xref: /linux/drivers/base/core.c (revision 2975489458c59ce2e348b1b3aef5d8d2acb5cc8d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 
49 #ifdef CONFIG_SRCU
50 static DEFINE_MUTEX(device_links_lock);
51 DEFINE_STATIC_SRCU(device_links_srcu);
52 
53 static inline void device_links_write_lock(void)
54 {
55 	mutex_lock(&device_links_lock);
56 }
57 
58 static inline void device_links_write_unlock(void)
59 {
60 	mutex_unlock(&device_links_lock);
61 }
62 
63 int device_links_read_lock(void)
64 {
65 	return srcu_read_lock(&device_links_srcu);
66 }
67 
68 void device_links_read_unlock(int idx)
69 {
70 	srcu_read_unlock(&device_links_srcu, idx);
71 }
72 
73 int device_links_read_lock_held(void)
74 {
75 	return srcu_read_lock_held(&device_links_srcu);
76 }
77 #else /* !CONFIG_SRCU */
78 static DECLARE_RWSEM(device_links_lock);
79 
80 static inline void device_links_write_lock(void)
81 {
82 	down_write(&device_links_lock);
83 }
84 
85 static inline void device_links_write_unlock(void)
86 {
87 	up_write(&device_links_lock);
88 }
89 
90 int device_links_read_lock(void)
91 {
92 	down_read(&device_links_lock);
93 	return 0;
94 }
95 
96 void device_links_read_unlock(int not_used)
97 {
98 	up_read(&device_links_lock);
99 }
100 
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 int device_links_read_lock_held(void)
103 {
104 	return lockdep_is_held(&device_links_lock);
105 }
106 #endif
107 #endif /* !CONFIG_SRCU */
108 
109 /**
110  * device_is_dependent - Check if one device depends on another one
111  * @dev: Device to check dependencies for.
112  * @target: Device to check against.
113  *
114  * Check if @target depends on @dev or any device dependent on it (its child or
115  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
116  */
117 static int device_is_dependent(struct device *dev, void *target)
118 {
119 	struct device_link *link;
120 	int ret;
121 
122 	if (dev == target)
123 		return 1;
124 
125 	ret = device_for_each_child(dev, target, device_is_dependent);
126 	if (ret)
127 		return ret;
128 
129 	list_for_each_entry(link, &dev->links.consumers, s_node) {
130 		if (link->consumer == target)
131 			return 1;
132 
133 		ret = device_is_dependent(link->consumer, target);
134 		if (ret)
135 			break;
136 	}
137 	return ret;
138 }
139 
140 static void device_link_init_status(struct device_link *link,
141 				    struct device *consumer,
142 				    struct device *supplier)
143 {
144 	switch (supplier->links.status) {
145 	case DL_DEV_PROBING:
146 		switch (consumer->links.status) {
147 		case DL_DEV_PROBING:
148 			/*
149 			 * A consumer driver can create a link to a supplier
150 			 * that has not completed its probing yet as long as it
151 			 * knows that the supplier is already functional (for
152 			 * example, it has just acquired some resources from the
153 			 * supplier).
154 			 */
155 			link->status = DL_STATE_CONSUMER_PROBE;
156 			break;
157 		default:
158 			link->status = DL_STATE_DORMANT;
159 			break;
160 		}
161 		break;
162 	case DL_DEV_DRIVER_BOUND:
163 		switch (consumer->links.status) {
164 		case DL_DEV_PROBING:
165 			link->status = DL_STATE_CONSUMER_PROBE;
166 			break;
167 		case DL_DEV_DRIVER_BOUND:
168 			link->status = DL_STATE_ACTIVE;
169 			break;
170 		default:
171 			link->status = DL_STATE_AVAILABLE;
172 			break;
173 		}
174 		break;
175 	case DL_DEV_UNBINDING:
176 		link->status = DL_STATE_SUPPLIER_UNBIND;
177 		break;
178 	default:
179 		link->status = DL_STATE_DORMANT;
180 		break;
181 	}
182 }
183 
184 static int device_reorder_to_tail(struct device *dev, void *not_used)
185 {
186 	struct device_link *link;
187 
188 	/*
189 	 * Devices that have not been registered yet will be put to the ends
190 	 * of the lists during the registration, so skip them here.
191 	 */
192 	if (device_is_registered(dev))
193 		devices_kset_move_last(dev);
194 
195 	if (device_pm_initialized(dev))
196 		device_pm_move_last(dev);
197 
198 	device_for_each_child(dev, NULL, device_reorder_to_tail);
199 	list_for_each_entry(link, &dev->links.consumers, s_node)
200 		device_reorder_to_tail(link->consumer, NULL);
201 
202 	return 0;
203 }
204 
205 /**
206  * device_pm_move_to_tail - Move set of devices to the end of device lists
207  * @dev: Device to move
208  *
209  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
210  *
211  * It moves the @dev along with all of its children and all of its consumers
212  * to the ends of the device_kset and dpm_list, recursively.
213  */
214 void device_pm_move_to_tail(struct device *dev)
215 {
216 	int idx;
217 
218 	idx = device_links_read_lock();
219 	device_pm_lock();
220 	device_reorder_to_tail(dev, NULL);
221 	device_pm_unlock();
222 	device_links_read_unlock(idx);
223 }
224 
225 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
226 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
227 			       DL_FLAG_AUTOPROBE_CONSUMER)
228 
229 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
230 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
231 
232 /**
233  * device_link_add - Create a link between two devices.
234  * @consumer: Consumer end of the link.
235  * @supplier: Supplier end of the link.
236  * @flags: Link flags.
237  *
238  * The caller is responsible for the proper synchronization of the link creation
239  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
240  * runtime PM framework to take the link into account.  Second, if the
241  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
242  * be forced into the active metastate and reference-counted upon the creation
243  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
244  * ignored.
245  *
246  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
247  * expected to release the link returned by it directly with the help of either
248  * device_link_del() or device_link_remove().
249  *
250  * If that flag is not set, however, the caller of this function is handing the
251  * management of the link over to the driver core entirely and its return value
252  * can only be used to check whether or not the link is present.  In that case,
253  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
254  * flags can be used to indicate to the driver core when the link can be safely
255  * deleted.  Namely, setting one of them in @flags indicates to the driver core
256  * that the link is not going to be used (by the given caller of this function)
257  * after unbinding the consumer or supplier driver, respectively, from its
258  * device, so the link can be deleted at that point.  If none of them is set,
259  * the link will be maintained until one of the devices pointed to by it (either
260  * the consumer or the supplier) is unregistered.
261  *
262  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
263  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
264  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
265  * be used to request the driver core to automaticall probe for a consmer
266  * driver after successfully binding a driver to the supplier device.
267  *
268  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
269  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
270  * the same time is invalid and will cause NULL to be returned upfront.
271  * However, if a device link between the given @consumer and @supplier pair
272  * exists already when this function is called for them, the existing link will
273  * be returned regardless of its current type and status (the link's flags may
274  * be modified then).  The caller of this function is then expected to treat
275  * the link as though it has just been created, so (in particular) if
276  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
277  * explicitly when not needed any more (as stated above).
278  *
279  * A side effect of the link creation is re-ordering of dpm_list and the
280  * devices_kset list by moving the consumer device and all devices depending
281  * on it to the ends of these lists (that does not happen to devices that have
282  * not been registered when this function is called).
283  *
284  * The supplier device is required to be registered when this function is called
285  * and NULL will be returned if that is not the case.  The consumer device need
286  * not be registered, however.
287  */
288 struct device_link *device_link_add(struct device *consumer,
289 				    struct device *supplier, u32 flags)
290 {
291 	struct device_link *link;
292 
293 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
294 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
295 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
296 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
297 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
298 		return NULL;
299 
300 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
301 		if (pm_runtime_get_sync(supplier) < 0) {
302 			pm_runtime_put_noidle(supplier);
303 			return NULL;
304 		}
305 	}
306 
307 	if (!(flags & DL_FLAG_STATELESS))
308 		flags |= DL_FLAG_MANAGED;
309 
310 	device_links_write_lock();
311 	device_pm_lock();
312 
313 	/*
314 	 * If the supplier has not been fully registered yet or there is a
315 	 * reverse dependency between the consumer and the supplier already in
316 	 * the graph, return NULL.
317 	 */
318 	if (!device_pm_initialized(supplier)
319 	    || device_is_dependent(consumer, supplier)) {
320 		link = NULL;
321 		goto out;
322 	}
323 
324 	/*
325 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
326 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
327 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
328 	 */
329 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
330 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
331 
332 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
333 		if (link->consumer != consumer)
334 			continue;
335 
336 		if (flags & DL_FLAG_PM_RUNTIME) {
337 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
338 				pm_runtime_new_link(consumer);
339 				link->flags |= DL_FLAG_PM_RUNTIME;
340 			}
341 			if (flags & DL_FLAG_RPM_ACTIVE)
342 				refcount_inc(&link->rpm_active);
343 		}
344 
345 		if (flags & DL_FLAG_STATELESS) {
346 			link->flags |= DL_FLAG_STATELESS;
347 			kref_get(&link->kref);
348 			goto out;
349 		}
350 
351 		/*
352 		 * If the life time of the link following from the new flags is
353 		 * longer than indicated by the flags of the existing link,
354 		 * update the existing link to stay around longer.
355 		 */
356 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
357 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
358 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
359 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
360 			}
361 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
362 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
363 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
364 		}
365 		if (!(link->flags & DL_FLAG_MANAGED)) {
366 			kref_get(&link->kref);
367 			link->flags |= DL_FLAG_MANAGED;
368 			device_link_init_status(link, consumer, supplier);
369 		}
370 		goto out;
371 	}
372 
373 	link = kzalloc(sizeof(*link), GFP_KERNEL);
374 	if (!link)
375 		goto out;
376 
377 	refcount_set(&link->rpm_active, 1);
378 
379 	if (flags & DL_FLAG_PM_RUNTIME) {
380 		if (flags & DL_FLAG_RPM_ACTIVE)
381 			refcount_inc(&link->rpm_active);
382 
383 		pm_runtime_new_link(consumer);
384 	}
385 
386 	get_device(supplier);
387 	link->supplier = supplier;
388 	INIT_LIST_HEAD(&link->s_node);
389 	get_device(consumer);
390 	link->consumer = consumer;
391 	INIT_LIST_HEAD(&link->c_node);
392 	link->flags = flags;
393 	kref_init(&link->kref);
394 
395 	/* Determine the initial link state. */
396 	if (flags & DL_FLAG_STATELESS)
397 		link->status = DL_STATE_NONE;
398 	else
399 		device_link_init_status(link, consumer, supplier);
400 
401 	/*
402 	 * Some callers expect the link creation during consumer driver probe to
403 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
404 	 */
405 	if (link->status == DL_STATE_CONSUMER_PROBE &&
406 	    flags & DL_FLAG_PM_RUNTIME)
407 		pm_runtime_resume(supplier);
408 
409 	/*
410 	 * Move the consumer and all of the devices depending on it to the end
411 	 * of dpm_list and the devices_kset list.
412 	 *
413 	 * It is necessary to hold dpm_list locked throughout all that or else
414 	 * we may end up suspending with a wrong ordering of it.
415 	 */
416 	device_reorder_to_tail(consumer, NULL);
417 
418 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
419 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
420 
421 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
422 
423  out:
424 	device_pm_unlock();
425 	device_links_write_unlock();
426 
427 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
428 		pm_runtime_put(supplier);
429 
430 	return link;
431 }
432 EXPORT_SYMBOL_GPL(device_link_add);
433 
434 static void device_link_free(struct device_link *link)
435 {
436 	while (refcount_dec_not_one(&link->rpm_active))
437 		pm_runtime_put(link->supplier);
438 
439 	put_device(link->consumer);
440 	put_device(link->supplier);
441 	kfree(link);
442 }
443 
444 #ifdef CONFIG_SRCU
445 static void __device_link_free_srcu(struct rcu_head *rhead)
446 {
447 	device_link_free(container_of(rhead, struct device_link, rcu_head));
448 }
449 
450 static void __device_link_del(struct kref *kref)
451 {
452 	struct device_link *link = container_of(kref, struct device_link, kref);
453 
454 	dev_dbg(link->consumer, "Dropping the link to %s\n",
455 		dev_name(link->supplier));
456 
457 	if (link->flags & DL_FLAG_PM_RUNTIME)
458 		pm_runtime_drop_link(link->consumer);
459 
460 	list_del_rcu(&link->s_node);
461 	list_del_rcu(&link->c_node);
462 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
463 }
464 #else /* !CONFIG_SRCU */
465 static void __device_link_del(struct kref *kref)
466 {
467 	struct device_link *link = container_of(kref, struct device_link, kref);
468 
469 	dev_info(link->consumer, "Dropping the link to %s\n",
470 		 dev_name(link->supplier));
471 
472 	if (link->flags & DL_FLAG_PM_RUNTIME)
473 		pm_runtime_drop_link(link->consumer);
474 
475 	list_del(&link->s_node);
476 	list_del(&link->c_node);
477 	device_link_free(link);
478 }
479 #endif /* !CONFIG_SRCU */
480 
481 static void device_link_put_kref(struct device_link *link)
482 {
483 	if (link->flags & DL_FLAG_STATELESS)
484 		kref_put(&link->kref, __device_link_del);
485 	else
486 		WARN(1, "Unable to drop a managed device link reference\n");
487 }
488 
489 /**
490  * device_link_del - Delete a stateless link between two devices.
491  * @link: Device link to delete.
492  *
493  * The caller must ensure proper synchronization of this function with runtime
494  * PM.  If the link was added multiple times, it needs to be deleted as often.
495  * Care is required for hotplugged devices:  Their links are purged on removal
496  * and calling device_link_del() is then no longer allowed.
497  */
498 void device_link_del(struct device_link *link)
499 {
500 	device_links_write_lock();
501 	device_pm_lock();
502 	device_link_put_kref(link);
503 	device_pm_unlock();
504 	device_links_write_unlock();
505 }
506 EXPORT_SYMBOL_GPL(device_link_del);
507 
508 /**
509  * device_link_remove - Delete a stateless link between two devices.
510  * @consumer: Consumer end of the link.
511  * @supplier: Supplier end of the link.
512  *
513  * The caller must ensure proper synchronization of this function with runtime
514  * PM.
515  */
516 void device_link_remove(void *consumer, struct device *supplier)
517 {
518 	struct device_link *link;
519 
520 	if (WARN_ON(consumer == supplier))
521 		return;
522 
523 	device_links_write_lock();
524 	device_pm_lock();
525 
526 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
527 		if (link->consumer == consumer) {
528 			device_link_put_kref(link);
529 			break;
530 		}
531 	}
532 
533 	device_pm_unlock();
534 	device_links_write_unlock();
535 }
536 EXPORT_SYMBOL_GPL(device_link_remove);
537 
538 static void device_links_missing_supplier(struct device *dev)
539 {
540 	struct device_link *link;
541 
542 	list_for_each_entry(link, &dev->links.suppliers, c_node)
543 		if (link->status == DL_STATE_CONSUMER_PROBE)
544 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
545 }
546 
547 /**
548  * device_links_check_suppliers - Check presence of supplier drivers.
549  * @dev: Consumer device.
550  *
551  * Check links from this device to any suppliers.  Walk the list of the device's
552  * links to suppliers and see if all of them are available.  If not, simply
553  * return -EPROBE_DEFER.
554  *
555  * We need to guarantee that the supplier will not go away after the check has
556  * been positive here.  It only can go away in __device_release_driver() and
557  * that function  checks the device's links to consumers.  This means we need to
558  * mark the link as "consumer probe in progress" to make the supplier removal
559  * wait for us to complete (or bad things may happen).
560  *
561  * Links without the DL_FLAG_MANAGED flag set are ignored.
562  */
563 int device_links_check_suppliers(struct device *dev)
564 {
565 	struct device_link *link;
566 	int ret = 0;
567 
568 	device_links_write_lock();
569 
570 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
571 		if (!(link->flags & DL_FLAG_MANAGED))
572 			continue;
573 
574 		if (link->status != DL_STATE_AVAILABLE) {
575 			device_links_missing_supplier(dev);
576 			ret = -EPROBE_DEFER;
577 			break;
578 		}
579 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
580 	}
581 	dev->links.status = DL_DEV_PROBING;
582 
583 	device_links_write_unlock();
584 	return ret;
585 }
586 
587 /**
588  * device_links_driver_bound - Update device links after probing its driver.
589  * @dev: Device to update the links for.
590  *
591  * The probe has been successful, so update links from this device to any
592  * consumers by changing their status to "available".
593  *
594  * Also change the status of @dev's links to suppliers to "active".
595  *
596  * Links without the DL_FLAG_MANAGED flag set are ignored.
597  */
598 void device_links_driver_bound(struct device *dev)
599 {
600 	struct device_link *link;
601 
602 	device_links_write_lock();
603 
604 	list_for_each_entry(link, &dev->links.consumers, s_node) {
605 		if (!(link->flags & DL_FLAG_MANAGED))
606 			continue;
607 
608 		/*
609 		 * Links created during consumer probe may be in the "consumer
610 		 * probe" state to start with if the supplier is still probing
611 		 * when they are created and they may become "active" if the
612 		 * consumer probe returns first.  Skip them here.
613 		 */
614 		if (link->status == DL_STATE_CONSUMER_PROBE ||
615 		    link->status == DL_STATE_ACTIVE)
616 			continue;
617 
618 		WARN_ON(link->status != DL_STATE_DORMANT);
619 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
620 
621 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
622 			driver_deferred_probe_add(link->consumer);
623 	}
624 
625 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
626 		if (!(link->flags & DL_FLAG_MANAGED))
627 			continue;
628 
629 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
630 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
631 	}
632 
633 	dev->links.status = DL_DEV_DRIVER_BOUND;
634 
635 	device_links_write_unlock();
636 }
637 
638 static void device_link_drop_managed(struct device_link *link)
639 {
640 	link->flags &= ~DL_FLAG_MANAGED;
641 	WRITE_ONCE(link->status, DL_STATE_NONE);
642 	kref_put(&link->kref, __device_link_del);
643 }
644 
645 /**
646  * __device_links_no_driver - Update links of a device without a driver.
647  * @dev: Device without a drvier.
648  *
649  * Delete all non-persistent links from this device to any suppliers.
650  *
651  * Persistent links stay around, but their status is changed to "available",
652  * unless they already are in the "supplier unbind in progress" state in which
653  * case they need not be updated.
654  *
655  * Links without the DL_FLAG_MANAGED flag set are ignored.
656  */
657 static void __device_links_no_driver(struct device *dev)
658 {
659 	struct device_link *link, *ln;
660 
661 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
662 		if (!(link->flags & DL_FLAG_MANAGED))
663 			continue;
664 
665 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
666 			device_link_drop_managed(link);
667 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
668 			 link->status == DL_STATE_ACTIVE)
669 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
670 	}
671 
672 	dev->links.status = DL_DEV_NO_DRIVER;
673 }
674 
675 /**
676  * device_links_no_driver - Update links after failing driver probe.
677  * @dev: Device whose driver has just failed to probe.
678  *
679  * Clean up leftover links to consumers for @dev and invoke
680  * %__device_links_no_driver() to update links to suppliers for it as
681  * appropriate.
682  *
683  * Links without the DL_FLAG_MANAGED flag set are ignored.
684  */
685 void device_links_no_driver(struct device *dev)
686 {
687 	struct device_link *link;
688 
689 	device_links_write_lock();
690 
691 	list_for_each_entry(link, &dev->links.consumers, s_node) {
692 		if (!(link->flags & DL_FLAG_MANAGED))
693 			continue;
694 
695 		/*
696 		 * The probe has failed, so if the status of the link is
697 		 * "consumer probe" or "active", it must have been added by
698 		 * a probing consumer while this device was still probing.
699 		 * Change its state to "dormant", as it represents a valid
700 		 * relationship, but it is not functionally meaningful.
701 		 */
702 		if (link->status == DL_STATE_CONSUMER_PROBE ||
703 		    link->status == DL_STATE_ACTIVE)
704 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
705 	}
706 
707 	__device_links_no_driver(dev);
708 
709 	device_links_write_unlock();
710 }
711 
712 /**
713  * device_links_driver_cleanup - Update links after driver removal.
714  * @dev: Device whose driver has just gone away.
715  *
716  * Update links to consumers for @dev by changing their status to "dormant" and
717  * invoke %__device_links_no_driver() to update links to suppliers for it as
718  * appropriate.
719  *
720  * Links without the DL_FLAG_MANAGED flag set are ignored.
721  */
722 void device_links_driver_cleanup(struct device *dev)
723 {
724 	struct device_link *link, *ln;
725 
726 	device_links_write_lock();
727 
728 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
729 		if (!(link->flags & DL_FLAG_MANAGED))
730 			continue;
731 
732 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
733 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
734 
735 		/*
736 		 * autoremove the links between this @dev and its consumer
737 		 * devices that are not active, i.e. where the link state
738 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
739 		 */
740 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
741 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
742 			device_link_drop_managed(link);
743 
744 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
745 	}
746 
747 	__device_links_no_driver(dev);
748 
749 	device_links_write_unlock();
750 }
751 
752 /**
753  * device_links_busy - Check if there are any busy links to consumers.
754  * @dev: Device to check.
755  *
756  * Check each consumer of the device and return 'true' if its link's status
757  * is one of "consumer probe" or "active" (meaning that the given consumer is
758  * probing right now or its driver is present).  Otherwise, change the link
759  * state to "supplier unbind" to prevent the consumer from being probed
760  * successfully going forward.
761  *
762  * Return 'false' if there are no probing or active consumers.
763  *
764  * Links without the DL_FLAG_MANAGED flag set are ignored.
765  */
766 bool device_links_busy(struct device *dev)
767 {
768 	struct device_link *link;
769 	bool ret = false;
770 
771 	device_links_write_lock();
772 
773 	list_for_each_entry(link, &dev->links.consumers, s_node) {
774 		if (!(link->flags & DL_FLAG_MANAGED))
775 			continue;
776 
777 		if (link->status == DL_STATE_CONSUMER_PROBE
778 		    || link->status == DL_STATE_ACTIVE) {
779 			ret = true;
780 			break;
781 		}
782 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
783 	}
784 
785 	dev->links.status = DL_DEV_UNBINDING;
786 
787 	device_links_write_unlock();
788 	return ret;
789 }
790 
791 /**
792  * device_links_unbind_consumers - Force unbind consumers of the given device.
793  * @dev: Device to unbind the consumers of.
794  *
795  * Walk the list of links to consumers for @dev and if any of them is in the
796  * "consumer probe" state, wait for all device probes in progress to complete
797  * and start over.
798  *
799  * If that's not the case, change the status of the link to "supplier unbind"
800  * and check if the link was in the "active" state.  If so, force the consumer
801  * driver to unbind and start over (the consumer will not re-probe as we have
802  * changed the state of the link already).
803  *
804  * Links without the DL_FLAG_MANAGED flag set are ignored.
805  */
806 void device_links_unbind_consumers(struct device *dev)
807 {
808 	struct device_link *link;
809 
810  start:
811 	device_links_write_lock();
812 
813 	list_for_each_entry(link, &dev->links.consumers, s_node) {
814 		enum device_link_state status;
815 
816 		if (!(link->flags & DL_FLAG_MANAGED))
817 			continue;
818 
819 		status = link->status;
820 		if (status == DL_STATE_CONSUMER_PROBE) {
821 			device_links_write_unlock();
822 
823 			wait_for_device_probe();
824 			goto start;
825 		}
826 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
827 		if (status == DL_STATE_ACTIVE) {
828 			struct device *consumer = link->consumer;
829 
830 			get_device(consumer);
831 
832 			device_links_write_unlock();
833 
834 			device_release_driver_internal(consumer, NULL,
835 						       consumer->parent);
836 			put_device(consumer);
837 			goto start;
838 		}
839 	}
840 
841 	device_links_write_unlock();
842 }
843 
844 /**
845  * device_links_purge - Delete existing links to other devices.
846  * @dev: Target device.
847  */
848 static void device_links_purge(struct device *dev)
849 {
850 	struct device_link *link, *ln;
851 
852 	/*
853 	 * Delete all of the remaining links from this device to any other
854 	 * devices (either consumers or suppliers).
855 	 */
856 	device_links_write_lock();
857 
858 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
859 		WARN_ON(link->status == DL_STATE_ACTIVE);
860 		__device_link_del(&link->kref);
861 	}
862 
863 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
864 		WARN_ON(link->status != DL_STATE_DORMANT &&
865 			link->status != DL_STATE_NONE);
866 		__device_link_del(&link->kref);
867 	}
868 
869 	device_links_write_unlock();
870 }
871 
872 /* Device links support end. */
873 
874 int (*platform_notify)(struct device *dev) = NULL;
875 int (*platform_notify_remove)(struct device *dev) = NULL;
876 static struct kobject *dev_kobj;
877 struct kobject *sysfs_dev_char_kobj;
878 struct kobject *sysfs_dev_block_kobj;
879 
880 static DEFINE_MUTEX(device_hotplug_lock);
881 
882 void lock_device_hotplug(void)
883 {
884 	mutex_lock(&device_hotplug_lock);
885 }
886 
887 void unlock_device_hotplug(void)
888 {
889 	mutex_unlock(&device_hotplug_lock);
890 }
891 
892 int lock_device_hotplug_sysfs(void)
893 {
894 	if (mutex_trylock(&device_hotplug_lock))
895 		return 0;
896 
897 	/* Avoid busy looping (5 ms of sleep should do). */
898 	msleep(5);
899 	return restart_syscall();
900 }
901 
902 #ifdef CONFIG_BLOCK
903 static inline int device_is_not_partition(struct device *dev)
904 {
905 	return !(dev->type == &part_type);
906 }
907 #else
908 static inline int device_is_not_partition(struct device *dev)
909 {
910 	return 1;
911 }
912 #endif
913 
914 static int
915 device_platform_notify(struct device *dev, enum kobject_action action)
916 {
917 	int ret;
918 
919 	ret = acpi_platform_notify(dev, action);
920 	if (ret)
921 		return ret;
922 
923 	ret = software_node_notify(dev, action);
924 	if (ret)
925 		return ret;
926 
927 	if (platform_notify && action == KOBJ_ADD)
928 		platform_notify(dev);
929 	else if (platform_notify_remove && action == KOBJ_REMOVE)
930 		platform_notify_remove(dev);
931 	return 0;
932 }
933 
934 /**
935  * dev_driver_string - Return a device's driver name, if at all possible
936  * @dev: struct device to get the name of
937  *
938  * Will return the device's driver's name if it is bound to a device.  If
939  * the device is not bound to a driver, it will return the name of the bus
940  * it is attached to.  If it is not attached to a bus either, an empty
941  * string will be returned.
942  */
943 const char *dev_driver_string(const struct device *dev)
944 {
945 	struct device_driver *drv;
946 
947 	/* dev->driver can change to NULL underneath us because of unbinding,
948 	 * so be careful about accessing it.  dev->bus and dev->class should
949 	 * never change once they are set, so they don't need special care.
950 	 */
951 	drv = READ_ONCE(dev->driver);
952 	return drv ? drv->name :
953 			(dev->bus ? dev->bus->name :
954 			(dev->class ? dev->class->name : ""));
955 }
956 EXPORT_SYMBOL(dev_driver_string);
957 
958 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
959 
960 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
961 			     char *buf)
962 {
963 	struct device_attribute *dev_attr = to_dev_attr(attr);
964 	struct device *dev = kobj_to_dev(kobj);
965 	ssize_t ret = -EIO;
966 
967 	if (dev_attr->show)
968 		ret = dev_attr->show(dev, dev_attr, buf);
969 	if (ret >= (ssize_t)PAGE_SIZE) {
970 		printk("dev_attr_show: %pS returned bad count\n",
971 				dev_attr->show);
972 	}
973 	return ret;
974 }
975 
976 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
977 			      const char *buf, size_t count)
978 {
979 	struct device_attribute *dev_attr = to_dev_attr(attr);
980 	struct device *dev = kobj_to_dev(kobj);
981 	ssize_t ret = -EIO;
982 
983 	if (dev_attr->store)
984 		ret = dev_attr->store(dev, dev_attr, buf, count);
985 	return ret;
986 }
987 
988 static const struct sysfs_ops dev_sysfs_ops = {
989 	.show	= dev_attr_show,
990 	.store	= dev_attr_store,
991 };
992 
993 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
994 
995 ssize_t device_store_ulong(struct device *dev,
996 			   struct device_attribute *attr,
997 			   const char *buf, size_t size)
998 {
999 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1000 	int ret;
1001 	unsigned long new;
1002 
1003 	ret = kstrtoul(buf, 0, &new);
1004 	if (ret)
1005 		return ret;
1006 	*(unsigned long *)(ea->var) = new;
1007 	/* Always return full write size even if we didn't consume all */
1008 	return size;
1009 }
1010 EXPORT_SYMBOL_GPL(device_store_ulong);
1011 
1012 ssize_t device_show_ulong(struct device *dev,
1013 			  struct device_attribute *attr,
1014 			  char *buf)
1015 {
1016 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1017 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018 }
1019 EXPORT_SYMBOL_GPL(device_show_ulong);
1020 
1021 ssize_t device_store_int(struct device *dev,
1022 			 struct device_attribute *attr,
1023 			 const char *buf, size_t size)
1024 {
1025 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1026 	int ret;
1027 	long new;
1028 
1029 	ret = kstrtol(buf, 0, &new);
1030 	if (ret)
1031 		return ret;
1032 
1033 	if (new > INT_MAX || new < INT_MIN)
1034 		return -EINVAL;
1035 	*(int *)(ea->var) = new;
1036 	/* Always return full write size even if we didn't consume all */
1037 	return size;
1038 }
1039 EXPORT_SYMBOL_GPL(device_store_int);
1040 
1041 ssize_t device_show_int(struct device *dev,
1042 			struct device_attribute *attr,
1043 			char *buf)
1044 {
1045 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1046 
1047 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048 }
1049 EXPORT_SYMBOL_GPL(device_show_int);
1050 
1051 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052 			  const char *buf, size_t size)
1053 {
1054 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1055 
1056 	if (strtobool(buf, ea->var) < 0)
1057 		return -EINVAL;
1058 
1059 	return size;
1060 }
1061 EXPORT_SYMBOL_GPL(device_store_bool);
1062 
1063 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064 			 char *buf)
1065 {
1066 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1067 
1068 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069 }
1070 EXPORT_SYMBOL_GPL(device_show_bool);
1071 
1072 /**
1073  * device_release - free device structure.
1074  * @kobj: device's kobject.
1075  *
1076  * This is called once the reference count for the object
1077  * reaches 0. We forward the call to the device's release
1078  * method, which should handle actually freeing the structure.
1079  */
1080 static void device_release(struct kobject *kobj)
1081 {
1082 	struct device *dev = kobj_to_dev(kobj);
1083 	struct device_private *p = dev->p;
1084 
1085 	/*
1086 	 * Some platform devices are driven without driver attached
1087 	 * and managed resources may have been acquired.  Make sure
1088 	 * all resources are released.
1089 	 *
1090 	 * Drivers still can add resources into device after device
1091 	 * is deleted but alive, so release devres here to avoid
1092 	 * possible memory leak.
1093 	 */
1094 	devres_release_all(dev);
1095 
1096 	if (dev->release)
1097 		dev->release(dev);
1098 	else if (dev->type && dev->type->release)
1099 		dev->type->release(dev);
1100 	else if (dev->class && dev->class->dev_release)
1101 		dev->class->dev_release(dev);
1102 	else
1103 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104 			dev_name(dev));
1105 	kfree(p);
1106 }
1107 
1108 static const void *device_namespace(struct kobject *kobj)
1109 {
1110 	struct device *dev = kobj_to_dev(kobj);
1111 	const void *ns = NULL;
1112 
1113 	if (dev->class && dev->class->ns_type)
1114 		ns = dev->class->namespace(dev);
1115 
1116 	return ns;
1117 }
1118 
1119 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120 {
1121 	struct device *dev = kobj_to_dev(kobj);
1122 
1123 	if (dev->class && dev->class->get_ownership)
1124 		dev->class->get_ownership(dev, uid, gid);
1125 }
1126 
1127 static struct kobj_type device_ktype = {
1128 	.release	= device_release,
1129 	.sysfs_ops	= &dev_sysfs_ops,
1130 	.namespace	= device_namespace,
1131 	.get_ownership	= device_get_ownership,
1132 };
1133 
1134 
1135 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136 {
1137 	struct kobj_type *ktype = get_ktype(kobj);
1138 
1139 	if (ktype == &device_ktype) {
1140 		struct device *dev = kobj_to_dev(kobj);
1141 		if (dev->bus)
1142 			return 1;
1143 		if (dev->class)
1144 			return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150 {
1151 	struct device *dev = kobj_to_dev(kobj);
1152 
1153 	if (dev->bus)
1154 		return dev->bus->name;
1155 	if (dev->class)
1156 		return dev->class->name;
1157 	return NULL;
1158 }
1159 
1160 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161 		      struct kobj_uevent_env *env)
1162 {
1163 	struct device *dev = kobj_to_dev(kobj);
1164 	int retval = 0;
1165 
1166 	/* add device node properties if present */
1167 	if (MAJOR(dev->devt)) {
1168 		const char *tmp;
1169 		const char *name;
1170 		umode_t mode = 0;
1171 		kuid_t uid = GLOBAL_ROOT_UID;
1172 		kgid_t gid = GLOBAL_ROOT_GID;
1173 
1174 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177 		if (name) {
1178 			add_uevent_var(env, "DEVNAME=%s", name);
1179 			if (mode)
1180 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185 			kfree(tmp);
1186 		}
1187 	}
1188 
1189 	if (dev->type && dev->type->name)
1190 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191 
1192 	if (dev->driver)
1193 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194 
1195 	/* Add common DT information about the device */
1196 	of_device_uevent(dev, env);
1197 
1198 	/* have the bus specific function add its stuff */
1199 	if (dev->bus && dev->bus->uevent) {
1200 		retval = dev->bus->uevent(dev, env);
1201 		if (retval)
1202 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203 				 dev_name(dev), __func__, retval);
1204 	}
1205 
1206 	/* have the class specific function add its stuff */
1207 	if (dev->class && dev->class->dev_uevent) {
1208 		retval = dev->class->dev_uevent(dev, env);
1209 		if (retval)
1210 			pr_debug("device: '%s': %s: class uevent() "
1211 				 "returned %d\n", dev_name(dev),
1212 				 __func__, retval);
1213 	}
1214 
1215 	/* have the device type specific function add its stuff */
1216 	if (dev->type && dev->type->uevent) {
1217 		retval = dev->type->uevent(dev, env);
1218 		if (retval)
1219 			pr_debug("device: '%s': %s: dev_type uevent() "
1220 				 "returned %d\n", dev_name(dev),
1221 				 __func__, retval);
1222 	}
1223 
1224 	return retval;
1225 }
1226 
1227 static const struct kset_uevent_ops device_uevent_ops = {
1228 	.filter =	dev_uevent_filter,
1229 	.name =		dev_uevent_name,
1230 	.uevent =	dev_uevent,
1231 };
1232 
1233 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234 			   char *buf)
1235 {
1236 	struct kobject *top_kobj;
1237 	struct kset *kset;
1238 	struct kobj_uevent_env *env = NULL;
1239 	int i;
1240 	size_t count = 0;
1241 	int retval;
1242 
1243 	/* search the kset, the device belongs to */
1244 	top_kobj = &dev->kobj;
1245 	while (!top_kobj->kset && top_kobj->parent)
1246 		top_kobj = top_kobj->parent;
1247 	if (!top_kobj->kset)
1248 		goto out;
1249 
1250 	kset = top_kobj->kset;
1251 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252 		goto out;
1253 
1254 	/* respect filter */
1255 	if (kset->uevent_ops && kset->uevent_ops->filter)
1256 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257 			goto out;
1258 
1259 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260 	if (!env)
1261 		return -ENOMEM;
1262 
1263 	/* let the kset specific function add its keys */
1264 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265 	if (retval)
1266 		goto out;
1267 
1268 	/* copy keys to file */
1269 	for (i = 0; i < env->envp_idx; i++)
1270 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271 out:
1272 	kfree(env);
1273 	return count;
1274 }
1275 
1276 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277 			    const char *buf, size_t count)
1278 {
1279 	int rc;
1280 
1281 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282 
1283 	if (rc) {
1284 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285 		return rc;
1286 	}
1287 
1288 	return count;
1289 }
1290 static DEVICE_ATTR_RW(uevent);
1291 
1292 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293 			   char *buf)
1294 {
1295 	bool val;
1296 
1297 	device_lock(dev);
1298 	val = !dev->offline;
1299 	device_unlock(dev);
1300 	return sprintf(buf, "%u\n", val);
1301 }
1302 
1303 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304 			    const char *buf, size_t count)
1305 {
1306 	bool val;
1307 	int ret;
1308 
1309 	ret = strtobool(buf, &val);
1310 	if (ret < 0)
1311 		return ret;
1312 
1313 	ret = lock_device_hotplug_sysfs();
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = val ? device_online(dev) : device_offline(dev);
1318 	unlock_device_hotplug();
1319 	return ret < 0 ? ret : count;
1320 }
1321 static DEVICE_ATTR_RW(online);
1322 
1323 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324 {
1325 	return sysfs_create_groups(&dev->kobj, groups);
1326 }
1327 EXPORT_SYMBOL_GPL(device_add_groups);
1328 
1329 void device_remove_groups(struct device *dev,
1330 			  const struct attribute_group **groups)
1331 {
1332 	sysfs_remove_groups(&dev->kobj, groups);
1333 }
1334 EXPORT_SYMBOL_GPL(device_remove_groups);
1335 
1336 union device_attr_group_devres {
1337 	const struct attribute_group *group;
1338 	const struct attribute_group **groups;
1339 };
1340 
1341 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342 {
1343 	return ((union device_attr_group_devres *)res)->group == data;
1344 }
1345 
1346 static void devm_attr_group_remove(struct device *dev, void *res)
1347 {
1348 	union device_attr_group_devres *devres = res;
1349 	const struct attribute_group *group = devres->group;
1350 
1351 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352 	sysfs_remove_group(&dev->kobj, group);
1353 }
1354 
1355 static void devm_attr_groups_remove(struct device *dev, void *res)
1356 {
1357 	union device_attr_group_devres *devres = res;
1358 	const struct attribute_group **groups = devres->groups;
1359 
1360 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361 	sysfs_remove_groups(&dev->kobj, groups);
1362 }
1363 
1364 /**
1365  * devm_device_add_group - given a device, create a managed attribute group
1366  * @dev:	The device to create the group for
1367  * @grp:	The attribute group to create
1368  *
1369  * This function creates a group for the first time.  It will explicitly
1370  * warn and error if any of the attribute files being created already exist.
1371  *
1372  * Returns 0 on success or error code on failure.
1373  */
1374 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375 {
1376 	union device_attr_group_devres *devres;
1377 	int error;
1378 
1379 	devres = devres_alloc(devm_attr_group_remove,
1380 			      sizeof(*devres), GFP_KERNEL);
1381 	if (!devres)
1382 		return -ENOMEM;
1383 
1384 	error = sysfs_create_group(&dev->kobj, grp);
1385 	if (error) {
1386 		devres_free(devres);
1387 		return error;
1388 	}
1389 
1390 	devres->group = grp;
1391 	devres_add(dev, devres);
1392 	return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(devm_device_add_group);
1395 
1396 /**
1397  * devm_device_remove_group: remove a managed group from a device
1398  * @dev:	device to remove the group from
1399  * @grp:	group to remove
1400  *
1401  * This function removes a group of attributes from a device. The attributes
1402  * previously have to have been created for this group, otherwise it will fail.
1403  */
1404 void devm_device_remove_group(struct device *dev,
1405 			      const struct attribute_group *grp)
1406 {
1407 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1408 			       devm_attr_group_match,
1409 			       /* cast away const */ (void *)grp));
1410 }
1411 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412 
1413 /**
1414  * devm_device_add_groups - create a bunch of managed attribute groups
1415  * @dev:	The device to create the group for
1416  * @groups:	The attribute groups to create, NULL terminated
1417  *
1418  * This function creates a bunch of managed attribute groups.  If an error
1419  * occurs when creating a group, all previously created groups will be
1420  * removed, unwinding everything back to the original state when this
1421  * function was called.  It will explicitly warn and error if any of the
1422  * attribute files being created already exist.
1423  *
1424  * Returns 0 on success or error code from sysfs_create_group on failure.
1425  */
1426 int devm_device_add_groups(struct device *dev,
1427 			   const struct attribute_group **groups)
1428 {
1429 	union device_attr_group_devres *devres;
1430 	int error;
1431 
1432 	devres = devres_alloc(devm_attr_groups_remove,
1433 			      sizeof(*devres), GFP_KERNEL);
1434 	if (!devres)
1435 		return -ENOMEM;
1436 
1437 	error = sysfs_create_groups(&dev->kobj, groups);
1438 	if (error) {
1439 		devres_free(devres);
1440 		return error;
1441 	}
1442 
1443 	devres->groups = groups;
1444 	devres_add(dev, devres);
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448 
1449 /**
1450  * devm_device_remove_groups - remove a list of managed groups
1451  *
1452  * @dev:	The device for the groups to be removed from
1453  * @groups:	NULL terminated list of groups to be removed
1454  *
1455  * If groups is not NULL, remove the specified groups from the device.
1456  */
1457 void devm_device_remove_groups(struct device *dev,
1458 			       const struct attribute_group **groups)
1459 {
1460 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461 			       devm_attr_group_match,
1462 			       /* cast away const */ (void *)groups));
1463 }
1464 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465 
1466 static int device_add_attrs(struct device *dev)
1467 {
1468 	struct class *class = dev->class;
1469 	const struct device_type *type = dev->type;
1470 	int error;
1471 
1472 	if (class) {
1473 		error = device_add_groups(dev, class->dev_groups);
1474 		if (error)
1475 			return error;
1476 	}
1477 
1478 	if (type) {
1479 		error = device_add_groups(dev, type->groups);
1480 		if (error)
1481 			goto err_remove_class_groups;
1482 	}
1483 
1484 	error = device_add_groups(dev, dev->groups);
1485 	if (error)
1486 		goto err_remove_type_groups;
1487 
1488 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1489 		error = device_create_file(dev, &dev_attr_online);
1490 		if (error)
1491 			goto err_remove_dev_groups;
1492 	}
1493 
1494 	return 0;
1495 
1496  err_remove_dev_groups:
1497 	device_remove_groups(dev, dev->groups);
1498  err_remove_type_groups:
1499 	if (type)
1500 		device_remove_groups(dev, type->groups);
1501  err_remove_class_groups:
1502 	if (class)
1503 		device_remove_groups(dev, class->dev_groups);
1504 
1505 	return error;
1506 }
1507 
1508 static void device_remove_attrs(struct device *dev)
1509 {
1510 	struct class *class = dev->class;
1511 	const struct device_type *type = dev->type;
1512 
1513 	device_remove_file(dev, &dev_attr_online);
1514 	device_remove_groups(dev, dev->groups);
1515 
1516 	if (type)
1517 		device_remove_groups(dev, type->groups);
1518 
1519 	if (class)
1520 		device_remove_groups(dev, class->dev_groups);
1521 }
1522 
1523 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524 			char *buf)
1525 {
1526 	return print_dev_t(buf, dev->devt);
1527 }
1528 static DEVICE_ATTR_RO(dev);
1529 
1530 /* /sys/devices/ */
1531 struct kset *devices_kset;
1532 
1533 /**
1534  * devices_kset_move_before - Move device in the devices_kset's list.
1535  * @deva: Device to move.
1536  * @devb: Device @deva should come before.
1537  */
1538 static void devices_kset_move_before(struct device *deva, struct device *devb)
1539 {
1540 	if (!devices_kset)
1541 		return;
1542 	pr_debug("devices_kset: Moving %s before %s\n",
1543 		 dev_name(deva), dev_name(devb));
1544 	spin_lock(&devices_kset->list_lock);
1545 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546 	spin_unlock(&devices_kset->list_lock);
1547 }
1548 
1549 /**
1550  * devices_kset_move_after - Move device in the devices_kset's list.
1551  * @deva: Device to move
1552  * @devb: Device @deva should come after.
1553  */
1554 static void devices_kset_move_after(struct device *deva, struct device *devb)
1555 {
1556 	if (!devices_kset)
1557 		return;
1558 	pr_debug("devices_kset: Moving %s after %s\n",
1559 		 dev_name(deva), dev_name(devb));
1560 	spin_lock(&devices_kset->list_lock);
1561 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1562 	spin_unlock(&devices_kset->list_lock);
1563 }
1564 
1565 /**
1566  * devices_kset_move_last - move the device to the end of devices_kset's list.
1567  * @dev: device to move
1568  */
1569 void devices_kset_move_last(struct device *dev)
1570 {
1571 	if (!devices_kset)
1572 		return;
1573 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574 	spin_lock(&devices_kset->list_lock);
1575 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576 	spin_unlock(&devices_kset->list_lock);
1577 }
1578 
1579 /**
1580  * device_create_file - create sysfs attribute file for device.
1581  * @dev: device.
1582  * @attr: device attribute descriptor.
1583  */
1584 int device_create_file(struct device *dev,
1585 		       const struct device_attribute *attr)
1586 {
1587 	int error = 0;
1588 
1589 	if (dev) {
1590 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591 			"Attribute %s: write permission without 'store'\n",
1592 			attr->attr.name);
1593 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594 			"Attribute %s: read permission without 'show'\n",
1595 			attr->attr.name);
1596 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1597 	}
1598 
1599 	return error;
1600 }
1601 EXPORT_SYMBOL_GPL(device_create_file);
1602 
1603 /**
1604  * device_remove_file - remove sysfs attribute file.
1605  * @dev: device.
1606  * @attr: device attribute descriptor.
1607  */
1608 void device_remove_file(struct device *dev,
1609 			const struct device_attribute *attr)
1610 {
1611 	if (dev)
1612 		sysfs_remove_file(&dev->kobj, &attr->attr);
1613 }
1614 EXPORT_SYMBOL_GPL(device_remove_file);
1615 
1616 /**
1617  * device_remove_file_self - remove sysfs attribute file from its own method.
1618  * @dev: device.
1619  * @attr: device attribute descriptor.
1620  *
1621  * See kernfs_remove_self() for details.
1622  */
1623 bool device_remove_file_self(struct device *dev,
1624 			     const struct device_attribute *attr)
1625 {
1626 	if (dev)
1627 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628 	else
1629 		return false;
1630 }
1631 EXPORT_SYMBOL_GPL(device_remove_file_self);
1632 
1633 /**
1634  * device_create_bin_file - create sysfs binary attribute file for device.
1635  * @dev: device.
1636  * @attr: device binary attribute descriptor.
1637  */
1638 int device_create_bin_file(struct device *dev,
1639 			   const struct bin_attribute *attr)
1640 {
1641 	int error = -EINVAL;
1642 	if (dev)
1643 		error = sysfs_create_bin_file(&dev->kobj, attr);
1644 	return error;
1645 }
1646 EXPORT_SYMBOL_GPL(device_create_bin_file);
1647 
1648 /**
1649  * device_remove_bin_file - remove sysfs binary attribute file
1650  * @dev: device.
1651  * @attr: device binary attribute descriptor.
1652  */
1653 void device_remove_bin_file(struct device *dev,
1654 			    const struct bin_attribute *attr)
1655 {
1656 	if (dev)
1657 		sysfs_remove_bin_file(&dev->kobj, attr);
1658 }
1659 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660 
1661 static void klist_children_get(struct klist_node *n)
1662 {
1663 	struct device_private *p = to_device_private_parent(n);
1664 	struct device *dev = p->device;
1665 
1666 	get_device(dev);
1667 }
1668 
1669 static void klist_children_put(struct klist_node *n)
1670 {
1671 	struct device_private *p = to_device_private_parent(n);
1672 	struct device *dev = p->device;
1673 
1674 	put_device(dev);
1675 }
1676 
1677 /**
1678  * device_initialize - init device structure.
1679  * @dev: device.
1680  *
1681  * This prepares the device for use by other layers by initializing
1682  * its fields.
1683  * It is the first half of device_register(), if called by
1684  * that function, though it can also be called separately, so one
1685  * may use @dev's fields. In particular, get_device()/put_device()
1686  * may be used for reference counting of @dev after calling this
1687  * function.
1688  *
1689  * All fields in @dev must be initialized by the caller to 0, except
1690  * for those explicitly set to some other value.  The simplest
1691  * approach is to use kzalloc() to allocate the structure containing
1692  * @dev.
1693  *
1694  * NOTE: Use put_device() to give up your reference instead of freeing
1695  * @dev directly once you have called this function.
1696  */
1697 void device_initialize(struct device *dev)
1698 {
1699 	dev->kobj.kset = devices_kset;
1700 	kobject_init(&dev->kobj, &device_ktype);
1701 	INIT_LIST_HEAD(&dev->dma_pools);
1702 	mutex_init(&dev->mutex);
1703 #ifdef CONFIG_PROVE_LOCKING
1704 	mutex_init(&dev->lockdep_mutex);
1705 #endif
1706 	lockdep_set_novalidate_class(&dev->mutex);
1707 	spin_lock_init(&dev->devres_lock);
1708 	INIT_LIST_HEAD(&dev->devres_head);
1709 	device_pm_init(dev);
1710 	set_dev_node(dev, -1);
1711 #ifdef CONFIG_GENERIC_MSI_IRQ
1712 	INIT_LIST_HEAD(&dev->msi_list);
1713 #endif
1714 	INIT_LIST_HEAD(&dev->links.consumers);
1715 	INIT_LIST_HEAD(&dev->links.suppliers);
1716 	dev->links.status = DL_DEV_NO_DRIVER;
1717 }
1718 EXPORT_SYMBOL_GPL(device_initialize);
1719 
1720 struct kobject *virtual_device_parent(struct device *dev)
1721 {
1722 	static struct kobject *virtual_dir = NULL;
1723 
1724 	if (!virtual_dir)
1725 		virtual_dir = kobject_create_and_add("virtual",
1726 						     &devices_kset->kobj);
1727 
1728 	return virtual_dir;
1729 }
1730 
1731 struct class_dir {
1732 	struct kobject kobj;
1733 	struct class *class;
1734 };
1735 
1736 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737 
1738 static void class_dir_release(struct kobject *kobj)
1739 {
1740 	struct class_dir *dir = to_class_dir(kobj);
1741 	kfree(dir);
1742 }
1743 
1744 static const
1745 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746 {
1747 	struct class_dir *dir = to_class_dir(kobj);
1748 	return dir->class->ns_type;
1749 }
1750 
1751 static struct kobj_type class_dir_ktype = {
1752 	.release	= class_dir_release,
1753 	.sysfs_ops	= &kobj_sysfs_ops,
1754 	.child_ns_type	= class_dir_child_ns_type
1755 };
1756 
1757 static struct kobject *
1758 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759 {
1760 	struct class_dir *dir;
1761 	int retval;
1762 
1763 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764 	if (!dir)
1765 		return ERR_PTR(-ENOMEM);
1766 
1767 	dir->class = class;
1768 	kobject_init(&dir->kobj, &class_dir_ktype);
1769 
1770 	dir->kobj.kset = &class->p->glue_dirs;
1771 
1772 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773 	if (retval < 0) {
1774 		kobject_put(&dir->kobj);
1775 		return ERR_PTR(retval);
1776 	}
1777 	return &dir->kobj;
1778 }
1779 
1780 static DEFINE_MUTEX(gdp_mutex);
1781 
1782 static struct kobject *get_device_parent(struct device *dev,
1783 					 struct device *parent)
1784 {
1785 	if (dev->class) {
1786 		struct kobject *kobj = NULL;
1787 		struct kobject *parent_kobj;
1788 		struct kobject *k;
1789 
1790 #ifdef CONFIG_BLOCK
1791 		/* block disks show up in /sys/block */
1792 		if (sysfs_deprecated && dev->class == &block_class) {
1793 			if (parent && parent->class == &block_class)
1794 				return &parent->kobj;
1795 			return &block_class.p->subsys.kobj;
1796 		}
1797 #endif
1798 
1799 		/*
1800 		 * If we have no parent, we live in "virtual".
1801 		 * Class-devices with a non class-device as parent, live
1802 		 * in a "glue" directory to prevent namespace collisions.
1803 		 */
1804 		if (parent == NULL)
1805 			parent_kobj = virtual_device_parent(dev);
1806 		else if (parent->class && !dev->class->ns_type)
1807 			return &parent->kobj;
1808 		else
1809 			parent_kobj = &parent->kobj;
1810 
1811 		mutex_lock(&gdp_mutex);
1812 
1813 		/* find our class-directory at the parent and reference it */
1814 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1815 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816 			if (k->parent == parent_kobj) {
1817 				kobj = kobject_get(k);
1818 				break;
1819 			}
1820 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821 		if (kobj) {
1822 			mutex_unlock(&gdp_mutex);
1823 			return kobj;
1824 		}
1825 
1826 		/* or create a new class-directory at the parent device */
1827 		k = class_dir_create_and_add(dev->class, parent_kobj);
1828 		/* do not emit an uevent for this simple "glue" directory */
1829 		mutex_unlock(&gdp_mutex);
1830 		return k;
1831 	}
1832 
1833 	/* subsystems can specify a default root directory for their devices */
1834 	if (!parent && dev->bus && dev->bus->dev_root)
1835 		return &dev->bus->dev_root->kobj;
1836 
1837 	if (parent)
1838 		return &parent->kobj;
1839 	return NULL;
1840 }
1841 
1842 static inline bool live_in_glue_dir(struct kobject *kobj,
1843 				    struct device *dev)
1844 {
1845 	if (!kobj || !dev->class ||
1846 	    kobj->kset != &dev->class->p->glue_dirs)
1847 		return false;
1848 	return true;
1849 }
1850 
1851 static inline struct kobject *get_glue_dir(struct device *dev)
1852 {
1853 	return dev->kobj.parent;
1854 }
1855 
1856 /*
1857  * make sure cleaning up dir as the last step, we need to make
1858  * sure .release handler of kobject is run with holding the
1859  * global lock
1860  */
1861 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862 {
1863 	unsigned int ref;
1864 
1865 	/* see if we live in a "glue" directory */
1866 	if (!live_in_glue_dir(glue_dir, dev))
1867 		return;
1868 
1869 	mutex_lock(&gdp_mutex);
1870 	/**
1871 	 * There is a race condition between removing glue directory
1872 	 * and adding a new device under the glue directory.
1873 	 *
1874 	 * CPU1:                                         CPU2:
1875 	 *
1876 	 * device_add()
1877 	 *   get_device_parent()
1878 	 *     class_dir_create_and_add()
1879 	 *       kobject_add_internal()
1880 	 *         create_dir()    // create glue_dir
1881 	 *
1882 	 *                                               device_add()
1883 	 *                                                 get_device_parent()
1884 	 *                                                   kobject_get() // get glue_dir
1885 	 *
1886 	 * device_del()
1887 	 *   cleanup_glue_dir()
1888 	 *     kobject_del(glue_dir)
1889 	 *
1890 	 *                                               kobject_add()
1891 	 *                                                 kobject_add_internal()
1892 	 *                                                   create_dir() // in glue_dir
1893 	 *                                                     sysfs_create_dir_ns()
1894 	 *                                                       kernfs_create_dir_ns(sd)
1895 	 *
1896 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1897 	 *       sysfs_put()        // free glue_dir->sd
1898 	 *
1899 	 *                                                         // sd is freed
1900 	 *                                                         kernfs_new_node(sd)
1901 	 *                                                           kernfs_get(glue_dir)
1902 	 *                                                           kernfs_add_one()
1903 	 *                                                           kernfs_put()
1904 	 *
1905 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906 	 * a new device under glue dir, the glue_dir kobject reference count
1907 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909 	 * and sysfs_put(). This result in glue_dir->sd is freed.
1910 	 *
1911 	 * Then the CPU2 will see a stale "empty" but still potentially used
1912 	 * glue dir around in kernfs_new_node().
1913 	 *
1914 	 * In order to avoid this happening, we also should make sure that
1915 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916 	 * for glue_dir kobj is 1.
1917 	 */
1918 	ref = kref_read(&glue_dir->kref);
1919 	if (!kobject_has_children(glue_dir) && !--ref)
1920 		kobject_del(glue_dir);
1921 	kobject_put(glue_dir);
1922 	mutex_unlock(&gdp_mutex);
1923 }
1924 
1925 static int device_add_class_symlinks(struct device *dev)
1926 {
1927 	struct device_node *of_node = dev_of_node(dev);
1928 	int error;
1929 
1930 	if (of_node) {
1931 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932 		if (error)
1933 			dev_warn(dev, "Error %d creating of_node link\n",error);
1934 		/* An error here doesn't warrant bringing down the device */
1935 	}
1936 
1937 	if (!dev->class)
1938 		return 0;
1939 
1940 	error = sysfs_create_link(&dev->kobj,
1941 				  &dev->class->p->subsys.kobj,
1942 				  "subsystem");
1943 	if (error)
1944 		goto out_devnode;
1945 
1946 	if (dev->parent && device_is_not_partition(dev)) {
1947 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948 					  "device");
1949 		if (error)
1950 			goto out_subsys;
1951 	}
1952 
1953 #ifdef CONFIG_BLOCK
1954 	/* /sys/block has directories and does not need symlinks */
1955 	if (sysfs_deprecated && dev->class == &block_class)
1956 		return 0;
1957 #endif
1958 
1959 	/* link in the class directory pointing to the device */
1960 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961 				  &dev->kobj, dev_name(dev));
1962 	if (error)
1963 		goto out_device;
1964 
1965 	return 0;
1966 
1967 out_device:
1968 	sysfs_remove_link(&dev->kobj, "device");
1969 
1970 out_subsys:
1971 	sysfs_remove_link(&dev->kobj, "subsystem");
1972 out_devnode:
1973 	sysfs_remove_link(&dev->kobj, "of_node");
1974 	return error;
1975 }
1976 
1977 static void device_remove_class_symlinks(struct device *dev)
1978 {
1979 	if (dev_of_node(dev))
1980 		sysfs_remove_link(&dev->kobj, "of_node");
1981 
1982 	if (!dev->class)
1983 		return;
1984 
1985 	if (dev->parent && device_is_not_partition(dev))
1986 		sysfs_remove_link(&dev->kobj, "device");
1987 	sysfs_remove_link(&dev->kobj, "subsystem");
1988 #ifdef CONFIG_BLOCK
1989 	if (sysfs_deprecated && dev->class == &block_class)
1990 		return;
1991 #endif
1992 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993 }
1994 
1995 /**
1996  * dev_set_name - set a device name
1997  * @dev: device
1998  * @fmt: format string for the device's name
1999  */
2000 int dev_set_name(struct device *dev, const char *fmt, ...)
2001 {
2002 	va_list vargs;
2003 	int err;
2004 
2005 	va_start(vargs, fmt);
2006 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007 	va_end(vargs);
2008 	return err;
2009 }
2010 EXPORT_SYMBOL_GPL(dev_set_name);
2011 
2012 /**
2013  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014  * @dev: device
2015  *
2016  * By default we select char/ for new entries.  Setting class->dev_obj
2017  * to NULL prevents an entry from being created.  class->dev_kobj must
2018  * be set (or cleared) before any devices are registered to the class
2019  * otherwise device_create_sys_dev_entry() and
2020  * device_remove_sys_dev_entry() will disagree about the presence of
2021  * the link.
2022  */
2023 static struct kobject *device_to_dev_kobj(struct device *dev)
2024 {
2025 	struct kobject *kobj;
2026 
2027 	if (dev->class)
2028 		kobj = dev->class->dev_kobj;
2029 	else
2030 		kobj = sysfs_dev_char_kobj;
2031 
2032 	return kobj;
2033 }
2034 
2035 static int device_create_sys_dev_entry(struct device *dev)
2036 {
2037 	struct kobject *kobj = device_to_dev_kobj(dev);
2038 	int error = 0;
2039 	char devt_str[15];
2040 
2041 	if (kobj) {
2042 		format_dev_t(devt_str, dev->devt);
2043 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044 	}
2045 
2046 	return error;
2047 }
2048 
2049 static void device_remove_sys_dev_entry(struct device *dev)
2050 {
2051 	struct kobject *kobj = device_to_dev_kobj(dev);
2052 	char devt_str[15];
2053 
2054 	if (kobj) {
2055 		format_dev_t(devt_str, dev->devt);
2056 		sysfs_remove_link(kobj, devt_str);
2057 	}
2058 }
2059 
2060 static int device_private_init(struct device *dev)
2061 {
2062 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063 	if (!dev->p)
2064 		return -ENOMEM;
2065 	dev->p->device = dev;
2066 	klist_init(&dev->p->klist_children, klist_children_get,
2067 		   klist_children_put);
2068 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2069 	return 0;
2070 }
2071 
2072 /**
2073  * device_add - add device to device hierarchy.
2074  * @dev: device.
2075  *
2076  * This is part 2 of device_register(), though may be called
2077  * separately _iff_ device_initialize() has been called separately.
2078  *
2079  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080  * to the global and sibling lists for the device, then
2081  * adds it to the other relevant subsystems of the driver model.
2082  *
2083  * Do not call this routine or device_register() more than once for
2084  * any device structure.  The driver model core is not designed to work
2085  * with devices that get unregistered and then spring back to life.
2086  * (Among other things, it's very hard to guarantee that all references
2087  * to the previous incarnation of @dev have been dropped.)  Allocate
2088  * and register a fresh new struct device instead.
2089  *
2090  * NOTE: _Never_ directly free @dev after calling this function, even
2091  * if it returned an error! Always use put_device() to give up your
2092  * reference instead.
2093  *
2094  * Rule of thumb is: if device_add() succeeds, you should call
2095  * device_del() when you want to get rid of it. If device_add() has
2096  * *not* succeeded, use *only* put_device() to drop the reference
2097  * count.
2098  */
2099 int device_add(struct device *dev)
2100 {
2101 	struct device *parent;
2102 	struct kobject *kobj;
2103 	struct class_interface *class_intf;
2104 	int error = -EINVAL;
2105 	struct kobject *glue_dir = NULL;
2106 
2107 	dev = get_device(dev);
2108 	if (!dev)
2109 		goto done;
2110 
2111 	if (!dev->p) {
2112 		error = device_private_init(dev);
2113 		if (error)
2114 			goto done;
2115 	}
2116 
2117 	/*
2118 	 * for statically allocated devices, which should all be converted
2119 	 * some day, we need to initialize the name. We prevent reading back
2120 	 * the name, and force the use of dev_name()
2121 	 */
2122 	if (dev->init_name) {
2123 		dev_set_name(dev, "%s", dev->init_name);
2124 		dev->init_name = NULL;
2125 	}
2126 
2127 	/* subsystems can specify simple device enumeration */
2128 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130 
2131 	if (!dev_name(dev)) {
2132 		error = -EINVAL;
2133 		goto name_error;
2134 	}
2135 
2136 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137 
2138 	parent = get_device(dev->parent);
2139 	kobj = get_device_parent(dev, parent);
2140 	if (IS_ERR(kobj)) {
2141 		error = PTR_ERR(kobj);
2142 		goto parent_error;
2143 	}
2144 	if (kobj)
2145 		dev->kobj.parent = kobj;
2146 
2147 	/* use parent numa_node */
2148 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149 		set_dev_node(dev, dev_to_node(parent));
2150 
2151 	/* first, register with generic layer. */
2152 	/* we require the name to be set before, and pass NULL */
2153 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154 	if (error) {
2155 		glue_dir = get_glue_dir(dev);
2156 		goto Error;
2157 	}
2158 
2159 	/* notify platform of device entry */
2160 	error = device_platform_notify(dev, KOBJ_ADD);
2161 	if (error)
2162 		goto platform_error;
2163 
2164 	error = device_create_file(dev, &dev_attr_uevent);
2165 	if (error)
2166 		goto attrError;
2167 
2168 	error = device_add_class_symlinks(dev);
2169 	if (error)
2170 		goto SymlinkError;
2171 	error = device_add_attrs(dev);
2172 	if (error)
2173 		goto AttrsError;
2174 	error = bus_add_device(dev);
2175 	if (error)
2176 		goto BusError;
2177 	error = dpm_sysfs_add(dev);
2178 	if (error)
2179 		goto DPMError;
2180 	device_pm_add(dev);
2181 
2182 	if (MAJOR(dev->devt)) {
2183 		error = device_create_file(dev, &dev_attr_dev);
2184 		if (error)
2185 			goto DevAttrError;
2186 
2187 		error = device_create_sys_dev_entry(dev);
2188 		if (error)
2189 			goto SysEntryError;
2190 
2191 		devtmpfs_create_node(dev);
2192 	}
2193 
2194 	/* Notify clients of device addition.  This call must come
2195 	 * after dpm_sysfs_add() and before kobject_uevent().
2196 	 */
2197 	if (dev->bus)
2198 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199 					     BUS_NOTIFY_ADD_DEVICE, dev);
2200 
2201 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2202 	bus_probe_device(dev);
2203 	if (parent)
2204 		klist_add_tail(&dev->p->knode_parent,
2205 			       &parent->p->klist_children);
2206 
2207 	if (dev->class) {
2208 		mutex_lock(&dev->class->p->mutex);
2209 		/* tie the class to the device */
2210 		klist_add_tail(&dev->p->knode_class,
2211 			       &dev->class->p->klist_devices);
2212 
2213 		/* notify any interfaces that the device is here */
2214 		list_for_each_entry(class_intf,
2215 				    &dev->class->p->interfaces, node)
2216 			if (class_intf->add_dev)
2217 				class_intf->add_dev(dev, class_intf);
2218 		mutex_unlock(&dev->class->p->mutex);
2219 	}
2220 done:
2221 	put_device(dev);
2222 	return error;
2223  SysEntryError:
2224 	if (MAJOR(dev->devt))
2225 		device_remove_file(dev, &dev_attr_dev);
2226  DevAttrError:
2227 	device_pm_remove(dev);
2228 	dpm_sysfs_remove(dev);
2229  DPMError:
2230 	bus_remove_device(dev);
2231  BusError:
2232 	device_remove_attrs(dev);
2233  AttrsError:
2234 	device_remove_class_symlinks(dev);
2235  SymlinkError:
2236 	device_remove_file(dev, &dev_attr_uevent);
2237  attrError:
2238 	device_platform_notify(dev, KOBJ_REMOVE);
2239 platform_error:
2240 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241 	glue_dir = get_glue_dir(dev);
2242 	kobject_del(&dev->kobj);
2243  Error:
2244 	cleanup_glue_dir(dev, glue_dir);
2245 parent_error:
2246 	put_device(parent);
2247 name_error:
2248 	kfree(dev->p);
2249 	dev->p = NULL;
2250 	goto done;
2251 }
2252 EXPORT_SYMBOL_GPL(device_add);
2253 
2254 /**
2255  * device_register - register a device with the system.
2256  * @dev: pointer to the device structure
2257  *
2258  * This happens in two clean steps - initialize the device
2259  * and add it to the system. The two steps can be called
2260  * separately, but this is the easiest and most common.
2261  * I.e. you should only call the two helpers separately if
2262  * have a clearly defined need to use and refcount the device
2263  * before it is added to the hierarchy.
2264  *
2265  * For more information, see the kerneldoc for device_initialize()
2266  * and device_add().
2267  *
2268  * NOTE: _Never_ directly free @dev after calling this function, even
2269  * if it returned an error! Always use put_device() to give up the
2270  * reference initialized in this function instead.
2271  */
2272 int device_register(struct device *dev)
2273 {
2274 	device_initialize(dev);
2275 	return device_add(dev);
2276 }
2277 EXPORT_SYMBOL_GPL(device_register);
2278 
2279 /**
2280  * get_device - increment reference count for device.
2281  * @dev: device.
2282  *
2283  * This simply forwards the call to kobject_get(), though
2284  * we do take care to provide for the case that we get a NULL
2285  * pointer passed in.
2286  */
2287 struct device *get_device(struct device *dev)
2288 {
2289 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290 }
2291 EXPORT_SYMBOL_GPL(get_device);
2292 
2293 /**
2294  * put_device - decrement reference count.
2295  * @dev: device in question.
2296  */
2297 void put_device(struct device *dev)
2298 {
2299 	/* might_sleep(); */
2300 	if (dev)
2301 		kobject_put(&dev->kobj);
2302 }
2303 EXPORT_SYMBOL_GPL(put_device);
2304 
2305 bool kill_device(struct device *dev)
2306 {
2307 	/*
2308 	 * Require the device lock and set the "dead" flag to guarantee that
2309 	 * the update behavior is consistent with the other bitfields near
2310 	 * it and that we cannot have an asynchronous probe routine trying
2311 	 * to run while we are tearing out the bus/class/sysfs from
2312 	 * underneath the device.
2313 	 */
2314 	lockdep_assert_held(&dev->mutex);
2315 
2316 	if (dev->p->dead)
2317 		return false;
2318 	dev->p->dead = true;
2319 	return true;
2320 }
2321 EXPORT_SYMBOL_GPL(kill_device);
2322 
2323 /**
2324  * device_del - delete device from system.
2325  * @dev: device.
2326  *
2327  * This is the first part of the device unregistration
2328  * sequence. This removes the device from the lists we control
2329  * from here, has it removed from the other driver model
2330  * subsystems it was added to in device_add(), and removes it
2331  * from the kobject hierarchy.
2332  *
2333  * NOTE: this should be called manually _iff_ device_add() was
2334  * also called manually.
2335  */
2336 void device_del(struct device *dev)
2337 {
2338 	struct device *parent = dev->parent;
2339 	struct kobject *glue_dir = NULL;
2340 	struct class_interface *class_intf;
2341 
2342 	device_lock(dev);
2343 	kill_device(dev);
2344 	device_unlock(dev);
2345 
2346 	/* Notify clients of device removal.  This call must come
2347 	 * before dpm_sysfs_remove().
2348 	 */
2349 	if (dev->bus)
2350 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351 					     BUS_NOTIFY_DEL_DEVICE, dev);
2352 
2353 	dpm_sysfs_remove(dev);
2354 	if (parent)
2355 		klist_del(&dev->p->knode_parent);
2356 	if (MAJOR(dev->devt)) {
2357 		devtmpfs_delete_node(dev);
2358 		device_remove_sys_dev_entry(dev);
2359 		device_remove_file(dev, &dev_attr_dev);
2360 	}
2361 	if (dev->class) {
2362 		device_remove_class_symlinks(dev);
2363 
2364 		mutex_lock(&dev->class->p->mutex);
2365 		/* notify any interfaces that the device is now gone */
2366 		list_for_each_entry(class_intf,
2367 				    &dev->class->p->interfaces, node)
2368 			if (class_intf->remove_dev)
2369 				class_intf->remove_dev(dev, class_intf);
2370 		/* remove the device from the class list */
2371 		klist_del(&dev->p->knode_class);
2372 		mutex_unlock(&dev->class->p->mutex);
2373 	}
2374 	device_remove_file(dev, &dev_attr_uevent);
2375 	device_remove_attrs(dev);
2376 	bus_remove_device(dev);
2377 	device_pm_remove(dev);
2378 	driver_deferred_probe_del(dev);
2379 	device_platform_notify(dev, KOBJ_REMOVE);
2380 	device_remove_properties(dev);
2381 	device_links_purge(dev);
2382 
2383 	if (dev->bus)
2384 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2386 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387 	glue_dir = get_glue_dir(dev);
2388 	kobject_del(&dev->kobj);
2389 	cleanup_glue_dir(dev, glue_dir);
2390 	put_device(parent);
2391 }
2392 EXPORT_SYMBOL_GPL(device_del);
2393 
2394 /**
2395  * device_unregister - unregister device from system.
2396  * @dev: device going away.
2397  *
2398  * We do this in two parts, like we do device_register(). First,
2399  * we remove it from all the subsystems with device_del(), then
2400  * we decrement the reference count via put_device(). If that
2401  * is the final reference count, the device will be cleaned up
2402  * via device_release() above. Otherwise, the structure will
2403  * stick around until the final reference to the device is dropped.
2404  */
2405 void device_unregister(struct device *dev)
2406 {
2407 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408 	device_del(dev);
2409 	put_device(dev);
2410 }
2411 EXPORT_SYMBOL_GPL(device_unregister);
2412 
2413 static struct device *prev_device(struct klist_iter *i)
2414 {
2415 	struct klist_node *n = klist_prev(i);
2416 	struct device *dev = NULL;
2417 	struct device_private *p;
2418 
2419 	if (n) {
2420 		p = to_device_private_parent(n);
2421 		dev = p->device;
2422 	}
2423 	return dev;
2424 }
2425 
2426 static struct device *next_device(struct klist_iter *i)
2427 {
2428 	struct klist_node *n = klist_next(i);
2429 	struct device *dev = NULL;
2430 	struct device_private *p;
2431 
2432 	if (n) {
2433 		p = to_device_private_parent(n);
2434 		dev = p->device;
2435 	}
2436 	return dev;
2437 }
2438 
2439 /**
2440  * device_get_devnode - path of device node file
2441  * @dev: device
2442  * @mode: returned file access mode
2443  * @uid: returned file owner
2444  * @gid: returned file group
2445  * @tmp: possibly allocated string
2446  *
2447  * Return the relative path of a possible device node.
2448  * Non-default names may need to allocate a memory to compose
2449  * a name. This memory is returned in tmp and needs to be
2450  * freed by the caller.
2451  */
2452 const char *device_get_devnode(struct device *dev,
2453 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2454 			       const char **tmp)
2455 {
2456 	char *s;
2457 
2458 	*tmp = NULL;
2459 
2460 	/* the device type may provide a specific name */
2461 	if (dev->type && dev->type->devnode)
2462 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2463 	if (*tmp)
2464 		return *tmp;
2465 
2466 	/* the class may provide a specific name */
2467 	if (dev->class && dev->class->devnode)
2468 		*tmp = dev->class->devnode(dev, mode);
2469 	if (*tmp)
2470 		return *tmp;
2471 
2472 	/* return name without allocation, tmp == NULL */
2473 	if (strchr(dev_name(dev), '!') == NULL)
2474 		return dev_name(dev);
2475 
2476 	/* replace '!' in the name with '/' */
2477 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2478 	if (!s)
2479 		return NULL;
2480 	strreplace(s, '!', '/');
2481 	return *tmp = s;
2482 }
2483 
2484 /**
2485  * device_for_each_child - device child iterator.
2486  * @parent: parent struct device.
2487  * @fn: function to be called for each device.
2488  * @data: data for the callback.
2489  *
2490  * Iterate over @parent's child devices, and call @fn for each,
2491  * passing it @data.
2492  *
2493  * We check the return of @fn each time. If it returns anything
2494  * other than 0, we break out and return that value.
2495  */
2496 int device_for_each_child(struct device *parent, void *data,
2497 			  int (*fn)(struct device *dev, void *data))
2498 {
2499 	struct klist_iter i;
2500 	struct device *child;
2501 	int error = 0;
2502 
2503 	if (!parent->p)
2504 		return 0;
2505 
2506 	klist_iter_init(&parent->p->klist_children, &i);
2507 	while (!error && (child = next_device(&i)))
2508 		error = fn(child, data);
2509 	klist_iter_exit(&i);
2510 	return error;
2511 }
2512 EXPORT_SYMBOL_GPL(device_for_each_child);
2513 
2514 /**
2515  * device_for_each_child_reverse - device child iterator in reversed order.
2516  * @parent: parent struct device.
2517  * @fn: function to be called for each device.
2518  * @data: data for the callback.
2519  *
2520  * Iterate over @parent's child devices, and call @fn for each,
2521  * passing it @data.
2522  *
2523  * We check the return of @fn each time. If it returns anything
2524  * other than 0, we break out and return that value.
2525  */
2526 int device_for_each_child_reverse(struct device *parent, void *data,
2527 				  int (*fn)(struct device *dev, void *data))
2528 {
2529 	struct klist_iter i;
2530 	struct device *child;
2531 	int error = 0;
2532 
2533 	if (!parent->p)
2534 		return 0;
2535 
2536 	klist_iter_init(&parent->p->klist_children, &i);
2537 	while ((child = prev_device(&i)) && !error)
2538 		error = fn(child, data);
2539 	klist_iter_exit(&i);
2540 	return error;
2541 }
2542 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543 
2544 /**
2545  * device_find_child - device iterator for locating a particular device.
2546  * @parent: parent struct device
2547  * @match: Callback function to check device
2548  * @data: Data to pass to match function
2549  *
2550  * This is similar to the device_for_each_child() function above, but it
2551  * returns a reference to a device that is 'found' for later use, as
2552  * determined by the @match callback.
2553  *
2554  * The callback should return 0 if the device doesn't match and non-zero
2555  * if it does.  If the callback returns non-zero and a reference to the
2556  * current device can be obtained, this function will return to the caller
2557  * and not iterate over any more devices.
2558  *
2559  * NOTE: you will need to drop the reference with put_device() after use.
2560  */
2561 struct device *device_find_child(struct device *parent, void *data,
2562 				 int (*match)(struct device *dev, void *data))
2563 {
2564 	struct klist_iter i;
2565 	struct device *child;
2566 
2567 	if (!parent)
2568 		return NULL;
2569 
2570 	klist_iter_init(&parent->p->klist_children, &i);
2571 	while ((child = next_device(&i)))
2572 		if (match(child, data) && get_device(child))
2573 			break;
2574 	klist_iter_exit(&i);
2575 	return child;
2576 }
2577 EXPORT_SYMBOL_GPL(device_find_child);
2578 
2579 /**
2580  * device_find_child_by_name - device iterator for locating a child device.
2581  * @parent: parent struct device
2582  * @name: name of the child device
2583  *
2584  * This is similar to the device_find_child() function above, but it
2585  * returns a reference to a device that has the name @name.
2586  *
2587  * NOTE: you will need to drop the reference with put_device() after use.
2588  */
2589 struct device *device_find_child_by_name(struct device *parent,
2590 					 const char *name)
2591 {
2592 	struct klist_iter i;
2593 	struct device *child;
2594 
2595 	if (!parent)
2596 		return NULL;
2597 
2598 	klist_iter_init(&parent->p->klist_children, &i);
2599 	while ((child = next_device(&i)))
2600 		if (!strcmp(dev_name(child), name) && get_device(child))
2601 			break;
2602 	klist_iter_exit(&i);
2603 	return child;
2604 }
2605 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606 
2607 int __init devices_init(void)
2608 {
2609 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610 	if (!devices_kset)
2611 		return -ENOMEM;
2612 	dev_kobj = kobject_create_and_add("dev", NULL);
2613 	if (!dev_kobj)
2614 		goto dev_kobj_err;
2615 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616 	if (!sysfs_dev_block_kobj)
2617 		goto block_kobj_err;
2618 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619 	if (!sysfs_dev_char_kobj)
2620 		goto char_kobj_err;
2621 
2622 	return 0;
2623 
2624  char_kobj_err:
2625 	kobject_put(sysfs_dev_block_kobj);
2626  block_kobj_err:
2627 	kobject_put(dev_kobj);
2628  dev_kobj_err:
2629 	kset_unregister(devices_kset);
2630 	return -ENOMEM;
2631 }
2632 
2633 static int device_check_offline(struct device *dev, void *not_used)
2634 {
2635 	int ret;
2636 
2637 	ret = device_for_each_child(dev, NULL, device_check_offline);
2638 	if (ret)
2639 		return ret;
2640 
2641 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642 }
2643 
2644 /**
2645  * device_offline - Prepare the device for hot-removal.
2646  * @dev: Device to be put offline.
2647  *
2648  * Execute the device bus type's .offline() callback, if present, to prepare
2649  * the device for a subsequent hot-removal.  If that succeeds, the device must
2650  * not be used until either it is removed or its bus type's .online() callback
2651  * is executed.
2652  *
2653  * Call under device_hotplug_lock.
2654  */
2655 int device_offline(struct device *dev)
2656 {
2657 	int ret;
2658 
2659 	if (dev->offline_disabled)
2660 		return -EPERM;
2661 
2662 	ret = device_for_each_child(dev, NULL, device_check_offline);
2663 	if (ret)
2664 		return ret;
2665 
2666 	device_lock(dev);
2667 	if (device_supports_offline(dev)) {
2668 		if (dev->offline) {
2669 			ret = 1;
2670 		} else {
2671 			ret = dev->bus->offline(dev);
2672 			if (!ret) {
2673 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674 				dev->offline = true;
2675 			}
2676 		}
2677 	}
2678 	device_unlock(dev);
2679 
2680 	return ret;
2681 }
2682 
2683 /**
2684  * device_online - Put the device back online after successful device_offline().
2685  * @dev: Device to be put back online.
2686  *
2687  * If device_offline() has been successfully executed for @dev, but the device
2688  * has not been removed subsequently, execute its bus type's .online() callback
2689  * to indicate that the device can be used again.
2690  *
2691  * Call under device_hotplug_lock.
2692  */
2693 int device_online(struct device *dev)
2694 {
2695 	int ret = 0;
2696 
2697 	device_lock(dev);
2698 	if (device_supports_offline(dev)) {
2699 		if (dev->offline) {
2700 			ret = dev->bus->online(dev);
2701 			if (!ret) {
2702 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703 				dev->offline = false;
2704 			}
2705 		} else {
2706 			ret = 1;
2707 		}
2708 	}
2709 	device_unlock(dev);
2710 
2711 	return ret;
2712 }
2713 
2714 struct root_device {
2715 	struct device dev;
2716 	struct module *owner;
2717 };
2718 
2719 static inline struct root_device *to_root_device(struct device *d)
2720 {
2721 	return container_of(d, struct root_device, dev);
2722 }
2723 
2724 static void root_device_release(struct device *dev)
2725 {
2726 	kfree(to_root_device(dev));
2727 }
2728 
2729 /**
2730  * __root_device_register - allocate and register a root device
2731  * @name: root device name
2732  * @owner: owner module of the root device, usually THIS_MODULE
2733  *
2734  * This function allocates a root device and registers it
2735  * using device_register(). In order to free the returned
2736  * device, use root_device_unregister().
2737  *
2738  * Root devices are dummy devices which allow other devices
2739  * to be grouped under /sys/devices. Use this function to
2740  * allocate a root device and then use it as the parent of
2741  * any device which should appear under /sys/devices/{name}
2742  *
2743  * The /sys/devices/{name} directory will also contain a
2744  * 'module' symlink which points to the @owner directory
2745  * in sysfs.
2746  *
2747  * Returns &struct device pointer on success, or ERR_PTR() on error.
2748  *
2749  * Note: You probably want to use root_device_register().
2750  */
2751 struct device *__root_device_register(const char *name, struct module *owner)
2752 {
2753 	struct root_device *root;
2754 	int err = -ENOMEM;
2755 
2756 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757 	if (!root)
2758 		return ERR_PTR(err);
2759 
2760 	err = dev_set_name(&root->dev, "%s", name);
2761 	if (err) {
2762 		kfree(root);
2763 		return ERR_PTR(err);
2764 	}
2765 
2766 	root->dev.release = root_device_release;
2767 
2768 	err = device_register(&root->dev);
2769 	if (err) {
2770 		put_device(&root->dev);
2771 		return ERR_PTR(err);
2772 	}
2773 
2774 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2775 	if (owner) {
2776 		struct module_kobject *mk = &owner->mkobj;
2777 
2778 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779 		if (err) {
2780 			device_unregister(&root->dev);
2781 			return ERR_PTR(err);
2782 		}
2783 		root->owner = owner;
2784 	}
2785 #endif
2786 
2787 	return &root->dev;
2788 }
2789 EXPORT_SYMBOL_GPL(__root_device_register);
2790 
2791 /**
2792  * root_device_unregister - unregister and free a root device
2793  * @dev: device going away
2794  *
2795  * This function unregisters and cleans up a device that was created by
2796  * root_device_register().
2797  */
2798 void root_device_unregister(struct device *dev)
2799 {
2800 	struct root_device *root = to_root_device(dev);
2801 
2802 	if (root->owner)
2803 		sysfs_remove_link(&root->dev.kobj, "module");
2804 
2805 	device_unregister(dev);
2806 }
2807 EXPORT_SYMBOL_GPL(root_device_unregister);
2808 
2809 
2810 static void device_create_release(struct device *dev)
2811 {
2812 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813 	kfree(dev);
2814 }
2815 
2816 static __printf(6, 0) struct device *
2817 device_create_groups_vargs(struct class *class, struct device *parent,
2818 			   dev_t devt, void *drvdata,
2819 			   const struct attribute_group **groups,
2820 			   const char *fmt, va_list args)
2821 {
2822 	struct device *dev = NULL;
2823 	int retval = -ENODEV;
2824 
2825 	if (class == NULL || IS_ERR(class))
2826 		goto error;
2827 
2828 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829 	if (!dev) {
2830 		retval = -ENOMEM;
2831 		goto error;
2832 	}
2833 
2834 	device_initialize(dev);
2835 	dev->devt = devt;
2836 	dev->class = class;
2837 	dev->parent = parent;
2838 	dev->groups = groups;
2839 	dev->release = device_create_release;
2840 	dev_set_drvdata(dev, drvdata);
2841 
2842 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843 	if (retval)
2844 		goto error;
2845 
2846 	retval = device_add(dev);
2847 	if (retval)
2848 		goto error;
2849 
2850 	return dev;
2851 
2852 error:
2853 	put_device(dev);
2854 	return ERR_PTR(retval);
2855 }
2856 
2857 /**
2858  * device_create_vargs - creates a device and registers it with sysfs
2859  * @class: pointer to the struct class that this device should be registered to
2860  * @parent: pointer to the parent struct device of this new device, if any
2861  * @devt: the dev_t for the char device to be added
2862  * @drvdata: the data to be added to the device for callbacks
2863  * @fmt: string for the device's name
2864  * @args: va_list for the device's name
2865  *
2866  * This function can be used by char device classes.  A struct device
2867  * will be created in sysfs, registered to the specified class.
2868  *
2869  * A "dev" file will be created, showing the dev_t for the device, if
2870  * the dev_t is not 0,0.
2871  * If a pointer to a parent struct device is passed in, the newly created
2872  * struct device will be a child of that device in sysfs.
2873  * The pointer to the struct device will be returned from the call.
2874  * Any further sysfs files that might be required can be created using this
2875  * pointer.
2876  *
2877  * Returns &struct device pointer on success, or ERR_PTR() on error.
2878  *
2879  * Note: the struct class passed to this function must have previously
2880  * been created with a call to class_create().
2881  */
2882 struct device *device_create_vargs(struct class *class, struct device *parent,
2883 				   dev_t devt, void *drvdata, const char *fmt,
2884 				   va_list args)
2885 {
2886 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887 					  fmt, args);
2888 }
2889 EXPORT_SYMBOL_GPL(device_create_vargs);
2890 
2891 /**
2892  * device_create - creates a device and registers it with sysfs
2893  * @class: pointer to the struct class that this device should be registered to
2894  * @parent: pointer to the parent struct device of this new device, if any
2895  * @devt: the dev_t for the char device to be added
2896  * @drvdata: the data to be added to the device for callbacks
2897  * @fmt: string for the device's name
2898  *
2899  * This function can be used by char device classes.  A struct device
2900  * will be created in sysfs, registered to the specified class.
2901  *
2902  * A "dev" file will be created, showing the dev_t for the device, if
2903  * the dev_t is not 0,0.
2904  * If a pointer to a parent struct device is passed in, the newly created
2905  * struct device will be a child of that device in sysfs.
2906  * The pointer to the struct device will be returned from the call.
2907  * Any further sysfs files that might be required can be created using this
2908  * pointer.
2909  *
2910  * Returns &struct device pointer on success, or ERR_PTR() on error.
2911  *
2912  * Note: the struct class passed to this function must have previously
2913  * been created with a call to class_create().
2914  */
2915 struct device *device_create(struct class *class, struct device *parent,
2916 			     dev_t devt, void *drvdata, const char *fmt, ...)
2917 {
2918 	va_list vargs;
2919 	struct device *dev;
2920 
2921 	va_start(vargs, fmt);
2922 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2923 	va_end(vargs);
2924 	return dev;
2925 }
2926 EXPORT_SYMBOL_GPL(device_create);
2927 
2928 /**
2929  * device_create_with_groups - creates a device and registers it with sysfs
2930  * @class: pointer to the struct class that this device should be registered to
2931  * @parent: pointer to the parent struct device of this new device, if any
2932  * @devt: the dev_t for the char device to be added
2933  * @drvdata: the data to be added to the device for callbacks
2934  * @groups: NULL-terminated list of attribute groups to be created
2935  * @fmt: string for the device's name
2936  *
2937  * This function can be used by char device classes.  A struct device
2938  * will be created in sysfs, registered to the specified class.
2939  * Additional attributes specified in the groups parameter will also
2940  * be created automatically.
2941  *
2942  * A "dev" file will be created, showing the dev_t for the device, if
2943  * the dev_t is not 0,0.
2944  * If a pointer to a parent struct device is passed in, the newly created
2945  * struct device will be a child of that device in sysfs.
2946  * The pointer to the struct device will be returned from the call.
2947  * Any further sysfs files that might be required can be created using this
2948  * pointer.
2949  *
2950  * Returns &struct device pointer on success, or ERR_PTR() on error.
2951  *
2952  * Note: the struct class passed to this function must have previously
2953  * been created with a call to class_create().
2954  */
2955 struct device *device_create_with_groups(struct class *class,
2956 					 struct device *parent, dev_t devt,
2957 					 void *drvdata,
2958 					 const struct attribute_group **groups,
2959 					 const char *fmt, ...)
2960 {
2961 	va_list vargs;
2962 	struct device *dev;
2963 
2964 	va_start(vargs, fmt);
2965 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966 					 fmt, vargs);
2967 	va_end(vargs);
2968 	return dev;
2969 }
2970 EXPORT_SYMBOL_GPL(device_create_with_groups);
2971 
2972 /**
2973  * device_destroy - removes a device that was created with device_create()
2974  * @class: pointer to the struct class that this device was registered with
2975  * @devt: the dev_t of the device that was previously registered
2976  *
2977  * This call unregisters and cleans up a device that was created with a
2978  * call to device_create().
2979  */
2980 void device_destroy(struct class *class, dev_t devt)
2981 {
2982 	struct device *dev;
2983 
2984 	dev = class_find_device_by_devt(class, devt);
2985 	if (dev) {
2986 		put_device(dev);
2987 		device_unregister(dev);
2988 	}
2989 }
2990 EXPORT_SYMBOL_GPL(device_destroy);
2991 
2992 /**
2993  * device_rename - renames a device
2994  * @dev: the pointer to the struct device to be renamed
2995  * @new_name: the new name of the device
2996  *
2997  * It is the responsibility of the caller to provide mutual
2998  * exclusion between two different calls of device_rename
2999  * on the same device to ensure that new_name is valid and
3000  * won't conflict with other devices.
3001  *
3002  * Note: Don't call this function.  Currently, the networking layer calls this
3003  * function, but that will change.  The following text from Kay Sievers offers
3004  * some insight:
3005  *
3006  * Renaming devices is racy at many levels, symlinks and other stuff are not
3007  * replaced atomically, and you get a "move" uevent, but it's not easy to
3008  * connect the event to the old and new device. Device nodes are not renamed at
3009  * all, there isn't even support for that in the kernel now.
3010  *
3011  * In the meantime, during renaming, your target name might be taken by another
3012  * driver, creating conflicts. Or the old name is taken directly after you
3013  * renamed it -- then you get events for the same DEVPATH, before you even see
3014  * the "move" event. It's just a mess, and nothing new should ever rely on
3015  * kernel device renaming. Besides that, it's not even implemented now for
3016  * other things than (driver-core wise very simple) network devices.
3017  *
3018  * We are currently about to change network renaming in udev to completely
3019  * disallow renaming of devices in the same namespace as the kernel uses,
3020  * because we can't solve the problems properly, that arise with swapping names
3021  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022  * be allowed to some other name than eth[0-9]*, for the aforementioned
3023  * reasons.
3024  *
3025  * Make up a "real" name in the driver before you register anything, or add
3026  * some other attributes for userspace to find the device, or use udev to add
3027  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028  * don't even want to get into that and try to implement the missing pieces in
3029  * the core. We really have other pieces to fix in the driver core mess. :)
3030  */
3031 int device_rename(struct device *dev, const char *new_name)
3032 {
3033 	struct kobject *kobj = &dev->kobj;
3034 	char *old_device_name = NULL;
3035 	int error;
3036 
3037 	dev = get_device(dev);
3038 	if (!dev)
3039 		return -EINVAL;
3040 
3041 	dev_dbg(dev, "renaming to %s\n", new_name);
3042 
3043 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044 	if (!old_device_name) {
3045 		error = -ENOMEM;
3046 		goto out;
3047 	}
3048 
3049 	if (dev->class) {
3050 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051 					     kobj, old_device_name,
3052 					     new_name, kobject_namespace(kobj));
3053 		if (error)
3054 			goto out;
3055 	}
3056 
3057 	error = kobject_rename(kobj, new_name);
3058 	if (error)
3059 		goto out;
3060 
3061 out:
3062 	put_device(dev);
3063 
3064 	kfree(old_device_name);
3065 
3066 	return error;
3067 }
3068 EXPORT_SYMBOL_GPL(device_rename);
3069 
3070 static int device_move_class_links(struct device *dev,
3071 				   struct device *old_parent,
3072 				   struct device *new_parent)
3073 {
3074 	int error = 0;
3075 
3076 	if (old_parent)
3077 		sysfs_remove_link(&dev->kobj, "device");
3078 	if (new_parent)
3079 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080 					  "device");
3081 	return error;
3082 }
3083 
3084 /**
3085  * device_move - moves a device to a new parent
3086  * @dev: the pointer to the struct device to be moved
3087  * @new_parent: the new parent of the device (can be NULL)
3088  * @dpm_order: how to reorder the dpm_list
3089  */
3090 int device_move(struct device *dev, struct device *new_parent,
3091 		enum dpm_order dpm_order)
3092 {
3093 	int error;
3094 	struct device *old_parent;
3095 	struct kobject *new_parent_kobj;
3096 
3097 	dev = get_device(dev);
3098 	if (!dev)
3099 		return -EINVAL;
3100 
3101 	device_pm_lock();
3102 	new_parent = get_device(new_parent);
3103 	new_parent_kobj = get_device_parent(dev, new_parent);
3104 	if (IS_ERR(new_parent_kobj)) {
3105 		error = PTR_ERR(new_parent_kobj);
3106 		put_device(new_parent);
3107 		goto out;
3108 	}
3109 
3110 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112 	error = kobject_move(&dev->kobj, new_parent_kobj);
3113 	if (error) {
3114 		cleanup_glue_dir(dev, new_parent_kobj);
3115 		put_device(new_parent);
3116 		goto out;
3117 	}
3118 	old_parent = dev->parent;
3119 	dev->parent = new_parent;
3120 	if (old_parent)
3121 		klist_remove(&dev->p->knode_parent);
3122 	if (new_parent) {
3123 		klist_add_tail(&dev->p->knode_parent,
3124 			       &new_parent->p->klist_children);
3125 		set_dev_node(dev, dev_to_node(new_parent));
3126 	}
3127 
3128 	if (dev->class) {
3129 		error = device_move_class_links(dev, old_parent, new_parent);
3130 		if (error) {
3131 			/* We ignore errors on cleanup since we're hosed anyway... */
3132 			device_move_class_links(dev, new_parent, old_parent);
3133 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134 				if (new_parent)
3135 					klist_remove(&dev->p->knode_parent);
3136 				dev->parent = old_parent;
3137 				if (old_parent) {
3138 					klist_add_tail(&dev->p->knode_parent,
3139 						       &old_parent->p->klist_children);
3140 					set_dev_node(dev, dev_to_node(old_parent));
3141 				}
3142 			}
3143 			cleanup_glue_dir(dev, new_parent_kobj);
3144 			put_device(new_parent);
3145 			goto out;
3146 		}
3147 	}
3148 	switch (dpm_order) {
3149 	case DPM_ORDER_NONE:
3150 		break;
3151 	case DPM_ORDER_DEV_AFTER_PARENT:
3152 		device_pm_move_after(dev, new_parent);
3153 		devices_kset_move_after(dev, new_parent);
3154 		break;
3155 	case DPM_ORDER_PARENT_BEFORE_DEV:
3156 		device_pm_move_before(new_parent, dev);
3157 		devices_kset_move_before(new_parent, dev);
3158 		break;
3159 	case DPM_ORDER_DEV_LAST:
3160 		device_pm_move_last(dev);
3161 		devices_kset_move_last(dev);
3162 		break;
3163 	}
3164 
3165 	put_device(old_parent);
3166 out:
3167 	device_pm_unlock();
3168 	put_device(dev);
3169 	return error;
3170 }
3171 EXPORT_SYMBOL_GPL(device_move);
3172 
3173 /**
3174  * device_shutdown - call ->shutdown() on each device to shutdown.
3175  */
3176 void device_shutdown(void)
3177 {
3178 	struct device *dev, *parent;
3179 
3180 	wait_for_device_probe();
3181 	device_block_probing();
3182 
3183 	cpufreq_suspend();
3184 
3185 	spin_lock(&devices_kset->list_lock);
3186 	/*
3187 	 * Walk the devices list backward, shutting down each in turn.
3188 	 * Beware that device unplug events may also start pulling
3189 	 * devices offline, even as the system is shutting down.
3190 	 */
3191 	while (!list_empty(&devices_kset->list)) {
3192 		dev = list_entry(devices_kset->list.prev, struct device,
3193 				kobj.entry);
3194 
3195 		/*
3196 		 * hold reference count of device's parent to
3197 		 * prevent it from being freed because parent's
3198 		 * lock is to be held
3199 		 */
3200 		parent = get_device(dev->parent);
3201 		get_device(dev);
3202 		/*
3203 		 * Make sure the device is off the kset list, in the
3204 		 * event that dev->*->shutdown() doesn't remove it.
3205 		 */
3206 		list_del_init(&dev->kobj.entry);
3207 		spin_unlock(&devices_kset->list_lock);
3208 
3209 		/* hold lock to avoid race with probe/release */
3210 		if (parent)
3211 			device_lock(parent);
3212 		device_lock(dev);
3213 
3214 		/* Don't allow any more runtime suspends */
3215 		pm_runtime_get_noresume(dev);
3216 		pm_runtime_barrier(dev);
3217 
3218 		if (dev->class && dev->class->shutdown_pre) {
3219 			if (initcall_debug)
3220 				dev_info(dev, "shutdown_pre\n");
3221 			dev->class->shutdown_pre(dev);
3222 		}
3223 		if (dev->bus && dev->bus->shutdown) {
3224 			if (initcall_debug)
3225 				dev_info(dev, "shutdown\n");
3226 			dev->bus->shutdown(dev);
3227 		} else if (dev->driver && dev->driver->shutdown) {
3228 			if (initcall_debug)
3229 				dev_info(dev, "shutdown\n");
3230 			dev->driver->shutdown(dev);
3231 		}
3232 
3233 		device_unlock(dev);
3234 		if (parent)
3235 			device_unlock(parent);
3236 
3237 		put_device(dev);
3238 		put_device(parent);
3239 
3240 		spin_lock(&devices_kset->list_lock);
3241 	}
3242 	spin_unlock(&devices_kset->list_lock);
3243 }
3244 
3245 /*
3246  * Device logging functions
3247  */
3248 
3249 #ifdef CONFIG_PRINTK
3250 static int
3251 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252 {
3253 	const char *subsys;
3254 	size_t pos = 0;
3255 
3256 	if (dev->class)
3257 		subsys = dev->class->name;
3258 	else if (dev->bus)
3259 		subsys = dev->bus->name;
3260 	else
3261 		return 0;
3262 
3263 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264 	if (pos >= hdrlen)
3265 		goto overflow;
3266 
3267 	/*
3268 	 * Add device identifier DEVICE=:
3269 	 *   b12:8         block dev_t
3270 	 *   c127:3        char dev_t
3271 	 *   n8            netdev ifindex
3272 	 *   +sound:card0  subsystem:devname
3273 	 */
3274 	if (MAJOR(dev->devt)) {
3275 		char c;
3276 
3277 		if (strcmp(subsys, "block") == 0)
3278 			c = 'b';
3279 		else
3280 			c = 'c';
3281 		pos++;
3282 		pos += snprintf(hdr + pos, hdrlen - pos,
3283 				"DEVICE=%c%u:%u",
3284 				c, MAJOR(dev->devt), MINOR(dev->devt));
3285 	} else if (strcmp(subsys, "net") == 0) {
3286 		struct net_device *net = to_net_dev(dev);
3287 
3288 		pos++;
3289 		pos += snprintf(hdr + pos, hdrlen - pos,
3290 				"DEVICE=n%u", net->ifindex);
3291 	} else {
3292 		pos++;
3293 		pos += snprintf(hdr + pos, hdrlen - pos,
3294 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3295 	}
3296 
3297 	if (pos >= hdrlen)
3298 		goto overflow;
3299 
3300 	return pos;
3301 
3302 overflow:
3303 	dev_WARN(dev, "device/subsystem name too long");
3304 	return 0;
3305 }
3306 
3307 int dev_vprintk_emit(int level, const struct device *dev,
3308 		     const char *fmt, va_list args)
3309 {
3310 	char hdr[128];
3311 	size_t hdrlen;
3312 
3313 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314 
3315 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316 }
3317 EXPORT_SYMBOL(dev_vprintk_emit);
3318 
3319 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320 {
3321 	va_list args;
3322 	int r;
3323 
3324 	va_start(args, fmt);
3325 
3326 	r = dev_vprintk_emit(level, dev, fmt, args);
3327 
3328 	va_end(args);
3329 
3330 	return r;
3331 }
3332 EXPORT_SYMBOL(dev_printk_emit);
3333 
3334 static void __dev_printk(const char *level, const struct device *dev,
3335 			struct va_format *vaf)
3336 {
3337 	if (dev)
3338 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339 				dev_driver_string(dev), dev_name(dev), vaf);
3340 	else
3341 		printk("%s(NULL device *): %pV", level, vaf);
3342 }
3343 
3344 void dev_printk(const char *level, const struct device *dev,
3345 		const char *fmt, ...)
3346 {
3347 	struct va_format vaf;
3348 	va_list args;
3349 
3350 	va_start(args, fmt);
3351 
3352 	vaf.fmt = fmt;
3353 	vaf.va = &args;
3354 
3355 	__dev_printk(level, dev, &vaf);
3356 
3357 	va_end(args);
3358 }
3359 EXPORT_SYMBOL(dev_printk);
3360 
3361 #define define_dev_printk_level(func, kern_level)		\
3362 void func(const struct device *dev, const char *fmt, ...)	\
3363 {								\
3364 	struct va_format vaf;					\
3365 	va_list args;						\
3366 								\
3367 	va_start(args, fmt);					\
3368 								\
3369 	vaf.fmt = fmt;						\
3370 	vaf.va = &args;						\
3371 								\
3372 	__dev_printk(kern_level, dev, &vaf);			\
3373 								\
3374 	va_end(args);						\
3375 }								\
3376 EXPORT_SYMBOL(func);
3377 
3378 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379 define_dev_printk_level(_dev_alert, KERN_ALERT);
3380 define_dev_printk_level(_dev_crit, KERN_CRIT);
3381 define_dev_printk_level(_dev_err, KERN_ERR);
3382 define_dev_printk_level(_dev_warn, KERN_WARNING);
3383 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384 define_dev_printk_level(_dev_info, KERN_INFO);
3385 
3386 #endif
3387 
3388 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389 {
3390 	return fwnode && !IS_ERR(fwnode->secondary);
3391 }
3392 
3393 /**
3394  * set_primary_fwnode - Change the primary firmware node of a given device.
3395  * @dev: Device to handle.
3396  * @fwnode: New primary firmware node of the device.
3397  *
3398  * Set the device's firmware node pointer to @fwnode, but if a secondary
3399  * firmware node of the device is present, preserve it.
3400  */
3401 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402 {
3403 	if (fwnode) {
3404 		struct fwnode_handle *fn = dev->fwnode;
3405 
3406 		if (fwnode_is_primary(fn))
3407 			fn = fn->secondary;
3408 
3409 		if (fn) {
3410 			WARN_ON(fwnode->secondary);
3411 			fwnode->secondary = fn;
3412 		}
3413 		dev->fwnode = fwnode;
3414 	} else {
3415 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416 			dev->fwnode->secondary : NULL;
3417 	}
3418 }
3419 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420 
3421 /**
3422  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423  * @dev: Device to handle.
3424  * @fwnode: New secondary firmware node of the device.
3425  *
3426  * If a primary firmware node of the device is present, set its secondary
3427  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428  * @fwnode.
3429  */
3430 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431 {
3432 	if (fwnode)
3433 		fwnode->secondary = ERR_PTR(-ENODEV);
3434 
3435 	if (fwnode_is_primary(dev->fwnode))
3436 		dev->fwnode->secondary = fwnode;
3437 	else
3438 		dev->fwnode = fwnode;
3439 }
3440 
3441 /**
3442  * device_set_of_node_from_dev - reuse device-tree node of another device
3443  * @dev: device whose device-tree node is being set
3444  * @dev2: device whose device-tree node is being reused
3445  *
3446  * Takes another reference to the new device-tree node after first dropping
3447  * any reference held to the old node.
3448  */
3449 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450 {
3451 	of_node_put(dev->of_node);
3452 	dev->of_node = of_node_get(dev2->of_node);
3453 	dev->of_node_reused = true;
3454 }
3455 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456 
3457 int device_match_name(struct device *dev, const void *name)
3458 {
3459 	return sysfs_streq(dev_name(dev), name);
3460 }
3461 EXPORT_SYMBOL_GPL(device_match_name);
3462 
3463 int device_match_of_node(struct device *dev, const void *np)
3464 {
3465 	return dev->of_node == np;
3466 }
3467 EXPORT_SYMBOL_GPL(device_match_of_node);
3468 
3469 int device_match_fwnode(struct device *dev, const void *fwnode)
3470 {
3471 	return dev_fwnode(dev) == fwnode;
3472 }
3473 EXPORT_SYMBOL_GPL(device_match_fwnode);
3474 
3475 int device_match_devt(struct device *dev, const void *pdevt)
3476 {
3477 	return dev->devt == *(dev_t *)pdevt;
3478 }
3479 EXPORT_SYMBOL_GPL(device_match_devt);
3480 
3481 int device_match_acpi_dev(struct device *dev, const void *adev)
3482 {
3483 	return ACPI_COMPANION(dev) == adev;
3484 }
3485 EXPORT_SYMBOL(device_match_acpi_dev);
3486 
3487 int device_match_any(struct device *dev, const void *unused)
3488 {
3489 	return 1;
3490 }
3491 EXPORT_SYMBOL_GPL(device_match_any);
3492