1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 static struct workqueue_struct *device_link_wq; 48 49 /** 50 * __fwnode_link_add - Create a link between two fwnode_handles. 51 * @con: Consumer end of the link. 52 * @sup: Supplier end of the link. 53 * @flags: Link flags. 54 * 55 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 56 * represents the detail that the firmware lists @sup fwnode as supplying a 57 * resource to @con. 58 * 59 * The driver core will use the fwnode link to create a device link between the 60 * two device objects corresponding to @con and @sup when they are created. The 61 * driver core will automatically delete the fwnode link between @con and @sup 62 * after doing that. 63 * 64 * Attempts to create duplicate links between the same pair of fwnode handles 65 * are ignored and there is no reference counting. 66 */ 67 static int __fwnode_link_add(struct fwnode_handle *con, 68 struct fwnode_handle *sup, u8 flags) 69 { 70 struct fwnode_link *link; 71 72 list_for_each_entry(link, &sup->consumers, s_hook) 73 if (link->consumer == con) { 74 link->flags |= flags; 75 return 0; 76 } 77 78 link = kzalloc(sizeof(*link), GFP_KERNEL); 79 if (!link) 80 return -ENOMEM; 81 82 link->supplier = sup; 83 INIT_LIST_HEAD(&link->s_hook); 84 link->consumer = con; 85 INIT_LIST_HEAD(&link->c_hook); 86 link->flags = flags; 87 88 list_add(&link->s_hook, &sup->consumers); 89 list_add(&link->c_hook, &con->suppliers); 90 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 91 con, sup); 92 93 return 0; 94 } 95 96 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 97 u8 flags) 98 { 99 int ret; 100 101 mutex_lock(&fwnode_link_lock); 102 ret = __fwnode_link_add(con, sup, flags); 103 mutex_unlock(&fwnode_link_lock); 104 return ret; 105 } 106 107 /** 108 * __fwnode_link_del - Delete a link between two fwnode_handles. 109 * @link: the fwnode_link to be deleted 110 * 111 * The fwnode_link_lock needs to be held when this function is called. 112 */ 113 static void __fwnode_link_del(struct fwnode_link *link) 114 { 115 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 116 link->consumer, link->supplier); 117 list_del(&link->s_hook); 118 list_del(&link->c_hook); 119 kfree(link); 120 } 121 122 /** 123 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 124 * @link: the fwnode_link to be marked 125 * 126 * The fwnode_link_lock needs to be held when this function is called. 127 */ 128 static void __fwnode_link_cycle(struct fwnode_link *link) 129 { 130 pr_debug("%pfwf: cycle: depends on %pfwf\n", 131 link->consumer, link->supplier); 132 link->flags |= FWLINK_FLAG_CYCLE; 133 } 134 135 /** 136 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 137 * @fwnode: fwnode whose supplier links need to be deleted 138 * 139 * Deletes all supplier links connecting directly to @fwnode. 140 */ 141 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 142 { 143 struct fwnode_link *link, *tmp; 144 145 mutex_lock(&fwnode_link_lock); 146 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 147 __fwnode_link_del(link); 148 mutex_unlock(&fwnode_link_lock); 149 } 150 151 /** 152 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 153 * @fwnode: fwnode whose consumer links need to be deleted 154 * 155 * Deletes all consumer links connecting directly to @fwnode. 156 */ 157 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 158 { 159 struct fwnode_link *link, *tmp; 160 161 mutex_lock(&fwnode_link_lock); 162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 163 __fwnode_link_del(link); 164 mutex_unlock(&fwnode_link_lock); 165 } 166 167 /** 168 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 169 * @fwnode: fwnode whose links needs to be deleted 170 * 171 * Deletes all links connecting directly to a fwnode. 172 */ 173 void fwnode_links_purge(struct fwnode_handle *fwnode) 174 { 175 fwnode_links_purge_suppliers(fwnode); 176 fwnode_links_purge_consumers(fwnode); 177 } 178 179 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 180 { 181 struct fwnode_handle *child; 182 183 /* Don't purge consumer links of an added child */ 184 if (fwnode->dev) 185 return; 186 187 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 188 fwnode_links_purge_consumers(fwnode); 189 190 fwnode_for_each_available_child_node(fwnode, child) 191 fw_devlink_purge_absent_suppliers(child); 192 } 193 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 194 195 /** 196 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 197 * @from: move consumers away from this fwnode 198 * @to: move consumers to this fwnode 199 * 200 * Move all consumer links from @from fwnode to @to fwnode. 201 */ 202 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 203 struct fwnode_handle *to) 204 { 205 struct fwnode_link *link, *tmp; 206 207 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 208 __fwnode_link_add(link->consumer, to, link->flags); 209 __fwnode_link_del(link); 210 } 211 } 212 213 /** 214 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 215 * @fwnode: fwnode from which to pick up dangling consumers 216 * @new_sup: fwnode of new supplier 217 * 218 * If the @fwnode has a corresponding struct device and the device supports 219 * probing (that is, added to a bus), then we want to let fw_devlink create 220 * MANAGED device links to this device, so leave @fwnode and its descendant's 221 * fwnode links alone. 222 * 223 * Otherwise, move its consumers to the new supplier @new_sup. 224 */ 225 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 226 struct fwnode_handle *new_sup) 227 { 228 struct fwnode_handle *child; 229 230 if (fwnode->dev && fwnode->dev->bus) 231 return; 232 233 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 234 __fwnode_links_move_consumers(fwnode, new_sup); 235 236 fwnode_for_each_available_child_node(fwnode, child) 237 __fw_devlink_pickup_dangling_consumers(child, new_sup); 238 } 239 240 static DEFINE_MUTEX(device_links_lock); 241 DEFINE_STATIC_SRCU(device_links_srcu); 242 243 static inline void device_links_write_lock(void) 244 { 245 mutex_lock(&device_links_lock); 246 } 247 248 static inline void device_links_write_unlock(void) 249 { 250 mutex_unlock(&device_links_lock); 251 } 252 253 int device_links_read_lock(void) __acquires(&device_links_srcu) 254 { 255 return srcu_read_lock(&device_links_srcu); 256 } 257 258 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 259 { 260 srcu_read_unlock(&device_links_srcu, idx); 261 } 262 263 int device_links_read_lock_held(void) 264 { 265 return srcu_read_lock_held(&device_links_srcu); 266 } 267 268 static void device_link_synchronize_removal(void) 269 { 270 synchronize_srcu(&device_links_srcu); 271 } 272 273 static void device_link_remove_from_lists(struct device_link *link) 274 { 275 list_del_rcu(&link->s_node); 276 list_del_rcu(&link->c_node); 277 } 278 279 static bool device_is_ancestor(struct device *dev, struct device *target) 280 { 281 while (target->parent) { 282 target = target->parent; 283 if (dev == target) 284 return true; 285 } 286 return false; 287 } 288 289 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 290 DL_FLAG_CYCLE | \ 291 DL_FLAG_MANAGED) 292 static inline bool device_link_flag_is_sync_state_only(u32 flags) 293 { 294 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 295 } 296 297 /** 298 * device_is_dependent - Check if one device depends on another one 299 * @dev: Device to check dependencies for. 300 * @target: Device to check against. 301 * 302 * Check if @target depends on @dev or any device dependent on it (its child or 303 * its consumer etc). Return 1 if that is the case or 0 otherwise. 304 */ 305 static int device_is_dependent(struct device *dev, void *target) 306 { 307 struct device_link *link; 308 int ret; 309 310 /* 311 * The "ancestors" check is needed to catch the case when the target 312 * device has not been completely initialized yet and it is still 313 * missing from the list of children of its parent device. 314 */ 315 if (dev == target || device_is_ancestor(dev, target)) 316 return 1; 317 318 ret = device_for_each_child(dev, target, device_is_dependent); 319 if (ret) 320 return ret; 321 322 list_for_each_entry(link, &dev->links.consumers, s_node) { 323 if (device_link_flag_is_sync_state_only(link->flags)) 324 continue; 325 326 if (link->consumer == target) 327 return 1; 328 329 ret = device_is_dependent(link->consumer, target); 330 if (ret) 331 break; 332 } 333 return ret; 334 } 335 336 static void device_link_init_status(struct device_link *link, 337 struct device *consumer, 338 struct device *supplier) 339 { 340 switch (supplier->links.status) { 341 case DL_DEV_PROBING: 342 switch (consumer->links.status) { 343 case DL_DEV_PROBING: 344 /* 345 * A consumer driver can create a link to a supplier 346 * that has not completed its probing yet as long as it 347 * knows that the supplier is already functional (for 348 * example, it has just acquired some resources from the 349 * supplier). 350 */ 351 link->status = DL_STATE_CONSUMER_PROBE; 352 break; 353 default: 354 link->status = DL_STATE_DORMANT; 355 break; 356 } 357 break; 358 case DL_DEV_DRIVER_BOUND: 359 switch (consumer->links.status) { 360 case DL_DEV_PROBING: 361 link->status = DL_STATE_CONSUMER_PROBE; 362 break; 363 case DL_DEV_DRIVER_BOUND: 364 link->status = DL_STATE_ACTIVE; 365 break; 366 default: 367 link->status = DL_STATE_AVAILABLE; 368 break; 369 } 370 break; 371 case DL_DEV_UNBINDING: 372 link->status = DL_STATE_SUPPLIER_UNBIND; 373 break; 374 default: 375 link->status = DL_STATE_DORMANT; 376 break; 377 } 378 } 379 380 static int device_reorder_to_tail(struct device *dev, void *not_used) 381 { 382 struct device_link *link; 383 384 /* 385 * Devices that have not been registered yet will be put to the ends 386 * of the lists during the registration, so skip them here. 387 */ 388 if (device_is_registered(dev)) 389 devices_kset_move_last(dev); 390 391 if (device_pm_initialized(dev)) 392 device_pm_move_last(dev); 393 394 device_for_each_child(dev, NULL, device_reorder_to_tail); 395 list_for_each_entry(link, &dev->links.consumers, s_node) { 396 if (device_link_flag_is_sync_state_only(link->flags)) 397 continue; 398 device_reorder_to_tail(link->consumer, NULL); 399 } 400 401 return 0; 402 } 403 404 /** 405 * device_pm_move_to_tail - Move set of devices to the end of device lists 406 * @dev: Device to move 407 * 408 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 409 * 410 * It moves the @dev along with all of its children and all of its consumers 411 * to the ends of the device_kset and dpm_list, recursively. 412 */ 413 void device_pm_move_to_tail(struct device *dev) 414 { 415 int idx; 416 417 idx = device_links_read_lock(); 418 device_pm_lock(); 419 device_reorder_to_tail(dev, NULL); 420 device_pm_unlock(); 421 device_links_read_unlock(idx); 422 } 423 424 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 425 426 static ssize_t status_show(struct device *dev, 427 struct device_attribute *attr, char *buf) 428 { 429 const char *output; 430 431 switch (to_devlink(dev)->status) { 432 case DL_STATE_NONE: 433 output = "not tracked"; 434 break; 435 case DL_STATE_DORMANT: 436 output = "dormant"; 437 break; 438 case DL_STATE_AVAILABLE: 439 output = "available"; 440 break; 441 case DL_STATE_CONSUMER_PROBE: 442 output = "consumer probing"; 443 break; 444 case DL_STATE_ACTIVE: 445 output = "active"; 446 break; 447 case DL_STATE_SUPPLIER_UNBIND: 448 output = "supplier unbinding"; 449 break; 450 default: 451 output = "unknown"; 452 break; 453 } 454 455 return sysfs_emit(buf, "%s\n", output); 456 } 457 static DEVICE_ATTR_RO(status); 458 459 static ssize_t auto_remove_on_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 struct device_link *link = to_devlink(dev); 463 const char *output; 464 465 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 466 output = "supplier unbind"; 467 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 468 output = "consumer unbind"; 469 else 470 output = "never"; 471 472 return sysfs_emit(buf, "%s\n", output); 473 } 474 static DEVICE_ATTR_RO(auto_remove_on); 475 476 static ssize_t runtime_pm_show(struct device *dev, 477 struct device_attribute *attr, char *buf) 478 { 479 struct device_link *link = to_devlink(dev); 480 481 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 482 } 483 static DEVICE_ATTR_RO(runtime_pm); 484 485 static ssize_t sync_state_only_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct device_link *link = to_devlink(dev); 489 490 return sysfs_emit(buf, "%d\n", 491 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 492 } 493 static DEVICE_ATTR_RO(sync_state_only); 494 495 static struct attribute *devlink_attrs[] = { 496 &dev_attr_status.attr, 497 &dev_attr_auto_remove_on.attr, 498 &dev_attr_runtime_pm.attr, 499 &dev_attr_sync_state_only.attr, 500 NULL, 501 }; 502 ATTRIBUTE_GROUPS(devlink); 503 504 static void device_link_release_fn(struct work_struct *work) 505 { 506 struct device_link *link = container_of(work, struct device_link, rm_work); 507 508 /* Ensure that all references to the link object have been dropped. */ 509 device_link_synchronize_removal(); 510 511 pm_runtime_release_supplier(link); 512 /* 513 * If supplier_preactivated is set, the link has been dropped between 514 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 515 * in __driver_probe_device(). In that case, drop the supplier's 516 * PM-runtime usage counter to remove the reference taken by 517 * pm_runtime_get_suppliers(). 518 */ 519 if (link->supplier_preactivated) 520 pm_runtime_put_noidle(link->supplier); 521 522 pm_request_idle(link->supplier); 523 524 put_device(link->consumer); 525 put_device(link->supplier); 526 kfree(link); 527 } 528 529 static void devlink_dev_release(struct device *dev) 530 { 531 struct device_link *link = to_devlink(dev); 532 533 INIT_WORK(&link->rm_work, device_link_release_fn); 534 /* 535 * It may take a while to complete this work because of the SRCU 536 * synchronization in device_link_release_fn() and if the consumer or 537 * supplier devices get deleted when it runs, so put it into the 538 * dedicated workqueue. 539 */ 540 queue_work(device_link_wq, &link->rm_work); 541 } 542 543 /** 544 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 545 */ 546 void device_link_wait_removal(void) 547 { 548 /* 549 * devlink removal jobs are queued in the dedicated work queue. 550 * To be sure that all removal jobs are terminated, ensure that any 551 * scheduled work has run to completion. 552 */ 553 flush_workqueue(device_link_wq); 554 } 555 EXPORT_SYMBOL_GPL(device_link_wait_removal); 556 557 static struct class devlink_class = { 558 .name = "devlink", 559 .dev_groups = devlink_groups, 560 .dev_release = devlink_dev_release, 561 }; 562 563 static int devlink_add_symlinks(struct device *dev) 564 { 565 int ret; 566 size_t len; 567 struct device_link *link = to_devlink(dev); 568 struct device *sup = link->supplier; 569 struct device *con = link->consumer; 570 char *buf; 571 572 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 573 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 574 len += strlen(":"); 575 len += strlen("supplier:") + 1; 576 buf = kzalloc(len, GFP_KERNEL); 577 if (!buf) 578 return -ENOMEM; 579 580 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 581 if (ret) 582 goto out; 583 584 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 585 if (ret) 586 goto err_con; 587 588 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 589 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 590 if (ret) 591 goto err_con_dev; 592 593 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 594 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 595 if (ret) 596 goto err_sup_dev; 597 598 goto out; 599 600 err_sup_dev: 601 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 602 sysfs_remove_link(&sup->kobj, buf); 603 err_con_dev: 604 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 605 err_con: 606 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 607 out: 608 kfree(buf); 609 return ret; 610 } 611 612 static void devlink_remove_symlinks(struct device *dev) 613 { 614 struct device_link *link = to_devlink(dev); 615 size_t len; 616 struct device *sup = link->supplier; 617 struct device *con = link->consumer; 618 char *buf; 619 620 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 621 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 622 623 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 624 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 625 len += strlen(":"); 626 len += strlen("supplier:") + 1; 627 buf = kzalloc(len, GFP_KERNEL); 628 if (!buf) { 629 WARN(1, "Unable to properly free device link symlinks!\n"); 630 return; 631 } 632 633 if (device_is_registered(con)) { 634 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 635 sysfs_remove_link(&con->kobj, buf); 636 } 637 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 638 sysfs_remove_link(&sup->kobj, buf); 639 kfree(buf); 640 } 641 642 static struct class_interface devlink_class_intf = { 643 .class = &devlink_class, 644 .add_dev = devlink_add_symlinks, 645 .remove_dev = devlink_remove_symlinks, 646 }; 647 648 static int __init devlink_class_init(void) 649 { 650 int ret; 651 652 ret = class_register(&devlink_class); 653 if (ret) 654 return ret; 655 656 ret = class_interface_register(&devlink_class_intf); 657 if (ret) 658 class_unregister(&devlink_class); 659 660 return ret; 661 } 662 postcore_initcall(devlink_class_init); 663 664 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 665 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 666 DL_FLAG_AUTOPROBE_CONSUMER | \ 667 DL_FLAG_SYNC_STATE_ONLY | \ 668 DL_FLAG_INFERRED | \ 669 DL_FLAG_CYCLE) 670 671 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 672 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 673 674 /** 675 * device_link_add - Create a link between two devices. 676 * @consumer: Consumer end of the link. 677 * @supplier: Supplier end of the link. 678 * @flags: Link flags. 679 * 680 * The caller is responsible for the proper synchronization of the link creation 681 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 682 * runtime PM framework to take the link into account. Second, if the 683 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 684 * be forced into the active meta state and reference-counted upon the creation 685 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 686 * ignored. 687 * 688 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 689 * expected to release the link returned by it directly with the help of either 690 * device_link_del() or device_link_remove(). 691 * 692 * If that flag is not set, however, the caller of this function is handing the 693 * management of the link over to the driver core entirely and its return value 694 * can only be used to check whether or not the link is present. In that case, 695 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 696 * flags can be used to indicate to the driver core when the link can be safely 697 * deleted. Namely, setting one of them in @flags indicates to the driver core 698 * that the link is not going to be used (by the given caller of this function) 699 * after unbinding the consumer or supplier driver, respectively, from its 700 * device, so the link can be deleted at that point. If none of them is set, 701 * the link will be maintained until one of the devices pointed to by it (either 702 * the consumer or the supplier) is unregistered. 703 * 704 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 705 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 706 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 707 * be used to request the driver core to automatically probe for a consumer 708 * driver after successfully binding a driver to the supplier device. 709 * 710 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 711 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 712 * the same time is invalid and will cause NULL to be returned upfront. 713 * However, if a device link between the given @consumer and @supplier pair 714 * exists already when this function is called for them, the existing link will 715 * be returned regardless of its current type and status (the link's flags may 716 * be modified then). The caller of this function is then expected to treat 717 * the link as though it has just been created, so (in particular) if 718 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 719 * explicitly when not needed any more (as stated above). 720 * 721 * A side effect of the link creation is re-ordering of dpm_list and the 722 * devices_kset list by moving the consumer device and all devices depending 723 * on it to the ends of these lists (that does not happen to devices that have 724 * not been registered when this function is called). 725 * 726 * The supplier device is required to be registered when this function is called 727 * and NULL will be returned if that is not the case. The consumer device need 728 * not be registered, however. 729 */ 730 struct device_link *device_link_add(struct device *consumer, 731 struct device *supplier, u32 flags) 732 { 733 struct device_link *link; 734 735 if (!consumer || !supplier || consumer == supplier || 736 flags & ~DL_ADD_VALID_FLAGS || 737 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 738 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 739 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 740 DL_FLAG_AUTOREMOVE_SUPPLIER))) 741 return NULL; 742 743 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 744 if (pm_runtime_get_sync(supplier) < 0) { 745 pm_runtime_put_noidle(supplier); 746 return NULL; 747 } 748 } 749 750 if (!(flags & DL_FLAG_STATELESS)) 751 flags |= DL_FLAG_MANAGED; 752 753 if (flags & DL_FLAG_SYNC_STATE_ONLY && 754 !device_link_flag_is_sync_state_only(flags)) 755 return NULL; 756 757 device_links_write_lock(); 758 device_pm_lock(); 759 760 /* 761 * If the supplier has not been fully registered yet or there is a 762 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 763 * the supplier already in the graph, return NULL. If the link is a 764 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 765 * because it only affects sync_state() callbacks. 766 */ 767 if (!device_pm_initialized(supplier) 768 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 769 device_is_dependent(consumer, supplier))) { 770 link = NULL; 771 goto out; 772 } 773 774 /* 775 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 776 * So, only create it if the consumer hasn't probed yet. 777 */ 778 if (flags & DL_FLAG_SYNC_STATE_ONLY && 779 consumer->links.status != DL_DEV_NO_DRIVER && 780 consumer->links.status != DL_DEV_PROBING) { 781 link = NULL; 782 goto out; 783 } 784 785 /* 786 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 787 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 788 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 789 */ 790 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 791 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 792 793 list_for_each_entry(link, &supplier->links.consumers, s_node) { 794 if (link->consumer != consumer) 795 continue; 796 797 if (link->flags & DL_FLAG_INFERRED && 798 !(flags & DL_FLAG_INFERRED)) 799 link->flags &= ~DL_FLAG_INFERRED; 800 801 if (flags & DL_FLAG_PM_RUNTIME) { 802 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 803 pm_runtime_new_link(consumer); 804 link->flags |= DL_FLAG_PM_RUNTIME; 805 } 806 if (flags & DL_FLAG_RPM_ACTIVE) 807 refcount_inc(&link->rpm_active); 808 } 809 810 if (flags & DL_FLAG_STATELESS) { 811 kref_get(&link->kref); 812 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 813 !(link->flags & DL_FLAG_STATELESS)) { 814 link->flags |= DL_FLAG_STATELESS; 815 goto reorder; 816 } else { 817 link->flags |= DL_FLAG_STATELESS; 818 goto out; 819 } 820 } 821 822 /* 823 * If the life time of the link following from the new flags is 824 * longer than indicated by the flags of the existing link, 825 * update the existing link to stay around longer. 826 */ 827 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 828 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 829 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 830 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 831 } 832 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 833 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 834 DL_FLAG_AUTOREMOVE_SUPPLIER); 835 } 836 if (!(link->flags & DL_FLAG_MANAGED)) { 837 kref_get(&link->kref); 838 link->flags |= DL_FLAG_MANAGED; 839 device_link_init_status(link, consumer, supplier); 840 } 841 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 842 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 843 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 844 goto reorder; 845 } 846 847 goto out; 848 } 849 850 link = kzalloc(sizeof(*link), GFP_KERNEL); 851 if (!link) 852 goto out; 853 854 refcount_set(&link->rpm_active, 1); 855 856 get_device(supplier); 857 link->supplier = supplier; 858 INIT_LIST_HEAD(&link->s_node); 859 get_device(consumer); 860 link->consumer = consumer; 861 INIT_LIST_HEAD(&link->c_node); 862 link->flags = flags; 863 kref_init(&link->kref); 864 865 link->link_dev.class = &devlink_class; 866 device_set_pm_not_required(&link->link_dev); 867 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 868 dev_bus_name(supplier), dev_name(supplier), 869 dev_bus_name(consumer), dev_name(consumer)); 870 if (device_register(&link->link_dev)) { 871 put_device(&link->link_dev); 872 link = NULL; 873 goto out; 874 } 875 876 if (flags & DL_FLAG_PM_RUNTIME) { 877 if (flags & DL_FLAG_RPM_ACTIVE) 878 refcount_inc(&link->rpm_active); 879 880 pm_runtime_new_link(consumer); 881 } 882 883 /* Determine the initial link state. */ 884 if (flags & DL_FLAG_STATELESS) 885 link->status = DL_STATE_NONE; 886 else 887 device_link_init_status(link, consumer, supplier); 888 889 /* 890 * Some callers expect the link creation during consumer driver probe to 891 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 892 */ 893 if (link->status == DL_STATE_CONSUMER_PROBE && 894 flags & DL_FLAG_PM_RUNTIME) 895 pm_runtime_resume(supplier); 896 897 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 898 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 899 900 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 901 dev_dbg(consumer, 902 "Linked as a sync state only consumer to %s\n", 903 dev_name(supplier)); 904 goto out; 905 } 906 907 reorder: 908 /* 909 * Move the consumer and all of the devices depending on it to the end 910 * of dpm_list and the devices_kset list. 911 * 912 * It is necessary to hold dpm_list locked throughout all that or else 913 * we may end up suspending with a wrong ordering of it. 914 */ 915 device_reorder_to_tail(consumer, NULL); 916 917 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 918 919 out: 920 device_pm_unlock(); 921 device_links_write_unlock(); 922 923 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 924 pm_runtime_put(supplier); 925 926 return link; 927 } 928 EXPORT_SYMBOL_GPL(device_link_add); 929 930 static void __device_link_del(struct kref *kref) 931 { 932 struct device_link *link = container_of(kref, struct device_link, kref); 933 934 dev_dbg(link->consumer, "Dropping the link to %s\n", 935 dev_name(link->supplier)); 936 937 pm_runtime_drop_link(link); 938 939 device_link_remove_from_lists(link); 940 device_unregister(&link->link_dev); 941 } 942 943 static void device_link_put_kref(struct device_link *link) 944 { 945 if (link->flags & DL_FLAG_STATELESS) 946 kref_put(&link->kref, __device_link_del); 947 else if (!device_is_registered(link->consumer)) 948 __device_link_del(&link->kref); 949 else 950 WARN(1, "Unable to drop a managed device link reference\n"); 951 } 952 953 /** 954 * device_link_del - Delete a stateless link between two devices. 955 * @link: Device link to delete. 956 * 957 * The caller must ensure proper synchronization of this function with runtime 958 * PM. If the link was added multiple times, it needs to be deleted as often. 959 * Care is required for hotplugged devices: Their links are purged on removal 960 * and calling device_link_del() is then no longer allowed. 961 */ 962 void device_link_del(struct device_link *link) 963 { 964 device_links_write_lock(); 965 device_link_put_kref(link); 966 device_links_write_unlock(); 967 } 968 EXPORT_SYMBOL_GPL(device_link_del); 969 970 /** 971 * device_link_remove - Delete a stateless link between two devices. 972 * @consumer: Consumer end of the link. 973 * @supplier: Supplier end of the link. 974 * 975 * The caller must ensure proper synchronization of this function with runtime 976 * PM. 977 */ 978 void device_link_remove(void *consumer, struct device *supplier) 979 { 980 struct device_link *link; 981 982 if (WARN_ON(consumer == supplier)) 983 return; 984 985 device_links_write_lock(); 986 987 list_for_each_entry(link, &supplier->links.consumers, s_node) { 988 if (link->consumer == consumer) { 989 device_link_put_kref(link); 990 break; 991 } 992 } 993 994 device_links_write_unlock(); 995 } 996 EXPORT_SYMBOL_GPL(device_link_remove); 997 998 static void device_links_missing_supplier(struct device *dev) 999 { 1000 struct device_link *link; 1001 1002 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1003 if (link->status != DL_STATE_CONSUMER_PROBE) 1004 continue; 1005 1006 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1007 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1008 } else { 1009 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1010 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1011 } 1012 } 1013 } 1014 1015 static bool dev_is_best_effort(struct device *dev) 1016 { 1017 return (fw_devlink_best_effort && dev->can_match) || 1018 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1019 } 1020 1021 static struct fwnode_handle *fwnode_links_check_suppliers( 1022 struct fwnode_handle *fwnode) 1023 { 1024 struct fwnode_link *link; 1025 1026 if (!fwnode || fw_devlink_is_permissive()) 1027 return NULL; 1028 1029 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1030 if (!(link->flags & 1031 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1032 return link->supplier; 1033 1034 return NULL; 1035 } 1036 1037 /** 1038 * device_links_check_suppliers - Check presence of supplier drivers. 1039 * @dev: Consumer device. 1040 * 1041 * Check links from this device to any suppliers. Walk the list of the device's 1042 * links to suppliers and see if all of them are available. If not, simply 1043 * return -EPROBE_DEFER. 1044 * 1045 * We need to guarantee that the supplier will not go away after the check has 1046 * been positive here. It only can go away in __device_release_driver() and 1047 * that function checks the device's links to consumers. This means we need to 1048 * mark the link as "consumer probe in progress" to make the supplier removal 1049 * wait for us to complete (or bad things may happen). 1050 * 1051 * Links without the DL_FLAG_MANAGED flag set are ignored. 1052 */ 1053 int device_links_check_suppliers(struct device *dev) 1054 { 1055 struct device_link *link; 1056 int ret = 0, fwnode_ret = 0; 1057 struct fwnode_handle *sup_fw; 1058 1059 /* 1060 * Device waiting for supplier to become available is not allowed to 1061 * probe. 1062 */ 1063 mutex_lock(&fwnode_link_lock); 1064 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1065 if (sup_fw) { 1066 if (!dev_is_best_effort(dev)) { 1067 fwnode_ret = -EPROBE_DEFER; 1068 dev_err_probe(dev, -EPROBE_DEFER, 1069 "wait for supplier %pfwf\n", sup_fw); 1070 } else { 1071 fwnode_ret = -EAGAIN; 1072 } 1073 } 1074 mutex_unlock(&fwnode_link_lock); 1075 if (fwnode_ret == -EPROBE_DEFER) 1076 return fwnode_ret; 1077 1078 device_links_write_lock(); 1079 1080 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1081 if (!(link->flags & DL_FLAG_MANAGED)) 1082 continue; 1083 1084 if (link->status != DL_STATE_AVAILABLE && 1085 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1086 1087 if (dev_is_best_effort(dev) && 1088 link->flags & DL_FLAG_INFERRED && 1089 !link->supplier->can_match) { 1090 ret = -EAGAIN; 1091 continue; 1092 } 1093 1094 device_links_missing_supplier(dev); 1095 dev_err_probe(dev, -EPROBE_DEFER, 1096 "supplier %s not ready\n", 1097 dev_name(link->supplier)); 1098 ret = -EPROBE_DEFER; 1099 break; 1100 } 1101 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1102 } 1103 dev->links.status = DL_DEV_PROBING; 1104 1105 device_links_write_unlock(); 1106 1107 return ret ? ret : fwnode_ret; 1108 } 1109 1110 /** 1111 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1112 * @dev: Device to call sync_state() on 1113 * @list: List head to queue the @dev on 1114 * 1115 * Queues a device for a sync_state() callback when the device links write lock 1116 * isn't held. This allows the sync_state() execution flow to use device links 1117 * APIs. The caller must ensure this function is called with 1118 * device_links_write_lock() held. 1119 * 1120 * This function does a get_device() to make sure the device is not freed while 1121 * on this list. 1122 * 1123 * So the caller must also ensure that device_links_flush_sync_list() is called 1124 * as soon as the caller releases device_links_write_lock(). This is necessary 1125 * to make sure the sync_state() is called in a timely fashion and the 1126 * put_device() is called on this device. 1127 */ 1128 static void __device_links_queue_sync_state(struct device *dev, 1129 struct list_head *list) 1130 { 1131 struct device_link *link; 1132 1133 if (!dev_has_sync_state(dev)) 1134 return; 1135 if (dev->state_synced) 1136 return; 1137 1138 list_for_each_entry(link, &dev->links.consumers, s_node) { 1139 if (!(link->flags & DL_FLAG_MANAGED)) 1140 continue; 1141 if (link->status != DL_STATE_ACTIVE) 1142 return; 1143 } 1144 1145 /* 1146 * Set the flag here to avoid adding the same device to a list more 1147 * than once. This can happen if new consumers get added to the device 1148 * and probed before the list is flushed. 1149 */ 1150 dev->state_synced = true; 1151 1152 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1153 return; 1154 1155 get_device(dev); 1156 list_add_tail(&dev->links.defer_sync, list); 1157 } 1158 1159 /** 1160 * device_links_flush_sync_list - Call sync_state() on a list of devices 1161 * @list: List of devices to call sync_state() on 1162 * @dont_lock_dev: Device for which lock is already held by the caller 1163 * 1164 * Calls sync_state() on all the devices that have been queued for it. This 1165 * function is used in conjunction with __device_links_queue_sync_state(). The 1166 * @dont_lock_dev parameter is useful when this function is called from a 1167 * context where a device lock is already held. 1168 */ 1169 static void device_links_flush_sync_list(struct list_head *list, 1170 struct device *dont_lock_dev) 1171 { 1172 struct device *dev, *tmp; 1173 1174 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1175 list_del_init(&dev->links.defer_sync); 1176 1177 if (dev != dont_lock_dev) 1178 device_lock(dev); 1179 1180 dev_sync_state(dev); 1181 1182 if (dev != dont_lock_dev) 1183 device_unlock(dev); 1184 1185 put_device(dev); 1186 } 1187 } 1188 1189 void device_links_supplier_sync_state_pause(void) 1190 { 1191 device_links_write_lock(); 1192 defer_sync_state_count++; 1193 device_links_write_unlock(); 1194 } 1195 1196 void device_links_supplier_sync_state_resume(void) 1197 { 1198 struct device *dev, *tmp; 1199 LIST_HEAD(sync_list); 1200 1201 device_links_write_lock(); 1202 if (!defer_sync_state_count) { 1203 WARN(true, "Unmatched sync_state pause/resume!"); 1204 goto out; 1205 } 1206 defer_sync_state_count--; 1207 if (defer_sync_state_count) 1208 goto out; 1209 1210 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1211 /* 1212 * Delete from deferred_sync list before queuing it to 1213 * sync_list because defer_sync is used for both lists. 1214 */ 1215 list_del_init(&dev->links.defer_sync); 1216 __device_links_queue_sync_state(dev, &sync_list); 1217 } 1218 out: 1219 device_links_write_unlock(); 1220 1221 device_links_flush_sync_list(&sync_list, NULL); 1222 } 1223 1224 static int sync_state_resume_initcall(void) 1225 { 1226 device_links_supplier_sync_state_resume(); 1227 return 0; 1228 } 1229 late_initcall(sync_state_resume_initcall); 1230 1231 static void __device_links_supplier_defer_sync(struct device *sup) 1232 { 1233 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1234 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1235 } 1236 1237 static void device_link_drop_managed(struct device_link *link) 1238 { 1239 link->flags &= ~DL_FLAG_MANAGED; 1240 WRITE_ONCE(link->status, DL_STATE_NONE); 1241 kref_put(&link->kref, __device_link_del); 1242 } 1243 1244 static ssize_t waiting_for_supplier_show(struct device *dev, 1245 struct device_attribute *attr, 1246 char *buf) 1247 { 1248 bool val; 1249 1250 device_lock(dev); 1251 mutex_lock(&fwnode_link_lock); 1252 val = !!fwnode_links_check_suppliers(dev->fwnode); 1253 mutex_unlock(&fwnode_link_lock); 1254 device_unlock(dev); 1255 return sysfs_emit(buf, "%u\n", val); 1256 } 1257 static DEVICE_ATTR_RO(waiting_for_supplier); 1258 1259 /** 1260 * device_links_force_bind - Prepares device to be force bound 1261 * @dev: Consumer device. 1262 * 1263 * device_bind_driver() force binds a device to a driver without calling any 1264 * driver probe functions. So the consumer really isn't going to wait for any 1265 * supplier before it's bound to the driver. We still want the device link 1266 * states to be sensible when this happens. 1267 * 1268 * In preparation for device_bind_driver(), this function goes through each 1269 * supplier device links and checks if the supplier is bound. If it is, then 1270 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1271 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1272 */ 1273 void device_links_force_bind(struct device *dev) 1274 { 1275 struct device_link *link, *ln; 1276 1277 device_links_write_lock(); 1278 1279 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1280 if (!(link->flags & DL_FLAG_MANAGED)) 1281 continue; 1282 1283 if (link->status != DL_STATE_AVAILABLE) { 1284 device_link_drop_managed(link); 1285 continue; 1286 } 1287 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1288 } 1289 dev->links.status = DL_DEV_PROBING; 1290 1291 device_links_write_unlock(); 1292 } 1293 1294 /** 1295 * device_links_driver_bound - Update device links after probing its driver. 1296 * @dev: Device to update the links for. 1297 * 1298 * The probe has been successful, so update links from this device to any 1299 * consumers by changing their status to "available". 1300 * 1301 * Also change the status of @dev's links to suppliers to "active". 1302 * 1303 * Links without the DL_FLAG_MANAGED flag set are ignored. 1304 */ 1305 void device_links_driver_bound(struct device *dev) 1306 { 1307 struct device_link *link, *ln; 1308 LIST_HEAD(sync_list); 1309 1310 /* 1311 * If a device binds successfully, it's expected to have created all 1312 * the device links it needs to or make new device links as it needs 1313 * them. So, fw_devlink no longer needs to create device links to any 1314 * of the device's suppliers. 1315 * 1316 * Also, if a child firmware node of this bound device is not added as a 1317 * device by now, assume it is never going to be added. Make this bound 1318 * device the fallback supplier to the dangling consumers of the child 1319 * firmware node because this bound device is probably implementing the 1320 * child firmware node functionality and we don't want the dangling 1321 * consumers to defer probe indefinitely waiting for a device for the 1322 * child firmware node. 1323 */ 1324 if (dev->fwnode && dev->fwnode->dev == dev) { 1325 struct fwnode_handle *child; 1326 fwnode_links_purge_suppliers(dev->fwnode); 1327 mutex_lock(&fwnode_link_lock); 1328 fwnode_for_each_available_child_node(dev->fwnode, child) 1329 __fw_devlink_pickup_dangling_consumers(child, 1330 dev->fwnode); 1331 __fw_devlink_link_to_consumers(dev); 1332 mutex_unlock(&fwnode_link_lock); 1333 } 1334 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1335 1336 device_links_write_lock(); 1337 1338 list_for_each_entry(link, &dev->links.consumers, s_node) { 1339 if (!(link->flags & DL_FLAG_MANAGED)) 1340 continue; 1341 1342 /* 1343 * Links created during consumer probe may be in the "consumer 1344 * probe" state to start with if the supplier is still probing 1345 * when they are created and they may become "active" if the 1346 * consumer probe returns first. Skip them here. 1347 */ 1348 if (link->status == DL_STATE_CONSUMER_PROBE || 1349 link->status == DL_STATE_ACTIVE) 1350 continue; 1351 1352 WARN_ON(link->status != DL_STATE_DORMANT); 1353 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1354 1355 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1356 driver_deferred_probe_add(link->consumer); 1357 } 1358 1359 if (defer_sync_state_count) 1360 __device_links_supplier_defer_sync(dev); 1361 else 1362 __device_links_queue_sync_state(dev, &sync_list); 1363 1364 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1365 struct device *supplier; 1366 1367 if (!(link->flags & DL_FLAG_MANAGED)) 1368 continue; 1369 1370 supplier = link->supplier; 1371 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1372 /* 1373 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1374 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1375 * save to drop the managed link completely. 1376 */ 1377 device_link_drop_managed(link); 1378 } else if (dev_is_best_effort(dev) && 1379 link->flags & DL_FLAG_INFERRED && 1380 link->status != DL_STATE_CONSUMER_PROBE && 1381 !link->supplier->can_match) { 1382 /* 1383 * When dev_is_best_effort() is true, we ignore device 1384 * links to suppliers that don't have a driver. If the 1385 * consumer device still managed to probe, there's no 1386 * point in maintaining a device link in a weird state 1387 * (consumer probed before supplier). So delete it. 1388 */ 1389 device_link_drop_managed(link); 1390 } else { 1391 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1392 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1393 } 1394 1395 /* 1396 * This needs to be done even for the deleted 1397 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1398 * device link that was preventing the supplier from getting a 1399 * sync_state() call. 1400 */ 1401 if (defer_sync_state_count) 1402 __device_links_supplier_defer_sync(supplier); 1403 else 1404 __device_links_queue_sync_state(supplier, &sync_list); 1405 } 1406 1407 dev->links.status = DL_DEV_DRIVER_BOUND; 1408 1409 device_links_write_unlock(); 1410 1411 device_links_flush_sync_list(&sync_list, dev); 1412 } 1413 1414 /** 1415 * __device_links_no_driver - Update links of a device without a driver. 1416 * @dev: Device without a drvier. 1417 * 1418 * Delete all non-persistent links from this device to any suppliers. 1419 * 1420 * Persistent links stay around, but their status is changed to "available", 1421 * unless they already are in the "supplier unbind in progress" state in which 1422 * case they need not be updated. 1423 * 1424 * Links without the DL_FLAG_MANAGED flag set are ignored. 1425 */ 1426 static void __device_links_no_driver(struct device *dev) 1427 { 1428 struct device_link *link, *ln; 1429 1430 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1431 if (!(link->flags & DL_FLAG_MANAGED)) 1432 continue; 1433 1434 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1435 device_link_drop_managed(link); 1436 continue; 1437 } 1438 1439 if (link->status != DL_STATE_CONSUMER_PROBE && 1440 link->status != DL_STATE_ACTIVE) 1441 continue; 1442 1443 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1444 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1445 } else { 1446 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1447 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1448 } 1449 } 1450 1451 dev->links.status = DL_DEV_NO_DRIVER; 1452 } 1453 1454 /** 1455 * device_links_no_driver - Update links after failing driver probe. 1456 * @dev: Device whose driver has just failed to probe. 1457 * 1458 * Clean up leftover links to consumers for @dev and invoke 1459 * %__device_links_no_driver() to update links to suppliers for it as 1460 * appropriate. 1461 * 1462 * Links without the DL_FLAG_MANAGED flag set are ignored. 1463 */ 1464 void device_links_no_driver(struct device *dev) 1465 { 1466 struct device_link *link; 1467 1468 device_links_write_lock(); 1469 1470 list_for_each_entry(link, &dev->links.consumers, s_node) { 1471 if (!(link->flags & DL_FLAG_MANAGED)) 1472 continue; 1473 1474 /* 1475 * The probe has failed, so if the status of the link is 1476 * "consumer probe" or "active", it must have been added by 1477 * a probing consumer while this device was still probing. 1478 * Change its state to "dormant", as it represents a valid 1479 * relationship, but it is not functionally meaningful. 1480 */ 1481 if (link->status == DL_STATE_CONSUMER_PROBE || 1482 link->status == DL_STATE_ACTIVE) 1483 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1484 } 1485 1486 __device_links_no_driver(dev); 1487 1488 device_links_write_unlock(); 1489 } 1490 1491 /** 1492 * device_links_driver_cleanup - Update links after driver removal. 1493 * @dev: Device whose driver has just gone away. 1494 * 1495 * Update links to consumers for @dev by changing their status to "dormant" and 1496 * invoke %__device_links_no_driver() to update links to suppliers for it as 1497 * appropriate. 1498 * 1499 * Links without the DL_FLAG_MANAGED flag set are ignored. 1500 */ 1501 void device_links_driver_cleanup(struct device *dev) 1502 { 1503 struct device_link *link, *ln; 1504 1505 device_links_write_lock(); 1506 1507 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1508 if (!(link->flags & DL_FLAG_MANAGED)) 1509 continue; 1510 1511 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1512 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1513 1514 /* 1515 * autoremove the links between this @dev and its consumer 1516 * devices that are not active, i.e. where the link state 1517 * has moved to DL_STATE_SUPPLIER_UNBIND. 1518 */ 1519 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1520 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1521 device_link_drop_managed(link); 1522 1523 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1524 } 1525 1526 list_del_init(&dev->links.defer_sync); 1527 __device_links_no_driver(dev); 1528 1529 device_links_write_unlock(); 1530 } 1531 1532 /** 1533 * device_links_busy - Check if there are any busy links to consumers. 1534 * @dev: Device to check. 1535 * 1536 * Check each consumer of the device and return 'true' if its link's status 1537 * is one of "consumer probe" or "active" (meaning that the given consumer is 1538 * probing right now or its driver is present). Otherwise, change the link 1539 * state to "supplier unbind" to prevent the consumer from being probed 1540 * successfully going forward. 1541 * 1542 * Return 'false' if there are no probing or active consumers. 1543 * 1544 * Links without the DL_FLAG_MANAGED flag set are ignored. 1545 */ 1546 bool device_links_busy(struct device *dev) 1547 { 1548 struct device_link *link; 1549 bool ret = false; 1550 1551 device_links_write_lock(); 1552 1553 list_for_each_entry(link, &dev->links.consumers, s_node) { 1554 if (!(link->flags & DL_FLAG_MANAGED)) 1555 continue; 1556 1557 if (link->status == DL_STATE_CONSUMER_PROBE 1558 || link->status == DL_STATE_ACTIVE) { 1559 ret = true; 1560 break; 1561 } 1562 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1563 } 1564 1565 dev->links.status = DL_DEV_UNBINDING; 1566 1567 device_links_write_unlock(); 1568 return ret; 1569 } 1570 1571 /** 1572 * device_links_unbind_consumers - Force unbind consumers of the given device. 1573 * @dev: Device to unbind the consumers of. 1574 * 1575 * Walk the list of links to consumers for @dev and if any of them is in the 1576 * "consumer probe" state, wait for all device probes in progress to complete 1577 * and start over. 1578 * 1579 * If that's not the case, change the status of the link to "supplier unbind" 1580 * and check if the link was in the "active" state. If so, force the consumer 1581 * driver to unbind and start over (the consumer will not re-probe as we have 1582 * changed the state of the link already). 1583 * 1584 * Links without the DL_FLAG_MANAGED flag set are ignored. 1585 */ 1586 void device_links_unbind_consumers(struct device *dev) 1587 { 1588 struct device_link *link; 1589 1590 start: 1591 device_links_write_lock(); 1592 1593 list_for_each_entry(link, &dev->links.consumers, s_node) { 1594 enum device_link_state status; 1595 1596 if (!(link->flags & DL_FLAG_MANAGED) || 1597 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1598 continue; 1599 1600 status = link->status; 1601 if (status == DL_STATE_CONSUMER_PROBE) { 1602 device_links_write_unlock(); 1603 1604 wait_for_device_probe(); 1605 goto start; 1606 } 1607 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1608 if (status == DL_STATE_ACTIVE) { 1609 struct device *consumer = link->consumer; 1610 1611 get_device(consumer); 1612 1613 device_links_write_unlock(); 1614 1615 device_release_driver_internal(consumer, NULL, 1616 consumer->parent); 1617 put_device(consumer); 1618 goto start; 1619 } 1620 } 1621 1622 device_links_write_unlock(); 1623 } 1624 1625 /** 1626 * device_links_purge - Delete existing links to other devices. 1627 * @dev: Target device. 1628 */ 1629 static void device_links_purge(struct device *dev) 1630 { 1631 struct device_link *link, *ln; 1632 1633 if (dev->class == &devlink_class) 1634 return; 1635 1636 /* 1637 * Delete all of the remaining links from this device to any other 1638 * devices (either consumers or suppliers). 1639 */ 1640 device_links_write_lock(); 1641 1642 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1643 WARN_ON(link->status == DL_STATE_ACTIVE); 1644 __device_link_del(&link->kref); 1645 } 1646 1647 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1648 WARN_ON(link->status != DL_STATE_DORMANT && 1649 link->status != DL_STATE_NONE); 1650 __device_link_del(&link->kref); 1651 } 1652 1653 device_links_write_unlock(); 1654 } 1655 1656 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1657 DL_FLAG_SYNC_STATE_ONLY) 1658 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1659 DL_FLAG_AUTOPROBE_CONSUMER) 1660 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1661 DL_FLAG_PM_RUNTIME) 1662 1663 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1664 static int __init fw_devlink_setup(char *arg) 1665 { 1666 if (!arg) 1667 return -EINVAL; 1668 1669 if (strcmp(arg, "off") == 0) { 1670 fw_devlink_flags = 0; 1671 } else if (strcmp(arg, "permissive") == 0) { 1672 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1673 } else if (strcmp(arg, "on") == 0) { 1674 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1675 } else if (strcmp(arg, "rpm") == 0) { 1676 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1677 } 1678 return 0; 1679 } 1680 early_param("fw_devlink", fw_devlink_setup); 1681 1682 static bool fw_devlink_strict; 1683 static int __init fw_devlink_strict_setup(char *arg) 1684 { 1685 return kstrtobool(arg, &fw_devlink_strict); 1686 } 1687 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1688 1689 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1690 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1691 1692 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1693 static int fw_devlink_sync_state; 1694 #else 1695 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1696 #endif 1697 1698 static int __init fw_devlink_sync_state_setup(char *arg) 1699 { 1700 if (!arg) 1701 return -EINVAL; 1702 1703 if (strcmp(arg, "strict") == 0) { 1704 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1705 return 0; 1706 } else if (strcmp(arg, "timeout") == 0) { 1707 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1708 return 0; 1709 } 1710 return -EINVAL; 1711 } 1712 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1713 1714 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1715 { 1716 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1717 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1718 1719 return fw_devlink_flags; 1720 } 1721 1722 static bool fw_devlink_is_permissive(void) 1723 { 1724 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1725 } 1726 1727 bool fw_devlink_is_strict(void) 1728 { 1729 return fw_devlink_strict && !fw_devlink_is_permissive(); 1730 } 1731 1732 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1733 { 1734 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1735 return; 1736 1737 fwnode_call_int_op(fwnode, add_links); 1738 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1739 } 1740 1741 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1742 { 1743 struct fwnode_handle *child = NULL; 1744 1745 fw_devlink_parse_fwnode(fwnode); 1746 1747 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1748 fw_devlink_parse_fwtree(child); 1749 } 1750 1751 static void fw_devlink_relax_link(struct device_link *link) 1752 { 1753 if (!(link->flags & DL_FLAG_INFERRED)) 1754 return; 1755 1756 if (device_link_flag_is_sync_state_only(link->flags)) 1757 return; 1758 1759 pm_runtime_drop_link(link); 1760 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1761 dev_dbg(link->consumer, "Relaxing link with %s\n", 1762 dev_name(link->supplier)); 1763 } 1764 1765 static int fw_devlink_no_driver(struct device *dev, void *data) 1766 { 1767 struct device_link *link = to_devlink(dev); 1768 1769 if (!link->supplier->can_match) 1770 fw_devlink_relax_link(link); 1771 1772 return 0; 1773 } 1774 1775 void fw_devlink_drivers_done(void) 1776 { 1777 fw_devlink_drv_reg_done = true; 1778 device_links_write_lock(); 1779 class_for_each_device(&devlink_class, NULL, NULL, 1780 fw_devlink_no_driver); 1781 device_links_write_unlock(); 1782 } 1783 1784 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1785 { 1786 struct device_link *link = to_devlink(dev); 1787 struct device *sup = link->supplier; 1788 1789 if (!(link->flags & DL_FLAG_MANAGED) || 1790 link->status == DL_STATE_ACTIVE || sup->state_synced || 1791 !dev_has_sync_state(sup)) 1792 return 0; 1793 1794 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1795 dev_warn(sup, "sync_state() pending due to %s\n", 1796 dev_name(link->consumer)); 1797 return 0; 1798 } 1799 1800 if (!list_empty(&sup->links.defer_sync)) 1801 return 0; 1802 1803 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1804 sup->state_synced = true; 1805 get_device(sup); 1806 list_add_tail(&sup->links.defer_sync, data); 1807 1808 return 0; 1809 } 1810 1811 void fw_devlink_probing_done(void) 1812 { 1813 LIST_HEAD(sync_list); 1814 1815 device_links_write_lock(); 1816 class_for_each_device(&devlink_class, NULL, &sync_list, 1817 fw_devlink_dev_sync_state); 1818 device_links_write_unlock(); 1819 device_links_flush_sync_list(&sync_list, NULL); 1820 } 1821 1822 /** 1823 * wait_for_init_devices_probe - Try to probe any device needed for init 1824 * 1825 * Some devices might need to be probed and bound successfully before the kernel 1826 * boot sequence can finish and move on to init/userspace. For example, a 1827 * network interface might need to be bound to be able to mount a NFS rootfs. 1828 * 1829 * With fw_devlink=on by default, some of these devices might be blocked from 1830 * probing because they are waiting on a optional supplier that doesn't have a 1831 * driver. While fw_devlink will eventually identify such devices and unblock 1832 * the probing automatically, it might be too late by the time it unblocks the 1833 * probing of devices. For example, the IP4 autoconfig might timeout before 1834 * fw_devlink unblocks probing of the network interface. 1835 * 1836 * This function is available to temporarily try and probe all devices that have 1837 * a driver even if some of their suppliers haven't been added or don't have 1838 * drivers. 1839 * 1840 * The drivers can then decide which of the suppliers are optional vs mandatory 1841 * and probe the device if possible. By the time this function returns, all such 1842 * "best effort" probes are guaranteed to be completed. If a device successfully 1843 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1844 * device where the supplier hasn't yet probed successfully because they have to 1845 * be optional dependencies. 1846 * 1847 * Any devices that didn't successfully probe go back to being treated as if 1848 * this function was never called. 1849 * 1850 * This also means that some devices that aren't needed for init and could have 1851 * waited for their optional supplier to probe (when the supplier's module is 1852 * loaded later on) would end up probing prematurely with limited functionality. 1853 * So call this function only when boot would fail without it. 1854 */ 1855 void __init wait_for_init_devices_probe(void) 1856 { 1857 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1858 return; 1859 1860 /* 1861 * Wait for all ongoing probes to finish so that the "best effort" is 1862 * only applied to devices that can't probe otherwise. 1863 */ 1864 wait_for_device_probe(); 1865 1866 pr_info("Trying to probe devices needed for running init ...\n"); 1867 fw_devlink_best_effort = true; 1868 driver_deferred_probe_trigger(); 1869 1870 /* 1871 * Wait for all "best effort" probes to finish before going back to 1872 * normal enforcement. 1873 */ 1874 wait_for_device_probe(); 1875 fw_devlink_best_effort = false; 1876 } 1877 1878 static void fw_devlink_unblock_consumers(struct device *dev) 1879 { 1880 struct device_link *link; 1881 1882 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1883 return; 1884 1885 device_links_write_lock(); 1886 list_for_each_entry(link, &dev->links.consumers, s_node) 1887 fw_devlink_relax_link(link); 1888 device_links_write_unlock(); 1889 } 1890 1891 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1892 1893 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1894 { 1895 struct device *dev; 1896 bool ret; 1897 1898 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1899 return false; 1900 1901 dev = get_dev_from_fwnode(fwnode); 1902 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1903 put_device(dev); 1904 1905 return ret; 1906 } 1907 1908 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1909 { 1910 struct fwnode_handle *parent; 1911 1912 fwnode_for_each_parent_node(fwnode, parent) { 1913 if (fwnode_init_without_drv(parent)) { 1914 fwnode_handle_put(parent); 1915 return true; 1916 } 1917 } 1918 1919 return false; 1920 } 1921 1922 /** 1923 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1924 * @ancestor: Firmware which is tested for being an ancestor 1925 * @child: Firmware which is tested for being the child 1926 * 1927 * A node is considered an ancestor of itself too. 1928 * 1929 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1930 */ 1931 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1932 const struct fwnode_handle *child) 1933 { 1934 struct fwnode_handle *parent; 1935 1936 if (IS_ERR_OR_NULL(ancestor)) 1937 return false; 1938 1939 if (child == ancestor) 1940 return true; 1941 1942 fwnode_for_each_parent_node(child, parent) { 1943 if (parent == ancestor) { 1944 fwnode_handle_put(parent); 1945 return true; 1946 } 1947 } 1948 return false; 1949 } 1950 1951 /** 1952 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1953 * @fwnode: firmware node 1954 * 1955 * Given a firmware node (@fwnode), this function finds its closest ancestor 1956 * firmware node that has a corresponding struct device and returns that struct 1957 * device. 1958 * 1959 * The caller is responsible for calling put_device() on the returned device 1960 * pointer. 1961 * 1962 * Return: a pointer to the device of the @fwnode's closest ancestor. 1963 */ 1964 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1965 { 1966 struct fwnode_handle *parent; 1967 struct device *dev; 1968 1969 fwnode_for_each_parent_node(fwnode, parent) { 1970 dev = get_dev_from_fwnode(parent); 1971 if (dev) { 1972 fwnode_handle_put(parent); 1973 return dev; 1974 } 1975 } 1976 return NULL; 1977 } 1978 1979 /** 1980 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1981 * @con: Potential consumer device. 1982 * @sup_handle: Potential supplier's fwnode. 1983 * 1984 * Needs to be called with fwnode_lock and device link lock held. 1985 * 1986 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1987 * depend on @con. This function can detect multiple cyles between @sup_handle 1988 * and @con. When such dependency cycles are found, convert all device links 1989 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1990 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1991 * converted into a device link in the future, they are created as 1992 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1993 * fw_devlink=permissive just between the devices in the cycle. We need to do 1994 * this because, at this point, fw_devlink can't tell which of these 1995 * dependencies is not a real dependency. 1996 * 1997 * Return true if one or more cycles were found. Otherwise, return false. 1998 */ 1999 static bool __fw_devlink_relax_cycles(struct device *con, 2000 struct fwnode_handle *sup_handle) 2001 { 2002 struct device *sup_dev = NULL, *par_dev = NULL; 2003 struct fwnode_link *link; 2004 struct device_link *dev_link; 2005 bool ret = false; 2006 2007 if (!sup_handle) 2008 return false; 2009 2010 /* 2011 * We aren't trying to find all cycles. Just a cycle between con and 2012 * sup_handle. 2013 */ 2014 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2015 return false; 2016 2017 sup_handle->flags |= FWNODE_FLAG_VISITED; 2018 2019 sup_dev = get_dev_from_fwnode(sup_handle); 2020 2021 /* Termination condition. */ 2022 if (sup_dev == con) { 2023 pr_debug("----- cycle: start -----\n"); 2024 ret = true; 2025 goto out; 2026 } 2027 2028 /* 2029 * If sup_dev is bound to a driver and @con hasn't started binding to a 2030 * driver, sup_dev can't be a consumer of @con. So, no need to check 2031 * further. 2032 */ 2033 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2034 con->links.status == DL_DEV_NO_DRIVER) { 2035 ret = false; 2036 goto out; 2037 } 2038 2039 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2040 if (link->flags & FWLINK_FLAG_IGNORE) 2041 continue; 2042 2043 if (__fw_devlink_relax_cycles(con, link->supplier)) { 2044 __fwnode_link_cycle(link); 2045 ret = true; 2046 } 2047 } 2048 2049 /* 2050 * Give priority to device parent over fwnode parent to account for any 2051 * quirks in how fwnodes are converted to devices. 2052 */ 2053 if (sup_dev) 2054 par_dev = get_device(sup_dev->parent); 2055 else 2056 par_dev = fwnode_get_next_parent_dev(sup_handle); 2057 2058 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 2059 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2060 par_dev->fwnode); 2061 ret = true; 2062 } 2063 2064 if (!sup_dev) 2065 goto out; 2066 2067 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2068 /* 2069 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2070 * such due to a cycle. 2071 */ 2072 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2073 !(dev_link->flags & DL_FLAG_CYCLE)) 2074 continue; 2075 2076 if (__fw_devlink_relax_cycles(con, 2077 dev_link->supplier->fwnode)) { 2078 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2079 dev_link->supplier->fwnode); 2080 fw_devlink_relax_link(dev_link); 2081 dev_link->flags |= DL_FLAG_CYCLE; 2082 ret = true; 2083 } 2084 } 2085 2086 out: 2087 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2088 put_device(sup_dev); 2089 put_device(par_dev); 2090 return ret; 2091 } 2092 2093 /** 2094 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2095 * @con: consumer device for the device link 2096 * @sup_handle: fwnode handle of supplier 2097 * @link: fwnode link that's being converted to a device link 2098 * 2099 * This function will try to create a device link between the consumer device 2100 * @con and the supplier device represented by @sup_handle. 2101 * 2102 * The supplier has to be provided as a fwnode because incorrect cycles in 2103 * fwnode links can sometimes cause the supplier device to never be created. 2104 * This function detects such cases and returns an error if it cannot create a 2105 * device link from the consumer to a missing supplier. 2106 * 2107 * Returns, 2108 * 0 on successfully creating a device link 2109 * -EINVAL if the device link cannot be created as expected 2110 * -EAGAIN if the device link cannot be created right now, but it may be 2111 * possible to do that in the future 2112 */ 2113 static int fw_devlink_create_devlink(struct device *con, 2114 struct fwnode_handle *sup_handle, 2115 struct fwnode_link *link) 2116 { 2117 struct device *sup_dev; 2118 int ret = 0; 2119 u32 flags; 2120 2121 if (link->flags & FWLINK_FLAG_IGNORE) 2122 return 0; 2123 2124 if (con->fwnode == link->consumer) 2125 flags = fw_devlink_get_flags(link->flags); 2126 else 2127 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2128 2129 /* 2130 * In some cases, a device P might also be a supplier to its child node 2131 * C. However, this would defer the probe of C until the probe of P 2132 * completes successfully. This is perfectly fine in the device driver 2133 * model. device_add() doesn't guarantee probe completion of the device 2134 * by the time it returns. 2135 * 2136 * However, there are a few drivers that assume C will finish probing 2137 * as soon as it's added and before P finishes probing. So, we provide 2138 * a flag to let fw_devlink know not to delay the probe of C until the 2139 * probe of P completes successfully. 2140 * 2141 * When such a flag is set, we can't create device links where P is the 2142 * supplier of C as that would delay the probe of C. 2143 */ 2144 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2145 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2146 return -EINVAL; 2147 2148 /* 2149 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2150 * So, one might expect that cycle detection isn't necessary for them. 2151 * However, if the device link was marked as SYNC_STATE_ONLY because 2152 * it's part of a cycle, then we still need to do cycle detection. This 2153 * is because the consumer and supplier might be part of multiple cycles 2154 * and we need to detect all those cycles. 2155 */ 2156 if (!device_link_flag_is_sync_state_only(flags) || 2157 flags & DL_FLAG_CYCLE) { 2158 device_links_write_lock(); 2159 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2160 __fwnode_link_cycle(link); 2161 flags = fw_devlink_get_flags(link->flags); 2162 pr_debug("----- cycle: end -----\n"); 2163 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2164 sup_handle); 2165 } 2166 device_links_write_unlock(); 2167 } 2168 2169 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2170 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2171 else 2172 sup_dev = get_dev_from_fwnode(sup_handle); 2173 2174 if (sup_dev) { 2175 /* 2176 * If it's one of those drivers that don't actually bind to 2177 * their device using driver core, then don't wait on this 2178 * supplier device indefinitely. 2179 */ 2180 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2181 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2182 dev_dbg(con, 2183 "Not linking %pfwf - dev might never probe\n", 2184 sup_handle); 2185 ret = -EINVAL; 2186 goto out; 2187 } 2188 2189 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2190 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2191 flags, dev_name(sup_dev)); 2192 ret = -EINVAL; 2193 } 2194 2195 goto out; 2196 } 2197 2198 /* 2199 * Supplier or supplier's ancestor already initialized without a struct 2200 * device or being probed by a driver. 2201 */ 2202 if (fwnode_init_without_drv(sup_handle) || 2203 fwnode_ancestor_init_without_drv(sup_handle)) { 2204 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2205 sup_handle); 2206 return -EINVAL; 2207 } 2208 2209 ret = -EAGAIN; 2210 out: 2211 put_device(sup_dev); 2212 return ret; 2213 } 2214 2215 /** 2216 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2217 * @dev: Device that needs to be linked to its consumers 2218 * 2219 * This function looks at all the consumer fwnodes of @dev and creates device 2220 * links between the consumer device and @dev (supplier). 2221 * 2222 * If the consumer device has not been added yet, then this function creates a 2223 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2224 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2225 * sync_state() callback before the real consumer device gets to be added and 2226 * then probed. 2227 * 2228 * Once device links are created from the real consumer to @dev (supplier), the 2229 * fwnode links are deleted. 2230 */ 2231 static void __fw_devlink_link_to_consumers(struct device *dev) 2232 { 2233 struct fwnode_handle *fwnode = dev->fwnode; 2234 struct fwnode_link *link, *tmp; 2235 2236 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2237 struct device *con_dev; 2238 bool own_link = true; 2239 int ret; 2240 2241 con_dev = get_dev_from_fwnode(link->consumer); 2242 /* 2243 * If consumer device is not available yet, make a "proxy" 2244 * SYNC_STATE_ONLY link from the consumer's parent device to 2245 * the supplier device. This is necessary to make sure the 2246 * supplier doesn't get a sync_state() callback before the real 2247 * consumer can create a device link to the supplier. 2248 * 2249 * This proxy link step is needed to handle the case where the 2250 * consumer's parent device is added before the supplier. 2251 */ 2252 if (!con_dev) { 2253 con_dev = fwnode_get_next_parent_dev(link->consumer); 2254 /* 2255 * However, if the consumer's parent device is also the 2256 * parent of the supplier, don't create a 2257 * consumer-supplier link from the parent to its child 2258 * device. Such a dependency is impossible. 2259 */ 2260 if (con_dev && 2261 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2262 put_device(con_dev); 2263 con_dev = NULL; 2264 } else { 2265 own_link = false; 2266 } 2267 } 2268 2269 if (!con_dev) 2270 continue; 2271 2272 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2273 put_device(con_dev); 2274 if (!own_link || ret == -EAGAIN) 2275 continue; 2276 2277 __fwnode_link_del(link); 2278 } 2279 } 2280 2281 /** 2282 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2283 * @dev: The consumer device that needs to be linked to its suppliers 2284 * @fwnode: Root of the fwnode tree that is used to create device links 2285 * 2286 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2287 * @fwnode and creates device links between @dev (consumer) and all the 2288 * supplier devices of the entire fwnode tree at @fwnode. 2289 * 2290 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2291 * and the real suppliers of @dev. Once these device links are created, the 2292 * fwnode links are deleted. 2293 * 2294 * In addition, it also looks at all the suppliers of the entire fwnode tree 2295 * because some of the child devices of @dev that have not been added yet 2296 * (because @dev hasn't probed) might already have their suppliers added to 2297 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2298 * @dev (consumer) and these suppliers to make sure they don't execute their 2299 * sync_state() callbacks before these child devices have a chance to create 2300 * their device links. The fwnode links that correspond to the child devices 2301 * aren't delete because they are needed later to create the device links 2302 * between the real consumer and supplier devices. 2303 */ 2304 static void __fw_devlink_link_to_suppliers(struct device *dev, 2305 struct fwnode_handle *fwnode) 2306 { 2307 bool own_link = (dev->fwnode == fwnode); 2308 struct fwnode_link *link, *tmp; 2309 struct fwnode_handle *child = NULL; 2310 2311 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2312 int ret; 2313 struct fwnode_handle *sup = link->supplier; 2314 2315 ret = fw_devlink_create_devlink(dev, sup, link); 2316 if (!own_link || ret == -EAGAIN) 2317 continue; 2318 2319 __fwnode_link_del(link); 2320 } 2321 2322 /* 2323 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2324 * all the descendants. This proxy link step is needed to handle the 2325 * case where the supplier is added before the consumer's parent device 2326 * (@dev). 2327 */ 2328 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2329 __fw_devlink_link_to_suppliers(dev, child); 2330 } 2331 2332 static void fw_devlink_link_device(struct device *dev) 2333 { 2334 struct fwnode_handle *fwnode = dev->fwnode; 2335 2336 if (!fw_devlink_flags) 2337 return; 2338 2339 fw_devlink_parse_fwtree(fwnode); 2340 2341 mutex_lock(&fwnode_link_lock); 2342 __fw_devlink_link_to_consumers(dev); 2343 __fw_devlink_link_to_suppliers(dev, fwnode); 2344 mutex_unlock(&fwnode_link_lock); 2345 } 2346 2347 /* Device links support end. */ 2348 2349 static struct kobject *dev_kobj; 2350 2351 /* /sys/dev/char */ 2352 static struct kobject *sysfs_dev_char_kobj; 2353 2354 /* /sys/dev/block */ 2355 static struct kobject *sysfs_dev_block_kobj; 2356 2357 static DEFINE_MUTEX(device_hotplug_lock); 2358 2359 void lock_device_hotplug(void) 2360 { 2361 mutex_lock(&device_hotplug_lock); 2362 } 2363 2364 void unlock_device_hotplug(void) 2365 { 2366 mutex_unlock(&device_hotplug_lock); 2367 } 2368 2369 int lock_device_hotplug_sysfs(void) 2370 { 2371 if (mutex_trylock(&device_hotplug_lock)) 2372 return 0; 2373 2374 /* Avoid busy looping (5 ms of sleep should do). */ 2375 msleep(5); 2376 return restart_syscall(); 2377 } 2378 2379 #ifdef CONFIG_BLOCK 2380 static inline int device_is_not_partition(struct device *dev) 2381 { 2382 return !(dev->type == &part_type); 2383 } 2384 #else 2385 static inline int device_is_not_partition(struct device *dev) 2386 { 2387 return 1; 2388 } 2389 #endif 2390 2391 static void device_platform_notify(struct device *dev) 2392 { 2393 acpi_device_notify(dev); 2394 2395 software_node_notify(dev); 2396 } 2397 2398 static void device_platform_notify_remove(struct device *dev) 2399 { 2400 software_node_notify_remove(dev); 2401 2402 acpi_device_notify_remove(dev); 2403 } 2404 2405 /** 2406 * dev_driver_string - Return a device's driver name, if at all possible 2407 * @dev: struct device to get the name of 2408 * 2409 * Will return the device's driver's name if it is bound to a device. If 2410 * the device is not bound to a driver, it will return the name of the bus 2411 * it is attached to. If it is not attached to a bus either, an empty 2412 * string will be returned. 2413 */ 2414 const char *dev_driver_string(const struct device *dev) 2415 { 2416 struct device_driver *drv; 2417 2418 /* dev->driver can change to NULL underneath us because of unbinding, 2419 * so be careful about accessing it. dev->bus and dev->class should 2420 * never change once they are set, so they don't need special care. 2421 */ 2422 drv = READ_ONCE(dev->driver); 2423 return drv ? drv->name : dev_bus_name(dev); 2424 } 2425 EXPORT_SYMBOL(dev_driver_string); 2426 2427 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2428 2429 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2430 char *buf) 2431 { 2432 struct device_attribute *dev_attr = to_dev_attr(attr); 2433 struct device *dev = kobj_to_dev(kobj); 2434 ssize_t ret = -EIO; 2435 2436 if (dev_attr->show) 2437 ret = dev_attr->show(dev, dev_attr, buf); 2438 if (ret >= (ssize_t)PAGE_SIZE) { 2439 printk("dev_attr_show: %pS returned bad count\n", 2440 dev_attr->show); 2441 } 2442 return ret; 2443 } 2444 2445 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2446 const char *buf, size_t count) 2447 { 2448 struct device_attribute *dev_attr = to_dev_attr(attr); 2449 struct device *dev = kobj_to_dev(kobj); 2450 ssize_t ret = -EIO; 2451 2452 if (dev_attr->store) 2453 ret = dev_attr->store(dev, dev_attr, buf, count); 2454 return ret; 2455 } 2456 2457 static const struct sysfs_ops dev_sysfs_ops = { 2458 .show = dev_attr_show, 2459 .store = dev_attr_store, 2460 }; 2461 2462 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2463 2464 ssize_t device_store_ulong(struct device *dev, 2465 struct device_attribute *attr, 2466 const char *buf, size_t size) 2467 { 2468 struct dev_ext_attribute *ea = to_ext_attr(attr); 2469 int ret; 2470 unsigned long new; 2471 2472 ret = kstrtoul(buf, 0, &new); 2473 if (ret) 2474 return ret; 2475 *(unsigned long *)(ea->var) = new; 2476 /* Always return full write size even if we didn't consume all */ 2477 return size; 2478 } 2479 EXPORT_SYMBOL_GPL(device_store_ulong); 2480 2481 ssize_t device_show_ulong(struct device *dev, 2482 struct device_attribute *attr, 2483 char *buf) 2484 { 2485 struct dev_ext_attribute *ea = to_ext_attr(attr); 2486 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2487 } 2488 EXPORT_SYMBOL_GPL(device_show_ulong); 2489 2490 ssize_t device_store_int(struct device *dev, 2491 struct device_attribute *attr, 2492 const char *buf, size_t size) 2493 { 2494 struct dev_ext_attribute *ea = to_ext_attr(attr); 2495 int ret; 2496 long new; 2497 2498 ret = kstrtol(buf, 0, &new); 2499 if (ret) 2500 return ret; 2501 2502 if (new > INT_MAX || new < INT_MIN) 2503 return -EINVAL; 2504 *(int *)(ea->var) = new; 2505 /* Always return full write size even if we didn't consume all */ 2506 return size; 2507 } 2508 EXPORT_SYMBOL_GPL(device_store_int); 2509 2510 ssize_t device_show_int(struct device *dev, 2511 struct device_attribute *attr, 2512 char *buf) 2513 { 2514 struct dev_ext_attribute *ea = to_ext_attr(attr); 2515 2516 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2517 } 2518 EXPORT_SYMBOL_GPL(device_show_int); 2519 2520 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2521 const char *buf, size_t size) 2522 { 2523 struct dev_ext_attribute *ea = to_ext_attr(attr); 2524 2525 if (kstrtobool(buf, ea->var) < 0) 2526 return -EINVAL; 2527 2528 return size; 2529 } 2530 EXPORT_SYMBOL_GPL(device_store_bool); 2531 2532 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2533 char *buf) 2534 { 2535 struct dev_ext_attribute *ea = to_ext_attr(attr); 2536 2537 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2538 } 2539 EXPORT_SYMBOL_GPL(device_show_bool); 2540 2541 ssize_t device_show_string(struct device *dev, 2542 struct device_attribute *attr, char *buf) 2543 { 2544 struct dev_ext_attribute *ea = to_ext_attr(attr); 2545 2546 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2547 } 2548 EXPORT_SYMBOL_GPL(device_show_string); 2549 2550 /** 2551 * device_release - free device structure. 2552 * @kobj: device's kobject. 2553 * 2554 * This is called once the reference count for the object 2555 * reaches 0. We forward the call to the device's release 2556 * method, which should handle actually freeing the structure. 2557 */ 2558 static void device_release(struct kobject *kobj) 2559 { 2560 struct device *dev = kobj_to_dev(kobj); 2561 struct device_private *p = dev->p; 2562 2563 /* 2564 * Some platform devices are driven without driver attached 2565 * and managed resources may have been acquired. Make sure 2566 * all resources are released. 2567 * 2568 * Drivers still can add resources into device after device 2569 * is deleted but alive, so release devres here to avoid 2570 * possible memory leak. 2571 */ 2572 devres_release_all(dev); 2573 2574 kfree(dev->dma_range_map); 2575 2576 if (dev->release) 2577 dev->release(dev); 2578 else if (dev->type && dev->type->release) 2579 dev->type->release(dev); 2580 else if (dev->class && dev->class->dev_release) 2581 dev->class->dev_release(dev); 2582 else 2583 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2584 dev_name(dev)); 2585 kfree(p); 2586 } 2587 2588 static const void *device_namespace(const struct kobject *kobj) 2589 { 2590 const struct device *dev = kobj_to_dev(kobj); 2591 const void *ns = NULL; 2592 2593 if (dev->class && dev->class->ns_type) 2594 ns = dev->class->namespace(dev); 2595 2596 return ns; 2597 } 2598 2599 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2600 { 2601 const struct device *dev = kobj_to_dev(kobj); 2602 2603 if (dev->class && dev->class->get_ownership) 2604 dev->class->get_ownership(dev, uid, gid); 2605 } 2606 2607 static const struct kobj_type device_ktype = { 2608 .release = device_release, 2609 .sysfs_ops = &dev_sysfs_ops, 2610 .namespace = device_namespace, 2611 .get_ownership = device_get_ownership, 2612 }; 2613 2614 2615 static int dev_uevent_filter(const struct kobject *kobj) 2616 { 2617 const struct kobj_type *ktype = get_ktype(kobj); 2618 2619 if (ktype == &device_ktype) { 2620 const struct device *dev = kobj_to_dev(kobj); 2621 if (dev->bus) 2622 return 1; 2623 if (dev->class) 2624 return 1; 2625 } 2626 return 0; 2627 } 2628 2629 static const char *dev_uevent_name(const struct kobject *kobj) 2630 { 2631 const struct device *dev = kobj_to_dev(kobj); 2632 2633 if (dev->bus) 2634 return dev->bus->name; 2635 if (dev->class) 2636 return dev->class->name; 2637 return NULL; 2638 } 2639 2640 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2641 { 2642 const struct device *dev = kobj_to_dev(kobj); 2643 int retval = 0; 2644 2645 /* add device node properties if present */ 2646 if (MAJOR(dev->devt)) { 2647 const char *tmp; 2648 const char *name; 2649 umode_t mode = 0; 2650 kuid_t uid = GLOBAL_ROOT_UID; 2651 kgid_t gid = GLOBAL_ROOT_GID; 2652 2653 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2654 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2655 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2656 if (name) { 2657 add_uevent_var(env, "DEVNAME=%s", name); 2658 if (mode) 2659 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2660 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2661 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2662 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2663 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2664 kfree(tmp); 2665 } 2666 } 2667 2668 if (dev->type && dev->type->name) 2669 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2670 2671 if (dev->driver) 2672 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2673 2674 /* Add common DT information about the device */ 2675 of_device_uevent(dev, env); 2676 2677 /* have the bus specific function add its stuff */ 2678 if (dev->bus && dev->bus->uevent) { 2679 retval = dev->bus->uevent(dev, env); 2680 if (retval) 2681 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2682 dev_name(dev), __func__, retval); 2683 } 2684 2685 /* have the class specific function add its stuff */ 2686 if (dev->class && dev->class->dev_uevent) { 2687 retval = dev->class->dev_uevent(dev, env); 2688 if (retval) 2689 pr_debug("device: '%s': %s: class uevent() " 2690 "returned %d\n", dev_name(dev), 2691 __func__, retval); 2692 } 2693 2694 /* have the device type specific function add its stuff */ 2695 if (dev->type && dev->type->uevent) { 2696 retval = dev->type->uevent(dev, env); 2697 if (retval) 2698 pr_debug("device: '%s': %s: dev_type uevent() " 2699 "returned %d\n", dev_name(dev), 2700 __func__, retval); 2701 } 2702 2703 return retval; 2704 } 2705 2706 static const struct kset_uevent_ops device_uevent_ops = { 2707 .filter = dev_uevent_filter, 2708 .name = dev_uevent_name, 2709 .uevent = dev_uevent, 2710 }; 2711 2712 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2713 char *buf) 2714 { 2715 struct kobject *top_kobj; 2716 struct kset *kset; 2717 struct kobj_uevent_env *env = NULL; 2718 int i; 2719 int len = 0; 2720 int retval; 2721 2722 /* search the kset, the device belongs to */ 2723 top_kobj = &dev->kobj; 2724 while (!top_kobj->kset && top_kobj->parent) 2725 top_kobj = top_kobj->parent; 2726 if (!top_kobj->kset) 2727 goto out; 2728 2729 kset = top_kobj->kset; 2730 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2731 goto out; 2732 2733 /* respect filter */ 2734 if (kset->uevent_ops && kset->uevent_ops->filter) 2735 if (!kset->uevent_ops->filter(&dev->kobj)) 2736 goto out; 2737 2738 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2739 if (!env) 2740 return -ENOMEM; 2741 2742 /* let the kset specific function add its keys */ 2743 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2744 if (retval) 2745 goto out; 2746 2747 /* copy keys to file */ 2748 for (i = 0; i < env->envp_idx; i++) 2749 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2750 out: 2751 kfree(env); 2752 return len; 2753 } 2754 2755 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2756 const char *buf, size_t count) 2757 { 2758 int rc; 2759 2760 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2761 2762 if (rc) { 2763 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2764 return rc; 2765 } 2766 2767 return count; 2768 } 2769 static DEVICE_ATTR_RW(uevent); 2770 2771 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2772 char *buf) 2773 { 2774 bool val; 2775 2776 device_lock(dev); 2777 val = !dev->offline; 2778 device_unlock(dev); 2779 return sysfs_emit(buf, "%u\n", val); 2780 } 2781 2782 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2783 const char *buf, size_t count) 2784 { 2785 bool val; 2786 int ret; 2787 2788 ret = kstrtobool(buf, &val); 2789 if (ret < 0) 2790 return ret; 2791 2792 ret = lock_device_hotplug_sysfs(); 2793 if (ret) 2794 return ret; 2795 2796 ret = val ? device_online(dev) : device_offline(dev); 2797 unlock_device_hotplug(); 2798 return ret < 0 ? ret : count; 2799 } 2800 static DEVICE_ATTR_RW(online); 2801 2802 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2803 char *buf) 2804 { 2805 const char *loc; 2806 2807 switch (dev->removable) { 2808 case DEVICE_REMOVABLE: 2809 loc = "removable"; 2810 break; 2811 case DEVICE_FIXED: 2812 loc = "fixed"; 2813 break; 2814 default: 2815 loc = "unknown"; 2816 } 2817 return sysfs_emit(buf, "%s\n", loc); 2818 } 2819 static DEVICE_ATTR_RO(removable); 2820 2821 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2822 { 2823 return sysfs_create_groups(&dev->kobj, groups); 2824 } 2825 EXPORT_SYMBOL_GPL(device_add_groups); 2826 2827 void device_remove_groups(struct device *dev, 2828 const struct attribute_group **groups) 2829 { 2830 sysfs_remove_groups(&dev->kobj, groups); 2831 } 2832 EXPORT_SYMBOL_GPL(device_remove_groups); 2833 2834 union device_attr_group_devres { 2835 const struct attribute_group *group; 2836 const struct attribute_group **groups; 2837 }; 2838 2839 static void devm_attr_group_remove(struct device *dev, void *res) 2840 { 2841 union device_attr_group_devres *devres = res; 2842 const struct attribute_group *group = devres->group; 2843 2844 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2845 sysfs_remove_group(&dev->kobj, group); 2846 } 2847 2848 static void devm_attr_groups_remove(struct device *dev, void *res) 2849 { 2850 union device_attr_group_devres *devres = res; 2851 const struct attribute_group **groups = devres->groups; 2852 2853 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2854 sysfs_remove_groups(&dev->kobj, groups); 2855 } 2856 2857 /** 2858 * devm_device_add_group - given a device, create a managed attribute group 2859 * @dev: The device to create the group for 2860 * @grp: The attribute group to create 2861 * 2862 * This function creates a group for the first time. It will explicitly 2863 * warn and error if any of the attribute files being created already exist. 2864 * 2865 * Returns 0 on success or error code on failure. 2866 */ 2867 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2868 { 2869 union device_attr_group_devres *devres; 2870 int error; 2871 2872 devres = devres_alloc(devm_attr_group_remove, 2873 sizeof(*devres), GFP_KERNEL); 2874 if (!devres) 2875 return -ENOMEM; 2876 2877 error = sysfs_create_group(&dev->kobj, grp); 2878 if (error) { 2879 devres_free(devres); 2880 return error; 2881 } 2882 2883 devres->group = grp; 2884 devres_add(dev, devres); 2885 return 0; 2886 } 2887 EXPORT_SYMBOL_GPL(devm_device_add_group); 2888 2889 /** 2890 * devm_device_add_groups - create a bunch of managed attribute groups 2891 * @dev: The device to create the group for 2892 * @groups: The attribute groups to create, NULL terminated 2893 * 2894 * This function creates a bunch of managed attribute groups. If an error 2895 * occurs when creating a group, all previously created groups will be 2896 * removed, unwinding everything back to the original state when this 2897 * function was called. It will explicitly warn and error if any of the 2898 * attribute files being created already exist. 2899 * 2900 * Returns 0 on success or error code from sysfs_create_group on failure. 2901 */ 2902 int devm_device_add_groups(struct device *dev, 2903 const struct attribute_group **groups) 2904 { 2905 union device_attr_group_devres *devres; 2906 int error; 2907 2908 devres = devres_alloc(devm_attr_groups_remove, 2909 sizeof(*devres), GFP_KERNEL); 2910 if (!devres) 2911 return -ENOMEM; 2912 2913 error = sysfs_create_groups(&dev->kobj, groups); 2914 if (error) { 2915 devres_free(devres); 2916 return error; 2917 } 2918 2919 devres->groups = groups; 2920 devres_add(dev, devres); 2921 return 0; 2922 } 2923 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2924 2925 static int device_add_attrs(struct device *dev) 2926 { 2927 const struct class *class = dev->class; 2928 const struct device_type *type = dev->type; 2929 int error; 2930 2931 if (class) { 2932 error = device_add_groups(dev, class->dev_groups); 2933 if (error) 2934 return error; 2935 } 2936 2937 if (type) { 2938 error = device_add_groups(dev, type->groups); 2939 if (error) 2940 goto err_remove_class_groups; 2941 } 2942 2943 error = device_add_groups(dev, dev->groups); 2944 if (error) 2945 goto err_remove_type_groups; 2946 2947 if (device_supports_offline(dev) && !dev->offline_disabled) { 2948 error = device_create_file(dev, &dev_attr_online); 2949 if (error) 2950 goto err_remove_dev_groups; 2951 } 2952 2953 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2954 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2955 if (error) 2956 goto err_remove_dev_online; 2957 } 2958 2959 if (dev_removable_is_valid(dev)) { 2960 error = device_create_file(dev, &dev_attr_removable); 2961 if (error) 2962 goto err_remove_dev_waiting_for_supplier; 2963 } 2964 2965 if (dev_add_physical_location(dev)) { 2966 error = device_add_group(dev, 2967 &dev_attr_physical_location_group); 2968 if (error) 2969 goto err_remove_dev_removable; 2970 } 2971 2972 return 0; 2973 2974 err_remove_dev_removable: 2975 device_remove_file(dev, &dev_attr_removable); 2976 err_remove_dev_waiting_for_supplier: 2977 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2978 err_remove_dev_online: 2979 device_remove_file(dev, &dev_attr_online); 2980 err_remove_dev_groups: 2981 device_remove_groups(dev, dev->groups); 2982 err_remove_type_groups: 2983 if (type) 2984 device_remove_groups(dev, type->groups); 2985 err_remove_class_groups: 2986 if (class) 2987 device_remove_groups(dev, class->dev_groups); 2988 2989 return error; 2990 } 2991 2992 static void device_remove_attrs(struct device *dev) 2993 { 2994 const struct class *class = dev->class; 2995 const struct device_type *type = dev->type; 2996 2997 if (dev->physical_location) { 2998 device_remove_group(dev, &dev_attr_physical_location_group); 2999 kfree(dev->physical_location); 3000 } 3001 3002 device_remove_file(dev, &dev_attr_removable); 3003 device_remove_file(dev, &dev_attr_waiting_for_supplier); 3004 device_remove_file(dev, &dev_attr_online); 3005 device_remove_groups(dev, dev->groups); 3006 3007 if (type) 3008 device_remove_groups(dev, type->groups); 3009 3010 if (class) 3011 device_remove_groups(dev, class->dev_groups); 3012 } 3013 3014 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 3015 char *buf) 3016 { 3017 return print_dev_t(buf, dev->devt); 3018 } 3019 static DEVICE_ATTR_RO(dev); 3020 3021 /* /sys/devices/ */ 3022 struct kset *devices_kset; 3023 3024 /** 3025 * devices_kset_move_before - Move device in the devices_kset's list. 3026 * @deva: Device to move. 3027 * @devb: Device @deva should come before. 3028 */ 3029 static void devices_kset_move_before(struct device *deva, struct device *devb) 3030 { 3031 if (!devices_kset) 3032 return; 3033 pr_debug("devices_kset: Moving %s before %s\n", 3034 dev_name(deva), dev_name(devb)); 3035 spin_lock(&devices_kset->list_lock); 3036 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3037 spin_unlock(&devices_kset->list_lock); 3038 } 3039 3040 /** 3041 * devices_kset_move_after - Move device in the devices_kset's list. 3042 * @deva: Device to move 3043 * @devb: Device @deva should come after. 3044 */ 3045 static void devices_kset_move_after(struct device *deva, struct device *devb) 3046 { 3047 if (!devices_kset) 3048 return; 3049 pr_debug("devices_kset: Moving %s after %s\n", 3050 dev_name(deva), dev_name(devb)); 3051 spin_lock(&devices_kset->list_lock); 3052 list_move(&deva->kobj.entry, &devb->kobj.entry); 3053 spin_unlock(&devices_kset->list_lock); 3054 } 3055 3056 /** 3057 * devices_kset_move_last - move the device to the end of devices_kset's list. 3058 * @dev: device to move 3059 */ 3060 void devices_kset_move_last(struct device *dev) 3061 { 3062 if (!devices_kset) 3063 return; 3064 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3065 spin_lock(&devices_kset->list_lock); 3066 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3067 spin_unlock(&devices_kset->list_lock); 3068 } 3069 3070 /** 3071 * device_create_file - create sysfs attribute file for device. 3072 * @dev: device. 3073 * @attr: device attribute descriptor. 3074 */ 3075 int device_create_file(struct device *dev, 3076 const struct device_attribute *attr) 3077 { 3078 int error = 0; 3079 3080 if (dev) { 3081 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3082 "Attribute %s: write permission without 'store'\n", 3083 attr->attr.name); 3084 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3085 "Attribute %s: read permission without 'show'\n", 3086 attr->attr.name); 3087 error = sysfs_create_file(&dev->kobj, &attr->attr); 3088 } 3089 3090 return error; 3091 } 3092 EXPORT_SYMBOL_GPL(device_create_file); 3093 3094 /** 3095 * device_remove_file - remove sysfs attribute file. 3096 * @dev: device. 3097 * @attr: device attribute descriptor. 3098 */ 3099 void device_remove_file(struct device *dev, 3100 const struct device_attribute *attr) 3101 { 3102 if (dev) 3103 sysfs_remove_file(&dev->kobj, &attr->attr); 3104 } 3105 EXPORT_SYMBOL_GPL(device_remove_file); 3106 3107 /** 3108 * device_remove_file_self - remove sysfs attribute file from its own method. 3109 * @dev: device. 3110 * @attr: device attribute descriptor. 3111 * 3112 * See kernfs_remove_self() for details. 3113 */ 3114 bool device_remove_file_self(struct device *dev, 3115 const struct device_attribute *attr) 3116 { 3117 if (dev) 3118 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3119 else 3120 return false; 3121 } 3122 EXPORT_SYMBOL_GPL(device_remove_file_self); 3123 3124 /** 3125 * device_create_bin_file - create sysfs binary attribute file for device. 3126 * @dev: device. 3127 * @attr: device binary attribute descriptor. 3128 */ 3129 int device_create_bin_file(struct device *dev, 3130 const struct bin_attribute *attr) 3131 { 3132 int error = -EINVAL; 3133 if (dev) 3134 error = sysfs_create_bin_file(&dev->kobj, attr); 3135 return error; 3136 } 3137 EXPORT_SYMBOL_GPL(device_create_bin_file); 3138 3139 /** 3140 * device_remove_bin_file - remove sysfs binary attribute file 3141 * @dev: device. 3142 * @attr: device binary attribute descriptor. 3143 */ 3144 void device_remove_bin_file(struct device *dev, 3145 const struct bin_attribute *attr) 3146 { 3147 if (dev) 3148 sysfs_remove_bin_file(&dev->kobj, attr); 3149 } 3150 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3151 3152 static void klist_children_get(struct klist_node *n) 3153 { 3154 struct device_private *p = to_device_private_parent(n); 3155 struct device *dev = p->device; 3156 3157 get_device(dev); 3158 } 3159 3160 static void klist_children_put(struct klist_node *n) 3161 { 3162 struct device_private *p = to_device_private_parent(n); 3163 struct device *dev = p->device; 3164 3165 put_device(dev); 3166 } 3167 3168 /** 3169 * device_initialize - init device structure. 3170 * @dev: device. 3171 * 3172 * This prepares the device for use by other layers by initializing 3173 * its fields. 3174 * It is the first half of device_register(), if called by 3175 * that function, though it can also be called separately, so one 3176 * may use @dev's fields. In particular, get_device()/put_device() 3177 * may be used for reference counting of @dev after calling this 3178 * function. 3179 * 3180 * All fields in @dev must be initialized by the caller to 0, except 3181 * for those explicitly set to some other value. The simplest 3182 * approach is to use kzalloc() to allocate the structure containing 3183 * @dev. 3184 * 3185 * NOTE: Use put_device() to give up your reference instead of freeing 3186 * @dev directly once you have called this function. 3187 */ 3188 void device_initialize(struct device *dev) 3189 { 3190 dev->kobj.kset = devices_kset; 3191 kobject_init(&dev->kobj, &device_ktype); 3192 INIT_LIST_HEAD(&dev->dma_pools); 3193 mutex_init(&dev->mutex); 3194 lockdep_set_novalidate_class(&dev->mutex); 3195 spin_lock_init(&dev->devres_lock); 3196 INIT_LIST_HEAD(&dev->devres_head); 3197 device_pm_init(dev); 3198 set_dev_node(dev, NUMA_NO_NODE); 3199 INIT_LIST_HEAD(&dev->links.consumers); 3200 INIT_LIST_HEAD(&dev->links.suppliers); 3201 INIT_LIST_HEAD(&dev->links.defer_sync); 3202 dev->links.status = DL_DEV_NO_DRIVER; 3203 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3204 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3205 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3206 dev->dma_coherent = dma_default_coherent; 3207 #endif 3208 swiotlb_dev_init(dev); 3209 } 3210 EXPORT_SYMBOL_GPL(device_initialize); 3211 3212 struct kobject *virtual_device_parent(struct device *dev) 3213 { 3214 static struct kobject *virtual_dir = NULL; 3215 3216 if (!virtual_dir) 3217 virtual_dir = kobject_create_and_add("virtual", 3218 &devices_kset->kobj); 3219 3220 return virtual_dir; 3221 } 3222 3223 struct class_dir { 3224 struct kobject kobj; 3225 const struct class *class; 3226 }; 3227 3228 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3229 3230 static void class_dir_release(struct kobject *kobj) 3231 { 3232 struct class_dir *dir = to_class_dir(kobj); 3233 kfree(dir); 3234 } 3235 3236 static const 3237 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3238 { 3239 const struct class_dir *dir = to_class_dir(kobj); 3240 return dir->class->ns_type; 3241 } 3242 3243 static const struct kobj_type class_dir_ktype = { 3244 .release = class_dir_release, 3245 .sysfs_ops = &kobj_sysfs_ops, 3246 .child_ns_type = class_dir_child_ns_type 3247 }; 3248 3249 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3250 struct kobject *parent_kobj) 3251 { 3252 struct class_dir *dir; 3253 int retval; 3254 3255 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3256 if (!dir) 3257 return ERR_PTR(-ENOMEM); 3258 3259 dir->class = sp->class; 3260 kobject_init(&dir->kobj, &class_dir_ktype); 3261 3262 dir->kobj.kset = &sp->glue_dirs; 3263 3264 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3265 if (retval < 0) { 3266 kobject_put(&dir->kobj); 3267 return ERR_PTR(retval); 3268 } 3269 return &dir->kobj; 3270 } 3271 3272 static DEFINE_MUTEX(gdp_mutex); 3273 3274 static struct kobject *get_device_parent(struct device *dev, 3275 struct device *parent) 3276 { 3277 struct subsys_private *sp = class_to_subsys(dev->class); 3278 struct kobject *kobj = NULL; 3279 3280 if (sp) { 3281 struct kobject *parent_kobj; 3282 struct kobject *k; 3283 3284 /* 3285 * If we have no parent, we live in "virtual". 3286 * Class-devices with a non class-device as parent, live 3287 * in a "glue" directory to prevent namespace collisions. 3288 */ 3289 if (parent == NULL) 3290 parent_kobj = virtual_device_parent(dev); 3291 else if (parent->class && !dev->class->ns_type) { 3292 subsys_put(sp); 3293 return &parent->kobj; 3294 } else { 3295 parent_kobj = &parent->kobj; 3296 } 3297 3298 mutex_lock(&gdp_mutex); 3299 3300 /* find our class-directory at the parent and reference it */ 3301 spin_lock(&sp->glue_dirs.list_lock); 3302 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3303 if (k->parent == parent_kobj) { 3304 kobj = kobject_get(k); 3305 break; 3306 } 3307 spin_unlock(&sp->glue_dirs.list_lock); 3308 if (kobj) { 3309 mutex_unlock(&gdp_mutex); 3310 subsys_put(sp); 3311 return kobj; 3312 } 3313 3314 /* or create a new class-directory at the parent device */ 3315 k = class_dir_create_and_add(sp, parent_kobj); 3316 /* do not emit an uevent for this simple "glue" directory */ 3317 mutex_unlock(&gdp_mutex); 3318 subsys_put(sp); 3319 return k; 3320 } 3321 3322 /* subsystems can specify a default root directory for their devices */ 3323 if (!parent && dev->bus) { 3324 struct device *dev_root = bus_get_dev_root(dev->bus); 3325 3326 if (dev_root) { 3327 kobj = &dev_root->kobj; 3328 put_device(dev_root); 3329 return kobj; 3330 } 3331 } 3332 3333 if (parent) 3334 return &parent->kobj; 3335 return NULL; 3336 } 3337 3338 static inline bool live_in_glue_dir(struct kobject *kobj, 3339 struct device *dev) 3340 { 3341 struct subsys_private *sp; 3342 bool retval; 3343 3344 if (!kobj || !dev->class) 3345 return false; 3346 3347 sp = class_to_subsys(dev->class); 3348 if (!sp) 3349 return false; 3350 3351 if (kobj->kset == &sp->glue_dirs) 3352 retval = true; 3353 else 3354 retval = false; 3355 3356 subsys_put(sp); 3357 return retval; 3358 } 3359 3360 static inline struct kobject *get_glue_dir(struct device *dev) 3361 { 3362 return dev->kobj.parent; 3363 } 3364 3365 /** 3366 * kobject_has_children - Returns whether a kobject has children. 3367 * @kobj: the object to test 3368 * 3369 * This will return whether a kobject has other kobjects as children. 3370 * 3371 * It does NOT account for the presence of attribute files, only sub 3372 * directories. It also assumes there is no concurrent addition or 3373 * removal of such children, and thus relies on external locking. 3374 */ 3375 static inline bool kobject_has_children(struct kobject *kobj) 3376 { 3377 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3378 3379 return kobj->sd && kobj->sd->dir.subdirs; 3380 } 3381 3382 /* 3383 * make sure cleaning up dir as the last step, we need to make 3384 * sure .release handler of kobject is run with holding the 3385 * global lock 3386 */ 3387 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3388 { 3389 unsigned int ref; 3390 3391 /* see if we live in a "glue" directory */ 3392 if (!live_in_glue_dir(glue_dir, dev)) 3393 return; 3394 3395 mutex_lock(&gdp_mutex); 3396 /** 3397 * There is a race condition between removing glue directory 3398 * and adding a new device under the glue directory. 3399 * 3400 * CPU1: CPU2: 3401 * 3402 * device_add() 3403 * get_device_parent() 3404 * class_dir_create_and_add() 3405 * kobject_add_internal() 3406 * create_dir() // create glue_dir 3407 * 3408 * device_add() 3409 * get_device_parent() 3410 * kobject_get() // get glue_dir 3411 * 3412 * device_del() 3413 * cleanup_glue_dir() 3414 * kobject_del(glue_dir) 3415 * 3416 * kobject_add() 3417 * kobject_add_internal() 3418 * create_dir() // in glue_dir 3419 * sysfs_create_dir_ns() 3420 * kernfs_create_dir_ns(sd) 3421 * 3422 * sysfs_remove_dir() // glue_dir->sd=NULL 3423 * sysfs_put() // free glue_dir->sd 3424 * 3425 * // sd is freed 3426 * kernfs_new_node(sd) 3427 * kernfs_get(glue_dir) 3428 * kernfs_add_one() 3429 * kernfs_put() 3430 * 3431 * Before CPU1 remove last child device under glue dir, if CPU2 add 3432 * a new device under glue dir, the glue_dir kobject reference count 3433 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3434 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3435 * and sysfs_put(). This result in glue_dir->sd is freed. 3436 * 3437 * Then the CPU2 will see a stale "empty" but still potentially used 3438 * glue dir around in kernfs_new_node(). 3439 * 3440 * In order to avoid this happening, we also should make sure that 3441 * kernfs_node for glue_dir is released in CPU1 only when refcount 3442 * for glue_dir kobj is 1. 3443 */ 3444 ref = kref_read(&glue_dir->kref); 3445 if (!kobject_has_children(glue_dir) && !--ref) 3446 kobject_del(glue_dir); 3447 kobject_put(glue_dir); 3448 mutex_unlock(&gdp_mutex); 3449 } 3450 3451 static int device_add_class_symlinks(struct device *dev) 3452 { 3453 struct device_node *of_node = dev_of_node(dev); 3454 struct subsys_private *sp; 3455 int error; 3456 3457 if (of_node) { 3458 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3459 if (error) 3460 dev_warn(dev, "Error %d creating of_node link\n",error); 3461 /* An error here doesn't warrant bringing down the device */ 3462 } 3463 3464 sp = class_to_subsys(dev->class); 3465 if (!sp) 3466 return 0; 3467 3468 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3469 if (error) 3470 goto out_devnode; 3471 3472 if (dev->parent && device_is_not_partition(dev)) { 3473 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3474 "device"); 3475 if (error) 3476 goto out_subsys; 3477 } 3478 3479 /* link in the class directory pointing to the device */ 3480 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3481 if (error) 3482 goto out_device; 3483 goto exit; 3484 3485 out_device: 3486 sysfs_remove_link(&dev->kobj, "device"); 3487 out_subsys: 3488 sysfs_remove_link(&dev->kobj, "subsystem"); 3489 out_devnode: 3490 sysfs_remove_link(&dev->kobj, "of_node"); 3491 exit: 3492 subsys_put(sp); 3493 return error; 3494 } 3495 3496 static void device_remove_class_symlinks(struct device *dev) 3497 { 3498 struct subsys_private *sp = class_to_subsys(dev->class); 3499 3500 if (dev_of_node(dev)) 3501 sysfs_remove_link(&dev->kobj, "of_node"); 3502 3503 if (!sp) 3504 return; 3505 3506 if (dev->parent && device_is_not_partition(dev)) 3507 sysfs_remove_link(&dev->kobj, "device"); 3508 sysfs_remove_link(&dev->kobj, "subsystem"); 3509 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3510 subsys_put(sp); 3511 } 3512 3513 /** 3514 * dev_set_name - set a device name 3515 * @dev: device 3516 * @fmt: format string for the device's name 3517 */ 3518 int dev_set_name(struct device *dev, const char *fmt, ...) 3519 { 3520 va_list vargs; 3521 int err; 3522 3523 va_start(vargs, fmt); 3524 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3525 va_end(vargs); 3526 return err; 3527 } 3528 EXPORT_SYMBOL_GPL(dev_set_name); 3529 3530 /* select a /sys/dev/ directory for the device */ 3531 static struct kobject *device_to_dev_kobj(struct device *dev) 3532 { 3533 if (is_blockdev(dev)) 3534 return sysfs_dev_block_kobj; 3535 else 3536 return sysfs_dev_char_kobj; 3537 } 3538 3539 static int device_create_sys_dev_entry(struct device *dev) 3540 { 3541 struct kobject *kobj = device_to_dev_kobj(dev); 3542 int error = 0; 3543 char devt_str[15]; 3544 3545 if (kobj) { 3546 format_dev_t(devt_str, dev->devt); 3547 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3548 } 3549 3550 return error; 3551 } 3552 3553 static void device_remove_sys_dev_entry(struct device *dev) 3554 { 3555 struct kobject *kobj = device_to_dev_kobj(dev); 3556 char devt_str[15]; 3557 3558 if (kobj) { 3559 format_dev_t(devt_str, dev->devt); 3560 sysfs_remove_link(kobj, devt_str); 3561 } 3562 } 3563 3564 static int device_private_init(struct device *dev) 3565 { 3566 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3567 if (!dev->p) 3568 return -ENOMEM; 3569 dev->p->device = dev; 3570 klist_init(&dev->p->klist_children, klist_children_get, 3571 klist_children_put); 3572 INIT_LIST_HEAD(&dev->p->deferred_probe); 3573 return 0; 3574 } 3575 3576 /** 3577 * device_add - add device to device hierarchy. 3578 * @dev: device. 3579 * 3580 * This is part 2 of device_register(), though may be called 3581 * separately _iff_ device_initialize() has been called separately. 3582 * 3583 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3584 * to the global and sibling lists for the device, then 3585 * adds it to the other relevant subsystems of the driver model. 3586 * 3587 * Do not call this routine or device_register() more than once for 3588 * any device structure. The driver model core is not designed to work 3589 * with devices that get unregistered and then spring back to life. 3590 * (Among other things, it's very hard to guarantee that all references 3591 * to the previous incarnation of @dev have been dropped.) Allocate 3592 * and register a fresh new struct device instead. 3593 * 3594 * NOTE: _Never_ directly free @dev after calling this function, even 3595 * if it returned an error! Always use put_device() to give up your 3596 * reference instead. 3597 * 3598 * Rule of thumb is: if device_add() succeeds, you should call 3599 * device_del() when you want to get rid of it. If device_add() has 3600 * *not* succeeded, use *only* put_device() to drop the reference 3601 * count. 3602 */ 3603 int device_add(struct device *dev) 3604 { 3605 struct subsys_private *sp; 3606 struct device *parent; 3607 struct kobject *kobj; 3608 struct class_interface *class_intf; 3609 int error = -EINVAL; 3610 struct kobject *glue_dir = NULL; 3611 3612 dev = get_device(dev); 3613 if (!dev) 3614 goto done; 3615 3616 if (!dev->p) { 3617 error = device_private_init(dev); 3618 if (error) 3619 goto done; 3620 } 3621 3622 /* 3623 * for statically allocated devices, which should all be converted 3624 * some day, we need to initialize the name. We prevent reading back 3625 * the name, and force the use of dev_name() 3626 */ 3627 if (dev->init_name) { 3628 error = dev_set_name(dev, "%s", dev->init_name); 3629 dev->init_name = NULL; 3630 } 3631 3632 if (dev_name(dev)) 3633 error = 0; 3634 /* subsystems can specify simple device enumeration */ 3635 else if (dev->bus && dev->bus->dev_name) 3636 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3637 else 3638 error = -EINVAL; 3639 if (error) 3640 goto name_error; 3641 3642 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3643 3644 parent = get_device(dev->parent); 3645 kobj = get_device_parent(dev, parent); 3646 if (IS_ERR(kobj)) { 3647 error = PTR_ERR(kobj); 3648 goto parent_error; 3649 } 3650 if (kobj) 3651 dev->kobj.parent = kobj; 3652 3653 /* use parent numa_node */ 3654 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3655 set_dev_node(dev, dev_to_node(parent)); 3656 3657 /* first, register with generic layer. */ 3658 /* we require the name to be set before, and pass NULL */ 3659 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3660 if (error) { 3661 glue_dir = kobj; 3662 goto Error; 3663 } 3664 3665 /* notify platform of device entry */ 3666 device_platform_notify(dev); 3667 3668 error = device_create_file(dev, &dev_attr_uevent); 3669 if (error) 3670 goto attrError; 3671 3672 error = device_add_class_symlinks(dev); 3673 if (error) 3674 goto SymlinkError; 3675 error = device_add_attrs(dev); 3676 if (error) 3677 goto AttrsError; 3678 error = bus_add_device(dev); 3679 if (error) 3680 goto BusError; 3681 error = dpm_sysfs_add(dev); 3682 if (error) 3683 goto DPMError; 3684 device_pm_add(dev); 3685 3686 if (MAJOR(dev->devt)) { 3687 error = device_create_file(dev, &dev_attr_dev); 3688 if (error) 3689 goto DevAttrError; 3690 3691 error = device_create_sys_dev_entry(dev); 3692 if (error) 3693 goto SysEntryError; 3694 3695 devtmpfs_create_node(dev); 3696 } 3697 3698 /* Notify clients of device addition. This call must come 3699 * after dpm_sysfs_add() and before kobject_uevent(). 3700 */ 3701 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3702 kobject_uevent(&dev->kobj, KOBJ_ADD); 3703 3704 /* 3705 * Check if any of the other devices (consumers) have been waiting for 3706 * this device (supplier) to be added so that they can create a device 3707 * link to it. 3708 * 3709 * This needs to happen after device_pm_add() because device_link_add() 3710 * requires the supplier be registered before it's called. 3711 * 3712 * But this also needs to happen before bus_probe_device() to make sure 3713 * waiting consumers can link to it before the driver is bound to the 3714 * device and the driver sync_state callback is called for this device. 3715 */ 3716 if (dev->fwnode && !dev->fwnode->dev) { 3717 dev->fwnode->dev = dev; 3718 fw_devlink_link_device(dev); 3719 } 3720 3721 bus_probe_device(dev); 3722 3723 /* 3724 * If all driver registration is done and a newly added device doesn't 3725 * match with any driver, don't block its consumers from probing in 3726 * case the consumer device is able to operate without this supplier. 3727 */ 3728 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3729 fw_devlink_unblock_consumers(dev); 3730 3731 if (parent) 3732 klist_add_tail(&dev->p->knode_parent, 3733 &parent->p->klist_children); 3734 3735 sp = class_to_subsys(dev->class); 3736 if (sp) { 3737 mutex_lock(&sp->mutex); 3738 /* tie the class to the device */ 3739 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3740 3741 /* notify any interfaces that the device is here */ 3742 list_for_each_entry(class_intf, &sp->interfaces, node) 3743 if (class_intf->add_dev) 3744 class_intf->add_dev(dev); 3745 mutex_unlock(&sp->mutex); 3746 subsys_put(sp); 3747 } 3748 done: 3749 put_device(dev); 3750 return error; 3751 SysEntryError: 3752 if (MAJOR(dev->devt)) 3753 device_remove_file(dev, &dev_attr_dev); 3754 DevAttrError: 3755 device_pm_remove(dev); 3756 dpm_sysfs_remove(dev); 3757 DPMError: 3758 dev->driver = NULL; 3759 bus_remove_device(dev); 3760 BusError: 3761 device_remove_attrs(dev); 3762 AttrsError: 3763 device_remove_class_symlinks(dev); 3764 SymlinkError: 3765 device_remove_file(dev, &dev_attr_uevent); 3766 attrError: 3767 device_platform_notify_remove(dev); 3768 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3769 glue_dir = get_glue_dir(dev); 3770 kobject_del(&dev->kobj); 3771 Error: 3772 cleanup_glue_dir(dev, glue_dir); 3773 parent_error: 3774 put_device(parent); 3775 name_error: 3776 kfree(dev->p); 3777 dev->p = NULL; 3778 goto done; 3779 } 3780 EXPORT_SYMBOL_GPL(device_add); 3781 3782 /** 3783 * device_register - register a device with the system. 3784 * @dev: pointer to the device structure 3785 * 3786 * This happens in two clean steps - initialize the device 3787 * and add it to the system. The two steps can be called 3788 * separately, but this is the easiest and most common. 3789 * I.e. you should only call the two helpers separately if 3790 * have a clearly defined need to use and refcount the device 3791 * before it is added to the hierarchy. 3792 * 3793 * For more information, see the kerneldoc for device_initialize() 3794 * and device_add(). 3795 * 3796 * NOTE: _Never_ directly free @dev after calling this function, even 3797 * if it returned an error! Always use put_device() to give up the 3798 * reference initialized in this function instead. 3799 */ 3800 int device_register(struct device *dev) 3801 { 3802 device_initialize(dev); 3803 return device_add(dev); 3804 } 3805 EXPORT_SYMBOL_GPL(device_register); 3806 3807 /** 3808 * get_device - increment reference count for device. 3809 * @dev: device. 3810 * 3811 * This simply forwards the call to kobject_get(), though 3812 * we do take care to provide for the case that we get a NULL 3813 * pointer passed in. 3814 */ 3815 struct device *get_device(struct device *dev) 3816 { 3817 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3818 } 3819 EXPORT_SYMBOL_GPL(get_device); 3820 3821 /** 3822 * put_device - decrement reference count. 3823 * @dev: device in question. 3824 */ 3825 void put_device(struct device *dev) 3826 { 3827 /* might_sleep(); */ 3828 if (dev) 3829 kobject_put(&dev->kobj); 3830 } 3831 EXPORT_SYMBOL_GPL(put_device); 3832 3833 bool kill_device(struct device *dev) 3834 { 3835 /* 3836 * Require the device lock and set the "dead" flag to guarantee that 3837 * the update behavior is consistent with the other bitfields near 3838 * it and that we cannot have an asynchronous probe routine trying 3839 * to run while we are tearing out the bus/class/sysfs from 3840 * underneath the device. 3841 */ 3842 device_lock_assert(dev); 3843 3844 if (dev->p->dead) 3845 return false; 3846 dev->p->dead = true; 3847 return true; 3848 } 3849 EXPORT_SYMBOL_GPL(kill_device); 3850 3851 /** 3852 * device_del - delete device from system. 3853 * @dev: device. 3854 * 3855 * This is the first part of the device unregistration 3856 * sequence. This removes the device from the lists we control 3857 * from here, has it removed from the other driver model 3858 * subsystems it was added to in device_add(), and removes it 3859 * from the kobject hierarchy. 3860 * 3861 * NOTE: this should be called manually _iff_ device_add() was 3862 * also called manually. 3863 */ 3864 void device_del(struct device *dev) 3865 { 3866 struct subsys_private *sp; 3867 struct device *parent = dev->parent; 3868 struct kobject *glue_dir = NULL; 3869 struct class_interface *class_intf; 3870 unsigned int noio_flag; 3871 3872 device_lock(dev); 3873 kill_device(dev); 3874 device_unlock(dev); 3875 3876 if (dev->fwnode && dev->fwnode->dev == dev) 3877 dev->fwnode->dev = NULL; 3878 3879 /* Notify clients of device removal. This call must come 3880 * before dpm_sysfs_remove(). 3881 */ 3882 noio_flag = memalloc_noio_save(); 3883 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3884 3885 dpm_sysfs_remove(dev); 3886 if (parent) 3887 klist_del(&dev->p->knode_parent); 3888 if (MAJOR(dev->devt)) { 3889 devtmpfs_delete_node(dev); 3890 device_remove_sys_dev_entry(dev); 3891 device_remove_file(dev, &dev_attr_dev); 3892 } 3893 3894 sp = class_to_subsys(dev->class); 3895 if (sp) { 3896 device_remove_class_symlinks(dev); 3897 3898 mutex_lock(&sp->mutex); 3899 /* notify any interfaces that the device is now gone */ 3900 list_for_each_entry(class_intf, &sp->interfaces, node) 3901 if (class_intf->remove_dev) 3902 class_intf->remove_dev(dev); 3903 /* remove the device from the class list */ 3904 klist_del(&dev->p->knode_class); 3905 mutex_unlock(&sp->mutex); 3906 subsys_put(sp); 3907 } 3908 device_remove_file(dev, &dev_attr_uevent); 3909 device_remove_attrs(dev); 3910 bus_remove_device(dev); 3911 device_pm_remove(dev); 3912 driver_deferred_probe_del(dev); 3913 device_platform_notify_remove(dev); 3914 device_links_purge(dev); 3915 3916 /* 3917 * If a device does not have a driver attached, we need to clean 3918 * up any managed resources. We do this in device_release(), but 3919 * it's never called (and we leak the device) if a managed 3920 * resource holds a reference to the device. So release all 3921 * managed resources here, like we do in driver_detach(). We 3922 * still need to do so again in device_release() in case someone 3923 * adds a new resource after this point, though. 3924 */ 3925 devres_release_all(dev); 3926 3927 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3928 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3929 glue_dir = get_glue_dir(dev); 3930 kobject_del(&dev->kobj); 3931 cleanup_glue_dir(dev, glue_dir); 3932 memalloc_noio_restore(noio_flag); 3933 put_device(parent); 3934 } 3935 EXPORT_SYMBOL_GPL(device_del); 3936 3937 /** 3938 * device_unregister - unregister device from system. 3939 * @dev: device going away. 3940 * 3941 * We do this in two parts, like we do device_register(). First, 3942 * we remove it from all the subsystems with device_del(), then 3943 * we decrement the reference count via put_device(). If that 3944 * is the final reference count, the device will be cleaned up 3945 * via device_release() above. Otherwise, the structure will 3946 * stick around until the final reference to the device is dropped. 3947 */ 3948 void device_unregister(struct device *dev) 3949 { 3950 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3951 device_del(dev); 3952 put_device(dev); 3953 } 3954 EXPORT_SYMBOL_GPL(device_unregister); 3955 3956 static struct device *prev_device(struct klist_iter *i) 3957 { 3958 struct klist_node *n = klist_prev(i); 3959 struct device *dev = NULL; 3960 struct device_private *p; 3961 3962 if (n) { 3963 p = to_device_private_parent(n); 3964 dev = p->device; 3965 } 3966 return dev; 3967 } 3968 3969 static struct device *next_device(struct klist_iter *i) 3970 { 3971 struct klist_node *n = klist_next(i); 3972 struct device *dev = NULL; 3973 struct device_private *p; 3974 3975 if (n) { 3976 p = to_device_private_parent(n); 3977 dev = p->device; 3978 } 3979 return dev; 3980 } 3981 3982 /** 3983 * device_get_devnode - path of device node file 3984 * @dev: device 3985 * @mode: returned file access mode 3986 * @uid: returned file owner 3987 * @gid: returned file group 3988 * @tmp: possibly allocated string 3989 * 3990 * Return the relative path of a possible device node. 3991 * Non-default names may need to allocate a memory to compose 3992 * a name. This memory is returned in tmp and needs to be 3993 * freed by the caller. 3994 */ 3995 const char *device_get_devnode(const struct device *dev, 3996 umode_t *mode, kuid_t *uid, kgid_t *gid, 3997 const char **tmp) 3998 { 3999 char *s; 4000 4001 *tmp = NULL; 4002 4003 /* the device type may provide a specific name */ 4004 if (dev->type && dev->type->devnode) 4005 *tmp = dev->type->devnode(dev, mode, uid, gid); 4006 if (*tmp) 4007 return *tmp; 4008 4009 /* the class may provide a specific name */ 4010 if (dev->class && dev->class->devnode) 4011 *tmp = dev->class->devnode(dev, mode); 4012 if (*tmp) 4013 return *tmp; 4014 4015 /* return name without allocation, tmp == NULL */ 4016 if (strchr(dev_name(dev), '!') == NULL) 4017 return dev_name(dev); 4018 4019 /* replace '!' in the name with '/' */ 4020 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 4021 if (!s) 4022 return NULL; 4023 return *tmp = s; 4024 } 4025 4026 /** 4027 * device_for_each_child - device child iterator. 4028 * @parent: parent struct device. 4029 * @fn: function to be called for each device. 4030 * @data: data for the callback. 4031 * 4032 * Iterate over @parent's child devices, and call @fn for each, 4033 * passing it @data. 4034 * 4035 * We check the return of @fn each time. If it returns anything 4036 * other than 0, we break out and return that value. 4037 */ 4038 int device_for_each_child(struct device *parent, void *data, 4039 int (*fn)(struct device *dev, void *data)) 4040 { 4041 struct klist_iter i; 4042 struct device *child; 4043 int error = 0; 4044 4045 if (!parent->p) 4046 return 0; 4047 4048 klist_iter_init(&parent->p->klist_children, &i); 4049 while (!error && (child = next_device(&i))) 4050 error = fn(child, data); 4051 klist_iter_exit(&i); 4052 return error; 4053 } 4054 EXPORT_SYMBOL_GPL(device_for_each_child); 4055 4056 /** 4057 * device_for_each_child_reverse - device child iterator in reversed order. 4058 * @parent: parent struct device. 4059 * @fn: function to be called for each device. 4060 * @data: data for the callback. 4061 * 4062 * Iterate over @parent's child devices, and call @fn for each, 4063 * passing it @data. 4064 * 4065 * We check the return of @fn each time. If it returns anything 4066 * other than 0, we break out and return that value. 4067 */ 4068 int device_for_each_child_reverse(struct device *parent, void *data, 4069 int (*fn)(struct device *dev, void *data)) 4070 { 4071 struct klist_iter i; 4072 struct device *child; 4073 int error = 0; 4074 4075 if (!parent->p) 4076 return 0; 4077 4078 klist_iter_init(&parent->p->klist_children, &i); 4079 while ((child = prev_device(&i)) && !error) 4080 error = fn(child, data); 4081 klist_iter_exit(&i); 4082 return error; 4083 } 4084 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4085 4086 /** 4087 * device_find_child - device iterator for locating a particular device. 4088 * @parent: parent struct device 4089 * @match: Callback function to check device 4090 * @data: Data to pass to match function 4091 * 4092 * This is similar to the device_for_each_child() function above, but it 4093 * returns a reference to a device that is 'found' for later use, as 4094 * determined by the @match callback. 4095 * 4096 * The callback should return 0 if the device doesn't match and non-zero 4097 * if it does. If the callback returns non-zero and a reference to the 4098 * current device can be obtained, this function will return to the caller 4099 * and not iterate over any more devices. 4100 * 4101 * NOTE: you will need to drop the reference with put_device() after use. 4102 */ 4103 struct device *device_find_child(struct device *parent, void *data, 4104 int (*match)(struct device *dev, void *data)) 4105 { 4106 struct klist_iter i; 4107 struct device *child; 4108 4109 if (!parent) 4110 return NULL; 4111 4112 klist_iter_init(&parent->p->klist_children, &i); 4113 while ((child = next_device(&i))) 4114 if (match(child, data) && get_device(child)) 4115 break; 4116 klist_iter_exit(&i); 4117 return child; 4118 } 4119 EXPORT_SYMBOL_GPL(device_find_child); 4120 4121 /** 4122 * device_find_child_by_name - device iterator for locating a child device. 4123 * @parent: parent struct device 4124 * @name: name of the child device 4125 * 4126 * This is similar to the device_find_child() function above, but it 4127 * returns a reference to a device that has the name @name. 4128 * 4129 * NOTE: you will need to drop the reference with put_device() after use. 4130 */ 4131 struct device *device_find_child_by_name(struct device *parent, 4132 const char *name) 4133 { 4134 struct klist_iter i; 4135 struct device *child; 4136 4137 if (!parent) 4138 return NULL; 4139 4140 klist_iter_init(&parent->p->klist_children, &i); 4141 while ((child = next_device(&i))) 4142 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4143 break; 4144 klist_iter_exit(&i); 4145 return child; 4146 } 4147 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4148 4149 static int match_any(struct device *dev, void *unused) 4150 { 4151 return 1; 4152 } 4153 4154 /** 4155 * device_find_any_child - device iterator for locating a child device, if any. 4156 * @parent: parent struct device 4157 * 4158 * This is similar to the device_find_child() function above, but it 4159 * returns a reference to a child device, if any. 4160 * 4161 * NOTE: you will need to drop the reference with put_device() after use. 4162 */ 4163 struct device *device_find_any_child(struct device *parent) 4164 { 4165 return device_find_child(parent, NULL, match_any); 4166 } 4167 EXPORT_SYMBOL_GPL(device_find_any_child); 4168 4169 int __init devices_init(void) 4170 { 4171 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4172 if (!devices_kset) 4173 return -ENOMEM; 4174 dev_kobj = kobject_create_and_add("dev", NULL); 4175 if (!dev_kobj) 4176 goto dev_kobj_err; 4177 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4178 if (!sysfs_dev_block_kobj) 4179 goto block_kobj_err; 4180 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4181 if (!sysfs_dev_char_kobj) 4182 goto char_kobj_err; 4183 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4184 if (!device_link_wq) 4185 goto wq_err; 4186 4187 return 0; 4188 4189 wq_err: 4190 kobject_put(sysfs_dev_char_kobj); 4191 char_kobj_err: 4192 kobject_put(sysfs_dev_block_kobj); 4193 block_kobj_err: 4194 kobject_put(dev_kobj); 4195 dev_kobj_err: 4196 kset_unregister(devices_kset); 4197 return -ENOMEM; 4198 } 4199 4200 static int device_check_offline(struct device *dev, void *not_used) 4201 { 4202 int ret; 4203 4204 ret = device_for_each_child(dev, NULL, device_check_offline); 4205 if (ret) 4206 return ret; 4207 4208 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4209 } 4210 4211 /** 4212 * device_offline - Prepare the device for hot-removal. 4213 * @dev: Device to be put offline. 4214 * 4215 * Execute the device bus type's .offline() callback, if present, to prepare 4216 * the device for a subsequent hot-removal. If that succeeds, the device must 4217 * not be used until either it is removed or its bus type's .online() callback 4218 * is executed. 4219 * 4220 * Call under device_hotplug_lock. 4221 */ 4222 int device_offline(struct device *dev) 4223 { 4224 int ret; 4225 4226 if (dev->offline_disabled) 4227 return -EPERM; 4228 4229 ret = device_for_each_child(dev, NULL, device_check_offline); 4230 if (ret) 4231 return ret; 4232 4233 device_lock(dev); 4234 if (device_supports_offline(dev)) { 4235 if (dev->offline) { 4236 ret = 1; 4237 } else { 4238 ret = dev->bus->offline(dev); 4239 if (!ret) { 4240 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4241 dev->offline = true; 4242 } 4243 } 4244 } 4245 device_unlock(dev); 4246 4247 return ret; 4248 } 4249 4250 /** 4251 * device_online - Put the device back online after successful device_offline(). 4252 * @dev: Device to be put back online. 4253 * 4254 * If device_offline() has been successfully executed for @dev, but the device 4255 * has not been removed subsequently, execute its bus type's .online() callback 4256 * to indicate that the device can be used again. 4257 * 4258 * Call under device_hotplug_lock. 4259 */ 4260 int device_online(struct device *dev) 4261 { 4262 int ret = 0; 4263 4264 device_lock(dev); 4265 if (device_supports_offline(dev)) { 4266 if (dev->offline) { 4267 ret = dev->bus->online(dev); 4268 if (!ret) { 4269 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4270 dev->offline = false; 4271 } 4272 } else { 4273 ret = 1; 4274 } 4275 } 4276 device_unlock(dev); 4277 4278 return ret; 4279 } 4280 4281 struct root_device { 4282 struct device dev; 4283 struct module *owner; 4284 }; 4285 4286 static inline struct root_device *to_root_device(struct device *d) 4287 { 4288 return container_of(d, struct root_device, dev); 4289 } 4290 4291 static void root_device_release(struct device *dev) 4292 { 4293 kfree(to_root_device(dev)); 4294 } 4295 4296 /** 4297 * __root_device_register - allocate and register a root device 4298 * @name: root device name 4299 * @owner: owner module of the root device, usually THIS_MODULE 4300 * 4301 * This function allocates a root device and registers it 4302 * using device_register(). In order to free the returned 4303 * device, use root_device_unregister(). 4304 * 4305 * Root devices are dummy devices which allow other devices 4306 * to be grouped under /sys/devices. Use this function to 4307 * allocate a root device and then use it as the parent of 4308 * any device which should appear under /sys/devices/{name} 4309 * 4310 * The /sys/devices/{name} directory will also contain a 4311 * 'module' symlink which points to the @owner directory 4312 * in sysfs. 4313 * 4314 * Returns &struct device pointer on success, or ERR_PTR() on error. 4315 * 4316 * Note: You probably want to use root_device_register(). 4317 */ 4318 struct device *__root_device_register(const char *name, struct module *owner) 4319 { 4320 struct root_device *root; 4321 int err = -ENOMEM; 4322 4323 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4324 if (!root) 4325 return ERR_PTR(err); 4326 4327 err = dev_set_name(&root->dev, "%s", name); 4328 if (err) { 4329 kfree(root); 4330 return ERR_PTR(err); 4331 } 4332 4333 root->dev.release = root_device_release; 4334 4335 err = device_register(&root->dev); 4336 if (err) { 4337 put_device(&root->dev); 4338 return ERR_PTR(err); 4339 } 4340 4341 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4342 if (owner) { 4343 struct module_kobject *mk = &owner->mkobj; 4344 4345 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4346 if (err) { 4347 device_unregister(&root->dev); 4348 return ERR_PTR(err); 4349 } 4350 root->owner = owner; 4351 } 4352 #endif 4353 4354 return &root->dev; 4355 } 4356 EXPORT_SYMBOL_GPL(__root_device_register); 4357 4358 /** 4359 * root_device_unregister - unregister and free a root device 4360 * @dev: device going away 4361 * 4362 * This function unregisters and cleans up a device that was created by 4363 * root_device_register(). 4364 */ 4365 void root_device_unregister(struct device *dev) 4366 { 4367 struct root_device *root = to_root_device(dev); 4368 4369 if (root->owner) 4370 sysfs_remove_link(&root->dev.kobj, "module"); 4371 4372 device_unregister(dev); 4373 } 4374 EXPORT_SYMBOL_GPL(root_device_unregister); 4375 4376 4377 static void device_create_release(struct device *dev) 4378 { 4379 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4380 kfree(dev); 4381 } 4382 4383 static __printf(6, 0) struct device * 4384 device_create_groups_vargs(const struct class *class, struct device *parent, 4385 dev_t devt, void *drvdata, 4386 const struct attribute_group **groups, 4387 const char *fmt, va_list args) 4388 { 4389 struct device *dev = NULL; 4390 int retval = -ENODEV; 4391 4392 if (IS_ERR_OR_NULL(class)) 4393 goto error; 4394 4395 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4396 if (!dev) { 4397 retval = -ENOMEM; 4398 goto error; 4399 } 4400 4401 device_initialize(dev); 4402 dev->devt = devt; 4403 dev->class = class; 4404 dev->parent = parent; 4405 dev->groups = groups; 4406 dev->release = device_create_release; 4407 dev_set_drvdata(dev, drvdata); 4408 4409 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4410 if (retval) 4411 goto error; 4412 4413 retval = device_add(dev); 4414 if (retval) 4415 goto error; 4416 4417 return dev; 4418 4419 error: 4420 put_device(dev); 4421 return ERR_PTR(retval); 4422 } 4423 4424 /** 4425 * device_create - creates a device and registers it with sysfs 4426 * @class: pointer to the struct class that this device should be registered to 4427 * @parent: pointer to the parent struct device of this new device, if any 4428 * @devt: the dev_t for the char device to be added 4429 * @drvdata: the data to be added to the device for callbacks 4430 * @fmt: string for the device's name 4431 * 4432 * This function can be used by char device classes. A struct device 4433 * will be created in sysfs, registered to the specified class. 4434 * 4435 * A "dev" file will be created, showing the dev_t for the device, if 4436 * the dev_t is not 0,0. 4437 * If a pointer to a parent struct device is passed in, the newly created 4438 * struct device will be a child of that device in sysfs. 4439 * The pointer to the struct device will be returned from the call. 4440 * Any further sysfs files that might be required can be created using this 4441 * pointer. 4442 * 4443 * Returns &struct device pointer on success, or ERR_PTR() on error. 4444 */ 4445 struct device *device_create(const struct class *class, struct device *parent, 4446 dev_t devt, void *drvdata, const char *fmt, ...) 4447 { 4448 va_list vargs; 4449 struct device *dev; 4450 4451 va_start(vargs, fmt); 4452 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4453 fmt, vargs); 4454 va_end(vargs); 4455 return dev; 4456 } 4457 EXPORT_SYMBOL_GPL(device_create); 4458 4459 /** 4460 * device_create_with_groups - creates a device and registers it with sysfs 4461 * @class: pointer to the struct class that this device should be registered to 4462 * @parent: pointer to the parent struct device of this new device, if any 4463 * @devt: the dev_t for the char device to be added 4464 * @drvdata: the data to be added to the device for callbacks 4465 * @groups: NULL-terminated list of attribute groups to be created 4466 * @fmt: string for the device's name 4467 * 4468 * This function can be used by char device classes. A struct device 4469 * will be created in sysfs, registered to the specified class. 4470 * Additional attributes specified in the groups parameter will also 4471 * be created automatically. 4472 * 4473 * A "dev" file will be created, showing the dev_t for the device, if 4474 * the dev_t is not 0,0. 4475 * If a pointer to a parent struct device is passed in, the newly created 4476 * struct device will be a child of that device in sysfs. 4477 * The pointer to the struct device will be returned from the call. 4478 * Any further sysfs files that might be required can be created using this 4479 * pointer. 4480 * 4481 * Returns &struct device pointer on success, or ERR_PTR() on error. 4482 */ 4483 struct device *device_create_with_groups(const struct class *class, 4484 struct device *parent, dev_t devt, 4485 void *drvdata, 4486 const struct attribute_group **groups, 4487 const char *fmt, ...) 4488 { 4489 va_list vargs; 4490 struct device *dev; 4491 4492 va_start(vargs, fmt); 4493 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4494 fmt, vargs); 4495 va_end(vargs); 4496 return dev; 4497 } 4498 EXPORT_SYMBOL_GPL(device_create_with_groups); 4499 4500 /** 4501 * device_destroy - removes a device that was created with device_create() 4502 * @class: pointer to the struct class that this device was registered with 4503 * @devt: the dev_t of the device that was previously registered 4504 * 4505 * This call unregisters and cleans up a device that was created with a 4506 * call to device_create(). 4507 */ 4508 void device_destroy(const struct class *class, dev_t devt) 4509 { 4510 struct device *dev; 4511 4512 dev = class_find_device_by_devt(class, devt); 4513 if (dev) { 4514 put_device(dev); 4515 device_unregister(dev); 4516 } 4517 } 4518 EXPORT_SYMBOL_GPL(device_destroy); 4519 4520 /** 4521 * device_rename - renames a device 4522 * @dev: the pointer to the struct device to be renamed 4523 * @new_name: the new name of the device 4524 * 4525 * It is the responsibility of the caller to provide mutual 4526 * exclusion between two different calls of device_rename 4527 * on the same device to ensure that new_name is valid and 4528 * won't conflict with other devices. 4529 * 4530 * Note: given that some subsystems (networking and infiniband) use this 4531 * function, with no immediate plans for this to change, we cannot assume or 4532 * require that this function not be called at all. 4533 * 4534 * However, if you're writing new code, do not call this function. The following 4535 * text from Kay Sievers offers some insight: 4536 * 4537 * Renaming devices is racy at many levels, symlinks and other stuff are not 4538 * replaced atomically, and you get a "move" uevent, but it's not easy to 4539 * connect the event to the old and new device. Device nodes are not renamed at 4540 * all, there isn't even support for that in the kernel now. 4541 * 4542 * In the meantime, during renaming, your target name might be taken by another 4543 * driver, creating conflicts. Or the old name is taken directly after you 4544 * renamed it -- then you get events for the same DEVPATH, before you even see 4545 * the "move" event. It's just a mess, and nothing new should ever rely on 4546 * kernel device renaming. Besides that, it's not even implemented now for 4547 * other things than (driver-core wise very simple) network devices. 4548 * 4549 * Make up a "real" name in the driver before you register anything, or add 4550 * some other attributes for userspace to find the device, or use udev to add 4551 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4552 * don't even want to get into that and try to implement the missing pieces in 4553 * the core. We really have other pieces to fix in the driver core mess. :) 4554 */ 4555 int device_rename(struct device *dev, const char *new_name) 4556 { 4557 struct kobject *kobj = &dev->kobj; 4558 char *old_device_name = NULL; 4559 int error; 4560 4561 dev = get_device(dev); 4562 if (!dev) 4563 return -EINVAL; 4564 4565 dev_dbg(dev, "renaming to %s\n", new_name); 4566 4567 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4568 if (!old_device_name) { 4569 error = -ENOMEM; 4570 goto out; 4571 } 4572 4573 if (dev->class) { 4574 struct subsys_private *sp = class_to_subsys(dev->class); 4575 4576 if (!sp) { 4577 error = -EINVAL; 4578 goto out; 4579 } 4580 4581 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4582 new_name, kobject_namespace(kobj)); 4583 subsys_put(sp); 4584 if (error) 4585 goto out; 4586 } 4587 4588 error = kobject_rename(kobj, new_name); 4589 if (error) 4590 goto out; 4591 4592 out: 4593 put_device(dev); 4594 4595 kfree(old_device_name); 4596 4597 return error; 4598 } 4599 EXPORT_SYMBOL_GPL(device_rename); 4600 4601 static int device_move_class_links(struct device *dev, 4602 struct device *old_parent, 4603 struct device *new_parent) 4604 { 4605 int error = 0; 4606 4607 if (old_parent) 4608 sysfs_remove_link(&dev->kobj, "device"); 4609 if (new_parent) 4610 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4611 "device"); 4612 return error; 4613 } 4614 4615 /** 4616 * device_move - moves a device to a new parent 4617 * @dev: the pointer to the struct device to be moved 4618 * @new_parent: the new parent of the device (can be NULL) 4619 * @dpm_order: how to reorder the dpm_list 4620 */ 4621 int device_move(struct device *dev, struct device *new_parent, 4622 enum dpm_order dpm_order) 4623 { 4624 int error; 4625 struct device *old_parent; 4626 struct kobject *new_parent_kobj; 4627 4628 dev = get_device(dev); 4629 if (!dev) 4630 return -EINVAL; 4631 4632 device_pm_lock(); 4633 new_parent = get_device(new_parent); 4634 new_parent_kobj = get_device_parent(dev, new_parent); 4635 if (IS_ERR(new_parent_kobj)) { 4636 error = PTR_ERR(new_parent_kobj); 4637 put_device(new_parent); 4638 goto out; 4639 } 4640 4641 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4642 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4643 error = kobject_move(&dev->kobj, new_parent_kobj); 4644 if (error) { 4645 cleanup_glue_dir(dev, new_parent_kobj); 4646 put_device(new_parent); 4647 goto out; 4648 } 4649 old_parent = dev->parent; 4650 dev->parent = new_parent; 4651 if (old_parent) 4652 klist_remove(&dev->p->knode_parent); 4653 if (new_parent) { 4654 klist_add_tail(&dev->p->knode_parent, 4655 &new_parent->p->klist_children); 4656 set_dev_node(dev, dev_to_node(new_parent)); 4657 } 4658 4659 if (dev->class) { 4660 error = device_move_class_links(dev, old_parent, new_parent); 4661 if (error) { 4662 /* We ignore errors on cleanup since we're hosed anyway... */ 4663 device_move_class_links(dev, new_parent, old_parent); 4664 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4665 if (new_parent) 4666 klist_remove(&dev->p->knode_parent); 4667 dev->parent = old_parent; 4668 if (old_parent) { 4669 klist_add_tail(&dev->p->knode_parent, 4670 &old_parent->p->klist_children); 4671 set_dev_node(dev, dev_to_node(old_parent)); 4672 } 4673 } 4674 cleanup_glue_dir(dev, new_parent_kobj); 4675 put_device(new_parent); 4676 goto out; 4677 } 4678 } 4679 switch (dpm_order) { 4680 case DPM_ORDER_NONE: 4681 break; 4682 case DPM_ORDER_DEV_AFTER_PARENT: 4683 device_pm_move_after(dev, new_parent); 4684 devices_kset_move_after(dev, new_parent); 4685 break; 4686 case DPM_ORDER_PARENT_BEFORE_DEV: 4687 device_pm_move_before(new_parent, dev); 4688 devices_kset_move_before(new_parent, dev); 4689 break; 4690 case DPM_ORDER_DEV_LAST: 4691 device_pm_move_last(dev); 4692 devices_kset_move_last(dev); 4693 break; 4694 } 4695 4696 put_device(old_parent); 4697 out: 4698 device_pm_unlock(); 4699 put_device(dev); 4700 return error; 4701 } 4702 EXPORT_SYMBOL_GPL(device_move); 4703 4704 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4705 kgid_t kgid) 4706 { 4707 struct kobject *kobj = &dev->kobj; 4708 const struct class *class = dev->class; 4709 const struct device_type *type = dev->type; 4710 int error; 4711 4712 if (class) { 4713 /* 4714 * Change the device groups of the device class for @dev to 4715 * @kuid/@kgid. 4716 */ 4717 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4718 kgid); 4719 if (error) 4720 return error; 4721 } 4722 4723 if (type) { 4724 /* 4725 * Change the device groups of the device type for @dev to 4726 * @kuid/@kgid. 4727 */ 4728 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4729 kgid); 4730 if (error) 4731 return error; 4732 } 4733 4734 /* Change the device groups of @dev to @kuid/@kgid. */ 4735 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4736 if (error) 4737 return error; 4738 4739 if (device_supports_offline(dev) && !dev->offline_disabled) { 4740 /* Change online device attributes of @dev to @kuid/@kgid. */ 4741 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4742 kuid, kgid); 4743 if (error) 4744 return error; 4745 } 4746 4747 return 0; 4748 } 4749 4750 /** 4751 * device_change_owner - change the owner of an existing device. 4752 * @dev: device. 4753 * @kuid: new owner's kuid 4754 * @kgid: new owner's kgid 4755 * 4756 * This changes the owner of @dev and its corresponding sysfs entries to 4757 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4758 * core. 4759 * 4760 * Returns 0 on success or error code on failure. 4761 */ 4762 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4763 { 4764 int error; 4765 struct kobject *kobj = &dev->kobj; 4766 struct subsys_private *sp; 4767 4768 dev = get_device(dev); 4769 if (!dev) 4770 return -EINVAL; 4771 4772 /* 4773 * Change the kobject and the default attributes and groups of the 4774 * ktype associated with it to @kuid/@kgid. 4775 */ 4776 error = sysfs_change_owner(kobj, kuid, kgid); 4777 if (error) 4778 goto out; 4779 4780 /* 4781 * Change the uevent file for @dev to the new owner. The uevent file 4782 * was created in a separate step when @dev got added and we mirror 4783 * that step here. 4784 */ 4785 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4786 kgid); 4787 if (error) 4788 goto out; 4789 4790 /* 4791 * Change the device groups, the device groups associated with the 4792 * device class, and the groups associated with the device type of @dev 4793 * to @kuid/@kgid. 4794 */ 4795 error = device_attrs_change_owner(dev, kuid, kgid); 4796 if (error) 4797 goto out; 4798 4799 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4800 if (error) 4801 goto out; 4802 4803 /* 4804 * Change the owner of the symlink located in the class directory of 4805 * the device class associated with @dev which points to the actual 4806 * directory entry for @dev to @kuid/@kgid. This ensures that the 4807 * symlink shows the same permissions as its target. 4808 */ 4809 sp = class_to_subsys(dev->class); 4810 if (!sp) { 4811 error = -EINVAL; 4812 goto out; 4813 } 4814 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4815 subsys_put(sp); 4816 4817 out: 4818 put_device(dev); 4819 return error; 4820 } 4821 EXPORT_SYMBOL_GPL(device_change_owner); 4822 4823 /** 4824 * device_shutdown - call ->shutdown() on each device to shutdown. 4825 */ 4826 void device_shutdown(void) 4827 { 4828 struct device *dev, *parent; 4829 4830 wait_for_device_probe(); 4831 device_block_probing(); 4832 4833 cpufreq_suspend(); 4834 4835 spin_lock(&devices_kset->list_lock); 4836 /* 4837 * Walk the devices list backward, shutting down each in turn. 4838 * Beware that device unplug events may also start pulling 4839 * devices offline, even as the system is shutting down. 4840 */ 4841 while (!list_empty(&devices_kset->list)) { 4842 dev = list_entry(devices_kset->list.prev, struct device, 4843 kobj.entry); 4844 4845 /* 4846 * hold reference count of device's parent to 4847 * prevent it from being freed because parent's 4848 * lock is to be held 4849 */ 4850 parent = get_device(dev->parent); 4851 get_device(dev); 4852 /* 4853 * Make sure the device is off the kset list, in the 4854 * event that dev->*->shutdown() doesn't remove it. 4855 */ 4856 list_del_init(&dev->kobj.entry); 4857 spin_unlock(&devices_kset->list_lock); 4858 4859 /* hold lock to avoid race with probe/release */ 4860 if (parent) 4861 device_lock(parent); 4862 device_lock(dev); 4863 4864 /* Don't allow any more runtime suspends */ 4865 pm_runtime_get_noresume(dev); 4866 pm_runtime_barrier(dev); 4867 4868 if (dev->class && dev->class->shutdown_pre) { 4869 if (initcall_debug) 4870 dev_info(dev, "shutdown_pre\n"); 4871 dev->class->shutdown_pre(dev); 4872 } 4873 if (dev->bus && dev->bus->shutdown) { 4874 if (initcall_debug) 4875 dev_info(dev, "shutdown\n"); 4876 dev->bus->shutdown(dev); 4877 } else if (dev->driver && dev->driver->shutdown) { 4878 if (initcall_debug) 4879 dev_info(dev, "shutdown\n"); 4880 dev->driver->shutdown(dev); 4881 } 4882 4883 device_unlock(dev); 4884 if (parent) 4885 device_unlock(parent); 4886 4887 put_device(dev); 4888 put_device(parent); 4889 4890 spin_lock(&devices_kset->list_lock); 4891 } 4892 spin_unlock(&devices_kset->list_lock); 4893 } 4894 4895 /* 4896 * Device logging functions 4897 */ 4898 4899 #ifdef CONFIG_PRINTK 4900 static void 4901 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4902 { 4903 const char *subsys; 4904 4905 memset(dev_info, 0, sizeof(*dev_info)); 4906 4907 if (dev->class) 4908 subsys = dev->class->name; 4909 else if (dev->bus) 4910 subsys = dev->bus->name; 4911 else 4912 return; 4913 4914 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4915 4916 /* 4917 * Add device identifier DEVICE=: 4918 * b12:8 block dev_t 4919 * c127:3 char dev_t 4920 * n8 netdev ifindex 4921 * +sound:card0 subsystem:devname 4922 */ 4923 if (MAJOR(dev->devt)) { 4924 char c; 4925 4926 if (strcmp(subsys, "block") == 0) 4927 c = 'b'; 4928 else 4929 c = 'c'; 4930 4931 snprintf(dev_info->device, sizeof(dev_info->device), 4932 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4933 } else if (strcmp(subsys, "net") == 0) { 4934 struct net_device *net = to_net_dev(dev); 4935 4936 snprintf(dev_info->device, sizeof(dev_info->device), 4937 "n%u", net->ifindex); 4938 } else { 4939 snprintf(dev_info->device, sizeof(dev_info->device), 4940 "+%s:%s", subsys, dev_name(dev)); 4941 } 4942 } 4943 4944 int dev_vprintk_emit(int level, const struct device *dev, 4945 const char *fmt, va_list args) 4946 { 4947 struct dev_printk_info dev_info; 4948 4949 set_dev_info(dev, &dev_info); 4950 4951 return vprintk_emit(0, level, &dev_info, fmt, args); 4952 } 4953 EXPORT_SYMBOL(dev_vprintk_emit); 4954 4955 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4956 { 4957 va_list args; 4958 int r; 4959 4960 va_start(args, fmt); 4961 4962 r = dev_vprintk_emit(level, dev, fmt, args); 4963 4964 va_end(args); 4965 4966 return r; 4967 } 4968 EXPORT_SYMBOL(dev_printk_emit); 4969 4970 static void __dev_printk(const char *level, const struct device *dev, 4971 struct va_format *vaf) 4972 { 4973 if (dev) 4974 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4975 dev_driver_string(dev), dev_name(dev), vaf); 4976 else 4977 printk("%s(NULL device *): %pV", level, vaf); 4978 } 4979 4980 void _dev_printk(const char *level, const struct device *dev, 4981 const char *fmt, ...) 4982 { 4983 struct va_format vaf; 4984 va_list args; 4985 4986 va_start(args, fmt); 4987 4988 vaf.fmt = fmt; 4989 vaf.va = &args; 4990 4991 __dev_printk(level, dev, &vaf); 4992 4993 va_end(args); 4994 } 4995 EXPORT_SYMBOL(_dev_printk); 4996 4997 #define define_dev_printk_level(func, kern_level) \ 4998 void func(const struct device *dev, const char *fmt, ...) \ 4999 { \ 5000 struct va_format vaf; \ 5001 va_list args; \ 5002 \ 5003 va_start(args, fmt); \ 5004 \ 5005 vaf.fmt = fmt; \ 5006 vaf.va = &args; \ 5007 \ 5008 __dev_printk(kern_level, dev, &vaf); \ 5009 \ 5010 va_end(args); \ 5011 } \ 5012 EXPORT_SYMBOL(func); 5013 5014 define_dev_printk_level(_dev_emerg, KERN_EMERG); 5015 define_dev_printk_level(_dev_alert, KERN_ALERT); 5016 define_dev_printk_level(_dev_crit, KERN_CRIT); 5017 define_dev_printk_level(_dev_err, KERN_ERR); 5018 define_dev_printk_level(_dev_warn, KERN_WARNING); 5019 define_dev_printk_level(_dev_notice, KERN_NOTICE); 5020 define_dev_printk_level(_dev_info, KERN_INFO); 5021 5022 #endif 5023 5024 /** 5025 * dev_err_probe - probe error check and log helper 5026 * @dev: the pointer to the struct device 5027 * @err: error value to test 5028 * @fmt: printf-style format string 5029 * @...: arguments as specified in the format string 5030 * 5031 * This helper implements common pattern present in probe functions for error 5032 * checking: print debug or error message depending if the error value is 5033 * -EPROBE_DEFER and propagate error upwards. 5034 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5035 * checked later by reading devices_deferred debugfs attribute. 5036 * It replaces code sequence:: 5037 * 5038 * if (err != -EPROBE_DEFER) 5039 * dev_err(dev, ...); 5040 * else 5041 * dev_dbg(dev, ...); 5042 * return err; 5043 * 5044 * with:: 5045 * 5046 * return dev_err_probe(dev, err, ...); 5047 * 5048 * Using this helper in your probe function is totally fine even if @err is 5049 * known to never be -EPROBE_DEFER. 5050 * The benefit compared to a normal dev_err() is the standardized format 5051 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 5052 * instead of "-35") and the fact that the error code is returned which allows 5053 * more compact error paths. 5054 * 5055 * Returns @err. 5056 */ 5057 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5058 { 5059 struct va_format vaf; 5060 va_list args; 5061 5062 va_start(args, fmt); 5063 vaf.fmt = fmt; 5064 vaf.va = &args; 5065 5066 if (err != -EPROBE_DEFER) { 5067 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5068 } else { 5069 device_set_deferred_probe_reason(dev, &vaf); 5070 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5071 } 5072 5073 va_end(args); 5074 5075 return err; 5076 } 5077 EXPORT_SYMBOL_GPL(dev_err_probe); 5078 5079 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5080 { 5081 return fwnode && !IS_ERR(fwnode->secondary); 5082 } 5083 5084 /** 5085 * set_primary_fwnode - Change the primary firmware node of a given device. 5086 * @dev: Device to handle. 5087 * @fwnode: New primary firmware node of the device. 5088 * 5089 * Set the device's firmware node pointer to @fwnode, but if a secondary 5090 * firmware node of the device is present, preserve it. 5091 * 5092 * Valid fwnode cases are: 5093 * - primary --> secondary --> -ENODEV 5094 * - primary --> NULL 5095 * - secondary --> -ENODEV 5096 * - NULL 5097 */ 5098 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5099 { 5100 struct device *parent = dev->parent; 5101 struct fwnode_handle *fn = dev->fwnode; 5102 5103 if (fwnode) { 5104 if (fwnode_is_primary(fn)) 5105 fn = fn->secondary; 5106 5107 if (fn) { 5108 WARN_ON(fwnode->secondary); 5109 fwnode->secondary = fn; 5110 } 5111 dev->fwnode = fwnode; 5112 } else { 5113 if (fwnode_is_primary(fn)) { 5114 dev->fwnode = fn->secondary; 5115 5116 /* Skip nullifying fn->secondary if the primary is shared */ 5117 if (parent && fn == parent->fwnode) 5118 return; 5119 5120 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5121 fn->secondary = NULL; 5122 } else { 5123 dev->fwnode = NULL; 5124 } 5125 } 5126 } 5127 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5128 5129 /** 5130 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5131 * @dev: Device to handle. 5132 * @fwnode: New secondary firmware node of the device. 5133 * 5134 * If a primary firmware node of the device is present, set its secondary 5135 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5136 * @fwnode. 5137 */ 5138 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5139 { 5140 if (fwnode) 5141 fwnode->secondary = ERR_PTR(-ENODEV); 5142 5143 if (fwnode_is_primary(dev->fwnode)) 5144 dev->fwnode->secondary = fwnode; 5145 else 5146 dev->fwnode = fwnode; 5147 } 5148 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5149 5150 /** 5151 * device_set_of_node_from_dev - reuse device-tree node of another device 5152 * @dev: device whose device-tree node is being set 5153 * @dev2: device whose device-tree node is being reused 5154 * 5155 * Takes another reference to the new device-tree node after first dropping 5156 * any reference held to the old node. 5157 */ 5158 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5159 { 5160 of_node_put(dev->of_node); 5161 dev->of_node = of_node_get(dev2->of_node); 5162 dev->of_node_reused = true; 5163 } 5164 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5165 5166 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5167 { 5168 dev->fwnode = fwnode; 5169 dev->of_node = to_of_node(fwnode); 5170 } 5171 EXPORT_SYMBOL_GPL(device_set_node); 5172 5173 int device_match_name(struct device *dev, const void *name) 5174 { 5175 return sysfs_streq(dev_name(dev), name); 5176 } 5177 EXPORT_SYMBOL_GPL(device_match_name); 5178 5179 int device_match_of_node(struct device *dev, const void *np) 5180 { 5181 return dev->of_node == np; 5182 } 5183 EXPORT_SYMBOL_GPL(device_match_of_node); 5184 5185 int device_match_fwnode(struct device *dev, const void *fwnode) 5186 { 5187 return dev_fwnode(dev) == fwnode; 5188 } 5189 EXPORT_SYMBOL_GPL(device_match_fwnode); 5190 5191 int device_match_devt(struct device *dev, const void *pdevt) 5192 { 5193 return dev->devt == *(dev_t *)pdevt; 5194 } 5195 EXPORT_SYMBOL_GPL(device_match_devt); 5196 5197 int device_match_acpi_dev(struct device *dev, const void *adev) 5198 { 5199 return ACPI_COMPANION(dev) == adev; 5200 } 5201 EXPORT_SYMBOL(device_match_acpi_dev); 5202 5203 int device_match_acpi_handle(struct device *dev, const void *handle) 5204 { 5205 return ACPI_HANDLE(dev) == handle; 5206 } 5207 EXPORT_SYMBOL(device_match_acpi_handle); 5208 5209 int device_match_any(struct device *dev, const void *unused) 5210 { 5211 return 1; 5212 } 5213 EXPORT_SYMBOL_GPL(device_match_any); 5214