dev->links.consumers, s_node) { 692 if (!(link->flags & DL_FLAG_MANAGED)) 693 continue; 694 695 /* 696 * The probe has failed, so if the status of the link is 697 * "consumer probe" or "active", it must have been added by 698 * a probing consumer while this device was still probing. 699 * Change its state to "dormant", as it represents a valid 700 * relationship, but it is not functionally meaningful. 701 */ 702 if (link->status == DL_STATE_CONSUMER_PROBE || 703 link->status == DL_STATE_ACTIVE) 704 WRITE_ONCE(link->status, DL_STATE_DORMANT); 705 } 706 707 __device_links_no_driver(dev); 708 709 device_links_write_unlock(); 710 } 711 712 /** 713 * device_links_driver_cleanup - Update links after driver removal. 714 * @dev: Device whose driver has just gone away. 715 * 716 * Update links to consumers for @dev by changing their status to "dormant" and 717 * invoke %__device_links_no_driver() to update links to suppliers for it as 718 * appropriate. 719 * 720 * Links without the DL_FLAG_MANAGED flag set are ignored. 721 */ 722 void device_links_driver_cleanup(struct device *dev) 723 { 724 struct device_link *link, *ln; 725 726 device_links_write_lock(); 727 728 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 729 if (!(link->flags & DL_FLAG_MANAGED)) 730 continue; 731 732 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 733 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 734 735 /* 736 * autoremove the links between this @dev and its consumer 737 * devices that are not active, i.e. where the link state 738 * has moved to DL_STATE_SUPPLIER_UNBIND. 739 */ 740 if (link->status == DL_STATE_SUPPLIER_UNBIND && 741 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 742 device_link_drop_managed(link); 743 744 WRITE_ONCE(link->status, DL_STATE_DORMANT); 745 } 746 747 __device_links_no_driver(dev); 748 749 device_links_write_unlock(); 750 } 751 752 /** 753 * device_links_busy - Check if there are any busy links to consumers. 754 * @dev: Device to check. 755 * 756 * Check each consumer of the device and return 'true' if its link's status 757 * is one of "consumer probe" or "active" (meaning that the given consumer is 758 * probing right now or its driver is present). Otherwise, change the link 759 * state to "supplier unbind" to prevent the consumer from being probed 760 * successfully going forward. 761 * 762 * Return 'false' if there are no probing or active consumers. 763 * 764 * Links without the DL_FLAG_MANAGED flag set are ignored. 765 */ 766 bool device_links_busy(struct device *dev) 767 { 768 struct device_link *link; 769 bool ret = false; 770 771 device_links_write_lock(); 772 773 list_for_each_entry(link, &dev->links.consumers, s_node) { 774 if (!(link->flags & DL_FLAG_MANAGED)) 775 continue; 776 777 if (link->status == DL_STATE_CONSUMER_PROBE 778 || link->status == DL_STATE_ACTIVE) { 779 ret = true; 780 break; 781 } 782 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 783 } 784 785 dev->links.status = DL_DEV_UNBINDING; 786 787 device_links_write_unlock(); 788 return ret; 789 } 790 791 /** 792 * device_links_unbind_consumers - Force unbind consumers of the given device. 793 * @dev: Device to unbind the consumers of. 794 * 795 * Walk the list of links to consumers for @dev and if any of them is in the 796 * "consumer probe" state, wait for all device probes in progress to complete 797 * and start over. 798 * 799 * If that's not the case, change the status of the link to "supplier unbind" 800 * and check if the link was in the "active" state. If so, force the consumer 801 * driver to unbind and start over (the consumer will not re-probe as we have 802 * changed the state of the link already). 803 * 804 * Links without the DL_FLAG_MANAGED flag set are ignored. 805 */ 806 void device_links_unbind_consumers(struct device *dev) 807 { 808 struct device_link *link; 809 810 start: 811 device_links_write_lock(); 812 813 list_for_each_entry(link, &dev->links.consumers, s_node) { 814 enum device_link_state status; 815 816 if (!(link->flags & DL_FLAG_MANAGED)) 817 continue; 818 819 status = link->status; 820 if (status == DL_STATE_CONSUMER_PROBE) { 821 device_links_write_unlock(); 822 823 wait_for_device_probe(); 824 goto start; 825 } 826 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 827 if (status == DL_STATE_ACTIVE) { 828 struct device *consumer = link->consumer; 829 830 get_device(consumer); 831 832 device_links_write_unlock(); 833 834 device_release_driver_internal(consumer, NULL, 835 consumer->parent); 836 put_device(consumer); 837 goto start; 838 } 839 } 840 841 device_links_write_unlock(); 842 } 843 844 /** 845 * device_links_purge - Delete existing links to other devices. 846 * @dev: Target device. 847 */ 848 static void device_links_purge(struct device *dev) 849 { 850 struct device_link *link, *ln; 851 852 /* 853 * Delete all of the remaining links from this device to any other 854 * devices (either consumers or suppliers). 855 */ 856 device_links_write_lock(); 857 858 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 859 WARN_ON(link->status == DL_STATE_ACTIVE); 860 __device_link_del(&link->kref); 861 } 862 863 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 864 WARN_ON(link->status != DL_STATE_DORMANT && 865 link->status != DL_STATE_NONE); 866 __device_link_del(&link->kref); 867 } 868 869 device_links_write_unlock(); 870 } 871 872 /* Device links support end. */ 873 874 int (*platform_notify)(struct device *dev) = NULL; 875 int (*platform_notify_remove)(struct device *dev) = NULL; 876 static struct kobject *dev_kobj; 877 struct kobject *sysfs_dev_char_kobj; 878 struct kobject *sysfs_dev_block_kobj; 879 880 static DEFINE_MUTEX(device_hotplug_lock); 881 882 void lock_device_hotplug(void) 883 { 884 mutex_lock(&device_hotplug_lock); 885 } 886 887 void unlock_device_hotplug(void) 888 { 889 mutex_unlock(&device_hotplug_lock); 890 } 891 892 int lock_device_hotplug_sysfs(void) 893 { 894 if (mutex_trylock(&device_hotplug_lock)) 895 return 0; 896 897 /* Avoid busy looping (5 ms of sleep should do). */ 898 msleep(5); 899 return restart_syscall(); 900 } 901 902 #ifdef CONFIG_BLOCK 903 static inline int device_is_not_partition(struct device *dev) 904 { 905 return !(dev->type == &part_type); 906 } 907 #else 908 static inline int device_is_not_partition(struct device *dev) 909 { 910 return 1; 911 } 912 #endif 913 914 static int 915 device_platform_notify(struct device *dev, enum kobject_action action) 916 { 917 int ret; 918 919 ret = acpi_platform_notify(dev, action); 920 if (ret) 921 return ret; 922 923 ret = software_node_notify(dev, action); 924 if (ret) 925 return ret; 926 927 if (platform_notify && action == KOBJ_ADD) 928 platform_notify(dev); 929 else if (platform_notify_remove && action == KOBJ_REMOVE) 930 platform_notify_remove(dev); 931 return 0; 932 } 933 934 /** 935 * dev_driver_string - Return a device's driver name, if at all possible 936 * @dev: struct device to get the name of 937 * 938 * Will return the device's driver's name if it is bound to a device. If 939 * the device is not bound to a driver, it will return the name of the bus 940 * it is attached to. If it is not attached to a bus either, an empty 941 * string will be returned. 942 */ 943 const char *dev_driver_string(const struct device *dev) 944 { 945 struct device_driver *drv; 946 947 /* dev->driver can change to NULL underneath us because of unbinding, 948 * so be careful about accessing it. dev->bus and dev->class should 949 * never change once they are set, so they don't need special care. 950 */ 951 drv = READ_ONCE(dev->driver); 952 return drv ? drv->name : 953 (dev->bus ? dev->bus->name : 954 (dev->class ? dev->class->name : "")); 955 } 956 EXPORT_SYMBOL(dev_driver_string); 957 958 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 959 960 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 961 char *buf) 962 { 963 struct device_attribute *dev_attr = to_dev_attr(attr); 964 struct device *dev = kobj_to_dev(kobj); 965 ssize_t ret = -EIO; 966 967 if (dev_attr->show) 968 ret = dev_attr->show(dev, dev_attr, buf); 969 if (ret >= (ssize_t)PAGE_SIZE) { 970 printk("dev_attr_show: %pS returned bad count\n", 971 dev_attr->show); 972 } 973 return ret; 974 } 975 976 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 977 const char *buf, size_t count) 978 { 979 struct device_attribute *dev_attr = to_dev_attr(attr); 980 struct device *dev = kobj_to_dev(kobj); 981 ssize_t ret = -EIO; 982 983 if (dev_attr->store) 984 ret = dev_attr->store(dev, dev_attr, buf, count); 985 return ret; 986 } 987 988 static const struct sysfs_ops dev_sysfs_ops = { 989 .show = dev_attr_show, 990 .store = dev_attr_store, 991 }; 992 993 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 994 995 ssize_t device_store_ulong(struct device *dev, 996 struct device_attribute *attr, 997 const char *buf, size_t size) 998 { 999 struct dev_ext_attribute *ea = to_ext_attr(attr); 1000 int ret; 1001 unsigned long new; 1002 1003 ret = kstrtoul(buf, 0, &new); 1004 if (ret) 1005 return ret; 1006 *(unsigned long *)(ea->var) = new; 1007 /* Always return full write size even if we didn't consume all */ 1008 return size; 1009 } 1010 EXPORT_SYMBOL_GPL(device_store_ulong); 1011 1012 ssize_t device_show_ulong(struct device *dev, 1013 struct device_attribute *attr, 1014 char *buf) 1015 { 1016 struct dev_ext_attribute *ea = to_ext_attr(attr); 1017 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1018 } 1019 EXPORT_SYMBOL_GPL(device_show_ulong); 1020 1021 ssize_t device_store_int(struct device *dev, 1022 struct device_attribute *attr, 1023 const char *buf, size_t size) 1024 { 1025 struct dev_ext_attribute *ea = to_ext_attr(attr); 1026 int ret; 1027 long new; 1028 1029 ret = kstrtol(buf, 0, &new); 1030 if (ret) 1031 return ret; 1032 1033 if (new > INT_MAX || new < INT_MIN) 1034 return -EINVAL; 1035 *(int *)(ea->var) = new; 1036 /* Always return full write size even if we didn't consume all */ 1037 return size; 1038 } 1039 EXPORT_SYMBOL_GPL(device_store_int); 1040 1041 ssize_t device_show_int(struct device *dev, 1042 struct device_attribute *attr, 1043 char *buf) 1044 { 1045 struct dev_ext_attribute *ea = to_ext_attr(attr); 1046 1047 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1048 } 1049 EXPORT_SYMBOL_GPL(device_show_int); 1050 1051 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1052 const char *buf, size_t size) 1053 { 1054 struct dev_ext_attribute *ea = to_ext_attr(attr); 1055 1056 if (strtobool(buf, ea->var) < 0) 1057 return -EINVAL; 1058 1059 return size; 1060 } 1061 EXPORT_SYMBOL_GPL(device_store_bool); 1062 1063 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1064 char *buf) 1065 { 1066 struct dev_ext_attribute *ea = to_ext_attr(attr); 1067 1068 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1069 } 1070 EXPORT_SYMBOL_GPL(device_show_bool); 1071 1072 /** 1073 * device_release - free device structure. 1074 * @kobj: device's kobject. 1075 * 1076 * This is called once the reference count for the object 1077 * reaches 0. We forward the call to the device's release 1078 * method, which should handle actually freeing the structure. 1079 */ 1080 static void device_release(struct kobject *kobj) 1081 { 1082 struct device *dev = kobj_to_dev(kobj); 1083 struct device_private *p = dev->p; 1084 1085 /* 1086 * Some platform devices are driven without driver attached 1087 * and managed resources may have been acquired. Make sure 1088 * all resources are released. 1089 * 1090 * Drivers still can add resources into device after device 1091 * is deleted but alive, so release devres here to avoid 1092 * possible memory leak. 1093 */ 1094 devres_release_all(dev); 1095 1096 if (dev->release) 1097 dev->release(dev); 1098 else if (dev->type && dev->type->release) 1099 dev->type->release(dev); 1100 else if (dev->class && dev->class->dev_release) 1101 dev->class->dev_release(dev); 1102 else 1103 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n", 1104 dev_name(dev)); 1105 kfree(p); 1106 } 1107 1108 static const void *device_namespace(struct kobject *kobj) 1109 { 1110 struct device *dev = kobj_to_dev(kobj); 1111 const void *ns = NULL; 1112 1113 if (dev->class && dev->class->ns_type) 1114 ns = dev->class->namespace(dev); 1115 1116 return ns; 1117 } 1118 1119 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1120 { 1121 struct device *dev = kobj_to_dev(kobj); 1122 1123 if (dev->class && dev->class->get_ownership) 1124 dev->class->get_ownership(dev, uid, gid); 1125 } 1126 1127 static struct kobj_type device_ktype = { 1128 .release = device_release, 1129 .sysfs_ops = &dev_sysfs_ops, 1130 .namespace = device_namespace, 1131 .get_ownership = device_get_ownership, 1132 }; 1133 1134 1135 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1136 { 1137 struct kobj_type *ktype = get_ktype(kobj); 1138 1139 if (ktype == &device_ktype) { 1140 struct device *dev = kobj_to_dev(kobj); 1141 if (dev->bus) 1142 return 1; 1143 if (dev->class) 1144 return 1; 1145 } 1146 return 0; 1147 } 1148 1149 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1150 { 1151 struct device *dev = kobj_to_dev(kobj); 1152 1153 if (dev->bus) 1154 return dev->bus->name; 1155 if (dev->class) 1156 return dev->class->name; 1157 return NULL; 1158 } 1159 1160 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1161 struct kobj_uevent_env *env) 1162 { 1163 struct device *dev = kobj_to_dev(kobj); 1164 int retval = 0; 1165 1166 /* add device node properties if present */ 1167 if (MAJOR(dev->devt)) { 1168 const char *tmp; 1169 const char *name; 1170 umode_t mode = 0; 1171 kuid_t uid = GLOBAL_ROOT_UID; 1172 kgid_t gid = GLOBAL_ROOT_GID; 1173 1174 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1175 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1176 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1177 if (name) { 1178 add_uevent_var(env, "DEVNAME=%s", name); 1179 if (mode) 1180 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1181 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1182 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1183 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1184 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1185 kfree(tmp); 1186 } 1187 } 1188 1189 if (dev->type && dev->type->name) 1190 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1191 1192 if (dev->driver) 1193 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1194 1195 /* Add common DT information about the device */ 1196 of_device_uevent(dev, env); 1197 1198 /* have the bus specific function add its stuff */ 1199 if (dev->bus && dev->bus->uevent) { 1200 retval = dev->bus->uevent(dev, env); 1201 if (retval) 1202 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1203 dev_name(dev), __func__, retval); 1204 } 1205 1206 /* have the class specific function add its stuff */ 1207 if (dev->class && dev->class->dev_uevent) { 1208 retval = dev->class->dev_uevent(dev, env); 1209 if (retval) 1210 pr_debug("device: '%s': %s: class uevent() " 1211 "returned %d\n", dev_name(dev), 1212 __func__, retval); 1213 } 1214 1215 /* have the device type specific function add its stuff */ 1216 if (dev->type && dev->type->uevent) { 1217 retval = dev->type->uevent(dev, env); 1218 if (retval) 1219 pr_debug("device: '%s': %s: dev_type uevent() " 1220 "returned %d\n", dev_name(dev), 1221 __func__, retval); 1222 } 1223 1224 return retval; 1225 } 1226 1227 static const struct kset_uevent_ops device_uevent_ops = { 1228 .filter = dev_uevent_filter, 1229 .name = dev_uevent_name, 1230 .uevent = dev_uevent, 1231 }; 1232 1233 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1234 char *buf) 1235 { 1236 struct kobject *top_kobj; 1237 struct kset *kset; 1238 struct kobj_uevent_env *env = NULL; 1239 int i; 1240 size_t count = 0; 1241 int retval; 1242 1243 /* search the kset, the device belongs to */ 1244 top_kobj = &dev->kobj; 1245 while (!top_kobj->kset && top_kobj->parent) 1246 top_kobj = top_kobj->parent; 1247 if (!top_kobj->kset) 1248 goto out; 1249 1250 kset = top_kobj->kset; 1251 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1252 goto out; 1253 1254 /* respect filter */ 1255 if (kset->uevent_ops && kset->uevent_ops->filter) 1256 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1257 goto out; 1258 1259 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1260 if (!env) 1261 return -ENOMEM; 1262 1263 /* let the kset specific function add its keys */ 1264 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1265 if (retval) 1266 goto out; 1267 1268 /* copy keys to file */ 1269 for (i = 0; i < env->envp_idx; i++) 1270 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1271 out: 1272 kfree(env); 1273 return count; 1274 } 1275 1276 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1277 const char *buf, size_t count) 1278 { 1279 int rc; 1280 1281 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1282 1283 if (rc) { 1284 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1285 return rc; 1286 } 1287 1288 return count; 1289 } 1290 static DEVICE_ATTR_RW(uevent); 1291 1292 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1293 char *buf) 1294 { 1295 bool val; 1296 1297 device_lock(dev); 1298 val = !dev->offline; 1299 device_unlock(dev); 1300 return sprintf(buf, "%u\n", val); 1301 } 1302 1303 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1304 const char *buf, size_t count) 1305 { 1306 bool val; 1307 int ret; 1308 1309 ret = strtobool(buf, &val); 1310 if (ret < 0) 1311 return ret; 1312 1313 ret = lock_device_hotplug_sysfs(); 1314 if (ret) 1315 return ret; 1316 1317 ret = val ? device_online(dev) : device_offline(dev); 1318 unlock_device_hotplug(); 1319 return ret < 0 ? ret : count; 1320 } 1321 static DEVICE_ATTR_RW(online); 1322 1323 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1324 { 1325 return sysfs_create_groups(&dev->kobj, groups); 1326 } 1327 EXPORT_SYMBOL_GPL(device_add_groups); 1328 1329 void device_remove_groups(struct device *dev, 1330 const struct attribute_group **groups) 1331 { 1332 sysfs_remove_groups(&dev->kobj, groups); 1333 } 1334 EXPORT_SYMBOL_GPL(device_remove_groups); 1335 1336 union device_attr_group_devres { 1337 const struct attribute_group *group; 1338 const struct attribute_group **groups; 1339 }; 1340 1341 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1342 { 1343 return ((union device_attr_group_devres *)res)->group == data; 1344 } 1345 1346 static void devm_attr_group_remove(struct device *dev, void *res) 1347 { 1348 union device_attr_group_devres *devres = res; 1349 const struct attribute_group *group = devres->group; 1350 1351 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1352 sysfs_remove_group(&dev->kobj, group); 1353 } 1354 1355 static void devm_attr_groups_remove(struct device *dev, void *res) 1356 { 1357 union device_attr_group_devres *devres = res; 1358 const struct attribute_group **groups = devres->groups; 1359 1360 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1361 sysfs_remove_groups(&dev->kobj, groups); 1362 } 1363 1364 /** 1365 * devm_device_add_group - given a device, create a managed attribute group 1366 * @dev: The device to create the group for 1367 * @grp: The attribute group to create 1368 * 1369 * This function creates a group for the first time. It will explicitly 1370 * warn and error if any of the attribute files being created already exist. 1371 * 1372 * Returns 0 on success or error code on failure. 1373 */ 1374 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1375 { 1376 union device_attr_group_devres *devres; 1377 int error; 1378 1379 devres = devres_alloc(devm_attr_group_remove, 1380 sizeof(*devres), GFP_KERNEL); 1381 if (!devres) 1382 return -ENOMEM; 1383 1384 error = sysfs_create_group(&dev->kobj, grp); 1385 if (error) { 1386 devres_free(devres); 1387 return error; 1388 } 1389 1390 devres->group = grp; 1391 devres_add(dev, devres); 1392 return 0; 1393 } 1394 EXPORT_SYMBOL_GPL(devm_device_add_group); 1395 1396 /** 1397 * devm_device_remove_group: remove a managed group from a device 1398 * @dev: device to remove the group from 1399 * @grp: group to remove 1400 * 1401 * This function removes a group of attributes from a device. The attributes 1402 * previously have to have been created for this group, otherwise it will fail. 1403 */ 1404 void devm_device_remove_group(struct device *dev, 1405 const struct attribute_group *grp) 1406 { 1407 WARN_ON(devres_release(dev, devm_attr_group_remove, 1408 devm_attr_group_match, 1409 /* cast away const */ (void *)grp)); 1410 } 1411 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1412 1413 /** 1414 * devm_device_add_groups - create a bunch of managed attribute groups 1415 * @dev: The device to create the group for 1416 * @groups: The attribute groups to create, NULL terminated 1417 * 1418 * This function creates a bunch of managed attribute groups. If an error 1419 * occurs when creating a group, all previously created groups will be 1420 * removed, unwinding everything back to the original state when this 1421 * function was called. It will explicitly warn and error if any of the 1422 * attribute files being created already exist. 1423 * 1424 * Returns 0 on success or error code from sysfs_create_group on failure. 1425 */ 1426 int devm_device_add_groups(struct device *dev, 1427 const struct attribute_group **groups) 1428 { 1429 union device_attr_group_devres *devres; 1430 int error; 1431 1432 devres = devres_alloc(devm_attr_groups_remove, 1433 sizeof(*devres), GFP_KERNEL); 1434 if (!devres) 1435 return -ENOMEM; 1436 1437 error = sysfs_create_groups(&dev->kobj, groups); 1438 if (error) { 1439 devres_free(devres); 1440 return error; 1441 } 1442 1443 devres->groups = groups; 1444 devres_add(dev, devres); 1445 return 0; 1446 } 1447 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1448 1449 /** 1450 * devm_device_remove_groups - remove a list of managed groups 1451 * 1452 * @dev: The device for the groups to be removed from 1453 * @groups: NULL terminated list of groups to be removed 1454 * 1455 * If groups is not NULL, remove the specified groups from the device. 1456 */ 1457 void devm_device_remove_groups(struct device *dev, 1458 const struct attribute_group **groups) 1459 { 1460 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1461 devm_attr_group_match, 1462 /* cast away const */ (void *)groups)); 1463 } 1464 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1465 1466 static int device_add_attrs(struct device *dev) 1467 { 1468 struct class *class = dev->class; 1469 const struct device_type *type = dev->type; 1470 int error; 1471 1472 if (class) { 1473 error = device_add_groups(dev, class->dev_groups); 1474 if (error) 1475 return error; 1476 } 1477 1478 if (type) { 1479 error = device_add_groups(dev, type->groups); 1480 if (error) 1481 goto err_remove_class_groups; 1482 } 1483 1484 error = device_add_groups(dev, dev->groups); 1485 if (error) 1486 goto err_remove_type_groups; 1487 1488 if (device_supports_offline(dev) && !dev->offline_disabled) { 1489 error = device_create_file(dev, &dev_attr_online); 1490 if (error) 1491 goto err_remove_dev_groups; 1492 } 1493 1494 return 0; 1495 1496 err_remove_dev_groups: 1497 device_remove_groups(dev, dev->groups); 1498 err_remove_type_groups: 1499 if (type) 1500 device_remove_groups(dev, type->groups); 1501 err_remove_class_groups: 1502 if (class) 1503 device_remove_groups(dev, class->dev_groups); 1504 1505 return error; 1506 } 1507 1508 static void device_remove_attrs(struct device *dev) 1509 { 1510 struct class *class = dev->class; 1511 const struct device_type *type = dev->type; 1512 1513 device_remove_file(dev, &dev_attr_online); 1514 device_remove_groups(dev, dev->groups); 1515 1516 if (type) 1517 device_remove_groups(dev, type->groups); 1518 1519 if (class) 1520 device_remove_groups(dev, class->dev_groups); 1521 } 1522 1523 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1524 char *buf) 1525 { 1526 return print_dev_t(buf, dev->devt); 1527 } 1528 static DEVICE_ATTR_RO(dev); 1529 1530 /* /sys/devices/ */ 1531 struct kset *devices_kset; 1532 1533 /** 1534 * devices_kset_move_before - Move device in the devices_kset's list. 1535 * @deva: Device to move. 1536 * @devb: Device @deva should come before. 1537 */ 1538 static void devices_kset_move_before(struct device *deva, struct device *devb) 1539 { 1540 if (!devices_kset) 1541 return; 1542 pr_debug("devices_kset: Moving %s before %s\n", 1543 dev_name(deva), dev_name(devb)); 1544 spin_lock(&devices_kset->list_lock); 1545 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1546 spin_unlock(&devices_kset->list_lock); 1547 } 1548 1549 /** 1550 * devices_kset_move_after - Move device in the devices_kset's list. 1551 * @deva: Device to move 1552 * @devb: Device @deva should come after. 1553 */ 1554 static void devices_kset_move_after(struct device *deva, struct device *devb) 1555 { 1556 if (!devices_kset) 1557 return; 1558 pr_debug("devices_kset: Moving %s after %s\n", 1559 dev_name(deva), dev_name(devb)); 1560 spin_lock(&devices_kset->list_lock); 1561 list_move(&deva->kobj.entry, &devb->kobj.entry); 1562 spin_unlock(&devices_kset->list_lock); 1563 } 1564 1565 /** 1566 * devices_kset_move_last - move the device to the end of devices_kset's list. 1567 * @dev: device to move 1568 */ 1569 void devices_kset_move_last(struct device *dev) 1570 { 1571 if (!devices_kset) 1572 return; 1573 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1574 spin_lock(&devices_kset->list_lock); 1575 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1576 spin_unlock(&devices_kset->list_lock); 1577 } 1578 1579 /** 1580 * device_create_file - create sysfs attribute file for device. 1581 * @dev: device. 1582 * @attr: device attribute descriptor. 1583 */ 1584 int device_create_file(struct device *dev, 1585 const struct device_attribute *attr) 1586 { 1587 int error = 0; 1588 1589 if (dev) { 1590 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1591 "Attribute %s: write permission without 'store'\n", 1592 attr->attr.name); 1593 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1594 "Attribute %s: read permission without 'show'\n", 1595 attr->attr.name); 1596 error = sysfs_create_file(&dev->kobj, &attr->attr); 1597 } 1598 1599 return error; 1600 } 1601 EXPORT_SYMBOL_GPL(device_create_file); 1602 1603 /** 1604 * device_remove_file - remove sysfs attribute file. 1605 * @dev: device. 1606 * @attr: device attribute descriptor. 1607 */ 1608 void device_remove_file(struct device *dev, 1609 const struct device_attribute *attr) 1610 { 1611 if (dev) 1612 sysfs_remove_file(&dev->kobj, &attr->attr); 1613 } 1614 EXPORT_SYMBOL_GPL(device_remove_file); 1615 1616 /** 1617 * device_remove_file_self - remove sysfs attribute file from its own method. 1618 * @dev: device. 1619 * @attr: device attribute descriptor. 1620 * 1621 * See kernfs_remove_self() for details. 1622 */ 1623 bool device_remove_file_self(struct device *dev, 1624 const struct device_attribute *attr) 1625 { 1626 if (dev) 1627 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1628 else 1629 return false; 1630 } 1631 EXPORT_SYMBOL_GPL(device_remove_file_self); 1632 1633 /** 1634 * device_create_bin_file - create sysfs binary attribute file for device. 1635 * @dev: device. 1636 * @attr: device binary attribute descriptor. 1637 */ 1638 int device_create_bin_file(struct device *dev, 1639 const struct bin_attribute *attr) 1640 { 1641 int error = -EINVAL; 1642 if (dev) 1643 error = sysfs_create_bin_file(&dev->kobj, attr); 1644 return error; 1645 } 1646 EXPORT_SYMBOL_GPL(device_create_bin_file); 1647 1648 /** 1649 * device_remove_bin_file - remove sysfs binary attribute file 1650 * @dev: device. 1651 * @attr: device binary attribute descriptor. 1652 */ 1653 void device_remove_bin_file(struct device *dev, 1654 const struct bin_attribute *attr) 1655 { 1656 if (dev) 1657 sysfs_remove_bin_file(&dev->kobj, attr); 1658 } 1659 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1660 1661 static void klist_children_get(struct klist_node *n) 1662 { 1663 struct device_private *p = to_device_private_parent(n); 1664 struct device *dev = p->device; 1665 1666 get_device(dev); 1667 } 1668 1669 static void klist_children_put(struct klist_node *n) 1670 { 1671 struct device_private *p = to_device_private_parent(n); 1672 struct device *dev = p->device; 1673 1674 put_device(dev); 1675 } 1676 1677 /** 1678 * device_initialize - init device structure. 1679 * @dev: device. 1680 * 1681 * This prepares the device for use by other layers by initializing 1682 * its fields. 1683 * It is the first half of device_register(), if called by 1684 * that function, though it can also be called separately, so one 1685 * may use @dev's fields. In particular, get_device()/put_device() 1686 * may be used for reference counting of @dev after calling this 1687 * function. 1688 * 1689 * All fields in @dev must be initialized by the caller to 0, except 1690 * for those explicitly set to some other value. The simplest 1691 * approach is to use kzalloc() to allocate the structure containing 1692 * @dev. 1693 * 1694 * NOTE: Use put_device() to give up your reference instead of freeing 1695 * @dev directly once you have called this function. 1696 */ 1697 void device_initialize(struct device *dev) 1698 { 1699 dev->kobj.kset = devices_kset; 1700 kobject_init(&dev->kobj, &device_ktype); 1701 INIT_LIST_HEAD(&dev->dma_pools); 1702 mutex_init(&dev->mutex); 1703 #ifdef CONFIG_PROVE_LOCKING 1704 mutex_init(&dev->lockdep_mutex); 1705 #endif 1706 lockdep_set_novalidate_class(&dev->mutex); 1707 spin_lock_init(&dev->devres_lock); 1708 INIT_LIST_HEAD(&dev->devres_head); 1709 device_pm_init(dev); 1710 set_dev_node(dev, -1); 1711 #ifdef CONFIG_GENERIC_MSI_IRQ 1712 INIT_LIST_HEAD(&dev->msi_list); 1713 #endif 1714 INIT_LIST_HEAD(&dev->links.consumers); 1715 INIT_LIST_HEAD(&dev->links.suppliers); 1716 dev->links.status = DL_DEV_NO_DRIVER; 1717 } 1718 EXPORT_SYMBOL_GPL(device_initialize); 1719 1720 struct kobject *virtual_device_parent(struct device *dev) 1721 { 1722 static struct kobject *virtual_dir = NULL; 1723 1724 if (!virtual_dir) 1725 virtual_dir = kobject_create_and_add("virtual", 1726 &devices_kset->kobj); 1727 1728 return virtual_dir; 1729 } 1730 1731 struct class_dir { 1732 struct kobject kobj; 1733 struct class *class; 1734 }; 1735 1736 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1737 1738 static void class_dir_release(struct kobject *kobj) 1739 { 1740 struct class_dir *dir = to_class_dir(kobj); 1741 kfree(dir); 1742 } 1743 1744 static const 1745 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1746 { 1747 struct class_dir *dir = to_class_dir(kobj); 1748 return dir->class->ns_type; 1749 } 1750 1751 static struct kobj_type class_dir_ktype = { 1752 .release = class_dir_release, 1753 .sysfs_ops = &kobj_sysfs_ops, 1754 .child_ns_type = class_dir_child_ns_type 1755 }; 1756 1757 static struct kobject * 1758 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1759 { 1760 struct class_dir *dir; 1761 int retval; 1762 1763 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1764 if (!dir) 1765 return ERR_PTR(-ENOMEM); 1766 1767 dir->class = class; 1768 kobject_init(&dir->kobj, &class_dir_ktype); 1769 1770 dir->kobj.kset = &class->p->glue_dirs; 1771 1772 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1773 if (retval < 0) { 1774 kobject_put(&dir->kobj); 1775 return ERR_PTR(retval); 1776 } 1777 return &dir->kobj; 1778 } 1779 1780 static DEFINE_MUTEX(gdp_mutex); 1781 1782 static struct kobject *get_device_parent(struct device *dev, 1783 struct device *parent) 1784 { 1785 if (dev->class) { 1786 struct kobject *kobj = NULL; 1787 struct kobject *parent_kobj; 1788 struct kobject *k; 1789 1790 #ifdef CONFIG_BLOCK 1791 /* block disks show up in /sys/block */ 1792 if (sysfs_deprecated && dev->class == &block_class) { 1793 if (parent && parent->class == &block_class) 1794 return &parent->kobj; 1795 return &block_class.p->subsys.kobj; 1796 } 1797 #endif 1798 1799 /* 1800 * If we have no parent, we live in "virtual". 1801 * Class-devices with a non class-device as parent, live 1802 * in a "glue" directory to prevent namespace collisions. 1803 */ 1804 if (parent == NULL) 1805 parent_kobj = virtual_device_parent(dev); 1806 else if (parent->class && !dev->class->ns_type) 1807 return &parent->kobj; 1808 else 1809 parent_kobj = &parent->kobj; 1810 1811 mutex_lock(&gdp_mutex); 1812 1813 /* find our class-directory at the parent and reference it */ 1814 spin_lock(&dev->class->p->glue_dirs.list_lock); 1815 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1816 if (k->parent == parent_kobj) { 1817 kobj = kobject_get(k); 1818 break; 1819 } 1820 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1821 if (kobj) { 1822 mutex_unlock(&gdp_mutex); 1823 return kobj; 1824 } 1825 1826 /* or create a new class-directory at the parent device */ 1827 k = class_dir_create_and_add(dev->class, parent_kobj); 1828 /* do not emit an uevent for this simple "glue" directory */ 1829 mutex_unlock(&gdp_mutex); 1830 return k; 1831 } 1832 1833 /* subsystems can specify a default root directory for their devices */ 1834 if (!parent && dev->bus && dev->bus->dev_root) 1835 return &dev->bus->dev_root->kobj; 1836 1837 if (parent) 1838 return &parent->kobj; 1839 return NULL; 1840 } 1841 1842 static inline bool live_in_glue_dir(struct kobject *kobj, 1843 struct device *dev) 1844 { 1845 if (!kobj || !dev->class || 1846 kobj->kset != &dev->class->p->glue_dirs) 1847 return false; 1848 return true; 1849 } 1850 1851 static inline struct kobject *get_glue_dir(struct device *dev) 1852 { 1853 return dev->kobj.parent; 1854 } 1855 1856 /* 1857 * make sure cleaning up dir as the last step, we need to make 1858 * sure .release handler of kobject is run with holding the 1859 * global lock 1860 */ 1861 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1862 { 1863 unsigned int ref; 1864 1865 /* see if we live in a "glue" directory */ 1866 if (!live_in_glue_dir(glue_dir, dev)) 1867 return; 1868 1869 mutex_lock(&gdp_mutex); 1870 /** 1871 * There is a race condition between removing glue directory 1872 * and adding a new device under the glue directory. 1873 * 1874 * CPU1: CPU2: 1875 * 1876 * device_add() 1877 * get_device_parent() 1878 * class_dir_create_and_add() 1879 * kobject_add_internal() 1880 * create_dir() // create glue_dir 1881 * 1882 * device_add() 1883 * get_device_parent() 1884 * kobject_get() // get glue_dir 1885 * 1886 * device_del() 1887 * cleanup_glue_dir() 1888 * kobject_del(glue_dir) 1889 * 1890 * kobject_add() 1891 * kobject_add_internal() 1892 * create_dir() // in glue_dir 1893 * sysfs_create_dir_ns() 1894 * kernfs_create_dir_ns(sd) 1895 * 1896 * sysfs_remove_dir() // glue_dir->sd=NULL 1897 * sysfs_put() // free glue_dir->sd 1898 * 1899 * // sd is freed 1900 * kernfs_new_node(sd) 1901 * kernfs_get(glue_dir) 1902 * kernfs_add_one() 1903 * kernfs_put() 1904 * 1905 * Before CPU1 remove last child device under glue dir, if CPU2 add 1906 * a new device under glue dir, the glue_dir kobject reference count 1907 * will be increase to 2 in kobject_get(k). And CPU2 has been called 1908 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 1909 * and sysfs_put(). This result in glue_dir->sd is freed. 1910 * 1911 * Then the CPU2 will see a stale "empty" but still potentially used 1912 * glue dir around in kernfs_new_node(). 1913 * 1914 * In order to avoid this happening, we also should make sure that 1915 * kernfs_node for glue_dir is released in CPU1 only when refcount 1916 * for glue_dir kobj is 1. 1917 */ 1918 ref = kref_read(&glue_dir->kref); 1919 if (!kobject_has_children(glue_dir) && !--ref) 1920 kobject_del(glue_dir); 1921 kobject_put(glue_dir); 1922 mutex_unlock(&gdp_mutex); 1923 } 1924 1925 static int device_add_class_symlinks(struct device *dev) 1926 { 1927 struct device_node *of_node = dev_of_node(dev); 1928 int error; 1929 1930 if (of_node) { 1931 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1932 if (error) 1933 dev_warn(dev, "Error %d creating of_node link\n",error); 1934 /* An error here doesn't warrant bringing down the device */ 1935 } 1936 1937 if (!dev->class) 1938 return 0; 1939 1940 error = sysfs_create_link(&dev->kobj, 1941 &dev->class->p->subsys.kobj, 1942 "subsystem"); 1943 if (error) 1944 goto out_devnode; 1945 1946 if (dev->parent && device_is_not_partition(dev)) { 1947 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1948 "device"); 1949 if (error) 1950 goto out_subsys; 1951 } 1952 1953 #ifdef CONFIG_BLOCK 1954 /* /sys/block has directories and does not need symlinks */ 1955 if (sysfs_deprecated && dev->class == &block_class) 1956 return 0; 1957 #endif 1958 1959 /* link in the class directory pointing to the device */ 1960 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1961 &dev->kobj, dev_name(dev)); 1962 if (error) 1963 goto out_device; 1964 1965 return 0; 1966 1967 out_device: 1968 sysfs_remove_link(&dev->kobj, "device"); 1969 1970 out_subsys: 1971 sysfs_remove_link(&dev->kobj, "subsystem"); 1972 out_devnode: 1973 sysfs_remove_link(&dev->kobj, "of_node"); 1974 return error; 1975 } 1976 1977 static void device_remove_class_symlinks(struct device *dev) 1978 { 1979 if (dev_of_node(dev)) 1980 sysfs_remove_link(&dev->kobj, "of_node"); 1981 1982 if (!dev->class) 1983 return; 1984 1985 if (dev->parent && device_is_not_partition(dev)) 1986 sysfs_remove_link(&dev->kobj, "device"); 1987 sysfs_remove_link(&dev->kobj, "subsystem"); 1988 #ifdef CONFIG_BLOCK 1989 if (sysfs_deprecated && dev->class == &block_class) 1990 return; 1991 #endif 1992 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1993 } 1994 1995 /** 1996 * dev_set_name - set a device name 1997 * @dev: device 1998 * @fmt: format string for the device's name 1999 */ 2000 int dev_set_name(struct device *dev, const char *fmt, ...) 2001 { 2002 va_list vargs; 2003 int err; 2004 2005 va_start(vargs, fmt); 2006 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2007 va_end(vargs); 2008 return err; 2009 } 2010 EXPORT_SYMBOL_GPL(dev_set_name); 2011 2012 /** 2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2014 * @dev: device 2015 * 2016 * By default we select char/ for new entries. Setting class->dev_obj 2017 * to NULL prevents an entry from being created. class->dev_kobj must 2018 * be set (or cleared) before any devices are registered to the class 2019 * otherwise device_create_sys_dev_entry() and 2020 * device_remove_sys_dev_entry() will disagree about the presence of 2021 * the link. 2022 */ 2023 static struct kobject *device_to_dev_kobj(struct device *dev) 2024 { 2025 struct kobject *kobj; 2026 2027 if (dev->class) 2028 kobj = dev->class->dev_kobj; 2029 else 2030 kobj = sysfs_dev_char_kobj; 2031 2032 return kobj; 2033 } 2034 2035 static int device_create_sys_dev_entry(struct device *dev) 2036 { 2037 struct kobject *kobj = device_to_dev_kobj(dev); 2038 int error = 0; 2039 char devt_str[15]; 2040 2041 if (kobj) { 2042 format_dev_t(devt_str, dev->devt); 2043 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2044 } 2045 2046 return error; 2047 } 2048 2049 static void device_remove_sys_dev_entry(struct device *dev) 2050 { 2051 struct kobject *kobj = device_to_dev_kobj(dev); 2052 char devt_str[15]; 2053 2054 if (kobj) { 2055 format_dev_t(devt_str, dev->devt); 2056 sysfs_remove_link(kobj, devt_str); 2057 } 2058 } 2059 2060 static int device_private_init(struct device *dev) 2061 { 2062 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2063 if (!dev->p) 2064 return -ENOMEM; 2065 dev->p->device = dev; 2066 klist_init(&dev->p->klist_children, klist_children_get, 2067 klist_children_put); 2068 INIT_LIST_HEAD(&dev->p->deferred_probe); 2069 return 0; 2070 } 2071 2072 /** 2073 * device_add - add device to device hierarchy. 2074 * @dev: device. 2075 * 2076 * This is part 2 of device_register(), though may be called 2077 * separately _iff_ device_initialize() has been called separately. 2078 * 2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2080 * to the global and sibling lists for the device, then 2081 * adds it to the other relevant subsystems of the driver model. 2082 * 2083 * Do not call this routine or device_register() more than once for 2084 * any device structure. The driver model core is not designed to work 2085 * with devices that get unregistered and then spring back to life. 2086 * (Among other things, it's very hard to guarantee that all references 2087 * to the previous incarnation of @dev have been dropped.) Allocate 2088 * and register a fresh new struct device instead. 2089 * 2090 * NOTE: _Never_ directly free @dev after calling this function, even 2091 * if it returned an error! Always use put_device() to give up your 2092 * reference instead. 2093 * 2094 * Rule of thumb is: if device_add() succeeds, you should call 2095 * device_del() when you want to get rid of it. If device_add() has 2096 * *not* succeeded, use *only* put_device() to drop the reference 2097 * count. 2098 */ 2099 int device_add(struct device *dev) 2100 { 2101 struct device *parent; 2102 struct kobject *kobj; 2103 struct class_interface *class_intf; 2104 int error = -EINVAL; 2105 struct kobject *glue_dir = NULL; 2106 2107 dev = get_device(dev); 2108 if (!dev) 2109 goto done; 2110 2111 if (!dev->p) { 2112 error = device_private_init(dev); 2113 if (error) 2114 goto done; 2115 } 2116 2117 /* 2118 * for statically allocated devices, which should all be converted 2119 * some day, we need to initialize the name. We prevent reading back 2120 * the name, and force the use of dev_name() 2121 */ 2122 if (dev->init_name) { 2123 dev_set_name(dev, "%s", dev->init_name); 2124 dev->init_name = NULL; 2125 } 2126 2127 /* subsystems can specify simple device enumeration */ 2128 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2129 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2130 2131 if (!dev_name(dev)) { 2132 error = -EINVAL; 2133 goto name_error; 2134 } 2135 2136 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2137 2138 parent = get_device(dev->parent); 2139 kobj = get_device_parent(dev, parent); 2140 if (IS_ERR(kobj)) { 2141 error = PTR_ERR(kobj); 2142 goto parent_error; 2143 } 2144 if (kobj) 2145 dev->kobj.parent = kobj; 2146 2147 /* use parent numa_node */ 2148 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2149 set_dev_node(dev, dev_to_node(parent)); 2150 2151 /* first, register with generic layer. */ 2152 /* we require the name to be set before, and pass NULL */ 2153 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2154 if (error) { 2155 glue_dir = get_glue_dir(dev); 2156 goto Error; 2157 } 2158 2159 /* notify platform of device entry */ 2160 error = device_platform_notify(dev, KOBJ_ADD); 2161 if (error) 2162 goto platform_error; 2163 2164 error = device_create_file(dev, &dev_attr_uevent); 2165 if (error) 2166 goto attrError; 2167 2168 error = device_add_class_symlinks(dev); 2169 if (error) 2170 goto SymlinkError; 2171 error = device_add_attrs(dev); 2172 if (error) 2173 goto AttrsError; 2174 error = bus_add_device(dev); 2175 if (error) 2176 goto BusError; 2177 error = dpm_sysfs_add(dev); 2178 if (error) 2179 goto DPMError; 2180 device_pm_add(dev); 2181 2182 if (MAJOR(dev->devt)) { 2183 error = device_create_file(dev, &dev_attr_dev); 2184 if (error) 2185 goto DevAttrError; 2186 2187 error = device_create_sys_dev_entry(dev); 2188 if (error) 2189 goto SysEntryError; 2190 2191 devtmpfs_create_node(dev); 2192 } 2193 2194 /* Notify clients of device addition. This call must come 2195 * after dpm_sysfs_add() and before kobject_uevent(). 2196 */ 2197 if (dev->bus) 2198 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2199 BUS_NOTIFY_ADD_DEVICE, dev); 2200 2201 kobject_uevent(&dev->kobj, KOBJ_ADD); 2202 bus_probe_device(dev); 2203 if (parent) 2204 klist_add_tail(&dev->p->knode_parent, 2205 &parent->p->klist_children); 2206 2207 if (dev->class) { 2208 mutex_lock(&dev->class->p->mutex); 2209 /* tie the class to the device */ 2210 klist_add_tail(&dev->p->knode_class, 2211 &dev->class->p->klist_devices); 2212 2213 /* notify any interfaces that the device is here */ 2214 list_for_each_entry(class_intf, 2215 &dev->class->p->interfaces, node) 2216 if (class_intf->add_dev) 2217 class_intf->add_dev(dev, class_intf); 2218 mutex_unlock(&dev->class->p->mutex); 2219 } 2220 done: 2221 put_device(dev); 2222 return error; 2223 SysEntryError: 2224 if (MAJOR(dev->devt)) 2225 device_remove_file(dev, &dev_attr_dev); 2226 DevAttrError: 2227 device_pm_remove(dev); 2228 dpm_sysfs_remove(dev); 2229 DPMError: 2230 bus_remove_device(dev); 2231 BusError: 2232 device_remove_attrs(dev); 2233 AttrsError: 2234 device_remove_class_symlinks(dev); 2235 SymlinkError: 2236 device_remove_file(dev, &dev_attr_uevent); 2237 attrError: 2238 device_platform_notify(dev, KOBJ_REMOVE); 2239 platform_error: 2240 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2241 glue_dir = get_glue_dir(dev); 2242 kobject_del(&dev->kobj); 2243 Error: 2244 cleanup_glue_dir(dev, glue_dir); 2245 parent_error: 2246 put_device(parent); 2247 name_error: 2248 kfree(dev->p); 2249 dev->p = NULL; 2250 goto done; 2251 } 2252 EXPORT_SYMBOL_GPL(device_add); 2253 2254 /** 2255 * device_register - register a device with the system. 2256 * @dev: pointer to the device structure 2257 * 2258 * This happens in two clean steps - initialize the device 2259 * and add it to the system. The two steps can be called 2260 * separately, but this is the easiest and most common. 2261 * I.e. you should only call the two helpers separately if 2262 * have a clearly defined need to use and refcount the device 2263 * before it is added to the hierarchy. 2264 * 2265 * For more information, see the kerneldoc for device_initialize() 2266 * and device_add(). 2267 * 2268 * NOTE: _Never_ directly free @dev after calling this function, even 2269 * if it returned an error! Always use put_device() to give up the 2270 * reference initialized in this function instead. 2271 */ 2272 int device_register(struct device *dev) 2273 { 2274 device_initialize(dev); 2275 return device_add(dev); 2276 } 2277 EXPORT_SYMBOL_GPL(device_register); 2278 2279 /** 2280 * get_device - increment reference count for device. 2281 * @dev: device. 2282 * 2283 * This simply forwards the call to kobject_get(), though 2284 * we do take care to provide for the case that we get a NULL 2285 * pointer passed in. 2286 */ 2287 struct device *get_device(struct device *dev) 2288 { 2289 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2290 } 2291 EXPORT_SYMBOL_GPL(get_device); 2292 2293 /** 2294 * put_device - decrement reference count. 2295 * @dev: device in question. 2296 */ 2297 void put_device(struct device *dev) 2298 { 2299 /* might_sleep(); */ 2300 if (dev) 2301 kobject_put(&dev->kobj); 2302 } 2303 EXPORT_SYMBOL_GPL(put_device); 2304 2305 bool kill_device(struct device *dev) 2306 { 2307 /* 2308 * Require the device lock and set the "dead" flag to guarantee that 2309 * the update behavior is consistent with the other bitfields near 2310 * it and that we cannot have an asynchronous probe routine trying 2311 * to run while we are tearing out the bus/class/sysfs from 2312 * underneath the device. 2313 */ 2314 lockdep_assert_held(&dev->mutex); 2315 2316 if (dev->p->dead) 2317 return false; 2318 dev->p->dead = true; 2319 return true; 2320 } 2321 EXPORT_SYMBOL_GPL(kill_device); 2322 2323 /** 2324 * device_del - delete device from system. 2325 * @dev: device. 2326 * 2327 * This is the first part of the device unregistration 2328 * sequence. This removes the device from the lists we control 2329 * from here, has it removed from the other driver model 2330 * subsystems it was added to in device_add(), and removes it 2331 * from the kobject hierarchy. 2332 * 2333 * NOTE: this should be called manually _iff_ device_add() was 2334 * also called manually. 2335 */ 2336 void device_del(struct device *dev) 2337 { 2338 struct device *parent = dev->parent; 2339 struct kobject *glue_dir = NULL; 2340 struct class_interface *class_intf; 2341 2342 device_lock(dev); 2343 kill_device(dev); 2344 device_unlock(dev); 2345 2346 /* Notify clients of device removal. This call must come 2347 * before dpm_sysfs_remove(). 2348 */ 2349 if (dev->bus) 2350 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2351 BUS_NOTIFY_DEL_DEVICE, dev); 2352 2353 dpm_sysfs_remove(dev); 2354 if (parent) 2355 klist_del(&dev->p->knode_parent); 2356 if (MAJOR(dev->devt)) { 2357 devtmpfs_delete_node(dev); 2358 device_remove_sys_dev_entry(dev); 2359 device_remove_file(dev, &dev_attr_dev); 2360 } 2361 if (dev->class) { 2362 device_remove_class_symlinks(dev); 2363 2364 mutex_lock(&dev->class->p->mutex); 2365 /* notify any interfaces that the device is now gone */ 2366 list_for_each_entry(class_intf, 2367 &dev->class->p->interfaces, node) 2368 if (class_intf->remove_dev) 2369 class_intf->remove_dev(dev, class_intf); 2370 /* remove the device from the class list */ 2371 klist_del(&dev->p->knode_class); 2372 mutex_unlock(&dev->class->p->mutex); 2373 } 2374 device_remove_file(dev, &dev_attr_uevent); 2375 device_remove_attrs(dev); 2376 bus_remove_device(dev); 2377 device_pm_remove(dev); 2378 driver_deferred_probe_del(dev); 2379 device_platform_notify(dev, KOBJ_REMOVE); 2380 device_remove_properties(dev); 2381 device_links_purge(dev); 2382 2383 if (dev->bus) 2384 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2385 BUS_NOTIFY_REMOVED_DEVICE, dev); 2386 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2387 glue_dir = get_glue_dir(dev); 2388 kobject_del(&dev->kobj); 2389 cleanup_glue_dir(dev, glue_dir); 2390 put_device(parent); 2391 } 2392 EXPORT_SYMBOL_GPL(device_del); 2393 2394 /** 2395 * device_unregister - unregister device from system. 2396 * @dev: device going away. 2397 * 2398 * We do this in two parts, like we do device_register(). First, 2399 * we remove it from all the subsystems with device_del(), then 2400 * we decrement the reference count via put_device(). If that 2401 * is the final reference count, the device will be cleaned up 2402 * via device_release() above. Otherwise, the structure will 2403 * stick around until the final reference to the device is dropped. 2404 */ 2405 void device_unregister(struct device *dev) 2406 { 2407 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2408 device_del(dev); 2409 put_device(dev); 2410 } 2411 EXPORT_SYMBOL_GPL(device_unregister); 2412 2413 static struct device *prev_device(struct klist_iter *i) 2414 { 2415 struct klist_node *n = klist_prev(i); 2416 struct device *dev = NULL; 2417 struct device_private *p; 2418 2419 if (n) { 2420 p = to_device_private_parent(n); 2421 dev = p->device; 2422 } 2423 return dev; 2424 } 2425 2426 static struct device *next_device(struct klist_iter *i) 2427 { 2428 struct klist_node *n = klist_next(i); 2429 struct device *dev = NULL; 2430 struct device_private *p; 2431 2432 if (n) { 2433 p = to_device_private_parent(n); 2434 dev = p->device; 2435 } 2436 return dev; 2437 } 2438 2439 /** 2440 * device_get_devnode - path of device node file 2441 * @dev: device 2442 * @mode: returned file access mode 2443 * @uid: returned file owner 2444 * @gid: returned file group 2445 * @tmp: possibly allocated string 2446 * 2447 * Return the relative path of a possible device node. 2448 * Non-default names may need to allocate a memory to compose 2449 * a name. This memory is returned in tmp and needs to be 2450 * freed by the caller. 2451 */ 2452 const char *device_get_devnode(struct device *dev, 2453 umode_t *mode, kuid_t *uid, kgid_t *gid, 2454 const char **tmp) 2455 { 2456 char *s; 2457 2458 *tmp = NULL; 2459 2460 /* the device type may provide a specific name */ 2461 if (dev->type && dev->type->devnode) 2462 *tmp = dev->type->devnode(dev, mode, uid, gid); 2463 if (*tmp) 2464 return *tmp; 2465 2466 /* the class may provide a specific name */ 2467 if (dev->class && dev->class->devnode) 2468 *tmp = dev->class->devnode(dev, mode); 2469 if (*tmp) 2470 return *tmp; 2471 2472 /* return name without allocation, tmp == NULL */ 2473 if (strchr(dev_name(dev), '!') == NULL) 2474 return dev_name(dev); 2475 2476 /* replace '!' in the name with '/' */ 2477 s = kstrdup(dev_name(dev), GFP_KERNEL); 2478 if (!s) 2479 return NULL; 2480 strreplace(s, '!', '/'); 2481 return *tmp = s; 2482 } 2483 2484 /** 2485 * device_for_each_child - device child iterator. 2486 * @parent: parent struct device. 2487 * @fn: function to be called for each device. 2488 * @data: data for the callback. 2489 * 2490 * Iterate over @parent's child devices, and call @fn for each, 2491 * passing it @data. 2492 * 2493 * We check the return of @fn each time. If it returns anything 2494 * other than 0, we break out and return that value. 2495 */ 2496 int device_for_each_child(struct device *parent, void *data, 2497 int (*fn)(struct device *dev, void *data)) 2498 { 2499 struct klist_iter i; 2500 struct device *child; 2501 int error = 0; 2502 2503 if (!parent->p) 2504 return 0; 2505 2506 klist_iter_init(&parent->p->klist_children, &i); 2507 while (!error && (child = next_device(&i))) 2508 error = fn(child, data); 2509 klist_iter_exit(&i); 2510 return error; 2511 } 2512 EXPORT_SYMBOL_GPL(device_for_each_child); 2513 2514 /** 2515 * device_for_each_child_reverse - device child iterator in reversed order. 2516 * @parent: parent struct device. 2517 * @fn: function to be called for each device. 2518 * @data: data for the callback. 2519 * 2520 * Iterate over @parent's child devices, and call @fn for each, 2521 * passing it @data. 2522 * 2523 * We check the return of @fn each time. If it returns anything 2524 * other than 0, we break out and return that value. 2525 */ 2526 int device_for_each_child_reverse(struct device *parent, void *data, 2527 int (*fn)(struct device *dev, void *data)) 2528 { 2529 struct klist_iter i; 2530 struct device *child; 2531 int error = 0; 2532 2533 if (!parent->p) 2534 return 0; 2535 2536 klist_iter_init(&parent->p->klist_children, &i); 2537 while ((child = prev_device(&i)) && !error) 2538 error = fn(child, data); 2539 klist_iter_exit(&i); 2540 return error; 2541 } 2542 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2543 2544 /** 2545 * device_find_child - device iterator for locating a particular device. 2546 * @parent: parent struct device 2547 * @match: Callback function to check device 2548 * @data: Data to pass to match function 2549 * 2550 * This is similar to the device_for_each_child() function above, but it 2551 * returns a reference to a device that is 'found' for later use, as 2552 * determined by the @match callback. 2553 * 2554 * The callback should return 0 if the device doesn't match and non-zero 2555 * if it does. If the callback returns non-zero and a reference to the 2556 * current device can be obtained, this function will return to the caller 2557 * and not iterate over any more devices. 2558 * 2559 * NOTE: you will need to drop the reference with put_device() after use. 2560 */ 2561 struct device *device_find_child(struct device *parent, void *data, 2562 int (*match)(struct device *dev, void *data)) 2563 { 2564 struct klist_iter i; 2565 struct device *child; 2566 2567 if (!parent) 2568 return NULL; 2569 2570 klist_iter_init(&parent->p->klist_children, &i); 2571 while ((child = next_device(&i))) 2572 if (match(child, data) && get_device(child)) 2573 break; 2574 klist_iter_exit(&i); 2575 return child; 2576 } 2577 EXPORT_SYMBOL_GPL(device_find_child); 2578 2579 /** 2580 * device_find_child_by_name - device iterator for locating a child device. 2581 * @parent: parent struct device 2582 * @name: name of the child device 2583 * 2584 * This is similar to the device_find_child() function above, but it 2585 * returns a reference to a device that has the name @name. 2586 * 2587 * NOTE: you will need to drop the reference with put_device() after use. 2588 */ 2589 struct device *device_find_child_by_name(struct device *parent, 2590 const char *name) 2591 { 2592 struct klist_iter i; 2593 struct device *child; 2594 2595 if (!parent) 2596 return NULL; 2597 2598 klist_iter_init(&parent->p->klist_children, &i); 2599 while ((child = next_device(&i))) 2600 if (!strcmp(dev_name(child), name) && get_device(child)) 2601 break; 2602 klist_iter_exit(&i); 2603 return child; 2604 } 2605 EXPORT_SYMBOL_GPL(device_find_child_by_name); 2606 2607 int __init devices_init(void) 2608 { 2609 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2610 if (!devices_kset) 2611 return -ENOMEM; 2612 dev_kobj = kobject_create_and_add("dev", NULL); 2613 if (!dev_kobj) 2614 goto dev_kobj_err; 2615 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2616 if (!sysfs_dev_block_kobj) 2617 goto block_kobj_err; 2618 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2619 if (!sysfs_dev_char_kobj) 2620 goto char_kobj_err; 2621 2622 return 0; 2623 2624 char_kobj_err: 2625 kobject_put(sysfs_dev_block_kobj); 2626 block_kobj_err: 2627 kobject_put(dev_kobj); 2628 dev_kobj_err: 2629 kset_unregister(devices_kset); 2630 return -ENOMEM; 2631 } 2632 2633 static int device_check_offline(struct device *dev, void *not_used) 2634 { 2635 int ret; 2636 2637 ret = device_for_each_child(dev, NULL, device_check_offline); 2638 if (ret) 2639 return ret; 2640 2641 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2642 } 2643 2644 /** 2645 * device_offline - Prepare the device for hot-removal. 2646 * @dev: Device to be put offline. 2647 * 2648 * Execute the device bus type's .offline() callback, if present, to prepare 2649 * the device for a subsequent hot-removal. If that succeeds, the device must 2650 * not be used until either it is removed or its bus type's .online() callback 2651 * is executed. 2652 * 2653 * Call under device_hotplug_lock. 2654 */ 2655 int device_offline(struct device *dev) 2656 { 2657 int ret; 2658 2659 if (dev->offline_disabled) 2660 return -EPERM; 2661 2662 ret = device_for_each_child(dev, NULL, device_check_offline); 2663 if (ret) 2664 return ret; 2665 2666 device_lock(dev); 2667 if (device_supports_offline(dev)) { 2668 if (dev->offline) { 2669 ret = 1; 2670 } else { 2671 ret = dev->bus->offline(dev); 2672 if (!ret) { 2673 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2674 dev->offline = true; 2675 } 2676 } 2677 } 2678 device_unlock(dev); 2679 2680 return ret; 2681 } 2682 2683 /** 2684 * device_online - Put the device back online after successful device_offline(). 2685 * @dev: Device to be put back online. 2686 * 2687 * If device_offline() has been successfully executed for @dev, but the device 2688 * has not been removed subsequently, execute its bus type's .online() callback 2689 * to indicate that the device can be used again. 2690 * 2691 * Call under device_hotplug_lock. 2692 */ 2693 int device_online(struct device *dev) 2694 { 2695 int ret = 0; 2696 2697 device_lock(dev); 2698 if (device_supports_offline(dev)) { 2699 if (dev->offline) { 2700 ret = dev->bus->online(dev); 2701 if (!ret) { 2702 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2703 dev->offline = false; 2704 } 2705 } else { 2706 ret = 1; 2707 } 2708 } 2709 device_unlock(dev); 2710 2711 return ret; 2712 } 2713 2714 struct root_device { 2715 struct device dev; 2716 struct module *owner; 2717 }; 2718 2719 static inline struct root_device *to_root_device(struct device *d) 2720 { 2721 return container_of(d, struct root_device, dev); 2722 } 2723 2724 static void root_device_release(struct device *dev) 2725 { 2726 kfree(to_root_device(dev)); 2727 } 2728 2729 /** 2730 * __root_device_register - allocate and register a root device 2731 * @name: root device name 2732 * @owner: owner module of the root device, usually THIS_MODULE 2733 * 2734 * This function allocates a root device and registers it 2735 * using device_register(). In order to free the returned 2736 * device, use root_device_unregister(). 2737 * 2738 * Root devices are dummy devices which allow other devices 2739 * to be grouped under /sys/devices. Use this function to 2740 * allocate a root device and then use it as the parent of 2741 * any device which should appear under /sys/devices/{name} 2742 * 2743 * The /sys/devices/{name} directory will also contain a 2744 * 'module' symlink which points to the @owner directory 2745 * in sysfs. 2746 * 2747 * Returns &struct device pointer on success, or ERR_PTR() on error. 2748 * 2749 * Note: You probably want to use root_device_register(). 2750 */ 2751 struct device *__root_device_register(const char *name, struct module *owner) 2752 { 2753 struct root_device *root; 2754 int err = -ENOMEM; 2755 2756 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2757 if (!root) 2758 return ERR_PTR(err); 2759 2760 err = dev_set_name(&root->dev, "%s", name); 2761 if (err) { 2762 kfree(root); 2763 return ERR_PTR(err); 2764 } 2765 2766 root->dev.release = root_device_release; 2767 2768 err = device_register(&root->dev); 2769 if (err) { 2770 put_device(&root->dev); 2771 return ERR_PTR(err); 2772 } 2773 2774 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2775 if (owner) { 2776 struct module_kobject *mk = &owner->mkobj; 2777 2778 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2779 if (err) { 2780 device_unregister(&root->dev); 2781 return ERR_PTR(err); 2782 } 2783 root->owner = owner; 2784 } 2785 #endif 2786 2787 return &root->dev; 2788 } 2789 EXPORT_SYMBOL_GPL(__root_device_register); 2790 2791 /** 2792 * root_device_unregister - unregister and free a root device 2793 * @dev: device going away 2794 * 2795 * This function unregisters and cleans up a device that was created by 2796 * root_device_register(). 2797 */ 2798 void root_device_unregister(struct device *dev) 2799 { 2800 struct root_device *root = to_root_device(dev); 2801 2802 if (root->owner) 2803 sysfs_remove_link(&root->dev.kobj, "module"); 2804 2805 device_unregister(dev); 2806 } 2807 EXPORT_SYMBOL_GPL(root_device_unregister); 2808 2809 2810 static void device_create_release(struct device *dev) 2811 { 2812 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2813 kfree(dev); 2814 } 2815 2816 static __printf(6, 0) struct device * 2817 device_create_groups_vargs(struct class *class, struct device *parent, 2818 dev_t devt, void *drvdata, 2819 const struct attribute_group **groups, 2820 const char *fmt, va_list args) 2821 { 2822 struct device *dev = NULL; 2823 int retval = -ENODEV; 2824 2825 if (class == NULL || IS_ERR(class)) 2826 goto error; 2827 2828 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2829 if (!dev) { 2830 retval = -ENOMEM; 2831 goto error; 2832 } 2833 2834 device_initialize(dev); 2835 dev->devt = devt; 2836 dev->class = class; 2837 dev->parent = parent; 2838 dev->groups = groups; 2839 dev->release = device_create_release; 2840 dev_set_drvdata(dev, drvdata); 2841 2842 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2843 if (retval) 2844 goto error; 2845 2846 retval = device_add(dev); 2847 if (retval) 2848 goto error; 2849 2850 return dev; 2851 2852 error: 2853 put_device(dev); 2854 return ERR_PTR(retval); 2855 } 2856 2857 /** 2858 * device_create_vargs - creates a device and registers it with sysfs 2859 * @class: pointer to the struct class that this device should be registered to 2860 * @parent: pointer to the parent struct device of this new device, if any 2861 * @devt: the dev_t for the char device to be added 2862 * @drvdata: the data to be added to the device for callbacks 2863 * @fmt: string for the device's name 2864 * @args: va_list for the device's name 2865 * 2866 * This function can be used by char device classes. A struct device 2867 * will be created in sysfs, registered to the specified class. 2868 * 2869 * A "dev" file will be created, showing the dev_t for the device, if 2870 * the dev_t is not 0,0. 2871 * If a pointer to a parent struct device is passed in, the newly created 2872 * struct device will be a child of that device in sysfs. 2873 * The pointer to the struct device will be returned from the call. 2874 * Any further sysfs files that might be required can be created using this 2875 * pointer. 2876 * 2877 * Returns &struct device pointer on success, or ERR_PTR() on error. 2878 * 2879 * Note: the struct class passed to this function must have previously 2880 * been created with a call to class_create(). 2881 */ 2882 struct device *device_create_vargs(struct class *class, struct device *parent, 2883 dev_t devt, void *drvdata, const char *fmt, 2884 va_list args) 2885 { 2886 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2887 fmt, args); 2888 } 2889 EXPORT_SYMBOL_GPL(device_create_vargs); 2890 2891 /** 2892 * device_create - creates a device and registers it with sysfs 2893 * @class: pointer to the struct class that this device should be registered to 2894 * @parent: pointer to the parent struct device of this new device, if any 2895 * @devt: the dev_t for the char device to be added 2896 * @drvdata: the data to be added to the device for callbacks 2897 * @fmt: string for the device's name 2898 * 2899 * This function can be used by char device classes. A struct device 2900 * will be created in sysfs, registered to the specified class. 2901 * 2902 * A "dev" file will be created, showing the dev_t for the device, if 2903 * the dev_t is not 0,0. 2904 * If a pointer to a parent struct device is passed in, the newly created 2905 * struct device will be a child of that device in sysfs. 2906 * The pointer to the struct device will be returned from the call. 2907 * Any further sysfs files that might be required can be created using this 2908 * pointer. 2909 * 2910 * Returns &struct device pointer on success, or ERR_PTR() on error. 2911 * 2912 * Note: the struct class passed to this function must have previously 2913 * been created with a call to class_create(). 2914 */ 2915 struct device *device_create(struct class *class, struct device *parent, 2916 dev_t devt, void *drvdata, const char *fmt, ...) 2917 { 2918 va_list vargs; 2919 struct device *dev; 2920 2921 va_start(vargs, fmt); 2922 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2923 va_end(vargs); 2924 return dev; 2925 } 2926 EXPORT_SYMBOL_GPL(device_create); 2927 2928 /** 2929 * device_create_with_groups - creates a device and registers it with sysfs 2930 * @class: pointer to the struct class that this device should be registered to 2931 * @parent: pointer to the parent struct device of this new device, if any 2932 * @devt: the dev_t for the char device to be added 2933 * @drvdata: the data to be added to the device for callbacks 2934 * @groups: NULL-terminated list of attribute groups to be created 2935 * @fmt: string for the device's name 2936 * 2937 * This function can be used by char device classes. A struct device 2938 * will be created in sysfs, registered to the specified class. 2939 * Additional attributes specified in the groups parameter will also 2940 * be created automatically. 2941 * 2942 * A "dev" file will be created, showing the dev_t for the device, if 2943 * the dev_t is not 0,0. 2944 * If a pointer to a parent struct device is passed in, the newly created 2945 * struct device will be a child of that device in sysfs. 2946 * The pointer to the struct device will be returned from the call. 2947 * Any further sysfs files that might be required can be created using this 2948 * pointer. 2949 * 2950 * Returns &struct device pointer on success, or ERR_PTR() on error. 2951 * 2952 * Note: the struct class passed to this function must have previously 2953 * been created with a call to class_create(). 2954 */ 2955 struct device *device_create_with_groups(struct class *class, 2956 struct device *parent, dev_t devt, 2957 void *drvdata, 2958 const struct attribute_group **groups, 2959 const char *fmt, ...) 2960 { 2961 va_list vargs; 2962 struct device *dev; 2963 2964 va_start(vargs, fmt); 2965 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2966 fmt, vargs); 2967 va_end(vargs); 2968 return dev; 2969 } 2970 EXPORT_SYMBOL_GPL(device_create_with_groups); 2971 2972 /** 2973 * device_destroy - removes a device that was created with device_create() 2974 * @class: pointer to the struct class that this device was registered with 2975 * @devt: the dev_t of the device that was previously registered 2976 * 2977 * This call unregisters and cleans up a device that was created with a 2978 * call to device_create(). 2979 */ 2980 void device_destroy(struct class *class, dev_t devt) 2981 { 2982 struct device *dev; 2983 2984 dev = class_find_device_by_devt(class, devt); 2985 if (dev) { 2986 put_device(dev); 2987 device_unregister(dev); 2988 } 2989 } 2990 EXPORT_SYMBOL_GPL(device_destroy); 2991 2992 /** 2993 * device_rename - renames a device 2994 * @dev: the pointer to the struct device to be renamed 2995 * @new_name: the new name of the device 2996 * 2997 * It is the responsibility of the caller to provide mutual 2998 * exclusion between two different calls of device_rename 2999 * on the same device to ensure that new_name is valid and 3000 * won't conflict with other devices. 3001 * 3002 * Note: Don't call this function. Currently, the networking layer calls this 3003 * function, but that will change. The following text from Kay Sievers offers 3004 * some insight: 3005 * 3006 * Renaming devices is racy at many levels, symlinks and other stuff are not 3007 * replaced atomically, and you get a "move" uevent, but it's not easy to 3008 * connect the event to the old and new device. Device nodes are not renamed at 3009 * all, there isn't even support for that in the kernel now. 3010 * 3011 * In the meantime, during renaming, your target name might be taken by another 3012 * driver, creating conflicts. Or the old name is taken directly after you 3013 * renamed it -- then you get events for the same DEVPATH, before you even see 3014 * the "move" event. It's just a mess, and nothing new should ever rely on 3015 * kernel device renaming. Besides that, it's not even implemented now for 3016 * other things than (driver-core wise very simple) network devices. 3017 * 3018 * We are currently about to change network renaming in udev to completely 3019 * disallow renaming of devices in the same namespace as the kernel uses, 3020 * because we can't solve the problems properly, that arise with swapping names 3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3022 * be allowed to some other name than eth[0-9]*, for the aforementioned 3023 * reasons. 3024 * 3025 * Make up a "real" name in the driver before you register anything, or add 3026 * some other attributes for userspace to find the device, or use udev to add 3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3028 * don't even want to get into that and try to implement the missing pieces in 3029 * the core. We really have other pieces to fix in the driver core mess. :) 3030 */ 3031 int device_rename(struct device *dev, const char *new_name) 3032 { 3033 struct kobject *kobj = &dev->kobj; 3034 char *old_device_name = NULL; 3035 int error; 3036 3037 dev = get_device(dev); 3038 if (!dev) 3039 return -EINVAL; 3040 3041 dev_dbg(dev, "renaming to %s\n", new_name); 3042 3043 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3044 if (!old_device_name) { 3045 error = -ENOMEM; 3046 goto out; 3047 } 3048 3049 if (dev->class) { 3050 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3051 kobj, old_device_name, 3052 new_name, kobject_namespace(kobj)); 3053 if (error) 3054 goto out; 3055 } 3056 3057 error = kobject_rename(kobj, new_name); 3058 if (error) 3059 goto out; 3060 3061 out: 3062 put_device(dev); 3063 3064 kfree(old_device_name); 3065 3066 return error; 3067 } 3068 EXPORT_SYMBOL_GPL(device_rename); 3069 3070 static int device_move_class_links(struct device *dev, 3071 struct device *old_parent, 3072 struct device *new_parent) 3073 { 3074 int error = 0; 3075 3076 if (old_parent) 3077 sysfs_remove_link(&dev->kobj, "device"); 3078 if (new_parent) 3079 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3080 "device"); 3081 return error; 3082 } 3083 3084 /** 3085 * device_move - moves a device to a new parent 3086 * @dev: the pointer to the struct device to be moved 3087 * @new_parent: the new parent of the device (can be NULL) 3088 * @dpm_order: how to reorder the dpm_list 3089 */ 3090 int device_move(struct device *dev, struct device *new_parent, 3091 enum dpm_order dpm_order) 3092 { 3093 int error; 3094 struct device *old_parent; 3095 struct kobject *new_parent_kobj; 3096 3097 dev = get_device(dev); 3098 if (!dev) 3099 return -EINVAL; 3100 3101 device_pm_lock(); 3102 new_parent = get_device(new_parent); 3103 new_parent_kobj = get_device_parent(dev, new_parent); 3104 if (IS_ERR(new_parent_kobj)) { 3105 error = PTR_ERR(new_parent_kobj); 3106 put_device(new_parent); 3107 goto out; 3108 } 3109 3110 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3111 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3112 error = kobject_move(&dev->kobj, new_parent_kobj); 3113 if (error) { 3114 cleanup_glue_dir(dev, new_parent_kobj); 3115 put_device(new_parent); 3116 goto out; 3117 } 3118 old_parent = dev->parent; 3119 dev->parent = new_parent; 3120 if (old_parent) 3121 klist_remove(&dev->p->knode_parent); 3122 if (new_parent) { 3123 klist_add_tail(&dev->p->knode_parent, 3124 &new_parent->p->klist_children); 3125 set_dev_node(dev, dev_to_node(new_parent)); 3126 } 3127 3128 if (dev->class) { 3129 error = device_move_class_links(dev, old_parent, new_parent); 3130 if (error) { 3131 /* We ignore errors on cleanup since we're hosed anyway... */ 3132 device_move_class_links(dev, new_parent, old_parent); 3133 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3134 if (new_parent) 3135 klist_remove(&dev->p->knode_parent); 3136 dev->parent = old_parent; 3137 if (old_parent) { 3138 klist_add_tail(&dev->p->knode_parent, 3139 &old_parent->p->klist_children); 3140 set_dev_node(dev, dev_to_node(old_parent)); 3141 } 3142 } 3143 cleanup_glue_dir(dev, new_parent_kobj); 3144 put_device(new_parent); 3145 goto out; 3146 } 3147 } 3148 switch (dpm_order) { 3149 case DPM_ORDER_NONE: 3150 break; 3151 case DPM_ORDER_DEV_AFTER_PARENT: 3152 device_pm_move_after(dev, new_parent); 3153 devices_kset_move_after(dev, new_parent); 3154 break; 3155 case DPM_ORDER_PARENT_BEFORE_DEV: 3156 device_pm_move_before(new_parent, dev); 3157 devices_kset_move_before(new_parent, dev); 3158 break; 3159 case DPM_ORDER_DEV_LAST: 3160 device_pm_move_last(dev); 3161 devices_kset_move_last(dev); 3162 break; 3163 } 3164 3165 put_device(old_parent); 3166 out: 3167 device_pm_unlock(); 3168 put_device(dev); 3169 return error; 3170 } 3171 EXPORT_SYMBOL_GPL(device_move); 3172 3173 /** 3174 * device_shutdown - call ->shutdown() on each device to shutdown. 3175 */ 3176 void device_shutdown(void) 3177 { 3178 struct device *dev, *parent; 3179 3180 wait_for_device_probe(); 3181 device_block_probing(); 3182 3183 cpufreq_suspend(); 3184 3185 spin_lock(&devices_kset->list_lock); 3186 /* 3187 * Walk the devices list backward, shutting down each in turn. 3188 * Beware that device unplug events may also start pulling 3189 * devices offline, even as the system is shutting down. 3190 */ 3191 while (!list_empty(&devices_kset->list)) { 3192 dev = list_entry(devices_kset->list.prev, struct device, 3193 kobj.entry); 3194 3195 /* 3196 * hold reference count of device's parent to 3197 * prevent it from being freed because parent's 3198 * lock is to be held 3199 */ 3200 parent = get_device(dev->parent); 3201 get_device(dev); 3202 /* 3203 * Make sure the device is off the kset list, in the 3204 * event that dev->*->shutdown() doesn't remove it. 3205 */ 3206 list_del_init(&dev->kobj.entry); 3207 spin_unlock(&devices_kset->list_lock); 3208 3209 /* hold lock to avoid race with probe/release */ 3210 if (parent) 3211 device_lock(parent); 3212 device_lock(dev); 3213 3214 /* Don't allow any more runtime suspends */ 3215 pm_runtime_get_noresume(dev); 3216 pm_runtime_barrier(dev); 3217 3218 if (dev->class && dev->class->shutdown_pre) { 3219 if (initcall_debug) 3220 dev_info(dev, "shutdown_pre\n"); 3221 dev->class->shutdown_pre(dev); 3222 } 3223 if (dev->bus && dev->bus->shutdown) { 3224 if (initcall_debug) 3225 dev_info(dev, "shutdown\n"); 3226 dev->bus->shutdown(dev); 3227 } else if (dev->driver && dev->driver->shutdown) { 3228 if (initcall_debug) 3229 dev_info(dev, "shutdown\n"); 3230 dev->driver->shutdown(dev); 3231 } 3232 3233 device_unlock(dev); 3234 if (parent) 3235 device_unlock(parent); 3236 3237 put_device(dev); 3238 put_device(parent); 3239 3240 spin_lock(&devices_kset->list_lock); 3241 } 3242 spin_unlock(&devices_kset->list_lock); 3243 } 3244 3245 /* 3246 * Device logging functions 3247 */ 3248 3249 #ifdef CONFIG_PRINTK 3250 static int 3251 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3252 { 3253 const char *subsys; 3254 size_t pos = 0; 3255 3256 if (dev->class) 3257 subsys = dev->class->name; 3258 else if (dev->bus) 3259 subsys = dev->bus->name; 3260 else 3261 return 0; 3262 3263 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3264 if (pos >= hdrlen) 3265 goto overflow; 3266 3267 /* 3268 * Add device identifier DEVICE=: 3269 * b12:8 block dev_t 3270 * c127:3 char dev_t 3271 * n8 netdev ifindex 3272 * +sound:card0 subsystem:devname 3273 */ 3274 if (MAJOR(dev->devt)) { 3275 char c; 3276 3277 if (strcmp(subsys, "block") == 0) 3278 c = 'b'; 3279 else 3280 c = 'c'; 3281 pos++; 3282 pos += snprintf(hdr + pos, hdrlen - pos, 3283 "DEVICE=%c%u:%u", 3284 c, MAJOR(dev->devt), MINOR(dev->devt)); 3285 } else if (strcmp(subsys, "net") == 0) { 3286 struct net_device *net = to_net_dev(dev); 3287 3288 pos++; 3289 pos += snprintf(hdr + pos, hdrlen - pos, 3290 "DEVICE=n%u", net->ifindex); 3291 } else { 3292 pos++; 3293 pos += snprintf(hdr + pos, hdrlen - pos, 3294 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3295 } 3296 3297 if (pos >= hdrlen) 3298 goto overflow; 3299 3300 return pos; 3301 3302 overflow: 3303 dev_WARN(dev, "device/subsystem name too long"); 3304 return 0; 3305 } 3306 3307 int dev_vprintk_emit(int level, const struct device *dev, 3308 const char *fmt, va_list args) 3309 { 3310 char hdr[128]; 3311 size_t hdrlen; 3312 3313 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3314 3315 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3316 } 3317 EXPORT_SYMBOL(dev_vprintk_emit); 3318 3319 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3320 { 3321 va_list args; 3322 int r; 3323 3324 va_start(args, fmt); 3325 3326 r = dev_vprintk_emit(level, dev, fmt, args); 3327 3328 va_end(args); 3329 3330 return r; 3331 } 3332 EXPORT_SYMBOL(dev_printk_emit); 3333 3334 static void __dev_printk(const char *level, const struct device *dev, 3335 struct va_format *vaf) 3336 { 3337 if (dev) 3338 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3339 dev_driver_string(dev), dev_name(dev), vaf); 3340 else 3341 printk("%s(NULL device *): %pV", level, vaf); 3342 } 3343 3344 void dev_printk(const char *level, const struct device *dev, 3345 const char *fmt, ...) 3346 { 3347 struct va_format vaf; 3348 va_list args; 3349 3350 va_start(args, fmt); 3351 3352 vaf.fmt = fmt; 3353 vaf.va = &args; 3354 3355 __dev_printk(level, dev, &vaf); 3356 3357 va_end(args); 3358 } 3359 EXPORT_SYMBOL(dev_printk); 3360 3361 #define define_dev_printk_level(func, kern_level) \ 3362 void func(const struct device *dev, const char *fmt, ...) \ 3363 { \ 3364 struct va_format vaf; \ 3365 va_list args; \ 3366 \ 3367 va_start(args, fmt); \ 3368 \ 3369 vaf.fmt = fmt; \ 3370 vaf.va = &args; \ 3371 \ 3372 __dev_printk(kern_level, dev, &vaf); \ 3373 \ 3374 va_end(args); \ 3375 } \ 3376 EXPORT_SYMBOL(func); 3377 3378 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3379 define_dev_printk_level(_dev_alert, KERN_ALERT); 3380 define_dev_printk_level(_dev_crit, KERN_CRIT); 3381 define_dev_printk_level(_dev_err, KERN_ERR); 3382 define_dev_printk_level(_dev_warn, KERN_WARNING); 3383 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3384 define_dev_printk_level(_dev_info, KERN_INFO); 3385 3386 #endif 3387 3388 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3389 { 3390 return fwnode && !IS_ERR(fwnode->secondary); 3391 } 3392 3393 /** 3394 * set_primary_fwnode - Change the primary firmware node of a given device. 3395 * @dev: Device to handle. 3396 * @fwnode: New primary firmware node of the device. 3397 * 3398 * Set the device's firmware node pointer to @fwnode, but if a secondary 3399 * firmware node of the device is present, preserve it. 3400 */ 3401 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3402 { 3403 if (fwnode) { 3404 struct fwnode_handle *fn = dev->fwnode; 3405 3406 if (fwnode_is_primary(fn)) 3407 fn = fn->secondary; 3408 3409 if (fn) { 3410 WARN_ON(fwnode->secondary); 3411 fwnode->secondary = fn; 3412 } 3413 dev->fwnode = fwnode; 3414 } else { 3415 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3416 dev->fwnode->secondary : NULL; 3417 } 3418 } 3419 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3420 3421 /** 3422 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3423 * @dev: Device to handle. 3424 * @fwnode: New secondary firmware node of the device. 3425 * 3426 * If a primary firmware node of the device is present, set its secondary 3427 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3428 * @fwnode. 3429 */ 3430 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3431 { 3432 if (fwnode) 3433 fwnode->secondary = ERR_PTR(-ENODEV); 3434 3435 if (fwnode_is_primary(dev->fwnode)) 3436 dev->fwnode->secondary = fwnode; 3437 else 3438 dev->fwnode = fwnode; 3439 } 3440 3441 /** 3442 * device_set_of_node_from_dev - reuse device-tree node of another device 3443 * @dev: device whose device-tree node is being set 3444 * @dev2: device whose device-tree node is being reused 3445 * 3446 * Takes another reference to the new device-tree node after first dropping 3447 * any reference held to the old node. 3448 */ 3449 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3450 { 3451 of_node_put(dev->of_node); 3452 dev->of_node = of_node_get(dev2->of_node); 3453 dev->of_node_reused = true; 3454 } 3455 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3456 3457 int device_match_name(struct device *dev, const void *name) 3458 { 3459 return sysfs_streq(dev_name(dev), name); 3460 } 3461 EXPORT_SYMBOL_GPL(device_match_name); 3462 3463 int device_match_of_node(struct device *dev, const void *np) 3464 { 3465 return dev->of_node == np; 3466 } 3467 EXPORT_SYMBOL_GPL(device_match_of_node); 3468 3469 int device_match_fwnode(struct device *dev, const void *fwnode) 3470 { 3471 return dev_fwnode(dev) == fwnode; 3472 } 3473 EXPORT_SYMBOL_GPL(device_match_fwnode); 3474 3475 int device_match_devt(struct device *dev, const void *pdevt) 3476 { 3477 return dev->devt == *(dev_t *)pdevt; 3478 } 3479 EXPORT_SYMBOL_GPL(device_match_devt); 3480 3481 int device_match_acpi_dev(struct device *dev, const void *adev) 3482 { 3483 return ACPI_COMPANION(dev) == adev; 3484 } 3485 EXPORT_SYMBOL(device_match_acpi_dev); 3486 3487 int device_match_any(struct device *dev, const void *unused) 3488 { 3489 return 1; 3490 } 3491 EXPORT_SYMBOL_GPL(device_match_any); 3492