1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * @flags: Link flags. 53 * 54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 55 * represents the detail that the firmware lists @sup fwnode as supplying a 56 * resource to @con. 57 * 58 * The driver core will use the fwnode link to create a device link between the 59 * two device objects corresponding to @con and @sup when they are created. The 60 * driver core will automatically delete the fwnode link between @con and @sup 61 * after doing that. 62 * 63 * Attempts to create duplicate links between the same pair of fwnode handles 64 * are ignored and there is no reference counting. 65 */ 66 static int __fwnode_link_add(struct fwnode_handle *con, 67 struct fwnode_handle *sup, u8 flags) 68 { 69 struct fwnode_link *link; 70 71 list_for_each_entry(link, &sup->consumers, s_hook) 72 if (link->consumer == con) { 73 link->flags |= flags; 74 return 0; 75 } 76 77 link = kzalloc(sizeof(*link), GFP_KERNEL); 78 if (!link) 79 return -ENOMEM; 80 81 link->supplier = sup; 82 INIT_LIST_HEAD(&link->s_hook); 83 link->consumer = con; 84 INIT_LIST_HEAD(&link->c_hook); 85 link->flags = flags; 86 87 list_add(&link->s_hook, &sup->consumers); 88 list_add(&link->c_hook, &con->suppliers); 89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 90 con, sup); 91 92 return 0; 93 } 94 95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 96 u8 flags) 97 { 98 int ret; 99 100 mutex_lock(&fwnode_link_lock); 101 ret = __fwnode_link_add(con, sup, flags); 102 mutex_unlock(&fwnode_link_lock); 103 return ret; 104 } 105 106 /** 107 * __fwnode_link_del - Delete a link between two fwnode_handles. 108 * @link: the fwnode_link to be deleted 109 * 110 * The fwnode_link_lock needs to be held when this function is called. 111 */ 112 static void __fwnode_link_del(struct fwnode_link *link) 113 { 114 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 115 link->consumer, link->supplier); 116 list_del(&link->s_hook); 117 list_del(&link->c_hook); 118 kfree(link); 119 } 120 121 /** 122 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 123 * @link: the fwnode_link to be marked 124 * 125 * The fwnode_link_lock needs to be held when this function is called. 126 */ 127 static void __fwnode_link_cycle(struct fwnode_link *link) 128 { 129 pr_debug("%pfwf: cycle: depends on %pfwf\n", 130 link->consumer, link->supplier); 131 link->flags |= FWLINK_FLAG_CYCLE; 132 } 133 134 /** 135 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 136 * @fwnode: fwnode whose supplier links need to be deleted 137 * 138 * Deletes all supplier links connecting directly to @fwnode. 139 */ 140 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 141 { 142 struct fwnode_link *link, *tmp; 143 144 mutex_lock(&fwnode_link_lock); 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 mutex_unlock(&fwnode_link_lock); 148 } 149 150 /** 151 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 152 * @fwnode: fwnode whose consumer links need to be deleted 153 * 154 * Deletes all consumer links connecting directly to @fwnode. 155 */ 156 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 157 { 158 struct fwnode_link *link, *tmp; 159 160 mutex_lock(&fwnode_link_lock); 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 mutex_unlock(&fwnode_link_lock); 164 } 165 166 /** 167 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 168 * @fwnode: fwnode whose links needs to be deleted 169 * 170 * Deletes all links connecting directly to a fwnode. 171 */ 172 void fwnode_links_purge(struct fwnode_handle *fwnode) 173 { 174 fwnode_links_purge_suppliers(fwnode); 175 fwnode_links_purge_consumers(fwnode); 176 } 177 178 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 179 { 180 struct fwnode_handle *child; 181 182 /* Don't purge consumer links of an added child */ 183 if (fwnode->dev) 184 return; 185 186 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 187 fwnode_links_purge_consumers(fwnode); 188 189 fwnode_for_each_available_child_node(fwnode, child) 190 fw_devlink_purge_absent_suppliers(child); 191 } 192 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 193 194 /** 195 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 196 * @from: move consumers away from this fwnode 197 * @to: move consumers to this fwnode 198 * 199 * Move all consumer links from @from fwnode to @to fwnode. 200 */ 201 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 202 struct fwnode_handle *to) 203 { 204 struct fwnode_link *link, *tmp; 205 206 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 207 __fwnode_link_add(link->consumer, to, link->flags); 208 __fwnode_link_del(link); 209 } 210 } 211 212 /** 213 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 214 * @fwnode: fwnode from which to pick up dangling consumers 215 * @new_sup: fwnode of new supplier 216 * 217 * If the @fwnode has a corresponding struct device and the device supports 218 * probing (that is, added to a bus), then we want to let fw_devlink create 219 * MANAGED device links to this device, so leave @fwnode and its descendant's 220 * fwnode links alone. 221 * 222 * Otherwise, move its consumers to the new supplier @new_sup. 223 */ 224 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 225 struct fwnode_handle *new_sup) 226 { 227 struct fwnode_handle *child; 228 229 if (fwnode->dev && fwnode->dev->bus) 230 return; 231 232 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 233 __fwnode_links_move_consumers(fwnode, new_sup); 234 235 fwnode_for_each_available_child_node(fwnode, child) 236 __fw_devlink_pickup_dangling_consumers(child, new_sup); 237 } 238 239 static DEFINE_MUTEX(device_links_lock); 240 DEFINE_STATIC_SRCU(device_links_srcu); 241 242 static inline void device_links_write_lock(void) 243 { 244 mutex_lock(&device_links_lock); 245 } 246 247 static inline void device_links_write_unlock(void) 248 { 249 mutex_unlock(&device_links_lock); 250 } 251 252 int device_links_read_lock(void) __acquires(&device_links_srcu) 253 { 254 return srcu_read_lock(&device_links_srcu); 255 } 256 257 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 258 { 259 srcu_read_unlock(&device_links_srcu, idx); 260 } 261 262 int device_links_read_lock_held(void) 263 { 264 return srcu_read_lock_held(&device_links_srcu); 265 } 266 267 static void device_link_synchronize_removal(void) 268 { 269 synchronize_srcu(&device_links_srcu); 270 } 271 272 static void device_link_remove_from_lists(struct device_link *link) 273 { 274 list_del_rcu(&link->s_node); 275 list_del_rcu(&link->c_node); 276 } 277 278 static bool device_is_ancestor(struct device *dev, struct device *target) 279 { 280 while (target->parent) { 281 target = target->parent; 282 if (dev == target) 283 return true; 284 } 285 return false; 286 } 287 288 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 289 DL_FLAG_CYCLE | \ 290 DL_FLAG_MANAGED) 291 static inline bool device_link_flag_is_sync_state_only(u32 flags) 292 { 293 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 294 } 295 296 /** 297 * device_is_dependent - Check if one device depends on another one 298 * @dev: Device to check dependencies for. 299 * @target: Device to check against. 300 * 301 * Check if @target depends on @dev or any device dependent on it (its child or 302 * its consumer etc). Return 1 if that is the case or 0 otherwise. 303 */ 304 static int device_is_dependent(struct device *dev, void *target) 305 { 306 struct device_link *link; 307 int ret; 308 309 /* 310 * The "ancestors" check is needed to catch the case when the target 311 * device has not been completely initialized yet and it is still 312 * missing from the list of children of its parent device. 313 */ 314 if (dev == target || device_is_ancestor(dev, target)) 315 return 1; 316 317 ret = device_for_each_child(dev, target, device_is_dependent); 318 if (ret) 319 return ret; 320 321 list_for_each_entry(link, &dev->links.consumers, s_node) { 322 if (device_link_flag_is_sync_state_only(link->flags)) 323 continue; 324 325 if (link->consumer == target) 326 return 1; 327 328 ret = device_is_dependent(link->consumer, target); 329 if (ret) 330 break; 331 } 332 return ret; 333 } 334 335 static void device_link_init_status(struct device_link *link, 336 struct device *consumer, 337 struct device *supplier) 338 { 339 switch (supplier->links.status) { 340 case DL_DEV_PROBING: 341 switch (consumer->links.status) { 342 case DL_DEV_PROBING: 343 /* 344 * A consumer driver can create a link to a supplier 345 * that has not completed its probing yet as long as it 346 * knows that the supplier is already functional (for 347 * example, it has just acquired some resources from the 348 * supplier). 349 */ 350 link->status = DL_STATE_CONSUMER_PROBE; 351 break; 352 default: 353 link->status = DL_STATE_DORMANT; 354 break; 355 } 356 break; 357 case DL_DEV_DRIVER_BOUND: 358 switch (consumer->links.status) { 359 case DL_DEV_PROBING: 360 link->status = DL_STATE_CONSUMER_PROBE; 361 break; 362 case DL_DEV_DRIVER_BOUND: 363 link->status = DL_STATE_ACTIVE; 364 break; 365 default: 366 link->status = DL_STATE_AVAILABLE; 367 break; 368 } 369 break; 370 case DL_DEV_UNBINDING: 371 link->status = DL_STATE_SUPPLIER_UNBIND; 372 break; 373 default: 374 link->status = DL_STATE_DORMANT; 375 break; 376 } 377 } 378 379 static int device_reorder_to_tail(struct device *dev, void *not_used) 380 { 381 struct device_link *link; 382 383 /* 384 * Devices that have not been registered yet will be put to the ends 385 * of the lists during the registration, so skip them here. 386 */ 387 if (device_is_registered(dev)) 388 devices_kset_move_last(dev); 389 390 if (device_pm_initialized(dev)) 391 device_pm_move_last(dev); 392 393 device_for_each_child(dev, NULL, device_reorder_to_tail); 394 list_for_each_entry(link, &dev->links.consumers, s_node) { 395 if (device_link_flag_is_sync_state_only(link->flags)) 396 continue; 397 device_reorder_to_tail(link->consumer, NULL); 398 } 399 400 return 0; 401 } 402 403 /** 404 * device_pm_move_to_tail - Move set of devices to the end of device lists 405 * @dev: Device to move 406 * 407 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 408 * 409 * It moves the @dev along with all of its children and all of its consumers 410 * to the ends of the device_kset and dpm_list, recursively. 411 */ 412 void device_pm_move_to_tail(struct device *dev) 413 { 414 int idx; 415 416 idx = device_links_read_lock(); 417 device_pm_lock(); 418 device_reorder_to_tail(dev, NULL); 419 device_pm_unlock(); 420 device_links_read_unlock(idx); 421 } 422 423 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 424 425 static ssize_t status_show(struct device *dev, 426 struct device_attribute *attr, char *buf) 427 { 428 const char *output; 429 430 switch (to_devlink(dev)->status) { 431 case DL_STATE_NONE: 432 output = "not tracked"; 433 break; 434 case DL_STATE_DORMANT: 435 output = "dormant"; 436 break; 437 case DL_STATE_AVAILABLE: 438 output = "available"; 439 break; 440 case DL_STATE_CONSUMER_PROBE: 441 output = "consumer probing"; 442 break; 443 case DL_STATE_ACTIVE: 444 output = "active"; 445 break; 446 case DL_STATE_SUPPLIER_UNBIND: 447 output = "supplier unbinding"; 448 break; 449 default: 450 output = "unknown"; 451 break; 452 } 453 454 return sysfs_emit(buf, "%s\n", output); 455 } 456 static DEVICE_ATTR_RO(status); 457 458 static ssize_t auto_remove_on_show(struct device *dev, 459 struct device_attribute *attr, char *buf) 460 { 461 struct device_link *link = to_devlink(dev); 462 const char *output; 463 464 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 465 output = "supplier unbind"; 466 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 467 output = "consumer unbind"; 468 else 469 output = "never"; 470 471 return sysfs_emit(buf, "%s\n", output); 472 } 473 static DEVICE_ATTR_RO(auto_remove_on); 474 475 static ssize_t runtime_pm_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct device_link *link = to_devlink(dev); 479 480 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 481 } 482 static DEVICE_ATTR_RO(runtime_pm); 483 484 static ssize_t sync_state_only_show(struct device *dev, 485 struct device_attribute *attr, char *buf) 486 { 487 struct device_link *link = to_devlink(dev); 488 489 return sysfs_emit(buf, "%d\n", 490 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 491 } 492 static DEVICE_ATTR_RO(sync_state_only); 493 494 static struct attribute *devlink_attrs[] = { 495 &dev_attr_status.attr, 496 &dev_attr_auto_remove_on.attr, 497 &dev_attr_runtime_pm.attr, 498 &dev_attr_sync_state_only.attr, 499 NULL, 500 }; 501 ATTRIBUTE_GROUPS(devlink); 502 503 static void device_link_release_fn(struct work_struct *work) 504 { 505 struct device_link *link = container_of(work, struct device_link, rm_work); 506 507 /* Ensure that all references to the link object have been dropped. */ 508 device_link_synchronize_removal(); 509 510 pm_runtime_release_supplier(link); 511 /* 512 * If supplier_preactivated is set, the link has been dropped between 513 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 514 * in __driver_probe_device(). In that case, drop the supplier's 515 * PM-runtime usage counter to remove the reference taken by 516 * pm_runtime_get_suppliers(). 517 */ 518 if (link->supplier_preactivated) 519 pm_runtime_put_noidle(link->supplier); 520 521 pm_request_idle(link->supplier); 522 523 put_device(link->consumer); 524 put_device(link->supplier); 525 kfree(link); 526 } 527 528 static void devlink_dev_release(struct device *dev) 529 { 530 struct device_link *link = to_devlink(dev); 531 532 INIT_WORK(&link->rm_work, device_link_release_fn); 533 /* 534 * It may take a while to complete this work because of the SRCU 535 * synchronization in device_link_release_fn() and if the consumer or 536 * supplier devices get deleted when it runs, so put it into the "long" 537 * workqueue. 538 */ 539 queue_work(system_long_wq, &link->rm_work); 540 } 541 542 static struct class devlink_class = { 543 .name = "devlink", 544 .dev_groups = devlink_groups, 545 .dev_release = devlink_dev_release, 546 }; 547 548 static int devlink_add_symlinks(struct device *dev) 549 { 550 int ret; 551 size_t len; 552 struct device_link *link = to_devlink(dev); 553 struct device *sup = link->supplier; 554 struct device *con = link->consumer; 555 char *buf; 556 557 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 558 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 559 len += strlen(":"); 560 len += strlen("supplier:") + 1; 561 buf = kzalloc(len, GFP_KERNEL); 562 if (!buf) 563 return -ENOMEM; 564 565 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 566 if (ret) 567 goto out; 568 569 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 570 if (ret) 571 goto err_con; 572 573 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 574 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 575 if (ret) 576 goto err_con_dev; 577 578 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 579 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 580 if (ret) 581 goto err_sup_dev; 582 583 goto out; 584 585 err_sup_dev: 586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 587 sysfs_remove_link(&sup->kobj, buf); 588 err_con_dev: 589 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 590 err_con: 591 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 592 out: 593 kfree(buf); 594 return ret; 595 } 596 597 static void devlink_remove_symlinks(struct device *dev) 598 { 599 struct device_link *link = to_devlink(dev); 600 size_t len; 601 struct device *sup = link->supplier; 602 struct device *con = link->consumer; 603 char *buf; 604 605 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 606 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 607 608 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 609 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 610 len += strlen(":"); 611 len += strlen("supplier:") + 1; 612 buf = kzalloc(len, GFP_KERNEL); 613 if (!buf) { 614 WARN(1, "Unable to properly free device link symlinks!\n"); 615 return; 616 } 617 618 if (device_is_registered(con)) { 619 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 620 sysfs_remove_link(&con->kobj, buf); 621 } 622 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 623 sysfs_remove_link(&sup->kobj, buf); 624 kfree(buf); 625 } 626 627 static struct class_interface devlink_class_intf = { 628 .class = &devlink_class, 629 .add_dev = devlink_add_symlinks, 630 .remove_dev = devlink_remove_symlinks, 631 }; 632 633 static int __init devlink_class_init(void) 634 { 635 int ret; 636 637 ret = class_register(&devlink_class); 638 if (ret) 639 return ret; 640 641 ret = class_interface_register(&devlink_class_intf); 642 if (ret) 643 class_unregister(&devlink_class); 644 645 return ret; 646 } 647 postcore_initcall(devlink_class_init); 648 649 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 650 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 651 DL_FLAG_AUTOPROBE_CONSUMER | \ 652 DL_FLAG_SYNC_STATE_ONLY | \ 653 DL_FLAG_INFERRED | \ 654 DL_FLAG_CYCLE) 655 656 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 657 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 658 659 /** 660 * device_link_add - Create a link between two devices. 661 * @consumer: Consumer end of the link. 662 * @supplier: Supplier end of the link. 663 * @flags: Link flags. 664 * 665 * The caller is responsible for the proper synchronization of the link creation 666 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 667 * runtime PM framework to take the link into account. Second, if the 668 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 669 * be forced into the active meta state and reference-counted upon the creation 670 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 671 * ignored. 672 * 673 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 674 * expected to release the link returned by it directly with the help of either 675 * device_link_del() or device_link_remove(). 676 * 677 * If that flag is not set, however, the caller of this function is handing the 678 * management of the link over to the driver core entirely and its return value 679 * can only be used to check whether or not the link is present. In that case, 680 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 681 * flags can be used to indicate to the driver core when the link can be safely 682 * deleted. Namely, setting one of them in @flags indicates to the driver core 683 * that the link is not going to be used (by the given caller of this function) 684 * after unbinding the consumer or supplier driver, respectively, from its 685 * device, so the link can be deleted at that point. If none of them is set, 686 * the link will be maintained until one of the devices pointed to by it (either 687 * the consumer or the supplier) is unregistered. 688 * 689 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 690 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 691 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 692 * be used to request the driver core to automatically probe for a consumer 693 * driver after successfully binding a driver to the supplier device. 694 * 695 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 696 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 697 * the same time is invalid and will cause NULL to be returned upfront. 698 * However, if a device link between the given @consumer and @supplier pair 699 * exists already when this function is called for them, the existing link will 700 * be returned regardless of its current type and status (the link's flags may 701 * be modified then). The caller of this function is then expected to treat 702 * the link as though it has just been created, so (in particular) if 703 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 704 * explicitly when not needed any more (as stated above). 705 * 706 * A side effect of the link creation is re-ordering of dpm_list and the 707 * devices_kset list by moving the consumer device and all devices depending 708 * on it to the ends of these lists (that does not happen to devices that have 709 * not been registered when this function is called). 710 * 711 * The supplier device is required to be registered when this function is called 712 * and NULL will be returned if that is not the case. The consumer device need 713 * not be registered, however. 714 */ 715 struct device_link *device_link_add(struct device *consumer, 716 struct device *supplier, u32 flags) 717 { 718 struct device_link *link; 719 720 if (!consumer || !supplier || consumer == supplier || 721 flags & ~DL_ADD_VALID_FLAGS || 722 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 723 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 724 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 725 DL_FLAG_AUTOREMOVE_SUPPLIER))) 726 return NULL; 727 728 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 729 if (pm_runtime_get_sync(supplier) < 0) { 730 pm_runtime_put_noidle(supplier); 731 return NULL; 732 } 733 } 734 735 if (!(flags & DL_FLAG_STATELESS)) 736 flags |= DL_FLAG_MANAGED; 737 738 if (flags & DL_FLAG_SYNC_STATE_ONLY && 739 !device_link_flag_is_sync_state_only(flags)) 740 return NULL; 741 742 device_links_write_lock(); 743 device_pm_lock(); 744 745 /* 746 * If the supplier has not been fully registered yet or there is a 747 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 748 * the supplier already in the graph, return NULL. If the link is a 749 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 750 * because it only affects sync_state() callbacks. 751 */ 752 if (!device_pm_initialized(supplier) 753 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 754 device_is_dependent(consumer, supplier))) { 755 link = NULL; 756 goto out; 757 } 758 759 /* 760 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 761 * So, only create it if the consumer hasn't probed yet. 762 */ 763 if (flags & DL_FLAG_SYNC_STATE_ONLY && 764 consumer->links.status != DL_DEV_NO_DRIVER && 765 consumer->links.status != DL_DEV_PROBING) { 766 link = NULL; 767 goto out; 768 } 769 770 /* 771 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 772 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 773 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 774 */ 775 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 776 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 777 778 list_for_each_entry(link, &supplier->links.consumers, s_node) { 779 if (link->consumer != consumer) 780 continue; 781 782 if (link->flags & DL_FLAG_INFERRED && 783 !(flags & DL_FLAG_INFERRED)) 784 link->flags &= ~DL_FLAG_INFERRED; 785 786 if (flags & DL_FLAG_PM_RUNTIME) { 787 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 788 pm_runtime_new_link(consumer); 789 link->flags |= DL_FLAG_PM_RUNTIME; 790 } 791 if (flags & DL_FLAG_RPM_ACTIVE) 792 refcount_inc(&link->rpm_active); 793 } 794 795 if (flags & DL_FLAG_STATELESS) { 796 kref_get(&link->kref); 797 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 798 !(link->flags & DL_FLAG_STATELESS)) { 799 link->flags |= DL_FLAG_STATELESS; 800 goto reorder; 801 } else { 802 link->flags |= DL_FLAG_STATELESS; 803 goto out; 804 } 805 } 806 807 /* 808 * If the life time of the link following from the new flags is 809 * longer than indicated by the flags of the existing link, 810 * update the existing link to stay around longer. 811 */ 812 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 813 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 814 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 815 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 816 } 817 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 818 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 819 DL_FLAG_AUTOREMOVE_SUPPLIER); 820 } 821 if (!(link->flags & DL_FLAG_MANAGED)) { 822 kref_get(&link->kref); 823 link->flags |= DL_FLAG_MANAGED; 824 device_link_init_status(link, consumer, supplier); 825 } 826 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 827 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 828 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 829 goto reorder; 830 } 831 832 goto out; 833 } 834 835 link = kzalloc(sizeof(*link), GFP_KERNEL); 836 if (!link) 837 goto out; 838 839 refcount_set(&link->rpm_active, 1); 840 841 get_device(supplier); 842 link->supplier = supplier; 843 INIT_LIST_HEAD(&link->s_node); 844 get_device(consumer); 845 link->consumer = consumer; 846 INIT_LIST_HEAD(&link->c_node); 847 link->flags = flags; 848 kref_init(&link->kref); 849 850 link->link_dev.class = &devlink_class; 851 device_set_pm_not_required(&link->link_dev); 852 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 853 dev_bus_name(supplier), dev_name(supplier), 854 dev_bus_name(consumer), dev_name(consumer)); 855 if (device_register(&link->link_dev)) { 856 put_device(&link->link_dev); 857 link = NULL; 858 goto out; 859 } 860 861 if (flags & DL_FLAG_PM_RUNTIME) { 862 if (flags & DL_FLAG_RPM_ACTIVE) 863 refcount_inc(&link->rpm_active); 864 865 pm_runtime_new_link(consumer); 866 } 867 868 /* Determine the initial link state. */ 869 if (flags & DL_FLAG_STATELESS) 870 link->status = DL_STATE_NONE; 871 else 872 device_link_init_status(link, consumer, supplier); 873 874 /* 875 * Some callers expect the link creation during consumer driver probe to 876 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 877 */ 878 if (link->status == DL_STATE_CONSUMER_PROBE && 879 flags & DL_FLAG_PM_RUNTIME) 880 pm_runtime_resume(supplier); 881 882 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 883 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 884 885 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 886 dev_dbg(consumer, 887 "Linked as a sync state only consumer to %s\n", 888 dev_name(supplier)); 889 goto out; 890 } 891 892 reorder: 893 /* 894 * Move the consumer and all of the devices depending on it to the end 895 * of dpm_list and the devices_kset list. 896 * 897 * It is necessary to hold dpm_list locked throughout all that or else 898 * we may end up suspending with a wrong ordering of it. 899 */ 900 device_reorder_to_tail(consumer, NULL); 901 902 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 903 904 out: 905 device_pm_unlock(); 906 device_links_write_unlock(); 907 908 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 909 pm_runtime_put(supplier); 910 911 return link; 912 } 913 EXPORT_SYMBOL_GPL(device_link_add); 914 915 static void __device_link_del(struct kref *kref) 916 { 917 struct device_link *link = container_of(kref, struct device_link, kref); 918 919 dev_dbg(link->consumer, "Dropping the link to %s\n", 920 dev_name(link->supplier)); 921 922 pm_runtime_drop_link(link); 923 924 device_link_remove_from_lists(link); 925 device_unregister(&link->link_dev); 926 } 927 928 static void device_link_put_kref(struct device_link *link) 929 { 930 if (link->flags & DL_FLAG_STATELESS) 931 kref_put(&link->kref, __device_link_del); 932 else if (!device_is_registered(link->consumer)) 933 __device_link_del(&link->kref); 934 else 935 WARN(1, "Unable to drop a managed device link reference\n"); 936 } 937 938 /** 939 * device_link_del - Delete a stateless link between two devices. 940 * @link: Device link to delete. 941 * 942 * The caller must ensure proper synchronization of this function with runtime 943 * PM. If the link was added multiple times, it needs to be deleted as often. 944 * Care is required for hotplugged devices: Their links are purged on removal 945 * and calling device_link_del() is then no longer allowed. 946 */ 947 void device_link_del(struct device_link *link) 948 { 949 device_links_write_lock(); 950 device_link_put_kref(link); 951 device_links_write_unlock(); 952 } 953 EXPORT_SYMBOL_GPL(device_link_del); 954 955 /** 956 * device_link_remove - Delete a stateless link between two devices. 957 * @consumer: Consumer end of the link. 958 * @supplier: Supplier end of the link. 959 * 960 * The caller must ensure proper synchronization of this function with runtime 961 * PM. 962 */ 963 void device_link_remove(void *consumer, struct device *supplier) 964 { 965 struct device_link *link; 966 967 if (WARN_ON(consumer == supplier)) 968 return; 969 970 device_links_write_lock(); 971 972 list_for_each_entry(link, &supplier->links.consumers, s_node) { 973 if (link->consumer == consumer) { 974 device_link_put_kref(link); 975 break; 976 } 977 } 978 979 device_links_write_unlock(); 980 } 981 EXPORT_SYMBOL_GPL(device_link_remove); 982 983 static void device_links_missing_supplier(struct device *dev) 984 { 985 struct device_link *link; 986 987 list_for_each_entry(link, &dev->links.suppliers, c_node) { 988 if (link->status != DL_STATE_CONSUMER_PROBE) 989 continue; 990 991 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 992 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 993 } else { 994 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 995 WRITE_ONCE(link->status, DL_STATE_DORMANT); 996 } 997 } 998 } 999 1000 static bool dev_is_best_effort(struct device *dev) 1001 { 1002 return (fw_devlink_best_effort && dev->can_match) || 1003 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1004 } 1005 1006 static struct fwnode_handle *fwnode_links_check_suppliers( 1007 struct fwnode_handle *fwnode) 1008 { 1009 struct fwnode_link *link; 1010 1011 if (!fwnode || fw_devlink_is_permissive()) 1012 return NULL; 1013 1014 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1015 if (!(link->flags & 1016 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1017 return link->supplier; 1018 1019 return NULL; 1020 } 1021 1022 /** 1023 * device_links_check_suppliers - Check presence of supplier drivers. 1024 * @dev: Consumer device. 1025 * 1026 * Check links from this device to any suppliers. Walk the list of the device's 1027 * links to suppliers and see if all of them are available. If not, simply 1028 * return -EPROBE_DEFER. 1029 * 1030 * We need to guarantee that the supplier will not go away after the check has 1031 * been positive here. It only can go away in __device_release_driver() and 1032 * that function checks the device's links to consumers. This means we need to 1033 * mark the link as "consumer probe in progress" to make the supplier removal 1034 * wait for us to complete (or bad things may happen). 1035 * 1036 * Links without the DL_FLAG_MANAGED flag set are ignored. 1037 */ 1038 int device_links_check_suppliers(struct device *dev) 1039 { 1040 struct device_link *link; 1041 int ret = 0, fwnode_ret = 0; 1042 struct fwnode_handle *sup_fw; 1043 1044 /* 1045 * Device waiting for supplier to become available is not allowed to 1046 * probe. 1047 */ 1048 mutex_lock(&fwnode_link_lock); 1049 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1050 if (sup_fw) { 1051 if (!dev_is_best_effort(dev)) { 1052 fwnode_ret = -EPROBE_DEFER; 1053 dev_err_probe(dev, -EPROBE_DEFER, 1054 "wait for supplier %pfwf\n", sup_fw); 1055 } else { 1056 fwnode_ret = -EAGAIN; 1057 } 1058 } 1059 mutex_unlock(&fwnode_link_lock); 1060 if (fwnode_ret == -EPROBE_DEFER) 1061 return fwnode_ret; 1062 1063 device_links_write_lock(); 1064 1065 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1066 if (!(link->flags & DL_FLAG_MANAGED)) 1067 continue; 1068 1069 if (link->status != DL_STATE_AVAILABLE && 1070 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1071 1072 if (dev_is_best_effort(dev) && 1073 link->flags & DL_FLAG_INFERRED && 1074 !link->supplier->can_match) { 1075 ret = -EAGAIN; 1076 continue; 1077 } 1078 1079 device_links_missing_supplier(dev); 1080 dev_err_probe(dev, -EPROBE_DEFER, 1081 "supplier %s not ready\n", 1082 dev_name(link->supplier)); 1083 ret = -EPROBE_DEFER; 1084 break; 1085 } 1086 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1087 } 1088 dev->links.status = DL_DEV_PROBING; 1089 1090 device_links_write_unlock(); 1091 1092 return ret ? ret : fwnode_ret; 1093 } 1094 1095 /** 1096 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1097 * @dev: Device to call sync_state() on 1098 * @list: List head to queue the @dev on 1099 * 1100 * Queues a device for a sync_state() callback when the device links write lock 1101 * isn't held. This allows the sync_state() execution flow to use device links 1102 * APIs. The caller must ensure this function is called with 1103 * device_links_write_lock() held. 1104 * 1105 * This function does a get_device() to make sure the device is not freed while 1106 * on this list. 1107 * 1108 * So the caller must also ensure that device_links_flush_sync_list() is called 1109 * as soon as the caller releases device_links_write_lock(). This is necessary 1110 * to make sure the sync_state() is called in a timely fashion and the 1111 * put_device() is called on this device. 1112 */ 1113 static void __device_links_queue_sync_state(struct device *dev, 1114 struct list_head *list) 1115 { 1116 struct device_link *link; 1117 1118 if (!dev_has_sync_state(dev)) 1119 return; 1120 if (dev->state_synced) 1121 return; 1122 1123 list_for_each_entry(link, &dev->links.consumers, s_node) { 1124 if (!(link->flags & DL_FLAG_MANAGED)) 1125 continue; 1126 if (link->status != DL_STATE_ACTIVE) 1127 return; 1128 } 1129 1130 /* 1131 * Set the flag here to avoid adding the same device to a list more 1132 * than once. This can happen if new consumers get added to the device 1133 * and probed before the list is flushed. 1134 */ 1135 dev->state_synced = true; 1136 1137 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1138 return; 1139 1140 get_device(dev); 1141 list_add_tail(&dev->links.defer_sync, list); 1142 } 1143 1144 /** 1145 * device_links_flush_sync_list - Call sync_state() on a list of devices 1146 * @list: List of devices to call sync_state() on 1147 * @dont_lock_dev: Device for which lock is already held by the caller 1148 * 1149 * Calls sync_state() on all the devices that have been queued for it. This 1150 * function is used in conjunction with __device_links_queue_sync_state(). The 1151 * @dont_lock_dev parameter is useful when this function is called from a 1152 * context where a device lock is already held. 1153 */ 1154 static void device_links_flush_sync_list(struct list_head *list, 1155 struct device *dont_lock_dev) 1156 { 1157 struct device *dev, *tmp; 1158 1159 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1160 list_del_init(&dev->links.defer_sync); 1161 1162 if (dev != dont_lock_dev) 1163 device_lock(dev); 1164 1165 dev_sync_state(dev); 1166 1167 if (dev != dont_lock_dev) 1168 device_unlock(dev); 1169 1170 put_device(dev); 1171 } 1172 } 1173 1174 void device_links_supplier_sync_state_pause(void) 1175 { 1176 device_links_write_lock(); 1177 defer_sync_state_count++; 1178 device_links_write_unlock(); 1179 } 1180 1181 void device_links_supplier_sync_state_resume(void) 1182 { 1183 struct device *dev, *tmp; 1184 LIST_HEAD(sync_list); 1185 1186 device_links_write_lock(); 1187 if (!defer_sync_state_count) { 1188 WARN(true, "Unmatched sync_state pause/resume!"); 1189 goto out; 1190 } 1191 defer_sync_state_count--; 1192 if (defer_sync_state_count) 1193 goto out; 1194 1195 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1196 /* 1197 * Delete from deferred_sync list before queuing it to 1198 * sync_list because defer_sync is used for both lists. 1199 */ 1200 list_del_init(&dev->links.defer_sync); 1201 __device_links_queue_sync_state(dev, &sync_list); 1202 } 1203 out: 1204 device_links_write_unlock(); 1205 1206 device_links_flush_sync_list(&sync_list, NULL); 1207 } 1208 1209 static int sync_state_resume_initcall(void) 1210 { 1211 device_links_supplier_sync_state_resume(); 1212 return 0; 1213 } 1214 late_initcall(sync_state_resume_initcall); 1215 1216 static void __device_links_supplier_defer_sync(struct device *sup) 1217 { 1218 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1219 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1220 } 1221 1222 static void device_link_drop_managed(struct device_link *link) 1223 { 1224 link->flags &= ~DL_FLAG_MANAGED; 1225 WRITE_ONCE(link->status, DL_STATE_NONE); 1226 kref_put(&link->kref, __device_link_del); 1227 } 1228 1229 static ssize_t waiting_for_supplier_show(struct device *dev, 1230 struct device_attribute *attr, 1231 char *buf) 1232 { 1233 bool val; 1234 1235 device_lock(dev); 1236 mutex_lock(&fwnode_link_lock); 1237 val = !!fwnode_links_check_suppliers(dev->fwnode); 1238 mutex_unlock(&fwnode_link_lock); 1239 device_unlock(dev); 1240 return sysfs_emit(buf, "%u\n", val); 1241 } 1242 static DEVICE_ATTR_RO(waiting_for_supplier); 1243 1244 /** 1245 * device_links_force_bind - Prepares device to be force bound 1246 * @dev: Consumer device. 1247 * 1248 * device_bind_driver() force binds a device to a driver without calling any 1249 * driver probe functions. So the consumer really isn't going to wait for any 1250 * supplier before it's bound to the driver. We still want the device link 1251 * states to be sensible when this happens. 1252 * 1253 * In preparation for device_bind_driver(), this function goes through each 1254 * supplier device links and checks if the supplier is bound. If it is, then 1255 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1256 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1257 */ 1258 void device_links_force_bind(struct device *dev) 1259 { 1260 struct device_link *link, *ln; 1261 1262 device_links_write_lock(); 1263 1264 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1265 if (!(link->flags & DL_FLAG_MANAGED)) 1266 continue; 1267 1268 if (link->status != DL_STATE_AVAILABLE) { 1269 device_link_drop_managed(link); 1270 continue; 1271 } 1272 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1273 } 1274 dev->links.status = DL_DEV_PROBING; 1275 1276 device_links_write_unlock(); 1277 } 1278 1279 /** 1280 * device_links_driver_bound - Update device links after probing its driver. 1281 * @dev: Device to update the links for. 1282 * 1283 * The probe has been successful, so update links from this device to any 1284 * consumers by changing their status to "available". 1285 * 1286 * Also change the status of @dev's links to suppliers to "active". 1287 * 1288 * Links without the DL_FLAG_MANAGED flag set are ignored. 1289 */ 1290 void device_links_driver_bound(struct device *dev) 1291 { 1292 struct device_link *link, *ln; 1293 LIST_HEAD(sync_list); 1294 1295 /* 1296 * If a device binds successfully, it's expected to have created all 1297 * the device links it needs to or make new device links as it needs 1298 * them. So, fw_devlink no longer needs to create device links to any 1299 * of the device's suppliers. 1300 * 1301 * Also, if a child firmware node of this bound device is not added as a 1302 * device by now, assume it is never going to be added. Make this bound 1303 * device the fallback supplier to the dangling consumers of the child 1304 * firmware node because this bound device is probably implementing the 1305 * child firmware node functionality and we don't want the dangling 1306 * consumers to defer probe indefinitely waiting for a device for the 1307 * child firmware node. 1308 */ 1309 if (dev->fwnode && dev->fwnode->dev == dev) { 1310 struct fwnode_handle *child; 1311 fwnode_links_purge_suppliers(dev->fwnode); 1312 mutex_lock(&fwnode_link_lock); 1313 fwnode_for_each_available_child_node(dev->fwnode, child) 1314 __fw_devlink_pickup_dangling_consumers(child, 1315 dev->fwnode); 1316 __fw_devlink_link_to_consumers(dev); 1317 mutex_unlock(&fwnode_link_lock); 1318 } 1319 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1320 1321 device_links_write_lock(); 1322 1323 list_for_each_entry(link, &dev->links.consumers, s_node) { 1324 if (!(link->flags & DL_FLAG_MANAGED)) 1325 continue; 1326 1327 /* 1328 * Links created during consumer probe may be in the "consumer 1329 * probe" state to start with if the supplier is still probing 1330 * when they are created and they may become "active" if the 1331 * consumer probe returns first. Skip them here. 1332 */ 1333 if (link->status == DL_STATE_CONSUMER_PROBE || 1334 link->status == DL_STATE_ACTIVE) 1335 continue; 1336 1337 WARN_ON(link->status != DL_STATE_DORMANT); 1338 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1339 1340 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1341 driver_deferred_probe_add(link->consumer); 1342 } 1343 1344 if (defer_sync_state_count) 1345 __device_links_supplier_defer_sync(dev); 1346 else 1347 __device_links_queue_sync_state(dev, &sync_list); 1348 1349 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1350 struct device *supplier; 1351 1352 if (!(link->flags & DL_FLAG_MANAGED)) 1353 continue; 1354 1355 supplier = link->supplier; 1356 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1357 /* 1358 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1359 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1360 * save to drop the managed link completely. 1361 */ 1362 device_link_drop_managed(link); 1363 } else if (dev_is_best_effort(dev) && 1364 link->flags & DL_FLAG_INFERRED && 1365 link->status != DL_STATE_CONSUMER_PROBE && 1366 !link->supplier->can_match) { 1367 /* 1368 * When dev_is_best_effort() is true, we ignore device 1369 * links to suppliers that don't have a driver. If the 1370 * consumer device still managed to probe, there's no 1371 * point in maintaining a device link in a weird state 1372 * (consumer probed before supplier). So delete it. 1373 */ 1374 device_link_drop_managed(link); 1375 } else { 1376 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1377 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1378 } 1379 1380 /* 1381 * This needs to be done even for the deleted 1382 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1383 * device link that was preventing the supplier from getting a 1384 * sync_state() call. 1385 */ 1386 if (defer_sync_state_count) 1387 __device_links_supplier_defer_sync(supplier); 1388 else 1389 __device_links_queue_sync_state(supplier, &sync_list); 1390 } 1391 1392 dev->links.status = DL_DEV_DRIVER_BOUND; 1393 1394 device_links_write_unlock(); 1395 1396 device_links_flush_sync_list(&sync_list, dev); 1397 } 1398 1399 /** 1400 * __device_links_no_driver - Update links of a device without a driver. 1401 * @dev: Device without a drvier. 1402 * 1403 * Delete all non-persistent links from this device to any suppliers. 1404 * 1405 * Persistent links stay around, but their status is changed to "available", 1406 * unless they already are in the "supplier unbind in progress" state in which 1407 * case they need not be updated. 1408 * 1409 * Links without the DL_FLAG_MANAGED flag set are ignored. 1410 */ 1411 static void __device_links_no_driver(struct device *dev) 1412 { 1413 struct device_link *link, *ln; 1414 1415 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1416 if (!(link->flags & DL_FLAG_MANAGED)) 1417 continue; 1418 1419 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1420 device_link_drop_managed(link); 1421 continue; 1422 } 1423 1424 if (link->status != DL_STATE_CONSUMER_PROBE && 1425 link->status != DL_STATE_ACTIVE) 1426 continue; 1427 1428 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1429 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1430 } else { 1431 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1432 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1433 } 1434 } 1435 1436 dev->links.status = DL_DEV_NO_DRIVER; 1437 } 1438 1439 /** 1440 * device_links_no_driver - Update links after failing driver probe. 1441 * @dev: Device whose driver has just failed to probe. 1442 * 1443 * Clean up leftover links to consumers for @dev and invoke 1444 * %__device_links_no_driver() to update links to suppliers for it as 1445 * appropriate. 1446 * 1447 * Links without the DL_FLAG_MANAGED flag set are ignored. 1448 */ 1449 void device_links_no_driver(struct device *dev) 1450 { 1451 struct device_link *link; 1452 1453 device_links_write_lock(); 1454 1455 list_for_each_entry(link, &dev->links.consumers, s_node) { 1456 if (!(link->flags & DL_FLAG_MANAGED)) 1457 continue; 1458 1459 /* 1460 * The probe has failed, so if the status of the link is 1461 * "consumer probe" or "active", it must have been added by 1462 * a probing consumer while this device was still probing. 1463 * Change its state to "dormant", as it represents a valid 1464 * relationship, but it is not functionally meaningful. 1465 */ 1466 if (link->status == DL_STATE_CONSUMER_PROBE || 1467 link->status == DL_STATE_ACTIVE) 1468 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1469 } 1470 1471 __device_links_no_driver(dev); 1472 1473 device_links_write_unlock(); 1474 } 1475 1476 /** 1477 * device_links_driver_cleanup - Update links after driver removal. 1478 * @dev: Device whose driver has just gone away. 1479 * 1480 * Update links to consumers for @dev by changing their status to "dormant" and 1481 * invoke %__device_links_no_driver() to update links to suppliers for it as 1482 * appropriate. 1483 * 1484 * Links without the DL_FLAG_MANAGED flag set are ignored. 1485 */ 1486 void device_links_driver_cleanup(struct device *dev) 1487 { 1488 struct device_link *link, *ln; 1489 1490 device_links_write_lock(); 1491 1492 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1493 if (!(link->flags & DL_FLAG_MANAGED)) 1494 continue; 1495 1496 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1497 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1498 1499 /* 1500 * autoremove the links between this @dev and its consumer 1501 * devices that are not active, i.e. where the link state 1502 * has moved to DL_STATE_SUPPLIER_UNBIND. 1503 */ 1504 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1505 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1506 device_link_drop_managed(link); 1507 1508 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1509 } 1510 1511 list_del_init(&dev->links.defer_sync); 1512 __device_links_no_driver(dev); 1513 1514 device_links_write_unlock(); 1515 } 1516 1517 /** 1518 * device_links_busy - Check if there are any busy links to consumers. 1519 * @dev: Device to check. 1520 * 1521 * Check each consumer of the device and return 'true' if its link's status 1522 * is one of "consumer probe" or "active" (meaning that the given consumer is 1523 * probing right now or its driver is present). Otherwise, change the link 1524 * state to "supplier unbind" to prevent the consumer from being probed 1525 * successfully going forward. 1526 * 1527 * Return 'false' if there are no probing or active consumers. 1528 * 1529 * Links without the DL_FLAG_MANAGED flag set are ignored. 1530 */ 1531 bool device_links_busy(struct device *dev) 1532 { 1533 struct device_link *link; 1534 bool ret = false; 1535 1536 device_links_write_lock(); 1537 1538 list_for_each_entry(link, &dev->links.consumers, s_node) { 1539 if (!(link->flags & DL_FLAG_MANAGED)) 1540 continue; 1541 1542 if (link->status == DL_STATE_CONSUMER_PROBE 1543 || link->status == DL_STATE_ACTIVE) { 1544 ret = true; 1545 break; 1546 } 1547 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1548 } 1549 1550 dev->links.status = DL_DEV_UNBINDING; 1551 1552 device_links_write_unlock(); 1553 return ret; 1554 } 1555 1556 /** 1557 * device_links_unbind_consumers - Force unbind consumers of the given device. 1558 * @dev: Device to unbind the consumers of. 1559 * 1560 * Walk the list of links to consumers for @dev and if any of them is in the 1561 * "consumer probe" state, wait for all device probes in progress to complete 1562 * and start over. 1563 * 1564 * If that's not the case, change the status of the link to "supplier unbind" 1565 * and check if the link was in the "active" state. If so, force the consumer 1566 * driver to unbind and start over (the consumer will not re-probe as we have 1567 * changed the state of the link already). 1568 * 1569 * Links without the DL_FLAG_MANAGED flag set are ignored. 1570 */ 1571 void device_links_unbind_consumers(struct device *dev) 1572 { 1573 struct device_link *link; 1574 1575 start: 1576 device_links_write_lock(); 1577 1578 list_for_each_entry(link, &dev->links.consumers, s_node) { 1579 enum device_link_state status; 1580 1581 if (!(link->flags & DL_FLAG_MANAGED) || 1582 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1583 continue; 1584 1585 status = link->status; 1586 if (status == DL_STATE_CONSUMER_PROBE) { 1587 device_links_write_unlock(); 1588 1589 wait_for_device_probe(); 1590 goto start; 1591 } 1592 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1593 if (status == DL_STATE_ACTIVE) { 1594 struct device *consumer = link->consumer; 1595 1596 get_device(consumer); 1597 1598 device_links_write_unlock(); 1599 1600 device_release_driver_internal(consumer, NULL, 1601 consumer->parent); 1602 put_device(consumer); 1603 goto start; 1604 } 1605 } 1606 1607 device_links_write_unlock(); 1608 } 1609 1610 /** 1611 * device_links_purge - Delete existing links to other devices. 1612 * @dev: Target device. 1613 */ 1614 static void device_links_purge(struct device *dev) 1615 { 1616 struct device_link *link, *ln; 1617 1618 if (dev->class == &devlink_class) 1619 return; 1620 1621 /* 1622 * Delete all of the remaining links from this device to any other 1623 * devices (either consumers or suppliers). 1624 */ 1625 device_links_write_lock(); 1626 1627 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1628 WARN_ON(link->status == DL_STATE_ACTIVE); 1629 __device_link_del(&link->kref); 1630 } 1631 1632 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1633 WARN_ON(link->status != DL_STATE_DORMANT && 1634 link->status != DL_STATE_NONE); 1635 __device_link_del(&link->kref); 1636 } 1637 1638 device_links_write_unlock(); 1639 } 1640 1641 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1642 DL_FLAG_SYNC_STATE_ONLY) 1643 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1644 DL_FLAG_AUTOPROBE_CONSUMER) 1645 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1646 DL_FLAG_PM_RUNTIME) 1647 1648 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1649 static int __init fw_devlink_setup(char *arg) 1650 { 1651 if (!arg) 1652 return -EINVAL; 1653 1654 if (strcmp(arg, "off") == 0) { 1655 fw_devlink_flags = 0; 1656 } else if (strcmp(arg, "permissive") == 0) { 1657 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1658 } else if (strcmp(arg, "on") == 0) { 1659 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1660 } else if (strcmp(arg, "rpm") == 0) { 1661 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1662 } 1663 return 0; 1664 } 1665 early_param("fw_devlink", fw_devlink_setup); 1666 1667 static bool fw_devlink_strict; 1668 static int __init fw_devlink_strict_setup(char *arg) 1669 { 1670 return kstrtobool(arg, &fw_devlink_strict); 1671 } 1672 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1673 1674 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1675 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1676 1677 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1678 static int fw_devlink_sync_state; 1679 #else 1680 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1681 #endif 1682 1683 static int __init fw_devlink_sync_state_setup(char *arg) 1684 { 1685 if (!arg) 1686 return -EINVAL; 1687 1688 if (strcmp(arg, "strict") == 0) { 1689 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1690 return 0; 1691 } else if (strcmp(arg, "timeout") == 0) { 1692 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1693 return 0; 1694 } 1695 return -EINVAL; 1696 } 1697 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1698 1699 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1700 { 1701 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1702 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1703 1704 return fw_devlink_flags; 1705 } 1706 1707 static bool fw_devlink_is_permissive(void) 1708 { 1709 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1710 } 1711 1712 bool fw_devlink_is_strict(void) 1713 { 1714 return fw_devlink_strict && !fw_devlink_is_permissive(); 1715 } 1716 1717 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1718 { 1719 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1720 return; 1721 1722 fwnode_call_int_op(fwnode, add_links); 1723 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1724 } 1725 1726 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1727 { 1728 struct fwnode_handle *child = NULL; 1729 1730 fw_devlink_parse_fwnode(fwnode); 1731 1732 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1733 fw_devlink_parse_fwtree(child); 1734 } 1735 1736 static void fw_devlink_relax_link(struct device_link *link) 1737 { 1738 if (!(link->flags & DL_FLAG_INFERRED)) 1739 return; 1740 1741 if (device_link_flag_is_sync_state_only(link->flags)) 1742 return; 1743 1744 pm_runtime_drop_link(link); 1745 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1746 dev_dbg(link->consumer, "Relaxing link with %s\n", 1747 dev_name(link->supplier)); 1748 } 1749 1750 static int fw_devlink_no_driver(struct device *dev, void *data) 1751 { 1752 struct device_link *link = to_devlink(dev); 1753 1754 if (!link->supplier->can_match) 1755 fw_devlink_relax_link(link); 1756 1757 return 0; 1758 } 1759 1760 void fw_devlink_drivers_done(void) 1761 { 1762 fw_devlink_drv_reg_done = true; 1763 device_links_write_lock(); 1764 class_for_each_device(&devlink_class, NULL, NULL, 1765 fw_devlink_no_driver); 1766 device_links_write_unlock(); 1767 } 1768 1769 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1770 { 1771 struct device_link *link = to_devlink(dev); 1772 struct device *sup = link->supplier; 1773 1774 if (!(link->flags & DL_FLAG_MANAGED) || 1775 link->status == DL_STATE_ACTIVE || sup->state_synced || 1776 !dev_has_sync_state(sup)) 1777 return 0; 1778 1779 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1780 dev_warn(sup, "sync_state() pending due to %s\n", 1781 dev_name(link->consumer)); 1782 return 0; 1783 } 1784 1785 if (!list_empty(&sup->links.defer_sync)) 1786 return 0; 1787 1788 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1789 sup->state_synced = true; 1790 get_device(sup); 1791 list_add_tail(&sup->links.defer_sync, data); 1792 1793 return 0; 1794 } 1795 1796 void fw_devlink_probing_done(void) 1797 { 1798 LIST_HEAD(sync_list); 1799 1800 device_links_write_lock(); 1801 class_for_each_device(&devlink_class, NULL, &sync_list, 1802 fw_devlink_dev_sync_state); 1803 device_links_write_unlock(); 1804 device_links_flush_sync_list(&sync_list, NULL); 1805 } 1806 1807 /** 1808 * wait_for_init_devices_probe - Try to probe any device needed for init 1809 * 1810 * Some devices might need to be probed and bound successfully before the kernel 1811 * boot sequence can finish and move on to init/userspace. For example, a 1812 * network interface might need to be bound to be able to mount a NFS rootfs. 1813 * 1814 * With fw_devlink=on by default, some of these devices might be blocked from 1815 * probing because they are waiting on a optional supplier that doesn't have a 1816 * driver. While fw_devlink will eventually identify such devices and unblock 1817 * the probing automatically, it might be too late by the time it unblocks the 1818 * probing of devices. For example, the IP4 autoconfig might timeout before 1819 * fw_devlink unblocks probing of the network interface. 1820 * 1821 * This function is available to temporarily try and probe all devices that have 1822 * a driver even if some of their suppliers haven't been added or don't have 1823 * drivers. 1824 * 1825 * The drivers can then decide which of the suppliers are optional vs mandatory 1826 * and probe the device if possible. By the time this function returns, all such 1827 * "best effort" probes are guaranteed to be completed. If a device successfully 1828 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1829 * device where the supplier hasn't yet probed successfully because they have to 1830 * be optional dependencies. 1831 * 1832 * Any devices that didn't successfully probe go back to being treated as if 1833 * this function was never called. 1834 * 1835 * This also means that some devices that aren't needed for init and could have 1836 * waited for their optional supplier to probe (when the supplier's module is 1837 * loaded later on) would end up probing prematurely with limited functionality. 1838 * So call this function only when boot would fail without it. 1839 */ 1840 void __init wait_for_init_devices_probe(void) 1841 { 1842 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1843 return; 1844 1845 /* 1846 * Wait for all ongoing probes to finish so that the "best effort" is 1847 * only applied to devices that can't probe otherwise. 1848 */ 1849 wait_for_device_probe(); 1850 1851 pr_info("Trying to probe devices needed for running init ...\n"); 1852 fw_devlink_best_effort = true; 1853 driver_deferred_probe_trigger(); 1854 1855 /* 1856 * Wait for all "best effort" probes to finish before going back to 1857 * normal enforcement. 1858 */ 1859 wait_for_device_probe(); 1860 fw_devlink_best_effort = false; 1861 } 1862 1863 static void fw_devlink_unblock_consumers(struct device *dev) 1864 { 1865 struct device_link *link; 1866 1867 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1868 return; 1869 1870 device_links_write_lock(); 1871 list_for_each_entry(link, &dev->links.consumers, s_node) 1872 fw_devlink_relax_link(link); 1873 device_links_write_unlock(); 1874 } 1875 1876 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1877 1878 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1879 { 1880 struct device *dev; 1881 bool ret; 1882 1883 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1884 return false; 1885 1886 dev = get_dev_from_fwnode(fwnode); 1887 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1888 put_device(dev); 1889 1890 return ret; 1891 } 1892 1893 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1894 { 1895 struct fwnode_handle *parent; 1896 1897 fwnode_for_each_parent_node(fwnode, parent) { 1898 if (fwnode_init_without_drv(parent)) { 1899 fwnode_handle_put(parent); 1900 return true; 1901 } 1902 } 1903 1904 return false; 1905 } 1906 1907 /** 1908 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1909 * @ancestor: Firmware which is tested for being an ancestor 1910 * @child: Firmware which is tested for being the child 1911 * 1912 * A node is considered an ancestor of itself too. 1913 * 1914 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1915 */ 1916 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1917 const struct fwnode_handle *child) 1918 { 1919 struct fwnode_handle *parent; 1920 1921 if (IS_ERR_OR_NULL(ancestor)) 1922 return false; 1923 1924 if (child == ancestor) 1925 return true; 1926 1927 fwnode_for_each_parent_node(child, parent) { 1928 if (parent == ancestor) { 1929 fwnode_handle_put(parent); 1930 return true; 1931 } 1932 } 1933 return false; 1934 } 1935 1936 /** 1937 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1938 * @fwnode: firmware node 1939 * 1940 * Given a firmware node (@fwnode), this function finds its closest ancestor 1941 * firmware node that has a corresponding struct device and returns that struct 1942 * device. 1943 * 1944 * The caller is responsible for calling put_device() on the returned device 1945 * pointer. 1946 * 1947 * Return: a pointer to the device of the @fwnode's closest ancestor. 1948 */ 1949 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1950 { 1951 struct fwnode_handle *parent; 1952 struct device *dev; 1953 1954 fwnode_for_each_parent_node(fwnode, parent) { 1955 dev = get_dev_from_fwnode(parent); 1956 if (dev) { 1957 fwnode_handle_put(parent); 1958 return dev; 1959 } 1960 } 1961 return NULL; 1962 } 1963 1964 /** 1965 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1966 * @con: Potential consumer device. 1967 * @sup_handle: Potential supplier's fwnode. 1968 * 1969 * Needs to be called with fwnode_lock and device link lock held. 1970 * 1971 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1972 * depend on @con. This function can detect multiple cyles between @sup_handle 1973 * and @con. When such dependency cycles are found, convert all device links 1974 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1975 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1976 * converted into a device link in the future, they are created as 1977 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1978 * fw_devlink=permissive just between the devices in the cycle. We need to do 1979 * this because, at this point, fw_devlink can't tell which of these 1980 * dependencies is not a real dependency. 1981 * 1982 * Return true if one or more cycles were found. Otherwise, return false. 1983 */ 1984 static bool __fw_devlink_relax_cycles(struct device *con, 1985 struct fwnode_handle *sup_handle) 1986 { 1987 struct device *sup_dev = NULL, *par_dev = NULL; 1988 struct fwnode_link *link; 1989 struct device_link *dev_link; 1990 bool ret = false; 1991 1992 if (!sup_handle) 1993 return false; 1994 1995 /* 1996 * We aren't trying to find all cycles. Just a cycle between con and 1997 * sup_handle. 1998 */ 1999 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2000 return false; 2001 2002 sup_handle->flags |= FWNODE_FLAG_VISITED; 2003 2004 sup_dev = get_dev_from_fwnode(sup_handle); 2005 2006 /* Termination condition. */ 2007 if (sup_dev == con) { 2008 pr_debug("----- cycle: start -----\n"); 2009 ret = true; 2010 goto out; 2011 } 2012 2013 /* 2014 * If sup_dev is bound to a driver and @con hasn't started binding to a 2015 * driver, sup_dev can't be a consumer of @con. So, no need to check 2016 * further. 2017 */ 2018 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2019 con->links.status == DL_DEV_NO_DRIVER) { 2020 ret = false; 2021 goto out; 2022 } 2023 2024 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2025 if (link->flags & FWLINK_FLAG_IGNORE) 2026 continue; 2027 2028 if (__fw_devlink_relax_cycles(con, link->supplier)) { 2029 __fwnode_link_cycle(link); 2030 ret = true; 2031 } 2032 } 2033 2034 /* 2035 * Give priority to device parent over fwnode parent to account for any 2036 * quirks in how fwnodes are converted to devices. 2037 */ 2038 if (sup_dev) 2039 par_dev = get_device(sup_dev->parent); 2040 else 2041 par_dev = fwnode_get_next_parent_dev(sup_handle); 2042 2043 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 2044 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2045 par_dev->fwnode); 2046 ret = true; 2047 } 2048 2049 if (!sup_dev) 2050 goto out; 2051 2052 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2053 /* 2054 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2055 * such due to a cycle. 2056 */ 2057 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2058 !(dev_link->flags & DL_FLAG_CYCLE)) 2059 continue; 2060 2061 if (__fw_devlink_relax_cycles(con, 2062 dev_link->supplier->fwnode)) { 2063 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2064 dev_link->supplier->fwnode); 2065 fw_devlink_relax_link(dev_link); 2066 dev_link->flags |= DL_FLAG_CYCLE; 2067 ret = true; 2068 } 2069 } 2070 2071 out: 2072 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2073 put_device(sup_dev); 2074 put_device(par_dev); 2075 return ret; 2076 } 2077 2078 /** 2079 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2080 * @con: consumer device for the device link 2081 * @sup_handle: fwnode handle of supplier 2082 * @link: fwnode link that's being converted to a device link 2083 * 2084 * This function will try to create a device link between the consumer device 2085 * @con and the supplier device represented by @sup_handle. 2086 * 2087 * The supplier has to be provided as a fwnode because incorrect cycles in 2088 * fwnode links can sometimes cause the supplier device to never be created. 2089 * This function detects such cases and returns an error if it cannot create a 2090 * device link from the consumer to a missing supplier. 2091 * 2092 * Returns, 2093 * 0 on successfully creating a device link 2094 * -EINVAL if the device link cannot be created as expected 2095 * -EAGAIN if the device link cannot be created right now, but it may be 2096 * possible to do that in the future 2097 */ 2098 static int fw_devlink_create_devlink(struct device *con, 2099 struct fwnode_handle *sup_handle, 2100 struct fwnode_link *link) 2101 { 2102 struct device *sup_dev; 2103 int ret = 0; 2104 u32 flags; 2105 2106 if (link->flags & FWLINK_FLAG_IGNORE) 2107 return 0; 2108 2109 if (con->fwnode == link->consumer) 2110 flags = fw_devlink_get_flags(link->flags); 2111 else 2112 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2113 2114 /* 2115 * In some cases, a device P might also be a supplier to its child node 2116 * C. However, this would defer the probe of C until the probe of P 2117 * completes successfully. This is perfectly fine in the device driver 2118 * model. device_add() doesn't guarantee probe completion of the device 2119 * by the time it returns. 2120 * 2121 * However, there are a few drivers that assume C will finish probing 2122 * as soon as it's added and before P finishes probing. So, we provide 2123 * a flag to let fw_devlink know not to delay the probe of C until the 2124 * probe of P completes successfully. 2125 * 2126 * When such a flag is set, we can't create device links where P is the 2127 * supplier of C as that would delay the probe of C. 2128 */ 2129 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2130 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2131 return -EINVAL; 2132 2133 /* 2134 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2135 * So, one might expect that cycle detection isn't necessary for them. 2136 * However, if the device link was marked as SYNC_STATE_ONLY because 2137 * it's part of a cycle, then we still need to do cycle detection. This 2138 * is because the consumer and supplier might be part of multiple cycles 2139 * and we need to detect all those cycles. 2140 */ 2141 if (!device_link_flag_is_sync_state_only(flags) || 2142 flags & DL_FLAG_CYCLE) { 2143 device_links_write_lock(); 2144 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2145 __fwnode_link_cycle(link); 2146 flags = fw_devlink_get_flags(link->flags); 2147 pr_debug("----- cycle: end -----\n"); 2148 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2149 sup_handle); 2150 } 2151 device_links_write_unlock(); 2152 } 2153 2154 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2155 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2156 else 2157 sup_dev = get_dev_from_fwnode(sup_handle); 2158 2159 if (sup_dev) { 2160 /* 2161 * If it's one of those drivers that don't actually bind to 2162 * their device using driver core, then don't wait on this 2163 * supplier device indefinitely. 2164 */ 2165 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2166 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2167 dev_dbg(con, 2168 "Not linking %pfwf - dev might never probe\n", 2169 sup_handle); 2170 ret = -EINVAL; 2171 goto out; 2172 } 2173 2174 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2175 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2176 flags, dev_name(sup_dev)); 2177 ret = -EINVAL; 2178 } 2179 2180 goto out; 2181 } 2182 2183 /* 2184 * Supplier or supplier's ancestor already initialized without a struct 2185 * device or being probed by a driver. 2186 */ 2187 if (fwnode_init_without_drv(sup_handle) || 2188 fwnode_ancestor_init_without_drv(sup_handle)) { 2189 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2190 sup_handle); 2191 return -EINVAL; 2192 } 2193 2194 ret = -EAGAIN; 2195 out: 2196 put_device(sup_dev); 2197 return ret; 2198 } 2199 2200 /** 2201 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2202 * @dev: Device that needs to be linked to its consumers 2203 * 2204 * This function looks at all the consumer fwnodes of @dev and creates device 2205 * links between the consumer device and @dev (supplier). 2206 * 2207 * If the consumer device has not been added yet, then this function creates a 2208 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2209 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2210 * sync_state() callback before the real consumer device gets to be added and 2211 * then probed. 2212 * 2213 * Once device links are created from the real consumer to @dev (supplier), the 2214 * fwnode links are deleted. 2215 */ 2216 static void __fw_devlink_link_to_consumers(struct device *dev) 2217 { 2218 struct fwnode_handle *fwnode = dev->fwnode; 2219 struct fwnode_link *link, *tmp; 2220 2221 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2222 struct device *con_dev; 2223 bool own_link = true; 2224 int ret; 2225 2226 con_dev = get_dev_from_fwnode(link->consumer); 2227 /* 2228 * If consumer device is not available yet, make a "proxy" 2229 * SYNC_STATE_ONLY link from the consumer's parent device to 2230 * the supplier device. This is necessary to make sure the 2231 * supplier doesn't get a sync_state() callback before the real 2232 * consumer can create a device link to the supplier. 2233 * 2234 * This proxy link step is needed to handle the case where the 2235 * consumer's parent device is added before the supplier. 2236 */ 2237 if (!con_dev) { 2238 con_dev = fwnode_get_next_parent_dev(link->consumer); 2239 /* 2240 * However, if the consumer's parent device is also the 2241 * parent of the supplier, don't create a 2242 * consumer-supplier link from the parent to its child 2243 * device. Such a dependency is impossible. 2244 */ 2245 if (con_dev && 2246 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2247 put_device(con_dev); 2248 con_dev = NULL; 2249 } else { 2250 own_link = false; 2251 } 2252 } 2253 2254 if (!con_dev) 2255 continue; 2256 2257 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2258 put_device(con_dev); 2259 if (!own_link || ret == -EAGAIN) 2260 continue; 2261 2262 __fwnode_link_del(link); 2263 } 2264 } 2265 2266 /** 2267 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2268 * @dev: The consumer device that needs to be linked to its suppliers 2269 * @fwnode: Root of the fwnode tree that is used to create device links 2270 * 2271 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2272 * @fwnode and creates device links between @dev (consumer) and all the 2273 * supplier devices of the entire fwnode tree at @fwnode. 2274 * 2275 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2276 * and the real suppliers of @dev. Once these device links are created, the 2277 * fwnode links are deleted. 2278 * 2279 * In addition, it also looks at all the suppliers of the entire fwnode tree 2280 * because some of the child devices of @dev that have not been added yet 2281 * (because @dev hasn't probed) might already have their suppliers added to 2282 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2283 * @dev (consumer) and these suppliers to make sure they don't execute their 2284 * sync_state() callbacks before these child devices have a chance to create 2285 * their device links. The fwnode links that correspond to the child devices 2286 * aren't delete because they are needed later to create the device links 2287 * between the real consumer and supplier devices. 2288 */ 2289 static void __fw_devlink_link_to_suppliers(struct device *dev, 2290 struct fwnode_handle *fwnode) 2291 { 2292 bool own_link = (dev->fwnode == fwnode); 2293 struct fwnode_link *link, *tmp; 2294 struct fwnode_handle *child = NULL; 2295 2296 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2297 int ret; 2298 struct fwnode_handle *sup = link->supplier; 2299 2300 ret = fw_devlink_create_devlink(dev, sup, link); 2301 if (!own_link || ret == -EAGAIN) 2302 continue; 2303 2304 __fwnode_link_del(link); 2305 } 2306 2307 /* 2308 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2309 * all the descendants. This proxy link step is needed to handle the 2310 * case where the supplier is added before the consumer's parent device 2311 * (@dev). 2312 */ 2313 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2314 __fw_devlink_link_to_suppliers(dev, child); 2315 } 2316 2317 static void fw_devlink_link_device(struct device *dev) 2318 { 2319 struct fwnode_handle *fwnode = dev->fwnode; 2320 2321 if (!fw_devlink_flags) 2322 return; 2323 2324 fw_devlink_parse_fwtree(fwnode); 2325 2326 mutex_lock(&fwnode_link_lock); 2327 __fw_devlink_link_to_consumers(dev); 2328 __fw_devlink_link_to_suppliers(dev, fwnode); 2329 mutex_unlock(&fwnode_link_lock); 2330 } 2331 2332 /* Device links support end. */ 2333 2334 int (*platform_notify)(struct device *dev) = NULL; 2335 int (*platform_notify_remove)(struct device *dev) = NULL; 2336 static struct kobject *dev_kobj; 2337 2338 /* /sys/dev/char */ 2339 static struct kobject *sysfs_dev_char_kobj; 2340 2341 /* /sys/dev/block */ 2342 static struct kobject *sysfs_dev_block_kobj; 2343 2344 static DEFINE_MUTEX(device_hotplug_lock); 2345 2346 void lock_device_hotplug(void) 2347 { 2348 mutex_lock(&device_hotplug_lock); 2349 } 2350 2351 void unlock_device_hotplug(void) 2352 { 2353 mutex_unlock(&device_hotplug_lock); 2354 } 2355 2356 int lock_device_hotplug_sysfs(void) 2357 { 2358 if (mutex_trylock(&device_hotplug_lock)) 2359 return 0; 2360 2361 /* Avoid busy looping (5 ms of sleep should do). */ 2362 msleep(5); 2363 return restart_syscall(); 2364 } 2365 2366 #ifdef CONFIG_BLOCK 2367 static inline int device_is_not_partition(struct device *dev) 2368 { 2369 return !(dev->type == &part_type); 2370 } 2371 #else 2372 static inline int device_is_not_partition(struct device *dev) 2373 { 2374 return 1; 2375 } 2376 #endif 2377 2378 static void device_platform_notify(struct device *dev) 2379 { 2380 acpi_device_notify(dev); 2381 2382 software_node_notify(dev); 2383 2384 if (platform_notify) 2385 platform_notify(dev); 2386 } 2387 2388 static void device_platform_notify_remove(struct device *dev) 2389 { 2390 if (platform_notify_remove) 2391 platform_notify_remove(dev); 2392 2393 software_node_notify_remove(dev); 2394 2395 acpi_device_notify_remove(dev); 2396 } 2397 2398 /** 2399 * dev_driver_string - Return a device's driver name, if at all possible 2400 * @dev: struct device to get the name of 2401 * 2402 * Will return the device's driver's name if it is bound to a device. If 2403 * the device is not bound to a driver, it will return the name of the bus 2404 * it is attached to. If it is not attached to a bus either, an empty 2405 * string will be returned. 2406 */ 2407 const char *dev_driver_string(const struct device *dev) 2408 { 2409 struct device_driver *drv; 2410 2411 /* dev->driver can change to NULL underneath us because of unbinding, 2412 * so be careful about accessing it. dev->bus and dev->class should 2413 * never change once they are set, so they don't need special care. 2414 */ 2415 drv = READ_ONCE(dev->driver); 2416 return drv ? drv->name : dev_bus_name(dev); 2417 } 2418 EXPORT_SYMBOL(dev_driver_string); 2419 2420 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2421 2422 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2423 char *buf) 2424 { 2425 struct device_attribute *dev_attr = to_dev_attr(attr); 2426 struct device *dev = kobj_to_dev(kobj); 2427 ssize_t ret = -EIO; 2428 2429 if (dev_attr->show) 2430 ret = dev_attr->show(dev, dev_attr, buf); 2431 if (ret >= (ssize_t)PAGE_SIZE) { 2432 printk("dev_attr_show: %pS returned bad count\n", 2433 dev_attr->show); 2434 } 2435 return ret; 2436 } 2437 2438 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2439 const char *buf, size_t count) 2440 { 2441 struct device_attribute *dev_attr = to_dev_attr(attr); 2442 struct device *dev = kobj_to_dev(kobj); 2443 ssize_t ret = -EIO; 2444 2445 if (dev_attr->store) 2446 ret = dev_attr->store(dev, dev_attr, buf, count); 2447 return ret; 2448 } 2449 2450 static const struct sysfs_ops dev_sysfs_ops = { 2451 .show = dev_attr_show, 2452 .store = dev_attr_store, 2453 }; 2454 2455 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2456 2457 ssize_t device_store_ulong(struct device *dev, 2458 struct device_attribute *attr, 2459 const char *buf, size_t size) 2460 { 2461 struct dev_ext_attribute *ea = to_ext_attr(attr); 2462 int ret; 2463 unsigned long new; 2464 2465 ret = kstrtoul(buf, 0, &new); 2466 if (ret) 2467 return ret; 2468 *(unsigned long *)(ea->var) = new; 2469 /* Always return full write size even if we didn't consume all */ 2470 return size; 2471 } 2472 EXPORT_SYMBOL_GPL(device_store_ulong); 2473 2474 ssize_t device_show_ulong(struct device *dev, 2475 struct device_attribute *attr, 2476 char *buf) 2477 { 2478 struct dev_ext_attribute *ea = to_ext_attr(attr); 2479 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2480 } 2481 EXPORT_SYMBOL_GPL(device_show_ulong); 2482 2483 ssize_t device_store_int(struct device *dev, 2484 struct device_attribute *attr, 2485 const char *buf, size_t size) 2486 { 2487 struct dev_ext_attribute *ea = to_ext_attr(attr); 2488 int ret; 2489 long new; 2490 2491 ret = kstrtol(buf, 0, &new); 2492 if (ret) 2493 return ret; 2494 2495 if (new > INT_MAX || new < INT_MIN) 2496 return -EINVAL; 2497 *(int *)(ea->var) = new; 2498 /* Always return full write size even if we didn't consume all */ 2499 return size; 2500 } 2501 EXPORT_SYMBOL_GPL(device_store_int); 2502 2503 ssize_t device_show_int(struct device *dev, 2504 struct device_attribute *attr, 2505 char *buf) 2506 { 2507 struct dev_ext_attribute *ea = to_ext_attr(attr); 2508 2509 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2510 } 2511 EXPORT_SYMBOL_GPL(device_show_int); 2512 2513 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2514 const char *buf, size_t size) 2515 { 2516 struct dev_ext_attribute *ea = to_ext_attr(attr); 2517 2518 if (kstrtobool(buf, ea->var) < 0) 2519 return -EINVAL; 2520 2521 return size; 2522 } 2523 EXPORT_SYMBOL_GPL(device_store_bool); 2524 2525 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2526 char *buf) 2527 { 2528 struct dev_ext_attribute *ea = to_ext_attr(attr); 2529 2530 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2531 } 2532 EXPORT_SYMBOL_GPL(device_show_bool); 2533 2534 /** 2535 * device_release - free device structure. 2536 * @kobj: device's kobject. 2537 * 2538 * This is called once the reference count for the object 2539 * reaches 0. We forward the call to the device's release 2540 * method, which should handle actually freeing the structure. 2541 */ 2542 static void device_release(struct kobject *kobj) 2543 { 2544 struct device *dev = kobj_to_dev(kobj); 2545 struct device_private *p = dev->p; 2546 2547 /* 2548 * Some platform devices are driven without driver attached 2549 * and managed resources may have been acquired. Make sure 2550 * all resources are released. 2551 * 2552 * Drivers still can add resources into device after device 2553 * is deleted but alive, so release devres here to avoid 2554 * possible memory leak. 2555 */ 2556 devres_release_all(dev); 2557 2558 kfree(dev->dma_range_map); 2559 2560 if (dev->release) 2561 dev->release(dev); 2562 else if (dev->type && dev->type->release) 2563 dev->type->release(dev); 2564 else if (dev->class && dev->class->dev_release) 2565 dev->class->dev_release(dev); 2566 else 2567 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2568 dev_name(dev)); 2569 kfree(p); 2570 } 2571 2572 static const void *device_namespace(const struct kobject *kobj) 2573 { 2574 const struct device *dev = kobj_to_dev(kobj); 2575 const void *ns = NULL; 2576 2577 if (dev->class && dev->class->ns_type) 2578 ns = dev->class->namespace(dev); 2579 2580 return ns; 2581 } 2582 2583 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2584 { 2585 const struct device *dev = kobj_to_dev(kobj); 2586 2587 if (dev->class && dev->class->get_ownership) 2588 dev->class->get_ownership(dev, uid, gid); 2589 } 2590 2591 static const struct kobj_type device_ktype = { 2592 .release = device_release, 2593 .sysfs_ops = &dev_sysfs_ops, 2594 .namespace = device_namespace, 2595 .get_ownership = device_get_ownership, 2596 }; 2597 2598 2599 static int dev_uevent_filter(const struct kobject *kobj) 2600 { 2601 const struct kobj_type *ktype = get_ktype(kobj); 2602 2603 if (ktype == &device_ktype) { 2604 const struct device *dev = kobj_to_dev(kobj); 2605 if (dev->bus) 2606 return 1; 2607 if (dev->class) 2608 return 1; 2609 } 2610 return 0; 2611 } 2612 2613 static const char *dev_uevent_name(const struct kobject *kobj) 2614 { 2615 const struct device *dev = kobj_to_dev(kobj); 2616 2617 if (dev->bus) 2618 return dev->bus->name; 2619 if (dev->class) 2620 return dev->class->name; 2621 return NULL; 2622 } 2623 2624 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2625 { 2626 const struct device *dev = kobj_to_dev(kobj); 2627 int retval = 0; 2628 2629 /* add device node properties if present */ 2630 if (MAJOR(dev->devt)) { 2631 const char *tmp; 2632 const char *name; 2633 umode_t mode = 0; 2634 kuid_t uid = GLOBAL_ROOT_UID; 2635 kgid_t gid = GLOBAL_ROOT_GID; 2636 2637 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2638 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2639 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2640 if (name) { 2641 add_uevent_var(env, "DEVNAME=%s", name); 2642 if (mode) 2643 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2644 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2645 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2646 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2647 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2648 kfree(tmp); 2649 } 2650 } 2651 2652 if (dev->type && dev->type->name) 2653 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2654 2655 if (dev->driver) 2656 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2657 2658 /* Add common DT information about the device */ 2659 of_device_uevent(dev, env); 2660 2661 /* have the bus specific function add its stuff */ 2662 if (dev->bus && dev->bus->uevent) { 2663 retval = dev->bus->uevent(dev, env); 2664 if (retval) 2665 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2666 dev_name(dev), __func__, retval); 2667 } 2668 2669 /* have the class specific function add its stuff */ 2670 if (dev->class && dev->class->dev_uevent) { 2671 retval = dev->class->dev_uevent(dev, env); 2672 if (retval) 2673 pr_debug("device: '%s': %s: class uevent() " 2674 "returned %d\n", dev_name(dev), 2675 __func__, retval); 2676 } 2677 2678 /* have the device type specific function add its stuff */ 2679 if (dev->type && dev->type->uevent) { 2680 retval = dev->type->uevent(dev, env); 2681 if (retval) 2682 pr_debug("device: '%s': %s: dev_type uevent() " 2683 "returned %d\n", dev_name(dev), 2684 __func__, retval); 2685 } 2686 2687 return retval; 2688 } 2689 2690 static const struct kset_uevent_ops device_uevent_ops = { 2691 .filter = dev_uevent_filter, 2692 .name = dev_uevent_name, 2693 .uevent = dev_uevent, 2694 }; 2695 2696 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2697 char *buf) 2698 { 2699 struct kobject *top_kobj; 2700 struct kset *kset; 2701 struct kobj_uevent_env *env = NULL; 2702 int i; 2703 int len = 0; 2704 int retval; 2705 2706 /* search the kset, the device belongs to */ 2707 top_kobj = &dev->kobj; 2708 while (!top_kobj->kset && top_kobj->parent) 2709 top_kobj = top_kobj->parent; 2710 if (!top_kobj->kset) 2711 goto out; 2712 2713 kset = top_kobj->kset; 2714 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2715 goto out; 2716 2717 /* respect filter */ 2718 if (kset->uevent_ops && kset->uevent_ops->filter) 2719 if (!kset->uevent_ops->filter(&dev->kobj)) 2720 goto out; 2721 2722 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2723 if (!env) 2724 return -ENOMEM; 2725 2726 /* let the kset specific function add its keys */ 2727 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2728 if (retval) 2729 goto out; 2730 2731 /* copy keys to file */ 2732 for (i = 0; i < env->envp_idx; i++) 2733 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2734 out: 2735 kfree(env); 2736 return len; 2737 } 2738 2739 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2740 const char *buf, size_t count) 2741 { 2742 int rc; 2743 2744 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2745 2746 if (rc) { 2747 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2748 return rc; 2749 } 2750 2751 return count; 2752 } 2753 static DEVICE_ATTR_RW(uevent); 2754 2755 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2756 char *buf) 2757 { 2758 bool val; 2759 2760 device_lock(dev); 2761 val = !dev->offline; 2762 device_unlock(dev); 2763 return sysfs_emit(buf, "%u\n", val); 2764 } 2765 2766 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2767 const char *buf, size_t count) 2768 { 2769 bool val; 2770 int ret; 2771 2772 ret = kstrtobool(buf, &val); 2773 if (ret < 0) 2774 return ret; 2775 2776 ret = lock_device_hotplug_sysfs(); 2777 if (ret) 2778 return ret; 2779 2780 ret = val ? device_online(dev) : device_offline(dev); 2781 unlock_device_hotplug(); 2782 return ret < 0 ? ret : count; 2783 } 2784 static DEVICE_ATTR_RW(online); 2785 2786 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2787 char *buf) 2788 { 2789 const char *loc; 2790 2791 switch (dev->removable) { 2792 case DEVICE_REMOVABLE: 2793 loc = "removable"; 2794 break; 2795 case DEVICE_FIXED: 2796 loc = "fixed"; 2797 break; 2798 default: 2799 loc = "unknown"; 2800 } 2801 return sysfs_emit(buf, "%s\n", loc); 2802 } 2803 static DEVICE_ATTR_RO(removable); 2804 2805 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2806 { 2807 return sysfs_create_groups(&dev->kobj, groups); 2808 } 2809 EXPORT_SYMBOL_GPL(device_add_groups); 2810 2811 void device_remove_groups(struct device *dev, 2812 const struct attribute_group **groups) 2813 { 2814 sysfs_remove_groups(&dev->kobj, groups); 2815 } 2816 EXPORT_SYMBOL_GPL(device_remove_groups); 2817 2818 union device_attr_group_devres { 2819 const struct attribute_group *group; 2820 const struct attribute_group **groups; 2821 }; 2822 2823 static void devm_attr_group_remove(struct device *dev, void *res) 2824 { 2825 union device_attr_group_devres *devres = res; 2826 const struct attribute_group *group = devres->group; 2827 2828 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2829 sysfs_remove_group(&dev->kobj, group); 2830 } 2831 2832 static void devm_attr_groups_remove(struct device *dev, void *res) 2833 { 2834 union device_attr_group_devres *devres = res; 2835 const struct attribute_group **groups = devres->groups; 2836 2837 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2838 sysfs_remove_groups(&dev->kobj, groups); 2839 } 2840 2841 /** 2842 * devm_device_add_group - given a device, create a managed attribute group 2843 * @dev: The device to create the group for 2844 * @grp: The attribute group to create 2845 * 2846 * This function creates a group for the first time. It will explicitly 2847 * warn and error if any of the attribute files being created already exist. 2848 * 2849 * Returns 0 on success or error code on failure. 2850 */ 2851 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2852 { 2853 union device_attr_group_devres *devres; 2854 int error; 2855 2856 devres = devres_alloc(devm_attr_group_remove, 2857 sizeof(*devres), GFP_KERNEL); 2858 if (!devres) 2859 return -ENOMEM; 2860 2861 error = sysfs_create_group(&dev->kobj, grp); 2862 if (error) { 2863 devres_free(devres); 2864 return error; 2865 } 2866 2867 devres->group = grp; 2868 devres_add(dev, devres); 2869 return 0; 2870 } 2871 EXPORT_SYMBOL_GPL(devm_device_add_group); 2872 2873 /** 2874 * devm_device_add_groups - create a bunch of managed attribute groups 2875 * @dev: The device to create the group for 2876 * @groups: The attribute groups to create, NULL terminated 2877 * 2878 * This function creates a bunch of managed attribute groups. If an error 2879 * occurs when creating a group, all previously created groups will be 2880 * removed, unwinding everything back to the original state when this 2881 * function was called. It will explicitly warn and error if any of the 2882 * attribute files being created already exist. 2883 * 2884 * Returns 0 on success or error code from sysfs_create_group on failure. 2885 */ 2886 int devm_device_add_groups(struct device *dev, 2887 const struct attribute_group **groups) 2888 { 2889 union device_attr_group_devres *devres; 2890 int error; 2891 2892 devres = devres_alloc(devm_attr_groups_remove, 2893 sizeof(*devres), GFP_KERNEL); 2894 if (!devres) 2895 return -ENOMEM; 2896 2897 error = sysfs_create_groups(&dev->kobj, groups); 2898 if (error) { 2899 devres_free(devres); 2900 return error; 2901 } 2902 2903 devres->groups = groups; 2904 devres_add(dev, devres); 2905 return 0; 2906 } 2907 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2908 2909 static int device_add_attrs(struct device *dev) 2910 { 2911 const struct class *class = dev->class; 2912 const struct device_type *type = dev->type; 2913 int error; 2914 2915 if (class) { 2916 error = device_add_groups(dev, class->dev_groups); 2917 if (error) 2918 return error; 2919 } 2920 2921 if (type) { 2922 error = device_add_groups(dev, type->groups); 2923 if (error) 2924 goto err_remove_class_groups; 2925 } 2926 2927 error = device_add_groups(dev, dev->groups); 2928 if (error) 2929 goto err_remove_type_groups; 2930 2931 if (device_supports_offline(dev) && !dev->offline_disabled) { 2932 error = device_create_file(dev, &dev_attr_online); 2933 if (error) 2934 goto err_remove_dev_groups; 2935 } 2936 2937 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2938 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2939 if (error) 2940 goto err_remove_dev_online; 2941 } 2942 2943 if (dev_removable_is_valid(dev)) { 2944 error = device_create_file(dev, &dev_attr_removable); 2945 if (error) 2946 goto err_remove_dev_waiting_for_supplier; 2947 } 2948 2949 if (dev_add_physical_location(dev)) { 2950 error = device_add_group(dev, 2951 &dev_attr_physical_location_group); 2952 if (error) 2953 goto err_remove_dev_removable; 2954 } 2955 2956 return 0; 2957 2958 err_remove_dev_removable: 2959 device_remove_file(dev, &dev_attr_removable); 2960 err_remove_dev_waiting_for_supplier: 2961 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2962 err_remove_dev_online: 2963 device_remove_file(dev, &dev_attr_online); 2964 err_remove_dev_groups: 2965 device_remove_groups(dev, dev->groups); 2966 err_remove_type_groups: 2967 if (type) 2968 device_remove_groups(dev, type->groups); 2969 err_remove_class_groups: 2970 if (class) 2971 device_remove_groups(dev, class->dev_groups); 2972 2973 return error; 2974 } 2975 2976 static void device_remove_attrs(struct device *dev) 2977 { 2978 const struct class *class = dev->class; 2979 const struct device_type *type = dev->type; 2980 2981 if (dev->physical_location) { 2982 device_remove_group(dev, &dev_attr_physical_location_group); 2983 kfree(dev->physical_location); 2984 } 2985 2986 device_remove_file(dev, &dev_attr_removable); 2987 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2988 device_remove_file(dev, &dev_attr_online); 2989 device_remove_groups(dev, dev->groups); 2990 2991 if (type) 2992 device_remove_groups(dev, type->groups); 2993 2994 if (class) 2995 device_remove_groups(dev, class->dev_groups); 2996 } 2997 2998 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2999 char *buf) 3000 { 3001 return print_dev_t(buf, dev->devt); 3002 } 3003 static DEVICE_ATTR_RO(dev); 3004 3005 /* /sys/devices/ */ 3006 struct kset *devices_kset; 3007 3008 /** 3009 * devices_kset_move_before - Move device in the devices_kset's list. 3010 * @deva: Device to move. 3011 * @devb: Device @deva should come before. 3012 */ 3013 static void devices_kset_move_before(struct device *deva, struct device *devb) 3014 { 3015 if (!devices_kset) 3016 return; 3017 pr_debug("devices_kset: Moving %s before %s\n", 3018 dev_name(deva), dev_name(devb)); 3019 spin_lock(&devices_kset->list_lock); 3020 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3021 spin_unlock(&devices_kset->list_lock); 3022 } 3023 3024 /** 3025 * devices_kset_move_after - Move device in the devices_kset's list. 3026 * @deva: Device to move 3027 * @devb: Device @deva should come after. 3028 */ 3029 static void devices_kset_move_after(struct device *deva, struct device *devb) 3030 { 3031 if (!devices_kset) 3032 return; 3033 pr_debug("devices_kset: Moving %s after %s\n", 3034 dev_name(deva), dev_name(devb)); 3035 spin_lock(&devices_kset->list_lock); 3036 list_move(&deva->kobj.entry, &devb->kobj.entry); 3037 spin_unlock(&devices_kset->list_lock); 3038 } 3039 3040 /** 3041 * devices_kset_move_last - move the device to the end of devices_kset's list. 3042 * @dev: device to move 3043 */ 3044 void devices_kset_move_last(struct device *dev) 3045 { 3046 if (!devices_kset) 3047 return; 3048 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3049 spin_lock(&devices_kset->list_lock); 3050 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3051 spin_unlock(&devices_kset->list_lock); 3052 } 3053 3054 /** 3055 * device_create_file - create sysfs attribute file for device. 3056 * @dev: device. 3057 * @attr: device attribute descriptor. 3058 */ 3059 int device_create_file(struct device *dev, 3060 const struct device_attribute *attr) 3061 { 3062 int error = 0; 3063 3064 if (dev) { 3065 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3066 "Attribute %s: write permission without 'store'\n", 3067 attr->attr.name); 3068 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3069 "Attribute %s: read permission without 'show'\n", 3070 attr->attr.name); 3071 error = sysfs_create_file(&dev->kobj, &attr->attr); 3072 } 3073 3074 return error; 3075 } 3076 EXPORT_SYMBOL_GPL(device_create_file); 3077 3078 /** 3079 * device_remove_file - remove sysfs attribute file. 3080 * @dev: device. 3081 * @attr: device attribute descriptor. 3082 */ 3083 void device_remove_file(struct device *dev, 3084 const struct device_attribute *attr) 3085 { 3086 if (dev) 3087 sysfs_remove_file(&dev->kobj, &attr->attr); 3088 } 3089 EXPORT_SYMBOL_GPL(device_remove_file); 3090 3091 /** 3092 * device_remove_file_self - remove sysfs attribute file from its own method. 3093 * @dev: device. 3094 * @attr: device attribute descriptor. 3095 * 3096 * See kernfs_remove_self() for details. 3097 */ 3098 bool device_remove_file_self(struct device *dev, 3099 const struct device_attribute *attr) 3100 { 3101 if (dev) 3102 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3103 else 3104 return false; 3105 } 3106 EXPORT_SYMBOL_GPL(device_remove_file_self); 3107 3108 /** 3109 * device_create_bin_file - create sysfs binary attribute file for device. 3110 * @dev: device. 3111 * @attr: device binary attribute descriptor. 3112 */ 3113 int device_create_bin_file(struct device *dev, 3114 const struct bin_attribute *attr) 3115 { 3116 int error = -EINVAL; 3117 if (dev) 3118 error = sysfs_create_bin_file(&dev->kobj, attr); 3119 return error; 3120 } 3121 EXPORT_SYMBOL_GPL(device_create_bin_file); 3122 3123 /** 3124 * device_remove_bin_file - remove sysfs binary attribute file 3125 * @dev: device. 3126 * @attr: device binary attribute descriptor. 3127 */ 3128 void device_remove_bin_file(struct device *dev, 3129 const struct bin_attribute *attr) 3130 { 3131 if (dev) 3132 sysfs_remove_bin_file(&dev->kobj, attr); 3133 } 3134 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3135 3136 static void klist_children_get(struct klist_node *n) 3137 { 3138 struct device_private *p = to_device_private_parent(n); 3139 struct device *dev = p->device; 3140 3141 get_device(dev); 3142 } 3143 3144 static void klist_children_put(struct klist_node *n) 3145 { 3146 struct device_private *p = to_device_private_parent(n); 3147 struct device *dev = p->device; 3148 3149 put_device(dev); 3150 } 3151 3152 /** 3153 * device_initialize - init device structure. 3154 * @dev: device. 3155 * 3156 * This prepares the device for use by other layers by initializing 3157 * its fields. 3158 * It is the first half of device_register(), if called by 3159 * that function, though it can also be called separately, so one 3160 * may use @dev's fields. In particular, get_device()/put_device() 3161 * may be used for reference counting of @dev after calling this 3162 * function. 3163 * 3164 * All fields in @dev must be initialized by the caller to 0, except 3165 * for those explicitly set to some other value. The simplest 3166 * approach is to use kzalloc() to allocate the structure containing 3167 * @dev. 3168 * 3169 * NOTE: Use put_device() to give up your reference instead of freeing 3170 * @dev directly once you have called this function. 3171 */ 3172 void device_initialize(struct device *dev) 3173 { 3174 dev->kobj.kset = devices_kset; 3175 kobject_init(&dev->kobj, &device_ktype); 3176 INIT_LIST_HEAD(&dev->dma_pools); 3177 mutex_init(&dev->mutex); 3178 lockdep_set_novalidate_class(&dev->mutex); 3179 spin_lock_init(&dev->devres_lock); 3180 INIT_LIST_HEAD(&dev->devres_head); 3181 device_pm_init(dev); 3182 set_dev_node(dev, NUMA_NO_NODE); 3183 INIT_LIST_HEAD(&dev->links.consumers); 3184 INIT_LIST_HEAD(&dev->links.suppliers); 3185 INIT_LIST_HEAD(&dev->links.defer_sync); 3186 dev->links.status = DL_DEV_NO_DRIVER; 3187 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3188 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3189 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3190 dev->dma_coherent = dma_default_coherent; 3191 #endif 3192 swiotlb_dev_init(dev); 3193 } 3194 EXPORT_SYMBOL_GPL(device_initialize); 3195 3196 struct kobject *virtual_device_parent(struct device *dev) 3197 { 3198 static struct kobject *virtual_dir = NULL; 3199 3200 if (!virtual_dir) 3201 virtual_dir = kobject_create_and_add("virtual", 3202 &devices_kset->kobj); 3203 3204 return virtual_dir; 3205 } 3206 3207 struct class_dir { 3208 struct kobject kobj; 3209 const struct class *class; 3210 }; 3211 3212 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3213 3214 static void class_dir_release(struct kobject *kobj) 3215 { 3216 struct class_dir *dir = to_class_dir(kobj); 3217 kfree(dir); 3218 } 3219 3220 static const 3221 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3222 { 3223 const struct class_dir *dir = to_class_dir(kobj); 3224 return dir->class->ns_type; 3225 } 3226 3227 static const struct kobj_type class_dir_ktype = { 3228 .release = class_dir_release, 3229 .sysfs_ops = &kobj_sysfs_ops, 3230 .child_ns_type = class_dir_child_ns_type 3231 }; 3232 3233 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3234 struct kobject *parent_kobj) 3235 { 3236 struct class_dir *dir; 3237 int retval; 3238 3239 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3240 if (!dir) 3241 return ERR_PTR(-ENOMEM); 3242 3243 dir->class = sp->class; 3244 kobject_init(&dir->kobj, &class_dir_ktype); 3245 3246 dir->kobj.kset = &sp->glue_dirs; 3247 3248 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3249 if (retval < 0) { 3250 kobject_put(&dir->kobj); 3251 return ERR_PTR(retval); 3252 } 3253 return &dir->kobj; 3254 } 3255 3256 static DEFINE_MUTEX(gdp_mutex); 3257 3258 static struct kobject *get_device_parent(struct device *dev, 3259 struct device *parent) 3260 { 3261 struct subsys_private *sp = class_to_subsys(dev->class); 3262 struct kobject *kobj = NULL; 3263 3264 if (sp) { 3265 struct kobject *parent_kobj; 3266 struct kobject *k; 3267 3268 /* 3269 * If we have no parent, we live in "virtual". 3270 * Class-devices with a non class-device as parent, live 3271 * in a "glue" directory to prevent namespace collisions. 3272 */ 3273 if (parent == NULL) 3274 parent_kobj = virtual_device_parent(dev); 3275 else if (parent->class && !dev->class->ns_type) { 3276 subsys_put(sp); 3277 return &parent->kobj; 3278 } else { 3279 parent_kobj = &parent->kobj; 3280 } 3281 3282 mutex_lock(&gdp_mutex); 3283 3284 /* find our class-directory at the parent and reference it */ 3285 spin_lock(&sp->glue_dirs.list_lock); 3286 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3287 if (k->parent == parent_kobj) { 3288 kobj = kobject_get(k); 3289 break; 3290 } 3291 spin_unlock(&sp->glue_dirs.list_lock); 3292 if (kobj) { 3293 mutex_unlock(&gdp_mutex); 3294 subsys_put(sp); 3295 return kobj; 3296 } 3297 3298 /* or create a new class-directory at the parent device */ 3299 k = class_dir_create_and_add(sp, parent_kobj); 3300 /* do not emit an uevent for this simple "glue" directory */ 3301 mutex_unlock(&gdp_mutex); 3302 subsys_put(sp); 3303 return k; 3304 } 3305 3306 /* subsystems can specify a default root directory for their devices */ 3307 if (!parent && dev->bus) { 3308 struct device *dev_root = bus_get_dev_root(dev->bus); 3309 3310 if (dev_root) { 3311 kobj = &dev_root->kobj; 3312 put_device(dev_root); 3313 return kobj; 3314 } 3315 } 3316 3317 if (parent) 3318 return &parent->kobj; 3319 return NULL; 3320 } 3321 3322 static inline bool live_in_glue_dir(struct kobject *kobj, 3323 struct device *dev) 3324 { 3325 struct subsys_private *sp; 3326 bool retval; 3327 3328 if (!kobj || !dev->class) 3329 return false; 3330 3331 sp = class_to_subsys(dev->class); 3332 if (!sp) 3333 return false; 3334 3335 if (kobj->kset == &sp->glue_dirs) 3336 retval = true; 3337 else 3338 retval = false; 3339 3340 subsys_put(sp); 3341 return retval; 3342 } 3343 3344 static inline struct kobject *get_glue_dir(struct device *dev) 3345 { 3346 return dev->kobj.parent; 3347 } 3348 3349 /** 3350 * kobject_has_children - Returns whether a kobject has children. 3351 * @kobj: the object to test 3352 * 3353 * This will return whether a kobject has other kobjects as children. 3354 * 3355 * It does NOT account for the presence of attribute files, only sub 3356 * directories. It also assumes there is no concurrent addition or 3357 * removal of such children, and thus relies on external locking. 3358 */ 3359 static inline bool kobject_has_children(struct kobject *kobj) 3360 { 3361 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3362 3363 return kobj->sd && kobj->sd->dir.subdirs; 3364 } 3365 3366 /* 3367 * make sure cleaning up dir as the last step, we need to make 3368 * sure .release handler of kobject is run with holding the 3369 * global lock 3370 */ 3371 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3372 { 3373 unsigned int ref; 3374 3375 /* see if we live in a "glue" directory */ 3376 if (!live_in_glue_dir(glue_dir, dev)) 3377 return; 3378 3379 mutex_lock(&gdp_mutex); 3380 /** 3381 * There is a race condition between removing glue directory 3382 * and adding a new device under the glue directory. 3383 * 3384 * CPU1: CPU2: 3385 * 3386 * device_add() 3387 * get_device_parent() 3388 * class_dir_create_and_add() 3389 * kobject_add_internal() 3390 * create_dir() // create glue_dir 3391 * 3392 * device_add() 3393 * get_device_parent() 3394 * kobject_get() // get glue_dir 3395 * 3396 * device_del() 3397 * cleanup_glue_dir() 3398 * kobject_del(glue_dir) 3399 * 3400 * kobject_add() 3401 * kobject_add_internal() 3402 * create_dir() // in glue_dir 3403 * sysfs_create_dir_ns() 3404 * kernfs_create_dir_ns(sd) 3405 * 3406 * sysfs_remove_dir() // glue_dir->sd=NULL 3407 * sysfs_put() // free glue_dir->sd 3408 * 3409 * // sd is freed 3410 * kernfs_new_node(sd) 3411 * kernfs_get(glue_dir) 3412 * kernfs_add_one() 3413 * kernfs_put() 3414 * 3415 * Before CPU1 remove last child device under glue dir, if CPU2 add 3416 * a new device under glue dir, the glue_dir kobject reference count 3417 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3418 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3419 * and sysfs_put(). This result in glue_dir->sd is freed. 3420 * 3421 * Then the CPU2 will see a stale "empty" but still potentially used 3422 * glue dir around in kernfs_new_node(). 3423 * 3424 * In order to avoid this happening, we also should make sure that 3425 * kernfs_node for glue_dir is released in CPU1 only when refcount 3426 * for glue_dir kobj is 1. 3427 */ 3428 ref = kref_read(&glue_dir->kref); 3429 if (!kobject_has_children(glue_dir) && !--ref) 3430 kobject_del(glue_dir); 3431 kobject_put(glue_dir); 3432 mutex_unlock(&gdp_mutex); 3433 } 3434 3435 static int device_add_class_symlinks(struct device *dev) 3436 { 3437 struct device_node *of_node = dev_of_node(dev); 3438 struct subsys_private *sp; 3439 int error; 3440 3441 if (of_node) { 3442 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3443 if (error) 3444 dev_warn(dev, "Error %d creating of_node link\n",error); 3445 /* An error here doesn't warrant bringing down the device */ 3446 } 3447 3448 sp = class_to_subsys(dev->class); 3449 if (!sp) 3450 return 0; 3451 3452 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3453 if (error) 3454 goto out_devnode; 3455 3456 if (dev->parent && device_is_not_partition(dev)) { 3457 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3458 "device"); 3459 if (error) 3460 goto out_subsys; 3461 } 3462 3463 /* link in the class directory pointing to the device */ 3464 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3465 if (error) 3466 goto out_device; 3467 goto exit; 3468 3469 out_device: 3470 sysfs_remove_link(&dev->kobj, "device"); 3471 out_subsys: 3472 sysfs_remove_link(&dev->kobj, "subsystem"); 3473 out_devnode: 3474 sysfs_remove_link(&dev->kobj, "of_node"); 3475 exit: 3476 subsys_put(sp); 3477 return error; 3478 } 3479 3480 static void device_remove_class_symlinks(struct device *dev) 3481 { 3482 struct subsys_private *sp = class_to_subsys(dev->class); 3483 3484 if (dev_of_node(dev)) 3485 sysfs_remove_link(&dev->kobj, "of_node"); 3486 3487 if (!sp) 3488 return; 3489 3490 if (dev->parent && device_is_not_partition(dev)) 3491 sysfs_remove_link(&dev->kobj, "device"); 3492 sysfs_remove_link(&dev->kobj, "subsystem"); 3493 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3494 subsys_put(sp); 3495 } 3496 3497 /** 3498 * dev_set_name - set a device name 3499 * @dev: device 3500 * @fmt: format string for the device's name 3501 */ 3502 int dev_set_name(struct device *dev, const char *fmt, ...) 3503 { 3504 va_list vargs; 3505 int err; 3506 3507 va_start(vargs, fmt); 3508 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3509 va_end(vargs); 3510 return err; 3511 } 3512 EXPORT_SYMBOL_GPL(dev_set_name); 3513 3514 /* select a /sys/dev/ directory for the device */ 3515 static struct kobject *device_to_dev_kobj(struct device *dev) 3516 { 3517 if (is_blockdev(dev)) 3518 return sysfs_dev_block_kobj; 3519 else 3520 return sysfs_dev_char_kobj; 3521 } 3522 3523 static int device_create_sys_dev_entry(struct device *dev) 3524 { 3525 struct kobject *kobj = device_to_dev_kobj(dev); 3526 int error = 0; 3527 char devt_str[15]; 3528 3529 if (kobj) { 3530 format_dev_t(devt_str, dev->devt); 3531 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3532 } 3533 3534 return error; 3535 } 3536 3537 static void device_remove_sys_dev_entry(struct device *dev) 3538 { 3539 struct kobject *kobj = device_to_dev_kobj(dev); 3540 char devt_str[15]; 3541 3542 if (kobj) { 3543 format_dev_t(devt_str, dev->devt); 3544 sysfs_remove_link(kobj, devt_str); 3545 } 3546 } 3547 3548 static int device_private_init(struct device *dev) 3549 { 3550 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3551 if (!dev->p) 3552 return -ENOMEM; 3553 dev->p->device = dev; 3554 klist_init(&dev->p->klist_children, klist_children_get, 3555 klist_children_put); 3556 INIT_LIST_HEAD(&dev->p->deferred_probe); 3557 return 0; 3558 } 3559 3560 /** 3561 * device_add - add device to device hierarchy. 3562 * @dev: device. 3563 * 3564 * This is part 2 of device_register(), though may be called 3565 * separately _iff_ device_initialize() has been called separately. 3566 * 3567 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3568 * to the global and sibling lists for the device, then 3569 * adds it to the other relevant subsystems of the driver model. 3570 * 3571 * Do not call this routine or device_register() more than once for 3572 * any device structure. The driver model core is not designed to work 3573 * with devices that get unregistered and then spring back to life. 3574 * (Among other things, it's very hard to guarantee that all references 3575 * to the previous incarnation of @dev have been dropped.) Allocate 3576 * and register a fresh new struct device instead. 3577 * 3578 * NOTE: _Never_ directly free @dev after calling this function, even 3579 * if it returned an error! Always use put_device() to give up your 3580 * reference instead. 3581 * 3582 * Rule of thumb is: if device_add() succeeds, you should call 3583 * device_del() when you want to get rid of it. If device_add() has 3584 * *not* succeeded, use *only* put_device() to drop the reference 3585 * count. 3586 */ 3587 int device_add(struct device *dev) 3588 { 3589 struct subsys_private *sp; 3590 struct device *parent; 3591 struct kobject *kobj; 3592 struct class_interface *class_intf; 3593 int error = -EINVAL; 3594 struct kobject *glue_dir = NULL; 3595 3596 dev = get_device(dev); 3597 if (!dev) 3598 goto done; 3599 3600 if (!dev->p) { 3601 error = device_private_init(dev); 3602 if (error) 3603 goto done; 3604 } 3605 3606 /* 3607 * for statically allocated devices, which should all be converted 3608 * some day, we need to initialize the name. We prevent reading back 3609 * the name, and force the use of dev_name() 3610 */ 3611 if (dev->init_name) { 3612 error = dev_set_name(dev, "%s", dev->init_name); 3613 dev->init_name = NULL; 3614 } 3615 3616 if (dev_name(dev)) 3617 error = 0; 3618 /* subsystems can specify simple device enumeration */ 3619 else if (dev->bus && dev->bus->dev_name) 3620 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3621 else 3622 error = -EINVAL; 3623 if (error) 3624 goto name_error; 3625 3626 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3627 3628 parent = get_device(dev->parent); 3629 kobj = get_device_parent(dev, parent); 3630 if (IS_ERR(kobj)) { 3631 error = PTR_ERR(kobj); 3632 goto parent_error; 3633 } 3634 if (kobj) 3635 dev->kobj.parent = kobj; 3636 3637 /* use parent numa_node */ 3638 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3639 set_dev_node(dev, dev_to_node(parent)); 3640 3641 /* first, register with generic layer. */ 3642 /* we require the name to be set before, and pass NULL */ 3643 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3644 if (error) { 3645 glue_dir = kobj; 3646 goto Error; 3647 } 3648 3649 /* notify platform of device entry */ 3650 device_platform_notify(dev); 3651 3652 error = device_create_file(dev, &dev_attr_uevent); 3653 if (error) 3654 goto attrError; 3655 3656 error = device_add_class_symlinks(dev); 3657 if (error) 3658 goto SymlinkError; 3659 error = device_add_attrs(dev); 3660 if (error) 3661 goto AttrsError; 3662 error = bus_add_device(dev); 3663 if (error) 3664 goto BusError; 3665 error = dpm_sysfs_add(dev); 3666 if (error) 3667 goto DPMError; 3668 device_pm_add(dev); 3669 3670 if (MAJOR(dev->devt)) { 3671 error = device_create_file(dev, &dev_attr_dev); 3672 if (error) 3673 goto DevAttrError; 3674 3675 error = device_create_sys_dev_entry(dev); 3676 if (error) 3677 goto SysEntryError; 3678 3679 devtmpfs_create_node(dev); 3680 } 3681 3682 /* Notify clients of device addition. This call must come 3683 * after dpm_sysfs_add() and before kobject_uevent(). 3684 */ 3685 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3686 kobject_uevent(&dev->kobj, KOBJ_ADD); 3687 3688 /* 3689 * Check if any of the other devices (consumers) have been waiting for 3690 * this device (supplier) to be added so that they can create a device 3691 * link to it. 3692 * 3693 * This needs to happen after device_pm_add() because device_link_add() 3694 * requires the supplier be registered before it's called. 3695 * 3696 * But this also needs to happen before bus_probe_device() to make sure 3697 * waiting consumers can link to it before the driver is bound to the 3698 * device and the driver sync_state callback is called for this device. 3699 */ 3700 if (dev->fwnode && !dev->fwnode->dev) { 3701 dev->fwnode->dev = dev; 3702 fw_devlink_link_device(dev); 3703 } 3704 3705 bus_probe_device(dev); 3706 3707 /* 3708 * If all driver registration is done and a newly added device doesn't 3709 * match with any driver, don't block its consumers from probing in 3710 * case the consumer device is able to operate without this supplier. 3711 */ 3712 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3713 fw_devlink_unblock_consumers(dev); 3714 3715 if (parent) 3716 klist_add_tail(&dev->p->knode_parent, 3717 &parent->p->klist_children); 3718 3719 sp = class_to_subsys(dev->class); 3720 if (sp) { 3721 mutex_lock(&sp->mutex); 3722 /* tie the class to the device */ 3723 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3724 3725 /* notify any interfaces that the device is here */ 3726 list_for_each_entry(class_intf, &sp->interfaces, node) 3727 if (class_intf->add_dev) 3728 class_intf->add_dev(dev); 3729 mutex_unlock(&sp->mutex); 3730 subsys_put(sp); 3731 } 3732 done: 3733 put_device(dev); 3734 return error; 3735 SysEntryError: 3736 if (MAJOR(dev->devt)) 3737 device_remove_file(dev, &dev_attr_dev); 3738 DevAttrError: 3739 device_pm_remove(dev); 3740 dpm_sysfs_remove(dev); 3741 DPMError: 3742 dev->driver = NULL; 3743 bus_remove_device(dev); 3744 BusError: 3745 device_remove_attrs(dev); 3746 AttrsError: 3747 device_remove_class_symlinks(dev); 3748 SymlinkError: 3749 device_remove_file(dev, &dev_attr_uevent); 3750 attrError: 3751 device_platform_notify_remove(dev); 3752 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3753 glue_dir = get_glue_dir(dev); 3754 kobject_del(&dev->kobj); 3755 Error: 3756 cleanup_glue_dir(dev, glue_dir); 3757 parent_error: 3758 put_device(parent); 3759 name_error: 3760 kfree(dev->p); 3761 dev->p = NULL; 3762 goto done; 3763 } 3764 EXPORT_SYMBOL_GPL(device_add); 3765 3766 /** 3767 * device_register - register a device with the system. 3768 * @dev: pointer to the device structure 3769 * 3770 * This happens in two clean steps - initialize the device 3771 * and add it to the system. The two steps can be called 3772 * separately, but this is the easiest and most common. 3773 * I.e. you should only call the two helpers separately if 3774 * have a clearly defined need to use and refcount the device 3775 * before it is added to the hierarchy. 3776 * 3777 * For more information, see the kerneldoc for device_initialize() 3778 * and device_add(). 3779 * 3780 * NOTE: _Never_ directly free @dev after calling this function, even 3781 * if it returned an error! Always use put_device() to give up the 3782 * reference initialized in this function instead. 3783 */ 3784 int device_register(struct device *dev) 3785 { 3786 device_initialize(dev); 3787 return device_add(dev); 3788 } 3789 EXPORT_SYMBOL_GPL(device_register); 3790 3791 /** 3792 * get_device - increment reference count for device. 3793 * @dev: device. 3794 * 3795 * This simply forwards the call to kobject_get(), though 3796 * we do take care to provide for the case that we get a NULL 3797 * pointer passed in. 3798 */ 3799 struct device *get_device(struct device *dev) 3800 { 3801 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3802 } 3803 EXPORT_SYMBOL_GPL(get_device); 3804 3805 /** 3806 * put_device - decrement reference count. 3807 * @dev: device in question. 3808 */ 3809 void put_device(struct device *dev) 3810 { 3811 /* might_sleep(); */ 3812 if (dev) 3813 kobject_put(&dev->kobj); 3814 } 3815 EXPORT_SYMBOL_GPL(put_device); 3816 3817 bool kill_device(struct device *dev) 3818 { 3819 /* 3820 * Require the device lock and set the "dead" flag to guarantee that 3821 * the update behavior is consistent with the other bitfields near 3822 * it and that we cannot have an asynchronous probe routine trying 3823 * to run while we are tearing out the bus/class/sysfs from 3824 * underneath the device. 3825 */ 3826 device_lock_assert(dev); 3827 3828 if (dev->p->dead) 3829 return false; 3830 dev->p->dead = true; 3831 return true; 3832 } 3833 EXPORT_SYMBOL_GPL(kill_device); 3834 3835 /** 3836 * device_del - delete device from system. 3837 * @dev: device. 3838 * 3839 * This is the first part of the device unregistration 3840 * sequence. This removes the device from the lists we control 3841 * from here, has it removed from the other driver model 3842 * subsystems it was added to in device_add(), and removes it 3843 * from the kobject hierarchy. 3844 * 3845 * NOTE: this should be called manually _iff_ device_add() was 3846 * also called manually. 3847 */ 3848 void device_del(struct device *dev) 3849 { 3850 struct subsys_private *sp; 3851 struct device *parent = dev->parent; 3852 struct kobject *glue_dir = NULL; 3853 struct class_interface *class_intf; 3854 unsigned int noio_flag; 3855 3856 device_lock(dev); 3857 kill_device(dev); 3858 device_unlock(dev); 3859 3860 if (dev->fwnode && dev->fwnode->dev == dev) 3861 dev->fwnode->dev = NULL; 3862 3863 /* Notify clients of device removal. This call must come 3864 * before dpm_sysfs_remove(). 3865 */ 3866 noio_flag = memalloc_noio_save(); 3867 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3868 3869 dpm_sysfs_remove(dev); 3870 if (parent) 3871 klist_del(&dev->p->knode_parent); 3872 if (MAJOR(dev->devt)) { 3873 devtmpfs_delete_node(dev); 3874 device_remove_sys_dev_entry(dev); 3875 device_remove_file(dev, &dev_attr_dev); 3876 } 3877 3878 sp = class_to_subsys(dev->class); 3879 if (sp) { 3880 device_remove_class_symlinks(dev); 3881 3882 mutex_lock(&sp->mutex); 3883 /* notify any interfaces that the device is now gone */ 3884 list_for_each_entry(class_intf, &sp->interfaces, node) 3885 if (class_intf->remove_dev) 3886 class_intf->remove_dev(dev); 3887 /* remove the device from the class list */ 3888 klist_del(&dev->p->knode_class); 3889 mutex_unlock(&sp->mutex); 3890 subsys_put(sp); 3891 } 3892 device_remove_file(dev, &dev_attr_uevent); 3893 device_remove_attrs(dev); 3894 bus_remove_device(dev); 3895 device_pm_remove(dev); 3896 driver_deferred_probe_del(dev); 3897 device_platform_notify_remove(dev); 3898 device_links_purge(dev); 3899 3900 /* 3901 * If a device does not have a driver attached, we need to clean 3902 * up any managed resources. We do this in device_release(), but 3903 * it's never called (and we leak the device) if a managed 3904 * resource holds a reference to the device. So release all 3905 * managed resources here, like we do in driver_detach(). We 3906 * still need to do so again in device_release() in case someone 3907 * adds a new resource after this point, though. 3908 */ 3909 devres_release_all(dev); 3910 3911 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3912 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3913 glue_dir = get_glue_dir(dev); 3914 kobject_del(&dev->kobj); 3915 cleanup_glue_dir(dev, glue_dir); 3916 memalloc_noio_restore(noio_flag); 3917 put_device(parent); 3918 } 3919 EXPORT_SYMBOL_GPL(device_del); 3920 3921 /** 3922 * device_unregister - unregister device from system. 3923 * @dev: device going away. 3924 * 3925 * We do this in two parts, like we do device_register(). First, 3926 * we remove it from all the subsystems with device_del(), then 3927 * we decrement the reference count via put_device(). If that 3928 * is the final reference count, the device will be cleaned up 3929 * via device_release() above. Otherwise, the structure will 3930 * stick around until the final reference to the device is dropped. 3931 */ 3932 void device_unregister(struct device *dev) 3933 { 3934 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3935 device_del(dev); 3936 put_device(dev); 3937 } 3938 EXPORT_SYMBOL_GPL(device_unregister); 3939 3940 static struct device *prev_device(struct klist_iter *i) 3941 { 3942 struct klist_node *n = klist_prev(i); 3943 struct device *dev = NULL; 3944 struct device_private *p; 3945 3946 if (n) { 3947 p = to_device_private_parent(n); 3948 dev = p->device; 3949 } 3950 return dev; 3951 } 3952 3953 static struct device *next_device(struct klist_iter *i) 3954 { 3955 struct klist_node *n = klist_next(i); 3956 struct device *dev = NULL; 3957 struct device_private *p; 3958 3959 if (n) { 3960 p = to_device_private_parent(n); 3961 dev = p->device; 3962 } 3963 return dev; 3964 } 3965 3966 /** 3967 * device_get_devnode - path of device node file 3968 * @dev: device 3969 * @mode: returned file access mode 3970 * @uid: returned file owner 3971 * @gid: returned file group 3972 * @tmp: possibly allocated string 3973 * 3974 * Return the relative path of a possible device node. 3975 * Non-default names may need to allocate a memory to compose 3976 * a name. This memory is returned in tmp and needs to be 3977 * freed by the caller. 3978 */ 3979 const char *device_get_devnode(const struct device *dev, 3980 umode_t *mode, kuid_t *uid, kgid_t *gid, 3981 const char **tmp) 3982 { 3983 char *s; 3984 3985 *tmp = NULL; 3986 3987 /* the device type may provide a specific name */ 3988 if (dev->type && dev->type->devnode) 3989 *tmp = dev->type->devnode(dev, mode, uid, gid); 3990 if (*tmp) 3991 return *tmp; 3992 3993 /* the class may provide a specific name */ 3994 if (dev->class && dev->class->devnode) 3995 *tmp = dev->class->devnode(dev, mode); 3996 if (*tmp) 3997 return *tmp; 3998 3999 /* return name without allocation, tmp == NULL */ 4000 if (strchr(dev_name(dev), '!') == NULL) 4001 return dev_name(dev); 4002 4003 /* replace '!' in the name with '/' */ 4004 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 4005 if (!s) 4006 return NULL; 4007 return *tmp = s; 4008 } 4009 4010 /** 4011 * device_for_each_child - device child iterator. 4012 * @parent: parent struct device. 4013 * @fn: function to be called for each device. 4014 * @data: data for the callback. 4015 * 4016 * Iterate over @parent's child devices, and call @fn for each, 4017 * passing it @data. 4018 * 4019 * We check the return of @fn each time. If it returns anything 4020 * other than 0, we break out and return that value. 4021 */ 4022 int device_for_each_child(struct device *parent, void *data, 4023 int (*fn)(struct device *dev, void *data)) 4024 { 4025 struct klist_iter i; 4026 struct device *child; 4027 int error = 0; 4028 4029 if (!parent->p) 4030 return 0; 4031 4032 klist_iter_init(&parent->p->klist_children, &i); 4033 while (!error && (child = next_device(&i))) 4034 error = fn(child, data); 4035 klist_iter_exit(&i); 4036 return error; 4037 } 4038 EXPORT_SYMBOL_GPL(device_for_each_child); 4039 4040 /** 4041 * device_for_each_child_reverse - device child iterator in reversed order. 4042 * @parent: parent struct device. 4043 * @fn: function to be called for each device. 4044 * @data: data for the callback. 4045 * 4046 * Iterate over @parent's child devices, and call @fn for each, 4047 * passing it @data. 4048 * 4049 * We check the return of @fn each time. If it returns anything 4050 * other than 0, we break out and return that value. 4051 */ 4052 int device_for_each_child_reverse(struct device *parent, void *data, 4053 int (*fn)(struct device *dev, void *data)) 4054 { 4055 struct klist_iter i; 4056 struct device *child; 4057 int error = 0; 4058 4059 if (!parent->p) 4060 return 0; 4061 4062 klist_iter_init(&parent->p->klist_children, &i); 4063 while ((child = prev_device(&i)) && !error) 4064 error = fn(child, data); 4065 klist_iter_exit(&i); 4066 return error; 4067 } 4068 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4069 4070 /** 4071 * device_find_child - device iterator for locating a particular device. 4072 * @parent: parent struct device 4073 * @match: Callback function to check device 4074 * @data: Data to pass to match function 4075 * 4076 * This is similar to the device_for_each_child() function above, but it 4077 * returns a reference to a device that is 'found' for later use, as 4078 * determined by the @match callback. 4079 * 4080 * The callback should return 0 if the device doesn't match and non-zero 4081 * if it does. If the callback returns non-zero and a reference to the 4082 * current device can be obtained, this function will return to the caller 4083 * and not iterate over any more devices. 4084 * 4085 * NOTE: you will need to drop the reference with put_device() after use. 4086 */ 4087 struct device *device_find_child(struct device *parent, void *data, 4088 int (*match)(struct device *dev, void *data)) 4089 { 4090 struct klist_iter i; 4091 struct device *child; 4092 4093 if (!parent) 4094 return NULL; 4095 4096 klist_iter_init(&parent->p->klist_children, &i); 4097 while ((child = next_device(&i))) 4098 if (match(child, data) && get_device(child)) 4099 break; 4100 klist_iter_exit(&i); 4101 return child; 4102 } 4103 EXPORT_SYMBOL_GPL(device_find_child); 4104 4105 /** 4106 * device_find_child_by_name - device iterator for locating a child device. 4107 * @parent: parent struct device 4108 * @name: name of the child device 4109 * 4110 * This is similar to the device_find_child() function above, but it 4111 * returns a reference to a device that has the name @name. 4112 * 4113 * NOTE: you will need to drop the reference with put_device() after use. 4114 */ 4115 struct device *device_find_child_by_name(struct device *parent, 4116 const char *name) 4117 { 4118 struct klist_iter i; 4119 struct device *child; 4120 4121 if (!parent) 4122 return NULL; 4123 4124 klist_iter_init(&parent->p->klist_children, &i); 4125 while ((child = next_device(&i))) 4126 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4127 break; 4128 klist_iter_exit(&i); 4129 return child; 4130 } 4131 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4132 4133 static int match_any(struct device *dev, void *unused) 4134 { 4135 return 1; 4136 } 4137 4138 /** 4139 * device_find_any_child - device iterator for locating a child device, if any. 4140 * @parent: parent struct device 4141 * 4142 * This is similar to the device_find_child() function above, but it 4143 * returns a reference to a child device, if any. 4144 * 4145 * NOTE: you will need to drop the reference with put_device() after use. 4146 */ 4147 struct device *device_find_any_child(struct device *parent) 4148 { 4149 return device_find_child(parent, NULL, match_any); 4150 } 4151 EXPORT_SYMBOL_GPL(device_find_any_child); 4152 4153 int __init devices_init(void) 4154 { 4155 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4156 if (!devices_kset) 4157 return -ENOMEM; 4158 dev_kobj = kobject_create_and_add("dev", NULL); 4159 if (!dev_kobj) 4160 goto dev_kobj_err; 4161 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4162 if (!sysfs_dev_block_kobj) 4163 goto block_kobj_err; 4164 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4165 if (!sysfs_dev_char_kobj) 4166 goto char_kobj_err; 4167 4168 return 0; 4169 4170 char_kobj_err: 4171 kobject_put(sysfs_dev_block_kobj); 4172 block_kobj_err: 4173 kobject_put(dev_kobj); 4174 dev_kobj_err: 4175 kset_unregister(devices_kset); 4176 return -ENOMEM; 4177 } 4178 4179 static int device_check_offline(struct device *dev, void *not_used) 4180 { 4181 int ret; 4182 4183 ret = device_for_each_child(dev, NULL, device_check_offline); 4184 if (ret) 4185 return ret; 4186 4187 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4188 } 4189 4190 /** 4191 * device_offline - Prepare the device for hot-removal. 4192 * @dev: Device to be put offline. 4193 * 4194 * Execute the device bus type's .offline() callback, if present, to prepare 4195 * the device for a subsequent hot-removal. If that succeeds, the device must 4196 * not be used until either it is removed or its bus type's .online() callback 4197 * is executed. 4198 * 4199 * Call under device_hotplug_lock. 4200 */ 4201 int device_offline(struct device *dev) 4202 { 4203 int ret; 4204 4205 if (dev->offline_disabled) 4206 return -EPERM; 4207 4208 ret = device_for_each_child(dev, NULL, device_check_offline); 4209 if (ret) 4210 return ret; 4211 4212 device_lock(dev); 4213 if (device_supports_offline(dev)) { 4214 if (dev->offline) { 4215 ret = 1; 4216 } else { 4217 ret = dev->bus->offline(dev); 4218 if (!ret) { 4219 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4220 dev->offline = true; 4221 } 4222 } 4223 } 4224 device_unlock(dev); 4225 4226 return ret; 4227 } 4228 4229 /** 4230 * device_online - Put the device back online after successful device_offline(). 4231 * @dev: Device to be put back online. 4232 * 4233 * If device_offline() has been successfully executed for @dev, but the device 4234 * has not been removed subsequently, execute its bus type's .online() callback 4235 * to indicate that the device can be used again. 4236 * 4237 * Call under device_hotplug_lock. 4238 */ 4239 int device_online(struct device *dev) 4240 { 4241 int ret = 0; 4242 4243 device_lock(dev); 4244 if (device_supports_offline(dev)) { 4245 if (dev->offline) { 4246 ret = dev->bus->online(dev); 4247 if (!ret) { 4248 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4249 dev->offline = false; 4250 } 4251 } else { 4252 ret = 1; 4253 } 4254 } 4255 device_unlock(dev); 4256 4257 return ret; 4258 } 4259 4260 struct root_device { 4261 struct device dev; 4262 struct module *owner; 4263 }; 4264 4265 static inline struct root_device *to_root_device(struct device *d) 4266 { 4267 return container_of(d, struct root_device, dev); 4268 } 4269 4270 static void root_device_release(struct device *dev) 4271 { 4272 kfree(to_root_device(dev)); 4273 } 4274 4275 /** 4276 * __root_device_register - allocate and register a root device 4277 * @name: root device name 4278 * @owner: owner module of the root device, usually THIS_MODULE 4279 * 4280 * This function allocates a root device and registers it 4281 * using device_register(). In order to free the returned 4282 * device, use root_device_unregister(). 4283 * 4284 * Root devices are dummy devices which allow other devices 4285 * to be grouped under /sys/devices. Use this function to 4286 * allocate a root device and then use it as the parent of 4287 * any device which should appear under /sys/devices/{name} 4288 * 4289 * The /sys/devices/{name} directory will also contain a 4290 * 'module' symlink which points to the @owner directory 4291 * in sysfs. 4292 * 4293 * Returns &struct device pointer on success, or ERR_PTR() on error. 4294 * 4295 * Note: You probably want to use root_device_register(). 4296 */ 4297 struct device *__root_device_register(const char *name, struct module *owner) 4298 { 4299 struct root_device *root; 4300 int err = -ENOMEM; 4301 4302 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4303 if (!root) 4304 return ERR_PTR(err); 4305 4306 err = dev_set_name(&root->dev, "%s", name); 4307 if (err) { 4308 kfree(root); 4309 return ERR_PTR(err); 4310 } 4311 4312 root->dev.release = root_device_release; 4313 4314 err = device_register(&root->dev); 4315 if (err) { 4316 put_device(&root->dev); 4317 return ERR_PTR(err); 4318 } 4319 4320 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4321 if (owner) { 4322 struct module_kobject *mk = &owner->mkobj; 4323 4324 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4325 if (err) { 4326 device_unregister(&root->dev); 4327 return ERR_PTR(err); 4328 } 4329 root->owner = owner; 4330 } 4331 #endif 4332 4333 return &root->dev; 4334 } 4335 EXPORT_SYMBOL_GPL(__root_device_register); 4336 4337 /** 4338 * root_device_unregister - unregister and free a root device 4339 * @dev: device going away 4340 * 4341 * This function unregisters and cleans up a device that was created by 4342 * root_device_register(). 4343 */ 4344 void root_device_unregister(struct device *dev) 4345 { 4346 struct root_device *root = to_root_device(dev); 4347 4348 if (root->owner) 4349 sysfs_remove_link(&root->dev.kobj, "module"); 4350 4351 device_unregister(dev); 4352 } 4353 EXPORT_SYMBOL_GPL(root_device_unregister); 4354 4355 4356 static void device_create_release(struct device *dev) 4357 { 4358 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4359 kfree(dev); 4360 } 4361 4362 static __printf(6, 0) struct device * 4363 device_create_groups_vargs(const struct class *class, struct device *parent, 4364 dev_t devt, void *drvdata, 4365 const struct attribute_group **groups, 4366 const char *fmt, va_list args) 4367 { 4368 struct device *dev = NULL; 4369 int retval = -ENODEV; 4370 4371 if (IS_ERR_OR_NULL(class)) 4372 goto error; 4373 4374 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4375 if (!dev) { 4376 retval = -ENOMEM; 4377 goto error; 4378 } 4379 4380 device_initialize(dev); 4381 dev->devt = devt; 4382 dev->class = class; 4383 dev->parent = parent; 4384 dev->groups = groups; 4385 dev->release = device_create_release; 4386 dev_set_drvdata(dev, drvdata); 4387 4388 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4389 if (retval) 4390 goto error; 4391 4392 retval = device_add(dev); 4393 if (retval) 4394 goto error; 4395 4396 return dev; 4397 4398 error: 4399 put_device(dev); 4400 return ERR_PTR(retval); 4401 } 4402 4403 /** 4404 * device_create - creates a device and registers it with sysfs 4405 * @class: pointer to the struct class that this device should be registered to 4406 * @parent: pointer to the parent struct device of this new device, if any 4407 * @devt: the dev_t for the char device to be added 4408 * @drvdata: the data to be added to the device for callbacks 4409 * @fmt: string for the device's name 4410 * 4411 * This function can be used by char device classes. A struct device 4412 * will be created in sysfs, registered to the specified class. 4413 * 4414 * A "dev" file will be created, showing the dev_t for the device, if 4415 * the dev_t is not 0,0. 4416 * If a pointer to a parent struct device is passed in, the newly created 4417 * struct device will be a child of that device in sysfs. 4418 * The pointer to the struct device will be returned from the call. 4419 * Any further sysfs files that might be required can be created using this 4420 * pointer. 4421 * 4422 * Returns &struct device pointer on success, or ERR_PTR() on error. 4423 */ 4424 struct device *device_create(const struct class *class, struct device *parent, 4425 dev_t devt, void *drvdata, const char *fmt, ...) 4426 { 4427 va_list vargs; 4428 struct device *dev; 4429 4430 va_start(vargs, fmt); 4431 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4432 fmt, vargs); 4433 va_end(vargs); 4434 return dev; 4435 } 4436 EXPORT_SYMBOL_GPL(device_create); 4437 4438 /** 4439 * device_create_with_groups - creates a device and registers it with sysfs 4440 * @class: pointer to the struct class that this device should be registered to 4441 * @parent: pointer to the parent struct device of this new device, if any 4442 * @devt: the dev_t for the char device to be added 4443 * @drvdata: the data to be added to the device for callbacks 4444 * @groups: NULL-terminated list of attribute groups to be created 4445 * @fmt: string for the device's name 4446 * 4447 * This function can be used by char device classes. A struct device 4448 * will be created in sysfs, registered to the specified class. 4449 * Additional attributes specified in the groups parameter will also 4450 * be created automatically. 4451 * 4452 * A "dev" file will be created, showing the dev_t for the device, if 4453 * the dev_t is not 0,0. 4454 * If a pointer to a parent struct device is passed in, the newly created 4455 * struct device will be a child of that device in sysfs. 4456 * The pointer to the struct device will be returned from the call. 4457 * Any further sysfs files that might be required can be created using this 4458 * pointer. 4459 * 4460 * Returns &struct device pointer on success, or ERR_PTR() on error. 4461 */ 4462 struct device *device_create_with_groups(const struct class *class, 4463 struct device *parent, dev_t devt, 4464 void *drvdata, 4465 const struct attribute_group **groups, 4466 const char *fmt, ...) 4467 { 4468 va_list vargs; 4469 struct device *dev; 4470 4471 va_start(vargs, fmt); 4472 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4473 fmt, vargs); 4474 va_end(vargs); 4475 return dev; 4476 } 4477 EXPORT_SYMBOL_GPL(device_create_with_groups); 4478 4479 /** 4480 * device_destroy - removes a device that was created with device_create() 4481 * @class: pointer to the struct class that this device was registered with 4482 * @devt: the dev_t of the device that was previously registered 4483 * 4484 * This call unregisters and cleans up a device that was created with a 4485 * call to device_create(). 4486 */ 4487 void device_destroy(const struct class *class, dev_t devt) 4488 { 4489 struct device *dev; 4490 4491 dev = class_find_device_by_devt(class, devt); 4492 if (dev) { 4493 put_device(dev); 4494 device_unregister(dev); 4495 } 4496 } 4497 EXPORT_SYMBOL_GPL(device_destroy); 4498 4499 /** 4500 * device_rename - renames a device 4501 * @dev: the pointer to the struct device to be renamed 4502 * @new_name: the new name of the device 4503 * 4504 * It is the responsibility of the caller to provide mutual 4505 * exclusion between two different calls of device_rename 4506 * on the same device to ensure that new_name is valid and 4507 * won't conflict with other devices. 4508 * 4509 * Note: given that some subsystems (networking and infiniband) use this 4510 * function, with no immediate plans for this to change, we cannot assume or 4511 * require that this function not be called at all. 4512 * 4513 * However, if you're writing new code, do not call this function. The following 4514 * text from Kay Sievers offers some insight: 4515 * 4516 * Renaming devices is racy at many levels, symlinks and other stuff are not 4517 * replaced atomically, and you get a "move" uevent, but it's not easy to 4518 * connect the event to the old and new device. Device nodes are not renamed at 4519 * all, there isn't even support for that in the kernel now. 4520 * 4521 * In the meantime, during renaming, your target name might be taken by another 4522 * driver, creating conflicts. Or the old name is taken directly after you 4523 * renamed it -- then you get events for the same DEVPATH, before you even see 4524 * the "move" event. It's just a mess, and nothing new should ever rely on 4525 * kernel device renaming. Besides that, it's not even implemented now for 4526 * other things than (driver-core wise very simple) network devices. 4527 * 4528 * Make up a "real" name in the driver before you register anything, or add 4529 * some other attributes for userspace to find the device, or use udev to add 4530 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4531 * don't even want to get into that and try to implement the missing pieces in 4532 * the core. We really have other pieces to fix in the driver core mess. :) 4533 */ 4534 int device_rename(struct device *dev, const char *new_name) 4535 { 4536 struct kobject *kobj = &dev->kobj; 4537 char *old_device_name = NULL; 4538 int error; 4539 4540 dev = get_device(dev); 4541 if (!dev) 4542 return -EINVAL; 4543 4544 dev_dbg(dev, "renaming to %s\n", new_name); 4545 4546 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4547 if (!old_device_name) { 4548 error = -ENOMEM; 4549 goto out; 4550 } 4551 4552 if (dev->class) { 4553 struct subsys_private *sp = class_to_subsys(dev->class); 4554 4555 if (!sp) { 4556 error = -EINVAL; 4557 goto out; 4558 } 4559 4560 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4561 new_name, kobject_namespace(kobj)); 4562 subsys_put(sp); 4563 if (error) 4564 goto out; 4565 } 4566 4567 error = kobject_rename(kobj, new_name); 4568 if (error) 4569 goto out; 4570 4571 out: 4572 put_device(dev); 4573 4574 kfree(old_device_name); 4575 4576 return error; 4577 } 4578 EXPORT_SYMBOL_GPL(device_rename); 4579 4580 static int device_move_class_links(struct device *dev, 4581 struct device *old_parent, 4582 struct device *new_parent) 4583 { 4584 int error = 0; 4585 4586 if (old_parent) 4587 sysfs_remove_link(&dev->kobj, "device"); 4588 if (new_parent) 4589 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4590 "device"); 4591 return error; 4592 } 4593 4594 /** 4595 * device_move - moves a device to a new parent 4596 * @dev: the pointer to the struct device to be moved 4597 * @new_parent: the new parent of the device (can be NULL) 4598 * @dpm_order: how to reorder the dpm_list 4599 */ 4600 int device_move(struct device *dev, struct device *new_parent, 4601 enum dpm_order dpm_order) 4602 { 4603 int error; 4604 struct device *old_parent; 4605 struct kobject *new_parent_kobj; 4606 4607 dev = get_device(dev); 4608 if (!dev) 4609 return -EINVAL; 4610 4611 device_pm_lock(); 4612 new_parent = get_device(new_parent); 4613 new_parent_kobj = get_device_parent(dev, new_parent); 4614 if (IS_ERR(new_parent_kobj)) { 4615 error = PTR_ERR(new_parent_kobj); 4616 put_device(new_parent); 4617 goto out; 4618 } 4619 4620 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4621 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4622 error = kobject_move(&dev->kobj, new_parent_kobj); 4623 if (error) { 4624 cleanup_glue_dir(dev, new_parent_kobj); 4625 put_device(new_parent); 4626 goto out; 4627 } 4628 old_parent = dev->parent; 4629 dev->parent = new_parent; 4630 if (old_parent) 4631 klist_remove(&dev->p->knode_parent); 4632 if (new_parent) { 4633 klist_add_tail(&dev->p->knode_parent, 4634 &new_parent->p->klist_children); 4635 set_dev_node(dev, dev_to_node(new_parent)); 4636 } 4637 4638 if (dev->class) { 4639 error = device_move_class_links(dev, old_parent, new_parent); 4640 if (error) { 4641 /* We ignore errors on cleanup since we're hosed anyway... */ 4642 device_move_class_links(dev, new_parent, old_parent); 4643 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4644 if (new_parent) 4645 klist_remove(&dev->p->knode_parent); 4646 dev->parent = old_parent; 4647 if (old_parent) { 4648 klist_add_tail(&dev->p->knode_parent, 4649 &old_parent->p->klist_children); 4650 set_dev_node(dev, dev_to_node(old_parent)); 4651 } 4652 } 4653 cleanup_glue_dir(dev, new_parent_kobj); 4654 put_device(new_parent); 4655 goto out; 4656 } 4657 } 4658 switch (dpm_order) { 4659 case DPM_ORDER_NONE: 4660 break; 4661 case DPM_ORDER_DEV_AFTER_PARENT: 4662 device_pm_move_after(dev, new_parent); 4663 devices_kset_move_after(dev, new_parent); 4664 break; 4665 case DPM_ORDER_PARENT_BEFORE_DEV: 4666 device_pm_move_before(new_parent, dev); 4667 devices_kset_move_before(new_parent, dev); 4668 break; 4669 case DPM_ORDER_DEV_LAST: 4670 device_pm_move_last(dev); 4671 devices_kset_move_last(dev); 4672 break; 4673 } 4674 4675 put_device(old_parent); 4676 out: 4677 device_pm_unlock(); 4678 put_device(dev); 4679 return error; 4680 } 4681 EXPORT_SYMBOL_GPL(device_move); 4682 4683 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4684 kgid_t kgid) 4685 { 4686 struct kobject *kobj = &dev->kobj; 4687 const struct class *class = dev->class; 4688 const struct device_type *type = dev->type; 4689 int error; 4690 4691 if (class) { 4692 /* 4693 * Change the device groups of the device class for @dev to 4694 * @kuid/@kgid. 4695 */ 4696 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4697 kgid); 4698 if (error) 4699 return error; 4700 } 4701 4702 if (type) { 4703 /* 4704 * Change the device groups of the device type for @dev to 4705 * @kuid/@kgid. 4706 */ 4707 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4708 kgid); 4709 if (error) 4710 return error; 4711 } 4712 4713 /* Change the device groups of @dev to @kuid/@kgid. */ 4714 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4715 if (error) 4716 return error; 4717 4718 if (device_supports_offline(dev) && !dev->offline_disabled) { 4719 /* Change online device attributes of @dev to @kuid/@kgid. */ 4720 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4721 kuid, kgid); 4722 if (error) 4723 return error; 4724 } 4725 4726 return 0; 4727 } 4728 4729 /** 4730 * device_change_owner - change the owner of an existing device. 4731 * @dev: device. 4732 * @kuid: new owner's kuid 4733 * @kgid: new owner's kgid 4734 * 4735 * This changes the owner of @dev and its corresponding sysfs entries to 4736 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4737 * core. 4738 * 4739 * Returns 0 on success or error code on failure. 4740 */ 4741 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4742 { 4743 int error; 4744 struct kobject *kobj = &dev->kobj; 4745 struct subsys_private *sp; 4746 4747 dev = get_device(dev); 4748 if (!dev) 4749 return -EINVAL; 4750 4751 /* 4752 * Change the kobject and the default attributes and groups of the 4753 * ktype associated with it to @kuid/@kgid. 4754 */ 4755 error = sysfs_change_owner(kobj, kuid, kgid); 4756 if (error) 4757 goto out; 4758 4759 /* 4760 * Change the uevent file for @dev to the new owner. The uevent file 4761 * was created in a separate step when @dev got added and we mirror 4762 * that step here. 4763 */ 4764 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4765 kgid); 4766 if (error) 4767 goto out; 4768 4769 /* 4770 * Change the device groups, the device groups associated with the 4771 * device class, and the groups associated with the device type of @dev 4772 * to @kuid/@kgid. 4773 */ 4774 error = device_attrs_change_owner(dev, kuid, kgid); 4775 if (error) 4776 goto out; 4777 4778 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4779 if (error) 4780 goto out; 4781 4782 /* 4783 * Change the owner of the symlink located in the class directory of 4784 * the device class associated with @dev which points to the actual 4785 * directory entry for @dev to @kuid/@kgid. This ensures that the 4786 * symlink shows the same permissions as its target. 4787 */ 4788 sp = class_to_subsys(dev->class); 4789 if (!sp) { 4790 error = -EINVAL; 4791 goto out; 4792 } 4793 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4794 subsys_put(sp); 4795 4796 out: 4797 put_device(dev); 4798 return error; 4799 } 4800 EXPORT_SYMBOL_GPL(device_change_owner); 4801 4802 /** 4803 * device_shutdown - call ->shutdown() on each device to shutdown. 4804 */ 4805 void device_shutdown(void) 4806 { 4807 struct device *dev, *parent; 4808 4809 wait_for_device_probe(); 4810 device_block_probing(); 4811 4812 cpufreq_suspend(); 4813 4814 spin_lock(&devices_kset->list_lock); 4815 /* 4816 * Walk the devices list backward, shutting down each in turn. 4817 * Beware that device unplug events may also start pulling 4818 * devices offline, even as the system is shutting down. 4819 */ 4820 while (!list_empty(&devices_kset->list)) { 4821 dev = list_entry(devices_kset->list.prev, struct device, 4822 kobj.entry); 4823 4824 /* 4825 * hold reference count of device's parent to 4826 * prevent it from being freed because parent's 4827 * lock is to be held 4828 */ 4829 parent = get_device(dev->parent); 4830 get_device(dev); 4831 /* 4832 * Make sure the device is off the kset list, in the 4833 * event that dev->*->shutdown() doesn't remove it. 4834 */ 4835 list_del_init(&dev->kobj.entry); 4836 spin_unlock(&devices_kset->list_lock); 4837 4838 /* hold lock to avoid race with probe/release */ 4839 if (parent) 4840 device_lock(parent); 4841 device_lock(dev); 4842 4843 /* Don't allow any more runtime suspends */ 4844 pm_runtime_get_noresume(dev); 4845 pm_runtime_barrier(dev); 4846 4847 if (dev->class && dev->class->shutdown_pre) { 4848 if (initcall_debug) 4849 dev_info(dev, "shutdown_pre\n"); 4850 dev->class->shutdown_pre(dev); 4851 } 4852 if (dev->bus && dev->bus->shutdown) { 4853 if (initcall_debug) 4854 dev_info(dev, "shutdown\n"); 4855 dev->bus->shutdown(dev); 4856 } else if (dev->driver && dev->driver->shutdown) { 4857 if (initcall_debug) 4858 dev_info(dev, "shutdown\n"); 4859 dev->driver->shutdown(dev); 4860 } 4861 4862 device_unlock(dev); 4863 if (parent) 4864 device_unlock(parent); 4865 4866 put_device(dev); 4867 put_device(parent); 4868 4869 spin_lock(&devices_kset->list_lock); 4870 } 4871 spin_unlock(&devices_kset->list_lock); 4872 } 4873 4874 /* 4875 * Device logging functions 4876 */ 4877 4878 #ifdef CONFIG_PRINTK 4879 static void 4880 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4881 { 4882 const char *subsys; 4883 4884 memset(dev_info, 0, sizeof(*dev_info)); 4885 4886 if (dev->class) 4887 subsys = dev->class->name; 4888 else if (dev->bus) 4889 subsys = dev->bus->name; 4890 else 4891 return; 4892 4893 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4894 4895 /* 4896 * Add device identifier DEVICE=: 4897 * b12:8 block dev_t 4898 * c127:3 char dev_t 4899 * n8 netdev ifindex 4900 * +sound:card0 subsystem:devname 4901 */ 4902 if (MAJOR(dev->devt)) { 4903 char c; 4904 4905 if (strcmp(subsys, "block") == 0) 4906 c = 'b'; 4907 else 4908 c = 'c'; 4909 4910 snprintf(dev_info->device, sizeof(dev_info->device), 4911 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4912 } else if (strcmp(subsys, "net") == 0) { 4913 struct net_device *net = to_net_dev(dev); 4914 4915 snprintf(dev_info->device, sizeof(dev_info->device), 4916 "n%u", net->ifindex); 4917 } else { 4918 snprintf(dev_info->device, sizeof(dev_info->device), 4919 "+%s:%s", subsys, dev_name(dev)); 4920 } 4921 } 4922 4923 int dev_vprintk_emit(int level, const struct device *dev, 4924 const char *fmt, va_list args) 4925 { 4926 struct dev_printk_info dev_info; 4927 4928 set_dev_info(dev, &dev_info); 4929 4930 return vprintk_emit(0, level, &dev_info, fmt, args); 4931 } 4932 EXPORT_SYMBOL(dev_vprintk_emit); 4933 4934 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4935 { 4936 va_list args; 4937 int r; 4938 4939 va_start(args, fmt); 4940 4941 r = dev_vprintk_emit(level, dev, fmt, args); 4942 4943 va_end(args); 4944 4945 return r; 4946 } 4947 EXPORT_SYMBOL(dev_printk_emit); 4948 4949 static void __dev_printk(const char *level, const struct device *dev, 4950 struct va_format *vaf) 4951 { 4952 if (dev) 4953 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4954 dev_driver_string(dev), dev_name(dev), vaf); 4955 else 4956 printk("%s(NULL device *): %pV", level, vaf); 4957 } 4958 4959 void _dev_printk(const char *level, const struct device *dev, 4960 const char *fmt, ...) 4961 { 4962 struct va_format vaf; 4963 va_list args; 4964 4965 va_start(args, fmt); 4966 4967 vaf.fmt = fmt; 4968 vaf.va = &args; 4969 4970 __dev_printk(level, dev, &vaf); 4971 4972 va_end(args); 4973 } 4974 EXPORT_SYMBOL(_dev_printk); 4975 4976 #define define_dev_printk_level(func, kern_level) \ 4977 void func(const struct device *dev, const char *fmt, ...) \ 4978 { \ 4979 struct va_format vaf; \ 4980 va_list args; \ 4981 \ 4982 va_start(args, fmt); \ 4983 \ 4984 vaf.fmt = fmt; \ 4985 vaf.va = &args; \ 4986 \ 4987 __dev_printk(kern_level, dev, &vaf); \ 4988 \ 4989 va_end(args); \ 4990 } \ 4991 EXPORT_SYMBOL(func); 4992 4993 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4994 define_dev_printk_level(_dev_alert, KERN_ALERT); 4995 define_dev_printk_level(_dev_crit, KERN_CRIT); 4996 define_dev_printk_level(_dev_err, KERN_ERR); 4997 define_dev_printk_level(_dev_warn, KERN_WARNING); 4998 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4999 define_dev_printk_level(_dev_info, KERN_INFO); 5000 5001 #endif 5002 5003 /** 5004 * dev_err_probe - probe error check and log helper 5005 * @dev: the pointer to the struct device 5006 * @err: error value to test 5007 * @fmt: printf-style format string 5008 * @...: arguments as specified in the format string 5009 * 5010 * This helper implements common pattern present in probe functions for error 5011 * checking: print debug or error message depending if the error value is 5012 * -EPROBE_DEFER and propagate error upwards. 5013 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5014 * checked later by reading devices_deferred debugfs attribute. 5015 * It replaces code sequence:: 5016 * 5017 * if (err != -EPROBE_DEFER) 5018 * dev_err(dev, ...); 5019 * else 5020 * dev_dbg(dev, ...); 5021 * return err; 5022 * 5023 * with:: 5024 * 5025 * return dev_err_probe(dev, err, ...); 5026 * 5027 * Using this helper in your probe function is totally fine even if @err is 5028 * known to never be -EPROBE_DEFER. 5029 * The benefit compared to a normal dev_err() is the standardized format 5030 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN" 5031 * instead of "-35") and the fact that the error code is returned which allows 5032 * more compact error paths. 5033 * 5034 * Returns @err. 5035 */ 5036 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5037 { 5038 struct va_format vaf; 5039 va_list args; 5040 5041 va_start(args, fmt); 5042 vaf.fmt = fmt; 5043 vaf.va = &args; 5044 5045 if (err != -EPROBE_DEFER) { 5046 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5047 } else { 5048 device_set_deferred_probe_reason(dev, &vaf); 5049 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5050 } 5051 5052 va_end(args); 5053 5054 return err; 5055 } 5056 EXPORT_SYMBOL_GPL(dev_err_probe); 5057 5058 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5059 { 5060 return fwnode && !IS_ERR(fwnode->secondary); 5061 } 5062 5063 /** 5064 * set_primary_fwnode - Change the primary firmware node of a given device. 5065 * @dev: Device to handle. 5066 * @fwnode: New primary firmware node of the device. 5067 * 5068 * Set the device's firmware node pointer to @fwnode, but if a secondary 5069 * firmware node of the device is present, preserve it. 5070 * 5071 * Valid fwnode cases are: 5072 * - primary --> secondary --> -ENODEV 5073 * - primary --> NULL 5074 * - secondary --> -ENODEV 5075 * - NULL 5076 */ 5077 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5078 { 5079 struct device *parent = dev->parent; 5080 struct fwnode_handle *fn = dev->fwnode; 5081 5082 if (fwnode) { 5083 if (fwnode_is_primary(fn)) 5084 fn = fn->secondary; 5085 5086 if (fn) { 5087 WARN_ON(fwnode->secondary); 5088 fwnode->secondary = fn; 5089 } 5090 dev->fwnode = fwnode; 5091 } else { 5092 if (fwnode_is_primary(fn)) { 5093 dev->fwnode = fn->secondary; 5094 5095 /* Skip nullifying fn->secondary if the primary is shared */ 5096 if (parent && fn == parent->fwnode) 5097 return; 5098 5099 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5100 fn->secondary = NULL; 5101 } else { 5102 dev->fwnode = NULL; 5103 } 5104 } 5105 } 5106 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5107 5108 /** 5109 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5110 * @dev: Device to handle. 5111 * @fwnode: New secondary firmware node of the device. 5112 * 5113 * If a primary firmware node of the device is present, set its secondary 5114 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5115 * @fwnode. 5116 */ 5117 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5118 { 5119 if (fwnode) 5120 fwnode->secondary = ERR_PTR(-ENODEV); 5121 5122 if (fwnode_is_primary(dev->fwnode)) 5123 dev->fwnode->secondary = fwnode; 5124 else 5125 dev->fwnode = fwnode; 5126 } 5127 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5128 5129 /** 5130 * device_set_of_node_from_dev - reuse device-tree node of another device 5131 * @dev: device whose device-tree node is being set 5132 * @dev2: device whose device-tree node is being reused 5133 * 5134 * Takes another reference to the new device-tree node after first dropping 5135 * any reference held to the old node. 5136 */ 5137 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5138 { 5139 of_node_put(dev->of_node); 5140 dev->of_node = of_node_get(dev2->of_node); 5141 dev->of_node_reused = true; 5142 } 5143 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5144 5145 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5146 { 5147 dev->fwnode = fwnode; 5148 dev->of_node = to_of_node(fwnode); 5149 } 5150 EXPORT_SYMBOL_GPL(device_set_node); 5151 5152 int device_match_name(struct device *dev, const void *name) 5153 { 5154 return sysfs_streq(dev_name(dev), name); 5155 } 5156 EXPORT_SYMBOL_GPL(device_match_name); 5157 5158 int device_match_of_node(struct device *dev, const void *np) 5159 { 5160 return dev->of_node == np; 5161 } 5162 EXPORT_SYMBOL_GPL(device_match_of_node); 5163 5164 int device_match_fwnode(struct device *dev, const void *fwnode) 5165 { 5166 return dev_fwnode(dev) == fwnode; 5167 } 5168 EXPORT_SYMBOL_GPL(device_match_fwnode); 5169 5170 int device_match_devt(struct device *dev, const void *pdevt) 5171 { 5172 return dev->devt == *(dev_t *)pdevt; 5173 } 5174 EXPORT_SYMBOL_GPL(device_match_devt); 5175 5176 int device_match_acpi_dev(struct device *dev, const void *adev) 5177 { 5178 return ACPI_COMPANION(dev) == adev; 5179 } 5180 EXPORT_SYMBOL(device_match_acpi_dev); 5181 5182 int device_match_acpi_handle(struct device *dev, const void *handle) 5183 { 5184 return ACPI_HANDLE(dev) == handle; 5185 } 5186 EXPORT_SYMBOL(device_match_acpi_handle); 5187 5188 int device_match_any(struct device *dev, const void *unused) 5189 { 5190 return 1; 5191 } 5192 EXPORT_SYMBOL_GPL(device_match_any); 5193